CA3193406A1 - Methods for treating neurological disease - Google Patents
Methods for treating neurological diseaseInfo
- Publication number
- CA3193406A1 CA3193406A1 CA3193406A CA3193406A CA3193406A1 CA 3193406 A1 CA3193406 A1 CA 3193406A1 CA 3193406 A CA3193406 A CA 3193406A CA 3193406 A CA3193406 A CA 3193406A CA 3193406 A1 CA3193406 A1 CA 3193406A1
- Authority
- CA
- Canada
- Prior art keywords
- disease
- seq
- composition
- aav
- see seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 175
- 208000012902 Nervous system disease Diseases 0.000 title claims abstract description 107
- 208000025966 Neurological disease Diseases 0.000 title claims abstract description 58
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 288
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 223
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 223
- 239000002679 microRNA Substances 0.000 claims abstract description 216
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 175
- 239000000203 mixture Substances 0.000 claims abstract description 161
- 108091070501 miRNA Proteins 0.000 claims abstract description 153
- 210000000234 capsid Anatomy 0.000 claims abstract description 118
- 239000013603 viral vector Substances 0.000 claims abstract description 97
- 230000003612 virological effect Effects 0.000 claims abstract description 61
- 208000023105 Huntington disease Diseases 0.000 claims abstract description 58
- 102000020038 Cholesterol 24-Hydroxylase Human genes 0.000 claims abstract description 11
- 108091022871 Cholesterol 24-Hydroxylase Proteins 0.000 claims abstract description 11
- 239000013598 vector Substances 0.000 claims description 145
- 230000014509 gene expression Effects 0.000 claims description 105
- 210000003169 central nervous system Anatomy 0.000 claims description 92
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 84
- 239000002773 nucleotide Substances 0.000 claims description 78
- 102000004169 proteins and genes Human genes 0.000 claims description 78
- 108700019146 Transgenes Proteins 0.000 claims description 77
- 125000003729 nucleotide group Chemical group 0.000 claims description 76
- 108090000565 Capsid Proteins Proteins 0.000 claims description 70
- 102100023321 Ceruloplasmin Human genes 0.000 claims description 70
- 230000004048 modification Effects 0.000 claims description 66
- 238000012986 modification Methods 0.000 claims description 66
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 62
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 50
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 39
- 241000580270 Adeno-associated virus - 4 Species 0.000 claims description 38
- 229920001184 polypeptide Polymers 0.000 claims description 38
- 230000000295 complement effect Effects 0.000 claims description 35
- -1 bridge GalNac Chemical compound 0.000 claims description 33
- 238000002347 injection Methods 0.000 claims description 33
- 239000007924 injection Substances 0.000 claims description 33
- 150000001413 amino acids Chemical class 0.000 claims description 32
- 208000035475 disorder Diseases 0.000 claims description 32
- 201000010099 disease Diseases 0.000 claims description 30
- 241001655883 Adeno-associated virus - 1 Species 0.000 claims description 28
- 241001634120 Adeno-associated virus - 5 Species 0.000 claims description 28
- 241000702423 Adeno-associated virus - 2 Species 0.000 claims description 26
- 241000972680 Adeno-associated virus - 6 Species 0.000 claims description 26
- 241000702421 Dependoparvovirus Species 0.000 claims description 26
- 241001164825 Adeno-associated virus - 8 Species 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 24
- 239000003446 ligand Substances 0.000 claims description 20
- 108020004705 Codon Proteins 0.000 claims description 19
- 239000013607 AAV vector Substances 0.000 claims description 18
- 241000649045 Adeno-associated virus 10 Species 0.000 claims description 18
- 210000000278 spinal cord Anatomy 0.000 claims description 18
- 241001164823 Adeno-associated virus - 7 Species 0.000 claims description 17
- 208000015114 central nervous system disease Diseases 0.000 claims description 17
- 208000024827 Alzheimer disease Diseases 0.000 claims description 16
- 108700028369 Alleles Proteins 0.000 claims description 15
- 208000019022 Mood disease Diseases 0.000 claims description 15
- 208000018737 Parkinson disease Diseases 0.000 claims description 15
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 15
- 108091092195 Intron Proteins 0.000 claims description 14
- 241000649046 Adeno-associated virus 11 Species 0.000 claims description 13
- 241000649047 Adeno-associated virus 12 Species 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 12
- 229920000155 polyglutamine Polymers 0.000 claims description 12
- 101001030705 Homo sapiens Huntingtin Proteins 0.000 claims description 11
- 102000007659 Protein Deglycase DJ-1 Human genes 0.000 claims description 11
- 108010032428 Protein Deglycase DJ-1 Proteins 0.000 claims description 11
- 241000700605 Viruses Species 0.000 claims description 11
- 229940079593 drug Drugs 0.000 claims description 11
- 108010040003 polyglutamine Proteins 0.000 claims description 11
- 241000894007 species Species 0.000 claims description 11
- 208000017194 Affective disease Diseases 0.000 claims description 10
- 108010020246 Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 Proteins 0.000 claims description 10
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 10
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 claims description 9
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 claims description 9
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 claims description 9
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 9
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 claims description 9
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 claims description 9
- 238000007385 chemical modification Methods 0.000 claims description 9
- 108050009621 Synapsin Proteins 0.000 claims description 8
- 150000004676 glycans Polymers 0.000 claims description 8
- 102000054185 human HTT Human genes 0.000 claims description 8
- 102000001435 Synapsin Human genes 0.000 claims description 7
- 208000014674 injury Diseases 0.000 claims description 7
- 241000701161 unidentified adenovirus Species 0.000 claims description 7
- 102100026882 Alpha-synuclein Human genes 0.000 claims description 6
- 101100043731 Caenorhabditis elegans syx-3 gene Proteins 0.000 claims description 6
- 102100023692 Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 Human genes 0.000 claims description 6
- 101100535673 Drosophila melanogaster Syn gene Proteins 0.000 claims description 6
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 claims description 6
- 101000906986 Homo sapiens Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 Proteins 0.000 claims description 6
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 claims description 6
- 101000605835 Homo sapiens Serine/threonine-protein kinase PINK1, mitochondrial Proteins 0.000 claims description 6
- 101000854862 Homo sapiens Vacuolar protein sorting-associated protein 35 Proteins 0.000 claims description 6
- 101100368134 Mus musculus Syn1 gene Proteins 0.000 claims description 6
- 102100038376 Serine/threonine-protein kinase PINK1, mitochondrial Human genes 0.000 claims description 6
- 102000005918 Ubiquitin Thiolesterase Human genes 0.000 claims description 6
- 108010005656 Ubiquitin Thiolesterase Proteins 0.000 claims description 6
- 102100020822 Vacuolar protein sorting-associated protein 35 Human genes 0.000 claims description 6
- 208000037765 diseases and disorders Diseases 0.000 claims description 6
- 238000010253 intravenous injection Methods 0.000 claims description 6
- 241001430294 unidentified retrovirus Species 0.000 claims description 6
- 241000710929 Alphavirus Species 0.000 claims description 5
- 208000031277 Amaurotic familial idiocy Diseases 0.000 claims description 5
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 claims description 5
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 claims description 5
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 claims description 5
- 208000022526 Canavan disease Diseases 0.000 claims description 5
- 206010050389 Cerebral ataxia Diseases 0.000 claims description 5
- 206010012289 Dementia Diseases 0.000 claims description 5
- 102100034109 DnaJ homolog subfamily C member 13 Human genes 0.000 claims description 5
- 102100022207 E3 ubiquitin-protein ligase parkin Human genes 0.000 claims description 5
- 201000011240 Frontotemporal dementia Diseases 0.000 claims description 5
- 201000004311 Gilles de la Tourette syndrome Diseases 0.000 claims description 5
- 101000870239 Homo sapiens DnaJ homolog subfamily C member 13 Proteins 0.000 claims description 5
- 101000929663 Homo sapiens Phospholipid-transporting ATPase ABCA7 Proteins 0.000 claims description 5
- 208000006136 Leigh Disease Diseases 0.000 claims description 5
- 208000017507 Leigh syndrome Diseases 0.000 claims description 5
- 241000713666 Lentivirus Species 0.000 claims description 5
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 claims description 5
- 206010033864 Paranoia Diseases 0.000 claims description 5
- 208000027099 Paranoid disease Diseases 0.000 claims description 5
- 102100036620 Phospholipid-transporting ATPase ABCA7 Human genes 0.000 claims description 5
- 208000000609 Pick Disease of the Brain Diseases 0.000 claims description 5
- 208000032319 Primary lateral sclerosis Diseases 0.000 claims description 5
- 208000006262 Psychological Sexual Dysfunctions Diseases 0.000 claims description 5
- 208000028017 Psychotic disease Diseases 0.000 claims description 5
- 208000005587 Refsum Disease Diseases 0.000 claims description 5
- 208000027520 Somatoform disease Diseases 0.000 claims description 5
- 102100025639 Sortilin-related receptor Human genes 0.000 claims description 5
- 208000022292 Tay-Sachs disease Diseases 0.000 claims description 5
- 208000000323 Tourette Syndrome Diseases 0.000 claims description 5
- 208000016620 Tourette disease Diseases 0.000 claims description 5
- 206010046298 Upper motor neurone lesion Diseases 0.000 claims description 5
- 201000004810 Vascular dementia Diseases 0.000 claims description 5
- 206010063661 Vascular encephalopathy Diseases 0.000 claims description 5
- 208000030597 adult Refsum disease Diseases 0.000 claims description 5
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 claims description 5
- 206010008118 cerebral infarction Diseases 0.000 claims description 5
- 206010015037 epilepsy Diseases 0.000 claims description 5
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 claims description 5
- 201000010901 lateral sclerosis Diseases 0.000 claims description 5
- 150000002772 monosaccharides Chemical class 0.000 claims description 5
- 208000005264 motor neuron disease Diseases 0.000 claims description 5
- 201000006417 multiple sclerosis Diseases 0.000 claims description 5
- 201000006938 muscular dystrophy Diseases 0.000 claims description 5
- 206010028417 myasthenia gravis Diseases 0.000 claims description 5
- 208000004296 neuralgia Diseases 0.000 claims description 5
- 208000021722 neuropathic pain Diseases 0.000 claims description 5
- 208000027753 pain disease Diseases 0.000 claims description 5
- 230000002085 persistent effect Effects 0.000 claims description 5
- 201000008752 progressive muscular atrophy Diseases 0.000 claims description 5
- 201000000980 schizophrenia Diseases 0.000 claims description 5
- 208000002320 spinal muscular atrophy Diseases 0.000 claims description 5
- 230000008733 trauma Effects 0.000 claims description 5
- 241000701447 unidentified baculovirus Species 0.000 claims description 5
- 241001529453 unidentified herpesvirus Species 0.000 claims description 5
- 108010078286 Ataxins Proteins 0.000 claims description 4
- 102000014461 Ataxins Human genes 0.000 claims description 4
- 206010008025 Cerebellar ataxia Diseases 0.000 claims description 4
- 102100039735 Eukaryotic translation initiation factor 4 gamma 1 Human genes 0.000 claims description 4
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 claims description 4
- 206010019196 Head injury Diseases 0.000 claims description 4
- 208000028226 Krabbe disease Diseases 0.000 claims description 4
- 108010036933 Presenilin-1 Proteins 0.000 claims description 4
- 108010036908 Presenilin-2 Proteins 0.000 claims description 4
- 108060009345 SORL1 Proteins 0.000 claims description 4
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 claims description 4
- 229930182830 galactose Natural products 0.000 claims description 4
- 208000020431 spinal cord injury Diseases 0.000 claims description 4
- NBSCHQHZLSJFNQ-QTVWNMPRSA-N D-Mannose-6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@@H]1O NBSCHQHZLSJFNQ-QTVWNMPRSA-N 0.000 claims description 3
- 101001034825 Homo sapiens Eukaryotic translation initiation factor 4 gamma 1 Proteins 0.000 claims description 3
- 101000997662 Homo sapiens Lysosomal acid glucosylceramidase Proteins 0.000 claims description 3
- 102100033342 Lysosomal acid glucosylceramidase Human genes 0.000 claims description 3
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 claims description 2
- 208000027418 Wounds and injury Diseases 0.000 claims description 2
- 230000000890 antigenic effect Effects 0.000 claims description 2
- 125000000732 arylene group Chemical group 0.000 claims description 2
- 230000006378 damage Effects 0.000 claims description 2
- 150000004804 polysaccharides Polymers 0.000 claims description 2
- 102000009784 Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 Human genes 0.000 claims 4
- 102000012412 Presenilin-1 Human genes 0.000 claims 2
- 102000012419 Presenilin-2 Human genes 0.000 claims 2
- 230000008685 targeting Effects 0.000 abstract description 19
- 230000002452 interceptive effect Effects 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 138
- 210000004940 nucleus Anatomy 0.000 description 83
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 80
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 74
- 235000018102 proteins Nutrition 0.000 description 73
- 230000002401 inhibitory effect Effects 0.000 description 68
- 102100027554 Cholesterol 24-hydroxylase Human genes 0.000 description 60
- 101000861247 Homo sapiens Cholesterol 24-hydroxylase Proteins 0.000 description 60
- 108700011259 MicroRNAs Proteins 0.000 description 52
- 210000002569 neuron Anatomy 0.000 description 47
- 210000004556 brain Anatomy 0.000 description 43
- 235000001014 amino acid Nutrition 0.000 description 42
- 108020004999 messenger RNA Proteins 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 34
- 241000282414 Homo sapiens Species 0.000 description 33
- 230000006870 function Effects 0.000 description 33
- 239000003795 chemical substances by application Substances 0.000 description 30
- 238000006467 substitution reaction Methods 0.000 description 30
- 210000001130 astrocyte Anatomy 0.000 description 28
- 230000001105 regulatory effect Effects 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 26
- 238000011282 treatment Methods 0.000 description 25
- 108091026890 Coding region Proteins 0.000 description 24
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 24
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 22
- 210000005036 nerve Anatomy 0.000 description 22
- 125000003275 alpha amino acid group Chemical group 0.000 description 21
- 230000000694 effects Effects 0.000 description 21
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 20
- 239000013608 rAAV vector Substances 0.000 description 20
- 230000001225 therapeutic effect Effects 0.000 description 18
- 241001465754 Metazoa Species 0.000 description 17
- 239000003623 enhancer Substances 0.000 description 17
- 230000037361 pathway Effects 0.000 description 17
- 238000013518 transcription Methods 0.000 description 17
- 230000035897 transcription Effects 0.000 description 17
- 238000011144 upstream manufacturing Methods 0.000 description 17
- 241000283690 Bos taurus Species 0.000 description 16
- 239000012634 fragment Substances 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 108091007428 primary miRNA Proteins 0.000 description 16
- 208000024891 symptom Diseases 0.000 description 16
- 101150043003 Htt gene Proteins 0.000 description 15
- 230000035772 mutation Effects 0.000 description 15
- 210000002845 virion Anatomy 0.000 description 15
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 14
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 14
- 239000005090 green fluorescent protein Substances 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 108091023045 Untranslated Region Proteins 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- 239000003018 immunosuppressive agent Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 12
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 12
- 230000027455 binding Effects 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000013604 expression vector Substances 0.000 description 12
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000003278 mimic effect Effects 0.000 description 12
- 210000004248 oligodendroglia Anatomy 0.000 description 12
- 230000010076 replication Effects 0.000 description 12
- 235000000346 sugar Nutrition 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 235000012000 cholesterol Nutrition 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 11
- 230000001939 inductive effect Effects 0.000 description 11
- 239000002502 liposome Substances 0.000 description 11
- 210000000653 nervous system Anatomy 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 102000016252 Huntingtin Human genes 0.000 description 10
- 108050004784 Huntingtin Proteins 0.000 description 10
- 230000002490 cerebral effect Effects 0.000 description 10
- 101100385065 Homo sapiens CYP46A1 gene Proteins 0.000 description 9
- 101150031628 PITX2 gene Proteins 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 8
- 210000003792 cranial nerve Anatomy 0.000 description 8
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 8
- 238000001415 gene therapy Methods 0.000 description 8
- 238000000185 intracerebroventricular administration Methods 0.000 description 8
- 210000001577 neostriatum Anatomy 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 8
- 230000010415 tropism Effects 0.000 description 8
- IOWMKBFJCNLRTC-XWXSNNQWSA-N (24S)-24-hydroxycholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@H](O)C(C)C)[C@@]1(C)CC2 IOWMKBFJCNLRTC-XWXSNNQWSA-N 0.000 description 7
- 241000701022 Cytomegalovirus Species 0.000 description 7
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 7
- 102100032693 Leucine-rich repeat serine/threonine-protein kinase 2 Human genes 0.000 description 7
- 102000017299 Synapsin-1 Human genes 0.000 description 7
- 108050005241 Synapsin-1 Proteins 0.000 description 7
- 108010067390 Viral Proteins Proteins 0.000 description 7
- 210000003403 autonomic nervous system Anatomy 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 239000003937 drug carrier Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 7
- 229940125721 immunosuppressive agent Drugs 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 230000002889 sympathetic effect Effects 0.000 description 7
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 6
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 6
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 6
- 108091027558 IsomiR Proteins 0.000 description 6
- 108060001084 Luciferase Proteins 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 102100029812 Protein S100-A12 Human genes 0.000 description 6
- 101710110949 Protein S100-A12 Proteins 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000010369 molecular cloning Methods 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 101150093695 pitx3 gene Proteins 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 239000005089 Luciferase Substances 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 229940079156 Proteasome inhibitor Drugs 0.000 description 5
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 5
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 5
- 108091027967 Small hairpin RNA Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 210000000974 brodmann area Anatomy 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 210000003414 extremity Anatomy 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000007917 intracranial administration Methods 0.000 description 5
- 210000002946 intralaminar thalamic nuclei Anatomy 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 210000001259 mesencephalon Anatomy 0.000 description 5
- 239000002539 nanocarrier Substances 0.000 description 5
- 230000004770 neurodegeneration Effects 0.000 description 5
- 210000004498 neuroglial cell Anatomy 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000003207 proteasome inhibitor Substances 0.000 description 5
- 210000002804 pyramidal tract Anatomy 0.000 description 5
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 5
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 5
- 229960002930 sirolimus Drugs 0.000 description 5
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 5
- 239000004055 small Interfering RNA Substances 0.000 description 5
- 230000000392 somatic effect Effects 0.000 description 5
- 210000001032 spinal nerve Anatomy 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical group NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 4
- 108091026821 Artificial microRNA Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 241000282326 Felis catus Species 0.000 description 4
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 4
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 4
- 108091033773 MiR-155 Proteins 0.000 description 4
- 101100263202 Mus musculus Usp9x gene Proteins 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 102100022033 Presenilin-1 Human genes 0.000 description 4
- 102100022036 Presenilin-2 Human genes 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000008499 blood brain barrier function Effects 0.000 description 4
- 210000001218 blood-brain barrier Anatomy 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 229960001467 bortezomib Drugs 0.000 description 4
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 4
- 230000021164 cell adhesion Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 229940104302 cytosine Drugs 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000002964 excitative effect Effects 0.000 description 4
- 230000030279 gene silencing Effects 0.000 description 4
- 210000001320 hippocampus Anatomy 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 230000004179 hypothalamic–pituitary–adrenal axis Effects 0.000 description 4
- 229940124589 immunosuppressive drug Drugs 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000015788 innate immune response Effects 0.000 description 4
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 4
- 210000003140 lateral ventricle Anatomy 0.000 description 4
- 210000002988 lumbosacral plexus Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 210000000218 midline thalamic nuclei Anatomy 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 125000004437 phosphorous atom Chemical group 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000000241 respiratory effect Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 210000002071 ventral thalamic nuclei Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 3
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 3
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 3
- 108020005345 3' Untranslated Regions Proteins 0.000 description 3
- 108020003589 5' Untranslated Regions Proteins 0.000 description 3
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 3
- 241000202702 Adeno-associated virus - 3 Species 0.000 description 3
- 241000300529 Adeno-associated virus 13 Species 0.000 description 3
- 108091035707 Consensus sequence Proteins 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108091029865 Exogenous DNA Proteins 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 102100022662 Guanylyl cyclase C Human genes 0.000 description 3
- 101710198293 Guanylyl cyclase C Proteins 0.000 description 3
- 101000869690 Homo sapiens Protein S100-A8 Proteins 0.000 description 3
- 102000003792 Metallothionein Human genes 0.000 description 3
- 108090000157 Metallothionein Proteins 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- 241000009328 Perro Species 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102100032442 Protein S100-A8 Human genes 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 108020004459 Small interfering RNA Proteins 0.000 description 3
- 108091036066 Three prime untranslated region Proteins 0.000 description 3
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 229960000643 adenine Drugs 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 150000001408 amides Chemical group 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 210000003740 anterior thalamic nuclei Anatomy 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000003461 brachial plexus Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 210000001159 caudate nucleus Anatomy 0.000 description 3
- 210000001638 cerebellum Anatomy 0.000 description 3
- 229960003677 chloroquine Drugs 0.000 description 3
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 3
- 239000013599 cloning vector Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000001054 cortical effect Effects 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 210000005216 enteric neuron Anatomy 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000004055 fourth ventricle Anatomy 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000012239 gene modification Methods 0.000 description 3
- 230000009368 gene silencing by RNA Effects 0.000 description 3
- 230000005017 genetic modification Effects 0.000 description 3
- 235000013617 genetically modified food Nutrition 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 3
- 108010050848 glycylleucine Proteins 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 210000004199 lateral thalamic nuclei Anatomy 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000009126 molecular therapy Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 239000002088 nanocapsule Substances 0.000 description 3
- 210000002475 olfactory pathway Anatomy 0.000 description 3
- 210000001328 optic nerve Anatomy 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 210000003814 preoptic area Anatomy 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 210000004129 prosencephalon Anatomy 0.000 description 3
- 210000002637 putamen Anatomy 0.000 description 3
- 229960004641 rituximab Drugs 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 210000001044 sensory neuron Anatomy 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 210000003009 spinothalamic tract Anatomy 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 210000000115 thoracic cavity Anatomy 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- 229940035893 uracil Drugs 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 2
- DRHZYJAUECRAJM-DWSYSWFDSA-N (2s,3s,4s,5r,6r)-6-[[(3s,4s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-[(2s,3r,4s,5r,6r)-3-[(2s,3r,4s,5r,6s)-5-[(2s,3r,4s,5r)-4-[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,5-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[(3s,5s, Chemical compound O([C@H]1[C@H](O)[C@H](O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@H]5CC(C)(C)CC[C@@]5([C@@H](C[C@@]4(C)[C@]3(C)CC[C@H]2[C@@]1(C=O)C)O)C(=O)O[C@@H]1O[C@H](C)[C@@H]([C@@H]([C@H]1O[C@H]1[C@@H]([C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@](O)(CO)CO3)O)[C@H](O)CO2)O)[C@H](C)O1)O)O)OC(=O)C[C@@H](O)C[C@H](OC(=O)C[C@@H](O)C[C@@H]([C@@H](C)CC)O[C@H]1[C@@H]([C@@H](O)[C@H](CO)O1)O)[C@@H](C)CC)C(O)=O)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O DRHZYJAUECRAJM-DWSYSWFDSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 2
- IOWMKBFJCNLRTC-UHFFFAOYSA-N 24S-hydroxycholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(O)C(C)C)C1(C)CC2 IOWMKBFJCNLRTC-UHFFFAOYSA-N 0.000 description 2
- ISULLEUFOQSBGY-UHFFFAOYSA-N 4-phenyl-1,2,4-triazole-3,5-dione Chemical compound O=C1N=NC(=O)N1C1=CC=CC=C1 ISULLEUFOQSBGY-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 2
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 2
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical compound C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 2
- HFDKKNHCYWNNNQ-YOGANYHLSA-N 75976-10-2 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)N)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 HFDKKNHCYWNNNQ-YOGANYHLSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 108010064942 Angiopep-2 Proteins 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 102000012002 Aquaporin 4 Human genes 0.000 description 2
- 108010036280 Aquaporin 4 Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 101100441244 Caenorhabditis elegans csp-1 gene Proteins 0.000 description 2
- 101100441252 Caenorhabditis elegans csp-2 gene Proteins 0.000 description 2
- 101100222092 Caenorhabditis elegans csp-3 gene Proteins 0.000 description 2
- 101100298998 Caenorhabditis elegans pbs-3 gene Proteins 0.000 description 2
- 102100033868 Cannabinoid receptor 1 Human genes 0.000 description 2
- 101710187010 Cannabinoid receptor 1 Proteins 0.000 description 2
- 102100036214 Cannabinoid receptor 2 Human genes 0.000 description 2
- 101710187022 Cannabinoid receptor 2 Proteins 0.000 description 2
- 101150044789 Cap gene Proteins 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- 206010008748 Chorea Diseases 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- 102100036912 Desmin Human genes 0.000 description 2
- 108010044052 Desmin Proteins 0.000 description 2
- 102100035426 DnaJ homolog subfamily B member 7 Human genes 0.000 description 2
- 101100285903 Drosophila melanogaster Hsc70-2 gene Proteins 0.000 description 2
- 101100178718 Drosophila melanogaster Hsc70-4 gene Proteins 0.000 description 2
- 101100178723 Drosophila melanogaster Hsc70-5 gene Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 101150057182 GFAP gene Proteins 0.000 description 2
- 241001123946 Gaga Species 0.000 description 2
- UHPAZODVFFYEEL-QWRGUYRKSA-N Gly-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)CN UHPAZODVFFYEEL-QWRGUYRKSA-N 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000804114 Homo sapiens DnaJ homolog subfamily B member 7 Proteins 0.000 description 2
- 101000869796 Homo sapiens Microprocessor complex subunit DGCR8 Proteins 0.000 description 2
- 101001109452 Homo sapiens NLR family member X1 Proteins 0.000 description 2
- 101000617536 Homo sapiens Presenilin-1 Proteins 0.000 description 2
- 101000617546 Homo sapiens Presenilin-2 Proteins 0.000 description 2
- 101000837639 Homo sapiens Thyroxine-binding globulin Proteins 0.000 description 2
- 101150090950 Hsc70-1 gene Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 description 2
- HYSVGEAWTGPMOA-IHRRRGAJSA-N Lys-Pro-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O HYSVGEAWTGPMOA-IHRRRGAJSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 102100032459 Microprocessor complex subunit DGCR8 Human genes 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- VAVXGGRQQJZYBL-UHFFFAOYSA-N N-[3-[[5-iodo-4-[3-[[oxo(thiophen-2-yl)methyl]amino]propylamino]-2-pyrimidinyl]amino]phenyl]-1-pyrrolidinecarboxamide Chemical compound N1=C(NCCCNC(=O)C=2SC=CC=2)C(I)=CN=C1NC(C=1)=CC=CC=1NC(=O)N1CCCC1 VAVXGGRQQJZYBL-UHFFFAOYSA-N 0.000 description 2
- 108010079364 N-glycylalanine Proteins 0.000 description 2
- 102100022697 NLR family member X1 Human genes 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102100031475 Osteocalcin Human genes 0.000 description 2
- 239000012648 POLY-ICLC Substances 0.000 description 2
- 102000018886 Pancreatic Polypeptide Human genes 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 208000020584 Polyploidy Diseases 0.000 description 2
- 108010076039 Polyproteins Proteins 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 101710149951 Protein Tat Proteins 0.000 description 2
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 2
- 208000006289 Rett Syndrome Diseases 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 101100150366 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sks2 gene Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 101000983124 Sus scrofa Pancreatic prohormone precursor Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102100028709 Thyroxine-binding globulin Human genes 0.000 description 2
- 102000002689 Toll-like receptor Human genes 0.000 description 2
- 108020000411 Toll-like receptor Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000008484 agonism Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 210000004727 amygdala Anatomy 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 210000003926 auditory cortex Anatomy 0.000 description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 2
- 238000007622 bioinformatic analysis Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000003591 cerebellar nuclei Anatomy 0.000 description 2
- 210000004720 cerebrum Anatomy 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 208000012601 choreatic disease Diseases 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 210000005045 desmin Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000002451 diencephalon Anatomy 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 101150104041 eno2 gene Proteins 0.000 description 2
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 230000037433 frameshift Effects 0.000 description 2
- 108010074605 gamma-Globulins Proteins 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 210000000320 geniculate body Anatomy 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002990 hypoglossal effect Effects 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000003125 immunofluorescent labeling Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 230000001861 immunosuppressant effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000003715 limbic system Anatomy 0.000 description 2
- 210000000627 locus coeruleus Anatomy 0.000 description 2
- 108010038320 lysylphenylalanine Proteins 0.000 description 2
- 210000000691 mamillary body Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 108010056582 methionylglutamic acid Proteins 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 210000000118 neural pathway Anatomy 0.000 description 2
- 230000010004 neural pathway Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 210000000715 neuromuscular junction Anatomy 0.000 description 2
- 230000000324 neuroprotective effect Effects 0.000 description 2
- 210000000607 neurosecretory system Anatomy 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229960002748 norepinephrine Drugs 0.000 description 2
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 150000003833 nucleoside derivatives Chemical group 0.000 description 2
- 230000003565 oculomotor Effects 0.000 description 2
- 108010089193 pattern recognition receptors Proteins 0.000 description 2
- 102000007863 pattern recognition receptors Human genes 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 229960003742 phenol Drugs 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 108010073101 phenylalanylleucine Proteins 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 210000004560 pineal gland Anatomy 0.000 description 2
- 210000003635 pituitary gland Anatomy 0.000 description 2
- 229940115270 poly iclc Drugs 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 210000002442 prefrontal cortex Anatomy 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 210000000977 primary visual cortex Anatomy 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 210000001609 raphe nuclei Anatomy 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 229950010550 resiquimod Drugs 0.000 description 2
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 210000004189 reticular formation Anatomy 0.000 description 2
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 210000002813 septal nuclei Anatomy 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 108010071207 serylmethionine Proteins 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000001679 solitary nucleus Anatomy 0.000 description 2
- 210000004092 somatosensory cortex Anatomy 0.000 description 2
- 230000003238 somatosensory effect Effects 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 229940075582 sorbic acid Drugs 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000003270 steroid hormone Substances 0.000 description 2
- 210000002330 subarachnoid space Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 210000004281 subthalamic nucleus Anatomy 0.000 description 2
- 210000004377 supraoptic nucleus Anatomy 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 210000004062 tegmentum mesencephali Anatomy 0.000 description 2
- 210000003478 temporal lobe Anatomy 0.000 description 2
- 210000000211 third ventricle Anatomy 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000005026 transcription initiation Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 2
- 229940045145 uridine Drugs 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000002861 ventricular Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000002747 voluntary effect Effects 0.000 description 2
- QDZOEBFLNHCSSF-PFFBOGFISA-N (2S)-2-[[(2R)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-1-[(2R)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-N-[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pentanediamide Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CCCNC(N)=N)C1=CC=CC=C1 QDZOEBFLNHCSSF-PFFBOGFISA-N 0.000 description 1
- COEXAQSTZUWMRI-STQMWFEESA-N (2s)-1-[2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]pyrrolidine-2-carboxylic acid Chemical compound C([C@H](N)C(=O)NCC(=O)N1[C@@H](CCC1)C(O)=O)C1=CC=C(O)C=C1 COEXAQSTZUWMRI-STQMWFEESA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- QGVQZRDQPDLHHV-DPAQBDIFSA-N (3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthrene-3-thiol Chemical compound C1C=C2C[C@@H](S)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 QGVQZRDQPDLHHV-DPAQBDIFSA-N 0.000 description 1
- 125000006755 (C2-C20) alkyl group Chemical group 0.000 description 1
- ZKZXNDJNWUTGDK-NSCUHMNNSA-N (E)-N-[2-(4-bromocinnamylamino)ethyl]isoquinoline-5-sulfonamide Chemical compound C1=CC(Br)=CC=C1\C=C\CNCCNS(=O)(=O)C1=CC=CC2=CN=CC=C12 ZKZXNDJNWUTGDK-NSCUHMNNSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical class C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- JKMPXGJJRMOELF-UHFFFAOYSA-N 1,3-thiazole-2,4,5-tricarboxylic acid Chemical compound OC(=O)C1=NC(C(O)=O)=C(C(O)=O)S1 JKMPXGJJRMOELF-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- QSHACTSJHMKXTE-UHFFFAOYSA-N 2-(2-aminopropyl)-7h-purin-6-amine Chemical compound CC(N)CC1=NC(N)=C2NC=NC2=N1 QSHACTSJHMKXTE-UHFFFAOYSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- WNWVKZTYMQWFHE-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound [CH2]CN1CCOCC1 WNWVKZTYMQWFHE-UHFFFAOYSA-N 0.000 description 1
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- QNNARSZPGNJZIX-UHFFFAOYSA-N 6-amino-5-prop-1-ynyl-1h-pyrimidin-2-one Chemical compound CC#CC1=CNC(=O)N=C1N QNNARSZPGNJZIX-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- HRYKDUPGBWLLHO-UHFFFAOYSA-N 8-azaadenine Chemical compound NC1=NC=NC2=NNN=C12 HRYKDUPGBWLLHO-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102000010898 ATP-binding cassette subfamily A member 7 Human genes 0.000 description 1
- 108050001067 ATP-binding cassette subfamily A member 7 Proteins 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100039819 Actin, alpha cardiac muscle 1 Human genes 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000958487 Adeno-associated virus 3B Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 description 1
- WKOBSJOZRJJVRZ-FXQIFTODSA-N Ala-Glu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WKOBSJOZRJJVRZ-FXQIFTODSA-N 0.000 description 1
- OMMDTNGURYRDAC-NRPADANISA-N Ala-Glu-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O OMMDTNGURYRDAC-NRPADANISA-N 0.000 description 1
- VCSABYLVNWQYQE-SRVKXCTJSA-N Ala-Lys-Lys Chemical compound NCCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@@H](CCCCN)C(O)=O VCSABYLVNWQYQE-SRVKXCTJSA-N 0.000 description 1
- VCSABYLVNWQYQE-UHFFFAOYSA-N Ala-Lys-Lys Natural products NCCCCC(NC(=O)C(N)C)C(=O)NC(CCCCN)C(O)=O VCSABYLVNWQYQE-UHFFFAOYSA-N 0.000 description 1
- VHEVVUZDDUCAKU-FXQIFTODSA-N Ala-Met-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(O)=O VHEVVUZDDUCAKU-FXQIFTODSA-N 0.000 description 1
- DHBKYZYFEXXUAK-ONGXEEELSA-N Ala-Phe-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 DHBKYZYFEXXUAK-ONGXEEELSA-N 0.000 description 1
- CYBJZLQSUJEMAS-LFSVMHDDSA-N Ala-Phe-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](C)N)O CYBJZLQSUJEMAS-LFSVMHDDSA-N 0.000 description 1
- BTRULDJUUVGRNE-DCAQKATOSA-N Ala-Pro-Lys Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O BTRULDJUUVGRNE-DCAQKATOSA-N 0.000 description 1
- IOFVWPYSRSCWHI-JXUBOQSCSA-N Ala-Thr-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](C)N IOFVWPYSRSCWHI-JXUBOQSCSA-N 0.000 description 1
- XCIGOVDXZULBBV-DCAQKATOSA-N Ala-Val-Lys Chemical compound CC(C)[C@H](NC(=O)[C@H](C)N)C(=O)N[C@@H](CCCCN)C(O)=O XCIGOVDXZULBBV-DCAQKATOSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010039224 Amidophosphoribosyltransferase Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 108010025628 Apolipoproteins E Proteins 0.000 description 1
- 102000013918 Apolipoproteins E Human genes 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 241000272478 Aquila Species 0.000 description 1
- 101100480489 Arabidopsis thaliana TAAC gene Proteins 0.000 description 1
- XPSGESXVBSQZPL-SRVKXCTJSA-N Arg-Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O XPSGESXVBSQZPL-SRVKXCTJSA-N 0.000 description 1
- ZTKHZAXGTFXUDD-VEVYYDQMSA-N Arg-Asn-Thr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O ZTKHZAXGTFXUDD-VEVYYDQMSA-N 0.000 description 1
- VRZDJJWOFXMFRO-ZFWWWQNUSA-N Arg-Gly-Trp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O VRZDJJWOFXMFRO-ZFWWWQNUSA-N 0.000 description 1
- OTZMRMHZCMZOJZ-SRVKXCTJSA-N Arg-Leu-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O OTZMRMHZCMZOJZ-SRVKXCTJSA-N 0.000 description 1
- GSUFZRURORXYTM-STQMWFEESA-N Arg-Phe-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=CC=C1 GSUFZRURORXYTM-STQMWFEESA-N 0.000 description 1
- VENMDXUVHSKEIN-GUBZILKMSA-N Arg-Ser-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O VENMDXUVHSKEIN-GUBZILKMSA-N 0.000 description 1
- AUIJUTGLPVHIRT-FXQIFTODSA-N Arg-Ser-Cys Chemical compound C(C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N)CN=C(N)N AUIJUTGLPVHIRT-FXQIFTODSA-N 0.000 description 1
- QNYWYYNQSXANBL-WDSOQIARSA-N Arg-Trp-His Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC3=CN=CN3)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N QNYWYYNQSXANBL-WDSOQIARSA-N 0.000 description 1
- FMYQECOAIFGQGU-CYDGBPFRSA-N Arg-Val-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O FMYQECOAIFGQGU-CYDGBPFRSA-N 0.000 description 1
- SUMJNGAMIQSNGX-TUAOUCFPSA-N Arg-Val-Pro Chemical compound CC(C)[C@H](NC(=O)[C@@H](N)CCCNC(N)=N)C(=O)N1CCC[C@@H]1C(O)=O SUMJNGAMIQSNGX-TUAOUCFPSA-N 0.000 description 1
- OLGCWMNDJTWQAG-GUBZILKMSA-N Asn-Glu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC(N)=O OLGCWMNDJTWQAG-GUBZILKMSA-N 0.000 description 1
- IKLAUGBIDCDFOY-SRVKXCTJSA-N Asn-His-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(O)=O IKLAUGBIDCDFOY-SRVKXCTJSA-N 0.000 description 1
- NSTBNYOKCZKOMI-AVGNSLFASA-N Asn-Tyr-Glu Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N)O NSTBNYOKCZKOMI-AVGNSLFASA-N 0.000 description 1
- MRQQMVZUHXUPEV-IHRRRGAJSA-N Asp-Arg-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O MRQQMVZUHXUPEV-IHRRRGAJSA-N 0.000 description 1
- HOQGTAIGQSDCHR-SRVKXCTJSA-N Asp-Asn-Phe Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O HOQGTAIGQSDCHR-SRVKXCTJSA-N 0.000 description 1
- WCFCYFDBMNFSPA-ACZMJKKPSA-N Asp-Asp-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCC(O)=O WCFCYFDBMNFSPA-ACZMJKKPSA-N 0.000 description 1
- YDJVIBMKAMQPPP-LAEOZQHASA-N Asp-Glu-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O YDJVIBMKAMQPPP-LAEOZQHASA-N 0.000 description 1
- WSGVTKZFVJSJOG-RCOVLWMOSA-N Asp-Gly-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O WSGVTKZFVJSJOG-RCOVLWMOSA-N 0.000 description 1
- JNNVNVRBYUJYGS-CIUDSAMLSA-N Asp-Leu-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O JNNVNVRBYUJYGS-CIUDSAMLSA-N 0.000 description 1
- HXVILZUZXFLVEN-DCAQKATOSA-N Asp-Met-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O HXVILZUZXFLVEN-DCAQKATOSA-N 0.000 description 1
- DINOVZWPTMGSRF-QXEWZRGKSA-N Asp-Pro-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O DINOVZWPTMGSRF-QXEWZRGKSA-N 0.000 description 1
- JDDYEZGPYBBPBN-JRQIVUDYSA-N Asp-Thr-Tyr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O JDDYEZGPYBBPBN-JRQIVUDYSA-N 0.000 description 1
- KNOGLZBISUBTFW-QRTARXTBSA-N Asp-Trp-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](C(C)C)C(O)=O KNOGLZBISUBTFW-QRTARXTBSA-N 0.000 description 1
- SFJUYBCDQBAYAJ-YDHLFZDLSA-N Asp-Val-Phe Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 SFJUYBCDQBAYAJ-YDHLFZDLSA-N 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 241000282672 Ateles sp. Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 230000020955 B cell costimulation Effects 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 241000157302 Bison bison athabascae Species 0.000 description 1
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 241001573498 Compacta Species 0.000 description 1
- 102000004420 Creatine Kinase Human genes 0.000 description 1
- 108010042126 Creatine kinase Proteins 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical group CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- SRUKWJMBAALPQV-IHPCNDPISA-N Cys-Phe-Trp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O SRUKWJMBAALPQV-IHPCNDPISA-N 0.000 description 1
- 102000023526 Cytochrome P450 Family 46 Human genes 0.000 description 1
- 108010036233 Cytochrome P450 Family 46 Proteins 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000271571 Dromaius novaehollandiae Species 0.000 description 1
- 108010065372 Dynorphins Proteins 0.000 description 1
- UPEZCKBFRMILAV-JNEQICEOSA-N Ecdysone Natural products O=C1[C@H]2[C@@](C)([C@@H]3C([C@@]4(O)[C@@](C)([C@H]([C@H]([C@@H](O)CCC(O)(C)C)C)CC4)CC3)=C1)C[C@H](O)[C@H](O)C2 UPEZCKBFRMILAV-JNEQICEOSA-N 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010049140 Endorphins Proteins 0.000 description 1
- 102000009025 Endorphins Human genes 0.000 description 1
- 108010092674 Enkephalins Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108700036185 Eukaryotic translation initiation factor 4 gamma 1 Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108091092566 Extrachromosomal DNA Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- ITYRYNUZHPNCIK-GUBZILKMSA-N Glu-Ala-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O ITYRYNUZHPNCIK-GUBZILKMSA-N 0.000 description 1
- JVSBYEDSSRZQGV-GUBZILKMSA-N Glu-Asp-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCC(O)=O JVSBYEDSSRZQGV-GUBZILKMSA-N 0.000 description 1
- PHONAZGUEGIOEM-GLLZPBPUSA-N Glu-Glu-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O PHONAZGUEGIOEM-GLLZPBPUSA-N 0.000 description 1
- QJCKNLPMTPXXEM-AUTRQRHGSA-N Glu-Glu-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O QJCKNLPMTPXXEM-AUTRQRHGSA-N 0.000 description 1
- CUXJIASLBRJOFV-LAEOZQHASA-N Glu-Gly-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(O)=O CUXJIASLBRJOFV-LAEOZQHASA-N 0.000 description 1
- IDEODOAVGCMUQV-GUBZILKMSA-N Glu-Ser-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O IDEODOAVGCMUQV-GUBZILKMSA-N 0.000 description 1
- MXJYXYDREQWUMS-XKBZYTNZSA-N Glu-Thr-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O MXJYXYDREQWUMS-XKBZYTNZSA-N 0.000 description 1
- HQTDNEZTGZUWSY-XVKPBYJWSA-N Glu-Val-Gly Chemical compound CC(C)[C@H](NC(=O)[C@@H](N)CCC(O)=O)C(=O)NCC(O)=O HQTDNEZTGZUWSY-XVKPBYJWSA-N 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- OVSKVOOUFAKODB-UWVGGRQHSA-N Gly-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N OVSKVOOUFAKODB-UWVGGRQHSA-N 0.000 description 1
- MXXXVOYFNVJHMA-IUCAKERBSA-N Gly-Arg-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)CN MXXXVOYFNVJHMA-IUCAKERBSA-N 0.000 description 1
- WKJKBELXHCTHIJ-WPRPVWTQSA-N Gly-Arg-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N WKJKBELXHCTHIJ-WPRPVWTQSA-N 0.000 description 1
- FMNHBTKMRFVGRO-FOHZUACHSA-N Gly-Asn-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CN FMNHBTKMRFVGRO-FOHZUACHSA-N 0.000 description 1
- DHDOADIPGZTAHT-YUMQZZPRSA-N Gly-Glu-Arg Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N DHDOADIPGZTAHT-YUMQZZPRSA-N 0.000 description 1
- ORXZVPZCPMKHNR-IUCAKERBSA-N Gly-His-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CNC=N1 ORXZVPZCPMKHNR-IUCAKERBSA-N 0.000 description 1
- MIIVFRCYJABHTQ-ONGXEEELSA-N Gly-Leu-Val Chemical compound [H]NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O MIIVFRCYJABHTQ-ONGXEEELSA-N 0.000 description 1
- CLNSYANKYVMZNM-UWVGGRQHSA-N Gly-Lys-Arg Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)N[C@H](C(O)=O)CCCN=C(N)N CLNSYANKYVMZNM-UWVGGRQHSA-N 0.000 description 1
- NSVOVKWEKGEOQB-LURJTMIESA-N Gly-Pro-Gly Chemical compound NCC(=O)N1CCC[C@H]1C(=O)NCC(O)=O NSVOVKWEKGEOQB-LURJTMIESA-N 0.000 description 1
- LLWQVJNHMYBLLK-CDMKHQONSA-N Gly-Thr-Phe Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O LLWQVJNHMYBLLK-CDMKHQONSA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 102000004447 HSP40 Heat-Shock Proteins Human genes 0.000 description 1
- 108010042283 HSP40 Heat-Shock Proteins Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- TVQGUFGDVODUIF-LSJOCFKGSA-N His-Arg-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC1=CN=CN1)N TVQGUFGDVODUIF-LSJOCFKGSA-N 0.000 description 1
- SKOKHBGDXGTDDP-MELADBBJSA-N His-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N SKOKHBGDXGTDDP-MELADBBJSA-N 0.000 description 1
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 1
- 101000959247 Homo sapiens Actin, alpha cardiac muscle 1 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101100273831 Homo sapiens CDS1 gene Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000941879 Homo sapiens Leucine-rich repeat serine/threonine-protein kinase 2 Proteins 0.000 description 1
- 101000979333 Homo sapiens Neurofilament light polypeptide Proteins 0.000 description 1
- 101000836127 Homo sapiens Sortilin-related receptor Proteins 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 108700039861 Human immunodeficiency virus 1 tat peptide (48-60) Proteins 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- LBRCLQMZAHRTLV-ZKWXMUAHSA-N Ile-Gly-Ser Chemical compound CC[C@H](C)[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O LBRCLQMZAHRTLV-ZKWXMUAHSA-N 0.000 description 1
- KLBVGHCGHUNHEA-BJDJZHNGSA-N Ile-Leu-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)O)N KLBVGHCGHUNHEA-BJDJZHNGSA-N 0.000 description 1
- HUORUFRRJHELPD-MNXVOIDGSA-N Ile-Leu-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N HUORUFRRJHELPD-MNXVOIDGSA-N 0.000 description 1
- TVYWVSJGSHQWMT-AJNGGQMLSA-N Ile-Leu-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N TVYWVSJGSHQWMT-AJNGGQMLSA-N 0.000 description 1
- PHRWFSFCNJPWRO-PPCPHDFISA-N Ile-Leu-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N PHRWFSFCNJPWRO-PPCPHDFISA-N 0.000 description 1
- KCTIFOCXAIUQQK-QXEWZRGKSA-N Ile-Pro-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O KCTIFOCXAIUQQK-QXEWZRGKSA-N 0.000 description 1
- APQYGMBHIVXFML-OSUNSFLBSA-N Ile-Val-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N APQYGMBHIVXFML-OSUNSFLBSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108010065920 Insulin Lispro Proteins 0.000 description 1
- 102000016921 Integrin-Binding Sialoprotein Human genes 0.000 description 1
- 108010028750 Integrin-Binding Sialoprotein Proteins 0.000 description 1
- 102100034170 Interferon-induced, double-stranded RNA-activated protein kinase Human genes 0.000 description 1
- IBMVEYRWAWIOTN-UHFFFAOYSA-N L-Leucyl-L-Arginyl-L-Proline Natural products CC(C)CC(N)C(=O)NC(CCCN=C(N)N)C(=O)N1CCCC1C(O)=O IBMVEYRWAWIOTN-UHFFFAOYSA-N 0.000 description 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- KWTVLKBOQATPHJ-SRVKXCTJSA-N Leu-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N KWTVLKBOQATPHJ-SRVKXCTJSA-N 0.000 description 1
- HASRFYOMVPJRPU-SRVKXCTJSA-N Leu-Arg-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(O)=O)C(O)=O HASRFYOMVPJRPU-SRVKXCTJSA-N 0.000 description 1
- IBMVEYRWAWIOTN-RWMBFGLXSA-N Leu-Arg-Pro Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(O)=O IBMVEYRWAWIOTN-RWMBFGLXSA-N 0.000 description 1
- JQSXWJXBASFONF-KKUMJFAQSA-N Leu-Asp-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JQSXWJXBASFONF-KKUMJFAQSA-N 0.000 description 1
- GBDMISNMNXVTNV-XIRDDKMYSA-N Leu-Asp-Trp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O GBDMISNMNXVTNV-XIRDDKMYSA-N 0.000 description 1
- GZAUZBUKDXYPEH-CIUDSAMLSA-N Leu-Cys-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)O)N GZAUZBUKDXYPEH-CIUDSAMLSA-N 0.000 description 1
- FOEHRHOBWFQSNW-KATARQTJSA-N Leu-Cys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)N)O FOEHRHOBWFQSNW-KATARQTJSA-N 0.000 description 1
- VBZOAGIPCULURB-QWRGUYRKSA-N Leu-Gly-His Chemical compound CC(C)C[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N VBZOAGIPCULURB-QWRGUYRKSA-N 0.000 description 1
- QNBVTHNJGCOVFA-AVGNSLFASA-N Leu-Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O QNBVTHNJGCOVFA-AVGNSLFASA-N 0.000 description 1
- DDVHDMSBLRAKNV-IHRRRGAJSA-N Leu-Met-Leu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O DDVHDMSBLRAKNV-IHRRRGAJSA-N 0.000 description 1
- INCJJHQRZGQLFC-KBPBESRZSA-N Leu-Phe-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(O)=O INCJJHQRZGQLFC-KBPBESRZSA-N 0.000 description 1
- IDGZVZJLYFTXSL-DCAQKATOSA-N Leu-Ser-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCN=C(N)N IDGZVZJLYFTXSL-DCAQKATOSA-N 0.000 description 1
- AXVIGSRGTMNSJU-YESZJQIVSA-N Leu-Tyr-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N2CCC[C@@H]2C(=O)O)N AXVIGSRGTMNSJU-YESZJQIVSA-N 0.000 description 1
- AIMGJYMCTAABEN-GVXVVHGQSA-N Leu-Val-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O AIMGJYMCTAABEN-GVXVVHGQSA-N 0.000 description 1
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical class C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 1
- FZIJIFCXUCZHOL-CIUDSAMLSA-N Lys-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN FZIJIFCXUCZHOL-CIUDSAMLSA-N 0.000 description 1
- GAOJCVKPIGHTGO-UWVGGRQHSA-N Lys-Arg-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O GAOJCVKPIGHTGO-UWVGGRQHSA-N 0.000 description 1
- GGAPIOORBXHMNY-ULQDDVLXSA-N Lys-Arg-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)N)O GGAPIOORBXHMNY-ULQDDVLXSA-N 0.000 description 1
- NRQRKMYZONPCTM-CIUDSAMLSA-N Lys-Asp-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O NRQRKMYZONPCTM-CIUDSAMLSA-N 0.000 description 1
- ALGGDNMLQNFVIZ-SRVKXCTJSA-N Lys-Lys-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)O)C(=O)O)N ALGGDNMLQNFVIZ-SRVKXCTJSA-N 0.000 description 1
- MTBBHUKKPWKXBT-ULQDDVLXSA-N Lys-Met-Tyr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O MTBBHUKKPWKXBT-ULQDDVLXSA-N 0.000 description 1
- PELXPRPDQRFBGQ-KKUMJFAQSA-N Lys-Tyr-Asn Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCCCN)N)O PELXPRPDQRFBGQ-KKUMJFAQSA-N 0.000 description 1
- IKXQOBUBZSOWDY-AVGNSLFASA-N Lys-Val-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CCCCN)N IKXQOBUBZSOWDY-AVGNSLFASA-N 0.000 description 1
- 241000283923 Marmota monax Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- QAHFGYLFLVGBNW-DCAQKATOSA-N Met-Ala-Lys Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCCN QAHFGYLFLVGBNW-DCAQKATOSA-N 0.000 description 1
- OOSPRDCGTLQLBP-NHCYSSNCSA-N Met-Glu-Val Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O OOSPRDCGTLQLBP-NHCYSSNCSA-N 0.000 description 1
- SODXFJOPSCXOHE-IHRRRGAJSA-N Met-Leu-Leu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O SODXFJOPSCXOHE-IHRRRGAJSA-N 0.000 description 1
- WEDDFMCSUNNZJR-WDSKDSINSA-N Met-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(O)=O WEDDFMCSUNNZJR-WDSKDSINSA-N 0.000 description 1
- PHURAEXVWLDIGT-LPEHRKFASA-N Met-Ser-Pro Chemical compound CSCC[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N PHURAEXVWLDIGT-LPEHRKFASA-N 0.000 description 1
- 108091007780 MiR-122 Proteins 0.000 description 1
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 1
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 1
- 206010027951 Mood swings Diseases 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100144701 Mus musculus Drosha gene Proteins 0.000 description 1
- 241000282339 Mustela Species 0.000 description 1
- GUVMFDICMFQHSZ-UHFFFAOYSA-N N-(1-aminoethenyl)-1-[4-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[hydroxy-[[3-[hydroxy-[[3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-[[[2-[[[2-[[[5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[5-(4-amino-2-oxopyrimidin-1-yl)-2-[[hydroxy-[2-(hydroxymethyl)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-2-yl]-5-methylimidazole-4-carboxamide Chemical compound CC1=C(C(=O)NC(N)=C)N=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)CO)C(OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)O)C1 GUVMFDICMFQHSZ-UHFFFAOYSA-N 0.000 description 1
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 1
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 208000014060 Niemann-Pick disease Diseases 0.000 description 1
- 102100030569 Nuclear receptor corepressor 2 Human genes 0.000 description 1
- 101710153660 Nuclear receptor corepressor 2 Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 108010093625 Opioid Peptides Proteins 0.000 description 1
- 108090000573 Osteocalcin Proteins 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 101710176384 Peptide 1 Proteins 0.000 description 1
- 108010079855 Peptide Aptamers Proteins 0.000 description 1
- MIDZLCFIAINOQN-WPRPVWTQSA-N Phe-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=CC=C1 MIDZLCFIAINOQN-WPRPVWTQSA-N 0.000 description 1
- AGYXCMYVTBYGCT-ULQDDVLXSA-N Phe-Arg-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O AGYXCMYVTBYGCT-ULQDDVLXSA-N 0.000 description 1
- WGXOKDLDIWSOCV-MELADBBJSA-N Phe-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O WGXOKDLDIWSOCV-MELADBBJSA-N 0.000 description 1
- MPFGIYLYWUCSJG-AVGNSLFASA-N Phe-Glu-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 MPFGIYLYWUCSJG-AVGNSLFASA-N 0.000 description 1
- VJLLEKDQJSMHRU-STQMWFEESA-N Phe-Gly-Met Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CCSC)C(O)=O VJLLEKDQJSMHRU-STQMWFEESA-N 0.000 description 1
- YZJKNDCEPDDIDA-BZSNNMDCSA-N Phe-His-Lys Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC=CC=1)C1=CN=CN1 YZJKNDCEPDDIDA-BZSNNMDCSA-N 0.000 description 1
- VZFPYFRVHMSSNA-JURCDPSOSA-N Phe-Ile-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC1=CC=CC=C1 VZFPYFRVHMSSNA-JURCDPSOSA-N 0.000 description 1
- XMQSOOJRRVEHRO-ULQDDVLXSA-N Phe-Leu-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 XMQSOOJRRVEHRO-ULQDDVLXSA-N 0.000 description 1
- OSBADCBXAMSPQD-YESZJQIVSA-N Phe-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N OSBADCBXAMSPQD-YESZJQIVSA-N 0.000 description 1
- IAOZOFPONWDXNT-IXOXFDKPSA-N Phe-Ser-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O IAOZOFPONWDXNT-IXOXFDKPSA-N 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- APKRGYLBSCWJJP-FXQIFTODSA-N Pro-Ala-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O APKRGYLBSCWJJP-FXQIFTODSA-N 0.000 description 1
- CGBYDGAJHSOGFQ-LPEHRKFASA-N Pro-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 CGBYDGAJHSOGFQ-LPEHRKFASA-N 0.000 description 1
- ONPFOYPPPOHMNH-UVBJJODRSA-N Pro-Ala-Trp Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@@H]3CCCN3 ONPFOYPPPOHMNH-UVBJJODRSA-N 0.000 description 1
- KDIIENQUNVNWHR-JYJNAYRXSA-N Pro-Arg-Phe Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O KDIIENQUNVNWHR-JYJNAYRXSA-N 0.000 description 1
- WVOXLKUUVCCCSU-ZPFDUUQYSA-N Pro-Glu-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WVOXLKUUVCCCSU-ZPFDUUQYSA-N 0.000 description 1
- XYSXOCIWCPFOCG-IHRRRGAJSA-N Pro-Leu-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O XYSXOCIWCPFOCG-IHRRRGAJSA-N 0.000 description 1
- VTFXTWDFPTWNJY-RHYQMDGZSA-N Pro-Leu-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O VTFXTWDFPTWNJY-RHYQMDGZSA-N 0.000 description 1
- GFHXZNVJIKMAGO-IHRRRGAJSA-N Pro-Phe-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(O)=O GFHXZNVJIKMAGO-IHRRRGAJSA-N 0.000 description 1
- JLMZKEQFMVORMA-SRVKXCTJSA-N Pro-Pro-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 JLMZKEQFMVORMA-SRVKXCTJSA-N 0.000 description 1
- SBVPYBFMIGDIDX-SRVKXCTJSA-N Pro-Pro-Pro Chemical compound OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H]2NCCC2)CCC1 SBVPYBFMIGDIDX-SRVKXCTJSA-N 0.000 description 1
- QKDIHFHGHBYTKB-IHRRRGAJSA-N Pro-Ser-Phe Chemical compound N([C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C(=O)[C@@H]1CCCN1 QKDIHFHGHBYTKB-IHRRRGAJSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 102000036768 RBR-type E3 ubiquitin transferases Human genes 0.000 description 1
- 108030001251 RBR-type E3 ubiquitin transferases Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 230000007022 RNA scission Effects 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 208000035977 Rare disease Diseases 0.000 description 1
- 101001009851 Rattus norvegicus Guanylate cyclase 2G Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- HBZBPFLJNDXRAY-FXQIFTODSA-N Ser-Ala-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O HBZBPFLJNDXRAY-FXQIFTODSA-N 0.000 description 1
- QVOGDCQNGLBNCR-FXQIFTODSA-N Ser-Arg-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O QVOGDCQNGLBNCR-FXQIFTODSA-N 0.000 description 1
- GYXVUTAOICLGKJ-ACZMJKKPSA-N Ser-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N GYXVUTAOICLGKJ-ACZMJKKPSA-N 0.000 description 1
- YIUWWXVTYLANCJ-NAKRPEOUSA-N Ser-Ile-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YIUWWXVTYLANCJ-NAKRPEOUSA-N 0.000 description 1
- XXNYYSXNXCJYKX-DCAQKATOSA-N Ser-Leu-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(O)=O XXNYYSXNXCJYKX-DCAQKATOSA-N 0.000 description 1
- IXZHZUGGKLRHJD-DCAQKATOSA-N Ser-Leu-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O IXZHZUGGKLRHJD-DCAQKATOSA-N 0.000 description 1
- BSXKBOUZDAZXHE-CIUDSAMLSA-N Ser-Pro-Glu Chemical compound [H]N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O BSXKBOUZDAZXHE-CIUDSAMLSA-N 0.000 description 1
- LGIMRDKGABDMBN-DCAQKATOSA-N Ser-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CO)N LGIMRDKGABDMBN-DCAQKATOSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 102100022831 Somatoliberin Human genes 0.000 description 1
- 101710142969 Somatoliberin Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 108091027076 Spiegelmer Proteins 0.000 description 1
- 101100054666 Streptomyces halstedii sch3 gene Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 241000272534 Struthio camelus Species 0.000 description 1
- 102400000096 Substance P Human genes 0.000 description 1
- 101800003906 Substance P Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 230000020385 T cell costimulation Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 101150088517 TCTA gene Proteins 0.000 description 1
- 240000002033 Tacca leontopetaloides Species 0.000 description 1
- 241000244155 Taenia Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- DWYAUVCQDTZIJI-VZFHVOOUSA-N Thr-Ala-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O DWYAUVCQDTZIJI-VZFHVOOUSA-N 0.000 description 1
- NWECYMJLJGCBOD-UNQGMJICSA-N Thr-Phe-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O NWECYMJLJGCBOD-UNQGMJICSA-N 0.000 description 1
- YGCDFAJJCRVQKU-RCWTZXSCSA-N Thr-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O YGCDFAJJCRVQKU-RCWTZXSCSA-N 0.000 description 1
- FWTFAZKJORVTIR-VZFHVOOUSA-N Thr-Ser-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O FWTFAZKJORVTIR-VZFHVOOUSA-N 0.000 description 1
- IEZVHOULSUULHD-XGEHTFHBSA-N Thr-Ser-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O IEZVHOULSUULHD-XGEHTFHBSA-N 0.000 description 1
- XVHAUVJXBFGUPC-RPTUDFQQSA-N Thr-Tyr-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O XVHAUVJXBFGUPC-RPTUDFQQSA-N 0.000 description 1
- LVRFMARKDGGZMX-IZPVPAKOSA-N Thr-Tyr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)O)C(O)=O)CC1=CC=C(O)C=C1 LVRFMARKDGGZMX-IZPVPAKOSA-N 0.000 description 1
- SPIFGZFZMVLPHN-UNQGMJICSA-N Thr-Val-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SPIFGZFZMVLPHN-UNQGMJICSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000004987 Troponin T Human genes 0.000 description 1
- 108090001108 Troponin T Proteins 0.000 description 1
- LMLBOGIOLHZXOT-JYJNAYRXSA-N Tyr-Glu-His Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N)O LMLBOGIOLHZXOT-JYJNAYRXSA-N 0.000 description 1
- NSGZILIDHCIZAM-KKUMJFAQSA-N Tyr-Leu-Ser Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N NSGZILIDHCIZAM-KKUMJFAQSA-N 0.000 description 1
- SMUWZUSWMWVOSL-JYJNAYRXSA-N Tyr-Val-Met Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N SMUWZUSWMWVOSL-JYJNAYRXSA-N 0.000 description 1
- 101150044878 US18 gene Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 101150004676 VGF gene Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- DDRBQONWVBDQOY-GUBZILKMSA-N Val-Ala-Arg Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O DDRBQONWVBDQOY-GUBZILKMSA-N 0.000 description 1
- KKHRWGYHBZORMQ-NHCYSSNCSA-N Val-Arg-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KKHRWGYHBZORMQ-NHCYSSNCSA-N 0.000 description 1
- DBOXBUDEAJVKRE-LSJOCFKGSA-N Val-Asn-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](C(C)C)C(=O)O)N DBOXBUDEAJVKRE-LSJOCFKGSA-N 0.000 description 1
- JTWIMNMUYLQNPI-WPRPVWTQSA-N Val-Gly-Arg Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCNC(N)=N JTWIMNMUYLQNPI-WPRPVWTQSA-N 0.000 description 1
- AEMPCGRFEZTWIF-IHRRRGAJSA-N Val-Leu-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O AEMPCGRFEZTWIF-IHRRRGAJSA-N 0.000 description 1
- VENKIVFKIPGEJN-NHCYSSNCSA-N Val-Met-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N VENKIVFKIPGEJN-NHCYSSNCSA-N 0.000 description 1
- SJRUJQFQVLMZFW-WPRPVWTQSA-N Val-Pro-Gly Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O SJRUJQFQVLMZFW-WPRPVWTQSA-N 0.000 description 1
- PDDJTOSAVNRJRH-UNQGMJICSA-N Val-Thr-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](C(C)C)N)O PDDJTOSAVNRJRH-UNQGMJICSA-N 0.000 description 1
- RTJPAGFXOWEBAI-SRVKXCTJSA-N Val-Val-Arg Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N RTJPAGFXOWEBAI-SRVKXCTJSA-N 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- RLXCFCYWFYXTON-JTTSDREOSA-N [(3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-16-yl] N-hexylcarbamate Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(OC(=O)NCCCCCC)[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 RLXCFCYWFYXTON-JTTSDREOSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- XVIYCJDWYLJQBG-UHFFFAOYSA-N acetic acid;adamantane Chemical compound CC(O)=O.C1C(C2)CC3CC1CC2C3 XVIYCJDWYLJQBG-UHFFFAOYSA-N 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 108010005233 alanylglutamic acid Proteins 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 239000012637 allosteric effector Substances 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- UPEZCKBFRMILAV-UHFFFAOYSA-N alpha-Ecdysone Natural products C1C(O)C(O)CC2(C)C(CCC3(C(C(C(O)CCC(C)(C)O)C)CCC33O)C)C3=CC(=O)C21 UPEZCKBFRMILAV-UHFFFAOYSA-N 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 125000005122 aminoalkylamino group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000002551 anterior cerebral artery Anatomy 0.000 description 1
- 210000001681 anterior hypothalamic nucleus Anatomy 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 210000000576 arachnoid Anatomy 0.000 description 1
- 210000003295 arcuate nucleus Anatomy 0.000 description 1
- 210000003818 area postrema Anatomy 0.000 description 1
- 108010013835 arginine glutamate Proteins 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 108010009111 arginyl-glycyl-glutamic acid Proteins 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 108010036533 arginylvaline Proteins 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 108010093581 aspartyl-proline Proteins 0.000 description 1
- 108010038633 aspartylglutamate Proteins 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 230000037429 base substitution Effects 0.000 description 1
- 210000001841 basilar artery Anatomy 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 241001233037 catfish Species 0.000 description 1
- 210000005263 caudal ventrolateral medulla Anatomy 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000005101 cell tropism Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003037 cerebral aqueduct Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 210000004289 cerebral ventricle Anatomy 0.000 description 1
- 108091008690 chemoreceptors Proteins 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000275 circle of willis Anatomy 0.000 description 1
- 210000003703 cisterna magna Anatomy 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 210000003952 cochlear nucleus Anatomy 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 210000000877 corpus callosum Anatomy 0.000 description 1
- 210000001653 corpus striatum Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000002338 cryopreservative effect Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 210000002233 diagonal band of broca Anatomy 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 210000004002 dopaminergic cell Anatomy 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 210000001029 dorsal striatum Anatomy 0.000 description 1
- 210000002108 dorsomedial hypothalamic nucleus Anatomy 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 210000001951 dura mater Anatomy 0.000 description 1
- JMNJYGMAUMANNW-FIXZTSJVSA-N dynorphin a Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 JMNJYGMAUMANNW-FIXZTSJVSA-N 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- UPEZCKBFRMILAV-JMZLNJERSA-N ecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@H]([C@H](O)CCC(C)(C)O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 UPEZCKBFRMILAV-JMZLNJERSA-N 0.000 description 1
- 230000005014 ectopic expression Effects 0.000 description 1
- 229940056913 eftilagimod alfa Drugs 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000000105 enteric nervous system Anatomy 0.000 description 1
- 210000001353 entorhinal cortex Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 210000000647 epithalamus Anatomy 0.000 description 1
- LEEIJTHMHDMWLJ-CQSZACIVSA-N ethyl (6r)-6-[(2-chloro-4-fluorophenyl)sulfamoyl]cyclohexene-1-carboxylate Chemical compound CCOC(=O)C1=CCCC[C@H]1S(=O)(=O)NC1=CC=C(F)C=C1Cl LEEIJTHMHDMWLJ-CQSZACIVSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 210000000256 facial nerve Anatomy 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 210000001905 globus pallidus Anatomy 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 108010057083 glutamyl-aspartyl-leucine Proteins 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 108010049041 glutamylalanine Proteins 0.000 description 1
- 230000036252 glycation Effects 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 108010062266 glycyl-glycyl-argininal Proteins 0.000 description 1
- 230000003710 glymphatic flow Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000004326 gyrus cinguli Anatomy 0.000 description 1
- 210000001753 habenula Anatomy 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000000960 hypophysis hormone Substances 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 210000003552 inferior colliculi Anatomy 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000030309 inherited neurodegenerative disease Diseases 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 210000002425 internal capsule Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 108010078274 isoleucylvaline Proteins 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 108010053037 kyotorphin Proteins 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000003796 lateral hypothalamic area Anatomy 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- 108010034529 leucyl-lysine Proteins 0.000 description 1
- 108010090333 leucyl-lysyl-proline Proteins 0.000 description 1
- 230000002197 limbic effect Effects 0.000 description 1
- 210000001699 lower leg Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000001320 lysogenic effect Effects 0.000 description 1
- 108010025153 lysyl-alanyl-alanine Proteins 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004245 medial forebrain bundle Anatomy 0.000 description 1
- 210000003442 median eminence Anatomy 0.000 description 1
- 210000001073 mediodorsal thalamic nucleus Anatomy 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000001767 medulla oblongata Anatomy 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000002891 metencephalon Anatomy 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 108010005942 methionylglycine Proteins 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 108091051828 miR-122 stem-loop Proteins 0.000 description 1
- 108091059434 miR-45 stem-loop Proteins 0.000 description 1
- 108091029227 miR-45-1 stem-loop Proteins 0.000 description 1
- 108091085809 miR-45-2 stem-loop Proteins 0.000 description 1
- 108091056862 miR-64 stem-loop Proteins 0.000 description 1
- 108091007426 microRNA precursor Proteins 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 210000003657 middle cerebral artery Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 229950007856 mofetil Drugs 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 210000000337 motor cortex Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000000272 myelencephalon Anatomy 0.000 description 1
- 230000002151 myoclonic effect Effects 0.000 description 1
- OKPYIWASQZGASP-UHFFFAOYSA-N n-(2-hydroxypropyl)-2-methylprop-2-enamide Chemical compound CC(O)CNC(=O)C(C)=C OKPYIWASQZGASP-UHFFFAOYSA-N 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 210000000478 neocortex Anatomy 0.000 description 1
- 230000016273 neuron death Effects 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000002474 noradrenergic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 210000001009 nucleus accumben Anatomy 0.000 description 1
- 210000000869 occipital lobe Anatomy 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000000956 olfactory bulb Anatomy 0.000 description 1
- 210000001010 olfactory tubercle Anatomy 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 210000003487 olivary nucleus Anatomy 0.000 description 1
- 229940100027 ontak Drugs 0.000 description 1
- 210000003977 optic chiasm Anatomy 0.000 description 1
- 230000004431 optic radiations Effects 0.000 description 1
- 210000005112 optic tract Anatomy 0.000 description 1
- 230000004421 optic tracts Effects 0.000 description 1
- 230000002450 orbitofrontal effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 210000001026 paleocortex Anatomy 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940090668 parachlorophenol Drugs 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 1
- 210000002963 paraventricular hypothalamic nucleus Anatomy 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 210000001152 parietal lobe Anatomy 0.000 description 1
- 102000045222 parkin Human genes 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- ONTNXMBMXUNDBF-UHFFFAOYSA-N pentatriacontane-17,18,19-triol Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)C(O)CCCCCCCCCCCCCCCC ONTNXMBMXUNDBF-UHFFFAOYSA-N 0.000 description 1
- 210000001871 perforant pathway Anatomy 0.000 description 1
- 210000002509 periaqueductal gray Anatomy 0.000 description 1
- 230000003836 peripheral circulation Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108010024607 phenylalanylalanine Proteins 0.000 description 1
- 108010018625 phenylalanylarginine Proteins 0.000 description 1
- 108010073025 phenylalanylphenylalanine Proteins 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 210000003105 phrenic nerve Anatomy 0.000 description 1
- 210000003446 pia mater Anatomy 0.000 description 1
- 210000000280 pituicyte Anatomy 0.000 description 1
- 229920000771 poly (alkylcyanoacrylate) Polymers 0.000 description 1
- 108700002563 poly ICLC Proteins 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 210000003388 posterior cerebral artery Anatomy 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 210000000976 primary motor cortex Anatomy 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 108010014614 prolyl-glycyl-proline Proteins 0.000 description 1
- 108010077112 prolyl-proline Proteins 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 208000026961 psychosexual disease Diseases 0.000 description 1
- 210000003735 pulvinar Anatomy 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 210000000463 red nucleus Anatomy 0.000 description 1
- 230000015438 regulation of axonogenesis Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000022429 regulation of synapse assembly Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 101150066583 rep gene Proteins 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 210000005262 rostral ventrolateral medulla Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000862 serotonergic effect Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 238000012174 single-cell RNA sequencing Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 210000004260 spinocerebellar tract Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000000714 subcommissural organ Anatomy 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 210000000701 subdural space Anatomy 0.000 description 1
- 210000001712 subfornical organ Anatomy 0.000 description 1
- 210000004057 substantia innominata Anatomy 0.000 description 1
- 210000003523 substantia nigra Anatomy 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 210000000495 subthalamus Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical group NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 150000003456 sulfonamides Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003457 sulfones Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229940044609 sulfur dioxide Drugs 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 210000003863 superior colliculi Anatomy 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 210000000221 suprachiasmatic nucleus Anatomy 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000002820 sympathetic nervous system Anatomy 0.000 description 1
- 210000002504 synaptic vesicle Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 210000000284 tectum mesencephali Anatomy 0.000 description 1
- 210000001587 telencephalon Anatomy 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000000542 thalamic effect Effects 0.000 description 1
- 230000003461 thalamocortical effect Effects 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000002972 tibial nerve Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011820 transgenic animal model Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 210000003901 trigeminal nerve Anatomy 0.000 description 1
- 108010038745 tryptophylglycine Proteins 0.000 description 1
- 210000002983 tuber cinereum Anatomy 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000002691 unilamellar liposome Substances 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 210000001186 vagus nerve Anatomy 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001030 ventral striatum Anatomy 0.000 description 1
- 210000004515 ventral tegmental area Anatomy 0.000 description 1
- 210000002385 vertebral artery Anatomy 0.000 description 1
- 210000004440 vestibular nuclei Anatomy 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0073—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/14—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/008—Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/13—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
- C12Y114/13098—Cholesterol 24-hydroxylase (1.14.13.98)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Aspects of the disclosure relate to compositions and methods useful for treating neurological diseases and disorders. In some embodiments, the disclosure provides a method for treating a neurological disease or disorder comprising administration of both a viral vector comprising interfering nucleic acids (e.g., artificial miRNAs) and a viral vector comprising a CYP46A1 protein. In some embodiments, the disclosure provides a method for treating Huntington's disease comprising administration of both a viral vector comprising interfering nucleic acids (e.g., artificial miRNAs) targeting the huntingtin gene (HTT) and a viral vector comprising a CYP46A1 protein. In some embodiments, the viral vector comprises a modified viral capsid, such as for preferentially targeting cells in the CNS or PNS.
