[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CH347393A - Method of lubricating the friction surfaces of parts enclosed in a housing - Google Patents

Method of lubricating the friction surfaces of parts enclosed in a housing

Info

Publication number
CH347393A
CH347393A CH347393DA CH347393A CH 347393 A CH347393 A CH 347393A CH 347393D A CH347393D A CH 347393DA CH 347393 A CH347393 A CH 347393A
Authority
CH
Switzerland
Prior art keywords
substance
housing
parts
lubricated
lubricating
Prior art date
Application number
Other languages
German (de)
Inventor
Cesare Marchetti
Herbert Schachner
Original Assignee
Straumann Inst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Straumann Inst Ag filed Critical Straumann Inst Ag
Publication of CH347393A publication Critical patent/CH347393A/en

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/02Evacuated cases; Cases filled with gas or liquids; Cases containing substances for absorbing or binding moisture or dust
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M7/00Solid or semi-solid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single solid or semi-solid substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/08Lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/16Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/18Ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/044Cyclic ethers having four or more ring atoms, e.g. furans, dioxolanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/024Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/16Nitriles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/04Aerosols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

  

  Verfahren zum Schmieren der Reibungsflächen von in einem Gehäuse     eingeschlossenen    Teilen    Die vorliegende Erfindung betrifft ein Verfahren  zum Schmieren von Teilen, die in einem wenn mög  lich ganz dichten, vorzugsweise mindestens wasser  dichten Gehäuse eingeschlossen sind. Wie man weiss,  wirft die Schmierung solcher Teile eine Grosszahl von  Problemen auf, besonders wenn es sich um fein  mechanische Teile in     Messinstrumenten    und Präzi  sionsapparaten wie Uhren handelt.  



  Besonders bei der wasserdichten automatischen  Uhr, deren Weiterentwicklung von der Industrie in  den letzten Jahren mit Erfolg betrieben wurde, sind  immer noch nicht alle mit der Schmierung zusam  menhängenden Probleme gelöst. Das derzeit verwen  dete Schmierverfahren, welches darin besteht, dass  man ein flüssiges Schmiermittel, also z. B. ein Öl,  auf die zu schmierenden, der Reibung ausgesetzten  Flächen anbringt, weist verschiedene Nachteile auf,  deren hauptsächlichste folgende sind:  1. Flüssige Schmiermittel zeigen     Alterungserschei-          nungen,    das heisst sie polymerisieren oder verharzen,  sie oxydieren oder verändern sich sonst durch atmo  sphärische Einflüsse und Reibungswärme, so dass sie  ihre Schmiereigenschaften mehr oder weniger rasch  verlieren;  2.

   Durch die Reibung entsteht stets ein gewisser  Abrieb, der vom flüssigen Schmiermittel an den rei  benden Flächen festgehalten wird, sich von dort  kaum entfernen lässt und so dort eine schmirgelnde  Wirkung ausübt, die innert mehr oder weniger kurzer  Frist zur Zerstörung der Reibungsflächen führt.  



  3. Es ist schwierig, das Schmiermittel zu erneuern,  so dass diese Arbeit durch Spezialisten, wenn nicht  gar durch den Fabrikanten auszuführen ist.  



  4. Bei flüssigen Schmiermitteln besteht meist die  Möglichkeit, dass sie von der Reibungsfläche weg  geschleudert werden oder wegfliessen können, wodurch    die Reibungsstelle ungenügend geschmiert wird,  andere Teile dagegen verschmiert und ungleich be  netzt werden.  



  Das Verfahren nach der vorliegenden Erfindung  bezweckt nun, die vorgenannten Nachteile nach  Möglichkeit zu beheben. Während es sich bei den  bisher angewandten Schmierverfahren meist um eine  hydrodynamische Schmierung handelt, betrifft die  vorliegende Erfindung eine     Grenzflächenschmierung,     das heisst es soll auf der zu schmierenden Fläche eine       reibungsvermindernde,    absorbierte Schicht erzeugt  und aufrechterhalten werden, die mono- oder mehr  molekular sein kann. Aus dem Buch      The        Friction          and        Lubrification    of     Solids     von F. P.     Bowden        and     D.