Description
PCT/U521/71534 04 November 2021 (04.11.2021) Attorney Docket No: 046192-098000WOPT
METHODS FOR TREATING NEUROLOGICAL DISEASE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims benefit under 35 U S C 119(e) of U S Provisional Applic,ation No. 63/080,925 filed September 21, 2020, U.S. Provisional Application No.
63/121,152 filed December 3, 2020, U.S. Provisional Application No. 62/139,410 filed January 20, 2021, U.S.
Provisional Application No. 63/140,440 filed January 22, 2021, U.S.
Provisional Application No.
63/180,407 filed April 27, 2021, the contents of each of which are incorporated herein by reference in their entireties.
TECHNICAL FIELD
100021 The technology described herein relates to methods for treating neurological diseases or disorders, e.g., Huntington's disease.
BACKGROUND
[0003] Huntington' s disease (HD) is a devastating inherited neurodegenerative disease caused by an expansion of the CAG repeat region in exon 1 of the huntingtin gene. While the Huntingtin protein (HTT) is expressed throughout the body, the polyglutamine expanded protein is especially toxic to medium spiny neurons in the striatum and their cortical connections. Patients struggle with emotional symptoms including depression and anxiety and with characteristic movement disturbances and chorea. There is currently no cure for Huntington's disease; therapeutic options are limited to ameliorating disease symptoms.
SUMMARY
[0004] One aspect provided herein describes a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) a nucleic acid encoding at least one miRNA; and (b) a nucleic acid encoding a CYP46A1 protein.
[0005] In one aspect, described herein is a composition or combination comprising (a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs; and (b) an isolated nucleic acid encoding a CYP46A1 protein. In one aspect, described herein is a composition or combination comprising: (a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (1TR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs; and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
4831 8915 6346 vi AMENDED SHEET - IPEA/US
[0006] In one aspect, described herein is a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs; and (b) an isolated nucleic acid encoding a CYP46A1 protein. In one aspect, described herein is a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs;
and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
[0007] In some embodiments, the neurological disease or disorder is Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, polyglutamine repeat spinocerebellar ataxia, Krabbe's disease, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, neuropathic pain, trauma due to spinal cord or head injury, ophthalmic diseases and disorders, Tay-Sachs disease, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, psychosexual disorders, sleeping disorders, pain disorders, eating or weight disorders. In some embodiments, the neurological disease or disorder is a central nervous system (CNS) disease or disorder. In some embodiments, the CNS disease or disorder is selected from Huntington's disease, Alzheimer's disease, Polyglutamine repeat spinocerebellar ataxias, Amyotrophic lateral sclerosis and Parkinson's disease.
[0008] In some embodiments, the CNS disease or disorder is Alzheimer's disease and the at least one miRNA comprises a seed sequence complementary to Amyloid Precursor Protein (APP), Presenilin 1, Presenilin 2, ABCA7, SORL1, and disease-associated alleles thereof.
100091 In some embodiments, the CNS disease or disorder is Parkinson's disease and the at least one miRNA comprises a seed sequence complementary to SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, El F4G1, DNAJC13, CHCHD2, UCHL1, G13A1, and disease-associated alleles thereof [0010] In some embodiments, the CNS disease is Huntington's disease and at least one miRNA
comprises a seed sequence complementary to SEQ ID NO: 4, or wherein at least one miRNA
comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA
backbone sequence. In some embodiments, the CNS disease is Huntington's disease and at least one miRNA comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
In some embodiments, at least one of the miRNAs hybridizes with and inhibits expression of human huntingtin. In some embodiments, the subject comprises a huntingtin gene having more than 36 CAG
repeats, more than 40 repeats, or more than 100 repeats. In some embodiments, the subject is less than 20 years of age.
100111 In some embodiments, the recombinant viral vector is selected from the group consisting of: an AAV vector, an adenovirus vector, a lentivirus vector, a retrovirus vector, a herpesvirus vector, an alphavirus vector, a poxvirus vector, a baculovirus vector, and a chimeric virus vector.
[0012] In some embodiments, the recombinant viral vector comprising (a) is the same as the recombinant viral vector comprising (b). In some embodiments, the isolated nucleic acid of (a) and (b) are comprised in separate recombinant viral vectors. In some embodiments, the isolated nucleic acid of (a) and (b) are comprised in the same recombinant viral vector.
100131 In some embodiments, (a) and (b) arc administered at substantially the same time. In some embodiments, (a) and (b) are administered at different time points. In some embodiments, the different time points are spaced by at least 1 min, at least 1 hour, at least 1 day, at least 1 week, at least 1 month, at least 1 year, or more. In some embodiments, (a) is administered prior to the administration of (b). In some embodiments, (b) is administered prior to the administration of (a). In some embodiments, the administration of (a), (b), or (a) and (b) is repeated at least once.
[0014] In some embodiments, the transgene comprises two miRNAs in tandem that are flanked by Maoris. In some embodiments, the flanking Maoris are identical. In sonic embodiments, the flanking introns are from the same species. In some embodiments, the flanking introns are hCG
introns.
[0015] In some embodiments, the transgene comprises a promoter. In some embodiments, the promoter is a synapsin (Synl) promoter, or a promoter of Tables 10-13.
[0016] In some embodiments, the one or more miRNAs are located in an untranslated portion of the transgene. In some embodiments, the untranslated portion is an intron. In some embodiments, the untranslated portion is between the last codon of the nucleic acid sequence encoding a protein and a poly-A tail sequence, or between the last nucleotide base of a promoter sequence and a poly-A tail sequence. In some embodiments, the untranslated portion is a 5' untranslated region (5' UTR).
[0017] In some embodiments, the nucleic acid or viral vector further comprises a third region comprising a second adeno-associated virus (AAV) inverted temiinal repeat (ITR), or a variant thereof [0018] In some embodiments, the ITR variant lacks a functional terminal resolution site (TRS), optionally wherein the ITR variant is a ATRS ITR.
[0019] In some embodiments, the administration results in delivery of the viral vector or isolated nucleic acid to the central nervous system (CNS) of the subject. In some embodiments, the administration is via injection, optionally intravenous injection or intrastriatal injection.
[0020] In some embodiments, the viral vector is AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof In some embodiments, the viral vector comprises a capsid protein from AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV, AAV9, AAV10, AAV1 1, or, AAV12, or a chimera thereof. In some embodiments, the capsid protein is an AAV9 capsid protein. In some embodiments, the viral vector is a self-complementary AAV (scAAV). In some embodiments, the viral vector is formulated for delivery to the central nervous system (CNS).
[0021] In some embodiments of any of the aspects, the viral vector comprises a modified viral capsid.
[0022] In some embodiments of any of the aspects, the viral vector comprises a modification to a viral capsid.
[0023] In some embodiments of any of the aspects, the modification is a chemical, non-chemical or amino acid modification of the viral capsid.
[0024] In some embodiments of any of the aspects, at least one of the capsid modifications preferentially targets cells in the CNS or PNS.
[0025] In some embodiments of any of the aspects, the chemical modification comprises a chemically-modified tyrosine residue modified to comprise a covalently-linked mono- or polysaccharide moiety.
[0026] In some embodiments of any of the aspects, the chemically-modified tyrosine residue comprises a mono-saccharide selected from galactose, mannose, N-acetylgalactosamine, bridge GalNac, and mannose-6-phosphate.
[0027] In some embodiments of any of the aspects, the chemical modification comprises a ligand covalently linked to a primary amino group of a capsid polypeptide via a -CSNH-bond.
[0028] In some embodiments of any of the aspects, the ligand comprises an arylene or heteroarylene radical covalently bound to the ligand.
[0029] In some embodiments of any of the aspects, the modified viral capsid is a chimeric capsid or a haploid capsid.
[0030] In sonic embodiments of any of the aspects, the modified viral capsid is a haploid capsid.
[0031] In some embodiments of any of the aspects, the modified viral capsid is a chimeric or haploid capsid further comprising a modification.
[0032] In some embodiments of any of the aspects, the modified viral capsid is an AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or a mutant modified form, a chimera, a mosaic, or a rational haploid thereof.
[0033] In some embodiments of any of the aspects, the modification changes the antigenic profile of the modified viral capsid as compared to the unmodified viral capsid.
100341 In some embodiments of any of the aspects, the modified viral capsid can be used for repeat administration.
BRIEF DESCRIPTION OF THE DRAWINGS
100351 Fig. 1 is a schematic showing an HD plasmid map of pJAL130-CYP46A 1, 7314 bp, see e.g., SEQ ID NO: 111 and Table 16, which shows the ITR to ITR sequence of the CYP46 variant sequence (see e.g., SEQ ID NO: 110) from the plasmid.
[0036] Fig. 2 shows the intracranial biodistribution in sagittal sections of the transgene GFP
under the control of CNS-1 (see e.g., SEQ ID NO: 112), CNS-2 (see e.g., SEQ ID
NO: 113), CNS-3 (see e.g., SEQ ID NO: 114), CNS-4 (sec c.g., SEQ ID NO: 115), CNS-5 (see e.g., SEQ ID NO: 122), CNS-6 (see e.g., SEQ ID NO: 123), CNS-7 (see e.g., SEQ ID NO: 124) and CNS-8 (see e.g., SEQ ID
NO: 125) and the control promoter hSynl (see e.g., SEQ ID NO: 152) delivered by intracerebroventricular (ICV) and intravenous (IV) injection. Scale bar is 1 mm.
[0037] Fig. 3A-3B show images of coronal bran sections. Fig. 3A
shows the intracranial biodistribution in coronal sections of the transgene GFP under the control of CNS-1 (see e.g., SEQ TD
NO: 112), CNS-2 (see e.g., SEQ ID NO: 113), CNS-3 (see e.g., SEQ ID NO: 114) and CNS-4 (see e.g., SEQ ID NO: 115) delivered by ICV. Scale bar is 1 mm. Fig. 3B shows the intracranial biodistribution in coronal sections of the transgene GFP under the control of CNS-5 (see e.g., SEQ ID
NO: 122), CNS-6 (see e.g., SEQ ID NO: 123), CNS-7 (see e.g., SEQ ID NO: 124) and CNS-8 (see e.g., SEQ ID NO: 125) and the control promoter hSynl (see e.g., SEQ ID NO:
152) delivered by ICV.
Scale bar is 1 mm.
[0038] Fig. 4 shows percentage GFP immunoreactivity in different brain regions following ICV
or IV delivery of GFP driven by CNS 1-8 (see e.g., SEQ ID NOs: 112-115, 122-125) or Synapsin-1 (see e.g., SEQ ID NO: 152). The data was obtained by quantitative measurement of 10 non-overlapping RGB images of GFP staining intensity by thresholding analysis in cortex, hippocampus, striatum, midbrain and cerebellum (mean +SEM). Images were taken at x40 magnification through discrete brain regions keeping constant settings. The foreground immunostaining was defined by averaging of the highest and lowest signals. Data is represented as the mean percentage area of immunoreactivity per field for each region of interest (n = 3). With ICV
delivery, expression is highest in cortex and hippocampal brain regions. CNS 1-8 (see e.g., SEQ ID NO:
112-115, 122-125) show higher expression in the hippocampus than hSynl control. CNS-1 (see e.g., SEQ ID NO: 112) shows higher expression in hippocampus, midbrain and cerebellum compared to hSynl with ICV
delivery.
[0039] Fig. 5A-5B show the tissue expression pattern for the,faf/
and pi1x3 genes from which the CRE/ proximal promoter from CNS-5, CNS-5_v2, CNS-2, CNS-3 and CNS-4 were designed. Fig. 5A
shows the expression pattern of the fafl gene in mouse PNS neurones from single cell transcriptomic data (Zeisel et al., 2018). Dark grey denotes high expression, white denotes no expression and light grey denotes low expression. fail is expressed in many PNS neurones. Fig. 5B
shows the expression pattern of the p11x3 gene in PNS neurones from single cell transcriptomic data (Zeisel et al., 2018).
Dark grey denotes high expression, white denotes no expression and light grey denotes low expression. pixt3 is expressed in sympathetic PNS neurones. fafi is expressed in many PNS neurones so a synthetic promoter comprising CRE or proximal promoter designed from the fafl gene such as CNS-5 and CNS-5_v2 is expected to have strong expression in the PNS. p11x3 is expressed in sympathetic PNS neurones so a synthetic promoter comprising CRE designed from the pitx3 gene such as CNS-2, CNS-3 or CNS-4 is expected to have expression in PNS
sympathetic neurones.
Similar analysis for Imx1b and p11x2 revealed no expression in PNS above the cut off score for the analysis (trinization score of less than 0.95; data not shown) so CNS-1, CNS-6, CNS-6 v2, CNS-7, CNS-7_v2, CNS-8 and CNS-8 v2 are not expected to be active in PNS neurones.
[0040] Fig. 6A shows the expression pattern of the HTT gene in a sagittal section from an adult mouse brain (taken from the Allen Mouse brain atlas; mouse.brain-map.org). HTT
(huntingtin) is highly expressed in throughout the brain.
[0041] Fig. 6B shows the expression pattern of the CYP46A1 gene in a coronal section from an adult mouse brain (taken from the Allen Mouse brain atlas, mouse.brain-map.org). CYP46A1 is widely expressed in the brain.
[0042] Fig. 7A shows the median GFP expression of synthetic NS-specific promoters SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0022, SP0011, SP0034, SP0035, SP0036 and control promoters Synapsin-1 relative to control promoter CAG in neuroblastoma-derived SH-SY5Y cells. NTC denotes non-transfected cells. The data is collected from three biological replicates, each of which is the average of two technical replicates. Error bars are standard error.
[0043] Fig. 7B shows the transfection efficiency in neuroblastoma-derived SH-SY5Y cells when transfectcd with synthetic NS-specific promoters SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0022, SP0011, SP0034, SP0035, SP0036 or control promoters Synapsin-1 and CAG, operably linked to GFP. NTC denotes non-transfected cells.
The data is collected from three biological replicates, each of which is the average of two technical replicates.
Error bars are standard error. GFP positive % denotes the % of all cells which were GFP positive.
DETAILED DESCRIPTION
[0044] Aspects of the invention relate to administration of both an interfering RNA (e.g., miRNAs, such as artificial miRNAs) that when delivered to a subject are effective for reducing the expression of a pathogenic gene in the subject, and a nucleic acid encoding a CYP46A1 protein.
Accordingly, methods and compositions described by the disclosure are useful, in some embodiments, for the treatment of neurological diseases or disorders.
Treatment Methods [0045] Methods for delivering a nucleic acid and/or a transgene (e.g., an inhibitory RNA, such as a miRNA and/or a nucleic acid encoding CYP46A1) to a subject are provided by the disclosure. The methods typically involve administering to a subject an effective amount of a nucleic acid encoding at least one interfering RNA/inhibitory nucleic acid capable of reducing expression of a target gene, e.g., a pathogenic gene associated with a neurological disease or disorder (e.g., huntingtin (htt) protein) and a nucleic acid encoding CYP46A1. In some embodiments, one or both of the nucleic acids are provided in a viral vector and/or in a viral particle, e.g., a rAAV.
[0046] As used herein, "neurological disease or disorder- can refer to any disease, disorder, or condition affecting or associated with the nervous system, i.e. those that affect the central nervous system (brain and spinal cord), the peripheral nervous system (PNS; e.g., peripheral nerves and cranial nerves), and the autonomic nervous system (parts of which are located in both central and peripheral nervous systems). More than 600 neurological diseases have been identified in humans.
By way of non-limiting examples, the neurological disease or disorder can be Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, polyglutamine repeat spinocerebellar ataxias, Krabbe's disease, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, Niemann Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, trauma due to spinal cord or head injury, ophthalmic diseases and disorders, Tay-Sachs disease, Rett syndrome, Neuropathic pain, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, a psychosexual disorder, a sleeping disorder, a pain disorder, and/or a eating or weight disorder. In some embodiments, the neurological disease or disorder is a central nervous system (CNS) disease or disorder, e.g., Huntington's disease, Parkinson's disease, or Alzheimer's disease.
[0047] As used herein, "Huntington's disease", or "HD", refers to a neurodegenerative disease characterized by progressively worsening movement, cognitive and behavioral changes caused by a tri-nucleotide repeat expansion (e.g., CAG, which is translated into a poly-Glutamine, or PolyQ, tract) in the HTT gene that results in production of pathogenic mutant huntingtin protein (HTT, or mHTT).
[0048] As used herein, "HTT" or "huntingtin" refers to the gene which encodes the huntingtin protein. Normal huntingtin proteins function in nerve cells, and the normal HTT gene usually has from about 7 to about 35 CAG repeats at the 5' end. The HTT gene is often mutated in patients with Huntington Disease, or at risk of developing Huntington Disease. In some embodiments, mutant huntingtin protein accelerates the rate of neuronal cell death in certain regions of the brain. Generally, the severity of HD is correlated to the size of the tri-nucleotide repeat expansion in a subject. For example, a subject having a CAG repeat region comprising between 36 and 39 repeats is characterized as having "reduced penetrance" HD, whereas a subject having greater than 40 repeats is characterized as having "full penetrance" HD. Thus, in some embodiments, a subject having or at risk of having HD has a HTT gene comprising between about 36 and about 39 CAG
repeats (e.g., 36, 37, 38 or 39 repeats). In some embodiments, a subject having or at risk of having HD has a HTT gene comprising 40 or more (e.g., 40, 45, 50, 60, 70, 80, 90, 100, 200, or more) CAG repeats. In some embodiments, a subject having a HTT gene comprising more than 100 CAG repeats develops HD
earlier than a subject having fewer than 100 CAG repeats. In some embodiments, a subject having a HTT gene comprising more than 100 CAG repeats may develop HD symptoms before the age of about 20 years, and is referred to as having juvenile HD (also referred to as akinetic-rigid HD, or Westphal variant HD). The number of CAG repeats in a HTT gene allele of a subject can be determined by any suitable modality known in the art. For example, nucleic acids (e.g., DNA) can be isolated from a biological sample (e.g., blood) of a subject and the number of CAG repeats of a HTT
allele can be determined by a hybridization- based method, such as PCR or nucleic acid sequencing (e.g., Illumina sequencing, Sanger sequencing, SMRT sequencing, etc.). The sequences of the HTT
genes are known in a number of species, e.g., human HTT (NCBI Gene ID: 3064) mRNA sequences (NCBI Ref Seq: NM_002111.8, SEQ ID NO: 4) and protein sequences (NCBI Ref Seq:
NP 0021012.4, SEQ ID NO: 5). Accordingly, in some embodiments relating to the treatment of Huntington's disease the one or more inhibitory nucleic acids (e.g., miRNAs) can hybridize to and/or reduce expression of HTT.
[0049] As used herein, "Alzhcimcr's disease", or "AD", refers to a ncurodcgcncrativc disease characterized by progressively worsening memory, disorientation, mood swings, as well as increasing difficulty with language, motivation and self-care. A number of genes can contribute to or increase the risk of AD, including Amyloid Precursor Protein (APP; NCBI Gene ID: 351), Presenilin 1 (PSEN1;
NCRI Gene ID 5663), Presenilin 2 (PSEN2; NCB! Gene ID 5664), ATP binding cassette subfamily A
member 7 (ABCA7; NCBI Gene ID 10347), and sortilin related receptor 1 (SORIA;
NCBI Gene ID
6653). The sequences of such AD-associated genes are known in a number of species, e.g., human mRNAs and protein sequences are available in the NCBI database using the provided Gene ID
numbers. These AD-associated genes and others, as well as AD-associated alleles thereof (e.g.
mutations, SNPs, etc.) are known in the art and described further in, e.g., Sims et al. Nature Neuroscience 2020 23:311-22; Bellenguez etal. Current Opinion in Neurobiology 2020 61:40-48;
Tabuas-Pereira et al. 2020 Neurogenetics and Psychiatric Genetics 8:1-16; and Porter et al. Chapter 15 of -Neurodegeneration and Alzheimer's Disease" 2019; each of which is incorporated by reference herein in its entirety. Accordingly, in some embodiments relating to the treatment of Alzheimer's disease, the one or more inhibitory nucleic acids (e.g., miRNAs) can hybridize to and/or reduce expression of APP, PSEN1, PSEN2, ABCA7, and/or SORL1 100501 As used herein, "Parkinson's disease", or "PD", refers to a neurodegenerative disease characterized by progressively worsening shaking and stiffness and increasing problems with balance, walking, and coordination. A number of genes can contribute to or increase the risk of PD, including synuclein alpha (SNCA; NCBI Gene ID: 6622), leucine rich repeat kinase 2 (LRRK2/PARK8; NCBI
Gene ID 120892), glucosylceramidase beta (GBAl; NCBI Gene ID 2629), parkin RBR
E3 ubiquitin (PRKN; NCBI Gene ID 5071), PTEN induced kinase 1 (PINK1; NCBI Gene ID 65018), Parkinsonism associated deglycase (DJ1/PARK7; NCB' Gene ID 11315), VPS35 rctromer complex component (VPS35; NCBI Gene ID 55737), eukaryotic translation initiation factor 4 gamma 1 (EIF4G1; NCBI Gene ID 1981), DnaJ beat shock protein family member C13 (DNAJC13; NCBI
Gene ID 23317), coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2; NCBI Gene ID
51142), and/or ubiquitin C-terminal hydrolase Li (UCHL1; NCBI Gene ID 7345).
The sequences of such PD-associated genes are known in a number of species, e.g., human mRNAs and protein sequences are available in the NCBI database using the provided Gene ID
numbers. These PD-associated genes and others, as well as PD-associated alleles thereof (e.g.
mutations, SNPs, etc.) are known in the art and described further in, e.g., D' Souza etal. Acta Neuropsychiatrica 2020 32:10-22;
Sardi etal. Parkinsonism & Related Disorders 2019 59:32-38; Hardy et al.
Current Opinion in Genetics & Development 2009 19:254-65; Ferreria etal. Neurologica 2017 135:273-84; Jain et al.
Clinical Science 2005 109:355-64; Fagan et al. European Journal of Neurology 2017 24:561-e20;
Campelo etal. Parkinson's Disease 2017 4318416; and Porter etal. Chapter 15 of "Neurodegeneration and Alzheimer's Disease" 2019; each of which is incorporated by reference herein in its entirety. Accordingly, in some embodiments relating to the treatment of Parkinson's disease the one or more inhibitory nucleic acids (e.g., miRNAs) can hybridize to and/or reduce expression of SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, ElF4G1, DNAJC13, CHCHD2, UCHL1, and/or GBAl.
100511 An "effective amount" of a substance is an amount sufficient to produce a desired effect.
In some embodiments, an effective amount of an isolated nucleic acid is an amount sufficient to transfect (or infect in the context of rAAV mediated delivery) a sufficient number of target cells of a target tissue of a subject. In some embodiments, a target tissue is central nervous system (CNS) tissue (e.g., brain tissue, spinal cord tissue, cerebrospinal fluid (CSF), etc.). In some embodiments, an effective amount of an isolated nucleic acid (e.g., which may be delivered via an rAAV) may be an amount sufficient to have a therapeutic benefit in a subject, e.g., to reduce the expression of a pathogenic gene or protein (e.g., HTT), to extend the lifespan of a subject, to improve in the subject one or more symptoms of disease (e.g., a symptom of Huntington's disease), etc. The effective amount will depend on a variety of factors such as, for example, the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among subject and tissue as described elsewhere in the disclosure.
Inhibitory RNAs [0052] In some aspects, the disclosure provides inhibitory nucleic acids, e.g., miRNA, that specifically binds to (e.g., hybridizes with) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) continuous bases of a target, e.g., human huntingtin mRNA (e.g.., SEQ ID NO: 4). In some embodiments, the disclosure provides inhibitory nucleic acids, e.g., miRNA, that specifically binds to (e.g., hybridizes with) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) continuous bases of exon 1 of human huntingtin mRNA (e.g.., SEQ ID NO: 3). As used herein "continuous bases"
refers to two or more nucleotide bases that are covalently bound (e.g., by one or more phosphodiester bond, etc.) to each other (e.g. as part of a nucleic acid molecule). In some embodiments, the at least one miRNA is about 50%, about 60% about 70% about 80% about 90%, about 95%, about 99% or about 100%
identical to the two or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) continuous nucleotide bases of the target, e.g., SEQ ID
NOs 3 or 4. In some embodiments, the inhibitory RNA is a miRNA which is comprises or is encoded by the sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
[0053] In one aspect described herein are inhibitory RNAs that can be used for the treatment of a neurological disease or disorder. In some embodiments of any of the aspects, the nucleic acid sequence of the inhibitory RNA comprises one of SEQ ID NO: 6-17, 40-44, or 50-66 or a sequence that is at least 95% (e.g., at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to the sequence of at least one of SEQ ID NO: 6-17, 40-44, or 50-66 that maintains the same functions as SEQ ID NO: 3 or 4 (e.g., HTT inhibition).
[0054] In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence.
[0055] In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a seed sequence complementary to one of SEQ ID NO: 3, 4, 18-39, or 46-49. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA
comprising a seed sequence complementary to one of SEQ ID NO: 3, 4, 18-39, or 46-49 flanked by a miRNA backbone sequence. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a seed sequence substantially complementary to one of SEQ ID
NO: 3, 4, 18-39, or 46-49. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a seed sequence substantially complementary to one of SEQ ID
NO: 3, 4, 18-39, or 46-49 flanked by a miRNA backbone sequence.
100561 Table 1: first RNA sequences substantially complementary to SEQ ID NO: 4 SEQ ID
miRNA sequence NO:
5'-AAGGACUUGAGGGACUCGA-3' 6 5'-AAGGACUUGAGGGACUCGAA-3' 7 5'-AAGGACUUGAGGGACUCGAAG-3' 8 5'-AAGGACUUGAGGGACUCGAAGG-3' 9 5'-AAGGACUUGAGGGACUCGAAGGC-3' 10 [0057] Table 2: second RNA sequences substantially complementary to one or more first RNA
sequences provided in Table 1 SEQ ID
miRNA sequence NO:
5'-UCGAGUCCCUCAAGUCCUU-3' 11 5'-UUCGAGUCCCUCAAGUCCUU-3 12 5'-CUUCGAGUCCCUCAAGUCCUU-3' 13 5'-CCUUCGAGUCCCUCAAGUCCUU-3' 14 5'-GCCUUCGAGUCCCUCAAGUCCUU-3' 15 5i-CUUCGAGUCUCAAGUCCUU-3' 16 5'-ACGAGUCCCUCAAGUCCUC-3' 17 [0058] Table 3 Target Sequences in Exon 1 of human HTT gene, targeted by the miRNAs provided by Tables 1 and 2 Target Sequence SEQ ID NO:
aaggacuuga gggacucgaa 18 tccaagatgg acggccgctc a 19 ccaagatgga cggccgctca g 20 agatggacgg ccgctcaggt t 21 atggacggcc gctcaggttc t 22 gacggccgct caggttctgc t 23 cggccgctca ggttctgctt t 24 gtgctgagcg gcgccgcgag t 25 cgccgcgagt cggcccgagg c 26 accgccatgg cgaccctgga a 27 ccgccatggc gaccctggaa a 28 gaaggccttc gagtccctca a 29 cttcgagtcc ctcaagtcct t 30 ccgccgccgc ctcctcagct t 31 gccgcctcct cagatcctc a 32 tcagccgccg ccgcaggcac a 33 gccgcaggca cagccgctgc t 34 ggcacagccg ctgctgcctc a 35 gccgctgctg cctcagccgc a 36 cggcccggct gtggctgagg a 37 ctgtggctga ggagccgctg c 38 tgtggctgag gagccgctgc a 39 [0059] In some embodiments, an miRNA comprises SEQ ID NOs: 6 and 11, SEQ ID NOs: 7 and 12; SEQ ID NOs: 8 and 11; SEQ ID NOs: 8 and 16; SEQ ID NOs: 8 and 17; SEQ ID
NOs: 9 and 14;
or SEQ ID NOs: 10 and 15.
[0060] In some embodiments, the vector comprises a pre-miRNA
having the sequence of SEQ
ID NO: 40 or 41. These pre-miRNAs include scaffolds comprising SEQ ID NO: 8.
Alternative first RNA sequences disclosed herein can be substituted for SEQ ID NO: 8 in either of SEQ ID NOs: 40 and 41.
100611 In some embodiments, the vector comprises a pri-miRNA
having the sequence of SEQ ID
NO: 42 or 43. The pri-miRNA of SEQ ID NO: 42 includes scaffolds comprising SEQ
ID NO: 8 and 16. Alternative RNA sequences disclosed herein can be substituted for SEQ ID
NO: 8 and 16 in SEQ
ID NO: 42. The pri-miRNA of SEQ ID NOs: 43 and 44 include scaffolds comprising SEQ ID NO: 8 and 17. Alternative RNA sequences disclosed herein can be substituted for SEQ
ID NO: 8 and 17 in either of SEQ ID NOs: 43 and 44.
[0062] Table 4: pre- and pri-miRNAs comprising miRNAs provided in Tables 1 and 2 Name Sequence SEQ ID
NO:
Pre- 5'- 40 miR45 la CUUGGGAAUGGCAAGGAAGGACUUGAGGGACUCGAAGACGA
GUCCCUCAAGUCCUCUCUUGCUAUACCCAGA-3' Pre- 5'-UGCUGAAGGACUUGAGGGACUCGAAGGUUUUGGCCACUGACU
miR155 GACCUUCGAGUCUCAAGUCCUUCAGGA-3' gcuaagcacu ucguggccgu cgaucguuua aagggaggua gugagucgac caguggaucc uggaggcuug cugaaggcug uaugcugaag gacuugaggg acucgaaggu uuuggccacu gacugaccuu cgagucucaa guccuucagg acacaaggcc uguuacuagc acucacaugg aacaaauggc ccagaucugg ccgcacucga gauaucuaga cccagcuuuc uuguacaaag ugguugaucu agagggcccg cgguucgcug au gcuccugggc aacgugcugg uuauugugcu gucucaucau uuuggcaaag aauuaagggc gaauucgagc ucgguaccuc gcgaaugcau cuagauaucg gcgcuaugcu uccugugccc ccaguggggc ccuggcuggg auuucaucau auacuguaag uuugcgauga gacacuacag uauagaugau guacuagucc gggcaccccc agcucuggag ccugacaagg aggacaggag agaugcugca agcccaagaa gcucucugcu cagccuguca caaccuacug acugccaggg cacuugggaa uggcaaggaa ggacuugagg gacucgaaga cgagucccuc aaguccucuc uugcuauacc cagaaaacgu gccaggaaga gaacucagga cccugaagca gacuacugga agggagacuc cagcucaaac aaggcagggg ugggggcgug ggauuggggg uaggggaggg aauagauaca uuuucucuuu ccuguuguaa agaaauaaag auaagccagg cacaguggcu cacgccugua aucccaccac uuucagaggc caaggcgcug gauccagauc ucgagcggcc gcccg agucucgugc agauggacag caccgcugag caauggaagc ggguaggccu uuggggcagc ggccaauagc agcuuugcuc cuucgcuuuc ugggcucaga ggcugggaag gggugggucc gggggcgggc ucaggggcgg gcucaggggc ggggcgggcg cccgaagguc cuccggaggc ccggcauucu gcacgcuuca aaagcgcacg ucugccgcgc uguucuccuc uuccucaucu ccgggccuuu cgacccggau cccccgggcu gcaggaauuc gagcucggua ccucgcgaau gcaucuagau aucggcgcua ugcuuccugu gcccccagug gggcccuggc ugggauuuca ucauauacug uaaguuugcg augagacacu acaguauaga ugauguacua guccgggcac ccccagcucu ggagccugac aaggaggaca ggagagaugc ugcaagccca agaagcucuc ugcucagccu gucacaaccu acugacugcc agggcacuug ggaauggcaa ggaaggacuu gagggacucg aagacgaguc ccucaagucc ucucuugcua uacccagaaa acgugccagg aagagaacuc aggacccuga agcagacuac uggaagggag acuccagcuc aaacaaggca gggguggggg cgugggauug gggguagggg agggaauaga uacauuuucu cuuuccuguu guaaagaaau aaagauaagc caggcacagu ggcucacgcc uguaauccca ccacuuucag aggccaaggc gcuggaucca gaucucgagc ggccgcccg [0063]
In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 1-102 and/or 103-249 of International Patent Publication W02017/201258.
In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ ID NOs: 1-249 of International Patent Publication W02017/201258 which are provided in Tables 3-5 of International Patent Publication W02017/201258. In some embodiments, the vector can comprise one or more of the pri-miRNAs which are provided in Table 9 or the pri-raiRNAs which are provided in Table 10 of International Patent Publication W02017/201258. The contents of International Patent Publication W02017/201258 are incorporated by reference herein in their entirety.
[0064] In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 914-1013 and/or 1014-1160 of International Patent Publication W02018/204803. In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ ID NOs: 914-1160 of International Patent Publication W02018/204803 which are provided in Tables 4-6 of International Patent Publication W02018/204803. The contents of International Patent Publication W02018/204803 are incorporated by reference herein in their entirety.
[0065] In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 916-1015 and/or 1016-1162, of International Patent Publication W02018/204797. In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 916-1015, 1016-1162, 1164-1332, and/or 1333-1501 of international Patent Publication W02018/204797. In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ ID NOs: 916-1162 of International Patent Publication W02018/204797which are provided in Tables 4-6 of International Patent Publication W02018/204797. In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ
ID NOs: 1164-1501 of International Patent Publication W02018/204797 which are provided in Table 9 of International Patent Publication W02018/204797. The contents of International Patent Publication W02018/204797 are incorporated by reference herein in their entirety.
[0066] In some embodiments, the inhibitory nucleic acid can target, e.g., comprise a sequence complementary or substantially complementary to, a heterozygous SNP within a gene encoding a gain-of-function mutant huntingtin protein. In some embodiments, the SNP has an allelic frequency of at least 10% in a sample population. In some embodiments, the SNP present at a genomic site selected from the group consisting of RS362331, RS4690077, RS363125, RS363075, RS362268, RS362267, RS362307, RS362306, R5362305, RS362304, RS362303, and RS7685686.
Such SNPs are described in more detail in, e.g., U.S. Patent 9,343,943 which is incorporated by reference herein in its entirety. In some embodiments, the target sequence is one of SEQ ID
NOs: 45-49. In some embodiments, the inhibitory nucleic acid sequence comprises one or more of SEQ
ID NOs: 50-61. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ
ID NOs: 50 and 51, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ
ID NOs: 52 and 53, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID NOs: 54 and 55, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID NOs: 56 and 57, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID
NOs: 58 and 59, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID NOs:
60 and 61, e.g., in a duplex.
[0067] Table 5 Target Sequence SEQ ID NO:
ccacgccugc ucccucaucc acugugugca cuucauccug 45 ccacgccugc ucccucaucu acugugugca cuucauccug 46 itaagagaugg ggacaguaau ucaacgcuag aagaaca 47 uaagagaugg ggacaguacu ucaacgcuag aagaaca 48 cagatgcc atggcctgtgct gggccag 49 [0068] Table 6: sense and antisense (or first and second RNA
sequences) that target SNPs in human HTT gene Sense sequence SEQ ID NO: Anti sense sequence SEQ ID
NO:
ucccucaucc acugugugaa c 50 gcacacagug gaugagggag c 51 ucccucaucu acugugugaa c 52 cgagggagua gaugacacac g 53 gggacaguaa uucaacgcgu c 54 agcguugaau uacugucccc a 55 gggacaguac uucaacgcgu c 56 accccuguca ugaaguugcg a 57 ugccauggcc ugugcugguc c 58 cccagcacag gccauggca c 59 ugccauggca ugugcugguc c 60 cccagcacau gccuaggcau c 61 100691 In some embodiments, an inhibitory nucleic acid, e.g., miRNA, can hybridize specifically to, or target a polymorphism, mutation, or SNP in one of the genes disclosed herein. Methods of selecting inhibitory nucleic acid sequences that target polymorphisms, e.g., SNPs, in a HTT gene are known in the art. For example, such methods are disclosed in U.S. Patent 8,679,750 and 7,947,658, each of which is incorporated by reference herein in its entirety. In some embodiments, the inhibitory nucleic acid can comprise a sequence, e.g., one or more of SEQ ID NOs: 1-342 of U.S. Patent 8,679,750 or 7,947,658.
[0070] In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 62-66.
[0071] Table 7. In some embodiments, the capitalized letters comprise 2'-0-(2-methoxy)ethyl modifications.
SEQ ID NO
5'-CTCAGtaacattgacACCAC-3' 62 5'-CTCGActrmagcaggATTTC-3 63 '-CCI1CcctgaaggttCCTCC-3 ' 64 5'- GCAGGgttaccgccaTCCCC-3 ' 65 5 .-CGAGAcagtcgctIcCACTI -3 ' 66 [0072] Further suitable sequences are known in the art, e.g., in U.S. Patent 7,951,934, Miniarikova ct al. Molecular Therapy ¨ Nucleic Acids 2015 5:c297; and Kordasiweicz et al. Neuron 2012 74:1031-1044; each of which is incorporated by reference herein in its entirety.
[0073] In some embodiments of any of the aspects, the inhibitory RNA (e.g., miRNA) binds and/or targets the 5' untranslated region (UTR) of the target. In some embodiments of any of the aspects, the inhibitory RNA (e.g., miRNA) binds and/or targets one or more exons of the target. In some embodiments of any of the aspects, the inhibitory RNA (e.g., miRNA) binds and/or targets the 5' UTR, exon 1, CAG repeats, the CAG 5'-jumper, or a CAG 3Jumper of HTT.
[0074] In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence of any of SEQ ID NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID NOs: 67-73.
[0075] In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence of any of SEQ ID NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence of any of SEQ ID NOs: 135-151. In some embodiments, the inhibitory RNA
and/or vector does not comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID
NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID NOs: 135-151.
[0076] In some embodiments, the inhibitory RNA and/or vector does comprise a sequence of any of SEQ ID NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98%
sequence identity with any of any of SEQ ID NOs: 67-73.
[0077] In some embodiments, the inhibitory RNA and/or vector does comprise a sequence of any of SEQ ID NOs: 67-73 or 135-151. In some embodiments, the inhibitory RNA
and/or vector does comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID NOs: 67-73 or 135-151. See e.g., International Patent Application WO 2021/127455, the contents of which are incorporated herein by reference in their entireties.
[0078] Table 8 SEQ ID NO:
AAAttAATCTCTTACCTGAT 142 AAACCGttACCAttACtGAGtt 150 AAAtCGCtGAttiGtGtAGtC 151 [0079] Suitable sequences for use in inhibitory nucleic acids (e.g., miRNAs) that target AD
and/or PD associated targets are known in the art, e.g., see International Patent Publication W02011/133890, W02012/036433, W02013/007874; U.S. Patent Publications US2016/0264965;
U.S. Patent Nos. 7,829,694, 8,415,319, 10,125,363, 10,011,835 The contents of the foregoing references are incorporated by reference herein in their entirety.
[0080] In some embodiments of any of the aspects, the agent that treats a neurological disease or disorder is or comprises an inhibitory nucleic acid. In some embodiments of any of the aspects, inhibitors of the expression of a given gene can be an inhibitory nucleic acid. As used herein, "inhibitory nucleic acid" refers to a nucleic acid molecule which can inhibit the expression of a target, e.g., double-stranded RNAs (dsRNAs), inhibitory RNAs (iRNAs), and the like.
[0081] Double-stranded RNA molecules (dsRNA) have been shown to block gene expression in a highly conserved regulatory mechanism known as RNA interference (RNAi). The inhibitory nucleic acids described herein can include an RNA strand (the antisense strand) having a region which is 30 nucleotides or less in length, i.e., 15-30 nucleotides in length, generally 19-24 nucleotides in length, which region is substantially complementary to at least part the targeted mRNA transcript.
The use of these iRNAs enables the targeted degradation of mRNA transcripts, resulting in decreased expression and/or activity of the target.
[0082] As used herein, the term "iRNA" refers to an agent that contains RNA (or modified nucleic acids as described below herein) and which mediates the targeted cleavage of an RNA
transcript via an RNA-induced silencing complex (RISC) pathway. In some embodiments of any of the aspects, an iRNA as described herein effects inhibition of the expression and/or activity of a target. In some embodiments of any of the aspects, contacting a cell with the inhibitor (e.g. an iRNA) results in a decrease in the target mRNA level in a cell by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, up to and including 100% of the target mRNA level found in the cell without the presence of the iRNA. In some embodiments of any of the aspects, administering an inhibitor (e.g. an iRNA) to a subject can result in a decrease in the target mRNA level in the subject by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, up to and including 100% of the target mRNA level found in the subject without the presence of the iRNA.
[0083] In some embodiments of any of the aspects, the iRNA can be a dsRNA. A dsRNA
includes two RNA strands that are sufficiently complementary to hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of an mRNA formed during the expression of the target, e.g., it can span one or more intron boundaries.
The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. Generally, the duplex structure is between 15 and 30 base pairs in length inclusive, more generally between 18 and 25 base pairs in length inclusive, yet more generally between 19 and 24 base pairs in length inclusive, and most generally between 19 and 21 base pairs in length, inclusive.
Similarly, the region of complementarity to the target sequence is between 15 and 30 base pairs in length inclusive, more generally between 18 and 25 base pairs in length inclusive, yet more generally between 19 and 24 base pairs in length inclusive, and most generally between 19 and 21 base pairs in length nucleotides in length, inclusive. In some embodiments of any of the aspects, the dsRNA is between 15 and 20 nucleotides in length, inclusive, and in other embodiments, the dsRNA is between 25 and 30 nucleotides in length, inclusive. As the ordinarily skilled person will recognize, the targeted region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a "part" of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway). dsRNAs having duplexes as short as 9 base pairs can, under some circumstances, mediate RNAi-directed RNA cleavage. Most often a target will be at least 15 nucleotides in length, preferably 15-30 nucleotides in length. Exemplary embodiments of types of inhibitory nucleic acids can include, e.g., siRNA, shRNA, miRNA, and/or amiRNA, which are well known in the art.
10084.1 In some embodiments of any of the aspects, the inhibitory is a miRNA. MicroRNAs (miRNAs) are small RNAs of 17-25 nucleotides, which function as regulators of gene expression in eukaryotes. A "microRNA" or "miRNA" is a small non-coding RNA molecule capable of mediating transcriptional or post-translational gene silencing. Typically, miRNA is transcribed as a hairpin or stem-loop (e.g., having a self-complementarity, single- stranded backbone) duplex structure, referred to as a primary miRNA (pri-miRNA), which is enzymatically processed (e.g., by Drosha, DGCR8, Pasha, etc.) into a pre-miRNA. The duplex structure comprises a) a first RNA
sequence a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence and b) second RNA sequence region that is complementary to the first RNA sequence strand, such that the two sequences hybridize and form a duplex structure when combined under suitable conditions. The target sequence can be derived from the sequence of an mRNA formed during the expression of the target, e.g., it can span one or more intron boundaries. Generally, the duplex structure is between 15 and 30 base pairs in length inclusive, more generally between 18 and 25 base pairs in length inclusive, yet more generally between 19 and 24 base pairs in length inclusive, and most generally between 19 and 21 base pairs in length, inclusive.
[0085] miRNAs are initially expressed in the nucleus as part of long primary transcripts called primary miRNAs (pri-miRNAs). The length of a pri-miRNA can vary. In some embodiments, a pri-miRNA ranges from about 100 to about 5000 base pairs (e.g., about 100, about 200, about 500, about 1000, about 1200, about 1500, about 1800, or about 2000 base pairs) in length.
In some embodiments, a pri-miRNA is greater than 200 base pairs in length (e.g., 2500, 5000, 7000, 9000, or more base pairs in length.
[0086] Inside the nucleus, pri-miRNAs are partially digested by the enzyme Drosha, to form 65-120 nucleotide-long hairpin precursor miRNAs (pre-miRNAs) that are exported to the cytoplasm for further processing by Dicer into shorter, mature miRNAs, which are the active molecules. In animals, these short RNAs comprise a 5' proximal "seed" region (nucleotides 2 to 8) which appears to be the primary determinant of the pairing specificity of the miRNA to the 3' untranslated region (3'-UTR) of a target mRNA. Pre-miRNA, which is also characterized by a hairpin or stem-loop duplex structure, can also vary in length. In some embodiments, pre-miRNA ranges in size from about 40 base pairs in length to about 500 base pairs in length. In some embodiments, pre-miRNA
ranges in size from about 50 to 100 base pairs in length. In some embodiments, pre-miRNA ranges in size from about 50 to about 90 base pairs in length (e.g., about 50, about 52, about 54, about 56, about 58, about 60, about 62, about 64, about 66, about 68, about 70, about 72, about 74, about 76, about 78, about 80, about 82, about 84, about 86, about 88, or about 90 base pairs in length).
[0087] Generally, pre-miRNA is exported into the cytoplasm, and enzymatically processed by Dicer to first produce an imperfect miRNA/miRNA* duplex and then a single-stranded mature miRNA molecule, which is subsequently loaded into the RNA-induced silencing complex (RISC).
Typically, a mature miRNA molecule ranges in size from about 19 to about 30 base pairs in length. In some embodiments, a mature miRNA molecule is about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, or 30 base pairs in length. In some embodiments, an isolated nucleic acid of the disclosure comprises a sequence encoding a pri-miRNA, a pre-miRNA, or a mature miRNA comprising a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
[0088] In the context of the invention, a miRNA molecule or an equivalent or a mimic or an isomiR thereof may be a synthetic or natural or recombinant or mature or part of a mature miRNA or a human miRNA or derived from a human miRNA as further defined in the part dedicated to the general definitions. A human miRNA molecule is a miRNA molecule which is found in a human cell, tissue, organ or body fluids (i.e. endogenous human miRNA molecule). A human miRNA molecule may also be a human miRNA molecule derived from an endogenous human miRNA
molecule by substitution, deletion and/or addition of a nucleotide. A miRNA molecule or an equivalent or a mimic thereof may be a single stranded or double stranded RNA molecule. Preferably a miRNA molecule or an equivalent, or a mimic thereof is from 6 to 30 nucleotides in length, preferably 12 to 30 nucleotides in length, preferably 15 to 28 nucleotides in length, more preferably said molecule has a length of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides or more.
100891 In a preferred embodiment, a miRNA molecule or equivalent or mimic or isomiR thereof comprises at least 6 of the 7 nucleotides present in the seed sequence of said miRNA molecule or equivalent or mimic or isomiR thereof Preferably in this embodiment, a miRNA
molecule or an equivalent or a mimic or isomiR thereof is from 6 to 30 nucleotides in length and more preferably comprises at least 6 of the 7 nucleotides present in the seed sequence of said miRNA molecule or equivalent thereof Even more preferably a miRNA molecule or an equivalent or a mimic or isomiR
thereof is from 15 to 28 nucleotides in length and more preferably comprises at least 6 of the 7 nucleotides present in the seed sequence, even more preferably a miRNA
molecule has a length of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides or more.
100901 Accordingly, a preferred miRNA molecule or equivalent or mimic or isomiR thereof comprises at least 6 of the 7 nucleotides present in the seed sequence identified in or as SEQ ID NO:
6-17, 40-44, or 50-66 and more preferably has a length of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides or more.
[0091] Delivery vehicles for miRNA include but are not limited to the following: liposomes, polymeric nanoparticles, viral systems, conjugation of lipids or receptor-binding molecules, exosomes, and bacteriophage; see e.g., Baumann and Winkler, miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents, Future Med Chem. 2014, 6(17): 1967-1984; US Patent 8,900,627; US Patent 9,421,173; US Patent 9,555,060; WO
2019/177550; the contents of each of which are incorporated herein by reference in their entireties.
[0092] A microRNA sequence comprises a "seed" region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence of the nucleic acid. In one embodiment, the viral genome may be engineered to include, alter or remove at least one miRNA binding site, sequence or seed region.
[0093] The term substantial complementarity means that is not required to have the first and second RNA sequence to be fully complementary, or to have the first RNA
sequence and a reference or target sequence (e.g., SEQ ID NO: 3 or 4) to be fully complementary. In one embodiment, the substantial complementarity between a RNA sequence and the target consists of having no mismatches, one mismatched nucleotide, or two mismatched nucleotides. It is understood that one mismatched nucleotide means that over the entire length of the RNA sequence that base pairs with the target one nucleotide does not base pair with the target. Having no mismatches means that all nucleotides base pair with the target, and having 2 mismatches means two nucleotides do not base pair with the target.
[0094] The miRNAs and/or the transgene comprising one or more miRNAs can be provided in or comprise a scaffold sequence. As used herein, -scaffold- refers to portions of the miRNA-encoding sequence that are external to the mature duplex structure. For example, the scaffold can comprise loops and/or stem regions. Accordingly, scaffolds are useful in producing, encoding, and/or expressing the miRNAs described herein. Scaffolds used in the compositions and methods described herein can be sequences of, obtained from, and/or derived from endogenous and/or naturally-occurring miRNA scaffolds, e.g., human miRNAs. In some embodiments, the scaffold sequence is obtained used in the compositions and methods described herein can be sequences of, obtained from, and/or derived from endogenous and/or naturally-occurring miRNA scaffolds of miRNAs that are overexpressed in one or more NS and/or CNS diseases.
Nucleic Acids 100951 In some aspects, the disclosure provides isolated nucleic acids that are useful for reducing (e.g., inhibiting) expression of a pathogenic gene (e.g., HTT) and/or which encode CYP46A1. A
"nucleic acid" sequence refers to a DNA or RNA sequence. In some embodiments, proteins and nucleic acids of the disclosure are isolated. As used herein, the term "isolated" means artificially produced. As used herein with respect to nucleic acids, the tenn "isolated"
means: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis.
An isolated nucleic acid is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art. As used herein with respect to proteins or peptides, the term "isolated" refers to a protein or peptide that has been isolated from its natural environment or artificially produced (e.g., by chemical synthesis, by recombinant DNA technology, etc.).
[0096] The skilled artisan will also realize that conservative amino acid substitutions may be made to provide functionally equivalent variants, or homologs of the capsid proteins. In some aspects the disclosure embraces sequence alterations that result in conservative amino acid substitutions. As used herein, a conservative amino acid substitution refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references that compile such methods, e.g., Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or Current Protocols in Molecular Biology, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made among amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D. Therefore, one can make conservative amino acid substitutions to the amino acid sequence of the proteins and polypeptides disclosed herein.
[0097] The isolated nucleic acids of the invention may be recombinant adeno-associated virus (AAV) vectors (rAAV vectors). In some embodiments, an isolated nucleic acid as described by the disclosure comprises a region (e.g., a first region) comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof The isolated nucleic acid (e.g., the recombinant AAV vector) may be packaged into a capsid protein and administered to a subject and/or delivered to a selected target cell. "Recombinant AAV (rAAV) vectors" are typically composed of, at a minimum, a transgene and its regulatory sequences, and 5' and 3' AAV inverted terminal repeats (ITRs). The transgene may comprise, as disclosed elsewhere herein, one or more regions that encode one or more inhibitory RNAs (e.g., miRNAs) comprising a nucleic acid that targets an endogenous mRNA of a subject. The transgene may also comprise a region encoding, for example, a protein and/or an expression control sequence (e.g., a poly-A tail), as described elsewhere in the disclosure.
[0098] Generally, ITR sequences are about 145 bp in length.
Preferably, substantially the entire sequences encoding the 1TRs are used in the molecule, although some degree of minor modification of these sequences is permissible. The ability to modify these ITR sequences is within the skill of the art. (See, e.g., texts such as Sambrook et al., "Molecular Cloning. A
Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory, New York (1989): and K. Fisher et al., J Virol., 70:520 532 (1996)). An example of such a molecule employed in the present invention is a "cis-acting"
plasmid containing the transgene, in which the selected transgene sequence and associated regulatory elements are flanked by the 5' and 3' AAV ITR sequences. The AAV ITR sequences may be obtained from any known AAV, including presently identified mammalian AAV types. In sonic embodiments, the isolated nucleic acid (e.g., the rAAV vector) comprises at least one ITR having a serotype selected from AAV1, AAV2, AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAV10, AAV11, and variants thereof In some embodiments, the isolated nucleic acid comprises a region (e.g., a first region) encoding an AAV2 ITR.
[0099] In some embodiments, the isolated nucleic acid further comprises a region (e.g., a second region, a third region, a fourth region, etc.) comprising a second AAV ITR. In some embodiments, the second AAV ITR has a scrotypc selected from AAV1, AAV2, AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAV10, AAV1 1, and variants thereof. In some embodiments, the second ITR is a mutant ITR that lacks a functional terminal resolution site (TRS). The term "lacking a terminal resolution site" can refer to an AAV ITR that comprises a mutation (e.g., a sense mutation such as a non-synonymous mutation, or missense mutation) that abrogates the function of the terminal resolution site (TRS) of the ITR, or to a truncated AAV ITR that lacks a nucleic acid sequence encoding a functional TRS (e.g., a ATRS ITR). Without wishing to be bound by any particular theory, a rAAV vector comprising an ITR lacking a functional TRS produces a self-complementary rAAV
vector, for example as described by McCarthy (2008) Molecular Therapy 16(10):
1648-1656. In some embodiments of any of the aspects disclosed herein, at least one or more ITRs are less than 145 bp length, e.g., 130 bp length.
1001001 In addition to the major elements identified above for the recombinant AAV vector, the vector also includes conventional control elements which are operably linked with elements of the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the vector or infected with the virus produced by the invention. As used herein, "operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA;
sequences that enhance translation efficiency {i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A
number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.
[00101] As used herein, a nucleic acid sequence (e.g., coding sequence) and regulatory sequences are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription of the nucleic acid sequence under the influence or control of the regulatory sequences. If it is desired that the nucleic acid sequences be translated into a functional protein, two DNA sequences are said to be operably linked if induction of a promoter in the 5 regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably linked to a nucleic acid sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide. Similarly, two or more coding regions arc operably linked when they are linked in such a way that their transcription from a common promoter results in the expression of two or more proteins having been translated in frame. In some embodiments, operably linked coding sequences yield a fusion protein. In some embodiments, operably linked coding sequences yield a functional RNA (e.g., mi RNA).
[00102] In some aspects, the disclosure provides an isolated nucleic acid comprising a transgene, wherein the transgene comprises a nucleic acid sequence encoding one or more microRNAs (e.g., miRNAs).
1001031 It should be appreciated that an isolated nucleic acid or vector (e.g., rAAV vector), in some embodiments comprises a nucleic acid sequence encoding more than one (e.g., a plurality, such as 2, 3, 4, 5, 10, or more) miRNAs. In some embodiments, each of the more than one miRNAs targets (e.g., hybridizes or binds specifically to) the same target gene (e.g., an isolated nucleic acid encoding three unique miRNAs, where each miRNA targets the HTT gene). In some embodiments, each of the more than one miRNAs targets (e.g., hybridizes or binds specifically to) a different target gene.
[00104] In some aspects, the disclosure provides isolated nucleic acids and vectors (c.g., rAAV
vectors) that encode one or more artificial miRNAs. As used herein "artificial miRNA" or "amiRNA"
refers to an endogenous pri-miRNA or pre-miRNA (e.g., a miRNA backbone, which is a precursor miRNA capable of producing a functional mature miRNA), in which the miRNA and miRNA* (e.g., passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene, for example as described by Eamens et al. (2014), Methods Mol. Biol. 1062:211-224. For example, in some embodiments an artificial miRNA comprises a miR-155 pri-miRNA backbone into which a sequence encoding a mature HTT-specific miRNA (e.g., any one of SEQ ID NOs: 6-17, 40-44, or 50-66) has been inserted in place of the endogenous miR-155 mature miRNA-encoding sequence. In some embodiments, miRNA (e.g., an artificial miRNA) as described by the disclosure comprises a miR- 155 backbone sequence, a miR-30 backbone sequence, a mir-64 backbone sequence, or a miR-122 backbone sequence.
[00105] A region comprising a transgene (e.g., a second region, third region, fourth region, etc.) may be positioned at any suitable location of the isolated nucleic acid. The region may be positioned in any untranslated portion of the nucleic acid, including, for example, an intron, a 5' or 3' untranslated region, etc.
[00106] In some cases, it may be desirable to position the region (e.g., the second region, third region, fourth region, etc.) upstream of the first codon of a nucleic acid sequence encoding a protein (e.g., a protein coding sequence). For example, the region may be positioned between the first codon of a protein coding sequence) and 2000 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 1000 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 500 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 250 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 150 nucleotides upstream of the first codon. In some cases (e.g., when a transgene lacks a protein coding sequence), it may be desirable to position the region (e.g., the second region, third region, fourth region, etc.) upstream of the poly-A tail of a transgene. For example, the region may be positioned between the first base of the poly-A tail and 2000 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 1000 nucleotides upstream of the first base.
The region may be positioned between the first base of the poly-A tail and 500 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 250 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A
tail and 150 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 100 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 50 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 20 nucleotides upstream of the first base.
In some embodiments, the region is positioned between the last nucleotide base of a promoter sequence and the first nucleotide base of a poly-A tail sequence.
[00107] In some cases, the region may be positioned downstream of the last base of the poly-A
tail of a transgene. The region may be between the last base of the poly-A
tail and a position 2000 nucleotides downstream of the last base. The region may be between the last base of the poly-A tail and a position 1000 nucleotides downstream of the last base. The region may be between the last base of the poly-A tail and a position 500 nucleotides downstream of the last base.
The region may be between the last base of the poly-A tail and a position 250 nucleotides downstream of the last base.
The region may be between the last base of the poly-A tail and a position 150 nucleotides downstream of the last base.
[00108] It should be appreciated that in cases where a transgene encodes more than one miRNA, each miRNA may be positioned in any suitable location within the transgene.
For example, a nucleic acid encoding a first miRNA may be positioned in an intron of the transgene and a nucleic acid sequence encoding a second miRNA may be positioned in another untranslated region (e.g., between the last codon of a protein coding sequence and the first base of the poly-A
tail of the transgene).
[00109] In some embodiments, the transgene further comprises a nucleic acid sequence encoding one or more expression control sequences (e.g., a promoter, etc.). Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals;
sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence);
sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.
[00110] A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. The phrases "operatively positioned," "under control" or "under transcriptional control" means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA
polymerase initiation and expression of the gene.
1001111 For nucleic acids encoding proteins, a polyadenylation sequence generally is inserted following the transgene sequences and before the 3' AAV ITR sequence. A rAAV
construct useful in the present disclosure may also contain an intron, desirably located between the promoter/enhancer sequence and the transgene. One possible intron sequence is derived from SV-40, and is referred to as the SV-40 T intron sequence. Another vector element that may be used is an internal ribosome entry site (IRES). An IRES sequence is used to produce more than one polypeptide from a single gene transcript. An IRES sequence would be used to produce a protein that contain more than one polypeptide chains. Selection of these and other common vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al., and references cited therein at, for example, pages 3.18 3.26 and 16.17 16.27 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 19891. In some embodiments, a Foot and Mouth Disease Virus 2A
sequence is included in polyprotein; this is a small peptide (approximately 18 amino acids in length) that has been shown to mediate the cleavage of polyproteins (Ryan, M D et al., EMBO, 1994; 4: 928-933; Mattion, NM et al., J Virology, November 1996; p. 8124-8127; Furler, S et al., Gene Therapy, 2001; 8: 864-873; and Halpin, C et al., The Plant Journal, 1999; 4: 453-459).
The cleavage activity of the 2A sequence has previously been demonstrated in artificial systems including plasmids and gene therapy vectors (AAV and retroviruses) (Ryan, M D et al., EMBO, 1994; 4: 928-933; Mattion, N M et al., J Virology, November 1996; p. 8124-8127; Furler, S et at, Gene Therapy, 2001 ; 8: 864-873; and Halpin, C et al., The Plant Journal, 1999; 4: 453-459; de Felipe, P et al., Gene Therapy, 1999; 6: 198-208; de Felipe, P et al., Human Gene Therapy, 2000; 11: 1921- 1931.; and Klump, H et al., Gene Therapy, 2001 ; 8: 811-817).
[00112] Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., B oshart et al., Cell, 41:521-530 (1985)1, the SV40 promoter, the dihydrofolate reductase promoter, the [-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1 a promoter [Invitrogent In some embodiments, a promoter is an enhanced chicken I3-actin promoter. In some embodiments, a promoter is a U6 promoter.
[00113] Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems have been described and can be readily selected by one of skill in the art. Examples of inducible promoters regulated by exogenously supplied promoters include the zinc-inducible sheep metallothionein (MT) promoter, the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter, the T7 polymerase promoter system (WO 98/10088); the ecdysone insect promoter (No et al., Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)), the tetracycline -repressible system (Gossen et al., Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)), the tetracycline-inducible system (Gossen etal., Science, 268: 1766- 1769 (1995), see also Harvey et al., Curr. Opin. Chem.
Biol., 2:512-518 (1998)), the RU486-inducible system (Wang et al., Nat.
Biotech., 15:239-243 (1997) and Wang et al., Gene Ther., 4:432-441 (1997)) and the rapainycin-inducible system (Magari et al., J.
Clin. Invest., 100:2865-2872 (1997)). Still other types of inducible promoters which may be useful in this context arc those which arc regulated by a specific physiological state, e.g., temperature, acute phase, a particular differentiation state of the cell, or in replicating cells only.
[00114] In another embodiment, the native promoter for the transgene will be used. The native promoter may be preferred when it is desired that expression of the transgene should mimic the native expression. The native promoter may be used when expression of the transgene must be regulated temporally or developmentally, or in a tissue- specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.
In some embodiments, the regulatory sequences impart tissue- specific gene expression capabilities.
In some cases, the tissue- specific regulatory sequences bind tissue- specific transcription factors that induce transcription in a tissue specific manner. Such tissue- specific regulatory sequences (e.g., promoters, enhancers, etc.) are well known in the art. Exemplary tissue-specific regulatory sequences include, but are not limited to the following tissue specific promoters: a liver- specific thyroxin binding globulin (TBG) promoter, an insulin promoter, a glucagon promoter, a somatostatin promoter, a pancreatic polypeptide (PPY) promoter, a synapsin- 1 (Syn) promoter, a creatine kinase (MCK) promoter, a mammalian desmin (DES) promoter, a a-myosin heavy chain (a-MHC) promoter, or a cardiac Troponin T (cTnT) promoter. Other exemplary promoters include Beta-actin promoter, hepatitis B virus core promoter, Sandig et al., Gene Ther., 3: 1002-9 (1996);
alpha-fetoprotein (AFP) promoter, Arbuthnot et al., Hum. Gene Ther., 7: 1503-14 (1996)), bone osteocalcin promoter (Stein et al., Mol. Biol. Rep., 24: 185-96 (1997)); bone sialoprotein promoter (Chen et al., J. Bone Miner. Res., 11 : 654-64 (1996)), CD2 promoter (Hansal et al., J. Immunol., 161: 1063-8 (1998); immunoglobulin heavy chain promoter; T cell receptor a-chain promoter, neuronal such as neuron- specific enolase (NSE) promoter (Andersen etal., Cell. Mol. Neurobiol., 13:503-15 (1993)), neurofilament light-chain gene promoter (Piccioli et al., Proc. Natl. Acad. Sci. USA, 88:5611-5 (1991)), and the neuron-specific vgf gene promoter (Piccioli et al., Neuron, 15:373- 84 (1995)), among others which will be apparent to the skilled artisan. NS-specific promoters contemplated for use in the present methods and compositions also include those described in Patent Application GB2013940.8 filed September 4, 2020 and GB2005732.9 filed April 20, 2020, which are incorporated by reference herein in their entireties. In some embodiments, the NS-specific promoter is a promoter of Table 10, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98%
identity to a promoter of Table 10. In some embodiments, the NS-specific promoter is a promoter of Table 10, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98%
identity to a promoter of Table 10 and retaining the NS-specific promoter activity of the promoter of Table 10.
1001151 CNS-specific promoters contemplated for use in the present methods and compositions also include those described in International Patent Application PCT/GB2021/050939 filed April 19, 2021, the contents of which arc incorporated by reference herein in their entireties. In some embodiments, the CNS-specific promoter is a promoter of Tables 11-13, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a promoter of Tables 11-13. In some embodiments, the CNS-specific promoter is a promoter of Tables 11-13, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a promoter of Tables 11-13 and retaining the CNS-specific promoter activity of the promoter of Tables 11-13.
[00116] In some embodiments, the nucleic acid comprises one or more CREs. In some embodiments, the nucleic acid comprises one or more NS-specific CREs or CNS-specific CREs. In some embodiments, the nucleic acid comprises one or more CREs of Tables 13-15, or a CRE having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a CRE of Tables 13-15.
In some embodiments, the CRE is a CRE of Tables 13-15, or a CRE having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a CRE of Tables 13-15 and retaining the activity of the CRE of Tables 13-15.
[00117] In some embodiments, the CRE can comprise one or more CREs known in the art. For example, in one embodiment, the one or more CREs may be selected from SEQ ID
NOs: 19-24, 27, 28, 37, 38 in Patent Application GB2013940.8 filed September 4, 2020. For example, in one embodiment, the one or more CREs may be selected from: SEQ ID NOs: 1-8 from WO
2019/199867A1, SEQ ID NOs: 1-7 from WO 2020/076614A1 and SEQ ID NOs: 25-51, 177-178, 188 from WO 2020/097121. The foregoing references are incorporated by reference herein in their entireties.
[00118] Table 10 -NS-specific promoters NAME SEQUENCE
Length AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
(SE GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
Q ID
GAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCA
NO: 74) GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
AGTCCAAGGACACAAATGGGTGAGGGGAGGGCTAGGCCTGCGCACCCACCCA
CCGACCCCTCACCCACCGACCCGTCACCCACCGACCAAGGGGCACCCTGGCCT
AGAGGGGATGCTGAGCGGGACCCGCCTCCTGCCTCTGGCAGTCCCAGATGGG
ACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGATCTAA
GGCGGAGCTGGGTTTGCGGATCCCACGGTTCCCGGCGGGGCGGGGCCCGGTC
GCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTGGGAAACT
CCC GA
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCAC CTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTC A AATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCAC CCCAGC CTGACAGCCTGGCATCTTGGGATAAAA
(SEQ ID GAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCA
NO: 75) GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
AGTCCAAGGACACAAATGGGTGA GGGGATGCGGCGAGGC GC GTGC GC ACT GC
CAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCAC
CGCCGCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAAC
TCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGAC
CGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGCGACCATCTGCGCTG
CGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGGAGGAGTC
GTGTCGTGCCTGAGAGCGCAG
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCAC CTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGA GAAGCCCATTGA
GCAGGGGGCTTGCATTGCAC CCCAGC CTGACAGCCTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
(SEQ ID GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
NO: 76) AGTCCAAGGACACAAATGGGTGAGGGGAAGCGCGCAGAGTCTGCATGCGTGA
GGAAGCTCCTGGGCGCGTCACAGCCGCGCTATT CTCAGC GTCTCTCCTTTTATG
GCTCCGGAAGTGAGCTGGGGTTGCTGGCAGCCTGGCTGGCACTGGGCTAGGCC
TGC GCACC CACC CAC CGACCC CTCACCCACCGA CCCGTCACCCACCGACCAAG
GGGCACCCTGGCCTAGAGGGGATGCTGAGCGGGACCCGCCTCCTGCCTCTGGC
AGTCCCAGATGGGACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCT
ACCCCTGGATCTAAGGCGGAGCTGGGTTTGCGGATCCCACGGTTCCCGGCGGG
GC GGGGCCCGGTCGCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGC AGTGC
ATTGTGGGAAACTCCCGA
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCAC CTTGGCACAGACACAATGTTC GGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGA GAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCC CAGC CTGACAGC CTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
(SEQ ID GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
NO: 77) AGTCCAAGGACACAAATGGGTGAGGGGAAGCGCGCAGAGTCTGCATGCGTGA
GGAAGCTCCTGGGCGCGTCACAGCCGCGCTATT CTCAGC GTCTCTCCTTTTATG
GCTCCGGAAGTGAGCTGGGGTTGCTGGCAGCCTGGCTGGCACTTGCGGCGAGG
CGCGTGCGC ACTGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTG
GCGGCGCGCGCCACCGCCGCCTCAGCACTGAAGG CGCGCTGACGTCACTCG CC
GGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGTCGCGT CCGCGCCGCCGC
CGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGC
GACCATCTGCGCTGCGGC GCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGG
CAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAG
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
(SEQ ID AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
NO: 78) CAGTGAATGACTCAC CTTGGCACAGACACAATGTTC GGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCA A ATGCCTTCCGA GA AGCCCA TTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGA CAGCCTGGCATCTTGGGA TA A AA
GCAGCACGGGCTAGGCCTGCGCACCCACCCACCGACCCCTCACCCACCGACCC
GTCACCCACCGACCAAGGGGCACCCTGGCCTAGAGGGGATGCTGAGCGGGAC
CCGCCTCCTGCCTCTGGCAGTCCCAGATGGGACTTGGACCCCGCAGTTGCTCTC
TCGGACCCTAAGTTTCTACCCCTGGATCTAAGGCGGAGCTGGGTTTGCGGATC
CCACGGTTCCCGGCGGGGCGGGGCCCGGTCGCCCCTCCCCCTCCCCGCCCTCC
TGCGCCGGGAGCAGTGCATTGTGGGAAACTCCCGA
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
(SEQ ID GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
1\11179) GCAGCACTGCGGCGAGGCGCGTGCGCACTGCCAGCTTCAGCACCGCGGACAG 632 TGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACTGAAGGC
GCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGT
CGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGA
TAGGGGGGCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCT
GCCTCAGTCTGCGGTGGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAG
TTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCACCCAAGCCCTGAC
CCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAACAGGAAAGGCAGT
GAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAAGCTTTTTGTCTCT
TCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGTGGCCATCGGTCA
CTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACCGTCCTTTGTGGG
(SEQID GACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGATTGGAGCCAAGA
NO: 80) GTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGGGCTAGGCCTGCGCA 701 CCCACCCACCGACCCCTCACCCACCGACCCGTCACCCACCGACCAAGGGGCAC
CCTGGCCTAGAGGGGATGCTGAGCGGGACCCGCCTCCTGCCTCTGGCAGTCCC
AGATGGGACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTG
GATCTAAGGCGGAGCTGGGTTTGCGGATCCCACGGTTCCCGGCGGGGCGGGG
CCCGGTCGCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTG
GGAAACTCCCGA
TTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCACCCAAGCCCTGAC
CCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAACAGGAAAGGCAGT
GAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAAGCTTTTTGTCTCT
TCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGTGGCCATCGGTCA
CTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACCGTCCTTTGTGGG
(SEQID GACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGATTGGAGCCAAGA
NO: 81) GTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAATGCGGCGAGGCGCGTG 716 CGCACTGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCG
CGCGCCACCGCCGCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCC
CCGCAAACTCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCC
AGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGCGACCAT
CTGCGCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGG
AGGAGTCGTGTCGTGCCTGAGAGCGCAG
TCAGGGGTGCAGCTTTTTTTCTGTCTITTACT CAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCAC
CCAAGCCCT GACCCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
(SEQ ID
NO. 82) TTCCCACCCCCTGACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGAT
TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC
TGAAGAAGATCTTAACAGAAGGGCTAGGCCTGCGCACCCACCCACCGACCCCT
CACCCACCGACCCGTCACCCACCGACCAAGGGGCACCCTGGCCTAGAGGGGA
TGCTGAGCGGGACCCGCCTCCTGCCTCTGGCAGTCCCAGATGGGACTTGGACC
CCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGATCTAAGGCGGAGCT
GGGTTTGCGGAT C C CAC GGTTC C CGGC GGGGC GGGGC C C GGTC GC C CCTC C C C
CTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTGGGAAACTCCCGA
CTTCCTCTTATATTTCACCAAGACTCAGTTC CTGAGCAAGAAACCACAGGCAC
AGCAAGTGCCATGAAAAGC GGCTTTGTGTGGGGTGGGCTCTTCAC ACT C CAAT
CTCCACTTCCTTCTCAAGGCCTCAAAAAAAGTTGAAAAATGAAAACAAAAG CC
CTGCTGTGTTGAGCTGGGCTCTGGCGTTGC CATGGA CC CAGGGCAAACAGC GG
AGCATGGACTTTGGAATGACTGGTTAGAACCCAAATGAATTAATGGAATTTGA
( SE Q ID
NO: 83) TAATTTGCCAGATTGGGGGCCGGGCTAGGCCTGCGCACCCACCCACCGACCCC
TCACCCACCGACCCGTCACCCACCGACCAAGGGGCACCCTGGCCTAGAGGGG
ATGCTGAGCGGGACC CGCCTCCTGCCTCTGGCAGTCCCAGATGGGACTTGGAC
CCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGATCTAAGGCGGAG
CTGGGTTTGCGGATCCCACGGTTCCCGGCGGGGCGGGGCCCGGTCGCCCCTCC
CC CTCCC CGCCCTCCTGC GC CGGGAGCAGTGCATTGTGGGAAACTCC C GA
TCAGGGGTGCAGCTTTTTTTCTGTCTTTTACT CAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGC CC CAGCAC
C CAAGCC CT GACCCCATGGCTGC CTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAG GCAGTG AG TTCTCATTGCATCAATACTTG CATTTGCTACAACAGAA
GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
(SEQ ID TTCCCACCCCCTGACCAGCCCCAGCA AGGCCCGGGGCTGGCTGCCTAGTTGAT
NO: 84) TGGAG CCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC 807 TGAAGAAGATCTTAACAGAATGCGGCGAGGCGCGTGC GCACTGC CAGCTTC A
GCACCGCGGACAGTGCCTTCGCCC CC GCCTGGC GGCGCGCGCCACCGCC GCCT
CAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTC
CCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCAC
GCGAGGCGCGAGATAGGGGGGCACGGGCGC GACCATCTGCGCTGCGGC GC CG
GCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGGAGGAGTCGTGTCGTGC
CTGAGAGCGCAG
CTTCCTCTTATATTTCACCAAGACTCAGTTC CTGAGCAAGAAACCACAGGCAC
AGCAAGTGCCATGAAAAGC GGCTTTGTGTGGGGTGGGCTCTTCAC ACT C CAAT
CTCCACTTCCTTCTCAAGGCCTCAAAAAAAGTTGAAAAATGAAAACAAAAGCC
CTGCTGTGTTGAGCTGGGCTCTGGCGTTGCCATGGA CCCAGGGCA A ACA GC GG
TGCTCCTGCTCTGCCCCCGGCTCAGCTCATGCTGGGCCTGCACTTCTGGAAGGG
(SEQ ID CATAGTTCAAAAATAATAAAATGTGATACCCATGAAATGCTGATATTCTGCCT
NO: 85) TA A TTTGCCA GATTGGGGGCCTGCGGCGA GGCGCGTGCGCA CTGCCA GCTT CA 701 GCACCGCGGACAGTGCCTTCGCCCCCG CCTGGCGGCGCGCGCCACCGCCGCCT
CAGCACTCiAACiCiCCiCGCTGACCi l'CACTCCiCCCiCi CCCCCGCAAACTCCCCTTC
CCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGA CCGCACCAC
GC GAGGC GC GAGATAGGGGGGCAC GGGC GC GACCATCTGC GCTGC GGC GC CG
GCGA CTCA GCGCTGCCTCA GTCTGCGGTGGGC A GCGGAGGAGTCGTGTCGTGC
CTGAGAGCGCAG
TCAGGGGTGCAGCTTTTTTTCTGTCTTTTACT CAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGAT CTGAATCCAGCTCCAAGGC CCCAGCAC
C CAAGCC CT GAC CC C ATG GCTGC CTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
(SEQ ID GTCCTTTGTGGGAGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCC
NO: 86) TTCCCACCCCCTGACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGAT
TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATC CAAGTGAC
TGAAGAAGATCTTAACAGAAAGCGCGCAGAGTCTGCATGCGTGAGGAAGCTC
CTGGGCGCGTCACAGC C GC GCTATTCTCAGC GTCTCTC CTTTTATGGCTCCGGA
AGTGAGCTGGGGTTGCTGGCAGCCTGGCTGGCACTGGGCTAGGCCTGCGCACC
CACCCACCGACCCCTCACCCACCGACCCGTCACCCACCGACCAAGGGGCACCC
TGGCCTAGAGGGGATGCTGAGC GGGACC C GC CTCCTGCCTCTGGCAGTCCCAG
ATGGGACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGA
TCTAAGGCGGAGCTGGGTTTG CGGATC CCAC GGTTC C CGGCGGGGCGGGGC CC
GGTCGCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTGGGA
AACTCCCGA
TCAGGGGTGCAGCTTTTTTTCTGTCTITTACTCAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGC CC CAGCAC
C CAAGCC CT GAC CC C ATG GCTGC CTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
GTCCTTTGTGGGAGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCC
(SEQ ID TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC
NO: 87) TGAAGAAGATCTTAACAGAAAGCGCGCAGAGTCTGCATGCGTGAGGAAGCTC
CTGGGCGCGTCACAGCCGCGCTATTCTCAGCGTCTCTC CTTTTATGGCT CCG GA
AGTGAGCTGGGGTTGCTGGCAGC CTGGCTGGCACTTGCGGCGAGGC GCGTGC G
CACTGC CAGCTTCAGCACC GC GGACAGTGC CTTCGCCCCCGCCTGGCGGC GC G
CGCCACCGCCGCCTCAGCACTGAAGGC GC GCTGACGTCACTC GC CGGTCCCCC
GCAAACTCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCG CCGGCCCAG
CC GGACCGCACCACGCGAGGCG CGAGATAGGGGGG CACGGGCGCGACCATCT
GC GCTGC GGC GC C GGCGACTCAGCGCTGC CTCAGTC TGCGGTGGGCAGC GGA
GGAGTCGTGTCGTGCCTGAGAGCGCAG
CTA GCC CA CA GGA A ATGTCTGTCTATATCCA GGCA A GTA CCTTGCTCATTGGA
CCAACCCGAAACTGTTCAGGGAAGATCAG GGAAATCAACTCAG TTACAAATG
GGATAATCATGCCCAGTAAAAACTACCTGTGGTGAATAAAGAGTTAACCCCTG
TTCCATCTTAGGTCACTATGCAGAGTACCAATGAGTACAAGAGATGGTGCCAA
(SEQ ID CAACACATCAGCCAGCCAGAGACAAGGGAAACCGTGGCAACCAAGTGTTGCT
NO: 88) GGCA CATTGTGAGGTGGTGATGGGAACTGCAGAGGCC CTGCACAGC ATGCTA
ATGAGCCCAGGCAAACATGAGCTCTCCCCATAGCTGGGCTGCGGCCCAACCCC
ACCCCCTCAGGCTATGCCAGGGGGTGTTGC CAGGGGCACCCGGGCATCGCCAG
TCTAGCC C ACTC CTTCATAAAGC C CTC GCATCC CA GGAGCGAGCAGAGC CAGA
GC
TCCAAAGAAAAGCCAGATAAGTAGCTGATTATT GCATAGAGCTGACAGTATCA
CA GGAAGATCA GTAGTAGCAGCTCAAGTA CA AAA AGGTTA A TT AGCAATACT
TAATAAGAAAAACTACCTCTGGCAGGTGAAGAGTTAATCCCTGGTCAATTTTA
AGCTACTCTGCTGAGAGTACTAATAAGTGTAGGGGTTGGAGCCAATGAGGGTG
AC C C CTTC CTTGATGGGAACAGTCATC C CTTAGGAACTGC CCTGGAAAGCATC
(SEQ ID GCTGGCACTTTGTAAAATGGTAACTGCAACTGCCGAGGCTGTGCAGAGAATGC 646 NO: 89) TAATAAGCC l'ACiC_IACAACCTGTAAACiACiTGCiACCTAGAAAATCiTCCACCCCiCT
A GA GA GA GGGAGCGAGCATGTGCGATGAGCA A TA GCTGTGGACCTTA CA GTT
GCTGCTAACTGCCCTGGTGTGTGTGAGGGAGAGAGAGGGAGGGAGGGAGAGA
GAGCGCGCTAGCGCGAGAGAGCGA GTGAGCA AGCGAGCAGA A A AGAGGTGG
AGAGGGGGGGAATAAGAAAGAGAGAGAAGGAAAGGAGAGAAGGCAGGAAG
AAGGCAAGGGACGAGACAA
CTAGCC CACAGGAAATGTCTGTCTATATCCAGGCAAGTACCTTGCTCATTGGA
CCAACCCGAAACTGTTCAGGGAAGATCAGGGAAATCAACTCAGTTACAAATG
GGATAATCATGCCCAGTAAAAACTACCTGTGGTGAATAAAGAGTTAACCCCTG
TTCCATCTTAGGTCACTATGCAGAGTACCAATGAGTACAAGAGATGGTGCCAA
CAACACATCAGCCAGCCAGAGACAAGGGAAACCGTGGCAAC CAAGTGTTGCT
614 (SEQ ID
GGCACATTGTGAGGTGGTGATGGGAACTGCAGAGGCCCTGCACAGCATGCTA
NO: 90) ATGAGCCCAGGCAAACATCGCTAGAGAGAGGGAGCGAGCATGTGCGATGAGC
AATAGCTGTGGACCTTACAGTTGCTGCTAACTGCCCTGGTGTGTGTGAGGGAG
AGAGAGGGAGGGAGGGAGAGAGAGCGCGCTAGC GC GAGAGAGC GAGTGAGC
AAGCGAGCAGAAAAGAGGTGGAGAGGGGGGGAATAAGAAAGAGAGAGAAG
GAAAGGAGAGAAGGCAGGAAGAAGGCAAGGGACGAGACAA
(SEQ C T CAT TGGAC CAAC CCGAAAC T GTT CAGGGAAGAT CAGGGAAAT
ID NO: CAACTCAGTTACAAATGGGATAATCATGCCCAGTAAAAACTACC
154) TGTGGTGAATAAAGAGTTAACCCCTGTTCCATC TTAGGTCAC TAT
GCAGAGTACCAATGAGTACAAGAGATGGTGCCAAAGAGGGTGG
CCCCTCCCTAGCTGGGAACAGTCAACCCTTAGGAACTAGACTGT
C AAC AC AT C AGC C AGC CAGAGACAAGGGAA AC C GT GGC AAC CA
AGTGT T GC TGGCAC ATT GTGAGGTGGT GAT GGGAAC TGC AGAGG
CCCTGCACAGCATGCTAATGAGCCCAGGCAAACATTCGAGTTGG
C T GGACAAGGT TATGAGC ATC CGTGTAC T TAT GGGGTT GC CAGC
TTGGTCCTGGATCGCCCGGGCCCTTCCCCCACCCGTTCGGTTCCC
CACCACCACCCGCGC TCGTACGTGCGTCTCCGCCTGCAGCTCTTG
ACTCATCGGGGCCCCCCGGGTCACATGCGC TCGCTCGGCTCTAT
AGGCGCCGCCCCCTGCCCACCCCCCGCCCGCGCTGGGAGCCGCA
GCCGCCGCCACTCCTGCTCTC TC TGCGCCGCCGCCGTCACCACCG
CCACCGCCACCGGCTGAGTCTGCAGTCCTCGAG
CTGGGCAGAGAGGGGGCATCGGGGGCATGGCTAGGGGCCAGCACTGT
GCTTCCTGGGCGCCTC A C CTCCTCCCTGA CTCCTGGA GA CTCCC A GCCC
CTGTCTGGGAGATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGG
GAGGGGCCGGGGTGGAGGGCGCATCCCCACGGGGAGATTGGATGGAA
ATGGCC TGC CAGTGTGTGTGTGAGTGTGCGCC TGTGGCAGCAGCAGAG
-SE ID GCCTGTTTGGACAGCTGCCTTGTCTGTCCGTCTGTTTGGGAGATGCTGG
(Q
CTGATAGATGGGGATGGGCGGACTGTTAACCCCTCGTTGCCTGCACTG
NO 91) CTATGTGCTTCCTGCCTCATCCATGGGGTAGAAGGTAGCCAGAAGGTG
GTCC TGGC TGTGCC CC CAGCTC CTCTC TAGGGGGGAAA CC TCTAGTTCT
GAGTCAGGGACAGAGTGAGGAGGGCTCCAGGGCATCAAGAGCTTGCT
CCTCCCCGCACCAGGGAGCCA AGGACAGAGGAGAAGGGGGTCTTCCC
CAG TG G TG ACTAG G G G CAG AATATG TCTC TG AG TG AG TG TCTG G AG CC
CTCCTCA CCCCA A CA CCA TGGGGCTGGGCA TA A A A GTCAGGGCAGA GC
CATCTATTGCTTACATTTGCTTCTG
GGTGTGTGGAAGGGTGAGAGGC A CACACACAGACAC TGAAAGAATC C
TAGGCCTGGTAGGCACTTAACAAATGTCTGTTACAGACCAGAATTTTA
TTGCTGTTAGAGACCCAAGCCCCTCATAGGAACAGTGAGAAACAGGTG
CAGAAAGGCGGAGTAACTTTATC TAAAGTCATAGGCTC CC TGAATAGC
AGAGCTGACACCTACAAGGAAGCGTTGGAGACCAGATCTACCAGC TA
CN S
GCCTCCCTGACiACCACGACiGTGGCGCCGCAGCACCGGCTGTGCiCCGAT
METHODS FOR TREATING NEUROLOGICAL DISEASE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims benefit under 35 U S C 119(e) of U S Provisional Applic,ation No. 63/080,925 filed September 21, 2020, U.S. Provisional Application No.
63/121,152 filed December 3, 2020, U.S. Provisional Application No. 62/139,410 filed January 20, 2021, U.S.
Provisional Application No. 63/140,440 filed January 22, 2021, U.S.
Provisional Application No.
63/180,407 filed April 27, 2021, the contents of each of which are incorporated herein by reference in their entireties.
TECHNICAL FIELD
100021 The technology described herein relates to methods for treating neurological diseases or disorders, e.g., Huntington's disease.
BACKGROUND
[0003] Huntington' s disease (HD) is a devastating inherited neurodegenerative disease caused by an expansion of the CAG repeat region in exon 1 of the huntingtin gene. While the Huntingtin protein (HTT) is expressed throughout the body, the polyglutamine expanded protein is especially toxic to medium spiny neurons in the striatum and their cortical connections. Patients struggle with emotional symptoms including depression and anxiety and with characteristic movement disturbances and chorea. There is currently no cure for Huntington's disease; therapeutic options are limited to ameliorating disease symptoms.
SUMMARY
[0004] One aspect provided herein describes a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) a nucleic acid encoding at least one miRNA; and (b) a nucleic acid encoding a CYP46A1 protein.
[0005] In one aspect, described herein is a composition or combination comprising (a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs; and (b) an isolated nucleic acid encoding a CYP46A1 protein. In one aspect, described herein is a composition or combination comprising: (a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (1TR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs; and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
4831 8915 6346 vi AMENDED SHEET - IPEA/US
[0006] In one aspect, described herein is a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs; and (b) an isolated nucleic acid encoding a CYP46A1 protein. In one aspect, described herein is a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs;
and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
[0007] In some embodiments, the neurological disease or disorder is Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, polyglutamine repeat spinocerebellar ataxia, Krabbe's disease, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, neuropathic pain, trauma due to spinal cord or head injury, ophthalmic diseases and disorders, Tay-Sachs disease, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, psychosexual disorders, sleeping disorders, pain disorders, eating or weight disorders. In some embodiments, the neurological disease or disorder is a central nervous system (CNS) disease or disorder. In some embodiments, the CNS disease or disorder is selected from Huntington's disease, Alzheimer's disease, Polyglutamine repeat spinocerebellar ataxias, Amyotrophic lateral sclerosis and Parkinson's disease.
[0008] In some embodiments, the CNS disease or disorder is Alzheimer's disease and the at least one miRNA comprises a seed sequence complementary to Amyloid Precursor Protein (APP), Presenilin 1, Presenilin 2, ABCA7, SORL1, and disease-associated alleles thereof.
100091 In some embodiments, the CNS disease or disorder is Parkinson's disease and the at least one miRNA comprises a seed sequence complementary to SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, El F4G1, DNAJC13, CHCHD2, UCHL1, G13A1, and disease-associated alleles thereof [0010] In some embodiments, the CNS disease is Huntington's disease and at least one miRNA
comprises a seed sequence complementary to SEQ ID NO: 4, or wherein at least one miRNA
comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA
backbone sequence. In some embodiments, the CNS disease is Huntington's disease and at least one miRNA comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
In some embodiments, at least one of the miRNAs hybridizes with and inhibits expression of human huntingtin. In some embodiments, the subject comprises a huntingtin gene having more than 36 CAG
repeats, more than 40 repeats, or more than 100 repeats. In some embodiments, the subject is less than 20 years of age.
100111 In some embodiments, the recombinant viral vector is selected from the group consisting of: an AAV vector, an adenovirus vector, a lentivirus vector, a retrovirus vector, a herpesvirus vector, an alphavirus vector, a poxvirus vector, a baculovirus vector, and a chimeric virus vector.
[0012] In some embodiments, the recombinant viral vector comprising (a) is the same as the recombinant viral vector comprising (b). In some embodiments, the isolated nucleic acid of (a) and (b) are comprised in separate recombinant viral vectors. In some embodiments, the isolated nucleic acid of (a) and (b) are comprised in the same recombinant viral vector.
100131 In some embodiments, (a) and (b) arc administered at substantially the same time. In some embodiments, (a) and (b) are administered at different time points. In some embodiments, the different time points are spaced by at least 1 min, at least 1 hour, at least 1 day, at least 1 week, at least 1 month, at least 1 year, or more. In some embodiments, (a) is administered prior to the administration of (b). In some embodiments, (b) is administered prior to the administration of (a). In some embodiments, the administration of (a), (b), or (a) and (b) is repeated at least once.
[0014] In some embodiments, the transgene comprises two miRNAs in tandem that are flanked by Maoris. In some embodiments, the flanking Maoris are identical. In sonic embodiments, the flanking introns are from the same species. In some embodiments, the flanking introns are hCG
introns.
[0015] In some embodiments, the transgene comprises a promoter. In some embodiments, the promoter is a synapsin (Synl) promoter, or a promoter of Tables 10-13.
[0016] In some embodiments, the one or more miRNAs are located in an untranslated portion of the transgene. In some embodiments, the untranslated portion is an intron. In some embodiments, the untranslated portion is between the last codon of the nucleic acid sequence encoding a protein and a poly-A tail sequence, or between the last nucleotide base of a promoter sequence and a poly-A tail sequence. In some embodiments, the untranslated portion is a 5' untranslated region (5' UTR).
[0017] In some embodiments, the nucleic acid or viral vector further comprises a third region comprising a second adeno-associated virus (AAV) inverted temiinal repeat (ITR), or a variant thereof [0018] In some embodiments, the ITR variant lacks a functional terminal resolution site (TRS), optionally wherein the ITR variant is a ATRS ITR.
[0019] In some embodiments, the administration results in delivery of the viral vector or isolated nucleic acid to the central nervous system (CNS) of the subject. In some embodiments, the administration is via injection, optionally intravenous injection or intrastriatal injection.
[0020] In some embodiments, the viral vector is AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof In some embodiments, the viral vector comprises a capsid protein from AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV, AAV9, AAV10, AAV1 1, or, AAV12, or a chimera thereof. In some embodiments, the capsid protein is an AAV9 capsid protein. In some embodiments, the viral vector is a self-complementary AAV (scAAV). In some embodiments, the viral vector is formulated for delivery to the central nervous system (CNS).
[0021] In some embodiments of any of the aspects, the viral vector comprises a modified viral capsid.
[0022] In some embodiments of any of the aspects, the viral vector comprises a modification to a viral capsid.
[0023] In some embodiments of any of the aspects, the modification is a chemical, non-chemical or amino acid modification of the viral capsid.
[0024] In some embodiments of any of the aspects, at least one of the capsid modifications preferentially targets cells in the CNS or PNS.
[0025] In some embodiments of any of the aspects, the chemical modification comprises a chemically-modified tyrosine residue modified to comprise a covalently-linked mono- or polysaccharide moiety.
[0026] In some embodiments of any of the aspects, the chemically-modified tyrosine residue comprises a mono-saccharide selected from galactose, mannose, N-acetylgalactosamine, bridge GalNac, and mannose-6-phosphate.
[0027] In some embodiments of any of the aspects, the chemical modification comprises a ligand covalently linked to a primary amino group of a capsid polypeptide via a -CSNH-bond.
[0028] In some embodiments of any of the aspects, the ligand comprises an arylene or heteroarylene radical covalently bound to the ligand.
[0029] In some embodiments of any of the aspects, the modified viral capsid is a chimeric capsid or a haploid capsid.
[0030] In sonic embodiments of any of the aspects, the modified viral capsid is a haploid capsid.
[0031] In some embodiments of any of the aspects, the modified viral capsid is a chimeric or haploid capsid further comprising a modification.
[0032] In some embodiments of any of the aspects, the modified viral capsid is an AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or a mutant modified form, a chimera, a mosaic, or a rational haploid thereof.
[0033] In some embodiments of any of the aspects, the modification changes the antigenic profile of the modified viral capsid as compared to the unmodified viral capsid.
100341 In some embodiments of any of the aspects, the modified viral capsid can be used for repeat administration.
BRIEF DESCRIPTION OF THE DRAWINGS
100351 Fig. 1 is a schematic showing an HD plasmid map of pJAL130-CYP46A 1, 7314 bp, see e.g., SEQ ID NO: 111 and Table 16, which shows the ITR to ITR sequence of the CYP46 variant sequence (see e.g., SEQ ID NO: 110) from the plasmid.
[0036] Fig. 2 shows the intracranial biodistribution in sagittal sections of the transgene GFP
under the control of CNS-1 (see e.g., SEQ ID NO: 112), CNS-2 (see e.g., SEQ ID
NO: 113), CNS-3 (see e.g., SEQ ID NO: 114), CNS-4 (sec c.g., SEQ ID NO: 115), CNS-5 (see e.g., SEQ ID NO: 122), CNS-6 (see e.g., SEQ ID NO: 123), CNS-7 (see e.g., SEQ ID NO: 124) and CNS-8 (see e.g., SEQ ID
NO: 125) and the control promoter hSynl (see e.g., SEQ ID NO: 152) delivered by intracerebroventricular (ICV) and intravenous (IV) injection. Scale bar is 1 mm.
[0037] Fig. 3A-3B show images of coronal bran sections. Fig. 3A
shows the intracranial biodistribution in coronal sections of the transgene GFP under the control of CNS-1 (see e.g., SEQ TD
NO: 112), CNS-2 (see e.g., SEQ ID NO: 113), CNS-3 (see e.g., SEQ ID NO: 114) and CNS-4 (see e.g., SEQ ID NO: 115) delivered by ICV. Scale bar is 1 mm. Fig. 3B shows the intracranial biodistribution in coronal sections of the transgene GFP under the control of CNS-5 (see e.g., SEQ ID
NO: 122), CNS-6 (see e.g., SEQ ID NO: 123), CNS-7 (see e.g., SEQ ID NO: 124) and CNS-8 (see e.g., SEQ ID NO: 125) and the control promoter hSynl (see e.g., SEQ ID NO:
152) delivered by ICV.
Scale bar is 1 mm.
[0038] Fig. 4 shows percentage GFP immunoreactivity in different brain regions following ICV
or IV delivery of GFP driven by CNS 1-8 (see e.g., SEQ ID NOs: 112-115, 122-125) or Synapsin-1 (see e.g., SEQ ID NO: 152). The data was obtained by quantitative measurement of 10 non-overlapping RGB images of GFP staining intensity by thresholding analysis in cortex, hippocampus, striatum, midbrain and cerebellum (mean +SEM). Images were taken at x40 magnification through discrete brain regions keeping constant settings. The foreground immunostaining was defined by averaging of the highest and lowest signals. Data is represented as the mean percentage area of immunoreactivity per field for each region of interest (n = 3). With ICV
delivery, expression is highest in cortex and hippocampal brain regions. CNS 1-8 (see e.g., SEQ ID NO:
112-115, 122-125) show higher expression in the hippocampus than hSynl control. CNS-1 (see e.g., SEQ ID NO: 112) shows higher expression in hippocampus, midbrain and cerebellum compared to hSynl with ICV
delivery.
[0039] Fig. 5A-5B show the tissue expression pattern for the,faf/
and pi1x3 genes from which the CRE/ proximal promoter from CNS-5, CNS-5_v2, CNS-2, CNS-3 and CNS-4 were designed. Fig. 5A
shows the expression pattern of the fafl gene in mouse PNS neurones from single cell transcriptomic data (Zeisel et al., 2018). Dark grey denotes high expression, white denotes no expression and light grey denotes low expression. fail is expressed in many PNS neurones. Fig. 5B
shows the expression pattern of the p11x3 gene in PNS neurones from single cell transcriptomic data (Zeisel et al., 2018).
Dark grey denotes high expression, white denotes no expression and light grey denotes low expression. pixt3 is expressed in sympathetic PNS neurones. fafi is expressed in many PNS neurones so a synthetic promoter comprising CRE or proximal promoter designed from the fafl gene such as CNS-5 and CNS-5_v2 is expected to have strong expression in the PNS. p11x3 is expressed in sympathetic PNS neurones so a synthetic promoter comprising CRE designed from the pitx3 gene such as CNS-2, CNS-3 or CNS-4 is expected to have expression in PNS
sympathetic neurones.
Similar analysis for Imx1b and p11x2 revealed no expression in PNS above the cut off score for the analysis (trinization score of less than 0.95; data not shown) so CNS-1, CNS-6, CNS-6 v2, CNS-7, CNS-7_v2, CNS-8 and CNS-8 v2 are not expected to be active in PNS neurones.
[0040] Fig. 6A shows the expression pattern of the HTT gene in a sagittal section from an adult mouse brain (taken from the Allen Mouse brain atlas; mouse.brain-map.org). HTT
(huntingtin) is highly expressed in throughout the brain.
[0041] Fig. 6B shows the expression pattern of the CYP46A1 gene in a coronal section from an adult mouse brain (taken from the Allen Mouse brain atlas, mouse.brain-map.org). CYP46A1 is widely expressed in the brain.
[0042] Fig. 7A shows the median GFP expression of synthetic NS-specific promoters SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0022, SP0011, SP0034, SP0035, SP0036 and control promoters Synapsin-1 relative to control promoter CAG in neuroblastoma-derived SH-SY5Y cells. NTC denotes non-transfected cells. The data is collected from three biological replicates, each of which is the average of two technical replicates. Error bars are standard error.
[0043] Fig. 7B shows the transfection efficiency in neuroblastoma-derived SH-SY5Y cells when transfectcd with synthetic NS-specific promoters SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0022, SP0011, SP0034, SP0035, SP0036 or control promoters Synapsin-1 and CAG, operably linked to GFP. NTC denotes non-transfected cells.
The data is collected from three biological replicates, each of which is the average of two technical replicates.
Error bars are standard error. GFP positive % denotes the % of all cells which were GFP positive.
DETAILED DESCRIPTION
[0044] Aspects of the invention relate to administration of both an interfering RNA (e.g., miRNAs, such as artificial miRNAs) that when delivered to a subject are effective for reducing the expression of a pathogenic gene in the subject, and a nucleic acid encoding a CYP46A1 protein.
Accordingly, methods and compositions described by the disclosure are useful, in some embodiments, for the treatment of neurological diseases or disorders.
Treatment Methods [0045] Methods for delivering a nucleic acid and/or a transgene (e.g., an inhibitory RNA, such as a miRNA and/or a nucleic acid encoding CYP46A1) to a subject are provided by the disclosure. The methods typically involve administering to a subject an effective amount of a nucleic acid encoding at least one interfering RNA/inhibitory nucleic acid capable of reducing expression of a target gene, e.g., a pathogenic gene associated with a neurological disease or disorder (e.g., huntingtin (htt) protein) and a nucleic acid encoding CYP46A1. In some embodiments, one or both of the nucleic acids are provided in a viral vector and/or in a viral particle, e.g., a rAAV.
[0046] As used herein, "neurological disease or disorder- can refer to any disease, disorder, or condition affecting or associated with the nervous system, i.e. those that affect the central nervous system (brain and spinal cord), the peripheral nervous system (PNS; e.g., peripheral nerves and cranial nerves), and the autonomic nervous system (parts of which are located in both central and peripheral nervous systems). More than 600 neurological diseases have been identified in humans.
By way of non-limiting examples, the neurological disease or disorder can be Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, polyglutamine repeat spinocerebellar ataxias, Krabbe's disease, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, Niemann Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, trauma due to spinal cord or head injury, ophthalmic diseases and disorders, Tay-Sachs disease, Rett syndrome, Neuropathic pain, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, a psychosexual disorder, a sleeping disorder, a pain disorder, and/or a eating or weight disorder. In some embodiments, the neurological disease or disorder is a central nervous system (CNS) disease or disorder, e.g., Huntington's disease, Parkinson's disease, or Alzheimer's disease.
[0047] As used herein, "Huntington's disease", or "HD", refers to a neurodegenerative disease characterized by progressively worsening movement, cognitive and behavioral changes caused by a tri-nucleotide repeat expansion (e.g., CAG, which is translated into a poly-Glutamine, or PolyQ, tract) in the HTT gene that results in production of pathogenic mutant huntingtin protein (HTT, or mHTT).
[0048] As used herein, "HTT" or "huntingtin" refers to the gene which encodes the huntingtin protein. Normal huntingtin proteins function in nerve cells, and the normal HTT gene usually has from about 7 to about 35 CAG repeats at the 5' end. The HTT gene is often mutated in patients with Huntington Disease, or at risk of developing Huntington Disease. In some embodiments, mutant huntingtin protein accelerates the rate of neuronal cell death in certain regions of the brain. Generally, the severity of HD is correlated to the size of the tri-nucleotide repeat expansion in a subject. For example, a subject having a CAG repeat region comprising between 36 and 39 repeats is characterized as having "reduced penetrance" HD, whereas a subject having greater than 40 repeats is characterized as having "full penetrance" HD. Thus, in some embodiments, a subject having or at risk of having HD has a HTT gene comprising between about 36 and about 39 CAG
repeats (e.g., 36, 37, 38 or 39 repeats). In some embodiments, a subject having or at risk of having HD has a HTT gene comprising 40 or more (e.g., 40, 45, 50, 60, 70, 80, 90, 100, 200, or more) CAG repeats. In some embodiments, a subject having a HTT gene comprising more than 100 CAG repeats develops HD
earlier than a subject having fewer than 100 CAG repeats. In some embodiments, a subject having a HTT gene comprising more than 100 CAG repeats may develop HD symptoms before the age of about 20 years, and is referred to as having juvenile HD (also referred to as akinetic-rigid HD, or Westphal variant HD). The number of CAG repeats in a HTT gene allele of a subject can be determined by any suitable modality known in the art. For example, nucleic acids (e.g., DNA) can be isolated from a biological sample (e.g., blood) of a subject and the number of CAG repeats of a HTT
allele can be determined by a hybridization- based method, such as PCR or nucleic acid sequencing (e.g., Illumina sequencing, Sanger sequencing, SMRT sequencing, etc.). The sequences of the HTT
genes are known in a number of species, e.g., human HTT (NCBI Gene ID: 3064) mRNA sequences (NCBI Ref Seq: NM_002111.8, SEQ ID NO: 4) and protein sequences (NCBI Ref Seq:
NP 0021012.4, SEQ ID NO: 5). Accordingly, in some embodiments relating to the treatment of Huntington's disease the one or more inhibitory nucleic acids (e.g., miRNAs) can hybridize to and/or reduce expression of HTT.
[0049] As used herein, "Alzhcimcr's disease", or "AD", refers to a ncurodcgcncrativc disease characterized by progressively worsening memory, disorientation, mood swings, as well as increasing difficulty with language, motivation and self-care. A number of genes can contribute to or increase the risk of AD, including Amyloid Precursor Protein (APP; NCBI Gene ID: 351), Presenilin 1 (PSEN1;
NCRI Gene ID 5663), Presenilin 2 (PSEN2; NCB! Gene ID 5664), ATP binding cassette subfamily A
member 7 (ABCA7; NCBI Gene ID 10347), and sortilin related receptor 1 (SORIA;
NCBI Gene ID
6653). The sequences of such AD-associated genes are known in a number of species, e.g., human mRNAs and protein sequences are available in the NCBI database using the provided Gene ID
numbers. These AD-associated genes and others, as well as AD-associated alleles thereof (e.g.
mutations, SNPs, etc.) are known in the art and described further in, e.g., Sims et al. Nature Neuroscience 2020 23:311-22; Bellenguez etal. Current Opinion in Neurobiology 2020 61:40-48;
Tabuas-Pereira et al. 2020 Neurogenetics and Psychiatric Genetics 8:1-16; and Porter et al. Chapter 15 of -Neurodegeneration and Alzheimer's Disease" 2019; each of which is incorporated by reference herein in its entirety. Accordingly, in some embodiments relating to the treatment of Alzheimer's disease, the one or more inhibitory nucleic acids (e.g., miRNAs) can hybridize to and/or reduce expression of APP, PSEN1, PSEN2, ABCA7, and/or SORL1 100501 As used herein, "Parkinson's disease", or "PD", refers to a neurodegenerative disease characterized by progressively worsening shaking and stiffness and increasing problems with balance, walking, and coordination. A number of genes can contribute to or increase the risk of PD, including synuclein alpha (SNCA; NCBI Gene ID: 6622), leucine rich repeat kinase 2 (LRRK2/PARK8; NCBI
Gene ID 120892), glucosylceramidase beta (GBAl; NCBI Gene ID 2629), parkin RBR
E3 ubiquitin (PRKN; NCBI Gene ID 5071), PTEN induced kinase 1 (PINK1; NCBI Gene ID 65018), Parkinsonism associated deglycase (DJ1/PARK7; NCB' Gene ID 11315), VPS35 rctromer complex component (VPS35; NCBI Gene ID 55737), eukaryotic translation initiation factor 4 gamma 1 (EIF4G1; NCBI Gene ID 1981), DnaJ beat shock protein family member C13 (DNAJC13; NCBI
Gene ID 23317), coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2; NCBI Gene ID
51142), and/or ubiquitin C-terminal hydrolase Li (UCHL1; NCBI Gene ID 7345).
The sequences of such PD-associated genes are known in a number of species, e.g., human mRNAs and protein sequences are available in the NCBI database using the provided Gene ID
numbers. These PD-associated genes and others, as well as PD-associated alleles thereof (e.g.
mutations, SNPs, etc.) are known in the art and described further in, e.g., D' Souza etal. Acta Neuropsychiatrica 2020 32:10-22;
Sardi etal. Parkinsonism & Related Disorders 2019 59:32-38; Hardy et al.
Current Opinion in Genetics & Development 2009 19:254-65; Ferreria etal. Neurologica 2017 135:273-84; Jain et al.
Clinical Science 2005 109:355-64; Fagan et al. European Journal of Neurology 2017 24:561-e20;
Campelo etal. Parkinson's Disease 2017 4318416; and Porter etal. Chapter 15 of "Neurodegeneration and Alzheimer's Disease" 2019; each of which is incorporated by reference herein in its entirety. Accordingly, in some embodiments relating to the treatment of Parkinson's disease the one or more inhibitory nucleic acids (e.g., miRNAs) can hybridize to and/or reduce expression of SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, ElF4G1, DNAJC13, CHCHD2, UCHL1, and/or GBAl.
100511 An "effective amount" of a substance is an amount sufficient to produce a desired effect.
In some embodiments, an effective amount of an isolated nucleic acid is an amount sufficient to transfect (or infect in the context of rAAV mediated delivery) a sufficient number of target cells of a target tissue of a subject. In some embodiments, a target tissue is central nervous system (CNS) tissue (e.g., brain tissue, spinal cord tissue, cerebrospinal fluid (CSF), etc.). In some embodiments, an effective amount of an isolated nucleic acid (e.g., which may be delivered via an rAAV) may be an amount sufficient to have a therapeutic benefit in a subject, e.g., to reduce the expression of a pathogenic gene or protein (e.g., HTT), to extend the lifespan of a subject, to improve in the subject one or more symptoms of disease (e.g., a symptom of Huntington's disease), etc. The effective amount will depend on a variety of factors such as, for example, the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among subject and tissue as described elsewhere in the disclosure.
Inhibitory RNAs [0052] In some aspects, the disclosure provides inhibitory nucleic acids, e.g., miRNA, that specifically binds to (e.g., hybridizes with) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) continuous bases of a target, e.g., human huntingtin mRNA (e.g.., SEQ ID NO: 4). In some embodiments, the disclosure provides inhibitory nucleic acids, e.g., miRNA, that specifically binds to (e.g., hybridizes with) at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) continuous bases of exon 1 of human huntingtin mRNA (e.g.., SEQ ID NO: 3). As used herein "continuous bases"
refers to two or more nucleotide bases that are covalently bound (e.g., by one or more phosphodiester bond, etc.) to each other (e.g. as part of a nucleic acid molecule). In some embodiments, the at least one miRNA is about 50%, about 60% about 70% about 80% about 90%, about 95%, about 99% or about 100%
identical to the two or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) continuous nucleotide bases of the target, e.g., SEQ ID
NOs 3 or 4. In some embodiments, the inhibitory RNA is a miRNA which is comprises or is encoded by the sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
[0053] In one aspect described herein are inhibitory RNAs that can be used for the treatment of a neurological disease or disorder. In some embodiments of any of the aspects, the nucleic acid sequence of the inhibitory RNA comprises one of SEQ ID NO: 6-17, 40-44, or 50-66 or a sequence that is at least 95% (e.g., at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to the sequence of at least one of SEQ ID NO: 6-17, 40-44, or 50-66 that maintains the same functions as SEQ ID NO: 3 or 4 (e.g., HTT inhibition).
[0054] In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence.
[0055] In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a seed sequence complementary to one of SEQ ID NO: 3, 4, 18-39, or 46-49. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA
comprising a seed sequence complementary to one of SEQ ID NO: 3, 4, 18-39, or 46-49 flanked by a miRNA backbone sequence. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a seed sequence substantially complementary to one of SEQ ID
NO: 3, 4, 18-39, or 46-49. In some embodiments, the vector described herein comprises at least one miRNA, each miRNA comprising a seed sequence substantially complementary to one of SEQ ID
NO: 3, 4, 18-39, or 46-49 flanked by a miRNA backbone sequence.
100561 Table 1: first RNA sequences substantially complementary to SEQ ID NO: 4 SEQ ID
miRNA sequence NO:
5'-AAGGACUUGAGGGACUCGA-3' 6 5'-AAGGACUUGAGGGACUCGAA-3' 7 5'-AAGGACUUGAGGGACUCGAAG-3' 8 5'-AAGGACUUGAGGGACUCGAAGG-3' 9 5'-AAGGACUUGAGGGACUCGAAGGC-3' 10 [0057] Table 2: second RNA sequences substantially complementary to one or more first RNA
sequences provided in Table 1 SEQ ID
miRNA sequence NO:
5'-UCGAGUCCCUCAAGUCCUU-3' 11 5'-UUCGAGUCCCUCAAGUCCUU-3 12 5'-CUUCGAGUCCCUCAAGUCCUU-3' 13 5'-CCUUCGAGUCCCUCAAGUCCUU-3' 14 5'-GCCUUCGAGUCCCUCAAGUCCUU-3' 15 5i-CUUCGAGUCUCAAGUCCUU-3' 16 5'-ACGAGUCCCUCAAGUCCUC-3' 17 [0058] Table 3 Target Sequences in Exon 1 of human HTT gene, targeted by the miRNAs provided by Tables 1 and 2 Target Sequence SEQ ID NO:
aaggacuuga gggacucgaa 18 tccaagatgg acggccgctc a 19 ccaagatgga cggccgctca g 20 agatggacgg ccgctcaggt t 21 atggacggcc gctcaggttc t 22 gacggccgct caggttctgc t 23 cggccgctca ggttctgctt t 24 gtgctgagcg gcgccgcgag t 25 cgccgcgagt cggcccgagg c 26 accgccatgg cgaccctgga a 27 ccgccatggc gaccctggaa a 28 gaaggccttc gagtccctca a 29 cttcgagtcc ctcaagtcct t 30 ccgccgccgc ctcctcagct t 31 gccgcctcct cagatcctc a 32 tcagccgccg ccgcaggcac a 33 gccgcaggca cagccgctgc t 34 ggcacagccg ctgctgcctc a 35 gccgctgctg cctcagccgc a 36 cggcccggct gtggctgagg a 37 ctgtggctga ggagccgctg c 38 tgtggctgag gagccgctgc a 39 [0059] In some embodiments, an miRNA comprises SEQ ID NOs: 6 and 11, SEQ ID NOs: 7 and 12; SEQ ID NOs: 8 and 11; SEQ ID NOs: 8 and 16; SEQ ID NOs: 8 and 17; SEQ ID
NOs: 9 and 14;
or SEQ ID NOs: 10 and 15.
[0060] In some embodiments, the vector comprises a pre-miRNA
having the sequence of SEQ
ID NO: 40 or 41. These pre-miRNAs include scaffolds comprising SEQ ID NO: 8.
Alternative first RNA sequences disclosed herein can be substituted for SEQ ID NO: 8 in either of SEQ ID NOs: 40 and 41.
100611 In some embodiments, the vector comprises a pri-miRNA
having the sequence of SEQ ID
NO: 42 or 43. The pri-miRNA of SEQ ID NO: 42 includes scaffolds comprising SEQ
ID NO: 8 and 16. Alternative RNA sequences disclosed herein can be substituted for SEQ ID
NO: 8 and 16 in SEQ
ID NO: 42. The pri-miRNA of SEQ ID NOs: 43 and 44 include scaffolds comprising SEQ ID NO: 8 and 17. Alternative RNA sequences disclosed herein can be substituted for SEQ
ID NO: 8 and 17 in either of SEQ ID NOs: 43 and 44.
[0062] Table 4: pre- and pri-miRNAs comprising miRNAs provided in Tables 1 and 2 Name Sequence SEQ ID
NO:
Pre- 5'- 40 miR45 la CUUGGGAAUGGCAAGGAAGGACUUGAGGGACUCGAAGACGA
GUCCCUCAAGUCCUCUCUUGCUAUACCCAGA-3' Pre- 5'-UGCUGAAGGACUUGAGGGACUCGAAGGUUUUGGCCACUGACU
miR155 GACCUUCGAGUCUCAAGUCCUUCAGGA-3' gcuaagcacu ucguggccgu cgaucguuua aagggaggua gugagucgac caguggaucc uggaggcuug cugaaggcug uaugcugaag gacuugaggg acucgaaggu uuuggccacu gacugaccuu cgagucucaa guccuucagg acacaaggcc uguuacuagc acucacaugg aacaaauggc ccagaucugg ccgcacucga gauaucuaga cccagcuuuc uuguacaaag ugguugaucu agagggcccg cgguucgcug au gcuccugggc aacgugcugg uuauugugcu gucucaucau uuuggcaaag aauuaagggc gaauucgagc ucgguaccuc gcgaaugcau cuagauaucg gcgcuaugcu uccugugccc ccaguggggc ccuggcuggg auuucaucau auacuguaag uuugcgauga gacacuacag uauagaugau guacuagucc gggcaccccc agcucuggag ccugacaagg aggacaggag agaugcugca agcccaagaa gcucucugcu cagccuguca caaccuacug acugccaggg cacuugggaa uggcaaggaa ggacuugagg gacucgaaga cgagucccuc aaguccucuc uugcuauacc cagaaaacgu gccaggaaga gaacucagga cccugaagca gacuacugga agggagacuc cagcucaaac aaggcagggg ugggggcgug ggauuggggg uaggggaggg aauagauaca uuuucucuuu ccuguuguaa agaaauaaag auaagccagg cacaguggcu cacgccugua aucccaccac uuucagaggc caaggcgcug gauccagauc ucgagcggcc gcccg agucucgugc agauggacag caccgcugag caauggaagc ggguaggccu uuggggcagc ggccaauagc agcuuugcuc cuucgcuuuc ugggcucaga ggcugggaag gggugggucc gggggcgggc ucaggggcgg gcucaggggc ggggcgggcg cccgaagguc cuccggaggc ccggcauucu gcacgcuuca aaagcgcacg ucugccgcgc uguucuccuc uuccucaucu ccgggccuuu cgacccggau cccccgggcu gcaggaauuc gagcucggua ccucgcgaau gcaucuagau aucggcgcua ugcuuccugu gcccccagug gggcccuggc ugggauuuca ucauauacug uaaguuugcg augagacacu acaguauaga ugauguacua guccgggcac ccccagcucu ggagccugac aaggaggaca ggagagaugc ugcaagccca agaagcucuc ugcucagccu gucacaaccu acugacugcc agggcacuug ggaauggcaa ggaaggacuu gagggacucg aagacgaguc ccucaagucc ucucuugcua uacccagaaa acgugccagg aagagaacuc aggacccuga agcagacuac uggaagggag acuccagcuc aaacaaggca gggguggggg cgugggauug gggguagggg agggaauaga uacauuuucu cuuuccuguu guaaagaaau aaagauaagc caggcacagu ggcucacgcc uguaauccca ccacuuucag aggccaaggc gcuggaucca gaucucgagc ggccgcccg [0063]
In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 1-102 and/or 103-249 of International Patent Publication W02017/201258.
In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ ID NOs: 1-249 of International Patent Publication W02017/201258 which are provided in Tables 3-5 of International Patent Publication W02017/201258. In some embodiments, the vector can comprise one or more of the pri-miRNAs which are provided in Table 9 or the pri-raiRNAs which are provided in Table 10 of International Patent Publication W02017/201258. The contents of International Patent Publication W02017/201258 are incorporated by reference herein in their entirety.
[0064] In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 914-1013 and/or 1014-1160 of International Patent Publication W02018/204803. In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ ID NOs: 914-1160 of International Patent Publication W02018/204803 which are provided in Tables 4-6 of International Patent Publication W02018/204803. The contents of International Patent Publication W02018/204803 are incorporated by reference herein in their entirety.