   Tabor (1950) ist es bekannt, den Einfluss .einer  durch die Fläche eines Festkörpers     adsorbierten    Gas  schicht festzustellen, die im allgemeinen den Rei  bungskoeffizienten zwischen zwei derartigen Flächen  sowie die Abnützung einer oder beider Flächen redu  ziert. Obwohl diese Wirkung der     adsorbierenden     Schichten in der Theorie schon längere Zeit bekannt  ist, wurde bis jetzt die industrielle Verwertung dieser       Schmierung    weder vorgeschlagen noch versucht, was  seinen Grund darin hatte, dass bis jetzt einerseits die  Schwierigkeiten der technischen Anwendung im Wege  standen und anderseits keine Notwendigkeit zur An  wendung gerade dieses Verfahrens gesehen wurde.

    In der Tat bereitete es grosse Schwierigkeiten, eine  solche Schmierschicht herzustellen, und eine weitere  Schwierigkeit bestand darin, die nötigen Massnahmen  zu treffen, damit eine solche     adsorbierte    Schicht sich  nach einer allfälligen Zerstörung wieder erneuern  konnte. Es wurde nun gefunden, dass sich gerade  dieses Schmierverfahren besonders für mechanische  Teile eignet, die in einem mehr oder weniger dichten  Gehäuse eingeschlossen sind, also z. B. zur Schmie-      rang der sich bewegenden Teile von wasserdichten  Uhren. Ausgedehnte Versuche haben auch gezeigt,  dass eine solche Schmierschicht den durch die Rei  bung verursachten Abrieb nicht ansammelt, so dass  sie nicht mit der Zeit zu einer Schmirgelschicht  wird.

   Aus dem Nachfolgenden ergibt sich, welche  Massnahmen getroffen werden können, um eine  solche Schmierschicht zu erzeugen und aufrechtzu  erhalten. Das Verfahren zum Schmieren der Reibungs  flächen von in einem Gehäuse eingeschlossenen  mechanischen Teilen nach dem vorliegenden Patent  ist dadurch gekennzeichnet, dass man in dem Gehäuse  eine bei der Arbeitstemperatur dieser Teile minde  stens teilweise verdampfende Substanz unterbringt,  deren Moleküle mindestens von den zu schmierenden       Flächen    der genannten Teile     adsorbiert    werden und  auf ihnen eine mindestens monomolekulare Schicht  bilden.  



  Als     verdampfbare    Substanz kann eine solche ver  wendet werden, die von der zu schmierenden     Fläche          chemisorbiert    oder eine, die von ihr physikalisch       adsorbiert    wird, und die einen der Arbeitstemperatur  der Teile und der Dichtigkeit des Gehäuses ange  passten Dampfdruck hat, der z. B. bei einer wasser  dichten Uhr unterhalb 600     Torr    liegen soll.

   Als Sub  stanzen eignen sich zu diesem Zweck unter anderem       Kohlenwasserstoffe.    Wenn die zu schmierenden Flä  chen eines Saphirs oder eloxierte     Aluminiumflächen     sind, also Flächen, die     amphoter    reagieren, so eignen  sich Stoffe mit polaren, basisch     wirkenden        Endgrup-          pen,    wie z. B. Amine,     Phosphine    und     Arsine.    Von  den ersteren wiederum haben sich besonders die       Hexylamine    für gewisse Zwecke als gut verwendbar       erwiesen.    Mit einigen Tropfen     n-Hexylamin    kann  z.