[0065] In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 916-1015 and/or 1016-1162, of International Patent Publication W02018/204797. In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 916-1015, 1016-1162, 1164-1332, and/or 1333-1501 of international Patent Publication W02018/204797. In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ ID NOs: 916-1162 of International Patent Publication W02018/204797which are provided in Tables 4-6 of International Patent Publication W02018/204797. In some embodiments, the inhibitory nucleic acid can comprise one or more of the duplex combinations selected from SEQ
ID NOs: 1164-1501 of International Patent Publication W02018/204797 which are provided in Table 9 of International Patent Publication W02018/204797. The contents of International Patent Publication W02018/204797 are incorporated by reference herein in their entirety.
[0066] In some embodiments, the inhibitory nucleic acid can target, e.g., comprise a sequence complementary or substantially complementary to, a heterozygous SNP within a gene encoding a gain-of-function mutant huntingtin protein. In some embodiments, the SNP has an allelic frequency of at least 10% in a sample population. In some embodiments, the SNP present at a genomic site selected from the group consisting of RS362331, RS4690077, RS363125, RS363075, RS362268, RS362267, RS362307, RS362306, R5362305, RS362304, RS362303, and RS7685686.
Such SNPs are described in more detail in, e.g., U.S. Patent 9,343,943 which is incorporated by reference herein in its entirety. In some embodiments, the target sequence is one of SEQ ID
NOs: 45-49. In some embodiments, the inhibitory nucleic acid sequence comprises one or more of SEQ
ID NOs: 50-61. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ
ID NOs: 50 and 51, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ
ID NOs: 52 and 53, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID NOs: 54 and 55, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID NOs: 56 and 57, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID
NOs: 58 and 59, e.g., in a duplex. In some embodiments, the inhibitory nucleic acid sequence comprises at least SEQ ID NOs:
60 and 61, e.g., in a duplex.
[0067] Table 5 Target Sequence SEQ ID NO:
ccacgccugc ucccucaucc acugugugca cuucauccug 45 ccacgccugc ucccucaucu acugugugca cuucauccug 46 itaagagaugg ggacaguaau ucaacgcuag aagaaca 47 uaagagaugg ggacaguacu ucaacgcuag aagaaca 48 cagatgcc atggcctgtgct gggccag 49 [0068] Table 6: sense and antisense (or first and second RNA
sequences) that target SNPs in human HTT gene Sense sequence SEQ ID NO: Anti sense sequence SEQ ID
NO:
ucccucaucc acugugugaa c 50 gcacacagug gaugagggag c 51 ucccucaucu acugugugaa c 52 cgagggagua gaugacacac g 53 gggacaguaa uucaacgcgu c 54 agcguugaau uacugucccc a 55 gggacaguac uucaacgcgu c 56 accccuguca ugaaguugcg a 57 ugccauggcc ugugcugguc c 58 cccagcacag gccauggca c 59 ugccauggca ugugcugguc c 60 cccagcacau gccuaggcau c 61 100691 In some embodiments, an inhibitory nucleic acid, e.g., miRNA, can hybridize specifically to, or target a polymorphism, mutation, or SNP in one of the genes disclosed herein. Methods of selecting inhibitory nucleic acid sequences that target polymorphisms, e.g., SNPs, in a HTT gene are known in the art. For example, such methods are disclosed in U.S. Patent 8,679,750 and 7,947,658, each of which is incorporated by reference herein in its entirety. In some embodiments, the inhibitory nucleic acid can comprise a sequence, e.g., one or more of SEQ ID NOs: 1-342 of U.S. Patent 8,679,750 or 7,947,658.
[0070] In some embodiments, the inhibitory nucleic acid can comprise one or more of SEQ ID
NOs: 62-66.
[0071] Table 7. In some embodiments, the capitalized letters comprise 2'-0-(2-methoxy)ethyl modifications.
SEQ ID NO
5'-CTCAGtaacattgacACCAC-3' 62 5'-CTCGActrmagcaggATTTC-3 63 '-CCI1CcctgaaggttCCTCC-3 ' 64 5'- GCAGGgttaccgccaTCCCC-3 ' 65 5 .-CGAGAcagtcgctIcCACTI -3 ' 66 [0072] Further suitable sequences are known in the art, e.g., in U.S. Patent 7,951,934, Miniarikova ct al. Molecular Therapy ¨ Nucleic Acids 2015 5:c297; and Kordasiweicz et al. Neuron 2012 74:1031-1044; each of which is incorporated by reference herein in its entirety.
[0073] In some embodiments of any of the aspects, the inhibitory RNA (e.g., miRNA) binds and/or targets the 5' untranslated region (UTR) of the target. In some embodiments of any of the aspects, the inhibitory RNA (e.g., miRNA) binds and/or targets one or more exons of the target. In some embodiments of any of the aspects, the inhibitory RNA (e.g., miRNA) binds and/or targets the 5' UTR, exon 1, CAG repeats, the CAG 5'-jumper, or a CAG 3Jumper of HTT.
[0074] In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence of any of SEQ ID NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID NOs: 67-73.
[0075] In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence of any of SEQ ID NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence of any of SEQ ID NOs: 135-151. In some embodiments, the inhibitory RNA
and/or vector does not comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID
NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does not comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID NOs: 135-151.
[0076] In some embodiments, the inhibitory RNA and/or vector does comprise a sequence of any of SEQ ID NOs: 67-73. In some embodiments, the inhibitory RNA and/or vector does comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98%
sequence identity with any of any of SEQ ID NOs: 67-73.
[0077] In some embodiments, the inhibitory RNA and/or vector does comprise a sequence of any of SEQ ID NOs: 67-73 or 135-151. In some embodiments, the inhibitory RNA
and/or vector does comprise a sequence having more than 80%, more than 85%, more than 90%, more than 95%, or more than 98% sequence identity with any of any of SEQ ID NOs: 67-73 or 135-151. See e.g., International Patent Application WO 2021/127455, the contents of which are incorporated herein by reference in their entireties.
[0078] Table 8 SEQ ID NO:
AAAttAATCTCTTACCTGAT 142 AAACCGttACCAttACtGAGtt 150 AAAtCGCtGAttiGtGtAGtC 151 [0079] Suitable sequences for use in inhibitory nucleic acids (e.g., miRNAs) that target AD
and/or PD associated targets are known in the art, e.g., see International Patent Publication W02011/133890, W02012/036433, W02013/007874; U.S. Patent Publications US2016/0264965;
U.S. Patent Nos. 7,829,694, 8,415,319, 10,125,363, 10,011,835 The contents of the foregoing references are incorporated by reference herein in their entirety.
[0080] In some embodiments of any of the aspects, the agent that treats a neurological disease or disorder is or comprises an inhibitory nucleic acid. In some embodiments of any of the aspects, inhibitors of the expression of a given gene can be an inhibitory nucleic acid. As used herein, "inhibitory nucleic acid" refers to a nucleic acid molecule which can inhibit the expression of a target, e.g., double-stranded RNAs (dsRNAs), inhibitory RNAs (iRNAs), and the like.
[0081] Double-stranded RNA molecules (dsRNA) have been shown to block gene expression in a highly conserved regulatory mechanism known as RNA interference (RNAi). The inhibitory nucleic acids described herein can include an RNA strand (the antisense strand) having a region which is 30 nucleotides or less in length, i.e., 15-30 nucleotides in length, generally 19-24 nucleotides in length, which region is substantially complementary to at least part the targeted mRNA transcript.
The use of these iRNAs enables the targeted degradation of mRNA transcripts, resulting in decreased expression and/or activity of the target.
[0082] As used herein, the term "iRNA" refers to an agent that contains RNA (or modified nucleic acids as described below herein) and which mediates the targeted cleavage of an RNA
transcript via an RNA-induced silencing complex (RISC) pathway. In some embodiments of any of the aspects, an iRNA as described herein effects inhibition of the expression and/or activity of a target. In some embodiments of any of the aspects, contacting a cell with the inhibitor (e.g. an iRNA) results in a decrease in the target mRNA level in a cell by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, up to and including 100% of the target mRNA level found in the cell without the presence of the iRNA. In some embodiments of any of the aspects, administering an inhibitor (e.g. an iRNA) to a subject can result in a decrease in the target mRNA level in the subject by at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 99%, up to and including 100% of the target mRNA level found in the subject without the presence of the iRNA.
[0083] In some embodiments of any of the aspects, the iRNA can be a dsRNA. A dsRNA
includes two RNA strands that are sufficiently complementary to hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of an mRNA formed during the expression of the target, e.g., it can span one or more intron boundaries.
The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. Generally, the duplex structure is between 15 and 30 base pairs in length inclusive, more generally between 18 and 25 base pairs in length inclusive, yet more generally between 19 and 24 base pairs in length inclusive, and most generally between 19 and 21 base pairs in length, inclusive.
Similarly, the region of complementarity to the target sequence is between 15 and 30 base pairs in length inclusive, more generally between 18 and 25 base pairs in length inclusive, yet more generally between 19 and 24 base pairs in length inclusive, and most generally between 19 and 21 base pairs in length nucleotides in length, inclusive. In some embodiments of any of the aspects, the dsRNA is between 15 and 20 nucleotides in length, inclusive, and in other embodiments, the dsRNA is between 25 and 30 nucleotides in length, inclusive. As the ordinarily skilled person will recognize, the targeted region of an RNA targeted for cleavage will most often be part of a larger RNA molecule, often an mRNA molecule. Where relevant, a "part" of an mRNA target is a contiguous sequence of an mRNA target of sufficient length to be a substrate for RNAi-directed cleavage (i.e., cleavage through a RISC pathway). dsRNAs having duplexes as short as 9 base pairs can, under some circumstances, mediate RNAi-directed RNA cleavage. Most often a target will be at least 15 nucleotides in length, preferably 15-30 nucleotides in length. Exemplary embodiments of types of inhibitory nucleic acids can include, e.g., siRNA, shRNA, miRNA, and/or amiRNA, which are well known in the art.
10084.1 In some embodiments of any of the aspects, the inhibitory is a miRNA. MicroRNAs (miRNAs) are small RNAs of 17-25 nucleotides, which function as regulators of gene expression in eukaryotes. A "microRNA" or "miRNA" is a small non-coding RNA molecule capable of mediating transcriptional or post-translational gene silencing. Typically, miRNA is transcribed as a hairpin or stem-loop (e.g., having a self-complementarity, single- stranded backbone) duplex structure, referred to as a primary miRNA (pri-miRNA), which is enzymatically processed (e.g., by Drosha, DGCR8, Pasha, etc.) into a pre-miRNA. The duplex structure comprises a) a first RNA
sequence a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence and b) second RNA sequence region that is complementary to the first RNA sequence strand, such that the two sequences hybridize and form a duplex structure when combined under suitable conditions. The target sequence can be derived from the sequence of an mRNA formed during the expression of the target, e.g., it can span one or more intron boundaries. Generally, the duplex structure is between 15 and 30 base pairs in length inclusive, more generally between 18 and 25 base pairs in length inclusive, yet more generally between 19 and 24 base pairs in length inclusive, and most generally between 19 and 21 base pairs in length, inclusive.
[0085] miRNAs are initially expressed in the nucleus as part of long primary transcripts called primary miRNAs (pri-miRNAs). The length of a pri-miRNA can vary. In some embodiments, a pri-miRNA ranges from about 100 to about 5000 base pairs (e.g., about 100, about 200, about 500, about 1000, about 1200, about 1500, about 1800, or about 2000 base pairs) in length.
In some embodiments, a pri-miRNA is greater than 200 base pairs in length (e.g., 2500, 5000, 7000, 9000, or more base pairs in length.
[0086] Inside the nucleus, pri-miRNAs are partially digested by the enzyme Drosha, to form 65-120 nucleotide-long hairpin precursor miRNAs (pre-miRNAs) that are exported to the cytoplasm for further processing by Dicer into shorter, mature miRNAs, which are the active molecules. In animals, these short RNAs comprise a 5' proximal "seed" region (nucleotides 2 to 8) which appears to be the primary determinant of the pairing specificity of the miRNA to the 3' untranslated region (3'-UTR) of a target mRNA. Pre-miRNA, which is also characterized by a hairpin or stem-loop duplex structure, can also vary in length. In some embodiments, pre-miRNA ranges in size from about 40 base pairs in length to about 500 base pairs in length. In some embodiments, pre-miRNA
ranges in size from about 50 to 100 base pairs in length. In some embodiments, pre-miRNA ranges in size from about 50 to about 90 base pairs in length (e.g., about 50, about 52, about 54, about 56, about 58, about 60, about 62, about 64, about 66, about 68, about 70, about 72, about 74, about 76, about 78, about 80, about 82, about 84, about 86, about 88, or about 90 base pairs in length).
[0087] Generally, pre-miRNA is exported into the cytoplasm, and enzymatically processed by Dicer to first produce an imperfect miRNA/miRNA* duplex and then a single-stranded mature miRNA molecule, which is subsequently loaded into the RNA-induced silencing complex (RISC).
Typically, a mature miRNA molecule ranges in size from about 19 to about 30 base pairs in length. In some embodiments, a mature miRNA molecule is about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, or 30 base pairs in length. In some embodiments, an isolated nucleic acid of the disclosure comprises a sequence encoding a pri-miRNA, a pre-miRNA, or a mature miRNA comprising a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
[0088] In the context of the invention, a miRNA molecule or an equivalent or a mimic or an isomiR thereof may be a synthetic or natural or recombinant or mature or part of a mature miRNA or a human miRNA or derived from a human miRNA as further defined in the part dedicated to the general definitions. A human miRNA molecule is a miRNA molecule which is found in a human cell, tissue, organ or body fluids (i.e. endogenous human miRNA molecule). A human miRNA molecule may also be a human miRNA molecule derived from an endogenous human miRNA
molecule by substitution, deletion and/or addition of a nucleotide. A miRNA molecule or an equivalent or a mimic thereof may be a single stranded or double stranded RNA molecule. Preferably a miRNA molecule or an equivalent, or a mimic thereof is from 6 to 30 nucleotides in length, preferably 12 to 30 nucleotides in length, preferably 15 to 28 nucleotides in length, more preferably said molecule has a length of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides or more.
100891 In a preferred embodiment, a miRNA molecule or equivalent or mimic or isomiR thereof comprises at least 6 of the 7 nucleotides present in the seed sequence of said miRNA molecule or equivalent or mimic or isomiR thereof Preferably in this embodiment, a miRNA
molecule or an equivalent or a mimic or isomiR thereof is from 6 to 30 nucleotides in length and more preferably comprises at least 6 of the 7 nucleotides present in the seed sequence of said miRNA molecule or equivalent thereof Even more preferably a miRNA molecule or an equivalent or a mimic or isomiR
thereof is from 15 to 28 nucleotides in length and more preferably comprises at least 6 of the 7 nucleotides present in the seed sequence, even more preferably a miRNA
molecule has a length of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides or more.
100901 Accordingly, a preferred miRNA molecule or equivalent or mimic or isomiR thereof comprises at least 6 of the 7 nucleotides present in the seed sequence identified in or as SEQ ID NO:
6-17, 40-44, or 50-66 and more preferably has a length of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 nucleotides or more.
[0091] Delivery vehicles for miRNA include but are not limited to the following: liposomes, polymeric nanoparticles, viral systems, conjugation of lipids or receptor-binding molecules, exosomes, and bacteriophage; see e.g., Baumann and Winkler, miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents, Future Med Chem. 2014, 6(17): 1967-1984; US Patent 8,900,627; US Patent 9,421,173; US Patent 9,555,060; WO
2019/177550; the contents of each of which are incorporated herein by reference in their entireties.
[0092] A microRNA sequence comprises a "seed" region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence of the nucleic acid. In one embodiment, the viral genome may be engineered to include, alter or remove at least one miRNA binding site, sequence or seed region.
[0093] The term substantial complementarity means that is not required to have the first and second RNA sequence to be fully complementary, or to have the first RNA
sequence and a reference or target sequence (e.g., SEQ ID NO: 3 or 4) to be fully complementary. In one embodiment, the substantial complementarity between a RNA sequence and the target consists of having no mismatches, one mismatched nucleotide, or two mismatched nucleotides. It is understood that one mismatched nucleotide means that over the entire length of the RNA sequence that base pairs with the target one nucleotide does not base pair with the target. Having no mismatches means that all nucleotides base pair with the target, and having 2 mismatches means two nucleotides do not base pair with the target.
[0094] The miRNAs and/or the transgene comprising one or more miRNAs can be provided in or comprise a scaffold sequence. As used herein, -scaffold- refers to portions of the miRNA-encoding sequence that are external to the mature duplex structure. For example, the scaffold can comprise loops and/or stem regions. Accordingly, scaffolds are useful in producing, encoding, and/or expressing the miRNAs described herein. Scaffolds used in the compositions and methods described herein can be sequences of, obtained from, and/or derived from endogenous and/or naturally-occurring miRNA scaffolds, e.g., human miRNAs. In some embodiments, the scaffold sequence is obtained used in the compositions and methods described herein can be sequences of, obtained from, and/or derived from endogenous and/or naturally-occurring miRNA scaffolds of miRNAs that are overexpressed in one or more NS and/or CNS diseases.
Nucleic Acids 100951 In some aspects, the disclosure provides isolated nucleic acids that are useful for reducing (e.g., inhibiting) expression of a pathogenic gene (e.g., HTT) and/or which encode CYP46A1. A
"nucleic acid" sequence refers to a DNA or RNA sequence. In some embodiments, proteins and nucleic acids of the disclosure are isolated. As used herein, the term "isolated" means artificially produced. As used herein with respect to nucleic acids, the tenn "isolated"
means: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis.
An isolated nucleic acid is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art. As used herein with respect to proteins or peptides, the term "isolated" refers to a protein or peptide that has been isolated from its natural environment or artificially produced (e.g., by chemical synthesis, by recombinant DNA technology, etc.).
[0096] The skilled artisan will also realize that conservative amino acid substitutions may be made to provide functionally equivalent variants, or homologs of the capsid proteins. In some aspects the disclosure embraces sequence alterations that result in conservative amino acid substitutions. As used herein, a conservative amino acid substitution refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references that compile such methods, e.g., Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or Current Protocols in Molecular Biology, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made among amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D. Therefore, one can make conservative amino acid substitutions to the amino acid sequence of the proteins and polypeptides disclosed herein.
[0097] The isolated nucleic acids of the invention may be recombinant adeno-associated virus (AAV) vectors (rAAV vectors). In some embodiments, an isolated nucleic acid as described by the disclosure comprises a region (e.g., a first region) comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof The isolated nucleic acid (e.g., the recombinant AAV vector) may be packaged into a capsid protein and administered to a subject and/or delivered to a selected target cell. "Recombinant AAV (rAAV) vectors" are typically composed of, at a minimum, a transgene and its regulatory sequences, and 5' and 3' AAV inverted terminal repeats (ITRs). The transgene may comprise, as disclosed elsewhere herein, one or more regions that encode one or more inhibitory RNAs (e.g., miRNAs) comprising a nucleic acid that targets an endogenous mRNA of a subject. The transgene may also comprise a region encoding, for example, a protein and/or an expression control sequence (e.g., a poly-A tail), as described elsewhere in the disclosure.
[0098] Generally, ITR sequences are about 145 bp in length.
Preferably, substantially the entire sequences encoding the 1TRs are used in the molecule, although some degree of minor modification of these sequences is permissible. The ability to modify these ITR sequences is within the skill of the art. (See, e.g., texts such as Sambrook et al., "Molecular Cloning. A
Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory, New York (1989): and K. Fisher et al., J Virol., 70:520 532 (1996)). An example of such a molecule employed in the present invention is a "cis-acting"
plasmid containing the transgene, in which the selected transgene sequence and associated regulatory elements are flanked by the 5' and 3' AAV ITR sequences. The AAV ITR sequences may be obtained from any known AAV, including presently identified mammalian AAV types. In sonic embodiments, the isolated nucleic acid (e.g., the rAAV vector) comprises at least one ITR having a serotype selected from AAV1, AAV2, AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAV10, AAV11, and variants thereof In some embodiments, the isolated nucleic acid comprises a region (e.g., a first region) encoding an AAV2 ITR.
[0099] In some embodiments, the isolated nucleic acid further comprises a region (e.g., a second region, a third region, a fourth region, etc.) comprising a second AAV ITR. In some embodiments, the second AAV ITR has a scrotypc selected from AAV1, AAV2, AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAV10, AAV1 1, and variants thereof. In some embodiments, the second ITR is a mutant ITR that lacks a functional terminal resolution site (TRS). The term "lacking a terminal resolution site" can refer to an AAV ITR that comprises a mutation (e.g., a sense mutation such as a non-synonymous mutation, or missense mutation) that abrogates the function of the terminal resolution site (TRS) of the ITR, or to a truncated AAV ITR that lacks a nucleic acid sequence encoding a functional TRS (e.g., a ATRS ITR). Without wishing to be bound by any particular theory, a rAAV vector comprising an ITR lacking a functional TRS produces a self-complementary rAAV
vector, for example as described by McCarthy (2008) Molecular Therapy 16(10):
1648-1656. In some embodiments of any of the aspects disclosed herein, at least one or more ITRs are less than 145 bp length, e.g., 130 bp length.
1001001 In addition to the major elements identified above for the recombinant AAV vector, the vector also includes conventional control elements which are operably linked with elements of the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the vector or infected with the virus produced by the invention. As used herein, "operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA;
sequences that enhance translation efficiency {i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A
number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.
[00101] As used herein, a nucleic acid sequence (e.g., coding sequence) and regulatory sequences are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription of the nucleic acid sequence under the influence or control of the regulatory sequences. If it is desired that the nucleic acid sequences be translated into a functional protein, two DNA sequences are said to be operably linked if induction of a promoter in the 5 regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably linked to a nucleic acid sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide. Similarly, two or more coding regions arc operably linked when they are linked in such a way that their transcription from a common promoter results in the expression of two or more proteins having been translated in frame. In some embodiments, operably linked coding sequences yield a fusion protein. In some embodiments, operably linked coding sequences yield a functional RNA (e.g., mi RNA).
[00102] In some aspects, the disclosure provides an isolated nucleic acid comprising a transgene, wherein the transgene comprises a nucleic acid sequence encoding one or more microRNAs (e.g., miRNAs).
1001031 It should be appreciated that an isolated nucleic acid or vector (e.g., rAAV vector), in some embodiments comprises a nucleic acid sequence encoding more than one (e.g., a plurality, such as 2, 3, 4, 5, 10, or more) miRNAs. In some embodiments, each of the more than one miRNAs targets (e.g., hybridizes or binds specifically to) the same target gene (e.g., an isolated nucleic acid encoding three unique miRNAs, where each miRNA targets the HTT gene). In some embodiments, each of the more than one miRNAs targets (e.g., hybridizes or binds specifically to) a different target gene.
[00104] In some aspects, the disclosure provides isolated nucleic acids and vectors (c.g., rAAV
vectors) that encode one or more artificial miRNAs. As used herein "artificial miRNA" or "amiRNA"
refers to an endogenous pri-miRNA or pre-miRNA (e.g., a miRNA backbone, which is a precursor miRNA capable of producing a functional mature miRNA), in which the miRNA and miRNA* (e.g., passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene, for example as described by Eamens et al. (2014), Methods Mol. Biol. 1062:211-224. For example, in some embodiments an artificial miRNA comprises a miR-155 pri-miRNA backbone into which a sequence encoding a mature HTT-specific miRNA (e.g., any one of SEQ ID NOs: 6-17, 40-44, or 50-66) has been inserted in place of the endogenous miR-155 mature miRNA-encoding sequence. In some embodiments, miRNA (e.g., an artificial miRNA) as described by the disclosure comprises a miR- 155 backbone sequence, a miR-30 backbone sequence, a mir-64 backbone sequence, or a miR-122 backbone sequence.
[00105] A region comprising a transgene (e.g., a second region, third region, fourth region, etc.) may be positioned at any suitable location of the isolated nucleic acid. The region may be positioned in any untranslated portion of the nucleic acid, including, for example, an intron, a 5' or 3' untranslated region, etc.
[00106] In some cases, it may be desirable to position the region (e.g., the second region, third region, fourth region, etc.) upstream of the first codon of a nucleic acid sequence encoding a protein (e.g., a protein coding sequence). For example, the region may be positioned between the first codon of a protein coding sequence) and 2000 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 1000 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 500 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 250 nucleotides upstream of the first codon. The region may be positioned between the first codon of a protein coding sequence and 150 nucleotides upstream of the first codon. In some cases (e.g., when a transgene lacks a protein coding sequence), it may be desirable to position the region (e.g., the second region, third region, fourth region, etc.) upstream of the poly-A tail of a transgene. For example, the region may be positioned between the first base of the poly-A tail and 2000 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 1000 nucleotides upstream of the first base.
The region may be positioned between the first base of the poly-A tail and 500 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 250 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A
tail and 150 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 100 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 50 nucleotides upstream of the first base. The region may be positioned between the first base of the poly-A tail and 20 nucleotides upstream of the first base.
In some embodiments, the region is positioned between the last nucleotide base of a promoter sequence and the first nucleotide base of a poly-A tail sequence.
[00107] In some cases, the region may be positioned downstream of the last base of the poly-A
tail of a transgene. The region may be between the last base of the poly-A
tail and a position 2000 nucleotides downstream of the last base. The region may be between the last base of the poly-A tail and a position 1000 nucleotides downstream of the last base. The region may be between the last base of the poly-A tail and a position 500 nucleotides downstream of the last base.
The region may be between the last base of the poly-A tail and a position 250 nucleotides downstream of the last base.
The region may be between the last base of the poly-A tail and a position 150 nucleotides downstream of the last base.
[00108] It should be appreciated that in cases where a transgene encodes more than one miRNA, each miRNA may be positioned in any suitable location within the transgene.
For example, a nucleic acid encoding a first miRNA may be positioned in an intron of the transgene and a nucleic acid sequence encoding a second miRNA may be positioned in another untranslated region (e.g., between the last codon of a protein coding sequence and the first base of the poly-A
tail of the transgene).
[00109] In some embodiments, the transgene further comprises a nucleic acid sequence encoding one or more expression control sequences (e.g., a promoter, etc.). Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals;
sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence);
sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.
[00110] A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. The phrases "operatively positioned," "under control" or "under transcriptional control" means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA
polymerase initiation and expression of the gene.
1001111 For nucleic acids encoding proteins, a polyadenylation sequence generally is inserted following the transgene sequences and before the 3' AAV ITR sequence. A rAAV
construct useful in the present disclosure may also contain an intron, desirably located between the promoter/enhancer sequence and the transgene. One possible intron sequence is derived from SV-40, and is referred to as the SV-40 T intron sequence. Another vector element that may be used is an internal ribosome entry site (IRES). An IRES sequence is used to produce more than one polypeptide from a single gene transcript. An IRES sequence would be used to produce a protein that contain more than one polypeptide chains. Selection of these and other common vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al., and references cited therein at, for example, pages 3.18 3.26 and 16.17 16.27 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 19891. In some embodiments, a Foot and Mouth Disease Virus 2A
sequence is included in polyprotein; this is a small peptide (approximately 18 amino acids in length) that has been shown to mediate the cleavage of polyproteins (Ryan, M D et al., EMBO, 1994; 4: 928-933; Mattion, NM et al., J Virology, November 1996; p. 8124-8127; Furler, S et al., Gene Therapy, 2001; 8: 864-873; and Halpin, C et al., The Plant Journal, 1999; 4: 453-459).
The cleavage activity of the 2A sequence has previously been demonstrated in artificial systems including plasmids and gene therapy vectors (AAV and retroviruses) (Ryan, M D et al., EMBO, 1994; 4: 928-933; Mattion, N M et al., J Virology, November 1996; p. 8124-8127; Furler, S et at, Gene Therapy, 2001 ; 8: 864-873; and Halpin, C et al., The Plant Journal, 1999; 4: 453-459; de Felipe, P et al., Gene Therapy, 1999; 6: 198-208; de Felipe, P et al., Human Gene Therapy, 2000; 11: 1921- 1931.; and Klump, H et al., Gene Therapy, 2001 ; 8: 811-817).
[00112] Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., B oshart et al., Cell, 41:521-530 (1985)1, the SV40 promoter, the dihydrofolate reductase promoter, the [-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1 a promoter [Invitrogent In some embodiments, a promoter is an enhanced chicken I3-actin promoter. In some embodiments, a promoter is a U6 promoter.
[00113] Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems have been described and can be readily selected by one of skill in the art. Examples of inducible promoters regulated by exogenously supplied promoters include the zinc-inducible sheep metallothionein (MT) promoter, the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter, the T7 polymerase promoter system (WO 98/10088); the ecdysone insect promoter (No et al., Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)), the tetracycline -repressible system (Gossen et al., Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)), the tetracycline-inducible system (Gossen etal., Science, 268: 1766- 1769 (1995), see also Harvey et al., Curr. Opin. Chem.
Biol., 2:512-518 (1998)), the RU486-inducible system (Wang et al., Nat.
Biotech., 15:239-243 (1997) and Wang et al., Gene Ther., 4:432-441 (1997)) and the rapainycin-inducible system (Magari et al., J.
Clin. Invest., 100:2865-2872 (1997)). Still other types of inducible promoters which may be useful in this context arc those which arc regulated by a specific physiological state, e.g., temperature, acute phase, a particular differentiation state of the cell, or in replicating cells only.
[00114] In another embodiment, the native promoter for the transgene will be used. The native promoter may be preferred when it is desired that expression of the transgene should mimic the native expression. The native promoter may be used when expression of the transgene must be regulated temporally or developmentally, or in a tissue- specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.
In some embodiments, the regulatory sequences impart tissue- specific gene expression capabilities.
In some cases, the tissue- specific regulatory sequences bind tissue- specific transcription factors that induce transcription in a tissue specific manner. Such tissue- specific regulatory sequences (e.g., promoters, enhancers, etc.) are well known in the art. Exemplary tissue-specific regulatory sequences include, but are not limited to the following tissue specific promoters: a liver- specific thyroxin binding globulin (TBG) promoter, an insulin promoter, a glucagon promoter, a somatostatin promoter, a pancreatic polypeptide (PPY) promoter, a synapsin- 1 (Syn) promoter, a creatine kinase (MCK) promoter, a mammalian desmin (DES) promoter, a a-myosin heavy chain (a-MHC) promoter, or a cardiac Troponin T (cTnT) promoter. Other exemplary promoters include Beta-actin promoter, hepatitis B virus core promoter, Sandig et al., Gene Ther., 3: 1002-9 (1996);
alpha-fetoprotein (AFP) promoter, Arbuthnot et al., Hum. Gene Ther., 7: 1503-14 (1996)), bone osteocalcin promoter (Stein et al., Mol. Biol. Rep., 24: 185-96 (1997)); bone sialoprotein promoter (Chen et al., J. Bone Miner. Res., 11 : 654-64 (1996)), CD2 promoter (Hansal et al., J. Immunol., 161: 1063-8 (1998); immunoglobulin heavy chain promoter; T cell receptor a-chain promoter, neuronal such as neuron- specific enolase (NSE) promoter (Andersen etal., Cell. Mol. Neurobiol., 13:503-15 (1993)), neurofilament light-chain gene promoter (Piccioli et al., Proc. Natl. Acad. Sci. USA, 88:5611-5 (1991)), and the neuron-specific vgf gene promoter (Piccioli et al., Neuron, 15:373- 84 (1995)), among others which will be apparent to the skilled artisan. NS-specific promoters contemplated for use in the present methods and compositions also include those described in Patent Application GB2013940.8 filed September 4, 2020 and GB2005732.9 filed April 20, 2020, which are incorporated by reference herein in their entireties. In some embodiments, the NS-specific promoter is a promoter of Table 10, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98%
identity to a promoter of Table 10. In some embodiments, the NS-specific promoter is a promoter of Table 10, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98%
identity to a promoter of Table 10 and retaining the NS-specific promoter activity of the promoter of Table 10.
1001151 CNS-specific promoters contemplated for use in the present methods and compositions also include those described in International Patent Application PCT/GB2021/050939 filed April 19, 2021, the contents of which arc incorporated by reference herein in their entireties. In some embodiments, the CNS-specific promoter is a promoter of Tables 11-13, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a promoter of Tables 11-13. In some embodiments, the CNS-specific promoter is a promoter of Tables 11-13, or a promoter having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a promoter of Tables 11-13 and retaining the CNS-specific promoter activity of the promoter of Tables 11-13.
[00116] In some embodiments, the nucleic acid comprises one or more CREs. In some embodiments, the nucleic acid comprises one or more NS-specific CREs or CNS-specific CREs. In some embodiments, the nucleic acid comprises one or more CREs of Tables 13-15, or a CRE having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a CRE of Tables 13-15.
In some embodiments, the CRE is a CRE of Tables 13-15, or a CRE having at least 80%, at least 85%, at least 90%, at least 95%, at least 98% identity to a CRE of Tables 13-15 and retaining the activity of the CRE of Tables 13-15.
[00117] In some embodiments, the CRE can comprise one or more CREs known in the art. For example, in one embodiment, the one or more CREs may be selected from SEQ ID
NOs: 19-24, 27, 28, 37, 38 in Patent Application GB2013940.8 filed September 4, 2020. For example, in one embodiment, the one or more CREs may be selected from: SEQ ID NOs: 1-8 from WO
2019/199867A1, SEQ ID NOs: 1-7 from WO 2020/076614A1 and SEQ ID NOs: 25-51, 177-178, 188 from WO 2020/097121. The foregoing references are incorporated by reference herein in their entireties.
[00118] Table 10 -NS-specific promoters NAME SEQUENCE
Length AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
(SE GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
Q ID
GAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCA
NO: 74) GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
AGTCCAAGGACACAAATGGGTGAGGGGAGGGCTAGGCCTGCGCACCCACCCA
CCGACCCCTCACCCACCGACCCGTCACCCACCGACCAAGGGGCACCCTGGCCT
AGAGGGGATGCTGAGCGGGACCCGCCTCCTGCCTCTGGCAGTCCCAGATGGG
ACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGATCTAA
GGCGGAGCTGGGTTTGCGGATCCCACGGTTCCCGGCGGGGCGGGGCCCGGTC
GCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTGGGAAACT
CCC GA
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCAC CTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTC A AATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCAC CCCAGC CTGACAGCCTGGCATCTTGGGATAAAA
(SEQ ID GAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCA
NO: 75) GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
AGTCCAAGGACACAAATGGGTGA GGGGATGCGGCGAGGC GC GTGC GC ACT GC
CAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCAC
CGCCGCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAAC
TCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGAC
CGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGCGACCATCTGCGCTG
CGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGGAGGAGTC
GTGTCGTGCCTGAGAGCGCAG
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCAC CTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGA GAAGCCCATTGA
GCAGGGGGCTTGCATTGCAC CCCAGC CTGACAGCCTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
(SEQ ID GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
NO: 76) AGTCCAAGGACACAAATGGGTGAGGGGAAGCGCGCAGAGTCTGCATGCGTGA
GGAAGCTCCTGGGCGCGTCACAGCCGCGCTATT CTCAGC GTCTCTCCTTTTATG
GCTCCGGAAGTGAGCTGGGGTTGCTGGCAGCCTGGCTGGCACTGGGCTAGGCC
TGC GCACC CACC CAC CGACCC CTCACCCACCGA CCCGTCACCCACCGACCAAG
GGGCACCCTGGCCTAGAGGGGATGCTGAGCGGGACCCGCCTCCTGCCTCTGGC
AGTCCCAGATGGGACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCT
ACCCCTGGATCTAAGGCGGAGCTGGGTTTGCGGATCCCACGGTTCCCGGCGGG
GC GGGGCCCGGTCGCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGC AGTGC
ATTGTGGGAAACTCCCGA
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCAC CTTGGCACAGACACAATGTTC GGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGA GAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCC CAGC CTGACAGC CTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
(SEQ ID GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
NO: 77) AGTCCAAGGACACAAATGGGTGAGGGGAAGCGCGCAGAGTCTGCATGCGTGA
GGAAGCTCCTGGGCGCGTCACAGCCGCGCTATT CTCAGC GTCTCTCCTTTTATG
GCTCCGGAAGTGAGCTGGGGTTGCTGGCAGCCTGGCTGGCACTTGCGGCGAGG
CGCGTGCGC ACTGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTG
GCGGCGCGCGCCACCGCCGCCTCAGCACTGAAGG CGCGCTGACGTCACTCG CC
GGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGTCGCGT CCGCGCCGCCGC
CGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGC
GACCATCTGCGCTGCGGC GCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGG
CAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAG
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
(SEQ ID AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
NO: 78) CAGTGAATGACTCAC CTTGGCACAGACACAATGTTC GGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCA A ATGCCTTCCGA GA AGCCCA TTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGA CAGCCTGGCATCTTGGGA TA A AA
GCAGCACGGGCTAGGCCTGCGCACCCACCCACCGACCCCTCACCCACCGACCC
GTCACCCACCGACCAAGGGGCACCCTGGCCTAGAGGGGATGCTGAGCGGGAC
CCGCCTCCTGCCTCTGGCAGTCCCAGATGGGACTTGGACCCCGCAGTTGCTCTC
TCGGACCCTAAGTTTCTACCCCTGGATCTAAGGCGGAGCTGGGTTTGCGGATC
CCACGGTTCCCGGCGGGGCGGGGCCCGGTCGCCCCTCCCCCTCCCCGCCCTCC
TGCGCCGGGAGCAGTGCATTGTGGGAAACTCCCGA
AACATATCCTGGTGTGGAGTAGGGGACGCTGCTCTGACAGAGGCTCGGGGGC
CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
(SEQ ID GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
1\11179) GCAGCACTGCGGCGAGGCGCGTGCGCACTGCCAGCTTCAGCACCGCGGACAG 632 TGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCCGCCTCAGCACTGAAGGC
GCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCGGCCACCTTGGT
CGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGCGAGA
TAGGGGGGCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCT
GCCTCAGTCTGCGGTGGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAG
TTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCACCCAAGCCCTGAC
CCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAACAGGAAAGGCAGT
GAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAAGCTTTTTGTCTCT
TCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGTGGCCATCGGTCA
CTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACCGTCCTTTGTGGG
(SEQID GACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGATTGGAGCCAAGA
NO: 80) GTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGGGCTAGGCCTGCGCA 701 CCCACCCACCGACCCCTCACCCACCGACCCGTCACCCACCGACCAAGGGGCAC
CCTGGCCTAGAGGGGATGCTGAGCGGGACCCGCCTCCTGCCTCTGGCAGTCCC
AGATGGGACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTG
GATCTAAGGCGGAGCTGGGTTTGCGGATCCCACGGTTCCCGGCGGGGCGGGG
CCCGGTCGCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTG
GGAAACTCCCGA
TTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCACCCAAGCCCTGAC
CCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAACAGGAAAGGCAGT
GAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAAGCTTTTTGTCTCT
TCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGTGGCCATCGGTCA
CTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACCGTCCTTTGTGGG
(SEQID GACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGATTGGAGCCAAGA
NO: 81) GTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAATGCGGCGAGGCGCGTG 716 CGCACTGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCG
CGCGCCACCGCCGCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCC
CCGCAAACTCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCC
AGCCGGACCGCACCACGCGAGGCGCGAGATAGGGGGGCACGGGCGCGACCAT
CTGCGCTGCGGCGCCGGCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGG
AGGAGTCGTGTCGTGCCTGAGAGCGCAG
TCAGGGGTGCAGCTTTTTTTCTGTCTITTACT CAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCAC
CCAAGCCCT GACCCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
(SEQ ID
NO. 82) TTCCCACCCCCTGACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGAT
TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC
TGAAGAAGATCTTAACAGAAGGGCTAGGCCTGCGCACCCACCCACCGACCCCT
CACCCACCGACCCGTCACCCACCGACCAAGGGGCACCCTGGCCTAGAGGGGA
TGCTGAGCGGGACCCGCCTCCTGCCTCTGGCAGTCCCAGATGGGACTTGGACC
CCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGATCTAAGGCGGAGCT
GGGTTTGCGGAT C C CAC GGTTC C CGGC GGGGC GGGGC C C GGTC GC C CCTC C C C
CTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTGGGAAACTCCCGA
CTTCCTCTTATATTTCACCAAGACTCAGTTC CTGAGCAAGAAACCACAGGCAC
AGCAAGTGCCATGAAAAGC GGCTTTGTGTGGGGTGGGCTCTTCAC ACT C CAAT
CTCCACTTCCTTCTCAAGGCCTCAAAAAAAGTTGAAAAATGAAAACAAAAG CC
CTGCTGTGTTGAGCTGGGCTCTGGCGTTGC CATGGA CC CAGGGCAAACAGC GG
AGCATGGACTTTGGAATGACTGGTTAGAACCCAAATGAATTAATGGAATTTGA
( SE Q ID
NO: 83) TAATTTGCCAGATTGGGGGCCGGGCTAGGCCTGCGCACCCACCCACCGACCCC
TCACCCACCGACCCGTCACCCACCGACCAAGGGGCACCCTGGCCTAGAGGGG
ATGCTGAGCGGGACC CGCCTCCTGCCTCTGGCAGTCCCAGATGGGACTTGGAC
CCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGATCTAAGGCGGAG
CTGGGTTTGCGGATCCCACGGTTCCCGGCGGGGCGGGGCCCGGTCGCCCCTCC
CC CTCCC CGCCCTCCTGC GC CGGGAGCAGTGCATTGTGGGAAACTCC C GA
TCAGGGGTGCAGCTTTTTTTCTGTCTTTTACT CAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGC CC CAGCAC
C CAAGCC CT GACCCCATGGCTGC CTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAG GCAGTG AG TTCTCATTGCATCAATACTTG CATTTGCTACAACAGAA
GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
(SEQ ID TTCCCACCCCCTGACCAGCCCCAGCA AGGCCCGGGGCTGGCTGCCTAGTTGAT
NO: 84) TGGAG CCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC 807 TGAAGAAGATCTTAACAGAATGCGGCGAGGCGCGTGC GCACTGC CAGCTTC A
GCACCGCGGACAGTGCCTTCGCCC CC GCCTGGC GGCGCGCGCCACCGCC GCCT
CAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTC
CCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCAC
GCGAGGCGCGAGATAGGGGGGCACGGGCGC GACCATCTGCGCTGCGGC GC CG
GCGACTCAGCGCTGCCTCAGTCTGCGGTGGGCAGCGGAGGAGTCGTGTCGTGC
CTGAGAGCGCAG
CTTCCTCTTATATTTCACCAAGACTCAGTTC CTGAGCAAGAAACCACAGGCAC
AGCAAGTGCCATGAAAAGC GGCTTTGTGTGGGGTGGGCTCTTCAC ACT C CAAT
CTCCACTTCCTTCTCAAGGCCTCAAAAAAAGTTGAAAAATGAAAACAAAAGCC
CTGCTGTGTTGAGCTGGGCTCTGGCGTTGCCATGGA CCCAGGGCA A ACA GC GG
TGCTCCTGCTCTGCCCCCGGCTCAGCTCATGCTGGGCCTGCACTTCTGGAAGGG
(SEQ ID CATAGTTCAAAAATAATAAAATGTGATACCCATGAAATGCTGATATTCTGCCT
NO: 85) TA A TTTGCCA GATTGGGGGCCTGCGGCGA GGCGCGTGCGCA CTGCCA GCTT CA 701 GCACCGCGGACAGTGCCTTCGCCCCCG CCTGGCGGCGCGCGCCACCGCCGCCT
CAGCACTCiAACiCiCCiCGCTGACCi l'CACTCCiCCCiCi CCCCCGCAAACTCCCCTTC
CCGGCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGA CCGCACCAC
GC GAGGC GC GAGATAGGGGGGCAC GGGC GC GACCATCTGC GCTGC GGC GC CG
GCGA CTCA GCGCTGCCTCA GTCTGCGGTGGGC A GCGGAGGAGTCGTGTCGTGC
CTGAGAGCGCAG
TCAGGGGTGCAGCTTTTTTTCTGTCTTTTACT CAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGAT CTGAATCCAGCTCCAAGGC CCCAGCAC
C CAAGCC CT GAC CC C ATG GCTGC CTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
(SEQ ID GTCCTTTGTGGGAGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCC
NO: 86) TTCCCACCCCCTGACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGAT
TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATC CAAGTGAC
TGAAGAAGATCTTAACAGAAAGCGCGCAGAGTCTGCATGCGTGAGGAAGCTC
CTGGGCGCGTCACAGC C GC GCTATTCTCAGC GTCTCTC CTTTTATGGCTCCGGA
AGTGAGCTGGGGTTGCTGGCAGCCTGGCTGGCACTGGGCTAGGCCTGCGCACC
CACCCACCGACCCCTCACCCACCGACCCGTCACCCACCGACCAAGGGGCACCC
TGGCCTAGAGGGGATGCTGAGC GGGACC C GC CTCCTGCCTCTGGCAGTCCCAG
ATGGGACTTGGACCCCGCAGTTGCTCTCTCGGACCCTAAGTTTCTACCCCTGGA
TCTAAGGCGGAGCTGGGTTTG CGGATC CCAC GGTTC C CGGCGGGGCGGGGC CC
GGTCGCCCCTCCCCCTCCCCGCCCTCCTGCGCCGGGAGCAGTGCATTGTGGGA
AACTCCCGA