   B. ein irgendwo in einem wasserdichten Uhrgehäuse  untergebrachter Tampon befeuchtet werden. Da die  Substanz bei Zimmertemperatur einen Dampfdruck  von etwa 7,5     Torr    hat, verdampft sie teilweise und  bildet auf den zu schmierenden Flächen eine minde  stens monomolekulare Schicht, da sich die einzelnen  Moleküle mit ihren polaren, basisch wirkenden     End-          gruppen    auf ihr festsetzen werden. Diese Schicht       erneuert    sich dort aus der     Flüssigkeitsreserve    über  die Gasphase in kürzester Zeit, wo sie aus irgend  einem Grunde ein Loch erhalten hat.

   Da sie so dünn  ist, hat sie zwar eine ausgezeichnete Schmierwirkung,  jedoch nicht die     Fähigkeit,    abgeriebene Teilchen der       aufeinanderreibenden    Flächen festzuhalten, die sich  daher aus dem Lager fortbewegen können und das  Lager nicht angreifen. Als Material für den Tampon  eignet sich irgendein saugfähiger Körper, wie z. B.  Filz, Löschpapier, oder auch ein     Sinterkörper.     



  Aus dem Vorstehenden ist ersichtlich, dass es       möglich    ist, nach dem erfindungsgemässen Verfahren  eine Schmierung von in einem Gehäuse eingeschlosse  nen Teilchen zu erhalten, ohne dass man flüssige  Schmiermittel direkt auf die zu schmierenden Flächen  aufbringt, und infolgedessen kann man alle einleitend  genannten Nachteile der     flüssigen    Schmiermittel ver  meiden. Das erfindungsgemässe Verfahren hat des    weiteren den Vorteil, dass alle Flächen des Mechanis  mus praktisch trocken bleiben, wodurch z.

   B. die       Reglage-Eigenschaften    einer Uhr wesentlich verbes  sert werden, und dass automatisch eine Erneuerung  der     adsorbierten    Schichten     erfolgt.    Selbstverständlich  ist das erfindungsgemässe Verfahren nicht auf die  Verwendung einer flüssigen Substanz, wie z. B. des       Hexylamins,    beschränkt, sondern es können auch  andere Substanzen, die fest oder     gasförmig    sein kön  nen und deren Moleküle sich zur Bildung einer rei  bungsvermindernden Schicht     adsorbieren    lassen, ver  wendet werden.

   Besonders zur Schmierung von Flä  chen, die das     Hexylamin    nicht nur     chemisorbieren,     sondern mit ihm derart reagieren, dass sich Korro  sionsprodukte bilden, wie das bei     Cu    und     Cu-Legie-          rungen    der Fall ist, wird man eine andere Substanz  wählen.     Zweckmässigerweise    wird man als Schmier  mittel eine Substanz verwenden, deren Dampfdruck  unter 50     Torr    liegt, damit die Erneuerung allfällig  sich bildender Löcher der Schmierschicht aus der  Flüssigkeit oder der festen Phase über die gasförmige  Phase     gewährleistet    bleibt.

   Als weitere Substanzen  für das erfindungsgemässe Verfahren eignen sich eine  oder mehrere aus den folgenden Substanzen respek  tive Substanzgruppen:       Kohlenwasserstoffe    (z. B.     Pentan,        Hexan,        Heptan,          Oktan,        Nonan,    Dekan,     Undekan,        Dodekan,        Penten,     Hexen,     Hepten,        Okten,    Benzol,     Toluol,        Xylol,        Mesi-          tylen,        Tetramethylbenzol,

          Äthylbenzol,        Diäthylbenzol,          Triäthylbenzol,        Butylbenzol,        Amylbenzol,        Diamyl-          benzol,        Dibutylbenzol,        Methyläthylbenzol,        Methyl-          butylbenzol,        Methylpropylbenzol,        Äthylpropylbenzol,          Äthylbutylbenzol,        Amylnaphthalin,        Cyclopentan,          Cyclohexan,

          Cycloheptan,        Tetralin,        Dekalin    und       Pinen),    Kohlenwasserstoffgemische (wie z. B.     Kerosen,     Petroleum, Lampenpetroleum,     Terpenalin,        Siedegren-          zenbenzin,    Leichtbenzin,     Ligroin,        Gasolin,        Petrol-          äther,    Autobenzin, Heizöl, Rohöl, Dieselöl und  Paraffinöl),     halogenierte        Kohlenwasserstoffe    (z. B.

         n-Propylchlorid,        n-Propylbromid,        n-Propylfluorid,          n-Butylchlorid;        n-Butylbromid,        n-Butylfluorid,        Pentyl-          chlorid,        Pentylbromid,        Pentylfluorid        (=Amylfluorid),          Hexylchlorid,        Hexylbromid,        Hexylfluorid,        Heptyl-          chlorid,        Heptylbromid,        Heptylfluorid,

      Chlorbenzol,       Di-,        tri-,        tetrahalogenierte        Kohlenwasserstoffe,    Per  chloräthylen), Aldehyde, (z. B.     Önanthaldehyd,        Butyr-          aldehyd),        Ketone    (z. B.     Methyl-n-nonylketon),    Alko  hole (z. B.     Butanol,    Äthanol,     n-Amylalkohol    und       Benzylalkohol),    Fettsäuren (z. B.     Önanthsäure),    Ni  trile (z. B.     Propionitril,        Benzonitril),    Äther (z. B.

         Dibutyläther,        Diamyläther,        Dihexyläther,        Methyl-          dezyläther),    Ester (z. B.     Amylacetat,        Butylacetat,          Butylbutyrat,        Amylbutyrat,        Glykoldiformiat,        Propyl-          formiat,        Hexylacetat,        Äthyllactat,        Dibutyloxalat,        Di-          äthyloxalat,        Tributylborat,

          Triäthylborat    und     Äthyl-          acetat),        Thioaldehyde    (z. B.     Thioönanthaldehyd,        Thio-          butyraldehyd),        Thioalkohole    (z. B.     Butylmerkaptan),          Thioäther    (z. B.     Methyldezylthioäther    und     Diäthyl-          sulfid),        Thiocyanate    (z. B.     Äthylthiocyanat),        Isothio-          cyanate    (z.

   B.     Äthylisothiocyanat),    sowie     Amyl-,              Methyl-    und     Butyl- Cellosolve ,        Piperidin,        Propylen-          oxyd,    Schwefelkohlenstoff.  



  Es ist des weiteren zu bemerken, dass es, falls die  zu schmierenden Flächen nicht metallisch sind, son  dern z. B.     Flächen    von Edelsteinen, zweckmässig ist,  diese Flächen zuerst zu reinigen. Diese Reinigung  kann z. B. durch Erhitzen im Vakuum erfolgen, wor  auf man im selben Vakuum sich die erste     adsorbie-          rende    Schicht bilden lässt. Anderseits kann es zweck  mässig sein, zur Schmierung von Flächen gewisser  Materialien die Gegenwart von feuchter Luft auszu  nützen, um so eine     amphoter    reagierende Oberfläche  zu erhalten, von welcher die Moleküle mit polaren,  basisch wirkenden Endgruppen     chemisorbiert    werden  können.  



  Es wurde festgestellt, dass sich Stoffe, die einfach  gebaute Moleküle aufweisen, besser eignen als solche,  die aus komplizierter gebauten Molekülen bestehen.  Besonders günstig sind Stoffe, deren Molekül am  einen Ende eine freie     -SH-Gruppe    aufweist, wie z. B.  die     Merkaptane,    obwohl sich diese wegen ihres pene  tranten Geruches nicht überall verwenden lassen.