TCAGGGGTGCAGCTTTTTTTCTGTCTITTACTCAGCCTGAGAAAGGTTGTCGTT
TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGC CC CAGCAC
C CAAGCC CT GAC CC C ATG GCTGC CTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
GTCCTTTGTGGGAGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCC
(SEQ ID TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC
NO: 87) TGAAGAAGATCTTAACAGAAAGCGCGCAGAGTCTGCATGCGTGAGGAAGCTC
CTGGGCGCGTCACAGCCGCGCTATTCTCAGCGTCTCTC CTTTTATGGCT CCG GA
AGTGAGCTGGGGTTGCTGGCAGC CTGGCTGGCACTTGCGGCGAGGC GCGTGC G
CACTGC CAGCTTCAGCACC GC GGACAGTGC CTTCGCCCCCGCCTGGCGGC GC G
CGCCACCGCCGCCTCAGCACTGAAGGC GC GCTGACGTCACTC GC CGGTCCCCC
GCAAACTCCCCTTCCCGGCCACCTTGGTCGCGTCCGCGCCGCCG CCGGCCCAG
CC GGACCGCACCACGCGAGGCG CGAGATAGGGGGG CACGGGCGCGACCATCT
GC GCTGC GGC GC C GGCGACTCAGCGCTGC CTCAGTC TGCGGTGGGCAGC GGA
GGAGTCGTGTCGTGCCTGAGAGCGCAG
CTA GCC CA CA GGA A ATGTCTGTCTATATCCA GGCA A GTA CCTTGCTCATTGGA
CCAACCCGAAACTGTTCAGGGAAGATCAG GGAAATCAACTCAG TTACAAATG
GGATAATCATGCCCAGTAAAAACTACCTGTGGTGAATAAAGAGTTAACCCCTG
TTCCATCTTAGGTCACTATGCAGAGTACCAATGAGTACAAGAGATGGTGCCAA
(SEQ ID CAACACATCAGCCAGCCAGAGACAAGGGAAACCGTGGCAACCAAGTGTTGCT
NO: 88) GGCA CATTGTGAGGTGGTGATGGGAACTGCAGAGGCC CTGCACAGC ATGCTA
ATGAGCCCAGGCAAACATGAGCTCTCCCCATAGCTGGGCTGCGGCCCAACCCC
ACCCCCTCAGGCTATGCCAGGGGGTGTTGC CAGGGGCACCCGGGCATCGCCAG
TCTAGCC C ACTC CTTCATAAAGC C CTC GCATCC CA GGAGCGAGCAGAGC CAGA
GC
TCCAAAGAAAAGCCAGATAAGTAGCTGATTATT GCATAGAGCTGACAGTATCA
CA GGAAGATCA GTAGTAGCAGCTCAAGTA CA AAA AGGTTA A TT AGCAATACT
TAATAAGAAAAACTACCTCTGGCAGGTGAAGAGTTAATCCCTGGTCAATTTTA
AGCTACTCTGCTGAGAGTACTAATAAGTGTAGGGGTTGGAGCCAATGAGGGTG
AC C C CTTC CTTGATGGGAACAGTCATC C CTTAGGAACTGC CCTGGAAAGCATC
(SEQ ID GCTGGCACTTTGTAAAATGGTAACTGCAACTGCCGAGGCTGTGCAGAGAATGC 646 NO: 89) TAATAAGCC l'ACiC_IACAACCTGTAAACiACiTGCiACCTAGAAAATCiTCCACCCCiCT
A GA GA GA GGGAGCGAGCATGTGCGATGAGCA A TA GCTGTGGACCTTA CA GTT
GCTGCTAACTGCCCTGGTGTGTGTGAGGGAGAGAGAGGGAGGGAGGGAGAGA
GAGCGCGCTAGCGCGAGAGAGCGA GTGAGCA AGCGAGCAGA A A AGAGGTGG
AGAGGGGGGGAATAAGAAAGAGAGAGAAGGAAAGGAGAGAAGGCAGGAAG
AAGGCAAGGGACGAGACAA
CTAGCC CACAGGAAATGTCTGTCTATATCCAGGCAAGTACCTTGCTCATTGGA
CCAACCCGAAACTGTTCAGGGAAGATCAGGGAAATCAACTCAGTTACAAATG
GGATAATCATGCCCAGTAAAAACTACCTGTGGTGAATAAAGAGTTAACCCCTG
TTCCATCTTAGGTCACTATGCAGAGTACCAATGAGTACAAGAGATGGTGCCAA
CAACACATCAGCCAGCCAGAGACAAGGGAAACCGTGGCAAC CAAGTGTTGCT
614 (SEQ ID
GGCACATTGTGAGGTGGTGATGGGAACTGCAGAGGCCCTGCACAGCATGCTA
NO: 90) ATGAGCCCAGGCAAACATCGCTAGAGAGAGGGAGCGAGCATGTGCGATGAGC
AATAGCTGTGGACCTTACAGTTGCTGCTAACTGCCCTGGTGTGTGTGAGGGAG
AGAGAGGGAGGGAGGGAGAGAGAGCGCGCTAGC GC GAGAGAGC GAGTGAGC
AAGCGAGCAGAAAAGAGGTGGAGAGGGGGGGAATAAGAAAGAGAGAGAAG
GAAAGGAGAGAAGGCAGGAAGAAGGCAAGGGACGAGACAA
(SEQ C T CAT TGGAC CAAC CCGAAAC T GTT CAGGGAAGAT CAGGGAAAT
ID NO: CAACTCAGTTACAAATGGGATAATCATGCCCAGTAAAAACTACC
154) TGTGGTGAATAAAGAGTTAACCCCTGTTCCATC TTAGGTCAC TAT
GCAGAGTACCAATGAGTACAAGAGATGGTGCCAAAGAGGGTGG
CCCCTCCCTAGCTGGGAACAGTCAACCCTTAGGAACTAGACTGT
C AAC AC AT C AGC C AGC CAGAGACAAGGGAA AC C GT GGC AAC CA
AGTGT T GC TGGCAC ATT GTGAGGTGGT GAT GGGAAC TGC AGAGG
CCCTGCACAGCATGCTAATGAGCCCAGGCAAACATTCGAGTTGG
C T GGACAAGGT TATGAGC ATC CGTGTAC T TAT GGGGTT GC CAGC
TTGGTCCTGGATCGCCCGGGCCCTTCCCCCACCCGTTCGGTTCCC
CACCACCACCCGCGC TCGTACGTGCGTCTCCGCCTGCAGCTCTTG
ACTCATCGGGGCCCCCCGGGTCACATGCGC TCGCTCGGCTCTAT
AGGCGCCGCCCCCTGCCCACCCCCCGCCCGCGCTGGGAGCCGCA
GCCGCCGCCACTCCTGCTCTC TC TGCGCCGCCGCCGTCACCACCG
CCACCGCCACCGGCTGAGTCTGCAGTCCTCGAG
CTGGGCAGAGAGGGGGCATCGGGGGCATGGCTAGGGGCCAGCACTGT
GCTTCCTGGGCGCCTC A C CTCCTCCCTGA CTCCTGGA GA CTCCC A GCCC
CTGTCTGGGAGATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGG
GAGGGGCCGGGGTGGAGGGCGCATCCCCACGGGGAGATTGGATGGAA
ATGGCC TGC CAGTGTGTGTGTGAGTGTGCGCC TGTGGCAGCAGCAGAG
-SE ID GCCTGTTTGGACAGCTGCCTTGTCTGTCCGTCTGTTTGGGAGATGCTGG
(Q
CTGATAGATGGGGATGGGCGGACTGTTAACCCCTCGTTGCCTGCACTG
NO 91) CTATGTGCTTCCTGCCTCATCCATGGGGTAGAAGGTAGCCAGAAGGTG
GTCC TGGC TGTGCC CC CAGCTC CTCTC TAGGGGGGAAA CC TCTAGTTCT
GAGTCAGGGACAGAGTGAGGAGGGCTCCAGGGCATCAAGAGCTTGCT
CCTCCCCGCACCAGGGAGCCA AGGACAGAGGAGAAGGGGGTCTTCCC
CAG TG G TG ACTAG G G G CAG AATATG TCTC TG AG TG AG TG TCTG G AG CC
CTCCTCA CCCCA A CA CCA TGGGGCTGGGCA TA A A A GTCAGGGCAGA GC
CATCTATTGCTTACATTTGCTTCTG
GGTGTGTGGAAGGGTGAGAGGC A CACACACAGACAC TGAAAGAATC C
TAGGCCTGGTAGGCACTTAACAAATGTCTGTTACAGACCAGAATTTTA
TTGCTGTTAGAGACCCAAGCCCCTCATAGGAACAGTGAGAAACAGGTG
CAGAAAGGCGGAGTAACTTTATC TAAAGTCATAGGCTC CC TGAATAGC
AGAGCTGACACCTACAAGGAAGCGTTGGAGACCAGATCTACCAGC TA
CN S
GCCTCCCTGACiACCACGACiGTGGCGCCGCAGCACCGGCTGTGCiCCGAT
-2 GCCAGCCAGGTAGCCGGTTTCCCACGTCCCCCGCACGCACGCACCTCT
(SEQ ID
NO: 92) GAGTGGGACTGAGTCCCTAGAAGCCTGGACCCTCACTTCGTTCCTGTA
CATCCAGCTCGCCTGTAGACAGTGGGGGAGGATGAAGGGAAGAGGAC
TCAAGCGCAACTTTGAATCATCACGCCTTCGA CAGTCCGCGCACGTTTA
TTTCATTTATCTTTGAAAACGAGGGAGGGGAAGCCTGGAGAAGGCGGG
ATGGGCCAAGGGTGAGTTGGCCCCCGGGGAGCTGGTCCCTGTTCCTGG
CTTTAGTC CC AGGGGCGCGGTC TGTGTGTAGGGCGGGC TGGGCATAAA
AGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
TGCTACCAGAGCCGGGAGAGCTGCTCGGAGACGCCTCCGGGGTGCGG
CN S GCTGGACATGAGCAGCGGCTGCCGGTCC TGGGACTAGGCC CCGCCATT
(SEQ ID
NO: 92) GAGTGGGACTGAGTCCCTAGAAGCCTGGACCCTCACTTCGTTCCTGTA
CATCCAGCTCGCCTGTAGACAGTGGGGGAGGATGAAGGGAAGAGGAC
TCAAGCGCAACTTTGAATCATCACGCCTTCGA CAGTCCGCGCACGTTTA
TTTCATTTATCTTTGAAAACGAGGGAGGGGAAGCCTGGAGAAGGCGGG
ATGGGCCAAGGGTGAGTTGGCCCCCGGGGAGCTGGTCCCTGTTCCTGG
CTTTAGTC CC AGGGGCGCGGTC TGTGTGTAGGGCGGGC TGGGCATAAA
AGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
TGCTACCAGAGCCGGGAGAGCTGCTCGGAGACGCCTCCGGGGTGCGG
CN S GCTGGACATGAGCAGCGGCTGCCGGTCC TGGGACTAGGCC CCGCCATT
-3 TTGGATCCGCTGACAGGTCAGCGAAGTCTCTTCCTAGAGTTCCGGTGTC
(SEQ. ID
GTGAAGGC CGCCCTGACATCGCAATAGGGAATTAGTGGGAAGGGCC CT
NO. 93) TA A A TTGGGCGA GCCA AGGTGGGGGGA GGA TTGGA A CAGA GA CA AAA
GGGA GGA GA GA CGGA CA GCGA C A A GTGGA GA A A A TCGGCGA A A CTTG
AGTGGCAGAGAAGTCTGAGCGCTGAGACCCGGCGGCCCCGTGCGCCTT
CC CAC C TGGCGC CGATCCACTTTC CTCGGGGTAGCGGCCCAACC CAC T
TCGCTGC CAGC CGATCC CTTTTAC CCGTGGC TA C CGGGAC CACTCTA CT
CTCGC C CACTTGGCTCTGCCTAAGCGTC CTAGCCGGAGCGCGGT CTCTG
CCACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTG
GCCAGAGGGCGGGGTTCTTGGCGTCTCGC CGGCCAGAC C CCTC CCTCA
AAGGCGGGGCCTGGAGATCCACAGCTGGAAAGGGCGGAGCCCCAGCA
GGGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGC
GGGCTGGGGGCGCCCTGGTCTGCCATAAAGTGAATGGGCGCCGGCTGG
GGGTGGCAGTACGCGGTGAGGCTCACTC CCTC CGAGAGTCCAGGAGCG
CC
AAGGAGAATGGTAAACAGCAGGAGCGAAGCGGC TGAGGAGAAAGAA
GAGGAAAGAAAGGCGAGACGTGGGAGGATTGGAACAGAGACAAAAG
GGAGGAGAGACGGACAGCGACAAGTGGAGAAAATCGGCGAAACTTGA
GTGGCAGAGAAGTCTGAGC GCTGAGAC C CGGCGGC CC CGTGC GC CTTC
CCAC CTGGCGCCGATC CACTTTCCTCGGGGTAGC GGCC CAA CC CAC TT
CGCTGCCAGCCGATC C CTTTTAC C CGTGGCTACCGGGAC CA CTCTACTC
(SEQ ID CACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGG
NO: 94) CC A GA GGGCGGGGTTCTTGGCGTCTCGCCGGCCA GA CCCCTCCCTC AA
AGGCGGGGCCTGGAGATC CA CAGCTGGAAAGGGC GGAGC C C CAGCAG
GGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGCG
GGCTGGGGGCGC CCTGGTC TGCC A TA A AGTGA A TGGGCGCCGGCTGGG
GGTGGCAGTACGCGGTGAGGCTCACTCCCTCCGAGAGTCCAGGAGCGC
CCGAGCGGAGAGGCGGCCCGGGAGCAGGGGGGCGGCCCCCACTCCGG
CCGGGTGC CCGGCC CCTGGC CC CTGCCTGCC CTCTAGATCGC CGC CGC
AGCCGCCGCTACTGGGAGTCTG
ttgtAATGGGAATAAGGGCAGGACtcctgggtataagtagctcagctgatcccaccctgcttctatgt gttaattcat-ttattcattcat-tcaacaagcatttgttgaaatgctattgtgtcaggctcagcaggaagcagtggcaataaa atggtgaacaagaaagactcggggtttcttcatctatgttgatgtctgcagagaacagtatcagccttctaggaagttt gt aatcagatacattgttagagagatacttatctagtaaattcctactcatcctataaggctcaaaacaaatgcctctatg aaa ccttccgtgattccctcaggcagagttaagagcttcctttcctgggcctctatctccttccattagtattataactgtt tacca gittccectctagacta atlIctcaa qgagagaatgaggictattcagtcttcittgcatctl-taaactagcctgggtcc cagcctgtttgatg aaagaaacaagaacactgatacaagccacagccccttggcaaaaaagatacccaatagcaatg gcaatgtaaaatcag Littagtaaatgaatcaagaattctgatgctttagggaaagtaatgtgaacctggcaccattaaca aattcagaactcttcttcttaggagctctctaactgaacagacagagggatgtcaacccctaattcagcttgatcgtat ct CN S-5 cage aactacatttaatgagacagtgggaaaaagagagagtc cac littanatcagcatatttctaactaaacaatggc (SEQ ID
aatggctaaatctttanaatgcctatttactcaagaacactgcaatggaacatttagacifigggaaagagattagtga tt NO: 95) tacattgctatacactgatttaatttaaatgctcttccanaccaaacacacatgtgccgaagaggctactaagaaaccc a acatgcagagttctctataagtgcagccgacagtgttgactgaaactaaacttggaaatccagggcactaatgcacaat atcaagcaataaaacggcatctctttggcaatatttaatttaaaaaagaagaaagagacaggcgaagatcaggcactgt ctg ttliggaggatcaaccattctgcatttcaaagcattggtccctgcaatatccaggttactgtgctagaatctcgactat t atatcgcagttgtg agagggagggcaaag atgtgtttactcagtgattaggcccttagaataag cctctagctcctaga gagacagctcaccacttattcatttgggccaattcacaaagcctaggaagattaaacatccatgctgagaagacaagc gaatgcagacggtgaaaaagaaataaaaattattaaaaactctgagatgactIcattalttl Lc cacaaggaaactt-tag gaaagtga-tagttagagaaaaacccacattgacctctctctaaacccttaatcatcctligtggtggcactgattgtggt aagcgactggctcgcctcgcccctcttttcactggaagctgagagaaaaaagactctggagaaacag LLLIcgttccag ggacacaaacccctgacactgttaaacatgagatg cc aggaaaacacacttaaaaaaaaaattcccactttaagcttta gactgaatgtgagaaaggagatgataaaaagagtatcacaaGAGAATCTTCAGGCTGTGGG
TTTGGCACTGTGAGCAGTTTACttgacaaattctgtcaaatatttgctttctgaaatctcgagaattgg ttgaatataattgtacttaatgifigcaaaataaataaatatgggactaaggacgttctatcattaatttgtcagaaaa gaga (SEQ ID gttgtcatttctgaaaatttaatgtcattgaagctctatttccaatag caaaggagcactattgctaatagacttcagagctt NO: 96) gaaataaataaatctaggaatcctgagcatctcttggggtgtgacatttgacagtatttatagcacagaacgaaacaa gtttgtgagctggaattcaattgtggcgtattgattccttgcatcagtcattattccctgctgattgacaggtgaaaat tggtt acgttaagtatttcatatgttatattggctgacatttgcttgcctgctcttgtgtcaatattgttgtaaagatctccag ctttatg agatagcaatagacactgactgtggcttttgtgtgatgttccagtg LlLtLcctgacataatttaagacatattaaaaaccag cage atcttccctcttgagaagcttaatgccaatattattgtcttccaggggaagatcatgtatg ctcataatcgggtgcta atttccaccagtacgctcatgtttag gcattaggcactataactgtanaattgag ccttcttgattgattcatgtcaagcctc atctcggctcctg caggggaagtcatccggctgacccatttacactaaaagaagagatagtgttcctactttcacctgg aaccatcaaattgactgaataatctgtaatacattagtgctgacatttgttagggagaattaaacaagacacagtaatc att ccccagaataaanattgtgtttgatttccag cagagttctattaaagggaggac agaatctgtctcttccaaggtggaaa atcgtgaatattccctgcattaatgaaccaagttaac actttaattgcttatagaaccgagttctccaatgacagcattaaa agatagggaggctctgatttaTGGTCAACACAGATTTGTAAC CC
TCAACATGGATAACCAAAGTTCTtaaaactacgcatcaatgaacacatatccatgagcaagact aataatgaggaatgggagccagctcctgtgatatttatgcaactactaaattctcactgaagtcaatgggagtttgctt ac gtaagggctgcaaactttagcctccagagattaaaggggaaaaaaatccttaaactattcaacattaatattgcctgta a ggaatccagccatgacctaagccatggagattctgaacctagcaagtagaagggtaaacagtaaacaccagttatttt aagcacaatctaatcagagttcaatgagaagcaatattatatttgatctctaaggtattaatacttgtatatcactatt ag ac atctttatgtagtccattatccaaacaatgg cttaagtctgtggtatttaataaatcaagtttccatgg c cgtgagactgagt gggagtggggatgaagccittittcttcattlIttittcctcaggtgcaattctgtgttaatataagagaagtgtggcc ttcctt ctcatagcactaaaagtgagataatccctgtgtaagaaatcagtaagtacggtctgcttaatctagtcccagtgtgaaa c tgttgacatttgttctittlictatcattatgtgactgggcctgittigtgctggattaggcacaaatctcctatgcag cacattt ggcatgttactagtagtttaacttcattaataatgtatgaagana atgtaatccatgacaaggaagcanaganaagtatttt IIIIIIIIIagettetcccaaatccffiggaatgagtaattattcaacatIllatgtttgatgttata LILLacaatteaacttccata (SEQ ID
gtgatatttaaaaaagaaactttggcaaatgcttgcaaaaaacacaccttttacaattttaaatgtgatttactgatgg cca NO: 97) gaacttgttaaacatagtaggaaattaaatatttattcatcttatttcattttcagggccgtaaacgctccttctgagt cattcc caataacaagaatttctaccagtaaagctattaacaggcatcaaaataggggagtgctaaattaagatgagattgtaaa agcaaataagaacatacgcagactcgcataggagtgcaaatgatcgttictgattgaaatgtttatagctaaatgagtt tg gctgaattaaacacaaatgttccaaaagataagccgtagctggtgettcLUAlictg tilLtlaagctgctttacagacgaa aatggaactatatttggaacaatgcmctgLLtLLccatactattgatamgtggaaagtcacaaiatggcctaaggaagc taagetcgccccaagcagtggtcacttacaagtac Li Ligtactctgtactectgtc acatttgggcgatcagagcaaca gctggggagac lilt lcaacaaagatgagtgtcagataatcctgatgagattec acatccaacatcttttgtaattatgtca cattcagctgtaatgg aataattcaagctgaaag aacaagctttgatcctttcttaaacctttcc ctgtggactggctatcta aaagatttaaagatatttctgttacaagatctagtgtttcctcagagaagtcatgcttctgaagcatcgtgatctacaa gaa caatatcaagtagccaaacacatttctgaaagcatcgtg taiggggggaggggttgtatttaatgaagatatcaataata tgctatgcttcaalificatctaggtgatcaagattcaattcttgttctgtcatccaaataggcag acagaaaagtgattgaa atacattaTGGAGATGTGTCATTGCACA
GCTGGTGCTTCTTTTTTCTGTTTTTTAAGCTGCTTTACAGACGAAAATG
GAACTATATTTGGAACAATGCTTTC TGTTTTTC CATACTATTGATATTTG
TG G AAAG T CA CAAAATG G C C TAAG G AA G CTAAGCTCGCC C CAAG CA G
TGGTCACTTACAAGTACTTTTGTACTCTGTACTCCTGTCACATTTGGGC
GATCAGAGCAACAGCTGGGGAGACTTTTTCAACAAAGATGAGTGTCAG
ATAATCCTGATGAGATTCCACATCCAACATCTTTTGTAATTATGTCACA
(SEQ ID
TTCAGCTGTAATGGAATAATTCAAGCTGAAAGAACAAGCTTTGATCCT
NO: 98) TTCTTAAACCTTTCCCTGTGGACTGGCTATCTAAAAGATTTAAAGATAT
TTCTGTTACAAGATCTAGTGTTTCCTCAGAGAAGTCATGCTTCTGAAGC
ATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTCTGAA
AGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATA
ATATGC
[00119] Table 11 ¨ CNS-specific promoters NAME SEQI JENCE
Length (SEQ GCTTCCTGGGCGCCTCACCTCCTCCCTGACTCCTGGAGACTCCCAGCCC
ID NO: CTGTCTGGGAGATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGG 696 112) GAGGGGCCGGGGTGGAGGGCGCATCCCCACGGGGAGATTGGATGGAA
ATGGC C TGC CAGTGTGTGTGTGAGTGTGCGCCTGTGGCAGCAGCAGAG
TAAACAGCCGCTGCCCTGTCCTCTCTGCGGCCGTGGCCAGGTACACAG
GCCTGTTTGGACAGCTGCCTTGTCTGTCCGTCTGTTTGGGAGATGCTGG
CTGATAGATGGGGATGGGCGGACTGTTAACCCCTCGTTGCCTGCACTG
CTATGTGCTTC CTGC CTCATCCATGGGGTAGAAGGTAGC CAGAAGGTG
GTCCTGGCTGTGC C CC CAGCTC CTCTCTAGGGGGGAAA CCTCTAGTTCT
GAGTCAGGGACAGAGTGAGGAGGGCTCCAGGGCATCAAGAGCTTGCT
CCTCCCCGCACCAGGGAGCCAAGGACAGAGGAGAAGGGG GTCTTC CC
CAGTGGTGACTAGGGGCAGAATATGTCTC TGAGTGAGTGTCTGGAGCC
CTC CTCA C CC CAACAC CATGGGGCTGGGCATAAAAGTCAGG G CAGA GC
CATCTATTGCTTACATTTGCTTCTG
GGTGTGTGGAAGGGTGAGAGGC A CACACACAGACAC TGAAAGAATCC
TAGGCCTGGTAGGCACTTAACAAATGTCTGTTACAGACCAGAATTTTA
TTGCTGTTAGAGACCCAAGCCCCTCATAGGAACAGTGAGAAA CAGGTG
CAGAAAGGCGGAGTAACTTTATC TAAAGTCATAGGCTC CC TGAATAGC
AGAGCTGACAC CTACAAGGAAGCGTTGGAGACCAGATCTACCAGC TA
(SEQ GCCAGCCA GGTAGCCGGTTTCC CACGTC CC C CGCAC GCACGCACCTCT
ID NO: TTGCTGCAGGAATCCCGGGCTGCCCCGACCTGGAGTAGGGG GGGTGGT 709 1 1 3) GA GTGGGA CTGA GTC CC TA GA A GC CTGGA CC CTC A CTTCGTTCCTGTA
CATCCAGCTCGCCTGTAGACAGTGGGGGAGGATGAAGGGAAGAGGAC
TCAAGCGCAACTTTGAATCATCACGCCTTCGA CAGTC CGCGCACGTTTA
TTTCATTTATCTTTGA A A A CGAGGGAGGGGA A GC CTGGA GA A GGCGGG
ATGGGCCAAGGGTGAGTTGGCCCCCGGGGAGCTGGTCCCTGTTCCTGG
CTTTAGTC C C AGGGGCGC GGTC TGTGTGTAGGGC GGGC TGGGCATAAA
AGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
TGCTACCAGAGCCGGGAGAGCTGCTCGGAGACGCCTCCGGGGTGCGG
GCTGGACATGAGCAGCGGCTGCCGGTCCTGGGACTAGGCCCCGCCATT
TTGGATCCGCTGACAGGTCAGCGAAGTCTCTTCCTAGAGTTCCGGTGTC
GTGAAGGCCGCCCTGACATCGCAATAGGGAATTAG TGGGAAGGG CC CT
TA A A TTGGGCGA GCC A A GGTGGGGGGA GGA TTGGA A C A GA GA CA A A A
GGGAGGAGAGACGGACAGCGACAAGTGGrAGAAAATCGGCGAAACTTG
(SEQ CC CAC C TGGCGC CGATCCACTTTC CTCGGGGTAGCGGCCCAACC CA C T
ID NO: TCGCTGC CAGC CGATCC CTTTTAC CCGTGGC TA C CGGGAC CACTC TA C T
1 14) CTCGCCCACTTGGCTCTGCCTAAG CGTCCTAGCCGGAGCGCGGTCTCTG
CCACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTG
GCCAGAGGGCGGGGTTCTTGGCGTCTCGCCGGCCAGACCCCTCCCTCA
AAGGCGGGGCCTGGAGATC CACAGCTGGAAAGGGCGGAGC C CCAGCA
GGGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGC
GGGCTGGGGGCGCCCTGGTCTGCCATAAAGTGAATGGGCGCCGGCTGG
GGGTGGCAGTACGCGGTGAGGCTCACTC CCTC CGAGAGTCCAGGAGCG
CC
AAGGAGAATGGTAAACAGCAGGAGCGAAGCGGCTGAGGAGAAAGAA
GAGGAAAGAAAGGCGAGACGTGGGAGGATTGGAACAGAGACAAAAG
GGAGGAGAGAC GGA CAGC GAC AAGTGGAGAAAATC GGC GAAAC TTGA
SEQ
CCAC CTGGCGCCGATC CACTTTCCTCGGGGTAGC GGCC CAA CC CAC TT
( CGCTGCCAGCCGATC C CTTTTAC C CGTGGCTACCGGGAC CA CTCTACTC
ID NO:
115) TCGCCCACTTGGCTCTGCCTAAGCGTCCTAGCCGGAGCGCGGTCTCTGC
CACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGG
CCAGAGGGCGGGGTTCTTGGCGTCTC GC CGGC CAGAC CCC TCC CTCAA
AGGCGGGGCCTGGAGATCCACAGCTGGAAAGGGCGGAGCCCCAG CAG
GGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGCG
GGCTGGGGGCGCCCTGGTCTGCCATAAAGTGAATGGGCGCCGGCTGGG
GGTGGCAGTACGCGGTGAGGCTCACTC CC TC CGAGAGTCCAGGAGC GC
CCGAGCGGAGAGGCGGCCCGGGAGCAGGGGGGCGGCCC CCACTCCGG
CCGGGTGC CCGGCC CCTGGC CC CTGCCTGCC CTCTAGATCGC CGC CGC
AGCCGCCGCTACTGGGAGTCTG
ttgtA A TGGG A A TA A GGGC A GGA Ctcctgggtataagtagctcagctgatcccaccctgcttctatgt gttaattcatttattcattcattcaacaagcatttgttgaaatgctctttgtgtcaggctcagcaggaagcagtggcaa taaa atggtgaacaagaaagacteggggtttcttcatctatgttgatgtctgcagagaacagtatcagccttctaggaagifi gt aatcagatacattgttagagagatacttatctagtaaattcctactcatcctataaggctcaaaacaaatgcctctatg aaa ccUccgtgattccctcaggcagagttaagascUcctttcctgggcctctatctccaccattagtattataactgatacc a gtttccectctagactaaatttctcaaaagagagaatgaggtctctttcagtcttctagcatctttaaactagcctggg tcc cagcctgtttgatg aaagaaacaagaacactgatacaagccacagccccttggcaaaaaagatacccaatagcaatg gcaatgtaaaatcagttttagtaaatgaatcaagaattctgatgattagggaaagtaatgtgaacctggcaccattaac a CNS- aattcagaactc ttc ttc ttaggagctctctaactgaacagacagagggatgtcaaccectaattcagc ttgatcgtatct 5v2 cagcaactacatttaatgagacagtgggaaaaagagagctgtccac tlitanatcagcatatttctaactaaacaatggc (SEQ
aatggctaaatctttaaaatgcctatttctctcaagaacactgcaatggaacatttagactttgggaaagagattagtg att 1744 ID NO: tacattgctatctcactgatttaatttaaatgctatccaaaccaaacacacatgtgccgaagagg ctactaagaaaccca 116) acatgcagagttctctataagtgcagccgacagtgttgactgaaactaaacttggaaatccagggcactaatgcacaat atcaagcaataanacggcatctctttggcaatatttaatttaaaaaagaagaaagagacaggcgaagatcaggcactgt ctg Ultggaggatcaaccattctgcatttcaaagcattggtccctgcaatatccaggttactgtgctagaatctcgactatt atatcgcagttgtg agagggagggcaaagatgtgatactcagtgattaggccatagaataagcctctagctcctaga gagacagctcaccacttattcatttgggccaattcacaaagcctaggaagattaaacatccatgctgagaagacaagc gaatgcagacggtgaaaaagaaataaanattctttaaaaactctgagatgacttcattatUttecacaaggaaacttta g gaaagtgtttagttagagaaaaacccacattgacctctctctaaacccttaatctttcctttgtggtggcactgctttg tggt aagcgactggctcgcctcgcccctcttttcactggaagctgagagaaaaaagactctggagaaacag littcgttccag ggacacaaacccctgacactgttaaacatgagatg cc aggaaaacacacttaanaanaanattcccactttaagcttta gactgaatgtgaganaggagatgataannagagtatcacaaGAGAATCTTCAGGCTGTGGG
TTTGGCACTGTGAGCAGTTTAC ttgacaaattctgtcaaatatttgctttctgaaatctcgagaattgg ttgaatataattgtacttaatgtttgcaaaataaataaatatgggactaaggacgttctatcattaatttgtcagaaaa gaga gttgtcatttctgaaaatttaatgtcattgaagctctatttccaatag caaaggagcactattgctaatagacttcagagctt gaaataaataaatattggaatcctgttgcatctcttggggtgtgacatttgacagtctUtatagcacagaacgaaacaa CNS-gtttgtgagctggaattcaattgtggcgtattgattcatgcatcagtcattattccctgctgattgacaggtgaaaatt ggtt 6v2 acgttaagtatt-tcatatgttatattggctgacatt-tgcttgcctgctcttgtgtcaatattgttgtaaagatctccag ctl-tatg (SEQ
agatagcaatagacactgactgtggcttagtgtgatgttccagtgatticctgacataatttaagacatattaaaaacc ag 1104 ID NO: cagcatcttccctcttgagaagcttaatgccaatattattgtatccaggggaagatcatgtatg ctcataatcgggtgcta 117) atttccaccagtacgctcatgtttag gcattaggcactataactgtaaaattgag ccttcttgattgattcatgtcaagcctc atctcggctcctgcaggggaagtcatccggctgaccc ilitlacactaaaagaagagatttgtgttcctttctttcacctgg aaccatcaaattgactgaataatctgtaatacattagtgctgacatttgttagggagaattaaacaagacacagtaatc att ccccagaataaaaattgtgtttgatttccag cagagttctattaaagggaggacagaatctgtctcttccaaggtggaaa atcgtgaatattccctgcattaatgaaccaagttaacactttaattgcttatagaaccgagttctccaatgacagcatt aaa agatagggaggctctgatttaTGGTCAACACAGATTTGTAAC CC
TCAACATGGATAACCAAAGTTCTtaaaactacgattcaatgaacacatatcattgagcaagact aataatgaggaatgggagccagacctgtgatatttatgcaactactaaattctcactgaagtcaatgggagtagcttac gtaagggctgcaaactttagcctccagagattaaaggggaaaaaaatccttaaactctttcaacattaatattgcctgt aa ggaatccagccatgacctaagccatggagcffictgaacctagcaagtagaagggtaaacagtaaacaccagttatttt CNS
aagcacaatctaatcagagttcaatgagaagcaatattatatttgatctctaaggtattaatacttgtatatcactatt ag ac -7 v2 atattatgtagtcc attatccaaacaatggettaagtctgtggtatttaataaatcaagtttccatggc cgtgagactgagt gggagtggggatgaagccLLLtLLcttcaLLLLtLLtLcctcaggtgcaattctgtgttaatataagagaagtgtggcc ttcctt 1941 (SEQ
ID NO:
ctcatagcactaaaagtgagataatccctgtgtaagaaatcagtaagtacggtctgcttaatctagtcccagtgtgana c 118 tgttg acatttgttclAttlictatcattatgtgactgggcctg ittigtgctgg attaggeacaaatctcctatgcagcacattt ) ggcatgttactagtagtttaacttcattaataatgtatgaagaaaatgtaatccatgacaaggaagcaaagaaaagtat ttt tttlttLttttgcttctcccaaatcctttggaatgagtaattattcaacattLLatgtttgatgttataLtLLacaatt caacttccata gtgatatttaaaaaagaaactaggcaaatgcttgcaaaaaacacaccattacaatataaatgtgatttactgatggcca gaacttgttaaacatagtagg aaattaaatatttattcatcttatttcattlicagggccgtaaacgctccttctgagtcattcc caataacaagaatttctaccagtaaag ctattaacaggcatcaaaataggggagtgctaaattaagatgag attg taaa agcaaataagaacatacgcagactcgcataggagtgcanatgatcgtactgattganatgtttatagetanatgagttt g gctgaattaaacacaaatgttccaaaagataagccgtagc-tggtgatcLLtatag Litittaagagattacagacgaa aatggaactatatttggaacaatutttctg tatccatactattgatatttgtgganagtcacaanatggcctaaggaag c taagctcgccccaag cagtggtcacttacaagtacttttgtactctgtactcc tgtcacatttgggcgatcagagcaaca gctggggagac tatcaacaaagatgagtgtcagataatcctgatgagattec acatccaacatc ILL
Lgtaattatgtca cattcagctgtaatggaataattcaagctgaaagaacaagctttgatcctttcttaaacctttccctgtggactggcta tcta aaagatttaaagatatttctgttacaagatctagtgtttectcagagaagtcatgcttctgaagcatcgtgatctacaa gaa caatatcaagiligccaaacacatttctgaaagcatcgtg ILLIggggggaggggttgtatttaatgaagatatcaataata tgctatgcttcaailticatctaggtgatcaagattcaLiticttgttctgtcatccaaataggcag acagaaaagtgattgaa atacattaTGGAGATGTGTCATTGCACA
GCTGGTGCTTCTTTTTTCTGTTTTTTAAGCTGCTTTACAGACGAAAATG
GAACTATATTTGGAA CAATGCTTTCTGTTTTTC CATAC TATTGATATTTG
TGGAAAGTCACAAAATGGCCTAAGGAAGCTAAGCTCGCCCCAAGCAG
TGGTCACTTACAAGTACTTTTGTACTCTGTA CTCCTGTCACATTTGGGC
CNS -GATCAGAGCAACAGCTGGGGAGACTTTTTCAACAAAGATGAGTGTCAG
8 v2 (0 ATAATCCTGATGAGATTCCACATC CAACATCTTTTGTAATTATGTCACA 540 SE
TTCAGCTGTAATGGAATAATTCAAGCTGAAAGAACAAGCTTTGATC CT
ID NO:
TTCTTAAACCTTTCCCTGTGGACTGGCTATCTAAAAGATTTAAAGATAT
119) TTCTGTTA CA A GA TCTA GTGTTTC CTC A GA GA A GTC A TGCTTCTGA A GC
ATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTCTGAA
AGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATA
A TA TGC
CTGGGCAGAGAGGGGGCATCGGGGGCATGGCTAGGGGCCAGCACTGT
GCTTCCTGGGCGCCTCACCTCCTCCCTGACTCCTGGAGACTCCCAGCCC
CTGTCTGGGAGATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGG
GAGGGGCCGGGGTGGAGGGCGCATCCCCACGGGGAGATTGGATGGAA
ATGGCC TGC CAGTGTGTGTGTGAGTGTGC GC C TGTGGCAGCAGCAGAG
TAAA CAGC CGCTGC CCTGTC CTCT CTGCGGCCGTGGC CAGGTACACAG
GCCTGTTTGGACAGCTGCCTTGTCTGTC CGTCTGTTTGGGAGATGCTGG
CM CTGA TA GA TGGGGATGGGCGGA CTGTTA A CC C CTCGTTGC CTGC A CTG
V-CTATGTGCTTCCTGCCTCATCCATGGGGTAGAAGGTAGCCAGAAGGTG
IE UTR
GTCCTGGCTGTGC C CC CAGCTC CTCTCTAGGGGGGAAA CCTCTAGTTCT
and intron CCTCCCCGCACCAGGGAGC CAAGGACAGAGGAGAAGGGGGTCTTCCC
(SEQ
ID NO CAG TGG TG ACTAG G G G CAGAATATG TCTC TGAG TGAG TG TCTG GAG C C
:
120) CTC CTCA C CC CAACAC CATGGGGCTGGGCATAAAAGTCAGGG CAGA GC
CATCTATTGCTTACATTTGTCAGATCGCCTGGAGACGCCATCCA CGCTG
TTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGCCG
GGAACGGTGCATTGGAACGCGGATTCCC CGTGCCAAGAGTGACGTAAG
TACCGCCTATAGACTCTATAGGCA CAC CC CTTTGGCTCTTATGCATGAA
CGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGC CGCGC GCG
CCACCAGACATAATAGCTGACAGACTA ACAGACTGTTCCTTTCCATGG
GTCTTTTCTGCAGATGC CAC C
AAGGAGAATGGTAAACAGCAGGAGCGAAGCGGC TGAGGAGAAAGAA
CNS GAGGAAAGAAAGGCGAGACGTGGGAGGATTGGAACAGAGACAAAAG
(SEQ. ID
GTGAAGGC CGCCCTGACATCGCAATAGGGAATTAGTGGGAAGGGCC CT
NO. 93) TA A A TTGGGCGA GCCA AGGTGGGGGGA GGA TTGGA A CAGA GA CA AAA
GGGA GGA GA GA CGGA CA GCGA C A A GTGGA GA A A A TCGGCGA A A CTTG
AGTGGCAGAGAAGTCTGAGCGCTGAGACCCGGCGGCCCCGTGCGCCTT
CC CAC C TGGCGC CGATCCACTTTC CTCGGGGTAGCGGCCCAACC CAC T
TCGCTGC CAGC CGATCC CTTTTAC CCGTGGC TA C CGGGAC CACTCTA CT
CTCGC C CACTTGGCTCTGCCTAAGCGTC CTAGCCGGAGCGCGGT CTCTG
CCACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTG
GCCAGAGGGCGGGGTTCTTGGCGTCTCGC CGGCCAGAC C CCTC CCTCA
AAGGCGGGGCCTGGAGATCCACAGCTGGAAAGGGCGGAGCCCCAGCA
GGGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGC
GGGCTGGGGGCGCCCTGGTCTGCCATAAAGTGAATGGGCGCCGGCTGG
GGGTGGCAGTACGCGGTGAGGCTCACTC CCTC CGAGAGTCCAGGAGCG
CC
AAGGAGAATGGTAAACAGCAGGAGCGAAGCGGC TGAGGAGAAAGAA
GAGGAAAGAAAGGCGAGACGTGGGAGGATTGGAACAGAGACAAAAG
GGAGGAGAGACGGACAGCGACAAGTGGAGAAAATCGGCGAAACTTGA
GTGGCAGAGAAGTCTGAGC GCTGAGAC C CGGCGGC CC CGTGC GC CTTC
CCAC CTGGCGCCGATC CACTTTCCTCGGGGTAGC GGCC CAA CC CAC TT
CGCTGCCAGCCGATC C CTTTTAC C CGTGGCTACCGGGAC CA CTCTACTC
(SEQ ID CACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGG
NO: 94) CC A GA GGGCGGGGTTCTTGGCGTCTCGCCGGCCA GA CCCCTCCCTC AA
AGGCGGGGCCTGGAGATC CA CAGCTGGAAAGGGC GGAGC C C CAGCAG
GGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGCG
GGCTGGGGGCGC CCTGGTC TGCC A TA A AGTGA A TGGGCGCCGGCTGGG
GGTGGCAGTACGCGGTGAGGCTCACTCCCTCCGAGAGTCCAGGAGCGC
CCGAGCGGAGAGGCGGCCCGGGAGCAGGGGGGCGGCCCCCACTCCGG
CCGGGTGC CCGGCC CCTGGC CC CTGCCTGCC CTCTAGATCGC CGC CGC
AGCCGCCGCTACTGGGAGTCTG
ttgtAATGGGAATAAGGGCAGGACtcctgggtataagtagctcagctgatcccaccctgcttctatgt gttaattcat-ttattcattcat-tcaacaagcatttgttgaaatgctattgtgtcaggctcagcaggaagcagtggcaataaa atggtgaacaagaaagactcggggtttcttcatctatgttgatgtctgcagagaacagtatcagccttctaggaagttt gt aatcagatacattgttagagagatacttatctagtaaattcctactcatcctataaggctcaaaacaaatgcctctatg aaa ccttccgtgattccctcaggcagagttaagagcttcctttcctgggcctctatctccttccattagtattataactgtt tacca gittccectctagacta atlIctcaa qgagagaatgaggictattcagtcttcittgcatctl-taaactagcctgggtcc cagcctgtttgatg aaagaaacaagaacactgatacaagccacagccccttggcaaaaaagatacccaatagcaatg gcaatgtaaaatcag Littagtaaatgaatcaagaattctgatgctttagggaaagtaatgtgaacctggcaccattaaca aattcagaactcttcttcttaggagctctctaactgaacagacagagggatgtcaacccctaattcagcttgatcgtat ct CN S-5 cage aactacatttaatgagacagtgggaaaaagagagagtc cac littanatcagcatatttctaactaaacaatggc (SEQ ID
aatggctaaatctttanaatgcctatttactcaagaacactgcaatggaacatttagacifigggaaagagattagtga tt NO: 95) tacattgctatacactgatttaatttaaatgctcttccanaccaaacacacatgtgccgaagaggctactaagaaaccc a acatgcagagttctctataagtgcagccgacagtgttgactgaaactaaacttggaaatccagggcactaatgcacaat atcaagcaataaaacggcatctctttggcaatatttaatttaaaaaagaagaaagagacaggcgaagatcaggcactgt ctg ttliggaggatcaaccattctgcatttcaaagcattggtccctgcaatatccaggttactgtgctagaatctcgactat t atatcgcagttgtg agagggagggcaaag atgtgtttactcagtgattaggcccttagaataag cctctagctcctaga gagacagctcaccacttattcatttgggccaattcacaaagcctaggaagattaaacatccatgctgagaagacaagc gaatgcagacggtgaaaaagaaataaaaattattaaaaactctgagatgactIcattalttl Lc cacaaggaaactt-tag gaaagtga-tagttagagaaaaacccacattgacctctctctaaacccttaatcatcctligtggtggcactgattgtggt aagcgactggctcgcctcgcccctcttttcactggaagctgagagaaaaaagactctggagaaacag LLLIcgttccag ggacacaaacccctgacactgttaaacatgagatg cc aggaaaacacacttaaaaaaaaaattcccactttaagcttta gactgaatgtgagaaaggagatgataaaaagagtatcacaaGAGAATCTTCAGGCTGTGGG
TTTGGCACTGTGAGCAGTTTACttgacaaattctgtcaaatatttgctttctgaaatctcgagaattgg ttgaatataattgtacttaatgifigcaaaataaataaatatgggactaaggacgttctatcattaatttgtcagaaaa gaga (SEQ ID gttgtcatttctgaaaatttaatgtcattgaagctctatttccaatag caaaggagcactattgctaatagacttcagagctt NO: 96) gaaataaataaatctaggaatcctgagcatctcttggggtgtgacatttgacagtatttatagcacagaacgaaacaa gtttgtgagctggaattcaattgtggcgtattgattccttgcatcagtcattattccctgctgattgacaggtgaaaat tggtt acgttaagtatttcatatgttatattggctgacatttgcttgcctgctcttgtgtcaatattgttgtaaagatctccag ctttatg agatagcaatagacactgactgtggcttttgtgtgatgttccagtg LlLtLcctgacataatttaagacatattaaaaaccag cage atcttccctcttgagaagcttaatgccaatattattgtcttccaggggaagatcatgtatg ctcataatcgggtgcta atttccaccagtacgctcatgtttag gcattaggcactataactgtanaattgag ccttcttgattgattcatgtcaagcctc atctcggctcctg caggggaagtcatccggctgacccatttacactaaaagaagagatagtgttcctactttcacctgg aaccatcaaattgactgaataatctgtaatacattagtgctgacatttgttagggagaattaaacaagacacagtaatc att ccccagaataaanattgtgtttgatttccag cagagttctattaaagggaggac agaatctgtctcttccaaggtggaaa atcgtgaatattccctgcattaatgaaccaagttaac actttaattgcttatagaaccgagttctccaatgacagcattaaa agatagggaggctctgatttaTGGTCAACACAGATTTGTAAC CC
TCAACATGGATAACCAAAGTTCTtaaaactacgcatcaatgaacacatatccatgagcaagact aataatgaggaatgggagccagctcctgtgatatttatgcaactactaaattctcactgaagtcaatgggagtttgctt ac gtaagggctgcaaactttagcctccagagattaaaggggaaaaaaatccttaaactattcaacattaatattgcctgta a ggaatccagccatgacctaagccatggagattctgaacctagcaagtagaagggtaaacagtaaacaccagttatttt aagcacaatctaatcagagttcaatgagaagcaatattatatttgatctctaaggtattaatacttgtatatcactatt ag ac atctttatgtagtccattatccaaacaatgg cttaagtctgtggtatttaataaatcaagtttccatgg c cgtgagactgagt gggagtggggatgaagccittittcttcattlIttittcctcaggtgcaattctgtgttaatataagagaagtgtggcc ttcctt ctcatagcactaaaagtgagataatccctgtgtaagaaatcagtaagtacggtctgcttaatctagtcccagtgtgaaa c tgttgacatttgttctittlictatcattatgtgactgggcctgittigtgctggattaggcacaaatctcctatgcag cacattt ggcatgttactagtagtttaacttcattaataatgtatgaagana atgtaatccatgacaaggaagcanaganaagtatttt IIIIIIIIIagettetcccaaatccffiggaatgagtaattattcaacatIllatgtttgatgttata LILLacaatteaacttccata (SEQ ID
gtgatatttaaaaaagaaactttggcaaatgcttgcaaaaaacacaccttttacaattttaaatgtgatttactgatgg cca NO: 97) gaacttgttaaacatagtaggaaattaaatatttattcatcttatttcattttcagggccgtaaacgctccttctgagt cattcc caataacaagaatttctaccagtaaagctattaacaggcatcaaaataggggagtgctaaattaagatgagattgtaaa agcaaataagaacatacgcagactcgcataggagtgcaaatgatcgttictgattgaaatgtttatagctaaatgagtt tg gctgaattaaacacaaatgttccaaaagataagccgtagctggtgettcLUAlictg tilLtlaagctgctttacagacgaa aatggaactatatttggaacaatgcmctgLLtLLccatactattgatamgtggaaagtcacaaiatggcctaaggaagc taagetcgccccaagcagtggtcacttacaagtac Li Ligtactctgtactectgtc acatttgggcgatcagagcaaca gctggggagac lilt lcaacaaagatgagtgtcagataatcctgatgagattec acatccaacatcttttgtaattatgtca cattcagctgtaatgg aataattcaagctgaaag aacaagctttgatcctttcttaaacctttcc ctgtggactggctatcta aaagatttaaagatatttctgttacaagatctagtgtttcctcagagaagtcatgcttctgaagcatcgtgatctacaa gaa caatatcaagtagccaaacacatttctgaaagcatcgtg taiggggggaggggttgtatttaatgaagatatcaataata tgctatgcttcaalificatctaggtgatcaagattcaattcttgttctgtcatccaaataggcag acagaaaagtgattgaa atacattaTGGAGATGTGTCATTGCACA
GCTGGTGCTTCTTTTTTCTGTTTTTTAAGCTGCTTTACAGACGAAAATG
GAACTATATTTGGAACAATGCTTTC TGTTTTTC CATACTATTGATATTTG
TG G AAAG T CA CAAAATG G C C TAAG G AA G CTAAGCTCGCC C CAAG CA G
TGGTCACTTACAAGTACTTTTGTACTCTGTACTCCTGTCACATTTGGGC
GATCAGAGCAACAGCTGGGGAGACTTTTTCAACAAAGATGAGTGTCAG
ATAATCCTGATGAGATTCCACATCCAACATCTTTTGTAATTATGTCACA
(SEQ ID
TTCAGCTGTAATGGAATAATTCAAGCTGAAAGAACAAGCTTTGATCCT
NO: 98) TTCTTAAACCTTTCCCTGTGGACTGGCTATCTAAAAGATTTAAAGATAT
TTCTGTTACAAGATCTAGTGTTTCCTCAGAGAAGTCATGCTTCTGAAGC
ATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTCTGAA
AGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATA
ATATGC
[00119] Table 11 ¨ CNS-specific promoters NAME SEQI JENCE
Length (SEQ GCTTCCTGGGCGCCTCACCTCCTCCCTGACTCCTGGAGACTCCCAGCCC
ID NO: CTGTCTGGGAGATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGG 696 112) GAGGGGCCGGGGTGGAGGGCGCATCCCCACGGGGAGATTGGATGGAA
ATGGC C TGC CAGTGTGTGTGTGAGTGTGCGCCTGTGGCAGCAGCAGAG
TAAACAGCCGCTGCCCTGTCCTCTCTGCGGCCGTGGCCAGGTACACAG
GCCTGTTTGGACAGCTGCCTTGTCTGTCCGTCTGTTTGGGAGATGCTGG
CTGATAGATGGGGATGGGCGGACTGTTAACCCCTCGTTGCCTGCACTG
CTATGTGCTTC CTGC CTCATCCATGGGGTAGAAGGTAGC CAGAAGGTG
GTCCTGGCTGTGC C CC CAGCTC CTCTCTAGGGGGGAAA CCTCTAGTTCT
GAGTCAGGGACAGAGTGAGGAGGGCTCCAGGGCATCAAGAGCTTGCT
CCTCCCCGCACCAGGGAGCCAAGGACAGAGGAGAAGGGG GTCTTC CC
CAGTGGTGACTAGGGGCAGAATATGTCTC TGAGTGAGTGTCTGGAGCC
CTC CTCA C CC CAACAC CATGGGGCTGGGCATAAAAGTCAGG G CAGA GC
CATCTATTGCTTACATTTGCTTCTG
GGTGTGTGGAAGGGTGAGAGGC A CACACACAGACAC TGAAAGAATCC
TAGGCCTGGTAGGCACTTAACAAATGTCTGTTACAGACCAGAATTTTA
TTGCTGTTAGAGACCCAAGCCCCTCATAGGAACAGTGAGAAA CAGGTG
CAGAAAGGCGGAGTAACTTTATC TAAAGTCATAGGCTC CC TGAATAGC
AGAGCTGACAC CTACAAGGAAGCGTTGGAGACCAGATCTACCAGC TA
(SEQ GCCAGCCA GGTAGCCGGTTTCC CACGTC CC C CGCAC GCACGCACCTCT
ID NO: TTGCTGCAGGAATCCCGGGCTGCCCCGACCTGGAGTAGGGG GGGTGGT 709 1 1 3) GA GTGGGA CTGA GTC CC TA GA A GC CTGGA CC CTC A CTTCGTTCCTGTA
CATCCAGCTCGCCTGTAGACAGTGGGGGAGGATGAAGGGAAGAGGAC
TCAAGCGCAACTTTGAATCATCACGCCTTCGA CAGTC CGCGCACGTTTA
TTTCATTTATCTTTGA A A A CGAGGGAGGGGA A GC CTGGA GA A GGCGGG
ATGGGCCAAGGGTGAGTTGGCCCCCGGGGAGCTGGTCCCTGTTCCTGG
CTTTAGTC C C AGGGGCGC GGTC TGTGTGTAGGGC GGGC TGGGCATAAA
AGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
TGCTACCAGAGCCGGGAGAGCTGCTCGGAGACGCCTCCGGGGTGCGG
GCTGGACATGAGCAGCGGCTGCCGGTCCTGGGACTAGGCCCCGCCATT
TTGGATCCGCTGACAGGTCAGCGAAGTCTCTTCCTAGAGTTCCGGTGTC
GTGAAGGCCGCCCTGACATCGCAATAGGGAATTAG TGGGAAGGG CC CT
TA A A TTGGGCGA GCC A A GGTGGGGGGA GGA TTGGA A C A GA GA CA A A A
GGGAGGAGAGACGGACAGCGACAAGTGGrAGAAAATCGGCGAAACTTG
(SEQ CC CAC C TGGCGC CGATCCACTTTC CTCGGGGTAGCGGCCCAACC CA C T
ID NO: TCGCTGC CAGC CGATCC CTTTTAC CCGTGGC TA C CGGGAC CACTC TA C T
1 14) CTCGCCCACTTGGCTCTGCCTAAG CGTCCTAGCCGGAGCGCGGTCTCTG
CCACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTG
GCCAGAGGGCGGGGTTCTTGGCGTCTCGCCGGCCAGACCCCTCCCTCA
AAGGCGGGGCCTGGAGATC CACAGCTGGAAAGGGCGGAGC C CCAGCA
GGGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGC
GGGCTGGGGGCGCCCTGGTCTGCCATAAAGTGAATGGGCGCCGGCTGG
GGGTGGCAGTACGCGGTGAGGCTCACTC CCTC CGAGAGTCCAGGAGCG
CC
AAGGAGAATGGTAAACAGCAGGAGCGAAGCGGCTGAGGAGAAAGAA
GAGGAAAGAAAGGCGAGACGTGGGAGGATTGGAACAGAGACAAAAG
GGAGGAGAGAC GGA CAGC GAC AAGTGGAGAAAATC GGC GAAAC TTGA
SEQ
CCAC CTGGCGCCGATC CACTTTCCTCGGGGTAGC GGCC CAA CC CAC TT
( CGCTGCCAGCCGATC C CTTTTAC C CGTGGCTACCGGGAC CA CTCTACTC
ID NO:
115) TCGCCCACTTGGCTCTGCCTAAGCGTCCTAGCCGGAGCGCGGTCTCTGC
CACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGG
CCAGAGGGCGGGGTTCTTGGCGTCTC GC CGGC CAGAC CCC TCC CTCAA
AGGCGGGGCCTGGAGATCCACAGCTGGAAAGGGCGGAGCCCCAG CAG
GGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGCG
GGCTGGGGGCGCCCTGGTCTGCCATAAAGTGAATGGGCGCCGGCTGGG
GGTGGCAGTACGCGGTGAGGCTCACTC CC TC CGAGAGTCCAGGAGC GC
CCGAGCGGAGAGGCGGCCCGGGAGCAGGGGGGCGGCCC CCACTCCGG
CCGGGTGC CCGGCC CCTGGC CC CTGCCTGCC CTCTAGATCGC CGC CGC
AGCCGCCGCTACTGGGAGTCTG
ttgtA A TGGG A A TA A GGGC A GGA Ctcctgggtataagtagctcagctgatcccaccctgcttctatgt gttaattcatttattcattcattcaacaagcatttgttgaaatgctctttgtgtcaggctcagcaggaagcagtggcaa taaa atggtgaacaagaaagacteggggtttcttcatctatgttgatgtctgcagagaacagtatcagccttctaggaagifi gt aatcagatacattgttagagagatacttatctagtaaattcctactcatcctataaggctcaaaacaaatgcctctatg aaa ccUccgtgattccctcaggcagagttaagascUcctttcctgggcctctatctccaccattagtattataactgatacc a gtttccectctagactaaatttctcaaaagagagaatgaggtctctttcagtcttctagcatctttaaactagcctggg tcc cagcctgtttgatg aaagaaacaagaacactgatacaagccacagccccttggcaaaaaagatacccaatagcaatg gcaatgtaaaatcagttttagtaaatgaatcaagaattctgatgattagggaaagtaatgtgaacctggcaccattaac a CNS- aattcagaactc ttc ttc ttaggagctctctaactgaacagacagagggatgtcaaccectaattcagc ttgatcgtatct 5v2 cagcaactacatttaatgagacagtgggaaaaagagagctgtccac tlitanatcagcatatttctaactaaacaatggc (SEQ
aatggctaaatctttaaaatgcctatttctctcaagaacactgcaatggaacatttagactttgggaaagagattagtg att 1744 ID NO: tacattgctatctcactgatttaatttaaatgctatccaaaccaaacacacatgtgccgaagagg ctactaagaaaccca 116) acatgcagagttctctataagtgcagccgacagtgttgactgaaactaaacttggaaatccagggcactaatgcacaat atcaagcaataanacggcatctctttggcaatatttaatttaaaaaagaagaaagagacaggcgaagatcaggcactgt ctg Ultggaggatcaaccattctgcatttcaaagcattggtccctgcaatatccaggttactgtgctagaatctcgactatt atatcgcagttgtg agagggagggcaaagatgtgatactcagtgattaggccatagaataagcctctagctcctaga gagacagctcaccacttattcatttgggccaattcacaaagcctaggaagattaaacatccatgctgagaagacaagc gaatgcagacggtgaaaaagaaataaanattctttaaaaactctgagatgacttcattatUttecacaaggaaacttta g gaaagtgtttagttagagaaaaacccacattgacctctctctaaacccttaatctttcctttgtggtggcactgctttg tggt aagcgactggctcgcctcgcccctcttttcactggaagctgagagaaaaaagactctggagaaacag littcgttccag ggacacaaacccctgacactgttaaacatgagatg cc aggaaaacacacttaanaanaanattcccactttaagcttta gactgaatgtgaganaggagatgataannagagtatcacaaGAGAATCTTCAGGCTGTGGG
TTTGGCACTGTGAGCAGTTTAC ttgacaaattctgtcaaatatttgctttctgaaatctcgagaattgg ttgaatataattgtacttaatgtttgcaaaataaataaatatgggactaaggacgttctatcattaatttgtcagaaaa gaga gttgtcatttctgaaaatttaatgtcattgaagctctatttccaatag caaaggagcactattgctaatagacttcagagctt gaaataaataaatattggaatcctgttgcatctcttggggtgtgacatttgacagtctUtatagcacagaacgaaacaa CNS-gtttgtgagctggaattcaattgtggcgtattgattcatgcatcagtcattattccctgctgattgacaggtgaaaatt ggtt 6v2 acgttaagtatt-tcatatgttatattggctgacatt-tgcttgcctgctcttgtgtcaatattgttgtaaagatctccag ctl-tatg (SEQ
agatagcaatagacactgactgtggcttagtgtgatgttccagtgatticctgacataatttaagacatattaaaaacc ag 1104 ID NO: cagcatcttccctcttgagaagcttaatgccaatattattgtatccaggggaagatcatgtatg ctcataatcgggtgcta 117) atttccaccagtacgctcatgtttag gcattaggcactataactgtaaaattgag ccttcttgattgattcatgtcaagcctc atctcggctcctgcaggggaagtcatccggctgaccc ilitlacactaaaagaagagatttgtgttcctttctttcacctgg aaccatcaaattgactgaataatctgtaatacattagtgctgacatttgttagggagaattaaacaagacacagtaatc att ccccagaataaaaattgtgtttgatttccag cagagttctattaaagggaggacagaatctgtctcttccaaggtggaaa atcgtgaatattccctgcattaatgaaccaagttaacactttaattgcttatagaaccgagttctccaatgacagcatt aaa agatagggaggctctgatttaTGGTCAACACAGATTTGTAAC CC
TCAACATGGATAACCAAAGTTCTtaaaactacgattcaatgaacacatatcattgagcaagact aataatgaggaatgggagccagacctgtgatatttatgcaactactaaattctcactgaagtcaatgggagtagcttac gtaagggctgcaaactttagcctccagagattaaaggggaaaaaaatccttaaactctttcaacattaatattgcctgt aa ggaatccagccatgacctaagccatggagcffictgaacctagcaagtagaagggtaaacagtaaacaccagttatttt CNS
aagcacaatctaatcagagttcaatgagaagcaatattatatttgatctctaaggtattaatacttgtatatcactatt ag ac -7 v2 atattatgtagtcc attatccaaacaatggettaagtctgtggtatttaataaatcaagtttccatggc cgtgagactgagt gggagtggggatgaagccLLLtLLcttcaLLLLtLLtLcctcaggtgcaattctgtgttaatataagagaagtgtggcc ttcctt 1941 (SEQ
ID NO:
ctcatagcactaaaagtgagataatccctgtgtaagaaatcagtaagtacggtctgcttaatctagtcccagtgtgana c 118 tgttg acatttgttclAttlictatcattatgtgactgggcctg ittigtgctgg attaggeacaaatctcctatgcagcacattt ) ggcatgttactagtagtttaacttcattaataatgtatgaagaaaatgtaatccatgacaaggaagcaaagaaaagtat ttt tttlttLttttgcttctcccaaatcctttggaatgagtaattattcaacattLLatgtttgatgttataLtLLacaatt caacttccata gtgatatttaaaaaagaaactaggcaaatgcttgcaaaaaacacaccattacaatataaatgtgatttactgatggcca gaacttgttaaacatagtagg aaattaaatatttattcatcttatttcattlicagggccgtaaacgctccttctgagtcattcc caataacaagaatttctaccagtaaag ctattaacaggcatcaaaataggggagtgctaaattaagatgag attg taaa agcaaataagaacatacgcagactcgcataggagtgcanatgatcgtactgattganatgtttatagetanatgagttt g gctgaattaaacacaaatgttccaaaagataagccgtagc-tggtgatcLLtatag Litittaagagattacagacgaa aatggaactatatttggaacaatutttctg tatccatactattgatatttgtgganagtcacaanatggcctaaggaag c taagctcgccccaag cagtggtcacttacaagtacttttgtactctgtactcc tgtcacatttgggcgatcagagcaaca gctggggagac tatcaacaaagatgagtgtcagataatcctgatgagattec acatccaacatc ILL
Lgtaattatgtca cattcagctgtaatggaataattcaagctgaaagaacaagctttgatcctttcttaaacctttccctgtggactggcta tcta aaagatttaaagatatttctgttacaagatctagtgtttectcagagaagtcatgcttctgaagcatcgtgatctacaa gaa caatatcaagiligccaaacacatttctgaaagcatcgtg ILLIggggggaggggttgtatttaatgaagatatcaataata tgctatgcttcaailticatctaggtgatcaagattcaLiticttgttctgtcatccaaataggcag acagaaaagtgattgaa atacattaTGGAGATGTGTCATTGCACA
GCTGGTGCTTCTTTTTTCTGTTTTTTAAGCTGCTTTACAGACGAAAATG
GAACTATATTTGGAA CAATGCTTTCTGTTTTTC CATAC TATTGATATTTG
TGGAAAGTCACAAAATGGCCTAAGGAAGCTAAGCTCGCCCCAAGCAG
TGGTCACTTACAAGTACTTTTGTACTCTGTA CTCCTGTCACATTTGGGC
CNS -GATCAGAGCAACAGCTGGGGAGACTTTTTCAACAAAGATGAGTGTCAG
8 v2 (0 ATAATCCTGATGAGATTCCACATC CAACATCTTTTGTAATTATGTCACA 540 SE
TTCAGCTGTAATGGAATAATTCAAGCTGAAAGAACAAGCTTTGATC CT
ID NO:
TTCTTAAACCTTTCCCTGTGGACTGGCTATCTAAAAGATTTAAAGATAT
119) TTCTGTTA CA A GA TCTA GTGTTTC CTC A GA GA A GTC A TGCTTCTGA A GC
ATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTCTGAA
AGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATA
A TA TGC
CTGGGCAGAGAGGGGGCATCGGGGGCATGGCTAGGGGCCAGCACTGT
GCTTCCTGGGCGCCTCACCTCCTCCCTGACTCCTGGAGACTCCCAGCCC
CTGTCTGGGAGATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGG
GAGGGGCCGGGGTGGAGGGCGCATCCCCACGGGGAGATTGGATGGAA
ATGGCC TGC CAGTGTGTGTGTGAGTGTGC GC C TGTGGCAGCAGCAGAG
TAAA CAGC CGCTGC CCTGTC CTCT CTGCGGCCGTGGC CAGGTACACAG
GCCTGTTTGGACAGCTGCCTTGTCTGTC CGTCTGTTTGGGAGATGCTGG
CM CTGA TA GA TGGGGATGGGCGGA CTGTTA A CC C CTCGTTGC CTGC A CTG
V-CTATGTGCTTCCTGCCTCATCCATGGGGTAGAAGGTAGCCAGAAGGTG
IE UTR
GTCCTGGCTGTGC C CC CAGCTC CTCTCTAGGGGGGAAA CCTCTAGTTCT
and intron CCTCCCCGCACCAGGGAGC CAAGGACAGAGGAGAAGGGGGTCTTCCC
(SEQ
ID NO CAG TGG TG ACTAG G G G CAGAATATG TCTC TGAG TGAG TG TCTG GAG C C
:
120) CTC CTCA C CC CAACAC CATGGGGCTGGGCATAAAAGTCAGGG CAGA GC
CATCTATTGCTTACATTTGTCAGATCGCCTGGAGACGCCATCCA CGCTG
TTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGGCCG
GGAACGGTGCATTGGAACGCGGATTCCC CGTGCCAAGAGTGACGTAAG
TACCGCCTATAGACTCTATAGGCA CAC CC CTTTGGCTCTTATGCATGAA
CGGTGGAGGGCAGTGTAGTCTGAGCAGTACTCGTTGCTGC CGCGC GCG
CCACCAGACATAATAGCTGACAGACTA ACAGACTGTTCCTTTCCATGG
GTCTTTTCTGCAGATGC CAC C
AAGGAGAATGGTAAACAGCAGGAGCGAAGCGGC TGAGGAGAAAGAA
CNS GAGGAAAGAAAGGCGAGACGTGGGAGGATTGGAACAGAGACAAAAG
-4+
CMV-GGAGGAGAGACGGACAGCGACAAGTGGAGAAAATCGGCGAAACTTGA
IF UTR
GTGGCAGAGAAGTCTGAGC GCTGAGAC C CGGCGGC CC CGTGC GC CTTC
CCAC CTGGCGCCGATC CACTTTCCTCGGGGTAGC GGCC CAA CC CAC TT
and intron TCGCCCACTTGGCTCTGCCTAAGCGTCCTAGCCGGAGCGCGGTCTCTGC
(SEQ
CACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGG
ID NO.
CCAGAGGGCGGGGTTCTTGG CGTCTCGCCGGCCAGACCCCTCCCTCAA
121) AGGCGGGGCCTGGAGATC CA CAGCTGGAAAGGGC GGAGC C C CAGCAG
GGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGCG
GGCTGGGGGCGC CCTGGTC TGC CATAAAGTGAATGGGC GC CGG C TGGG
GGTGGCAGTACGCTCAGATCGC CTGGAGACGCCATC CA C GCTGTTTTG
ACCTC CATAGAAGA CAC CGGGACCGATCCAGCCTCCGCGGCC GGGAA
CGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACC
GCCTATAGACTCTATAGGCACACCCCTTTGGCTCTTATGCATGAACGGT
GGAGGGCAGTGTAGTCTGAGCAGTACTC GTTGCTGCC GCGCGCGCCAC
CAGACATAATAGCTGACAGACTAACAGACTGTTCCTTTCCATGGGTCTT
TTCTGCAGATGCCACC
GGAACATTTAGACTTTGGGAAAGAGATTAGTGATTTACATTGCTATC TC
ACTGATTTAATTTAAATGCTCTTC CAAACCAAACACACATGTGCCGAA
GAGGCTACTAAGAAAC CCAACATGCAGAGTTCTCTATAAGTGCAGCCG
ACAGTGTTGACTGAAACTAAACTTGGAAATCCAGGGCACTAATGCACA
ATATCAAGCAATAAAACGGCATCTCTTTGGCAATATTTAATTTAAAAA
AGAAGAAAGAGACAGGCGAAGATCAGGCA CTGTCTGTTTTGGAGGAT
CAAC CATTCTGCATTTCAAAGCATTGGTC C CTGCAATATC CAGGTTA CT
(SEQ GATGTGTTTACTCA GTGATTAGGC CCTTAGAATAAGC CTCTAGCTCCTA 835 ID NO: GAGAGACAGCTCACCACTTATTCATTTGGGCCAATTCACAAAGCCTAG
122) GAAGATTA AACATCCATGCTGAGAAGACAAGCGAATGCAGACGGTGA
AAAAGAAATAAAAATTCTTTAAAAACTCTGAGATGACTTCATTATTTTT
CCACAAGGAAACTTTAGGAAAGTGTTTAGTTAGAGAAAAAC CCA CATT
GA CC TCTCTCTA A A CC CTTA A TCTTTC CTTTGTGGTGGC A CTGCTTTGTG
GTAAGCGACTGGCTCGCCTCGCCCCTCTTTTCACTGGAAG CTGAGAGA
AAAAAGACTCTGGAGAAACAGTTTTCGTTC CAGGGACACAAACC CC TG
ACAC TGTTAAGGGCTGGGCATAAAAGTCAGGGCAGAGC CATCTATTGC
TTACATTTGCTTCTG
GAAAATTTAATGTCATTGAAGCTCTATTTCCAATAGCAAAGGAGCACT
ATTGCTAATAGACTTCAGAGCTTGAAATAAATAAATCTTTGGAATCCT
GTTGCATCTCTTGGGGTGTGACATTTGACAGTCTTTTATAG CACAGAAC
GA A A CA A GTTTGTGA GCTGGA A TTCA A TTGTGGCGTA TTGATTCCTTGC
ATCAGTCATTATTC CCTGCTGATTGACAGGTGAAAATTGGTTAC GTTAA
GTATTTCATATGTTATATTGGCTGACATTTGCTTGC CTGCTCTTGTGTCA
ATATTGTTGTAAAGATCTCCAGCTTTATGAGATAGCAATAGACACTGA
CTGTGGCTTTTGTGTGATGTTCCAGTGTTTTTC CTGACATAATTTAAGA
(SEQ
ID NO: 123) TATTATTGTCTTCCAGGGGAAGATCATGTATGCTCATAATCGGGTGCTA
ATTTCCACCAGTACGCTCATGTTTAGGCATTAGGCACTATAACTGTAAA
ATTGAGCCTTCTTGATTGATTCATGTCAAGCC TCATCTCGGCTCCTGCA
GGGGAAGTCATCCGGCTGACCCTTTTTACACTAAAAGAAGAGATTTGT
GTTCCTTTCTTTCACCTGGAACCATCAAATTGACTGAATAATCTGTAAT
ACATTAGTGCTGACATTTGTTAGGGAGAATTAAACAAGACACAGTAAT
CA TTC CC C AGA A TA A A A A TTGTGTTTGA TGGGC TGGGC A TA A A AGTC A
GGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
TGAGACTGAGTGGGAGTGGGGATGAAGC CTTTTTTCTTCATTTTTTTTT
CCTCAGGTGCAATTCTGTGTTAATATAAGAGAAGTGTGGCCTTCCTTCT
CATAGCACTAAAAGTGAGATAATCCCTGTGTAAGAAATCAGTAAGTAC
(SEQ TCTATCATTATGTGACTGGGCCTGTTTTGTGCTGGATTAGGCACAAATC 487 ID NO: TCCTATGCAGCACATTTGGCATGTTACTAGTAGTTTAACTTCATTAATA
124) ATGTATGAAGAAAATGTAATCCATGACAAGGAAGCAAAGAAAAGTAT
TTTTTTTTTTTTTTGCTTCTC C CAAATCCTTTGGAATGAGTAATTATTCA
ACATTTTATGTTTGATG TTATATTTTACAATTCAAC TTC CATAG G G CTG
GGCATAAA AGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
GCTGGTGCTTCTTTTTTCTGTTTTTTAAGCTGCTTTACAGACGAAAATG
GAACTATATTTGGAACAATGCTTTCTGTTTTTCCATAC TATTGATATTTG
TGGAAAGTCACAAAATGGCCTAAGGAAGCTAAGCTCGCCCCAAGCAG
TGGTCACTTACAAGTACTTTTGTACTCTGTACTCCTGTCACATTTGGGC
ATAATCCTGATGAGATTCCACATCCAACATCTTTTGTAATTATGTCACA
(SEQ
ID NO.- TTC TTAAAC CTTTC CC TG TG GAC TGG CTATC TAAAAGATTTAAAGATAT
125) TTCTGTTACAAGATCTAGTGTTTCCTCAGAGAAGTCATGCTTCTGAAGC
ATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTCTGAA
AGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATA
ATATGCGGGCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTAC
ATTTGCTTCTG
[00120] Table 12 - Minimal/Proximal Promoters comprised in the promoters of Table 11 Name SEQUENCE
SYNP_CRE151 (SEQ ID NO: GGGCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
126) GGGAGGATTGGAACAGAGACAAAAGGGAGGAGAGACGGACAGCGACAAGTGG
AGAAAATCGGCGAAACTTGAGTGGCAGAGAAGTCTGAGCGCTGAGACCCGGCG
GCCCCGTGCGCCTTCCCACCTGGCGCCGATCCACTTTCCTCGGGGTAGCGGCCC
CRE0001vl_Pitx AACCCACTTCGCTGCCAGCCGATCCCTTTTACCCGTGGCTACCGGGACCACTCTA
GTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGGCCAGAGGG
(SEQ ID NO: CGGGGTTCTTGGCGTCTCGCCGGCCAGACCCCTCCCTCAAAGGCGGGGCCTGGA
127) GATCCACAGCTGGAAAGGGCGGAGCCCCAGCAGGGCAGCTGGAAAGGGGCGG
GGCCTGACGCGCGCGGCTCGCCGCGGCGGGCTGGGGGCGCCCTGGTCTGCCATA
AAGTGAATGGGCGCCGGCTGGGGGTGGCAGTACGCGGTGAGGCTCACTCCCTCC
GAGAGTCCAGGAGCGCC
[00121] Table 13 - Synthetic CNS-specific promoter overview Promoter name Minimal/proximal CRE UTR
promoter CNS-1 SYNP CRE151 CRE0004 Lmx lb CNS-2 SYNP CRE151 CRE0003 Pitx3 CNS-3 CRE000 1 v 1 Pitx3 CRE0002 Gbfl CNS-4 CRE0001 Pitx3 CNS-5_v2 CRE0005 fafl CNS-6 v2 CRE0006 Pitx2 CNS-7_v2 CRE0007 Pitx2 CNS-8 v2 CRE0008 Pitx2 CNS-1 + CMV-IE SYNP_CRE151 CRE0004 Lmxlb CMV-IE UTR
and UTR and intron intron CNS-4 + CMV-IE CRE0001 Pitx3 CMV-IE UTR
and UTR and intron intron CNS-5 SYNP_CRE151 CRE0005_fafl_short CN S-6 SYNP_CRE151 CRE0006 Pitx2 short CNS-7 SYNP_CRE151 CRE0007 Pitx2 short CNS-8 SYNP_CRE 1 51 CRE000 8 Pitx2 short [00122] Table 14 ¨ Exemplary CREs Name SEQUENCE
AP (SEQ ID CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
NO: 99) AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCA
GFAP CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
(SE() ID AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
NO: 100) TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCACCGGCGGTGGAGAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGA
TCAGGGGATGCCCAGGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCT
GTCTGCTTCCCAGAAGTCCAAGGACACAAATGGGTGAGGGGA
GGATAATCATGCCCAGTAAAAACTACCTGTGGTGAATAAAGAGTTAACCCCTG
(SEQ ID
TTCCATCTTAGGTCACTATGCAGAGTACCAATGAGTACAAGAGATGGTGCCAA
NO: 101) AGAGGGTGGCCCCTCCCTAGCTGGGAACAGTCAACCCTTAGGAACTAGACTGT
CAACACATCAGCCAGCCAGAGACAAGGGAAACCGTGGCAACCAAGTGTTGCT
GGCACATTGTGAGGTGGTGATGGGAACTGCAGAGGCCCTGCACAGCATGCTA
ATGAGCCCAGGCAAACAT
(SEQ ID TAATAAGAAAAACTACCTCTGGCAGGTGAAGAGTTAATCCCTGGTCAATTTTA
AGCTACTCTGCTGAGAGTACTAATAAGTGTAGGGGTTGGAGCCAATGAGGGTG
NO: 102) ACCCCTTCCTTGATGGGAACAGTCATCCCTTAGGAACTGCCCTGGAAAGCATC
AGCCAGCCAGAAAACAGGGAAAGAGGCTGAGAAACCGTGGTAACCAAGTTTT
GCTGGCACTTTGTAAAATGGTAACTGCAACTGCCGAGGCTGTGCAGAGAATGC
TAATAAGCCTAGGACAACCTGTAAAGAGTGGACCTAGAAAATG TCCACC
GFAP CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
(SEQ ID CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
NO: 103) TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
GAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCA
GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
AGTCCAAGGACACAAATGGGTGAGGGGA
GFAP CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
(SE
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC Q ID
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
1\10:104) TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCAGCAC
Arc CTATTCTCAGCGTCTCTCCTTTTATGGCTCCGGAAGTGAGCTGGGGTTGCTGGC
(SEQ ID AGCCTGGCTGGCACT
NO: 105) SlOOB AGCAAGTGCCATGAAAAGCGGCTTTGTGTGGGGTGGGCTCTTCACACTCCAAT
(SEQ ID CTCCACTTCCTTCTCAAGGCCTCAAAAAAAGTTGAAAAATGAAAACAAAAGCC
CTGCTGTGTTGAGCTGGGCTCTGGCGTTGCCATGGACCCAGGGCAAACAGCGG
NO: 106) TGCTCCTGCTCTGCCCCCGGCTCAGCTCATGCTGGGCCTGCACTTCTGGAAGGG
AGCATGGACTTTGGAATGACTGGTTAGAACCCAAATGAATTAATGGAATTTGA
CATAGTTCAAAAATAATAAAATGTGATACCCATGAAATGCTGATATTCTGCCT
TAATTTGCCAGATTGGGGGCC
Si im CCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAACAGGAAAGGCAGT
GAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAAGCTTTTTGTCTCT
(SEQ ID TCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGTGGCCATCGOTCA
N :107) CTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACCGTCCTTTGTGGG
AGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCCTTCCCACCCCCT
GACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGATTGGAGCCAAGA
GTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAA
SlOOB TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCAC
(SEQ ID CCAAGCCCTGACCCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
NO: 108) GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
GTCCTTTGTGGGAGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCC
TTCCCACCCCCTGACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGAT
TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC
TGAAGAAGATCTTAACAGAA
[00123] Table 15. Cis-regulatory elements (CRE) comprised in the promoters of Table 11 Name SEQUENCE
CTGGGCAGAGAGGGGGCATCGGGGGCATGGCTAGGGGCCAGCACTGTGCTTC
CTGGGCGCCTCACCTCCTCCCTGACTCCTGGAGACTCCCAGCCCCTGTCTGGGA
GATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGGGAGGGGCC GGGGTG
GAGGGCGCATCCCCACGGGGAGATTGGATGGAAATGGCCTGCCAGIGTGTGT
GTGAGTGTGCGCCTGTGGCAGCAGCAGAGTAAACAGCCGCTGCCCTGTCCTCT
CRE0004 Lmxl CTGCGGCCGTGGCCAGGTACACAGGCCTGTTTGGACAGCTGCCTT GTCTGTCC
GTCTGTTTGGGAGATGCTGGCTGATAGATGGGGATGGGCGGACTGTTAACCCC
(SWIDNCI: TCGTTGCCTGCACTGCTATGTGCTTCCTGCCTCATCCATGGGGTAGAAGGTAGC
128) CAGAAGGTGGTCCTGGCTGTGCCCCCAGCTCCTCTCTAGGGGGGAAACCTCTA
GTTCTGAGTCAGGGACAGAGTGAGGAGGGCTCCAGGGCATCAAGAGCTTGCT
CCTCCCCGCACCAGGGAGCCAAGGACAGAGGAGAAGGGGGTCTTCCCCAGTG
GTGACTAGGGGCAGAATATGTCTCTGAGTGAGTGTCTGGAGCCCTCCTCACCC
CAACACCATG
GGTGTGTGGAAGGGTGAGAGGCACACACACAGACACTGAAAGAATCCTAGGC
CTGGTAGGCACTTAACAAATGTCTGTTACAGACCAGAATTTTATTGCTGTTAG
AGACCCAAGCCCCTCATAGGAACAGTGAGAAACAGGTGCAGAAAGGCGGAGT
AACTTTATCTAAAGTCATAGGCTCCCTGAATAGCAGAGCTGACACCTACAAGG
AAGCGTTGGAGACCAGATCTACCAGCTAGCCTCCCTGAGACCACGAGGTGGC
CRE0003 Pitx3 GCCGCAGCACCGGCTGTGGCCGATGCCAGCCAGGTAGCCGGTTTCCCACGTCC
(SEQH)NO: CCCGCACGCACGCACCTCTTTGCTGCAGGAATCCCGGGCTGCCCCGACCTGGA
129) GTAGGGGGGGTGGTGAGTGGGACTGAGTCCCTAGAAGCCTGGACCCTCACTTC
GTTCCTGTACATCCAGCTCGCCTGTAGACAGTGGGGGAGGATGAAGGGAAGA
GGACTCAAGCGCAACTTTGAATCATCACGCCTTCGACAGTCCGCGCACGTTTA
TTTCATTTATCTTTGAAAACGAGGGAGGGGAAGCCTGGAGAAGGCGGGATGG
GCCAAGGGTGAGTTGGCCCCCGGGGAGCTGGTCCCTGTTCCTGGCTTTAGTCC
CAGGGGCGCGGTCTGTGTGTAGGGC
4?