   Als  günstig und zweckmässig haben sich zur Schmierung  der Achsen und Lager wie der Ankerteile von Uhren  vor allem die     monohalogenierten        Kohlenwasserstoffe          (Propylchlorid,        Propylbromid,        Äthylbromid    usw.)  erwiesen sowie     Kerosen,        Xylol,        Dekalin    und     Mesi-          tylen.    Versuche haben gezeigt, dass     Achslager,    die  mit diesen Substanzen  über die Dampfphase ge  schmiert  waren, sowohl zu Beginn, wie auch nach  sehr langer Versuchszeit einen Reibungskoeffizienten  aufwiesen,

   der kleiner oder gleich gross war als der  jenige derselben Teile, wenn sie mit bestem     Uhrenöl     geschmiert waren.  



  Es ist natürlich nicht nötig, dass der mindestens  teilweise verdampfende Stoff in     flüssiger    Form in das  Gehäuse eingebracht wird. Er kann auch in fester    oder gasförmiger Form eingebracht werden und darf  selbstverständlich bei Arbeitstemperatur auch so weit  in Dampfform übergehen, dass nur noch eine mono  molekulare Schicht auf den Reibungsflächen gebildet  wird.



  Method for lubricating the friction surfaces of parts enclosed in a housing The present invention relates to a method for lubricating parts which are enclosed in a housing which is, if possible, completely airtight, preferably at least watertight. As is known, the lubrication of such parts poses a large number of problems, especially when it comes to fine mechanical parts in measuring instruments and precision apparatus such as watches.



  Especially in the case of the waterproof automatic watch, the further development of which has been successfully pursued by the industry in recent years, not all problems related to lubrication have been solved. The currently used lubrication method, which consists in using a liquid lubricant, so z. For example, applying an oil to the surfaces to be lubricated exposed to friction has various disadvantages, the main ones being the following: 1. Liquid lubricants show signs of aging, that is, they polymerize or resinify, they oxidize or otherwise change through atmospheric pressure spherical influences and frictional heat, so that they lose their lubricating properties more or less quickly; 2.

   The friction always creates a certain amount of abrasion, which is held by the liquid lubricant on the friction surfaces, can hardly be removed from there and thus has an abrasive effect there that leads to the destruction of the friction surfaces within a more or less short period of time.



  3. It is difficult to renew the lubricant, so this work must be carried out by specialists, if not the manufacturer.



  4. With liquid lubricants there is usually the possibility that they can be thrown away from the friction surface or flow away, whereby the friction point is insufficiently lubricated, while other parts are smeared and unevenly be wetted.



  The method according to the present invention now aims to remedy the aforementioned disadvantages as far as possible. While the previously used lubrication methods are mostly hydrodynamic lubrication, the present invention relates to interfacial lubrication, that is, a friction-reducing, absorbed layer which can be mono- or more molecular should be created and maintained on the surface to be lubricated. From the book The Friction and Lubrification of Solids by F. P. Bowden and D.

   Tabor (1950) it is known to determine the influence of a gas layer adsorbed by the surface of a solid, which generally reduces the coefficient of friction between two such surfaces and the wear and tear of one or both surfaces. Although this effect of the adsorbing layers has been known in theory for a long time, the industrial utilization of this lubrication has not been proposed or attempted, which was due to the fact that up to now, on the one hand, the difficulties of technical application stood in the way and, on the other hand, no necessity was seen to apply precisely this method.

    In fact, it was very difficult to produce such a smear layer, and a further difficulty consisted in taking the necessary measures so that such an adsorbed layer could renew itself after any destruction. It has now been found that precisely this lubrication method is particularly suitable for mechanical parts that are enclosed in a more or less tight housing, so z. B. for lubrication of the moving parts of watertight watches. Extensive tests have also shown that such a smear layer does not accumulate the abrasion caused by the friction, so that it does not become an emery layer over time.

   The following shows which measures can be taken to create and maintain such a smear layer. The method for lubricating the friction surfaces of mechanical parts enclosed in a housing according to the present patent is characterized in that a substance which at least partially evaporates at the working temperature of these parts is accommodated in the housing, the molecules of which are at least from the surfaces to be lubricated of the aforementioned Parts are adsorbed and form an at least monomolecular layer on them.