(SEQ ID NO: ACATGAGCAGCGGCTGCCGGTCCTGGGACTAGGCCCC GC CATTTTGGATC C GC
130) TGACAGGTCAGCGAAGTCTCTTCCTAGAGTTCCGGTGTCGTGAAGGCCGCCCT
GACATCGCAATAGGGAATTAGTGGGAAGGGCCCTTAAATTGGGCGAGCCAAG
GTGGG
GGAACATTTAGACTTTGGGAAAGAGATTAGTGATTTACATTGCTATCTCACTG
ATTTAATTTAAATGCTCTTCCAAACCAAACACACATGTGCCGAAGAGGCTACT
AAGAAACCCAACATGCAGAGTTCTCTATAAGTGCAGCCGACAGTGTTGACTGA
AACTAAACTTGGAAATCCAGGGCACTAATGCACAATATCAAGCAAT AAAACG
GCATCTCTTTGGCAATATTTAATTTAAAAAAGAAGAAAGAGACAGGCGAAGA
TCAGGCACTGTCTGTTTTGGAGGATCAACCATTCTGCATTTCAAAGCATTGGTC
CRE0005 fafl s CCTGCAATATCCAGGTTACTGTGCTAGAATCTCGACTATTATATCGCAGTTGTG
hort AGAGGGAGGGCAAAGATGTGTTTACTCAGTGATTAGGCCCTTAGAATAAGCCT
(SEQ ID NO: CTAGCTCCTAGAGAGACAGCTCACCACTTATTCATTTGGGCCAATTCACAAAG
131) CCTAGGAAGATTAAACATCCATGCTGAGAAGACAAGCGAATGCAGACGGTGA
AAAAGAAATAAAAATTCTTTAAAAACTCTGAGATGACTTCATTATTTTTCCAC
AAGGAAACTTTAGGAAAGTGTTTAGTTAGAGAAAAACCCACATTGACCT CT CT
CTAAACCCTTAATCTTTCCTTTGTGGTGGCACTGCTTTGTGGTAAGCGACTGGC
TCGCCTCGCCCCTCTTTTCACTGGAAGCTGAGAGAAAAAAGACTCTGGAGAAA
CAGTTTTCGTTCCAGGGACACAAACCCCTGACACTGTTAA
GAAAATTTAATGTCATTGAAGCTCTATTTCCAATAGCAAAGGAGCACTATTGC
TAATAGACTTCAGAGCTTGAAATAAATAAATCTTTGGAATCCTGTTGCATCTCT
TGGGGTGTGACATTTGACAGTCTTTTATAGCACAGAACGAAACAAGTTTGTGA
GCTGGAATTCAATTGTGGCGTATTGATTCCTTGCATCAGTCATTATTCCCTGCT
GATTGACAGGTGAAAATTGGTTACGTTAAGTATTTCATATGTTATAT TGGCTGA
CATTTGCTTGCCTGCTCTTGTGTCAATATTGTTGTAAAGATCTCCAGCTTTATG
CRE0006 Pitx2 AGATAGCAATAGACACTGACTGTGGCTTTTGTGTGATGTTCCAGTGTTTTTCCT
short (SEQ ID GACATAATTTAAGACATATTA AAAACCAGCAGCA TCTTCCCTCTTGAGAAGCT
NO: 132) TA ATGCCA A TATTATTGTCTTCCA GGGGA A GATCA
TGTATGCTCATA ATCGGG
TGCTAATTTCCACCAGTACGCTCATGTTTAGGCATTAGGCACTATAACTGTAAA
ATTGAGCCTTCTTGATTGATTCATGTCAAGCCTCATCTCGGCTCCTGCAGGGGA
AGTCATCCGGCTGACCCTTTTTACACTAAAAGAAGAGATTTGTGTTCCTTTCTT
TCACCTGGAACCATCAAATTGACTGAATAATCTGTAATACATTAGTGCTGACA
TTTGTTAGGGAGAATTAAACAAGACACAGTAATCATTCCCCAGAATAAAAATT
GTGTTTGAT
TGA GA CTGA GTGGGA GTGGGGATGA A GC CTTTTTTCTTC ATTTTTTTTT C CTC A
GGTGCAATTCTGTGTTAATATAAGAGAAGTGTGGCCTTCCTTCTCATAGCACTA
AAAGTGAGATAATCCCTGTGTAAGAAATCAGTAAGTACGGTCTGCTTAATCTA
CRE0007 Pitx2 GTCCCAGTGTGAAACTGTTGACATTTGTTCTTTTTTCTATCATTATGTGACTGG
short (SEQ ID GC CTGTTTTGTGCTGGATTAGGCAC AAATCTC CTATGC AGCACATTTGGC ATGT
NO: 133) TACTAGTAGTTTAACTTCATTAATAATGTATGAAGAAAATGTAATCCATGACA
A GGA A GCA A A GAA A A GT ATTTTTTTTTTTTTTTGCTTCTCCCA A A TCCTTTGGA
ATGAGTAATTATTCAACATTTTATGTTTG ATGTTATATTTTACAATTCAACTTC C
ATA
GCTGGTGCTTCT'TTTTTCTGTTTTTTA A GCTGCTTTA CA GA C GA A A ATGGA A CT
ATATTTGGAACAATGCTTTCTGTTTTTCCATACTATTGATATTTGTGGAAAGTC
ACAAAATGGCCTAAGGAAGCTAAGCTCGCCCCAAGCAGTGGTCACTTACAAG
TACTTTTGTACTCTGTACTCCTGTCACATTTGGGCGATCAGAGCAACAGCTGGG
CRE0008 Pitx2 GAGACTTTTTCAACAAAGATGAGTGTCAGATAATC CTGATGAGATTC C ACATC
short (SEQ ID CAACATCTTTTGTAATTATGTCACATTCAGCTGTAATGGAATAATTCAAGCTGA
NO: 134) AAGAACAAGCTTTGATCCTTTCTTAAACCTTTCCCTGTGGA
CTGGCTATCTAAA
AGATTTAAAGATATTTCTGTTACAAGATCTAGTGTTTCCTCAGAGAAGTCATGC
TTCTGAAGCATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTC
TGAAAGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATAA
TATGC
1001241 Aspects of the disclosure relate to an isolated nucleic acid comprising more than one promoter (e.g., 2, 3, 4, 5, or more promoters). For example, in the context of a construct having a transgene comprising a first region encoding a protein and an second region encoding an inhibitory RNA (e.g., miRNA), it may be desirable to drive expression of the protein coding region using a first promoter sequence (e.g., a first promoter sequence operably linked to the protein coding region), and to drive expression of the inhibitory RNA encoding region with a second promoter sequence (e.g., a second promoter sequence operably linked to the inhibitory RNA encoding region). Generally, the first promoter sequence and the second promoter sequence can be the same promoter sequence or different promoter sequences. In some embodiments, the first promoter sequence (e.g., the promoter driving expression of the protein coding region) is a RNA polymerase III
(polIII) promoter sequence.
Non-limiting examples of polIII promoter sequences include U6 and HI promoter sequences. In some embodiments, the second promoter sequence (e.g., the promoter sequence driving expression of the inhibitory RNA) is a RNA polymerase 11 (poll') promoter sequence. Non-limiting examples of polll promoter sequences include T7, T3, SP6, RSV, and cytomegalovirus promoter sequences. In some embodiments, a polIII promoter sequence drives expression of an inhibitory RNA
(e.g., miRNA) encoding region. In some embodiments, a polII promoter sequence drives expression of a protein coding region.
1001251 In some embodiments, the nucleic acid comprises a transgene that encodes a protein. The protein can be a therapeutic protein (e.g., a peptide, protein, or polypeptide useful for the treatment or prevention of disease states in a mammalian subject) or a reporter protein_ In some embodiments, the protein is CYP46A1. In some embodiments, the protein is human CYP46A1. In some embodiments, the protein encodes SEQ ID NO; 2 or a protein comprising SEQ ID NO: 2. In some embodiments, the protein encodes a protein with a sequence identity of at least 80%, at least 85%, at least 90%, at least 95%, at least 98% to SEQ ID NO: 2. In some embodiments, the therapeutic protein is useful for treatment or prevention of Huntington' s disease, for example Polyglutamine binding peptide 1 (QBP1), PTD-QBP1, ED11, C4 intrabody, VL12.3 intrabody, MW7 intrabody, Happl antibodies, Happ3 antibodies, mEM48 intrabody, certain monoclonal antibodies (e.g., 1C2), and peptide P42 and variants thereof, as described in Marelli et al. (2016) Orphanet Journal of Rare Disease 11:24; doi:
10.1186/s 13023- 016-0405-3. In some embodiments, the therapeutic protein is wild-type huntingtin protein (e.g., huntingtin protein having a PolyQ repeat region comprising less than 36 repeats).
1001261 Cholesterol 24-hydroxylase is a neuronal enzyme that is coded by the CYP46A1 gene. It converts cholesterol into 24-hydroxycholesterol and has a critical role in the efflux of cholesterol from the brain (Dietschy, J. M. et al., 2004). Brain cholesterol is essentially produced -but cannot be degraded- in situ, and intact blood-brain barrier restricts direct transportation of cholesterol from the brain (Dietschy, J. M. et al., 2004). 24-hydroxycholesterol is able to cross the plasma membrane and the blood-brain barrier and reaches the liver where it is degraded.
1001271 CYP46A1 is neuroprotectiye in a cellular model of HD (see, e.g., W02012/049314).
Moreover, there is a reduction of CYP46A1 mRNAs in the striatum, the more vulnerable brain structure in the disease, of the R6/2 transgenic HD mouse model.
1001281 During the early stages of AD, 24- hydroxycholesterol concentrations are high in CSF
and in peripheral circulation. In later stages of AD, concentrations of 24-hydroxycholesterol may fall likely reflecting neuronal loss (Kolsch, H. et al., 2004). CYP46A1 is expressed around the amyloid core of the neuritic plaques in the brain of AD patients (Brown, J., 3rd et al., 2004).
1001291 Agonism of cholesterol 24- hydroxylase, encoded by CYP46A1, provided marked decrease of neuropathology and an improvement of cognitive deficits in mouse models of CNS
disease. For example, co-expression of CYP46A1 with ExpHtt in a Huntington's disease model promoted a strong and significant decrease of ExpHtt aggregates formation (58%
versus 27.5%)) (W02012/049314). (see also, International Patent Publication W02009/034127;
which is incorporated by reference herein in its entirety). The methods described herein relate to agonism of CYP46A1 in combination with the administration of miRNAs targeting certain other targets. For example, the methods can relate to administration of a viral vector for the treatment of a neurological disease or disorder, wherein the vector expresses CYP46A1 in cells of the central nervous system.
1001301 In some embodiments, described herein is a viral vector for treating a neurological disease or disorder, which vector comprises a cholesterol 24-hydroxylase encoding nucleic acid. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes the amino acid sequence SEQ ID NO:2. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to SEQ ID NO:2. In some embodiments, the viral vector comprises a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to SEQ ID NO: 1. In some embodiments, the viral vector comprises the sequence of SEQ ID NO: 1. In some embodiments, the viral vector may be an Adeno-Associated-Virus (AAV) vector.
1001311 Further description of CY46A1 and its therapeutic uses (e.g., for Alzheimer's disease, ALS, and ataxia) are described in the art, e.g., in WO 2012/049314, WO
2009/034127, WO
2018/138371, and W02020/089154. The sequences, methods, and compositions described therein can be utilized in the methods and compositions described herein. The foregoing references are incorporated by reference herein in their entireties. The term "gene" refers to a polynucleotide containing at least one open reading frame that is capable of encoding a particular polypeptide or protein after being transcribed or translated.
[00132] The terms "coding sequence" or "a sequence which encodes a particular protein", denotes a nucleic acid sequence which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5 (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A coding sequence can include, but is not limited to, cDNA from prokaryotic or eukaryotic mRNA, genomic DNA
sequences from prokaryotic or eukaryotic DNA, and even synthetic DNA sequences.
[00133] A cDNA sequence for CYP46A1 is disclosed in Genbank Access Number NM 006668 (SEQ ID NO: 1). The amino acid sequence is shown in SEQ ID NO:2. The invention makes use of a nucleic acid construct comprising sequence SEQ ID NO:1 or a variant thereof for the treatment of a neurological disease or disorder. The variants include, for instance, naturally-occurring variants due to allelic variations between individuals (e.g., polymorphisms), alternative splicing forms, etc. The term variant also includes CYP46A1 gene sequences from other sources or organisms.
Variants arc preferably substantially homologous to SEQ ID NO:1 and/or 2 , i.e., exhibit a nucleotide sequence identity of typically at least about 75%, preferably at least about 85%, more preferably at least about 90%, more preferably at least about 95% with SEQ ID NO:1 or 2. In some embodiments, the nucleic acid construct comprises a sequence with at least 95% sequence identity to SEQ
ID NO: 1 and which retains the activity of SEQ ID NO: 1 or 2 (e.g., the ability to convert cholesterol into 24-hydroxycholesterol). Variants of a CYP46A1 gene also include nucleic acid sequences, which hybridize to a sequence as defined above (or a complementary strand thereof) under stringent hybridization conditions. Typical stringent hybridisation conditions include temperatures above 30 C, preferably above 35 C, more preferably in excess of 42 C, and/or salinity of less than about 500 mM, preferably less than 200 mM. Hybridization conditions may be adjusted by the skilled person by modifying the temperature, salinity and/or the concentration of other reagents such as SDS, SSC, etc.
[00134] An exemplary CYP46A1 variant contemplated for use herein is provided in SEQ ID NOs:
109 and 110. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes the amino acid sequence SEQ ID NO:109. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to SEQ ID NO:109. In some embodiments, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 110. In some embodiments, the viral vector comprises a nucleic acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to the sequence of SEQ ID NO: 110.
[00135] In one aspect, provided herein is a composition comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 110. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 110. In some embodiments, an isolated nucleic acid encoding a CYP46A1 protein comprises at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, or at least 15 of the mutations as compared to SEQ ID NO: 1. In some embodiments, the mutation comprises deletion and/or, addition, and/or, substitution of at least one nucleic acid as compared to the sequence set forth in SEQ ID NO: 1. The mutations can result in, e.g., removing bacterial sequence, and/or, removing alternating reading frames, and/or, removing CpG, and or, removing restriction enzyme sites. In several embodiments, the foregoing compositions can be used, e.g., in the absence of an administered miRNA to treat a neurological disease or disorder as described herein. In various embodiments, the foregoing compositions can be used, e.g., in the presence of an administered miRNA to treat a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g., recombinant AAV comprising an isolated nucleic acid as set forth in SEQ
ID NO: 110 is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g., recombinant AAV comprising an isolated nucleic acid sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100%
identical to SEQ ID NO:
110, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g recombinant AAV comprising an isolated nucleic acid sequence at least 80%
identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 111, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or, disorder as described herein.
1001361 SEQ ID NO: 1 CYP46A1 mRNA
atg agc ccc ggg ctg ctg ctg ctc ggc agc gcc gtc ctg ctc gcc ttc ggc ctc tgc tgc acc ttc gtg cac cgc gct cgc agc cgc tac gag cac atc ccc ggg ccg ccg cgg ccc agt ttc ctt cta gga cac ctc ccc tgc ttt tgg aaa aag gat gag gtt ggt ggc cgt gtg ctc caa gat gtg ttt ttg gat tgg gct aag aag tat gga cct gtt gtg cgg gtc aac gtc ttc cac aaa acc tca gtc atc gtc acg agt cct gag tcg gtt aag aag ttc ctg atg tca acc aag tac aac aag gac tcc aag atg tac cgt gcg ctc cag act gtg ttt ggt gag aga ctc ttc ggc caa ggc ttg gtg tcc gaa tgc aac tat gag cgc tgg cac aag cag cgg aga gtc ata gac ctg gcc ttc agc cgg agc tcc ttg gtt agc tta atg gaa aca ttc aac gag aag gct gag cag ctg gtg gag att cta gaa gcc aag gca gat ggg cag acc cca gtg tcc atg cag gac atg ctg acc tac acc gcc atg gac atc ctg gcc aag gca gct ttt ggg atg gag acc agt atg ctg ctg ggt gcc cag aag cct ctg tcc cag gca gtg aaa ctt atg ttg gag gga atc act gcg tcc cgc aac act ctg gca aag ttc ctg cca ggg aag agg aag cag ctc cgg gag gtc cgg gag agc att cgc ttc ctg cgc cag gtg ggc agg gac tgg gtc cag cgc cgc cgg gaa gcc ctg aag agg ggc gag gag gtt cct gcc gac atc ctc aca cag att ctg aaa gct gaa gag gga gcc cag gac gac gag ggt ctg ctg gac aac ttc gtc ace ttc ttc att get ggt cac gag acc tot gee aac coo ttg gcg ttc aca gtg atg gag ctg tot ego cag cca gag atc gtg gca agg ctg cag gee gag gtg gat gag gtc att ggt tot aag agg tac ctg gat ttc gag gac ctg ggg aga ctg cag tac ctg too cag gtc etc aaa gag tog ctg agg ctg tac cca cca gca tgg ggc ace ttt ego ctg ctg gaa gag gag ace ttg att gat ggg gtc aga gtc ccc ggc aac ace cog etc ttg ttc ago ace tat gtc atg ggg egg atg gac aca tac ttt gag gac cog ctg act ttc aac ccc gat ego ttc ggc cot gga gee ccc aag cca egg ttc ace tac ttc ccc ttc tee ctg ggc cac ego tee tgc ate ggg cag cag ttt get cag atg gag gtg aag gtg gtc atg gca aag ctg ctg cag agg ctg gag ttc egg ctg gtg ccc ggg cag ego ttc ggg ctg cag gag cag gee aca etc aag cca ctg gac ccc gtg ctg tgc ace ctg egg ccc cgc ggc tgg cag ccc gee ccc cca cca ccc ccc tgc tga gggggcctcc aggcaggacg agactcctcg ggcaagggcc gtgcccgccc acctctgctg cccacggcca cccacccttc tcccctgccc cgtcccctgg gccacccttc acgctggctt ccagcgggcc ctctgccgac cgcctgcttc acacccctca gcgctccctg tcgcctgcgg actccatggc ccttcctgga ctggcccttg cccaactccc agccaccacc actgtcccta ccactgagcc cttgcacagg ccacttgctc agacgagaca ccctaactct tgctcactcc ctaaagccct cttcaggggt cacctcctcc aagaagccct ccttgccacc ccccgccggc aggggcccct cctctgtgct ccctcggtca cctgtgctac ctctaacacc acactgacca cactgtatcg tgagtgtccg ttgacgtgac caattgccct gccaggctgt cagcgcctca agggtagggt ctgcgtgtga tttgtctctg agccccctgt gcccacccag ggcccggcac agagtcgatg ctcaataaat gtgtgttgac tgcaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 11001371 SEQ ID NO: 2 CYP46A1 amino acid sequence Met Ser Pro Gly Leu Leu Leu Leu Gly Ser Ala Val Leu Leu Ala Phe Gly Leu Cys Cys Thr Phe Val His Arg Ala Arg Ser Arg Tyr Glu His Ile Pro Gly Pro Pro Arg Pro Ser Phe Leu Leu Gly His Leu Pro Cys Phe Trp Lys Lys Asp Glu Val Gly Gly Arg Val Leu Gin Asp Val Phe Leu Asp Trp Ala Lys Lys Tyr Gly Pro Val Val Arg Val Asn Val Phe His Lys Thr Ser Val Ile Val Thr Ser Pro Glu Ser Val Lys Lys Phe Len Met Ser The Lys Tyr Asn Lys Asp Ser Lys Met Tyr Arg Ala Leu Gin Thr Val Phe Gly Glu Arg Leu Phe Gly Gin Gly Leu Val Ser Glu Cys Asn Tyr Glu Arg Trp His Lys Gin Arg Arg Val Ile Asp Leu Ala She Ser Arg Ser Ser Leu Val Ser Leu Met Glu Thr She Asn Glu Lys Ala Glu Gin Leu Val Glu Ile Leu Glu Ala Lys Ala Asp Gly Gin Thr Pro Val Ser Met Gin Asp Met Leu Thr Tyr Thr Ala Met Asp Ile Leu Ala Lys Ala Ala Phe Gly Met Glu Thr Ser Met Leu Leu Gly Ala Gin Lys Pro Leu Ser Gin Ala Val Lys Leu Met Leu Glu Gly Ile Thr Ala Ser Arg Asn Thr Leu Ala Lys Phe Leu Pro Gly Lys Arg Lys Gin Leu Arg Glu Val Arg Glu Ser Ile Arg Phe Leu Arg Gin Val Gly Arg Asp Trp Val Gin Arg Arg Arg Glu Ala Leu Lys Arg Gly Glu Glu Val Pro Ala Asp Ile Leu Thr Gin Ile Leu Lys Ala Glu Glu Gly Ala Gin Asp Asp Glu Gly Leu Leu Asp Asn Phe Val Thr Phe Phe Ile Ala Gly His Glu Thr Ser Ala Asn His Leu Ala Phe Thr Val Met Glu Leu Ser Arg Gin Pro Glu Ile Val Ala Arg Leu Gin Ala Glu Val Asp Glu Val Ile Gly Ser Lys Arg Tyr Leu Asp Phe Glu Asp Leu Gly Arg Leu Gin Tyr Leu Ser Gin Val Leu Lys Glu Ser Leu Arg Leu Tyr Pro Pro Ala Trp Gly Thr Phe Arg Leu Leu Glu Glu Glu Thr Leu lie Asp Gly Val Arg Val Pro Gly Asn Thr Pro Leu Leu Phe Ser Thr Tyr Val Met Gly Arg Met Asp Thr Tyr Phe Glu Asp Pro Leu Thr Phe Asn Pro Asp Arg Phe Gly Pro Gly Ala Pro Lys Pro Arg Phe Thr Tyr Phe Pro Phe Ser Leu Gly His Arg Ser Cys Ile Gly Gin Gin Phe Ala Gin Met Glu Val Lys Val Val Met Ala Lys Leu Leu Gin Arg Leu Glu Phe Arg Leu Val Pro Gly Gin Arg Phe Gly Leu Gin Glu Gin Ala Thr Leu Lys Pro Leu Asp Pro Val Leu Cys Thr Leu Arg Pro Arg Gly Trp Gin Pro Ala Pro Pro Pro Pro Pro Cys Vectors [00138] Without wishing to be bound by any particular theory, allele- specific silencing of a pathogenic gene, e.g., mutant huntingtin (HTT), may provide an improved safety profile in a subject compared to non-allele specific silencing (e.g., silencing of both wild-type and mutant HTT alleles) because wild-type expression and function is preserved in the cells. For example, aspects of the invention relate to the inventors' recognition and appreciation that isolated nucleic acids and vectors that incorporate one or more inhibitory RNA (e.g., miRNA) sequences targeting the HTT gene in a non-allele- specific manner while driving the expression of hardened wild-type HTT gene (a wild-type HTT gene that is not targeted by the miRNA) are capable of achieving concomitant mutant HTT
knockdown e.g., in the CNS tissue, with increased expression of wildtype HTT.
Generally, the sequence of the nucleic acid encoding endogenous wild-type and mutant HTT
mRNAs, and the nucleic acid of the transgene encoding the "hardened" wild-type HTT mRNA are sufficiently different such that the "hardened" wild-type HTT transgene mRNA is not targeted by the one or more inhibitory RNAs (e.g., miRNAs). This may be accomplished, for example, by introducing one or more silent mutations into the HTT transgene sequence such that it encodes the same protein as the endogenous wild-type HTT gene but has a different nucleic acid sequence. In this case, the exogenous mRNA may be referred to as "hardened." Alternatively, the inhibitory RNA
(e.g., miRNA) can target the 5' and/or 3' untranslated regions of the endogenous wild-type HTT mRNA.
These 5' and/or 3' regions can then be removed or replaced in the transgene mRNA such that the transgene mRNA is not targeted by the one or more inhibitory RNAs.
[00139] Reporter sequences (e.g., nucleic acid sequences encoding a reporter protein) that may be provided in a transgene include, without limitation, DNA sequences encoding 13-lactamase, 13 -galactosidase (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, and others well known in the art. When associated with regulatory elements which drive their expression, the reporter sequences, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (R1A) and immunohistochemistry. For example, where the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for 13-galactosidase activity. Where the transgene is green fluorescent protein or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer. Such reporters can, for example, be useful in verifying the tissue- specific targeting capabilities and tissue specific promoter regulatory activity of a nucleic acid. Recombinant adeno-associated viruses (rAAVs).
[00140] In some embodiments, the vector is adeno-associated virus (AAV) or recombinant AAV. In some aspects, the disclosure provides isolated AAVs. As used herein with respect to AAVs, the term "isolated" refers to an AAV that has been artificially produced or obtained.
Isolated AAVs may be produced using recombinant methods. Such AAVs are referred to herein as "recombinant AAVs".
Recombinant AAVs (rAAVs) preferably have tissue- specific targeting capabilities, such that a nuclease and/or transgene of the rAAV will be delivered specifically to one or more predetermined tissue(s). The AAV capsid is an important element in determining these tissue-specific targeting capabilities. Thus, an rAAV having a capsid appropriate for the tissue being targeted can be selected.
[00141] Methods for obtaining recombinant AAVs having a desired capsid protein are well known in the art. (See, for example, US 2003/0138772), the contents of which are incorporated herein by reference in their entirety). Typically, the methods involve culturing a host cell which contains a nucleic acid sequence encoding an AAV capsid protein; a functional rep gene; a recombinant AAV
vector composed of, AAV inverted terminal repeats (1TRs) and a transgene; and sufficient helper functions to permit packaging of the recombinant AAV vector into the AAV
capsid proteins. In some embodiments, capsid proteins are structural proteins encoded by the cap gene of an AAV. AAVs comprise three capsid proteins, virion proteins 1 to 3 (named VP1, VP2 and VP3), all of which are transcribed from a single cap gene via alternative splicing. In some embodiments, the molecular weights of VP1, VP2 and VP3 are respectively about 87 kDa, about 72 kDa and about 62 kDa. In some embodiments, upon translation, capsid proteins form a spherical 60-mer protein shell around the viral genome. In some embodiments, the functions of the capsid proteins are to protect the viral genome, deliver the genome and interact with the host. In some aspects, capsid proteins deliver the viral genome to a host in a tissue specific manner.
[00142] In some embodiments, a recombinant AAV (rAAV) comprises a AAV capsid protein selected from the group consisting of AAV2, AAV3, AAV4, AAV5, AAV6, AAV8, AAVrh8, AAVrh10, AAV 2G9, AAV 2.5G9, AAV9, and AAV10. In some embodiments, recombinant AAV
capsid (rAAV) protein is of a serotype derived from a non- human primate, for example AAVrh10 serotype, In some embodiments, rAAV is AAV PhP.eB or, AAV PhP.B, as described in US
Publication nos and US granted patents US20170166926A1, US9585971, US10301360, US9957303, US10202425, U S10519198, US20190292230A1, US20200087353A1, which arc incorporated herein by reference in teir entirety. In some embodiments, rAAV comprises an AAV
comprising a surface bound peptide e.g., PBS-3, PI35-5, PI35-14 as described in international publication W0201912635, which is incorporated by reference in its entirety. In some embodiments, rAAV
is an AAV9 serotype.
In some embodiments, the rAAV is an AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV1 1, AAV12, or AAV13 serotype or, a chimera thereof. In some embodiments, the rAAV comprises a capsid protein from serotype AAV1, AAV2, AAV3a, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV 2G9, AAV 2.5G9, AAV rh8, AAV rh10, AAV
Th74, AAV10, or, AAV11 or, a chimera thereof In certain embodiments, the rAAV
comprises a chemically modified capsid as disclosed in WO 2017/212019 e.g., mannose ligand is chemically coupled to AAV2. The rAAVs with chemically modified capsids disclosed in WO
2017/212019 is incorporated herein by reference in its entirety. As a further embodiment, the rAAV comprises AAV
capsid proteins of this invention that can be polyploid (also referred to as haploid, or, rational haploid or, rational polyploid) in that they can comprise VP1, VP2 and VP3 capsid proteins from more than one AAV serotypes in a single AAV virion as described in PCT/US18/22725, PCT/US2018/044632, or US 10,550,405, which are incorporated by reference. In some embodiments rAAV comprises a capsid protein selected from AAV serotypes listed in Table 17.
1001431 Table 17: AAV Serotypes and exemplary published corresponding capsid sequence Serotype and where capsid sequence is published Serotype and where capsid sequence is published AAV3.3b (See SEQ ID NO:72 in US20030138772) AAV3-3 (See SEQ ID NO: 200 US20150315612) AAV3-3 (See SEQ ID NO:217 U520150315612) AAV3a ((See SEQ ID NO: 5 in US6I56303) AAV3a (See SEQ ID NO: 9 in US6156303) AAV3b (See SEQ ID NO: 6 in US6156303) AAV3b (See SEQ ID NO:10 in US6156303) AAV3b (See SEQ ID NO: 1 in US6156303) AAV4 (See SEQ ID NO:17 U520140348794) AAV4 ((See SEQ ID NO:5 in US20140348794) AAV4 (See SEQ ID NO: 3 in US20140348794) AAV4 (See SEQ ID NO:14 in US20140348794) AAV4 (See SEQ ID NO: 15 in US20140348794) AAV4 (See SEQ ID NO: 19 in US20140348794) AAV4 (See SEQ ID NO: 12 in US20140348794) AAV4 (See SEQ ID NO: 13 in US20140348794) AAV4 (See SEQ ID NO: 7 in US20140348794) AAV4 (See SEQ ID NO: 8 in US20140348794) AAV4 (See SEQ ID NO: 9 in US20140348794) AAV4 (See SEQ ID NO: 2 in US20140348794) AAV4 (See SEQ ID NO: 10 in US20140348794) AAV4 (See SEQ ID NO: 11 in US20140348794) AAV4 (See SEQ TD NO: 18 in US20140348794) AAV4 (See SEQ ID NO:63 in US20030138772) and US20160017295 SEQ
ID NO: (See SEQ ID NO: 4 in US20140348794) AAV4 (See SEQ ID NO: 16 in US20140348794) AAV4 (See SEQ ID NO: 20 in US20140348794) AAV4 (See SEQ ID NO: 6 in US20140348794) AAV4 (See SEQ ID NO: 1 in U520140348794) AAV42.2 (See SEQ ID NO: 9 in US20030138772) AAV42.2 (See SEQ ID NO: 102 in US20030138772) AAV42.3b (See SEQ ID NO: 36 in US2003013g772) AAV42.3B (See SEQ ID NO: 107 in US20030138772) AAV42.4 (See SEQ ID NO: 33 in U520030138772) AAV42.4 (See SEQ ID NO: 88 in US20030138772) AAV42.8 (See SEQ ID NO: 27 in US20030138772) AAV42.8 (See SEQ ID NO: 85 in U520030138772) AAV43.1 (See SEQ ID NO: 39 in US20030138772) AAV43.1 (See SEQ ID NO: 92 in US20030138772) AAV43.12 (See SEQ ID NO: 41 in US20030138772) AAV43.12 (See SEQ ID NO: 93 in U520030138772) AAV8 (See SEQ ID NO: 15 in U520150159173) AAV8 (See SEQ ID NO: 7 in US20150376240) AAV8 (See SEQ ID NO:4 in US20030138772;US20150315612 SEQ
ID NO: 182 AAV8 (See SEQ ID NO: 95 in US20030138772), ................................................. US20140359799 SEQ
AAV8 (See SEQ ID NO: 31 in US20150159173) AAV8 (See, e.g., SEQ ID NO:
8 in US20160017295, or SEQ ID NO:7 in US7198951, or SEQ ID NO: 223 in US20150315612) AAV8 (See SEQ ID NO: 8 in U520150376240) AAV8 (See SEQ ID NO: 214 in U520150315612) AAV-8b (See SEQ ID NO: 5 in US20150376240) AAV-8b (See SEQ ID NO: 3 in US20150376240) AAV-8h (See SEQ ID NO: 6 in US20150376240) AAV-8h (See SEQ ID NO: 4 in US20150376240) AAV9 (See SEQ ID NO: 5 in U520030138772) AAV9 (See SEQ ID NO: 1 in U57198951) AAV9 (See SEQ ID NO: 9 in U520160017295) AAV9 (See SEQ ID NO: 100 in US20030138772), US7198951 SEQ ID NO: 2 AAV9 (See SEQ ID NO: 3 in U57198951) AAV9 (AAVhu.14) (See SEQ ID NO: 3 in AAV9 (AAVhu.14) (See SEQ ID
NO: 123 in U520150315612) U520150315612) AAVA3.1 (See SEQ ID NO: 120 in US20030138772) AAVA3.3 (See SEQ ID NO: 57 in US20030138772) AAVA3.3 (See SEQ ID NO: 66 in US20030138772) AAVA3.4 (See SEQ ID NO: 54 in US20030138772) AAVA3.4 (See SEQ ID NO: 68 in US20030138772) AAVA3.5 (See SEQ ID NO: 55 in US20030138772) AAVA3.5 (See SEQ ID NO: 69 in US20030138772) AAVA3.7 (See SEQ ID NO: 56 in ................................................. US20030138772) AAVA3.7 (See SEQ ID NO: 67 in US20030138772) AAV29. (See SEQ ID NO: 11 in (AAVbb. 1) 161 US20030138772) AAVC2 (See SEQ ID NO: 61 in U520030138772) AAVCh.5 (See SEQ ID NO:46 in US20150159173); US20150315612 SEQ
ID NO: 234 AAVcy.2 (AAVI3.3) (See SEQ
ID NO: 15 in US20030138772) AAV24.1 (See SEQ ID NO: 101 in U520030138772) AAVcy.3 (AAV24.1) (See SEQ
ID NO: 16 in US20030138772) AAV27.3 (Sec SEQ ID NO: 104 in US20030138772) AAVcy.4 (AAV27.3) (Sec SEQ
ID NO: 17 in ------------------------------------------------- US20030138772) AAVcy.5 (See SEQ ID NO: 227 in US20150315612) AAV7.2 (See SEQ ID NO: 103 in US20030138772) AAVcy.5 (AAV7.2) (See SEQ ID NO: 18 in AAV16.3 (See SEQ ID NO: 105 in US20030138772) US20030138772) AAVcy.6 (AAV16.3) (See SEQ ID NO: 10 in AAVcy.5 (See SEQ ID NO: 8 in U520150159173) US20030138772) AAVcy.5 (See SEQ ID NO: 24 in US20150159173) AAVCy.5R1 (See SEQ ID NO:
in US20150159173 AAVCy.5R2 (See SEQ ID NO: in US20150159173) AAVCy.5R3 (See SEQ ID NO:
in AAVCy.5R4 (See SEQ ID NO: in US20150159173) AAVDJ (See SEQ ID NO: 3 in US20140359799) and SEQ ID NO: 2 in US7588772) AAVDJ (Sec SEQ ID NO: 2 in US20140359799;
and SEQ ID NO: 1 in US7588772) AAVDJ-8 (See SEQ ID NO: in U57588772;
Grimm et al 2008 AAVDJ-8 (See SEQ ID NO: in US7588772; Grimm et AAVF5 (See SEQ ID NO: 110 in US20030138772) al 2008 AAVH2 (See SEQ ID NO: 26 in US20030138772) AAVH6 (See SEQ ID NO: 25 in US20030138772) AAVhEl. 1 (See SEQ ID NO: 44 in US9233131) AAVhEr1.14 (See SEQ ID NO:
46 in US9233131) AAVhEr1.16 (See SEQ ID NO: 48 in US9233131) AAVhEr1.18 (See SEQ ID NO:
49 in US9233131) AAV1iEr1.23 (AAV1iEr2.29) (See SEQ ID NO: 53 in AAV1iEr1.35 (See SEQ ID NO:
50 in US9233131) US9233131) AAVhEr1.36 (See SEQ ID NO: 52 in US9233131) AAVhEr1.5 (See SEQ ID NO:
45 in U59233131) AAVhEr1.7 (See SEQ ID NO: 51 in US9233131) AAVhEr1.8 (See SEQ ID NO:
47 in US9233131) AAVhEr2.I6 (See SEQ ID NO: 55 in US923313I) AAVhEr2.30 (See SEQ ID NO:
56 in US923313I) AAV1iEr2.31 (See SEQ ID NO: 58 in U59233131) AAVhEr2.36 (See SEQ ID NO:
57 in U59233131) AAVhEr2.4 (See SEQ ID NO: 54 in US9233131) AAVhEr3.1 (See SEQ ID NO:
59 in US9233131) AAV1m.1 (See SEQ ID NO: 46 in US20150315612) AAVIni.1 (See SEQ ID NO:
144 in US20150315612) AAVhu.10 (AAV16.8) (Sec SEQ ID NO: 56 in AAVhu.10 (AAV16.8) (Sec SEQ
ID NO: 156 in US20150315612) US20150315612) AAV1nt.11 (AAV16.12) (See SEQ ID NO: 57 in AAVInt.11(AAV16.12) (See SEQ ID NO: 153 in US20150315612) US20150315612) AAV1iu.12 (Sec SEQ ID NO: 59 in US20150315612) AAV1iu.12 (Sec SEQ ID NO:
154 in ------------------------------------------------- US20150315612) AAVhu.13 (See SEQ ID NO: 16 in U52015015917 and ID NO: 71 in US20150315612) AAVIni.13 (See SEQ TD NO: 32 in US20150159173 and ID NO: 129 US20150315612) AAVhu.136.1 (Sec SEQ ID NO: 165 in AAVhu.140.1 (Sec SEQ ID NO:
166 in US20150315612) US20150315612) AAVhu.140.2 (See SEQ ID NO: 167 in AAVhu.145.6 (See SEQ ID NO:
178 in U520150315612) U520150315612) AAVIni.15 (See SEQ TD NO: 147 in U520150315612) AAVItu.15 (AAV33.4) (See SEQ ID NO: 50 in US20150315612) AAVhu.156.1 (See SEQ ID NO: 179 in AAVhu.16 (See SEQ ID NO:
148 in US20150315612) US20150315612) AAVhu.16 (AAV33.8) (See SEQ ID NO: 51 in AAVhu.17 (See SEQ ID NO: 83 in US20150315612) US20150315612) AAVhu.17 (AAV33.12) (See SEQ ID NO: 4 in AAVhu.172.1 (See SEQ ID NO:
171 in US20150315612) US20150315612) AAVhu.172.2 (See SEQ ID NO: 172 in AAVhu,173.4 (See SEQ ID NO:
173 in U520150315612) U520150315612) AAVhu.173.8 (See SEQ ID NO: 175 in AAVhu.18 (See SEQ ID NO: 52 in U520150315612) U520150315612) AAVhu.18 (See SEQ ID NO: 149 in U520150315612) AAVhu.19 (See SEQ ID NO: 62 in US20150315612) AAVhu.I9 (See SEQ ID NO: 133 in US20150315612) AAVhu.2 (See SEQ ID NO: 48 in ................................................. US20150315612) AAVhu.2 (See SEQ ID NO: 143 in US20150315612) AAVIni.20 (See SEQ ID NO:
63 in US20150315612) AAVhn.20 (See SEQ TD NO: 134 in US20150315612) AAVhu.21 (See SEQ ID NO: 65 in US20150315612) AAVhu.2I (See SEQ ID NO: 135 in US20150315612) AAVhu.22 (See SEQ ID NO: 67 in US20150315612) AAVhu.22 239 (See SEQ ID NO: 138 in AAVhu.23 (See SEQ ID NO: 60 in US20150315612) US20150315612) AAVhu.23.2 (See SEQ ID NO: 137 in US20150315612) AAVhu.24 (See SEQ ID NO: 66 in US20150315612) AAVInt.24 (See SEQ ID NO: 136 in U520150315612) AAVInt.25 (See SEQ ID NO:
49 in US20150315612) AAVhu.25 (Sec SEQ ID NO: 146 in US20150315612) AAV1iu.26 (Sec SEQ ID NO:
17 in US20150159173 and SEQ ID NO: 61 in US20150315612) AAVhu.26 (See SEQ ID NO: 33 in US20150159173), LTS20150315612 SEQ
AAVhu.27 (See SEQ ID NO: 64 in US20150315612) AAVhu.27 (See SEQ ID NO: 140 in US20150315612) AAVhu.28 (See SEQ ID NO: 68 in US20150315612) AAVhu.28 (See SEQ ID NO: 130 in U520150315612) AAVhu.29 (See SEQ ID NO: 69 in U520150315612) AAVIni.29 (See SEQ ID NO: 42 in U520150159173 and SEQ ID NO: 132 in US20150315612) AAVhu.29 (See SEQ ID NO: 225 in US20150315612) AAVhu.29R (See SEQ ID NO:
in U520150159173 AAVhu.3 (See SEQ ID NO: 44 in US20150315612) AAVhu.3 (See SEQ ID NO: 145 in US20150315612) AAVhu.30 (See SEQ ID NO: 70 in US20150315612) AAVhu.30 (See SEQ ID NO:
131 in ................................................. US20150315612) AAVhu.31 (See SEQ ID NO: 1 in U S20150315612) AAVhu.31 (See SEQ ID NO:
121 in U520150315612) AAVIni.32 (See SEQ ID NO: 2 in US20150315612) AAVhu.32 (See SEQ ID NO:
122 in US20150315612) AAVhu.33 (See SEQ ID NO: 75 in US20150315612) AAVhu.33 (See SEQ ID NO:
124 in US20150315612) AAVhu.34 (See SEQ ID NO: 72 in US20150315612) AAVhu.34 (See SEQ ID NO:
125 in ................................................. U520150315612) AAVhu.35 (See SEQ ID NO: 73 in US20150315612) AAVhu.33 (See SEQ ID NO:
164 in US20150315612) AAVhu.36 (See SEQ TD NO: 74 in US20150315612) AAVhu.36 (See SEQ ID NO:
126 in US20150315612) AAVhu.37 (See SEQ ID NO: 34 in US20150159173 and SEQ ID NO: 88 in US20150315612) AAVhu.37 (AAV106.1) (See SEQ ID NO: 10 in U520150315612 and SEQ ID NO: 18 in U520150159173) AAVhu.38 (See SEQ ID NO: 161 in US20150315612) AAVhu.39 (See SEQ ID NO:
102 in US20150315612) AAVInt.39 (AAVLG-9) (See SEQ ID NO: 24 in AAVInt.4 (See SEQ ID NO: 47 in US20150315612) US20150315612) AAVhu.4 (Sec SEQ ID NO: 141 in US20150315612) AAV1iu.40 (Sec SEQ ID NO:
87 in ------------------------------------------------- US20150315612) AAVhu.40 (AAV114.3) (See SEQ ID NO: 11 in AAVhu.41 (See SEQ ID NO: 91 in US20150315612) US20150315612) AAVIni.41 (AAV127.2) (See SEQ ID NO: 6 in AAVIiii.42 (See SEQ TD NO:
85 in US20150315612) US20150315612) AAVhu.42 (AAV127.5) (Sec SEQ ID NO:8 in AAVhu.43 (Sec SEQ ID NO:
160 in U520150315612) U520150315612) AAVhu.43 (See SEQ ID NO: 236 in US20150315612) AAVhu.43 (AAV128.1) (See SEQ ID NO: 80 in U520150315612) AAVIru.44 (See SEQ TD NO: 45 in U520150159173 and SEQ ID NO: 158 in US20150315612) AAVhu.44 (AAV128.3) (See SEQ ID NO: 81 in AAVhu.44R1 (See SEQ ID NO:
in U520150315612) U520150159173 AAVhu.44R2 (See SEQ ID NO: in US20150159173 AAVhu.44R3 (See SEQ ID NO:
in AAVhu.45 (See SEQ ID NO: 76 in US20150315612) AAVhu.45 (See SEQ ID NO:
127 in ................................................. US20150315612) AAVhu.46 (See SEQ ID NO: 82 in U S20150315612) AAVhu.46 (See SEQ ID NO:
159 in U520150315612) AAVhu.46 (See SEQ ID NO: 224 in US20150315612) AAVhu.47 (See SEQ ID NO: 77 in U520150315612) AAVhu.47 (See SEQ ID NO: 128 in US20150315612) AAVhu.48 (See SEQ ID NO: 38 in US20150159173) AAVhu.48 (See SEQ ID NO: 157 in 11520150315612) AAVhu.48 (AAVI30.4) (See SEQ ID NO: 78 in ................................................. US20150315612) AAVhu.48R1 (See SEQ ID NO: in US20150159173 AAVIni.48R2 (See SEQ ID NO:
in AAVhu.48R3 (See SEQ ID NO: in U520150159173 AAVhu.49 (See SEQ TD NO:
209 in US20150315612) AAVhu.49 (See SEQ ID NO: 189 in US20150315612) AAVhu.5 (See SEQ ID NO: 45 in US20150315612) AAVhu.5 (See SEQ ID NO: 142 in US20150315612) AAVhu.51 (See SEQ ID NO:
208 in ................................................. US20150315612) AAVhu.51 (See SEQ ID NO: 190 in US20150315612) AAVhu.52 (See SEQ ID NO:
210 in US20150315612) AAVIlit.52 (See SEQ ID NO: 191 in U520150315612) AAVhu.53 (See SEQ ID NO:
19 in US20150159173) AAVhu.53 (See SEQ ID NO: 35 in US20150159173) AAVhu.53 (AAV145.1) (Sec SEQ ID NO: 176 in ------------------------------------------------- US20150315612) AAVhu.54 (See SEQ ID NO: 188 in US20150315612) AAVhu.54 (AAV145.5) (See SEQ ID NO: 177 in US20150315612) AAVIni.55 (See SEQ TD NO: 187 in US20150315612) AAVIlli.56 (See SEQ TD NO:
205 in US20150315612) AAVhu.56 (AAV145.6) (See SEQ ID NO: 168 in AAVhu.56 (AAV145.6) (See SEQ ID NO: 192 in US20150315612) US20150315612) AAVhu.57 (See SEQ ID NO: 206 in US20150315612) AAVhu.57 (See SEQ ID NO:
169 in US20150315612) AAVhu.57 (See SEQ TD NO: 193 in U520150315612) AAVItu.58 (See SEQ ID NO:
207 in US20150315612) AAVhu.58 (See SEQ ID NO: 194 in U S20150315612) AAVhu.6 (AAV3.1) (See SEQ
ID NO: 5 in ................................................. US20150315612) AAVhu.6 (AAV3.1) (See SEQ ID NO: 84 in AAVhu.60 (See SEQ ID NO:
184 in US20150315612) US20150315612) AAVhu.60 (AAV161.10) (See SEQ ID NO: 170 in AAVhu.61 (See SEQ ID NO:
185 in US20150315612) US20150315612) AAVhu.61 (AAV161.6) (See SEQ ID NO: 174 in AAVhu.63 (See SEQ ID NO:
204 in U520150315612) U520150315612) AAVhu.63 (See SEQ ID NO: 195 in US20150315612) AAVhu.64 (See SEQ ID NO:
212 in US20150315612) AAVhu.64 (See SEQ ID NO: 196 in US20150315612) AAVhu.66 (See SEQ ID NO:
197 in US20150315612) AAVhu.67 (See SEQ ID NO: 215 in U520150315612) AAVhu.67 (See SEQ ID NO:
198 in ................................................. US20150315612) AAVhu.7 (See SEQ ID NO: 226 in US20150315612) AAVIiii.7 (See SEQ ID NO:
150 in US20150315612) AAVhu.7 (AAV7.3) (See SEQ ID NO: 55 in AAVhu.71 (See SEQ TD NO: 79 in U520150315612) U520150315612) AAVhu.8 (See SEQ ID NO: 53 in US20150315612) AAVhu.8 (See SEQ ID NO: 12 in US20150315612) AAVhu.8 (See SEQ ID NO: 151 in US20150315612) AAVhu.9 (AAV3.1) (See SEQ
ID NO: 58 in ................................................. US20150315612) AAVhu.9 (AAV3.1) (See SEQ ID NO: 155 in AAV-LK01 (See SEQ ID NO: 2 in U520150315612) US20150376607) AAV-LKOI (See SEQ ID NO: 29 in US20150376607) AAV-LKO2 (See SEQ ID NO: 3 in US20150376607) AAV-LKO2 (Scc SEQ ID NO: 30 in US20150376607) AAV-LKO3 (Scc SEQ ID NO: 4 in ------------------------------------------------- US20150376607) AAV-LKO3 (See SEQ ID NO: 12 in W02015121501 and SEQ ID NO: 31 in US20150376607) AAV-LKO4 (See SEQ ID NO: 5 in US20150376607) AAV-LKO4 (See SEQ ID NO: 32 in US20150376607) AAV-LKO5 (Scc SEQ ID NO: 6 in US20150376607) AAV-LKO5 (Sec SEQ ID NO: 33 in US20150376607) AAV-LKO6 (See SEQ ID NO: 7 in US20150376607) AAV-LKO6 (See SEQ ID NO: 34 in U520150376607) AAV-LKO7 (See SEQ ID NO: 8 in US20150376607) AAV-LKO7 (See SEQ ID NO: 35 in U520150376607) AAV-LK08 (See SEQ ID NO: 9 in US20150376607) AAV-LKO8 (See SEQ ID NO: 36 in ................................................. U520150376607) AAV-LKO9 (See SEQ ID NO: 10 in US20150376607) AAV-LKO9 (See SEQ ID NO: 37 in U520150376607) AAV-LK10 (See SEQ ID NO: 11 in US20150376607) AAV-LK10 (See SEQ ID NO: 38 in ................................................. US20150376607) AAV-LKII (See SEQ ID NO: 12 in US20150376607) AAV-LK11 (See SEQ ID NO: 39 in U520150376607) AAV-LK12 (See SEQ ID NO: 13 in US20150376607) AAV-LK12 (See SEQ ID NO: 40 in US20150376607) AAV-LK13 (See SEQ ID NO: 14 in US20150376607) AAV-LK13 (See SEQ ID NO: 41 in U520150376607) AAV-LKI4 (See SEQ ID NO: 15 in US20150376607) AAV-LK14 (See SEQ ID NO: 42 in ................................................. US20150376607) AAV-LK15 (See SEQ ID NO: 16 in US20150376607) AAV-LK15 (See SEQ ID NO: 43 in US20150376607) AAV-LK16 (See SEQ TD NO: 17 in US20150376607) AAV-LK16 (See SEQ ID NO: 44 in US20150376607) AAV-LK17 (See SEQ ID NO: 18 in US20150376607) AAV-LK17 (See SEQ ID NO: 45 in US20150376607) AAV-LK18 (See SEQ ID NO: 19 in U520150376607) AAV-LK18 (See SEQ ID NO: 46 in ................................................. US20150376607) AAV-LK19 (See SEQ ID NO: 20 in U520150376607) AAV-LK19 (See SEQ ID NO: 47 in US20150376607) AAV-PAEC (See SEQ ID NO: 1 in US20150376607) AAV-PAEC (See SEQ ID NO. 48 in US20150376607) AAV-PAEC11 (Sec SEQ ID NO: 26 in AAV-PAEC11 (Sec SEQ ID NO:
54 in US20150376607) US20150376607) AAV-PAEC 12 (See SEQ ID NO: 27 in AAV-PAEC 12 (See SEQ ID NO:
51 in US20150376607) US20150376607) AAV-PAEC 13 (See SEQ ID NO: 28 in AAV-PAEC 13 (See SEQ ID NO:
49 in US20150376607) US20150376607) AAV-PAEC2 (Sec SEQ ID NO: 21 in US20150376607) AAV-PAEC2 (See SEQ ID NO: 56 in U520150376607) AAV-PAEC4 (See SEQ ID NO: 22 in US20150376607) AAV-PAEC4 (See SEQ ID NO: 55 in U520150376607) AAV-PAEC6 (See SEQ ID NO: 23 in US20150376607) AAV-PAEC6 (See SEQ ID NO: 52 in U520150376607) AAV-PAEC7 (See SEQ ID NO: 24 in US20150376607) AAV-PAEC7 (See SEQ ID NO: 53 in ................................................. U520150376607) AAV-PAEC8 (See SEQ ID NO: 25 in US20150376607) AAV-PAEC8 (See SEQ ID NO: 50 in U520150376607) AAVpi.1 (See SEQ ID NO: 28 in US20150315612) AAVpi.1 (See SEQ ID NO: 93 in U520150315612;
AAVpi.2 408, see SEQ ID NO: 30 in US20150315612) AAVpi.2 (See SEQ ID NO: 95 in US20150315612) AAVpi.3 (See SEQ ID NO: 29 in US20150315612) AAVpi.3 (See SEQ ID NO: 94 in US20150315612) AAVrh.10 (See SEQ ID NO: 9 in U520150159173) AAVrh.10 (See SEQ ID NO: 25 in US20150159173) AAV44.2 (See SEQ ID NO: 59 in US20030138772) AAVrh.10 (AAV44.2) (See SEQ ID NO: 81 in AAV42.1B (Sec SEQ ID NO: 90 in US20030138772) US20030138772) AAVrh.12 (AAV42.1b) (See SEQ ID NO: 30 in AAVrh.13 (See SEQ ID NO: 10 in U520030138772) U520150159173) AAVrh.13 (See SEQ ID NO: 26 in U520150159173) AAVrh.13 (See SEQ ID NO:
228 in US20150315612) AAVrh.13R (Sec SEQ ID NO: in US20150159173 AAV42.3A (Sec SEQ ID NO: 87 in US20030138772) AAVrh.14 (AAV42.3a) (See SEQ ID NO: 32 in AAV42.5A (See SEQ ID NO: 89 in U520030138772) U520030138772) AAVrh.17 (AAV42.5a) (See SEQ TD NO: 34 in AAV42.5B (See SEQ ID NO: 91 in U520030138772) U520030138772) AAVrh.18 (AAV42.5b) (See SEQ ID NO: 29 in AAV42.6B (See SEQ ID NO:
112 in US20030138772) US20030138772) AAVrh.19 (AAV42.6b) (See SEQ ID NO: 38 in AAVrh.2 (See SEQ ID NO: 39 in U520150159173) US20030138772) AAVrh.2 (See SEQ ID NO: 231 in U520150315612) AAVrh.20 (See SEQ ID NO: 1 in U520150159173) AAV42.10 (See SEQ ID NO: 106 in US20030138772) AAVr1i.21 (AAV42.10) (See SEQ ID NO: 35 in US20030138772) AAV42.11 (See SEQ ID NO: 108 in U520030138772) AAVrh.22 (AAV42.11) (See SEQ ID NO: 37 in US20030138772) AAV42.12 (See SEQ ID NO: 113 in US20030138772) AAVrh.23 (AAV42.12) (See SEQ ID NO: 58 in ------------------------------------------------- US20030138772) AAV42.I3 (See SEQ ID NO: 86 in US20030138772) AAVrh.24 (AAV42.I3) (See SEQ ID NO: 31 in US20030138772) AAV42.15 (See SEQ ID NO: 84 in US20030138772) AAVrh.25 (AAV42.15) (See SEQ ID NO: 28 in ................................................. US20030138772) AAVrh.2R (See SEQ ID NO: in US20150159173 AAVrh.31 (AAV223.1) (Sec SEQ ID NO: 48 in US20030138772) AAVC1 (See SEQ ID NO: 60 in US20030138772) AAVrh.32 (AAVC1) (See SEQ
ID NO: 19 in 446 US20030138772) AAVrh.32/33 (See SEQ ID NO: 2 in U520150159173) AAVrh.51 (AAV2-5) (See SEQ ID
NO: 104 in US20150315612) AAVrh.52 (AAV3-9) (See SEQ ID NO: 18 in AAVrh.52 (AAV3-9) (See SEQ
ID NO: 96 in U520150315612) U520150315612) AAVrh.53 (See SEQ ID NO: in US20150315612) AAVrh.53 (AAV3-11) (See SEQ
ID NO: 17 in US20150315612) AAVrh.53 (AAV3-11) (See SEQ ID NO: 186 in AAVrh.54 (See SEQ ID NO: 40 in US20150315612) US20150315612) AAVrh.54 (See SEQ ID NO: 49 in U520150159173 and SEQ ID NO: 116 in US20150315612) AAVrh.55 (See SEQ ID NO: 37 in US20150315612) AAVrh.55 (AAV4-19) (See SEQ
ID NO: 117 in US20150315612) -AAVrh.56 (See SEQ ID NO: 54 in US20150315612) AAVrh.56 (See SEQ ID NO:
152 in US20150315612) AAVrh.57 (See SEQ ID NO: in 497 U520150315612 AAVrh.57 (See SEQ ID NO:
105 in SEQ ID NO: 26 US20150315612) AAVrh.58 (See SEQ ID NO: 27 in US20150315612) AAVrh.58 (See SEQ ID NO: 48 in US20150159173 and SEQ ID NO: 106 in ................................................. US20150315612) AAVrh.58 (See SEQ ID NO: 232 in US20150315612) AAVrh.59 (See SEQ ID NO: 42 in US20150315612) AAVrh.59 (See SEQ ID NO:
110 in US20150315612) AAVrh.60 (See SEQ ID NO: 31 in US20150315612) AAVrh.60 (See SEQ ID NO:
120 in US20150315612) AAVrh.61 (See SEQ ID NO: 107 in US20150315612) AAVrh.61 (AAV2-3) (See SEQ
ID NO: 21 in US20150315612) AAVrh.62 (AAV2-15) (See SEQ ID NO: 33 in AAVrh.62 (AAV2-15) (See SEQ
ID NO: 114 in US20150315612) US20150315612) AAVrh.64 (See SEQ ID NO: 15 in US20150315612) AAVrh.64 (See SEQ ID NO: 43 in US20150159173 and SEQ ID NO: 99 in US20150315612) AAVrh.64 (See SEQ ID NO: 233 in US20150315612) AAVRh.64R1 (See SEQ ID NO: in U520150159173 AAVRh.64R2 (See SEQ ID NO:
in ................................................. US20150159173 AAVrh.65 (See SEQ ID NO: 35 in US20150315612) AAVrh.65 (See SEQ ID NO:
112 in US20150315612) AAVrh.67 (See SEQ ID NO: 36 in US20150315612) AAVrh.67 (See SEQ ID NO:
230 in US20150315612) A AVdt 67 (See SEQ ID NO: 47 in U520150159173 and SEQ ID NO: 47 in US20150315612) AAVrh.68 (Sec SEQ ID NO: 16 in US20150315612) AAVrh.68 (Sec SEQ ID NO:
100 in ................................................. US20150315612) AAVrh.69 (See SEQ ID NO: 39 in US20150315612) AAVrh.69 (See SEQ ID NO:
119 in US20150315612) AAVrh.70 (See SEQ ID NO: 20 in US20150315612) AAVrh.70 (See SEQ ID NO: 98 in US20150315612) AAVrh.71 (See SEQ ID NO: 162 in US20150315612) AAVrh.72 (See SEQ ID NO: 9 in US20150315612) AAVrh.73 (See SEQ ID NO: 5 in US20150159173) AAVrh.74 (See SEQ ID NO: 6 in US20150159173) AAVrh.8 (Sec SEQ ID NO: 41 in US20150159173) AAVrh.8 (Sec SEQ ID NO: 235 in US20150315612) AAVrh.8R (See SEQ ID NO: 9 in US20150159173, AAVrh.8R A586R mutant (See SEQ ID NO: 10 in W02015168666) W02015168666) AAVrh.8R R533A mutant (See SEQ ID NO: 11 in BAAV (bovine AAV) (See SEQ
ID NO: 8 in W02015168666) US9193769) BAAV (bovine AAV) (See SEQ ID NO: 10 in BAAV (bovine AAV) (See SEQ
ID NO: 4 in US9193769) US9193769) BAAV (bovine AAV) (See SEQ ID NO: 2 in BAAV (bovine AAV) (See SEQ
ID NO: 6 in US9193769) US9193769) BAAV (bovine AAV) (See SEQ ID NO: 1 in BAAV (bovine AAV) (See SEQ
ID NO: 5 in U59193769) U59193769) BAAV (bovine AAV) (See SEQ ID NO: 3 in BAAV (bovine AAV) (See SEQ
ID NO: 11 in U59193769) U59193769) BAAV (bovine AAV) (See SEQ ID NO: 5 in BAAV (bovine AAV) (See SEQ
ID NO: 6 in US7427396) US7427396) BAAV (bovine AAV) (See SEQ ID NO: 7 in BAAV (bovine AAV) (See SEQ
ID NO: 9 in U59193769) U59193769) BNP61 AAV (See SEQ ID NO: 1 in US20150238550) BNP61 AAV (See SEQ ID NO: 2 in US20150238550) BNP62 AAV (See SEQ ID NO: 3 in US20150238550) BNP63 AAV (See SEQ ID NO: 4 in US20150238550) caprinc AAV (Sec SEQ ID NO: 3 in U57427396) caprinc AAV (Sec SEQ ID NO:
4 in US7427396) true type AAV (ttAAV) (See SEQ ID NO: 2 in AAAV (Avian AAV) (See SEQ
ID NO: 12 in W02015121501) U59238800) AAAV (Avian AAV) (See SEQ ID NO: 2 in AAAV (Avian AAV) (See SEQ
ID NO: 6 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: 4 in AAAV (Avian AAV) (See SEQ
ID NO: 8 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: 14 in AAAV (Avian AAV) (See SEQ
ID NO: 10 in U59238800) U59238800) AAAV (Avian AAV) (See SEQ ID NO: 15 in AAAV (Avian AAV) (See SEQ
ID NO: 5 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: 9 in AAAV (Avian AAV) (See SEQ
ID NO: 3 in U59238800) U59238800) AAAV (Avian AAV) (See SEQ ID NO: 7 in AAAV (Avian AAV) (See SEQ
ID NO: 11 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: in AAAV (Avian AAV) (See SEQ
ID NO: 1 in US9238800) U59238800) 6?
AAV Shuffle 100-1 (See SEQ ID NO: 23 in AAV Shuffle 100-1 (See SEQ
ID NO: 11 in US20160017295) US20160017295) AAV Shuffle 100-2 (See SEQ ID NO: 37 in AAV Shuffle 100-2 (See SEQ
ID NO: 29 in US20160017295) US20160017295) AAV Shuffle 100-3 (See SEQ ID NO: 24 in AAV Shuffle 100-3 (See SEQ
ID NO: 12 in US20160017295) US20160017295) AAV Shuffle 100-7 (See SEQ ID NO: 25 in AAV Shuffle 100-7 (See SEQ
ID NO: 13 in U520160017295) U520160017295) AAV Shuffle 10-2 (See SEQ ID NO: 34 in AAV Shuffle 10-2 (See SEQ
ID NO: 26 in US20160017295) US20160017295) AAV Shuffle 10-6 (See SEQ ID NO: 35 in AAV Shuffle 10-6 (See SEQ
ID NO: 27 in US20160017295) US20160017295) AAV Shuffle 10-8 (See SEQ ID NO: 36 in AAV Shuffle 10-8 (See SEQ
ID NO: 28 in US20160017295) US20160017295) AAV SM 100-10 (See SEQ ID NO: 41 in AAV SM 100-10 (See SEQ ID
NO: 33 in U520160017295) U520160017295) AAV SM 100-3 (See SEQ ID NO: 40 in AAV SM 100-3 (See SEQ ID
NO: 32 in US20160017295) US20160017295) AAV SM 10-1 (See SEQ ID NO: 38 in AAV SM 10-1 (See SEQ ID NO:
30 in US20160017295) US20160017295) AAV SM 10-2 (See SEQ ID NO: 10 in AAV SM 10-2 (See SEQ ID NO:
22 in U520160017295) U520160017295) AAV SM 10-8 (See SEQ ID NO: 39 in AAV SM 10-8 (See SEQ ID NO:
31 in US20160017295) US20160017295) AAV CBr-7.1 (See SEQ ID NO: 4 in W02016065001) AAV CBr-7.1 (See SEQ ID NO: 54 in W02016065001) AAV CBr-7.10 (See SEQ ID NO: 11 in AAV CBr-7.10 (See SEQ ID
NO: 61 in W02016065001) W02016065001) AAV CBr-7.2 (See SEQ ID NO: 5 in W02016065001) AAV CBr-7.2 (See SEQ ID NO: 55 in W02016065001) AAV CBr-7.3 (See SEQ ID NO: 6 in W02016065001) AAV CBr-7.3 (See SEQ ID NO: 56 in ................................................. W02016065001) AAV CBr-7.4 (See SEQ ID NO: 7 in W02016065001) AAV CBr-7.4 (See SEQ ID NO: 57 in W02016065001) AAV CBr-7.5 (See SEQ ID NO: 8 in W02016065001) AAV CHt-6.6 (See SEQ ID NO: 35 in W02016065001) AAV CHI-6.6 (See SEQ ID NO: 85 in W02016065001) AAV CHt-6.7 (See SEQ ID NO: 36 in ................................................. W02016065001) AAV CHt-6.7 (See SEQ ID NO: 86 in W02016065001) AAV CHt-6.8 (See SEQ ID NO: 37 in W02016065001) AAV CHt-6.8 (See SEQ ID NO: 87 in W02016065001) AAV CHt-P1 (See SEQ ID NO: 29 in W02016065001) AAV CHt-P1 (See SEQ ID NO: 79 in W02016065001) AAV CHt-P2 (See SEQ ID NO: 1 in W02016065001) AAV CHt-P2 (See SEQ ID NO: 51 in W02016065001) AAV CHt-P5 (See SEQ ID NO: 2 in ................................................. W02016065001) AAV CHt-P5 (See SEQ ID NO: 52 in W02016065001) AAV CHt-P6 (See SEQ ID NO: 30 in W02016065001) AAV CHt-P6 (See SEQ ID NO: 80 in W02016065001) AAV CHt-P8 (See SEQ ID NO: 31 in W02016065001) AAV C1-11-P8 (See SEQ ID NO: 81 in W02016065001) AAV CH1-P9 (See SEQ ID NO: 3 in W02016065001) AAV (Sec SEQ ID NO: 53 in W02016065001) AAV CKd-1 (Sec SEQ ID
NO: 57 in US8734809) AAV CKd-1 (See SEQ ID NO: 131 in US8734809) AAV CKd-10 (See SEQ ID NO:
58 in US8734809) AAV CKd-10 (See SEQ ID NO: 132 in U58734809) AAV CKd-2 (See SEQ ID NO:
59 in US8734809) AAV CKd-2 (See SEQ ID NO: 133 in U58734809) AAV CKd-3 (See SEQ ID NO:
60 in US8734809) AAV CKd-3 (See SEQ ID NO: 134 in U58734809) AAV CKd-4 (See SEQ ID NO:
61 in U58734809) AAV CKd-4 (See SEQ ID NO: 135 in US8734809) AAV CKd-6 (See SEQ ID NO:
62 in US8734809) AAV CKd-6 (See SEQ ID NO: 136 in U58734809) AAV CKd-7 (See SEQ ID NO:
63 in U58734809) AAV CKd-7 (See SEQ ID NO: 137 in US8734809) AAV CI(d-8 (See SEQ ID NO:
64 in US8734809) AAV CKd-8 (See SEQ ID NO: 138 in U58734809) AAV CKd-B 1 (See SEQ ID NO:
73 in US8734809) AAV CKd-B 1 (See SEQ ID NO: 147 in U58734809) AAV CKd-B2 (See SEQ ID NO:
74 in U58734809) AAV CKd-B2 (See SEQ ID NO: 148 in US8734809) AAV CKd-B3 (See SEQ TD NO:
75 in US8734809) AAV CKd-B3 (See SEQ ID NO: in US8734809 AAV CKd-B3 (See SEQ ID NO:
149 in US8734809) AAV CLv-1 (See SEQ ID NO: 65 in US8734809) ................................................. AAV CLv-I (See SEQ ID NO:
139 in U S8734809) AAV CLv1-1 (See SEQ ID NO: 171 in US8734809) AAV Civ 1-10 (See SEQ ID
NO: 178 in US8734809) AAV CLv1-2 (See SEQ ID NO: 172 in US8734809) AAV CLv-12 (See SEQ ID NO:
66 in US8734809) AAV CLv-12 (See SEQ ID NO: 140 in U58734809) AAV CLv1-3 (See SEQ ID NO:
173 in U58734809) AAV CLv-13 (See SEQ ID NO: 67 in US8734809) AAV CLv-13 (See SEQ ID NO:
141 in ................................................. US8734809) AAV CLv1-4 (See SEQ ID NO: 174 in U58734809) AAV Civ 1-7 (See SEQ ID NO:
175 in US8734809) AAV Civ 1-8 (See SEQ ID NO: 176 in U58734809) AAV Civ 1-9 (See SEQ ID NO:
177 in US8734809) ------------------------------------------------AAV CLv-2 (See SEQ ID NO: 68 in US8734809) ------- AAV CLv-2 (See SEQID NO:
142 in US8734809) AAV CLv-3 (See SEQ ID NO: 69 in US8734809) AAV CLv-3 (See SEQ ID NO:
143 in US8734809) AAV CLv-4 (See SEQ ID NO: 70 in U58734809) AAV CLA7-4 (See SEQ ID NO:
144 in U58734809) AAV CLv-6 (See SEQ ID NO: 71 in U58734809) AAV CLA7-6 (See SEQ ID NO:
145 in US8734809), AAV CLv-8 (See SEQ ID NO: 72 in U58734809) ------- AAV CLv-8 (See SEQ ID NO:
146 in US8734809L
AAV CLv-D1 (See SEQ ID NO: 22 in U58734809) AAV CLv-D1 (See SEQ ID NO:
96 in U58734809) AAV CLv-D2 (See SEQ ID NO: 23 in US8734809) AAV CLv-D2 (See SEQ ID NO:
97 in U58734809) AAV CLv-D3 (See SEQ ID NO: 24 in U58734809) AAV CLv-D3 (See SEQ ID NO:
98 in U58734809) AAV CLv-D4 (See SEQ ID NO: 25 in 1JS8734809) AAV CLv-D4 (See SEQ ID NO:
99 in US8734809) AAV CLv-D5 (See SEQ ID NO: 26 in US8734809) AAV CLv-D5 (See SEQ ID NO:
100 in US8734809) AAV CLv-D6 (See SEQ ID NO: 27 in US8734809) AAV CLv-D6 (See SEQ ID NO:
101 in US8734809) AAV CLv-D7 (See SEQ ID NO: 28 in U58734809) AAV CLv-D7 (See SEQ ID NO:
102 in U S8734809) AAV CLv-D8 (See SEQ ID NO: 29 in US8734809) AAV CLv-D8 (See SEQ ID NO:
103 in US8734809); AAV CLv-K1 762, see SEQ ID NO: 18 ------------------------------------------------- in W02016065001) AAV CLv-K1 (See SEQ ID NO: 68 in W02016065001) AAV CLv-K3 (See SEQ ID NO: 19 in W02016065001) AAV CLv-K3 (See SEQ ID NO: 69 in AAV CLv-K6 (See SEQ ID NO:
20 in W02016065001) W02016065001) AAV CLv-K6 (See SEQ ID NO: 70 in AAV CLv-L4 (See SEQ ID NO:
15 in W02016065001) W02016065001) AAV CLv-L4 (See SEQ ID NO: 65 in W02016065001) AAV CLv-L5 (See SEQ ID NO: 16 in W02016065001) AAV CLv-L5 (See SEQ ID NO: 66 in W02016065001) AAV CLv-L6 (See SEQ ID NO: 17 in W02016065001) AAV CLv-L6 (See SEQ ID NO: 67 in W02016065001) AAV CLv-M1 (See SEQ ID NO: 21 in W02016065001) AAV CLv-M1 (See SEQ ID NO: 71 in W02016065001) AAV CLv-M11 (See SEQ ID NO: 22 in W02016065001) AAV CLv-M1 1 (See SEQ ID NO: 72 in AAV CLv-M2 (See SEQ ID NO:
23 in W02016065001) W02016065001) AAV CLv-M2 (See SEQ ID NO: 73 in AAV CLv-M5 (See SEQ ID NO:
24 in W02016065001) W02016065001) AAV CLv-M5 (See SEQ ID NO: 74 in AAV CLv-M6 (See SEQ ID NO:
25 in W02016065001) W02016065001) AAV CLv-M6 (See SEQ ID NO: 75 in AAV CLv-M7 (See SEQ ID NO:
26 in W02016065001) W02016065001) AAV CLv-M7 (See SEQ TD NO: 76 in AAV CLv-M8 (See SEQ TD NO:
27 in W02016065001) W02016065001) AAV CLv-M8 (See SEQ ID NO: 77 in AAV CLv-M9 (See SEQ ID NO:
28 in W02016065001) W02016065001) AAV CLv-M9 (Sec SEQ ID NO: 78 in AAV CLv-R1(Scc SEQ ID NO:
30 in US8734809) W02016065001) AAV CLv-R1 (See SEQ ID NO: 104 in US8734809) AAV CLv-R2 (See SEQ ID NO:
31 in US8734809) AAV CLv-R2 (See SEQ ID NO: 105 in US8734809) AAV CLv-R3 (See SEQ ID NO:
32 in US8734809) AAV CLv-R3 (See SEQ ID NO: 106 in U58734809) AAV CLv-R4 (See SEQ ID NO:
33 in U58734809) AAV CLv-R4 (See SEQ ID NO: 107 in US8734809) AAV CLv-R5 (See SEQ ID NO:
34 in U58734809) AAV CLv-R5 (See SEQ ID NO: 108 in US8734809) AAV CLv-R6 (See SEQ ID NO:
35 in US8734809) AAV CLv-R6 (See SEQ ID NO: 109 in US8734809): AAV CLv-R7 (See SEQ ID NO:
110 in AAV CLv-R7 802 (see SEQ ID NO: 36 in US8734809) U58734809) AAV CLv-R8 (See SEQ ID NO: 37 in U58734809) AAV CLv-R8 (See SEQ ID NO:
111 in US8734809) AAV CLv-R9 (See SEQ ID NO: 38 in US8734809) AAV CLv-R9 (See SEQ ID NO:
112 in US8734809) AAV CSp-1 (See SEQ ID NO: 45 in US8734809) AAV CSp-1 (See SEQ ID NO:
119 in US8734809) AAV CSp-10 (See SEQ ID NO: 46 in US8734809) AAV CSp-10 (See SEQ ID NO:
120 in US8734809) AAV CSp-11 (See SEQ ID NO: 47 in U58734809) AAV CSp-11 (See SEQ ID NO:
121 in US8734809) AAV CSp-2 (Sec SEQ ID NO: 48 in US8734809) AAV CSp-2 (Sec SEQ ID NO:
122 in US8734809) AAV CSp-3 (See SEQ ID NO: 49 in US8734809) AAV CSp-3 (See SEQ ID NO:
123 in US8734809) AAV CSp-4 (See SEQ ID NO: 50 in US8734809) AAV CSp-4 (See SEQ ID NO:
124 in US8734809) AAV CSp-6 (See SEQ ID NO: 51 in U58734809) AAV CSp-6 (See SEQ ID NO:
125 in U58734809) AAV CSp-7 (See SEQ ID NO: 52 in US8734.809) AAV CSp-7 (See SEQ ID NO:
126 in US8734809) AAV CSp-8 (See SEQ ID NO: 53 in US8734809) AAV CSp-8 (See SEQ ID NO:
127 in U58734809) AAV CSp-8.10 (See SEQ ID NO: 38 in AAV CSp-8.10 (See SEQ ID
NO: 88 in W02016065001) W02016065001) AAV CSp-8.2 (See SEQ ID NO: 39 in W02016065001) AAV CSp-8.2 (See SEQ ID NO: 89 in W02016065001) AAV CSp-8.4 (See SEQ ID NO: 40 in W02016065001) AAV CSp-8.4 (See SEQ ID NO: 90 in W02016065001) AAV CSp-8.5 (Sec SEQ ID NO: 41 in W02016065001) AAV CSp-8.5 (See SEQ ID NO: 91 in W02016065001) AAV CSp-8.6 (See SEQ ID NO: 42 iii W02016065001) AAV CSp-8.6 (See SEQ ID NO:
92 in W02016065001) AAV CSp-8.7 (Sec SEQ ID NO: 43 in W02016065001) AAV CSp-8.7 (Sec SEQ ID NO: 93 in ------------------------------------------------- W02016065001) AAV CSp-8.8 (See SEQ ID NO: 44 in W02016065001) AAV CSp-8.8 (See SEQ ID NO: 94 in W02016065001) AAV CSp-8.9 (See SEQ ID NO: 45 in W02016065001) AAV CSp-8.9 (See SEQ ID NO: 95 in W02016065001) AAV CSp-9 842 (Sec SEQ ID NO: 54 in US8734809) AAV CSp-9 (Sec SEQ ID NO:
128 in US8734809) AAV.hu.48R3 (See SEQ ID NO: 183 in US8734809) AAV.VR-355 (See SEQ ID NO:
181 in US8734809) AAV:3B (See SEQ TD NO: 4% in W02016065001) AAV3B (See SEQ TD NO: 98 in W02016065001) AAV4 (See SEQ ID NO: 49 in W02016065001) AAV4 (See SEQ ID NO: 99 in W02016065001) AAV5 (See SEQ ID NO: 50 in W02016065001) AAV5 (See SEQ ID NO: 100 in W02016065001) AAVF1/HSC1 (See SEQ ID NO: 20 in AAVF1/HSC1 (See SEQ ID NO:
2 in W02016049230) W02016049230) AAVF11/HSC11 (See SEQ ID NO: 26 in AAVF11/HSC11 (See SEQ ID
NO: 4 in W02016049230) W02016049230) AAVF12/HSC12 (See SEQ TD NO: 30 in AAVF12/HSC12 (See SEQ ID
NO: 12 in W02016049230) W02016049230) AAVF13/HSC13 (See SEQ ID NO: 31 in AAVF13/HSC13 (See SEQ ID
NO: 14 in W02016049230) W02016049230) AAVF14/HSC14 (See SEQ ID NO: 32 in AAVF14/HSC14 (See SEQ ID
NO: 15 in W02016049230) W02016049230) AAVF15/HSC15 (See SEQ ID NO: 33 in AAVF15/HSC15 (See SEQ ID
NO: 16 in W02016049230) W02016049230) AAVF16/11SC16 (See SEQ ID NO: 34 in AAVF16/HSC16 (See SEQ ID
NO: 17 in W02016049230) W02016049230) AAVF17/HSC17 (See SEQ ID NO: 35 in AAVF17/HSC17 (See SEQ ID
NO: 13 in W02016049230) W02016049230) AAVF2/HSC2 (See SEQ ID NO: 21 in AAVF2/HSC2 (See SEQ ID NO:
3 in W02016049230) W02016049230) AAVF3/HSC3 (See SEQ ID NO: 22 in AAVF3/HSC3 (See SEQ ID NO:
CMV-GGAGGAGAGACGGACAGCGACAAGTGGAGAAAATCGGCGAAACTTGA
IF UTR
GTGGCAGAGAAGTCTGAGC GCTGAGAC C CGGCGGC CC CGTGC GC CTTC
CCAC CTGGCGCCGATC CACTTTCCTCGGGGTAGC GGCC CAA CC CAC TT
and intron TCGCCCACTTGGCTCTGCCTAAGCGTCCTAGCCGGAGCGCGGTCTCTGC
(SEQ
CACGTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGG
ID NO.
CCAGAGGGCGGGGTTCTTGG CGTCTCGCCGGCCAGACCCCTCCCTCAA
121) AGGCGGGGCCTGGAGATC CA CAGCTGGAAAGGGC GGAGC C C CAGCAG
GGCAGCTGGAAAGGGGCGGGGCCTGACGCGCGCGGCTCGCCGCGGCG
GGCTGGGGGCGC CCTGGTC TGC CATAAAGTGAATGGGC GC CGG C TGGG
GGTGGCAGTACGCTCAGATCGC CTGGAGACGCCATC CA C GCTGTTTTG
ACCTC CATAGAAGA CAC CGGGACCGATCCAGCCTCCGCGGCC GGGAA
CGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACC
GCCTATAGACTCTATAGGCACACCCCTTTGGCTCTTATGCATGAACGGT
GGAGGGCAGTGTAGTCTGAGCAGTACTC GTTGCTGCC GCGCGCGCCAC
CAGACATAATAGCTGACAGACTAACAGACTGTTCCTTTCCATGGGTCTT
TTCTGCAGATGCCACC
GGAACATTTAGACTTTGGGAAAGAGATTAGTGATTTACATTGCTATC TC
ACTGATTTAATTTAAATGCTCTTC CAAACCAAACACACATGTGCCGAA
GAGGCTACTAAGAAAC CCAACATGCAGAGTTCTCTATAAGTGCAGCCG
ACAGTGTTGACTGAAACTAAACTTGGAAATCCAGGGCACTAATGCACA
ATATCAAGCAATAAAACGGCATCTCTTTGGCAATATTTAATTTAAAAA
AGAAGAAAGAGACAGGCGAAGATCAGGCA CTGTCTGTTTTGGAGGAT
CAAC CATTCTGCATTTCAAAGCATTGGTC C CTGCAATATC CAGGTTA CT
(SEQ GATGTGTTTACTCA GTGATTAGGC CCTTAGAATAAGC CTCTAGCTCCTA 835 ID NO: GAGAGACAGCTCACCACTTATTCATTTGGGCCAATTCACAAAGCCTAG
122) GAAGATTA AACATCCATGCTGAGAAGACAAGCGAATGCAGACGGTGA
AAAAGAAATAAAAATTCTTTAAAAACTCTGAGATGACTTCATTATTTTT
CCACAAGGAAACTTTAGGAAAGTGTTTAGTTAGAGAAAAAC CCA CATT
GA CC TCTCTCTA A A CC CTTA A TCTTTC CTTTGTGGTGGC A CTGCTTTGTG
GTAAGCGACTGGCTCGCCTCGCCCCTCTTTTCACTGGAAG CTGAGAGA
AAAAAGACTCTGGAGAAACAGTTTTCGTTC CAGGGACACAAACC CC TG
ACAC TGTTAAGGGCTGGGCATAAAAGTCAGGGCAGAGC CATCTATTGC
TTACATTTGCTTCTG
GAAAATTTAATGTCATTGAAGCTCTATTTCCAATAGCAAAGGAGCACT
ATTGCTAATAGACTTCAGAGCTTGAAATAAATAAATCTTTGGAATCCT
GTTGCATCTCTTGGGGTGTGACATTTGACAGTCTTTTATAG CACAGAAC
GA A A CA A GTTTGTGA GCTGGA A TTCA A TTGTGGCGTA TTGATTCCTTGC
ATCAGTCATTATTC CCTGCTGATTGACAGGTGAAAATTGGTTAC GTTAA
GTATTTCATATGTTATATTGGCTGACATTTGCTTGC CTGCTCTTGTGTCA
ATATTGTTGTAAAGATCTCCAGCTTTATGAGATAGCAATAGACACTGA
CTGTGGCTTTTGTGTGATGTTCCAGTGTTTTTC CTGACATAATTTAAGA
(SEQ
ID NO: 123) TATTATTGTCTTCCAGGGGAAGATCATGTATGCTCATAATCGGGTGCTA
ATTTCCACCAGTACGCTCATGTTTAGGCATTAGGCACTATAACTGTAAA
ATTGAGCCTTCTTGATTGATTCATGTCAAGCC TCATCTCGGCTCCTGCA
GGGGAAGTCATCCGGCTGACCCTTTTTACACTAAAAGAAGAGATTTGT
GTTCCTTTCTTTCACCTGGAACCATCAAATTGACTGAATAATCTGTAAT
ACATTAGTGCTGACATTTGTTAGGGAGAATTAAACAAGACACAGTAAT
CA TTC CC C AGA A TA A A A A TTGTGTTTGA TGGGC TGGGC A TA A A AGTC A
GGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
TGAGACTGAGTGGGAGTGGGGATGAAGC CTTTTTTCTTCATTTTTTTTT
CCTCAGGTGCAATTCTGTGTTAATATAAGAGAAGTGTGGCCTTCCTTCT
CATAGCACTAAAAGTGAGATAATCCCTGTGTAAGAAATCAGTAAGTAC
(SEQ TCTATCATTATGTGACTGGGCCTGTTTTGTGCTGGATTAGGCACAAATC 487 ID NO: TCCTATGCAGCACATTTGGCATGTTACTAGTAGTTTAACTTCATTAATA
124) ATGTATGAAGAAAATGTAATCCATGACAAGGAAGCAAAGAAAAGTAT
TTTTTTTTTTTTTTGCTTCTC C CAAATCCTTTGGAATGAGTAATTATTCA
ACATTTTATGTTTGATG TTATATTTTACAATTCAAC TTC CATAG G G CTG
GGCATAAA AGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
GCTGGTGCTTCTTTTTTCTGTTTTTTAAGCTGCTTTACAGACGAAAATG
GAACTATATTTGGAACAATGCTTTCTGTTTTTCCATAC TATTGATATTTG
TGGAAAGTCACAAAATGGCCTAAGGAAGCTAAGCTCGCCCCAAGCAG
TGGTCACTTACAAGTACTTTTGTACTCTGTACTCCTGTCACATTTGGGC
ATAATCCTGATGAGATTCCACATCCAACATCTTTTGTAATTATGTCACA
(SEQ
ID NO.- TTC TTAAAC CTTTC CC TG TG GAC TGG CTATC TAAAAGATTTAAAGATAT
125) TTCTGTTACAAGATCTAGTGTTTCCTCAGAGAAGTCATGCTTCTGAAGC
ATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTCTGAA
AGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATA
ATATGCGGGCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTAC
ATTTGCTTCTG
[00120] Table 12 - Minimal/Proximal Promoters comprised in the promoters of Table 11 Name SEQUENCE
SYNP_CRE151 (SEQ ID NO: GGGCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTG
126) GGGAGGATTGGAACAGAGACAAAAGGGAGGAGAGACGGACAGCGACAAGTGG
AGAAAATCGGCGAAACTTGAGTGGCAGAGAAGTCTGAGCGCTGAGACCCGGCG
GCCCCGTGCGCCTTCCCACCTGGCGCCGATCCACTTTCCTCGGGGTAGCGGCCC
CRE0001vl_Pitx AACCCACTTCGCTGCCAGCCGATCCCTTTTACCCGTGGCTACCGGGACCACTCTA
GTGGGGAGGGGCGCGGCCGAGTTGCTGAAGAGCGCTTCTGATTGGCCAGAGGG
(SEQ ID NO: CGGGGTTCTTGGCGTCTCGCCGGCCAGACCCCTCCCTCAAAGGCGGGGCCTGGA
127) GATCCACAGCTGGAAAGGGCGGAGCCCCAGCAGGGCAGCTGGAAAGGGGCGG
GGCCTGACGCGCGCGGCTCGCCGCGGCGGGCTGGGGGCGCCCTGGTCTGCCATA
AAGTGAATGGGCGCCGGCTGGGGGTGGCAGTACGCGGTGAGGCTCACTCCCTCC
GAGAGTCCAGGAGCGCC
[00121] Table 13 - Synthetic CNS-specific promoter overview Promoter name Minimal/proximal CRE UTR
promoter CNS-1 SYNP CRE151 CRE0004 Lmx lb CNS-2 SYNP CRE151 CRE0003 Pitx3 CNS-3 CRE000 1 v 1 Pitx3 CRE0002 Gbfl CNS-4 CRE0001 Pitx3 CNS-5_v2 CRE0005 fafl CNS-6 v2 CRE0006 Pitx2 CNS-7_v2 CRE0007 Pitx2 CNS-8 v2 CRE0008 Pitx2 CNS-1 + CMV-IE SYNP_CRE151 CRE0004 Lmxlb CMV-IE UTR
and UTR and intron intron CNS-4 + CMV-IE CRE0001 Pitx3 CMV-IE UTR
and UTR and intron intron CNS-5 SYNP_CRE151 CRE0005_fafl_short CN S-6 SYNP_CRE151 CRE0006 Pitx2 short CNS-7 SYNP_CRE151 CRE0007 Pitx2 short CNS-8 SYNP_CRE 1 51 CRE000 8 Pitx2 short [00122] Table 14 ¨ Exemplary CREs Name SEQUENCE
AP (SEQ ID CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
NO: 99) AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCA
GFAP CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
(SE() ID AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
NO: 100) TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCACCGGCGGTGGAGAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGA
TCAGGGGATGCCCAGGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCT
GTCTGCTTCCCAGAAGTCCAAGGACACAAATGGGTGAGGGGA
GGATAATCATGCCCAGTAAAAACTACCTGTGGTGAATAAAGAGTTAACCCCTG
(SEQ ID
TTCCATCTTAGGTCACTATGCAGAGTACCAATGAGTACAAGAGATGGTGCCAA
NO: 101) AGAGGGTGGCCCCTCCCTAGCTGGGAACAGTCAACCCTTAGGAACTAGACTGT
CAACACATCAGCCAGCCAGAGACAAGGGAAACCGTGGCAACCAAGTGTTGCT
GGCACATTGTGAGGTGGTGATGGGAACTGCAGAGGCCCTGCACAGCATGCTA
ATGAGCCCAGGCAAACAT
(SEQ ID TAATAAGAAAAACTACCTCTGGCAGGTGAAGAGTTAATCCCTGGTCAATTTTA
AGCTACTCTGCTGAGAGTACTAATAAGTGTAGGGGTTGGAGCCAATGAGGGTG
NO: 102) ACCCCTTCCTTGATGGGAACAGTCATCCCTTAGGAACTGCCCTGGAAAGCATC
AGCCAGCCAGAAAACAGGGAAAGAGGCTGAGAAACCGTGGTAACCAAGTTTT
GCTGGCACTTTGTAAAATGGTAACTGCAACTGCCGAGGCTGTGCAGAGAATGC
TAATAAGCCTAGGACAACCTGTAAAGAGTGGACCTAGAAAATG TCCACC
GFAP CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC
(SEQ ID CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
NO: 103) TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCAGCACAGCCCCCTAGGGGCTGCCCTTGCTGTGTGGCGCCACCGGCGGTGGA
GAACAAGGCTCTATTCAGCCTGTGCCCAGGAAAGGGGATCAGGGGATGCCCA
GGCATGGACAGTGGGTGGCAGGGGGGGAGAGGAGGGCTGTCTGCTTCCCAGA
AGTCCAAGGACACAAATGGGTGAGGGGA
GFAP CTGAGCTGGCTCTGTGAGCTGGGGAGGAGGCAGACAGCCAGGCCTTGTCTGCA
(SE
AGCAGACCTGGCAGCATTGGGCTGGCCGCCCCCCAGGGCCTCCTCTTCATGCC Q ID
CAGTGAATGACTCACCTTGGCACAGACACAATGTTCGGGGTGGGCACAGTGCC
1\10:104) TGCTTCCCGCCGCACCCCAGCCCCCCTCAAATGCCTTCCGAGAAGCCCATTGA
GCAGGGGGCTTGCATTGCACCCCAGCCTGACAGCCTGGCATCTTGGGATAAAA
GCAGCAC
Arc CTATTCTCAGCGTCTCTCCTTTTATGGCTCCGGAAGTGAGCTGGGGTTGCTGGC
(SEQ ID AGCCTGGCTGGCACT
NO: 105) SlOOB AGCAAGTGCCATGAAAAGCGGCTTTGTGTGGGGTGGGCTCTTCACACTCCAAT
(SEQ ID CTCCACTTCCTTCTCAAGGCCTCAAAAAAAGTTGAAAAATGAAAACAAAAGCC
CTGCTGTGTTGAGCTGGGCTCTGGCGTTGCCATGGACCCAGGGCAAACAGCGG
NO: 106) TGCTCCTGCTCTGCCCCCGGCTCAGCTCATGCTGGGCCTGCACTTCTGGAAGGG
AGCATGGACTTTGGAATGACTGGTTAGAACCCAAATGAATTAATGGAATTTGA
CATAGTTCAAAAATAATAAAATGTGATACCCATGAAATGCTGATATTCTGCCT
TAATTTGCCAGATTGGGGGCC
Si im CCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAACAGGAAAGGCAGT
GAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAAGCTTTTTGTCTCT
(SEQ ID TCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGTGGCCATCGOTCA
N :107) CTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACCGTCCTTTGTGGG
AGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCCTTCCCACCCCCT
GACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGATTGGAGCCAAGA
GTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAA
SlOOB TGACAAGGTTTGTTCAGAGGTCGGATCTGAATCCAGCTCCAAGGCCCCAGCAC
(SEQ ID CCAAGCCCTGACCCCATGGCTGCCTGCTGGCTGGGAGTGGCATTCTTTAGAAC
AGGAAAGGCAGTGAGTTCTCATTGCATCAATACTTGCATTTGCTACAACAGAA
NO: 108) GCTTTTTGTCTCTTCCTCACATTCCTTTAGAACACAAGCCTCCTTTTCTGCCTGT
GGCCATCGGTCACTGGAGTCAGCCTCGTGAGTGGCTTGGTGGCGGATGGCACC
GTCCTTTGTGGGAGAAAACAATGTTGCTGCCCAGGCCTTTCTGGAATGACCCC
TTCCCACCCCCTGACCAGCCCCAGCAAGGCCCGGGGCTGGCTGCCTAGTTGAT
TGGAGCCAAGAGTTTGCTGAATGGATGAAGGGAGAAGGGACATCCAAGTGAC
TGAAGAAGATCTTAACAGAA
[00123] Table 15. Cis-regulatory elements (CRE) comprised in the promoters of Table 11 Name SEQUENCE
CTGGGCAGAGAGGGGGCATCGGGGGCATGGCTAGGGGCCAGCACTGTGCTTC
CTGGGCGCCTCACCTCCTCCCTGACTCCTGGAGACTCCCAGCCCCTGTCTGGGA
GATGAGCATTTAGGAATCTGCTTGTGCAGGGGTGGTGGGAGGGGCC GGGGTG
GAGGGCGCATCCCCACGGGGAGATTGGATGGAAATGGCCTGCCAGIGTGTGT
GTGAGTGTGCGCCTGTGGCAGCAGCAGAGTAAACAGCCGCTGCCCTGTCCTCT
CRE0004 Lmxl CTGCGGCCGTGGCCAGGTACACAGGCCTGTTTGGACAGCTGCCTT GTCTGTCC
GTCTGTTTGGGAGATGCTGGCTGATAGATGGGGATGGGCGGACTGTTAACCCC
(SWIDNCI: TCGTTGCCTGCACTGCTATGTGCTTCCTGCCTCATCCATGGGGTAGAAGGTAGC
128) CAGAAGGTGGTCCTGGCTGTGCCCCCAGCTCCTCTCTAGGGGGGAAACCTCTA
GTTCTGAGTCAGGGACAGAGTGAGGAGGGCTCCAGGGCATCAAGAGCTTGCT
CCTCCCCGCACCAGGGAGCCAAGGACAGAGGAGAAGGGGGTCTTCCCCAGTG
GTGACTAGGGGCAGAATATGTCTCTGAGTGAGTGTCTGGAGCCCTCCTCACCC
CAACACCATG
GGTGTGTGGAAGGGTGAGAGGCACACACACAGACACTGAAAGAATCCTAGGC
CTGGTAGGCACTTAACAAATGTCTGTTACAGACCAGAATTTTATTGCTGTTAG
AGACCCAAGCCCCTCATAGGAACAGTGAGAAACAGGTGCAGAAAGGCGGAGT
AACTTTATCTAAAGTCATAGGCTCCCTGAATAGCAGAGCTGACACCTACAAGG
AAGCGTTGGAGACCAGATCTACCAGCTAGCCTCCCTGAGACCACGAGGTGGC
CRE0003 Pitx3 GCCGCAGCACCGGCTGTGGCCGATGCCAGCCAGGTAGCCGGTTTCCCACGTCC
(SEQH)NO: CCCGCACGCACGCACCTCTTTGCTGCAGGAATCCCGGGCTGCCCCGACCTGGA
129) GTAGGGGGGGTGGTGAGTGGGACTGAGTCCCTAGAAGCCTGGACCCTCACTTC
GTTCCTGTACATCCAGCTCGCCTGTAGACAGTGGGGGAGGATGAAGGGAAGA
GGACTCAAGCGCAACTTTGAATCATCACGCCTTCGACAGTCCGCGCACGTTTA
TTTCATTTATCTTTGAAAACGAGGGAGGGGAAGCCTGGAGAAGGCGGGATGG
GCCAAGGGTGAGTTGGCCCCCGGGGAGCTGGTCCCTGTTCCTGGCTTTAGTCC
CAGGGGCGCGGTCTGTGTGTAGGGC
4?
(SEQ ID NO: ACATGAGCAGCGGCTGCCGGTCCTGGGACTAGGCCCC GC CATTTTGGATC C GC
130) TGACAGGTCAGCGAAGTCTCTTCCTAGAGTTCCGGTGTCGTGAAGGCCGCCCT
GACATCGCAATAGGGAATTAGTGGGAAGGGCCCTTAAATTGGGCGAGCCAAG
GTGGG
GGAACATTTAGACTTTGGGAAAGAGATTAGTGATTTACATTGCTATCTCACTG
ATTTAATTTAAATGCTCTTCCAAACCAAACACACATGTGCCGAAGAGGCTACT
AAGAAACCCAACATGCAGAGTTCTCTATAAGTGCAGCCGACAGTGTTGACTGA
AACTAAACTTGGAAATCCAGGGCACTAATGCACAATATCAAGCAAT AAAACG
GCATCTCTTTGGCAATATTTAATTTAAAAAAGAAGAAAGAGACAGGCGAAGA
TCAGGCACTGTCTGTTTTGGAGGATCAACCATTCTGCATTTCAAAGCATTGGTC
CRE0005 fafl s CCTGCAATATCCAGGTTACTGTGCTAGAATCTCGACTATTATATCGCAGTTGTG
hort AGAGGGAGGGCAAAGATGTGTTTACTCAGTGATTAGGCCCTTAGAATAAGCCT
(SEQ ID NO: CTAGCTCCTAGAGAGACAGCTCACCACTTATTCATTTGGGCCAATTCACAAAG
131) CCTAGGAAGATTAAACATCCATGCTGAGAAGACAAGCGAATGCAGACGGTGA
AAAAGAAATAAAAATTCTTTAAAAACTCTGAGATGACTTCATTATTTTTCCAC
AAGGAAACTTTAGGAAAGTGTTTAGTTAGAGAAAAACCCACATTGACCT CT CT
CTAAACCCTTAATCTTTCCTTTGTGGTGGCACTGCTTTGTGGTAAGCGACTGGC
TCGCCTCGCCCCTCTTTTCACTGGAAGCTGAGAGAAAAAAGACTCTGGAGAAA
CAGTTTTCGTTCCAGGGACACAAACCCCTGACACTGTTAA
GAAAATTTAATGTCATTGAAGCTCTATTTCCAATAGCAAAGGAGCACTATTGC
TAATAGACTTCAGAGCTTGAAATAAATAAATCTTTGGAATCCTGTTGCATCTCT
TGGGGTGTGACATTTGACAGTCTTTTATAGCACAGAACGAAACAAGTTTGTGA
GCTGGAATTCAATTGTGGCGTATTGATTCCTTGCATCAGTCATTATTCCCTGCT
GATTGACAGGTGAAAATTGGTTACGTTAAGTATTTCATATGTTATAT TGGCTGA
CATTTGCTTGCCTGCTCTTGTGTCAATATTGTTGTAAAGATCTCCAGCTTTATG
CRE0006 Pitx2 AGATAGCAATAGACACTGACTGTGGCTTTTGTGTGATGTTCCAGTGTTTTTCCT
short (SEQ ID GACATAATTTAAGACATATTA AAAACCAGCAGCA TCTTCCCTCTTGAGAAGCT
NO: 132) TA ATGCCA A TATTATTGTCTTCCA GGGGA A GATCA
TGTATGCTCATA ATCGGG
TGCTAATTTCCACCAGTACGCTCATGTTTAGGCATTAGGCACTATAACTGTAAA
ATTGAGCCTTCTTGATTGATTCATGTCAAGCCTCATCTCGGCTCCTGCAGGGGA
AGTCATCCGGCTGACCCTTTTTACACTAAAAGAAGAGATTTGTGTTCCTTTCTT
TCACCTGGAACCATCAAATTGACTGAATAATCTGTAATACATTAGTGCTGACA
TTTGTTAGGGAGAATTAAACAAGACACAGTAATCATTCCCCAGAATAAAAATT
GTGTTTGAT
TGA GA CTGA GTGGGA GTGGGGATGA A GC CTTTTTTCTTC ATTTTTTTTT C CTC A
GGTGCAATTCTGTGTTAATATAAGAGAAGTGTGGCCTTCCTTCTCATAGCACTA
AAAGTGAGATAATCCCTGTGTAAGAAATCAGTAAGTACGGTCTGCTTAATCTA
CRE0007 Pitx2 GTCCCAGTGTGAAACTGTTGACATTTGTTCTTTTTTCTATCATTATGTGACTGG
short (SEQ ID GC CTGTTTTGTGCTGGATTAGGCAC AAATCTC CTATGC AGCACATTTGGC ATGT
NO: 133) TACTAGTAGTTTAACTTCATTAATAATGTATGAAGAAAATGTAATCCATGACA
A GGA A GCA A A GAA A A GT ATTTTTTTTTTTTTTTGCTTCTCCCA A A TCCTTTGGA
ATGAGTAATTATTCAACATTTTATGTTTG ATGTTATATTTTACAATTCAACTTC C
ATA
GCTGGTGCTTCT'TTTTTCTGTTTTTTA A GCTGCTTTA CA GA C GA A A ATGGA A CT
ATATTTGGAACAATGCTTTCTGTTTTTCCATACTATTGATATTTGTGGAAAGTC
ACAAAATGGCCTAAGGAAGCTAAGCTCGCCCCAAGCAGTGGTCACTTACAAG
TACTTTTGTACTCTGTACTCCTGTCACATTTGGGCGATCAGAGCAACAGCTGGG
CRE0008 Pitx2 GAGACTTTTTCAACAAAGATGAGTGTCAGATAATC CTGATGAGATTC C ACATC
short (SEQ ID CAACATCTTTTGTAATTATGTCACATTCAGCTGTAATGGAATAATTCAAGCTGA
NO: 134) AAGAACAAGCTTTGATCCTTTCTTAAACCTTTCCCTGTGGA
CTGGCTATCTAAA
AGATTTAAAGATATTTCTGTTACAAGATCTAGTGTTTCCTCAGAGAAGTCATGC
TTCTGAAGCATCGTGATCTACAAGAACAATATCAAGTTTGCCAAACACATTTC
TGAAAGCATCGTGTTTTGGGGGGAGGGGTTGTATTTAATGAAGATATCAATAA
TATGC
1001241 Aspects of the disclosure relate to an isolated nucleic acid comprising more than one promoter (e.g., 2, 3, 4, 5, or more promoters). For example, in the context of a construct having a transgene comprising a first region encoding a protein and an second region encoding an inhibitory RNA (e.g., miRNA), it may be desirable to drive expression of the protein coding region using a first promoter sequence (e.g., a first promoter sequence operably linked to the protein coding region), and to drive expression of the inhibitory RNA encoding region with a second promoter sequence (e.g., a second promoter sequence operably linked to the inhibitory RNA encoding region). Generally, the first promoter sequence and the second promoter sequence can be the same promoter sequence or different promoter sequences. In some embodiments, the first promoter sequence (e.g., the promoter driving expression of the protein coding region) is a RNA polymerase III
(polIII) promoter sequence.
Non-limiting examples of polIII promoter sequences include U6 and HI promoter sequences. In some embodiments, the second promoter sequence (e.g., the promoter sequence driving expression of the inhibitory RNA) is a RNA polymerase 11 (poll') promoter sequence. Non-limiting examples of polll promoter sequences include T7, T3, SP6, RSV, and cytomegalovirus promoter sequences. In some embodiments, a polIII promoter sequence drives expression of an inhibitory RNA
(e.g., miRNA) encoding region. In some embodiments, a polII promoter sequence drives expression of a protein coding region.
1001251 In some embodiments, the nucleic acid comprises a transgene that encodes a protein. The protein can be a therapeutic protein (e.g., a peptide, protein, or polypeptide useful for the treatment or prevention of disease states in a mammalian subject) or a reporter protein_ In some embodiments, the protein is CYP46A1. In some embodiments, the protein is human CYP46A1. In some embodiments, the protein encodes SEQ ID NO; 2 or a protein comprising SEQ ID NO: 2. In some embodiments, the protein encodes a protein with a sequence identity of at least 80%, at least 85%, at least 90%, at least 95%, at least 98% to SEQ ID NO: 2. In some embodiments, the therapeutic protein is useful for treatment or prevention of Huntington' s disease, for example Polyglutamine binding peptide 1 (QBP1), PTD-QBP1, ED11, C4 intrabody, VL12.3 intrabody, MW7 intrabody, Happl antibodies, Happ3 antibodies, mEM48 intrabody, certain monoclonal antibodies (e.g., 1C2), and peptide P42 and variants thereof, as described in Marelli et al. (2016) Orphanet Journal of Rare Disease 11:24; doi:
10.1186/s 13023- 016-0405-3. In some embodiments, the therapeutic protein is wild-type huntingtin protein (e.g., huntingtin protein having a PolyQ repeat region comprising less than 36 repeats).
1001261 Cholesterol 24-hydroxylase is a neuronal enzyme that is coded by the CYP46A1 gene. It converts cholesterol into 24-hydroxycholesterol and has a critical role in the efflux of cholesterol from the brain (Dietschy, J. M. et al., 2004). Brain cholesterol is essentially produced -but cannot be degraded- in situ, and intact blood-brain barrier restricts direct transportation of cholesterol from the brain (Dietschy, J. M. et al., 2004). 24-hydroxycholesterol is able to cross the plasma membrane and the blood-brain barrier and reaches the liver where it is degraded.
1001271 CYP46A1 is neuroprotectiye in a cellular model of HD (see, e.g., W02012/049314).
Moreover, there is a reduction of CYP46A1 mRNAs in the striatum, the more vulnerable brain structure in the disease, of the R6/2 transgenic HD mouse model.
1001281 During the early stages of AD, 24- hydroxycholesterol concentrations are high in CSF
and in peripheral circulation. In later stages of AD, concentrations of 24-hydroxycholesterol may fall likely reflecting neuronal loss (Kolsch, H. et al., 2004). CYP46A1 is expressed around the amyloid core of the neuritic plaques in the brain of AD patients (Brown, J., 3rd et al., 2004).
1001291 Agonism of cholesterol 24- hydroxylase, encoded by CYP46A1, provided marked decrease of neuropathology and an improvement of cognitive deficits in mouse models of CNS
disease. For example, co-expression of CYP46A1 with ExpHtt in a Huntington's disease model promoted a strong and significant decrease of ExpHtt aggregates formation (58%
versus 27.5%)) (W02012/049314). (see also, International Patent Publication W02009/034127;
which is incorporated by reference herein in its entirety). The methods described herein relate to agonism of CYP46A1 in combination with the administration of miRNAs targeting certain other targets. For example, the methods can relate to administration of a viral vector for the treatment of a neurological disease or disorder, wherein the vector expresses CYP46A1 in cells of the central nervous system.
1001301 In some embodiments, described herein is a viral vector for treating a neurological disease or disorder, which vector comprises a cholesterol 24-hydroxylase encoding nucleic acid. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes the amino acid sequence SEQ ID NO:2. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to SEQ ID NO:2. In some embodiments, the viral vector comprises a sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to SEQ ID NO: 1. In some embodiments, the viral vector comprises the sequence of SEQ ID NO: 1. In some embodiments, the viral vector may be an Adeno-Associated-Virus (AAV) vector.
1001311 Further description of CY46A1 and its therapeutic uses (e.g., for Alzheimer's disease, ALS, and ataxia) are described in the art, e.g., in WO 2012/049314, WO
2009/034127, WO
2018/138371, and W02020/089154. The sequences, methods, and compositions described therein can be utilized in the methods and compositions described herein. The foregoing references are incorporated by reference herein in their entireties. The term "gene" refers to a polynucleotide containing at least one open reading frame that is capable of encoding a particular polypeptide or protein after being transcribed or translated.
[00132] The terms "coding sequence" or "a sequence which encodes a particular protein", denotes a nucleic acid sequence which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5 (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A coding sequence can include, but is not limited to, cDNA from prokaryotic or eukaryotic mRNA, genomic DNA
sequences from prokaryotic or eukaryotic DNA, and even synthetic DNA sequences.
[00133] A cDNA sequence for CYP46A1 is disclosed in Genbank Access Number NM 006668 (SEQ ID NO: 1). The amino acid sequence is shown in SEQ ID NO:2. The invention makes use of a nucleic acid construct comprising sequence SEQ ID NO:1 or a variant thereof for the treatment of a neurological disease or disorder. The variants include, for instance, naturally-occurring variants due to allelic variations between individuals (e.g., polymorphisms), alternative splicing forms, etc. The term variant also includes CYP46A1 gene sequences from other sources or organisms.
Variants arc preferably substantially homologous to SEQ ID NO:1 and/or 2 , i.e., exhibit a nucleotide sequence identity of typically at least about 75%, preferably at least about 85%, more preferably at least about 90%, more preferably at least about 95% with SEQ ID NO:1 or 2. In some embodiments, the nucleic acid construct comprises a sequence with at least 95% sequence identity to SEQ
ID NO: 1 and which retains the activity of SEQ ID NO: 1 or 2 (e.g., the ability to convert cholesterol into 24-hydroxycholesterol). Variants of a CYP46A1 gene also include nucleic acid sequences, which hybridize to a sequence as defined above (or a complementary strand thereof) under stringent hybridization conditions. Typical stringent hybridisation conditions include temperatures above 30 C, preferably above 35 C, more preferably in excess of 42 C, and/or salinity of less than about 500 mM, preferably less than 200 mM. Hybridization conditions may be adjusted by the skilled person by modifying the temperature, salinity and/or the concentration of other reagents such as SDS, SSC, etc.
[00134] An exemplary CYP46A1 variant contemplated for use herein is provided in SEQ ID NOs:
109 and 110. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes the amino acid sequence SEQ ID NO:109. In some embodiments, the viral vector comprises a nucleic acid sequence that encodes an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to SEQ ID NO:109. In some embodiments, the viral vector comprises the nucleic acid sequence of SEQ ID NO: 110. In some embodiments, the viral vector comprises a nucleic acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or more sequence identity to the sequence of SEQ ID NO: 110.
[00135] In one aspect, provided herein is a composition comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 110. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 110. In some embodiments, an isolated nucleic acid encoding a CYP46A1 protein comprises at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, or at least 15 of the mutations as compared to SEQ ID NO: 1. In some embodiments, the mutation comprises deletion and/or, addition, and/or, substitution of at least one nucleic acid as compared to the sequence set forth in SEQ ID NO: 1. The mutations can result in, e.g., removing bacterial sequence, and/or, removing alternating reading frames, and/or, removing CpG, and or, removing restriction enzyme sites. In several embodiments, the foregoing compositions can be used, e.g., in the absence of an administered miRNA to treat a neurological disease or disorder as described herein. In various embodiments, the foregoing compositions can be used, e.g., in the presence of an administered miRNA to treat a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g., recombinant AAV comprising an isolated nucleic acid as set forth in SEQ
ID NO: 110 is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g., recombinant AAV comprising an isolated nucleic acid sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100%
identical to SEQ ID NO:
110, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g recombinant AAV comprising an isolated nucleic acid sequence at least 80%
identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 111, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or, disorder as described herein.
1001361 SEQ ID NO: 1 CYP46A1 mRNA
atg agc ccc ggg ctg ctg ctg ctc ggc agc gcc gtc ctg ctc gcc ttc ggc ctc tgc tgc acc ttc gtg cac cgc gct cgc agc cgc tac gag cac atc ccc ggg ccg ccg cgg ccc agt ttc ctt cta gga cac ctc ccc tgc ttt tgg aaa aag gat gag gtt ggt ggc cgt gtg ctc caa gat gtg ttt ttg gat tgg gct aag aag tat gga cct gtt gtg cgg gtc aac gtc ttc cac aaa acc tca gtc atc gtc acg agt cct gag tcg gtt aag aag ttc ctg atg tca acc aag tac aac aag gac tcc aag atg tac cgt gcg ctc cag act gtg ttt ggt gag aga ctc ttc ggc caa ggc ttg gtg tcc gaa tgc aac tat gag cgc tgg cac aag cag cgg aga gtc ata gac ctg gcc ttc agc cgg agc tcc ttg gtt agc tta atg gaa aca ttc aac gag aag gct gag cag ctg gtg gag att cta gaa gcc aag gca gat ggg cag acc cca gtg tcc atg cag gac atg ctg acc tac acc gcc atg gac atc ctg gcc aag gca gct ttt ggg atg gag acc agt atg ctg ctg ggt gcc cag aag cct ctg tcc cag gca gtg aaa ctt atg ttg gag gga atc act gcg tcc cgc aac act ctg gca aag ttc ctg cca ggg aag agg aag cag ctc cgg gag gtc cgg gag agc att cgc ttc ctg cgc cag gtg ggc agg gac tgg gtc cag cgc cgc cgg gaa gcc ctg aag agg ggc gag gag gtt cct gcc gac atc ctc aca cag att ctg aaa gct gaa gag gga gcc cag gac gac gag ggt ctg ctg gac aac ttc gtc ace ttc ttc att get ggt cac gag acc tot gee aac coo ttg gcg ttc aca gtg atg gag ctg tot ego cag cca gag atc gtg gca agg ctg cag gee gag gtg gat gag gtc att ggt tot aag agg tac ctg gat ttc gag gac ctg ggg aga ctg cag tac ctg too cag gtc etc aaa gag tog ctg agg ctg tac cca cca gca tgg ggc ace ttt ego ctg ctg gaa gag gag ace ttg att gat ggg gtc aga gtc ccc ggc aac ace cog etc ttg ttc ago ace tat gtc atg ggg egg atg gac aca tac ttt gag gac cog ctg act ttc aac ccc gat ego ttc ggc cot gga gee ccc aag cca egg ttc ace tac ttc ccc ttc tee ctg ggc cac ego tee tgc ate ggg cag cag ttt get cag atg gag gtg aag gtg gtc atg gca aag ctg ctg cag agg ctg gag ttc egg ctg gtg ccc ggg cag ego ttc ggg ctg cag gag cag gee aca etc aag cca ctg gac ccc gtg ctg tgc ace ctg egg ccc cgc ggc tgg cag ccc gee ccc cca cca ccc ccc tgc tga gggggcctcc aggcaggacg agactcctcg ggcaagggcc gtgcccgccc acctctgctg cccacggcca cccacccttc tcccctgccc cgtcccctgg gccacccttc acgctggctt ccagcgggcc ctctgccgac cgcctgcttc acacccctca gcgctccctg tcgcctgcgg actccatggc ccttcctgga ctggcccttg cccaactccc agccaccacc actgtcccta ccactgagcc cttgcacagg ccacttgctc agacgagaca ccctaactct tgctcactcc ctaaagccct cttcaggggt cacctcctcc aagaagccct ccttgccacc ccccgccggc aggggcccct cctctgtgct ccctcggtca cctgtgctac ctctaacacc acactgacca cactgtatcg tgagtgtccg ttgacgtgac caattgccct gccaggctgt cagcgcctca agggtagggt ctgcgtgtga tttgtctctg agccccctgt gcccacccag ggcccggcac agagtcgatg ctcaataaat gtgtgttgac tgcaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 11001371 SEQ ID NO: 2 CYP46A1 amino acid sequence Met Ser Pro Gly Leu Leu Leu Leu Gly Ser Ala Val Leu Leu Ala Phe Gly Leu Cys Cys Thr Phe Val His Arg Ala Arg Ser Arg Tyr Glu His Ile Pro Gly Pro Pro Arg Pro Ser Phe Leu Leu Gly His Leu Pro Cys Phe Trp Lys Lys Asp Glu Val Gly Gly Arg Val Leu Gin Asp Val Phe Leu Asp Trp Ala Lys Lys Tyr Gly Pro Val Val Arg Val Asn Val Phe His Lys Thr Ser Val Ile Val Thr Ser Pro Glu Ser Val Lys Lys Phe Len Met Ser The Lys Tyr Asn Lys Asp Ser Lys Met Tyr Arg Ala Leu Gin Thr Val Phe Gly Glu Arg Leu Phe Gly Gin Gly Leu Val Ser Glu Cys Asn Tyr Glu Arg Trp His Lys Gin Arg Arg Val Ile Asp Leu Ala She Ser Arg Ser Ser Leu Val Ser Leu Met Glu Thr She Asn Glu Lys Ala Glu Gin Leu Val Glu Ile Leu Glu Ala Lys Ala Asp Gly Gin Thr Pro Val Ser Met Gin Asp Met Leu Thr Tyr Thr Ala Met Asp Ile Leu Ala Lys Ala Ala Phe Gly Met Glu Thr Ser Met Leu Leu Gly Ala Gin Lys Pro Leu Ser Gin Ala Val Lys Leu Met Leu Glu Gly Ile Thr Ala Ser Arg Asn Thr Leu Ala Lys Phe Leu Pro Gly Lys Arg Lys Gin Leu Arg Glu Val Arg Glu Ser Ile Arg Phe Leu Arg Gin Val Gly Arg Asp Trp Val Gin Arg Arg Arg Glu Ala Leu Lys Arg Gly Glu Glu Val Pro Ala Asp Ile Leu Thr Gin Ile Leu Lys Ala Glu Glu Gly Ala Gin Asp Asp Glu Gly Leu Leu Asp Asn Phe Val Thr Phe Phe Ile Ala Gly His Glu Thr Ser Ala Asn His Leu Ala Phe Thr Val Met Glu Leu Ser Arg Gin Pro Glu Ile Val Ala Arg Leu Gin Ala Glu Val Asp Glu Val Ile Gly Ser Lys Arg Tyr Leu Asp Phe Glu Asp Leu Gly Arg Leu Gin Tyr Leu Ser Gin Val Leu Lys Glu Ser Leu Arg Leu Tyr Pro Pro Ala Trp Gly Thr Phe Arg Leu Leu Glu Glu Glu Thr Leu lie Asp Gly Val Arg Val Pro Gly Asn Thr Pro Leu Leu Phe Ser Thr Tyr Val Met Gly Arg Met Asp Thr Tyr Phe Glu Asp Pro Leu Thr Phe Asn Pro Asp Arg Phe Gly Pro Gly Ala Pro Lys Pro Arg Phe Thr Tyr Phe Pro Phe Ser Leu Gly His Arg Ser Cys Ile Gly Gin Gin Phe Ala Gin Met Glu Val Lys Val Val Met Ala Lys Leu Leu Gin Arg Leu Glu Phe Arg Leu Val Pro Gly Gin Arg Phe Gly Leu Gin Glu Gin Ala Thr Leu Lys Pro Leu Asp Pro Val Leu Cys Thr Leu Arg Pro Arg Gly Trp Gin Pro Ala Pro Pro Pro Pro Pro Cys Vectors [00138] Without wishing to be bound by any particular theory, allele- specific silencing of a pathogenic gene, e.g., mutant huntingtin (HTT), may provide an improved safety profile in a subject compared to non-allele specific silencing (e.g., silencing of both wild-type and mutant HTT alleles) because wild-type expression and function is preserved in the cells. For example, aspects of the invention relate to the inventors' recognition and appreciation that isolated nucleic acids and vectors that incorporate one or more inhibitory RNA (e.g., miRNA) sequences targeting the HTT gene in a non-allele- specific manner while driving the expression of hardened wild-type HTT gene (a wild-type HTT gene that is not targeted by the miRNA) are capable of achieving concomitant mutant HTT
knockdown e.g., in the CNS tissue, with increased expression of wildtype HTT.
Generally, the sequence of the nucleic acid encoding endogenous wild-type and mutant HTT
mRNAs, and the nucleic acid of the transgene encoding the "hardened" wild-type HTT mRNA are sufficiently different such that the "hardened" wild-type HTT transgene mRNA is not targeted by the one or more inhibitory RNAs (e.g., miRNAs). This may be accomplished, for example, by introducing one or more silent mutations into the HTT transgene sequence such that it encodes the same protein as the endogenous wild-type HTT gene but has a different nucleic acid sequence. In this case, the exogenous mRNA may be referred to as "hardened." Alternatively, the inhibitory RNA
(e.g., miRNA) can target the 5' and/or 3' untranslated regions of the endogenous wild-type HTT mRNA.
These 5' and/or 3' regions can then be removed or replaced in the transgene mRNA such that the transgene mRNA is not targeted by the one or more inhibitory RNAs.
[00139] Reporter sequences (e.g., nucleic acid sequences encoding a reporter protein) that may be provided in a transgene include, without limitation, DNA sequences encoding 13-lactamase, 13 -galactosidase (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, and others well known in the art. When associated with regulatory elements which drive their expression, the reporter sequences, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (R1A) and immunohistochemistry. For example, where the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for 13-galactosidase activity. Where the transgene is green fluorescent protein or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer. Such reporters can, for example, be useful in verifying the tissue- specific targeting capabilities and tissue specific promoter regulatory activity of a nucleic acid. Recombinant adeno-associated viruses (rAAVs).
[00140] In some embodiments, the vector is adeno-associated virus (AAV) or recombinant AAV. In some aspects, the disclosure provides isolated AAVs. As used herein with respect to AAVs, the term "isolated" refers to an AAV that has been artificially produced or obtained.
Isolated AAVs may be produced using recombinant methods. Such AAVs are referred to herein as "recombinant AAVs".
Recombinant AAVs (rAAVs) preferably have tissue- specific targeting capabilities, such that a nuclease and/or transgene of the rAAV will be delivered specifically to one or more predetermined tissue(s). The AAV capsid is an important element in determining these tissue-specific targeting capabilities. Thus, an rAAV having a capsid appropriate for the tissue being targeted can be selected.
[00141] Methods for obtaining recombinant AAVs having a desired capsid protein are well known in the art. (See, for example, US 2003/0138772), the contents of which are incorporated herein by reference in their entirety). Typically, the methods involve culturing a host cell which contains a nucleic acid sequence encoding an AAV capsid protein; a functional rep gene; a recombinant AAV
vector composed of, AAV inverted terminal repeats (1TRs) and a transgene; and sufficient helper functions to permit packaging of the recombinant AAV vector into the AAV
capsid proteins. In some embodiments, capsid proteins are structural proteins encoded by the cap gene of an AAV. AAVs comprise three capsid proteins, virion proteins 1 to 3 (named VP1, VP2 and VP3), all of which are transcribed from a single cap gene via alternative splicing. In some embodiments, the molecular weights of VP1, VP2 and VP3 are respectively about 87 kDa, about 72 kDa and about 62 kDa. In some embodiments, upon translation, capsid proteins form a spherical 60-mer protein shell around the viral genome. In some embodiments, the functions of the capsid proteins are to protect the viral genome, deliver the genome and interact with the host. In some aspects, capsid proteins deliver the viral genome to a host in a tissue specific manner.
[00142] In some embodiments, a recombinant AAV (rAAV) comprises a AAV capsid protein selected from the group consisting of AAV2, AAV3, AAV4, AAV5, AAV6, AAV8, AAVrh8, AAVrh10, AAV 2G9, AAV 2.5G9, AAV9, and AAV10. In some embodiments, recombinant AAV
capsid (rAAV) protein is of a serotype derived from a non- human primate, for example AAVrh10 serotype, In some embodiments, rAAV is AAV PhP.eB or, AAV PhP.B, as described in US
Publication nos and US granted patents US20170166926A1, US9585971, US10301360, US9957303, US10202425, U S10519198, US20190292230A1, US20200087353A1, which arc incorporated herein by reference in teir entirety. In some embodiments, rAAV comprises an AAV
comprising a surface bound peptide e.g., PBS-3, PI35-5, PI35-14 as described in international publication W0201912635, which is incorporated by reference in its entirety. In some embodiments, rAAV
is an AAV9 serotype.
In some embodiments, the rAAV is an AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV1 1, AAV12, or AAV13 serotype or, a chimera thereof. In some embodiments, the rAAV comprises a capsid protein from serotype AAV1, AAV2, AAV3a, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV 2G9, AAV 2.5G9, AAV rh8, AAV rh10, AAV
Th74, AAV10, or, AAV11 or, a chimera thereof In certain embodiments, the rAAV
comprises a chemically modified capsid as disclosed in WO 2017/212019 e.g., mannose ligand is chemically coupled to AAV2. The rAAVs with chemically modified capsids disclosed in WO
2017/212019 is incorporated herein by reference in its entirety. As a further embodiment, the rAAV comprises AAV
capsid proteins of this invention that can be polyploid (also referred to as haploid, or, rational haploid or, rational polyploid) in that they can comprise VP1, VP2 and VP3 capsid proteins from more than one AAV serotypes in a single AAV virion as described in PCT/US18/22725, PCT/US2018/044632, or US 10,550,405, which are incorporated by reference. In some embodiments rAAV comprises a capsid protein selected from AAV serotypes listed in Table 17.