  As a vaporizable substance can be used ver that chemisorbed by the surface to be lubricated or one that is physically adsorbed by it, and one of the working temperature of the parts and the tightness of the housing has adjusted vapor pressure, the z. B. should be below 600 Torr in a waterproof watch.

   Suitable substances for this purpose include hydrocarbons. If the surfaces to be lubricated are sapphire or anodized aluminum surfaces, ie surfaces that react amphoterically, then substances with polar, basic-acting end groups, such as B. amines, phosphines and arsines. Of the former, in turn, the hexylamines in particular have proven to be useful for certain purposes. With a few drops of n-hexylamine z.

   B. a tampon housed somewhere in a waterproof watch case can be moistened. Since the substance has a vapor pressure of about 7.5 Torr at room temperature, it partially evaporates and forms an at least monomolecular layer on the surfaces to be lubricated, as the individual molecules with their polar, basic end groups will attach themselves to it. This layer is renewed in a very short time from the liquid reserve via the gas phase, where for some reason it has received a hole.

   Because it is so thin, although it has excellent lubricating properties, it does not have the ability to hold abraded particles from the surfaces rubbing against one another, which can therefore move away from the bearing and not attack the bearing. Any absorbent body, such as, for. B. felt, blotting paper, or a sintered body.



  From the above it can be seen that it is possible, according to the method according to the invention, to obtain lubrication of particles enclosed in a housing without applying liquid lubricants directly to the surfaces to be lubricated, and consequently all of the disadvantages of the liquid mentioned in the introduction Avoid lubricants. The inventive method has the further advantage that all surfaces of the mechanism remain practically dry, whereby z.

   B. the regulation properties of a clock are significantly improved, and that the adsorbed layers are automatically renewed. Of course, the inventive method is not limited to the use of a liquid substance, such as. B. hexylamine, but other substances that can be solid or gaseous and whose molecules can be adsorbed to form a friction-reducing layer can be used ver.

   A different substance will be chosen, especially for the lubrication of surfaces that not only chemisorb the hexylamine but also react with it in such a way that corrosion products are formed, as is the case with Cu and Cu alloys. Appropriately, a substance will be used as the lubricant, the vapor pressure of which is below 50 Torr, so that the renewal of any holes that may form in the lubricant layer from the liquid or the solid phase via the gaseous phase is guaranteed.

   Other substances suitable for the process according to the invention are one or more of the following substance groups: hydrocarbons (e.g. pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, pentene, hexene, heptene, octene, Benzene, toluene, xylene, mesitylene, tetramethylbenzene,

          Ethylbenzene, diethylbenzene, triethylbenzene, butylbenzene, amylbenzene, diamylbenzene, dibutylbenzene, methylethylbenzene, methylbutylbenzene, methylpropylbenzene, ethylpropylbenzene, ethylbutylbenzene, amylnaphane, cyclohexane, phthalene, cyclohexane

          Cycloheptane, tetralin, decalin and pinene), hydrocarbon mixtures (such as kerosene, petroleum, lamp kerosene, terpenaline, special boiling petrol, light petrol, ligroin, gasoline, petroleum ether, car petrol, heating oil, crude oil, diesel oil and paraffin oil), halogenated Hydrocarbons (e.g.

         n-propyl chloride, n-propyl bromide, n-propyl fluoride, n-butyl chloride; n-butyl bromide, n-butyl fluoride, pentyl chloride, pentyl bromide, pentyl fluoride (= amyl fluoride), hexyl chloride, hexyl bromide, hexyl fluoride, heptyl chloride, heptyl bromide, heptyl fluoride,

      Chlorobenzene, di-, tri-, tetrahalogenated hydrocarbons, per chloroethylene), aldehydes (e.g. enanthaldehyde, butyraldehyde), ketones (e.g. methyl-n-nonyl ketone), alcohols (e.g. butanol , Ethanol, n-amyl alcohol and benzyl alcohol), fatty acids (e.g. enanthic acid), nitric (e.g. propionitrile, benzonitrile), ethers (e.g.

         Dibutyl ether, diamyl ether, dihexyl ether, methyl decyl ether), esters (e.g. amyl acetate, butyl acetate, butyl butyrate, amyl butyrate, glycol formate, propyl formate, hexyl acetate, ethyl lactate, dibutyl oxalate, di-ethyloxalate, tributyl oxalate,

          Triethyl borate and ethyl acetate), thioaldehydes (e.g. thioönanthaldehyde, thiobutyraldehyde), thioalcohols (e.g. butyl mercaptan), thioethers (e.g. methyl decyl thioether and diethyl sulfide), thiocyanates (e.g. ethyl thiocyanate) , Isothiocyanates (e.g.

   B. ethyl isothiocyanate), as well as amyl, methyl and butyl cellosolve, piperidine, propylene oxide, carbon disulfide.



  It should also be noted that if the surfaces to be lubricated are not metallic, son countries z. B. surfaces of precious stones, it is advisable to clean these surfaces first. This cleaning can e.g. B. be done by heating in a vacuum, whereupon the first adsorbing layer can be formed in the same vacuum. On the other hand, it may be useful to use the presence of moist air trainees to lubricate surfaces of certain materials in order to obtain an amphoteric surface from which the molecules with polar, basic-acting end groups can be chemisorbed.



  It has been found that substances that have simply built molecules are more suitable than those that consist of more complex molecules. Substances whose molecule has a free -SH group at one end, such as. B. the mercaptans, although they cannot be used everywhere because of their pene tranten smell.

   Monohalogenated hydrocarbons (propyl chloride, propyl bromide, ethyl bromide, etc.) as well as kerosene, xylene, decalin and mesitylene have proven to be favorable and useful for the lubrication of axles and bearings as well as the armature parts of watches. Tests have shown that axle bearings that were lubricated with these substances via the vapor phase had a coefficient of friction both at the beginning and after a very long test period,

   which was smaller or the same size as the one of the same parts when they were lubricated with the best watch oil.



  It is of course not necessary for the at least partially evaporating substance to be introduced into the housing in liquid form. It can also be introduced in solid or gaseous form and, of course, may change into vapor form at working temperature to such an extent that only a monomolecular layer is formed on the friction surfaces.

 

Claims (1)

PATENTANSPRUCH Verfahren zum Schmieren der Reibungsflächen von in einem Gehäuse eingeschlossenen Teilen, da durch gekennzeichnet, dass man in dem Gehäuse eine bei der Arbeitstemperatur dieser Teile mindestens teilweise verdampfende Substanz unterbringt, deren Moleküle mindestens von den zu schmierenden Flä chen der genannten Teile adsorbiert werden und auf ihnen eine mindestens monomolekulare Schicht bilden. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch ge kennzeichnet, dass man eine Substanz verwendet, deren Moleküle von den zu schmierenden Flächen chemisorbiert werden. 2. A method for lubricating the friction surfaces of parts enclosed in a housing, characterized in that a substance which at least partially evaporates at the working temperature of these parts is accommodated in the housing, the molecules of which are at least adsorbed by the surfaces to be lubricated of the parts mentioned and on they form an at least monomolecular layer. SUBClaims 1. Method according to claim, characterized in that a substance is used, the molecules of which are chemisorbed by the surfaces to be lubricated. 2. Verfahren nach Patentanspruch, dadurch ge kennzeichnet, dass man eine Substanz verwendet, deren Dampfdruck bei der Arbeitstemperatur der mechanischen Teile unterhalb 600 Torr liegt. 3. Verfahren nach Patentanspruch, dadurch ge kennzeichnet, dass man als Substanz einen Kohlen wasserstoff verwendet. 4. Verfahren nach Patentanspruch, dadurch ge kennzeichnet, dass man als Substanz ein Amin ver wendet. 5. Verfahren nach Unteranspruch 4, dadurch gekennzeichnet, dass man als Amin Hexylamin ver- wendet. 6. Verfahren nach Unteranspruch 5, dadurch gekennzeichnet, dass man das n-Hexylamin ver wendet. Method according to patent claim, characterized in that a substance is used whose vapor pressure at the working temperature of the mechanical parts is below 600 Torr. 3. The method according to claim, characterized in that a carbon is used as the substance hydrogen. 4. The method according to claim, characterized in that an amine is used as the substance. 5. The method according to dependent claim 4, characterized in that the amine used is hexylamine. 6. The method according to dependent claim 5, characterized in that the n-hexylamine is used ver.
CH347393D 1957-12-24 1957-12-24 Method of lubricating the friction surfaces of parts enclosed in a housing CH347393A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1208799X 1957-12-24
CH347393T 1957-12-24

Publications (1)

Publication Number Publication Date
CH347393A true CH347393A (en) 1960-06-30

Family

ID=61627951

Family Applications (1)

Application Number Title Priority Date Filing Date
CH347393D CH347393A (en) 1957-12-24 1957-12-24 Method of lubricating the friction surfaces of parts enclosed in a housing

Country Status (2)

Country Link
CH (1) CH347393A (en)
FR (1) FR1208799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004896A1 (en) * 1983-06-09 1984-12-20 Boeing Co Coldworking method and lubrication system for coldworking of holes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH698230B1 (en) * 2006-11-02 2011-01-14 Rolex Sa Shows.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004896A1 (en) * 1983-06-09 1984-12-20 Boeing Co Coldworking method and lubrication system for coldworking of holes

Also Published As

Publication number Publication date
FR1208799A (en) 1960-02-25

Similar Documents

Publication Publication Date Title
DE112011101699T5 (en) Structured coating on a surface of a component
CH347393A (en) Method of lubricating the friction surfaces of parts enclosed in a housing
DE1750230A1 (en) Process to improve the sealing effect of radial sealing rings against lubricants that contain additives
DE508305C (en) Process for the uniform application of fine particles of fabric in powder or liquid form, e.g. of condensed water vapor on tobacco to be moistened
DE676270C (en) Device for dividing gases into liquids
DE493302C (en) Process for the arbitrary change of the contact angle of liquids on solid substrates
DE535972C (en) Microphone contact body with hard carbon coating
DE712449C (en) Process for nitrogen oxide purification from gases
DE688426C (en) Valve plug for electrolytic capacitors
DE671284C (en) Oil-filled electrical apparatus with arcing under oil, especially Schlter
DE351869C (en) Process for the production of insulating tape for electrical purposes
DE1792757C3 (en) Process for removing carbon
DE578342C (en) Device for continuous measurement of the hydrogen ion concentration of liquids with the platinum hydrogen electrode
DE747738C (en) Method and device for applying fluorescent coatings to the inside of electric fluorescent tubes
DE405785C (en) Process for the impregnation of vulcanized fiber sheets or sheets and articles made from them
DE566449C (en) Process for the oxidation of liquid hydrocarbons
DE482135C (en) Process for impregnating porous insulating materials
DE441168C (en) Replacement for sheet metal rolls, especially for the cigarette industry
DE872623C (en) High pressure lubricant
DE522480C (en) Process for the extraction of organic substances from aqueous mixtures, emulsions, solutions or gas mixtures
DE759823C (en) Shut-off valve for high vacuum vessels
DE542352C (en) Method and device for the recovery of volatile solvents from gases
DE379150C (en) Method and device for operating dry gas meters
DE573669C (en) Device for humidifying the intake air of internal combustion engines
DE576427C (en) Process for the extraction of tar from raw ammonia water