1001431 Table 17: AAV Serotypes and exemplary published corresponding capsid sequence Serotype and where capsid sequence is published Serotype and where capsid sequence is published AAV3.3b (See SEQ ID NO:72 in US20030138772) AAV3-3 (See SEQ ID NO: 200 US20150315612) AAV3-3 (See SEQ ID NO:217 U520150315612) AAV3a ((See SEQ ID NO: 5 in US6I56303) AAV3a (See SEQ ID NO: 9 in US6156303) AAV3b (See SEQ ID NO: 6 in US6156303) AAV3b (See SEQ ID NO:10 in US6156303) AAV3b (See SEQ ID NO: 1 in US6156303) AAV4 (See SEQ ID NO:17 U520140348794) AAV4 ((See SEQ ID NO:5 in US20140348794) AAV4 (See SEQ ID NO: 3 in US20140348794) AAV4 (See SEQ ID NO:14 in US20140348794) AAV4 (See SEQ ID NO: 15 in US20140348794) AAV4 (See SEQ ID NO: 19 in US20140348794) AAV4 (See SEQ ID NO: 12 in US20140348794) AAV4 (See SEQ ID NO: 13 in US20140348794) AAV4 (See SEQ ID NO: 7 in US20140348794) AAV4 (See SEQ ID NO: 8 in US20140348794) AAV4 (See SEQ ID NO: 9 in US20140348794) AAV4 (See SEQ ID NO: 2 in US20140348794) AAV4 (See SEQ ID NO: 10 in US20140348794) AAV4 (See SEQ ID NO: 11 in US20140348794) AAV4 (See SEQ TD NO: 18 in US20140348794) AAV4 (See SEQ ID NO:63 in US20030138772) and US20160017295 SEQ
ID NO: (See SEQ ID NO: 4 in US20140348794) AAV4 (See SEQ ID NO: 16 in US20140348794) AAV4 (See SEQ ID NO: 20 in US20140348794) AAV4 (See SEQ ID NO: 6 in US20140348794) AAV4 (See SEQ ID NO: 1 in U520140348794) AAV42.2 (See SEQ ID NO: 9 in US20030138772) AAV42.2 (See SEQ ID NO: 102 in US20030138772) AAV42.3b (See SEQ ID NO: 36 in US2003013g772) AAV42.3B (See SEQ ID NO: 107 in US20030138772) AAV42.4 (See SEQ ID NO: 33 in U520030138772) AAV42.4 (See SEQ ID NO: 88 in US20030138772) AAV42.8 (See SEQ ID NO: 27 in US20030138772) AAV42.8 (See SEQ ID NO: 85 in U520030138772) AAV43.1 (See SEQ ID NO: 39 in US20030138772) AAV43.1 (See SEQ ID NO: 92 in US20030138772) AAV43.12 (See SEQ ID NO: 41 in US20030138772) AAV43.12 (See SEQ ID NO: 93 in U520030138772) AAV8 (See SEQ ID NO: 15 in U520150159173) AAV8 (See SEQ ID NO: 7 in US20150376240) AAV8 (See SEQ ID NO:4 in US20030138772;US20150315612 SEQ
ID NO: 182 AAV8 (See SEQ ID NO: 95 in US20030138772), ................................................. US20140359799 SEQ
AAV8 (See SEQ ID NO: 31 in US20150159173) AAV8 (See, e.g., SEQ ID NO:
8 in US20160017295, or SEQ ID NO:7 in US7198951, or SEQ ID NO: 223 in US20150315612) AAV8 (See SEQ ID NO: 8 in U520150376240) AAV8 (See SEQ ID NO: 214 in U520150315612) AAV-8b (See SEQ ID NO: 5 in US20150376240) AAV-8b (See SEQ ID NO: 3 in US20150376240) AAV-8h (See SEQ ID NO: 6 in US20150376240) AAV-8h (See SEQ ID NO: 4 in US20150376240) AAV9 (See SEQ ID NO: 5 in U520030138772) AAV9 (See SEQ ID NO: 1 in U57198951) AAV9 (See SEQ ID NO: 9 in U520160017295) AAV9 (See SEQ ID NO: 100 in US20030138772), US7198951 SEQ ID NO: 2 AAV9 (See SEQ ID NO: 3 in U57198951) AAV9 (AAVhu.14) (See SEQ ID NO: 3 in AAV9 (AAVhu.14) (See SEQ ID
NO: 123 in U520150315612) U520150315612) AAVA3.1 (See SEQ ID NO: 120 in US20030138772) AAVA3.3 (See SEQ ID NO: 57 in US20030138772) AAVA3.3 (See SEQ ID NO: 66 in US20030138772) AAVA3.4 (See SEQ ID NO: 54 in US20030138772) AAVA3.4 (See SEQ ID NO: 68 in US20030138772) AAVA3.5 (See SEQ ID NO: 55 in US20030138772) AAVA3.5 (See SEQ ID NO: 69 in US20030138772) AAVA3.7 (See SEQ ID NO: 56 in ................................................. US20030138772) AAVA3.7 (See SEQ ID NO: 67 in US20030138772) AAV29. (See SEQ ID NO: 11 in (AAVbb. 1) 161 US20030138772) AAVC2 (See SEQ ID NO: 61 in U520030138772) AAVCh.5 (See SEQ ID NO:46 in US20150159173); US20150315612 SEQ
ID NO: 234 AAVcy.2 (AAVI3.3) (See SEQ
ID NO: 15 in US20030138772) AAV24.1 (See SEQ ID NO: 101 in U520030138772) AAVcy.3 (AAV24.1) (See SEQ
ID NO: 16 in US20030138772) AAV27.3 (Sec SEQ ID NO: 104 in US20030138772) AAVcy.4 (AAV27.3) (Sec SEQ
ID NO: 17 in ------------------------------------------------- US20030138772) AAVcy.5 (See SEQ ID NO: 227 in US20150315612) AAV7.2 (See SEQ ID NO: 103 in US20030138772) AAVcy.5 (AAV7.2) (See SEQ ID NO: 18 in AAV16.3 (See SEQ ID NO: 105 in US20030138772) US20030138772) AAVcy.6 (AAV16.3) (See SEQ ID NO: 10 in AAVcy.5 (See SEQ ID NO: 8 in U520150159173) US20030138772) AAVcy.5 (See SEQ ID NO: 24 in US20150159173) AAVCy.5R1 (See SEQ ID NO:
in US20150159173 AAVCy.5R2 (See SEQ ID NO: in US20150159173) AAVCy.5R3 (See SEQ ID NO:
in AAVCy.5R4 (See SEQ ID NO: in US20150159173) AAVDJ (See SEQ ID NO: 3 in US20140359799) and SEQ ID NO: 2 in US7588772) AAVDJ (Sec SEQ ID NO: 2 in US20140359799;
and SEQ ID NO: 1 in US7588772) AAVDJ-8 (See SEQ ID NO: in U57588772;
Grimm et al 2008 AAVDJ-8 (See SEQ ID NO: in US7588772; Grimm et AAVF5 (See SEQ ID NO: 110 in US20030138772) al 2008 AAVH2 (See SEQ ID NO: 26 in US20030138772) AAVH6 (See SEQ ID NO: 25 in US20030138772) AAVhEl. 1 (See SEQ ID NO: 44 in US9233131) AAVhEr1.14 (See SEQ ID NO:
46 in US9233131) AAVhEr1.16 (See SEQ ID NO: 48 in US9233131) AAVhEr1.18 (See SEQ ID NO:
49 in US9233131) AAV1iEr1.23 (AAV1iEr2.29) (See SEQ ID NO: 53 in AAV1iEr1.35 (See SEQ ID NO:
50 in US9233131) US9233131) AAVhEr1.36 (See SEQ ID NO: 52 in US9233131) AAVhEr1.5 (See SEQ ID NO:
45 in U59233131) AAVhEr1.7 (See SEQ ID NO: 51 in US9233131) AAVhEr1.8 (See SEQ ID NO:
47 in US9233131) AAVhEr2.I6 (See SEQ ID NO: 55 in US923313I) AAVhEr2.30 (See SEQ ID NO:
56 in US923313I) AAV1iEr2.31 (See SEQ ID NO: 58 in U59233131) AAVhEr2.36 (See SEQ ID NO:
57 in U59233131) AAVhEr2.4 (See SEQ ID NO: 54 in US9233131) AAVhEr3.1 (See SEQ ID NO:
59 in US9233131) AAV1m.1 (See SEQ ID NO: 46 in US20150315612) AAVIni.1 (See SEQ ID NO:
144 in US20150315612) AAVhu.10 (AAV16.8) (Sec SEQ ID NO: 56 in AAVhu.10 (AAV16.8) (Sec SEQ
ID NO: 156 in US20150315612) US20150315612) AAV1nt.11 (AAV16.12) (See SEQ ID NO: 57 in AAVInt.11(AAV16.12) (See SEQ ID NO: 153 in US20150315612) US20150315612) AAV1iu.12 (Sec SEQ ID NO: 59 in US20150315612) AAV1iu.12 (Sec SEQ ID NO:
154 in ------------------------------------------------- US20150315612) AAVhu.13 (See SEQ ID NO: 16 in U52015015917 and ID NO: 71 in US20150315612) AAVIni.13 (See SEQ TD NO: 32 in US20150159173 and ID NO: 129 US20150315612) AAVhu.136.1 (Sec SEQ ID NO: 165 in AAVhu.140.1 (Sec SEQ ID NO:
166 in US20150315612) US20150315612) AAVhu.140.2 (See SEQ ID NO: 167 in AAVhu.145.6 (See SEQ ID NO:
178 in U520150315612) U520150315612) AAVIni.15 (See SEQ TD NO: 147 in U520150315612) AAVItu.15 (AAV33.4) (See SEQ ID NO: 50 in US20150315612) AAVhu.156.1 (See SEQ ID NO: 179 in AAVhu.16 (See SEQ ID NO:
148 in US20150315612) US20150315612) AAVhu.16 (AAV33.8) (See SEQ ID NO: 51 in AAVhu.17 (See SEQ ID NO: 83 in US20150315612) US20150315612) AAVhu.17 (AAV33.12) (See SEQ ID NO: 4 in AAVhu.172.1 (See SEQ ID NO:
171 in US20150315612) US20150315612) AAVhu.172.2 (See SEQ ID NO: 172 in AAVhu,173.4 (See SEQ ID NO:
173 in U520150315612) U520150315612) AAVhu.173.8 (See SEQ ID NO: 175 in AAVhu.18 (See SEQ ID NO: 52 in U520150315612) U520150315612) AAVhu.18 (See SEQ ID NO: 149 in U520150315612) AAVhu.19 (See SEQ ID NO: 62 in US20150315612) AAVhu.I9 (See SEQ ID NO: 133 in US20150315612) AAVhu.2 (See SEQ ID NO: 48 in ................................................. US20150315612) AAVhu.2 (See SEQ ID NO: 143 in US20150315612) AAVIni.20 (See SEQ ID NO:
63 in US20150315612) AAVhn.20 (See SEQ TD NO: 134 in US20150315612) AAVhu.21 (See SEQ ID NO: 65 in US20150315612) AAVhu.2I (See SEQ ID NO: 135 in US20150315612) AAVhu.22 (See SEQ ID NO: 67 in US20150315612) AAVhu.22 239 (See SEQ ID NO: 138 in AAVhu.23 (See SEQ ID NO: 60 in US20150315612) US20150315612) AAVhu.23.2 (See SEQ ID NO: 137 in US20150315612) AAVhu.24 (See SEQ ID NO: 66 in US20150315612) AAVInt.24 (See SEQ ID NO: 136 in U520150315612) AAVInt.25 (See SEQ ID NO:
49 in US20150315612) AAVhu.25 (Sec SEQ ID NO: 146 in US20150315612) AAV1iu.26 (Sec SEQ ID NO:
17 in US20150159173 and SEQ ID NO: 61 in US20150315612) AAVhu.26 (See SEQ ID NO: 33 in US20150159173), LTS20150315612 SEQ
AAVhu.27 (See SEQ ID NO: 64 in US20150315612) AAVhu.27 (See SEQ ID NO: 140 in US20150315612) AAVhu.28 (See SEQ ID NO: 68 in US20150315612) AAVhu.28 (See SEQ ID NO: 130 in U520150315612) AAVhu.29 (See SEQ ID NO: 69 in U520150315612) AAVIni.29 (See SEQ ID NO: 42 in U520150159173 and SEQ ID NO: 132 in US20150315612) AAVhu.29 (See SEQ ID NO: 225 in US20150315612) AAVhu.29R (See SEQ ID NO:
in U520150159173 AAVhu.3 (See SEQ ID NO: 44 in US20150315612) AAVhu.3 (See SEQ ID NO: 145 in US20150315612) AAVhu.30 (See SEQ ID NO: 70 in US20150315612) AAVhu.30 (See SEQ ID NO:
131 in ................................................. US20150315612) AAVhu.31 (See SEQ ID NO: 1 in U S20150315612) AAVhu.31 (See SEQ ID NO:
121 in U520150315612) AAVIni.32 (See SEQ ID NO: 2 in US20150315612) AAVhu.32 (See SEQ ID NO:
122 in US20150315612) AAVhu.33 (See SEQ ID NO: 75 in US20150315612) AAVhu.33 (See SEQ ID NO:
124 in US20150315612) AAVhu.34 (See SEQ ID NO: 72 in US20150315612) AAVhu.34 (See SEQ ID NO:
125 in ................................................. U520150315612) AAVhu.35 (See SEQ ID NO: 73 in US20150315612) AAVhu.33 (See SEQ ID NO:
164 in US20150315612) AAVhu.36 (See SEQ TD NO: 74 in US20150315612) AAVhu.36 (See SEQ ID NO:
126 in US20150315612) AAVhu.37 (See SEQ ID NO: 34 in US20150159173 and SEQ ID NO: 88 in US20150315612) AAVhu.37 (AAV106.1) (See SEQ ID NO: 10 in U520150315612 and SEQ ID NO: 18 in U520150159173) AAVhu.38 (See SEQ ID NO: 161 in US20150315612) AAVhu.39 (See SEQ ID NO:
102 in US20150315612) AAVInt.39 (AAVLG-9) (See SEQ ID NO: 24 in AAVInt.4 (See SEQ ID NO: 47 in US20150315612) US20150315612) AAVhu.4 (Sec SEQ ID NO: 141 in US20150315612) AAV1iu.40 (Sec SEQ ID NO:
87 in ------------------------------------------------- US20150315612) AAVhu.40 (AAV114.3) (See SEQ ID NO: 11 in AAVhu.41 (See SEQ ID NO: 91 in US20150315612) US20150315612) AAVIni.41 (AAV127.2) (See SEQ ID NO: 6 in AAVIiii.42 (See SEQ TD NO:
85 in US20150315612) US20150315612) AAVhu.42 (AAV127.5) (Sec SEQ ID NO:8 in AAVhu.43 (Sec SEQ ID NO:
160 in U520150315612) U520150315612) AAVhu.43 (See SEQ ID NO: 236 in US20150315612) AAVhu.43 (AAV128.1) (See SEQ ID NO: 80 in U520150315612) AAVIru.44 (See SEQ TD NO: 45 in U520150159173 and SEQ ID NO: 158 in US20150315612) AAVhu.44 (AAV128.3) (See SEQ ID NO: 81 in AAVhu.44R1 (See SEQ ID NO:
in U520150315612) U520150159173 AAVhu.44R2 (See SEQ ID NO: in US20150159173 AAVhu.44R3 (See SEQ ID NO:
in AAVhu.45 (See SEQ ID NO: 76 in US20150315612) AAVhu.45 (See SEQ ID NO:
127 in ................................................. US20150315612) AAVhu.46 (See SEQ ID NO: 82 in U S20150315612) AAVhu.46 (See SEQ ID NO:
159 in U520150315612) AAVhu.46 (See SEQ ID NO: 224 in US20150315612) AAVhu.47 (See SEQ ID NO: 77 in U520150315612) AAVhu.47 (See SEQ ID NO: 128 in US20150315612) AAVhu.48 (See SEQ ID NO: 38 in US20150159173) AAVhu.48 (See SEQ ID NO: 157 in 11520150315612) AAVhu.48 (AAVI30.4) (See SEQ ID NO: 78 in ................................................. US20150315612) AAVhu.48R1 (See SEQ ID NO: in US20150159173 AAVIni.48R2 (See SEQ ID NO:
in AAVhu.48R3 (See SEQ ID NO: in U520150159173 AAVhu.49 (See SEQ TD NO:
209 in US20150315612) AAVhu.49 (See SEQ ID NO: 189 in US20150315612) AAVhu.5 (See SEQ ID NO: 45 in US20150315612) AAVhu.5 (See SEQ ID NO: 142 in US20150315612) AAVhu.51 (See SEQ ID NO:
208 in ................................................. US20150315612) AAVhu.51 (See SEQ ID NO: 190 in US20150315612) AAVhu.52 (See SEQ ID NO:
210 in US20150315612) AAVIlit.52 (See SEQ ID NO: 191 in U520150315612) AAVhu.53 (See SEQ ID NO:
19 in US20150159173) AAVhu.53 (See SEQ ID NO: 35 in US20150159173) AAVhu.53 (AAV145.1) (Sec SEQ ID NO: 176 in ------------------------------------------------- US20150315612) AAVhu.54 (See SEQ ID NO: 188 in US20150315612) AAVhu.54 (AAV145.5) (See SEQ ID NO: 177 in US20150315612) AAVIni.55 (See SEQ TD NO: 187 in US20150315612) AAVIlli.56 (See SEQ TD NO:
205 in US20150315612) AAVhu.56 (AAV145.6) (See SEQ ID NO: 168 in AAVhu.56 (AAV145.6) (See SEQ ID NO: 192 in US20150315612) US20150315612) AAVhu.57 (See SEQ ID NO: 206 in US20150315612) AAVhu.57 (See SEQ ID NO:
169 in US20150315612) AAVhu.57 (See SEQ TD NO: 193 in U520150315612) AAVItu.58 (See SEQ ID NO:
207 in US20150315612) AAVhu.58 (See SEQ ID NO: 194 in U S20150315612) AAVhu.6 (AAV3.1) (See SEQ
ID NO: 5 in ................................................. US20150315612) AAVhu.6 (AAV3.1) (See SEQ ID NO: 84 in AAVhu.60 (See SEQ ID NO:
184 in US20150315612) US20150315612) AAVhu.60 (AAV161.10) (See SEQ ID NO: 170 in AAVhu.61 (See SEQ ID NO:
185 in US20150315612) US20150315612) AAVhu.61 (AAV161.6) (See SEQ ID NO: 174 in AAVhu.63 (See SEQ ID NO:
204 in U520150315612) U520150315612) AAVhu.63 (See SEQ ID NO: 195 in US20150315612) AAVhu.64 (See SEQ ID NO:
212 in US20150315612) AAVhu.64 (See SEQ ID NO: 196 in US20150315612) AAVhu.66 (See SEQ ID NO:
197 in US20150315612) AAVhu.67 (See SEQ ID NO: 215 in U520150315612) AAVhu.67 (See SEQ ID NO:
198 in ................................................. US20150315612) AAVhu.7 (See SEQ ID NO: 226 in US20150315612) AAVIiii.7 (See SEQ ID NO:
150 in US20150315612) AAVhu.7 (AAV7.3) (See SEQ ID NO: 55 in AAVhu.71 (See SEQ TD NO: 79 in U520150315612) U520150315612) AAVhu.8 (See SEQ ID NO: 53 in US20150315612) AAVhu.8 (See SEQ ID NO: 12 in US20150315612) AAVhu.8 (See SEQ ID NO: 151 in US20150315612) AAVhu.9 (AAV3.1) (See SEQ
ID NO: 58 in ................................................. US20150315612) AAVhu.9 (AAV3.1) (See SEQ ID NO: 155 in AAV-LK01 (See SEQ ID NO: 2 in U520150315612) US20150376607) AAV-LKOI (See SEQ ID NO: 29 in US20150376607) AAV-LKO2 (See SEQ ID NO: 3 in US20150376607) AAV-LKO2 (Scc SEQ ID NO: 30 in US20150376607) AAV-LKO3 (Scc SEQ ID NO: 4 in ------------------------------------------------- US20150376607) AAV-LKO3 (See SEQ ID NO: 12 in W02015121501 and SEQ ID NO: 31 in US20150376607) AAV-LKO4 (See SEQ ID NO: 5 in US20150376607) AAV-LKO4 (See SEQ ID NO: 32 in US20150376607) AAV-LKO5 (Scc SEQ ID NO: 6 in US20150376607) AAV-LKO5 (Sec SEQ ID NO: 33 in US20150376607) AAV-LKO6 (See SEQ ID NO: 7 in US20150376607) AAV-LKO6 (See SEQ ID NO: 34 in U520150376607) AAV-LKO7 (See SEQ ID NO: 8 in US20150376607) AAV-LKO7 (See SEQ ID NO: 35 in U520150376607) AAV-LK08 (See SEQ ID NO: 9 in US20150376607) AAV-LKO8 (See SEQ ID NO: 36 in ................................................. U520150376607) AAV-LKO9 (See SEQ ID NO: 10 in US20150376607) AAV-LKO9 (See SEQ ID NO: 37 in U520150376607) AAV-LK10 (See SEQ ID NO: 11 in US20150376607) AAV-LK10 (See SEQ ID NO: 38 in ................................................. US20150376607) AAV-LKII (See SEQ ID NO: 12 in US20150376607) AAV-LK11 (See SEQ ID NO: 39 in U520150376607) AAV-LK12 (See SEQ ID NO: 13 in US20150376607) AAV-LK12 (See SEQ ID NO: 40 in US20150376607) AAV-LK13 (See SEQ ID NO: 14 in US20150376607) AAV-LK13 (See SEQ ID NO: 41 in U520150376607) AAV-LKI4 (See SEQ ID NO: 15 in US20150376607) AAV-LK14 (See SEQ ID NO: 42 in ................................................. US20150376607) AAV-LK15 (See SEQ ID NO: 16 in US20150376607) AAV-LK15 (See SEQ ID NO: 43 in US20150376607) AAV-LK16 (See SEQ TD NO: 17 in US20150376607) AAV-LK16 (See SEQ ID NO: 44 in US20150376607) AAV-LK17 (See SEQ ID NO: 18 in US20150376607) AAV-LK17 (See SEQ ID NO: 45 in US20150376607) AAV-LK18 (See SEQ ID NO: 19 in U520150376607) AAV-LK18 (See SEQ ID NO: 46 in ................................................. US20150376607) AAV-LK19 (See SEQ ID NO: 20 in U520150376607) AAV-LK19 (See SEQ ID NO: 47 in US20150376607) AAV-PAEC (See SEQ ID NO: 1 in US20150376607) AAV-PAEC (See SEQ ID NO. 48 in US20150376607) AAV-PAEC11 (Sec SEQ ID NO: 26 in AAV-PAEC11 (Sec SEQ ID NO:
54 in US20150376607) US20150376607) AAV-PAEC 12 (See SEQ ID NO: 27 in AAV-PAEC 12 (See SEQ ID NO:
51 in US20150376607) US20150376607) AAV-PAEC 13 (See SEQ ID NO: 28 in AAV-PAEC 13 (See SEQ ID NO:
49 in US20150376607) US20150376607) AAV-PAEC2 (Sec SEQ ID NO: 21 in US20150376607) AAV-PAEC2 (See SEQ ID NO: 56 in U520150376607) AAV-PAEC4 (See SEQ ID NO: 22 in US20150376607) AAV-PAEC4 (See SEQ ID NO: 55 in U520150376607) AAV-PAEC6 (See SEQ ID NO: 23 in US20150376607) AAV-PAEC6 (See SEQ ID NO: 52 in U520150376607) AAV-PAEC7 (See SEQ ID NO: 24 in US20150376607) AAV-PAEC7 (See SEQ ID NO: 53 in ................................................. U520150376607) AAV-PAEC8 (See SEQ ID NO: 25 in US20150376607) AAV-PAEC8 (See SEQ ID NO: 50 in U520150376607) AAVpi.1 (See SEQ ID NO: 28 in US20150315612) AAVpi.1 (See SEQ ID NO: 93 in U520150315612;
AAVpi.2 408, see SEQ ID NO: 30 in US20150315612) AAVpi.2 (See SEQ ID NO: 95 in US20150315612) AAVpi.3 (See SEQ ID NO: 29 in US20150315612) AAVpi.3 (See SEQ ID NO: 94 in US20150315612) AAVrh.10 (See SEQ ID NO: 9 in U520150159173) AAVrh.10 (See SEQ ID NO: 25 in US20150159173) AAV44.2 (See SEQ ID NO: 59 in US20030138772) AAVrh.10 (AAV44.2) (See SEQ ID NO: 81 in AAV42.1B (Sec SEQ ID NO: 90 in US20030138772) US20030138772) AAVrh.12 (AAV42.1b) (See SEQ ID NO: 30 in AAVrh.13 (See SEQ ID NO: 10 in U520030138772) U520150159173) AAVrh.13 (See SEQ ID NO: 26 in U520150159173) AAVrh.13 (See SEQ ID NO:
228 in US20150315612) AAVrh.13R (Sec SEQ ID NO: in US20150159173 AAV42.3A (Sec SEQ ID NO: 87 in US20030138772) AAVrh.14 (AAV42.3a) (See SEQ ID NO: 32 in AAV42.5A (See SEQ ID NO: 89 in U520030138772) U520030138772) AAVrh.17 (AAV42.5a) (See SEQ TD NO: 34 in AAV42.5B (See SEQ ID NO: 91 in U520030138772) U520030138772) AAVrh.18 (AAV42.5b) (See SEQ ID NO: 29 in AAV42.6B (See SEQ ID NO:
112 in US20030138772) US20030138772) AAVrh.19 (AAV42.6b) (See SEQ ID NO: 38 in AAVrh.2 (See SEQ ID NO: 39 in U520150159173) US20030138772) AAVrh.2 (See SEQ ID NO: 231 in U520150315612) AAVrh.20 (See SEQ ID NO: 1 in U520150159173) AAV42.10 (See SEQ ID NO: 106 in US20030138772) AAVr1i.21 (AAV42.10) (See SEQ ID NO: 35 in US20030138772) AAV42.11 (See SEQ ID NO: 108 in U520030138772) AAVrh.22 (AAV42.11) (See SEQ ID NO: 37 in US20030138772) AAV42.12 (See SEQ ID NO: 113 in US20030138772) AAVrh.23 (AAV42.12) (See SEQ ID NO: 58 in ------------------------------------------------- US20030138772) AAV42.I3 (See SEQ ID NO: 86 in US20030138772) AAVrh.24 (AAV42.I3) (See SEQ ID NO: 31 in US20030138772) AAV42.15 (See SEQ ID NO: 84 in US20030138772) AAVrh.25 (AAV42.15) (See SEQ ID NO: 28 in ................................................. US20030138772) AAVrh.2R (See SEQ ID NO: in US20150159173 AAVrh.31 (AAV223.1) (Sec SEQ ID NO: 48 in US20030138772) AAVC1 (See SEQ ID NO: 60 in US20030138772) AAVrh.32 (AAVC1) (See SEQ
ID NO: 19 in 446 US20030138772) AAVrh.32/33 (See SEQ ID NO: 2 in U520150159173) AAVrh.51 (AAV2-5) (See SEQ ID
NO: 104 in US20150315612) AAVrh.52 (AAV3-9) (See SEQ ID NO: 18 in AAVrh.52 (AAV3-9) (See SEQ
ID NO: 96 in U520150315612) U520150315612) AAVrh.53 (See SEQ ID NO: in US20150315612) AAVrh.53 (AAV3-11) (See SEQ
ID NO: 17 in US20150315612) AAVrh.53 (AAV3-11) (See SEQ ID NO: 186 in AAVrh.54 (See SEQ ID NO: 40 in US20150315612) US20150315612) AAVrh.54 (See SEQ ID NO: 49 in U520150159173 and SEQ ID NO: 116 in US20150315612) AAVrh.55 (See SEQ ID NO: 37 in US20150315612) AAVrh.55 (AAV4-19) (See SEQ
ID NO: 117 in US20150315612) -AAVrh.56 (See SEQ ID NO: 54 in US20150315612) AAVrh.56 (See SEQ ID NO:
152 in US20150315612) AAVrh.57 (See SEQ ID NO: in 497 U520150315612 AAVrh.57 (See SEQ ID NO:
105 in SEQ ID NO: 26 US20150315612) AAVrh.58 (See SEQ ID NO: 27 in US20150315612) AAVrh.58 (See SEQ ID NO: 48 in US20150159173 and SEQ ID NO: 106 in ................................................. US20150315612) AAVrh.58 (See SEQ ID NO: 232 in US20150315612) AAVrh.59 (See SEQ ID NO: 42 in US20150315612) AAVrh.59 (See SEQ ID NO:
110 in US20150315612) AAVrh.60 (See SEQ ID NO: 31 in US20150315612) AAVrh.60 (See SEQ ID NO:
120 in US20150315612) AAVrh.61 (See SEQ ID NO: 107 in US20150315612) AAVrh.61 (AAV2-3) (See SEQ
ID NO: 21 in US20150315612) AAVrh.62 (AAV2-15) (See SEQ ID NO: 33 in AAVrh.62 (AAV2-15) (See SEQ
ID NO: 114 in US20150315612) US20150315612) AAVrh.64 (See SEQ ID NO: 15 in US20150315612) AAVrh.64 (See SEQ ID NO: 43 in US20150159173 and SEQ ID NO: 99 in US20150315612) AAVrh.64 (See SEQ ID NO: 233 in US20150315612) AAVRh.64R1 (See SEQ ID NO: in U520150159173 AAVRh.64R2 (See SEQ ID NO:
in ................................................. US20150159173 AAVrh.65 (See SEQ ID NO: 35 in US20150315612) AAVrh.65 (See SEQ ID NO:
112 in US20150315612) AAVrh.67 (See SEQ ID NO: 36 in US20150315612) AAVrh.67 (See SEQ ID NO:
230 in US20150315612) A AVdt 67 (See SEQ ID NO: 47 in U520150159173 and SEQ ID NO: 47 in US20150315612) AAVrh.68 (Sec SEQ ID NO: 16 in US20150315612) AAVrh.68 (Sec SEQ ID NO:
100 in ................................................. US20150315612) AAVrh.69 (See SEQ ID NO: 39 in US20150315612) AAVrh.69 (See SEQ ID NO:
119 in US20150315612) AAVrh.70 (See SEQ ID NO: 20 in US20150315612) AAVrh.70 (See SEQ ID NO: 98 in US20150315612) AAVrh.71 (See SEQ ID NO: 162 in US20150315612) AAVrh.72 (See SEQ ID NO: 9 in US20150315612) AAVrh.73 (See SEQ ID NO: 5 in US20150159173) AAVrh.74 (See SEQ ID NO: 6 in US20150159173) AAVrh.8 (Sec SEQ ID NO: 41 in US20150159173) AAVrh.8 (Sec SEQ ID NO: 235 in US20150315612) AAVrh.8R (See SEQ ID NO: 9 in US20150159173, AAVrh.8R A586R mutant (See SEQ ID NO: 10 in W02015168666) W02015168666) AAVrh.8R R533A mutant (See SEQ ID NO: 11 in BAAV (bovine AAV) (See SEQ
ID NO: 8 in W02015168666) US9193769) BAAV (bovine AAV) (See SEQ ID NO: 10 in BAAV (bovine AAV) (See SEQ
ID NO: 4 in US9193769) US9193769) BAAV (bovine AAV) (See SEQ ID NO: 2 in BAAV (bovine AAV) (See SEQ
ID NO: 6 in US9193769) US9193769) BAAV (bovine AAV) (See SEQ ID NO: 1 in BAAV (bovine AAV) (See SEQ
ID NO: 5 in U59193769) U59193769) BAAV (bovine AAV) (See SEQ ID NO: 3 in BAAV (bovine AAV) (See SEQ
ID NO: 11 in U59193769) U59193769) BAAV (bovine AAV) (See SEQ ID NO: 5 in BAAV (bovine AAV) (See SEQ
ID NO: 6 in US7427396) US7427396) BAAV (bovine AAV) (See SEQ ID NO: 7 in BAAV (bovine AAV) (See SEQ
ID NO: 9 in U59193769) U59193769) BNP61 AAV (See SEQ ID NO: 1 in US20150238550) BNP61 AAV (See SEQ ID NO: 2 in US20150238550) BNP62 AAV (See SEQ ID NO: 3 in US20150238550) BNP63 AAV (See SEQ ID NO: 4 in US20150238550) caprinc AAV (Sec SEQ ID NO: 3 in U57427396) caprinc AAV (Sec SEQ ID NO:
4 in US7427396) true type AAV (ttAAV) (See SEQ ID NO: 2 in AAAV (Avian AAV) (See SEQ
ID NO: 12 in W02015121501) U59238800) AAAV (Avian AAV) (See SEQ ID NO: 2 in AAAV (Avian AAV) (See SEQ
ID NO: 6 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: 4 in AAAV (Avian AAV) (See SEQ
ID NO: 8 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: 14 in AAAV (Avian AAV) (See SEQ
ID NO: 10 in U59238800) U59238800) AAAV (Avian AAV) (See SEQ ID NO: 15 in AAAV (Avian AAV) (See SEQ
ID NO: 5 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: 9 in AAAV (Avian AAV) (See SEQ
ID NO: 3 in U59238800) U59238800) AAAV (Avian AAV) (See SEQ ID NO: 7 in AAAV (Avian AAV) (See SEQ
ID NO: 11 in US9238800) US9238800) AAAV (Avian AAV) (See SEQ ID NO: in AAAV (Avian AAV) (See SEQ
ID NO: 1 in US9238800) U59238800) 6?
AAV Shuffle 100-1 (See SEQ ID NO: 23 in AAV Shuffle 100-1 (See SEQ
ID NO: 11 in US20160017295) US20160017295) AAV Shuffle 100-2 (See SEQ ID NO: 37 in AAV Shuffle 100-2 (See SEQ
ID NO: 29 in US20160017295) US20160017295) AAV Shuffle 100-3 (See SEQ ID NO: 24 in AAV Shuffle 100-3 (See SEQ
ID NO: 12 in US20160017295) US20160017295) AAV Shuffle 100-7 (See SEQ ID NO: 25 in AAV Shuffle 100-7 (See SEQ
ID NO: 13 in U520160017295) U520160017295) AAV Shuffle 10-2 (See SEQ ID NO: 34 in AAV Shuffle 10-2 (See SEQ
ID NO: 26 in US20160017295) US20160017295) AAV Shuffle 10-6 (See SEQ ID NO: 35 in AAV Shuffle 10-6 (See SEQ
ID NO: 27 in US20160017295) US20160017295) AAV Shuffle 10-8 (See SEQ ID NO: 36 in AAV Shuffle 10-8 (See SEQ
ID NO: 28 in US20160017295) US20160017295) AAV SM 100-10 (See SEQ ID NO: 41 in AAV SM 100-10 (See SEQ ID
NO: 33 in U520160017295) U520160017295) AAV SM 100-3 (See SEQ ID NO: 40 in AAV SM 100-3 (See SEQ ID
NO: 32 in US20160017295) US20160017295) AAV SM 10-1 (See SEQ ID NO: 38 in AAV SM 10-1 (See SEQ ID NO:
30 in US20160017295) US20160017295) AAV SM 10-2 (See SEQ ID NO: 10 in AAV SM 10-2 (See SEQ ID NO:
22 in U520160017295) U520160017295) AAV SM 10-8 (See SEQ ID NO: 39 in AAV SM 10-8 (See SEQ ID NO:
31 in US20160017295) US20160017295) AAV CBr-7.1 (See SEQ ID NO: 4 in W02016065001) AAV CBr-7.1 (See SEQ ID NO: 54 in W02016065001) AAV CBr-7.10 (See SEQ ID NO: 11 in AAV CBr-7.10 (See SEQ ID
NO: 61 in W02016065001) W02016065001) AAV CBr-7.2 (See SEQ ID NO: 5 in W02016065001) AAV CBr-7.2 (See SEQ ID NO: 55 in W02016065001) AAV CBr-7.3 (See SEQ ID NO: 6 in W02016065001) AAV CBr-7.3 (See SEQ ID NO: 56 in ................................................. W02016065001) AAV CBr-7.4 (See SEQ ID NO: 7 in W02016065001) AAV CBr-7.4 (See SEQ ID NO: 57 in W02016065001) AAV CBr-7.5 (See SEQ ID NO: 8 in W02016065001) AAV CHt-6.6 (See SEQ ID NO: 35 in W02016065001) AAV CHI-6.6 (See SEQ ID NO: 85 in W02016065001) AAV CHt-6.7 (See SEQ ID NO: 36 in ................................................. W02016065001) AAV CHt-6.7 (See SEQ ID NO: 86 in W02016065001) AAV CHt-6.8 (See SEQ ID NO: 37 in W02016065001) AAV CHt-6.8 (See SEQ ID NO: 87 in W02016065001) AAV CHt-P1 (See SEQ ID NO: 29 in W02016065001) AAV CHt-P1 (See SEQ ID NO: 79 in W02016065001) AAV CHt-P2 (See SEQ ID NO: 1 in W02016065001) AAV CHt-P2 (See SEQ ID NO: 51 in W02016065001) AAV CHt-P5 (See SEQ ID NO: 2 in ................................................. W02016065001) AAV CHt-P5 (See SEQ ID NO: 52 in W02016065001) AAV CHt-P6 (See SEQ ID NO: 30 in W02016065001) AAV CHt-P6 (See SEQ ID NO: 80 in W02016065001) AAV CHt-P8 (See SEQ ID NO: 31 in W02016065001) AAV C1-11-P8 (See SEQ ID NO: 81 in W02016065001) AAV CH1-P9 (See SEQ ID NO: 3 in W02016065001) AAV (Sec SEQ ID NO: 53 in W02016065001) AAV CKd-1 (Sec SEQ ID
NO: 57 in US8734809) AAV CKd-1 (See SEQ ID NO: 131 in US8734809) AAV CKd-10 (See SEQ ID NO:
58 in US8734809) AAV CKd-10 (See SEQ ID NO: 132 in U58734809) AAV CKd-2 (See SEQ ID NO:
59 in US8734809) AAV CKd-2 (See SEQ ID NO: 133 in U58734809) AAV CKd-3 (See SEQ ID NO:
60 in US8734809) AAV CKd-3 (See SEQ ID NO: 134 in U58734809) AAV CKd-4 (See SEQ ID NO:
61 in U58734809) AAV CKd-4 (See SEQ ID NO: 135 in US8734809) AAV CKd-6 (See SEQ ID NO:
62 in US8734809) AAV CKd-6 (See SEQ ID NO: 136 in U58734809) AAV CKd-7 (See SEQ ID NO:
63 in U58734809) AAV CKd-7 (See SEQ ID NO: 137 in US8734809) AAV CI(d-8 (See SEQ ID NO:
64 in US8734809) AAV CKd-8 (See SEQ ID NO: 138 in U58734809) AAV CKd-B 1 (See SEQ ID NO:
73 in US8734809) AAV CKd-B 1 (See SEQ ID NO: 147 in U58734809) AAV CKd-B2 (See SEQ ID NO:
74 in U58734809) AAV CKd-B2 (See SEQ ID NO: 148 in US8734809) AAV CKd-B3 (See SEQ TD NO:
75 in US8734809) AAV CKd-B3 (See SEQ ID NO: in US8734809 AAV CKd-B3 (See SEQ ID NO:
149 in US8734809) AAV CLv-1 (See SEQ ID NO: 65 in US8734809) ................................................. AAV CLv-I (See SEQ ID NO:
139 in U S8734809) AAV CLv1-1 (See SEQ ID NO: 171 in US8734809) AAV Civ 1-10 (See SEQ ID
NO: 178 in US8734809) AAV CLv1-2 (See SEQ ID NO: 172 in US8734809) AAV CLv-12 (See SEQ ID NO:
66 in US8734809) AAV CLv-12 (See SEQ ID NO: 140 in U58734809) AAV CLv1-3 (See SEQ ID NO:
173 in U58734809) AAV CLv-13 (See SEQ ID NO: 67 in US8734809) AAV CLv-13 (See SEQ ID NO:
141 in ................................................. US8734809) AAV CLv1-4 (See SEQ ID NO: 174 in U58734809) AAV Civ 1-7 (See SEQ ID NO:
175 in US8734809) AAV Civ 1-8 (See SEQ ID NO: 176 in U58734809) AAV Civ 1-9 (See SEQ ID NO:
177 in US8734809) ------------------------------------------------AAV CLv-2 (See SEQ ID NO: 68 in US8734809) ------- AAV CLv-2 (See SEQID NO:
142 in US8734809) AAV CLv-3 (See SEQ ID NO: 69 in US8734809) AAV CLv-3 (See SEQ ID NO:
143 in US8734809) AAV CLv-4 (See SEQ ID NO: 70 in U58734809) AAV CLA7-4 (See SEQ ID NO:
144 in U58734809) AAV CLv-6 (See SEQ ID NO: 71 in U58734809) AAV CLA7-6 (See SEQ ID NO:
145 in US8734809), AAV CLv-8 (See SEQ ID NO: 72 in U58734809) ------- AAV CLv-8 (See SEQ ID NO:
146 in US8734809L
AAV CLv-D1 (See SEQ ID NO: 22 in U58734809) AAV CLv-D1 (See SEQ ID NO:
96 in U58734809) AAV CLv-D2 (See SEQ ID NO: 23 in US8734809) AAV CLv-D2 (See SEQ ID NO:
97 in U58734809) AAV CLv-D3 (See SEQ ID NO: 24 in U58734809) AAV CLv-D3 (See SEQ ID NO:
98 in U58734809) AAV CLv-D4 (See SEQ ID NO: 25 in 1JS8734809) AAV CLv-D4 (See SEQ ID NO:
99 in US8734809) AAV CLv-D5 (See SEQ ID NO: 26 in US8734809) AAV CLv-D5 (See SEQ ID NO:
100 in US8734809) AAV CLv-D6 (See SEQ ID NO: 27 in US8734809) AAV CLv-D6 (See SEQ ID NO:
101 in US8734809) AAV CLv-D7 (See SEQ ID NO: 28 in U58734809) AAV CLv-D7 (See SEQ ID NO:
102 in U S8734809) AAV CLv-D8 (See SEQ ID NO: 29 in US8734809) AAV CLv-D8 (See SEQ ID NO:
103 in US8734809); AAV CLv-K1 762, see SEQ ID NO: 18 ------------------------------------------------- in W02016065001) AAV CLv-K1 (See SEQ ID NO: 68 in W02016065001) AAV CLv-K3 (See SEQ ID NO: 19 in W02016065001) AAV CLv-K3 (See SEQ ID NO: 69 in AAV CLv-K6 (See SEQ ID NO:
20 in W02016065001) W02016065001) AAV CLv-K6 (See SEQ ID NO: 70 in AAV CLv-L4 (See SEQ ID NO:
15 in W02016065001) W02016065001) AAV CLv-L4 (See SEQ ID NO: 65 in W02016065001) AAV CLv-L5 (See SEQ ID NO: 16 in W02016065001) AAV CLv-L5 (See SEQ ID NO: 66 in W02016065001) AAV CLv-L6 (See SEQ ID NO: 17 in W02016065001) AAV CLv-L6 (See SEQ ID NO: 67 in W02016065001) AAV CLv-M1 (See SEQ ID NO: 21 in W02016065001) AAV CLv-M1 (See SEQ ID NO: 71 in W02016065001) AAV CLv-M11 (See SEQ ID NO: 22 in W02016065001) AAV CLv-M1 1 (See SEQ ID NO: 72 in AAV CLv-M2 (See SEQ ID NO:
23 in W02016065001) W02016065001) AAV CLv-M2 (See SEQ ID NO: 73 in AAV CLv-M5 (See SEQ ID NO:
24 in W02016065001) W02016065001) AAV CLv-M5 (See SEQ ID NO: 74 in AAV CLv-M6 (See SEQ ID NO:
25 in W02016065001) W02016065001) AAV CLv-M6 (See SEQ ID NO: 75 in AAV CLv-M7 (See SEQ ID NO:
26 in W02016065001) W02016065001) AAV CLv-M7 (See SEQ TD NO: 76 in AAV CLv-M8 (See SEQ TD NO:
27 in W02016065001) W02016065001) AAV CLv-M8 (See SEQ ID NO: 77 in AAV CLv-M9 (See SEQ ID NO:
28 in W02016065001) W02016065001) AAV CLv-M9 (Sec SEQ ID NO: 78 in AAV CLv-R1(Scc SEQ ID NO:
30 in US8734809) W02016065001) AAV CLv-R1 (See SEQ ID NO: 104 in US8734809) AAV CLv-R2 (See SEQ ID NO:
31 in US8734809) AAV CLv-R2 (See SEQ ID NO: 105 in US8734809) AAV CLv-R3 (See SEQ ID NO:
32 in US8734809) AAV CLv-R3 (See SEQ ID NO: 106 in U58734809) AAV CLv-R4 (See SEQ ID NO:
33 in U58734809) AAV CLv-R4 (See SEQ ID NO: 107 in US8734809) AAV CLv-R5 (See SEQ ID NO:
34 in U58734809) AAV CLv-R5 (See SEQ ID NO: 108 in US8734809) AAV CLv-R6 (See SEQ ID NO:
35 in US8734809) AAV CLv-R6 (See SEQ ID NO: 109 in US8734809): AAV CLv-R7 (See SEQ ID NO:
110 in AAV CLv-R7 802 (see SEQ ID NO: 36 in US8734809) U58734809) AAV CLv-R8 (See SEQ ID NO: 37 in U58734809) AAV CLv-R8 (See SEQ ID NO:
111 in US8734809) AAV CLv-R9 (See SEQ ID NO: 38 in US8734809) AAV CLv-R9 (See SEQ ID NO:
112 in US8734809) AAV CSp-1 (See SEQ ID NO: 45 in US8734809) AAV CSp-1 (See SEQ ID NO:
119 in US8734809) AAV CSp-10 (See SEQ ID NO: 46 in US8734809) AAV CSp-10 (See SEQ ID NO:
120 in US8734809) AAV CSp-11 (See SEQ ID NO: 47 in U58734809) AAV CSp-11 (See SEQ ID NO:
121 in US8734809) AAV CSp-2 (Sec SEQ ID NO: 48 in US8734809) AAV CSp-2 (Sec SEQ ID NO:
122 in US8734809) AAV CSp-3 (See SEQ ID NO: 49 in US8734809) AAV CSp-3 (See SEQ ID NO:
123 in US8734809) AAV CSp-4 (See SEQ ID NO: 50 in US8734809) AAV CSp-4 (See SEQ ID NO:
124 in US8734809) AAV CSp-6 (See SEQ ID NO: 51 in U58734809) AAV CSp-6 (See SEQ ID NO:
125 in U58734809) AAV CSp-7 (See SEQ ID NO: 52 in US8734.809) AAV CSp-7 (See SEQ ID NO:
126 in US8734809) AAV CSp-8 (See SEQ ID NO: 53 in US8734809) AAV CSp-8 (See SEQ ID NO:
127 in U58734809) AAV CSp-8.10 (See SEQ ID NO: 38 in AAV CSp-8.10 (See SEQ ID
NO: 88 in W02016065001) W02016065001) AAV CSp-8.2 (See SEQ ID NO: 39 in W02016065001) AAV CSp-8.2 (See SEQ ID NO: 89 in W02016065001) AAV CSp-8.4 (See SEQ ID NO: 40 in W02016065001) AAV CSp-8.4 (See SEQ ID NO: 90 in W02016065001) AAV CSp-8.5 (Sec SEQ ID NO: 41 in W02016065001) AAV CSp-8.5 (See SEQ ID NO: 91 in W02016065001) AAV CSp-8.6 (See SEQ ID NO: 42 iii W02016065001) AAV CSp-8.6 (See SEQ ID NO:
92 in W02016065001) AAV CSp-8.7 (Sec SEQ ID NO: 43 in W02016065001) AAV CSp-8.7 (Sec SEQ ID NO: 93 in ------------------------------------------------- W02016065001) AAV CSp-8.8 (See SEQ ID NO: 44 in W02016065001) AAV CSp-8.8 (See SEQ ID NO: 94 in W02016065001) AAV CSp-8.9 (See SEQ ID NO: 45 in W02016065001) AAV CSp-8.9 (See SEQ ID NO: 95 in W02016065001) AAV CSp-9 842 (Sec SEQ ID NO: 54 in US8734809) AAV CSp-9 (Sec SEQ ID NO:
128 in US8734809) AAV.hu.48R3 (See SEQ ID NO: 183 in US8734809) AAV.VR-355 (See SEQ ID NO:
181 in US8734809) AAV:3B (See SEQ TD NO: 4% in W02016065001) AAV3B (See SEQ TD NO: 98 in W02016065001) AAV4 (See SEQ ID NO: 49 in W02016065001) AAV4 (See SEQ ID NO: 99 in W02016065001) AAV5 (See SEQ ID NO: 50 in W02016065001) AAV5 (See SEQ ID NO: 100 in W02016065001) AAVF1/HSC1 (See SEQ ID NO: 20 in AAVF1/HSC1 (See SEQ ID NO:
2 in W02016049230) W02016049230) AAVF11/HSC11 (See SEQ ID NO: 26 in AAVF11/HSC11 (See SEQ ID
NO: 4 in W02016049230) W02016049230) AAVF12/HSC12 (See SEQ TD NO: 30 in AAVF12/HSC12 (See SEQ ID
NO: 12 in W02016049230) W02016049230) AAVF13/HSC13 (See SEQ ID NO: 31 in AAVF13/HSC13 (See SEQ ID
NO: 14 in W02016049230) W02016049230) AAVF14/HSC14 (See SEQ ID NO: 32 in AAVF14/HSC14 (See SEQ ID
NO: 15 in W02016049230) W02016049230) AAVF15/HSC15 (See SEQ ID NO: 33 in AAVF15/HSC15 (See SEQ ID
NO: 16 in W02016049230) W02016049230) AAVF16/11SC16 (See SEQ ID NO: 34 in AAVF16/HSC16 (See SEQ ID
NO: 17 in W02016049230) W02016049230) AAVF17/HSC17 (See SEQ ID NO: 35 in AAVF17/HSC17 (See SEQ ID
NO: 13 in W02016049230) W02016049230) AAVF2/HSC2 (See SEQ ID NO: 21 in AAVF2/HSC2 (See SEQ ID NO:
3 in W02016049230) W02016049230) AAVF3/HSC3 (See SEQ ID NO: 22 in AAVF3/HSC3 (See SEQ ID NO:
5 in W02016049230) W02016049230) AAVF4/HSC4 (See SEQ ID NO: 23 in AAVF4/HSC4 (See SEQ ID NO:
6 in W02016049230) W02016049230) AAVF5/HSC5 (See SEQ ID NO: 25 in AAVF5/HSC5 (See SEQ ID NO:
11 in W02016049230) W02016049230) AAVF6/HSC6 (See SEQ TD NO: 24 in AAVF6/F1SC6 (See SEQ ID NO:
11 in W02016049230) W02016049230) AAVF6/HSC6 (See SEQ TD NO: 24 in AAVF6/F1SC6 (See SEQ ID NO:
7 in W02016049230) W02016049230) AAVF7/HSC7 (See SEQ ID NO: 27 in AAVF7/HSC7 (See SEQ ID NO:
8 in W02016049230) W02016049230) AAVF8/HSC8 (See SEQ ID NO: 28 in AAVF8/HSC8 (See SEQ ID NO:9 in W02016049230) W02016049230) AAVF9/HSC9 (See SEQ ID NO: 10 in AAVF9/HSC9 882 (see SEQ ID
NO: 29 in W02016049230) W02016049230) [00144] The components to be cultured in the host cell to package a rAAV vector in an AAV
capsid may be provided to the host cell in trans. Alternatively, any one or more of the required components {e.g., recombinant AAV vector, rep sequences, cap sequences, and/or helper functions) may be provided by a stable host cell which has been engineered to contain one or more of the required components using methods known to those of skill in the art. Most suitably, such a stable host cell will contain the required component(s) under the control of an inducible promoter. However, the required component(s) may be under the control of a constitutive promoter.
Examples of suitable inducible and constitutive promoters are provided herein, in the discussion of regulatory elements suitable for use with the transgene. In still another alternative, a selected stable host cell may contain selected component(s) under the control of a constitutive promoter and other selected component(s) under the control of one or more inducible promoters. For example, a stable host cell may be generated which is derived from 293 cells (which contain El helper functions under the control of a constitutive promoter), but which contain the rep and/or cap proteins under the control of inducible promoters. Still other stable host cells may be generated by one of skill in the art. In some embodiments, the instant disclosure relates to a host cell containing a nucleic acid that comprises a coding sequence encoding a protein (e.g., wild-type huntingtin protein, optionally "hardened" wild-type huntingtin protein). In some embodiments, the instant disclosure relates to a composition comprising the host cell described above. In some embodiments, the composition comprising the host cell above further comprises a cryopreservative.
[00145] The recombinant AAV vector, rep sequences, cap sequences, and helper functions required for producing the rAAV of the disclosure may he delivered to the packaging host cell using any appropriate genetic element (vector). The selected genetic element may be delivered by any suitable method, including those described herein. The methods used to construct any embodiment of this disclosure are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. Similarly, methods of generating rAAV virions are well known and the selection of a suitable method is not a limitation on the present disclosure. See, e.g., K. Fisher etal., J. Virol., 70:520-532 (1993) and U.S.
Pat. No. 5,478,745.
1001461 In some embodiments, recombinant AAVs may be produced using the triple transfection method (described in detail in U.S. Pat. No. 6,001,650). Typically, the recombinant AAVs are produced by transfecting a host cell with a recombinant AAV vector (comprising a transgene) to be packaged into AAV particles, an AAV helper function vector, and an accessory function vector. An AAV helper function vector encodes the "AAV helper function" sequences (i.e., rep and cap), which function in trans for productive AAV replication and encapsidation.
Preferably, the AAV helper function vector supports efficient AAV vector production without generating any detectable wild-type AAV virions (i.e., AAV virions containing functional rep and cap genes). Non-limiting examples of vectors suitable for use with the present disclosure include pHLP19, described in U.S. Pat. No.
6,001,650 and pRep6cap6 vector, described in U.S. Pat. No. 6,156,303, the entirety of both incorporated by reference herein. The accessory function vector encodes nucleotide sequences for non-AAV derived viral and/or cellular functions upon which AAV is dependent for replication (i.e., "accessory functions"). The accessory functions include those functions required for AAV replication, including, without limitation, those moieties involved in activation of AAV
gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of cap expression products, and AAV capsid assembly. Viral-based accessory functions can be derived from any of the known helper viruses such as adenovirus, herpesvirus (other than herpes simplex virus type-1), and vaccinia virus.
[00147] In some aspects, the disclosure provides transfected host cells. The term "transfection" is used to refer to the uptake of foreign DNA by a cell, and a cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology, 52:456, Sambrook et al.
(1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al.
(1981) Gene 13: 197. Such techniques can be used to introduce one or more exogenous nucleic acids, such as a nucleotide integration vector and other nucleic acid molecules, into suitable host cells.
[00148] A "host cell" refers to any cell that harbors, or is capable of harboring, a substance of interest. Often a host cell is a mammalian cell. A host cell may be used as a recipient of an AAV
helper construct, an AAV minigene plasmid, an accessory function vector, or other transfer DNA
associated with the production of recombinant AAVs. The tenii includes the progeny of the original cell which has been transfected. Thus, a "host cell" as used herein may refer to a cell which has been transfected with an exogenous DNA sequence. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA
complement as the original parent, due to natural, accidental, or deliberate mutation.
1001491 As used herein, the term "cell line" refers to a population of cells capable of continuous or prolonged growth and division in vitro. Often, cell lines are clonal populations derived from a single progenitor cell. It is further known in the art that spontaneous or induced changes can occur in karyotype during storage or transfer of such clonal populations. Therefore, cells derived from the cell line referred to may not be precisely identical to the ancestral cells or cultures, and the cell line referred to includes such variants.
1001501 As used herein, the terms "recombinant cell" refers to a cell into which an exogenous DNA segment, such as DNA segment that leads to the transcription of a biologically-active polypeptide or production of a biologically active nucleic acid such as an RNA, has been introduced.
1001511 As used herein, the term "vector" includes any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, artificial chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors. One type of vector is a "plasmid," which refers to a circular double stranded DNA
loop into which additional DNA segments are ligated. Another type of vector is a viral vector, wherein additional DNA segments are ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors haying a bacterial origin of replication and episomal mammalian vectors). Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA
techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" is used interchangeably as the plasmid is the most commonly used form of vector.
However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
1001521 A cloning vector is one which is able to replicate autonomously or integrated in the genome in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence can be ligated such that the new recombinant vector retains its ability to replicate in the host cell. In the case of plasmids, replication of the desired sequence can occur many times as the plasmid increases in copy number within the host cell such as a host bacterium or just a single time per host before the host reproduces by mitosis. In the case of phage, replication can occur actively during a lytic phase or passively during a lysogenic phase.
1001531 An expression vector is one into which a desired DNA sequence can be inserted by restriction and ligation such that it is operably joined to regulatory sequences and can be expressed as an RNA transcript. Vectors can further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transformed or transfected with the vector. Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., 13-galactosidase, luciferase or alkaline phosphatasc), and genes which visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques (e.g., green fluorescent protein). In certain embodiments, the vectors used herein are capable of autonomous replication and expression of the structural gene products present in the DNA segments to which they are operably joined.
[00154] In some embodiments, useful vectors are contemplated to be those vectors in which the nucleic acid segment to be transcribed is positioned under the transcriptional control of a promoter. If it is desired that the coding sequences be translated into a functional protein, two DNA sequences are said to be operably joined if induction of a promoter in the 5' regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably joined to a coding sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript can be translated into the desired protein or polypeptide.
[00155] A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. When the nucleic acid molecule that encodes any of the polypeptides described herein is expressed in a cell, a variety of transcription control sequences (e.g., promoter/enhancer sequences) can be used to direct its expression. The promoter can be a native promoter, i.e., the promoter of the gene in its endogenous context, which provides normal regulation of expression of the gene. In some embodiments the promoter can be constitutive, i.e., the promoter is unregulated allowing for continual transcription of its associated gene. A variety of conditional promoters also can be used, such as promoters controlled by the presence or absence of a molecule.
[00156] The precise nature of the regulatory sequences needed for gene expression can vary between species or cell types, but in general can include, as necessary, 5' non-transcribed and 5' non-translated sequences involved with the initiation of transcription and translation respectively, such as a TATA
box, capping sequence. CAAT sequence, and the like. In particular, such 5' non-transcribed regulatory sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined gene. Regulatory sequences can also include enhancer sequences or upstream activator sequences as desired. The vectors of the invention may optionally include 5' leader or signal sequences. The choice and design of an appropriate vector is within the ability and discretion of one of ordinary skill in the art.
1001571 Expression vectors containing all the necessary elements for expression are commercially available and known to those skilled in the art. See, e.g., Sambrook et al., Molecular Cloning: A
LaboratoryManual, Second Edition, Cold Spring Harbor Laboratory Press, 1989.
Cells arc genetically engineered by the introduction into the cells of heterologous DNA
(RNA). That heterologous DNA (RNA) is placed under operable control of transcriptional elements to permit the expression of the heterologous DNA in the host cell.
[00158] The phrases "operatively positioned," "under control" or "under transcriptional control"
means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene. The term "expression vector or construct" means any type of genetic construct containing a nucleic acid in which part or all of the nucleic acid encoding sequence is capable of being transcribed. In some embodiments, expression includes transcription of the nucleic acid, for example, to generate a biologically- active polypeptide product or functional RNA (e.g., guide RNA) from a transcribed gene.
[00159] The foregoing methods for packaging recombinant vectors in desired AAV capsids to produce the rAAVs of the disclosure are not meant to be limiting and other suitable methods will be apparent to the skilled artisan.
1001601 In some embodiments, any one or more thymidine (T) nucleotides or uridine (U) nucleotides in a sequence provided herein, including a sequence provided in the sequence listing, may be replaced with any other nucleotide suitable for base pairing (e.g., via a Watson- Crick base pair) with an adenosine nucleotide. For example, in some embodiments, any one or more thymidine (T) nucleotides in a sequence provided herein, including a sequence provided in the sequence listing, may be suitably replaced with a uridine (U) nucleotide or vice versa.
[00161] In some embodiments of any of the aspects, a nucleic acid (e.g., miRNA) is chemically modified to enhance stability or other beneficial characteristics. The nucleic acids described herein may be synthesized and/or modified by methods well established in the art, such as those described in "Current protocols in nucleic acid chemistry," Beaucage, S.L. et al. (Edrs.), John Wiley & Sons, Inc., New York, NY, USA, which is hereby incorporated herein by reference.
Modifications include, for example, (a) end modifications, e.g., 5' end modifications (phosphorylation, conjugation, inverted linkages, etc.) 3' end modifications (conjugation, DNA nucleotides, inverted linkages, etc.), (b) base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases, (c) sugar modifications (e.g., at the 2' position or 4' position) or replacement of the sugar, as well as (d) backbone modifications, including modification or replacement of the phosphodiester linkages.
Specific examples of nucleic acid compounds useful in the embodiments described herein include, but are not limited to nucleic acids containing modified backbones or no natural intemucleoside linkages.
nucleic acids having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified nucleic acids that do not have a phosphorus atom in their intemucleoside backbone can also be considered to be oligonucicosidcs. In some embodiments of any of the aspects, the modified nucleic acid will have a phosphorus atom in its intemucleoside backbone.
[00162] Modified nucleic acid backbones can include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'.
Various salts, mixed salts and free acid forms are also included. Modified nucleic acid backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl intemucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl intemucleoside linkages, or one or more short chain heteroatomic or heterocyclic intemucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside);
siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene fonnacetyl and thiofonnacetyl backbones; alkene containing backbones;
sulfamate backbones; methyleneimino and methylenehydrazino backbones;
sulfonate and sulfonamide backbones; amide backbones; others having mixed N, 0, S and CH2 component parts, and oligonucleosides with heteroatom backbones, and in particular --CH2--NH--CH2--, --CH2--N(CH3)--0--CH2-4known as a methylene (methylimino) or MMI backbone], --CH2--0--N(CH3)--CH2--, --CH2--N(CH3)--N(CH3)--CH2-- and --N(CH3)--CH2--CH2-4wherein the native phosphodiester backbone is represented as --0--P--0--CH2--1.
1001631 In other nucleic acid mimetics, both the sugar and the intemucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
1001641 The nucleic acid can also be modified to include one or more locked nucleic acids (LNA).
A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2' and 4' carbons. This structure effectively "locks" the ribose in the 3'-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, OR. et al., (2007) Mol. Canc.
Ther. 6(3):833-843;
Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).
[00165] Modified nucleic acids can also contain one or more substituted sugar moieties. The nucleic acids described herein can include one of the following at the 2' position: OH; F; 0-, S-, or N-alkyl; 0-, S-, or N-a1kenyl: 0-, S- or N-alkynyl; or 0-alkyl-0-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted Cl to C10 alkyl or C2 to C10 alkenyl and alkynyl.
Exemplary suitable modifications include 0(CH2)nO] mCH3, 0(CH2)nOCH3, 0(CH2)nNH2, 0(CH2) nCH3, 0(CH2)nONH2, and 0(CH2)n0NRCH2)nCH3)12, where n and m are from 1 to about 10. In some embodiments of any of the aspects, nucleic acids include one of the following at the 2' position: Cl to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, 0-alkaryl or 0-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, 0NO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkawl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA
cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of a nucleic acid, or a group for improving the pharmacodynamic properties of a nucleic acid, and other substituents having similar properties. In some embodiments of any of the aspects, the modification includes a 2' methoxyethoxy (2'-0--CH2CH200-13, also known as 2'-0-(2-methoxyethyl) or 2'-M0E) (Martin et al., Hely. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2'-dimethylaminooxyethoxy, i.e., a 0(CH2)20N(CH3)2 group, also known as 2'-DMA0E, as described in examples herein below, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-0-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-0--CH2--0--CH2--N(CH2)2, also described in examples herein below.
[00166] Other modifications include 2'-methoxy (2'-OCH3), 2'-aminopropoxy (2'-OCH2CH2CH2NH2) and 2'-fluoro (2'-F). Similar modifications can also be made at other positions on the nucleic acid, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked dsRNAs and the 5' position of 5' terminal nucleotide. Nucleic acids may also have sugar mimctics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
[00167] A nucleic acid can also include nucleobase (often referred to in the art simply as "base-) modifications or substitutions. As used herein, -unmodified" or -natural"
nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases can include other synthetic and natural nucleobases including but not limited to as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daa7aadcninc and 3-dcazaguaninc and 3-dcazaadcninc. Certain of these nucleobases arc particularly useful for increasing the binding affinity of the inhibitory nucleic acids featured in the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2 C
(Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2'-0-methoxyethyl sugar modifications. In some embodiments of any of the aspects, modified nucleobases can include d5SICS and dNAM, which arc a non-limiting example of unnatural nucleobases that can be used separately or together as base pairs (see e.g., Leconte et. al. J. Am.
Chem. Soc.2008, 130, 7, 2336-2343; Malyshey et. al. PNAS. 2012. 109 (30) 12005-12010). In some embodiments of any of the aspects, oligonucleotide tags (e.g., Oligopaint) comprise any modified nucleobases known in the art, i.e., any nucleobase that is modified from an unmodified and/or natural nucleobase.
1001681 The preparation of the modified nucleic acids, backbones, and nucleobases described above are well known in the art.
1001691 Another modification of a nucleic acid featured in the invention involves chemically linking to the nucleic acid to one or more ligands, moieties or conjugates that enhance the activity, cellular distribution, pharmacokinetic properties, or cellular uptake of the nucleic acid. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al.. Proc. Natl.
Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg.
Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann.
N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med, Chem, Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Bchmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS
Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl -ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl.
Acids Res., 1990.
18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides &
Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan etal., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Ac-ta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol.
Exp. Ther., 1996, 277:923-937).
1001701 In some embodiments of any of the aspects, the vector is pEMBL. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-hCG intron only. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-hCGin-2x control pre-miR. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-liCGin-2x artificial pre-miR. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-CYP46A1-hCGin-2x artificial pre-miR. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-luc-HTT-3'UTR/mutant. In some embodiments of any of the aspects, the vector comprises at least one of the following: at least one (e.g., 2) ITRs; Synl promoter; at least one (e.g., 2) hCG intron; at least one (e.g., 2) copy of a premiR (e.g., control pre-miR; artificial pre-miR; SEQ ID NO: 6-17, 40-44, or 50-66); small polyA;
CYP46A1; luciferase;
HTT targeting sequences; and/or HTT-3'UTR/mutant. In some embodiments, the vector comprises a neuron specific synthetic promoter selected from Tables 10-13, and/or a CRE
selected from Tables 13-15. In certain aspects of embodiments, the miRNA targets wild type HTT
allele. In other aspects of the embodiments, the miRNA targets mutant HTT allele. In yet another embodiment, the miRNA
targets both wild type and mutant HTT alleles. In yet another embodiment, the miRNA targets any HTT mRNA.
1001711 In some embodiments, one or more of the recombinantly expressed gene can be integrated into die genome of the cell.
[00172] A nucleic acid molecule that encodes the enzyme of the claimed invention can be introduced into a cell or cells using methods and techniques that are standard in the art. For example, nucleic acid molecules can be introduced by standard protocols such as transformation including chemical transformation and electroporation, transduction, particle bombardment, etc.
Expressing the nucleic acid molecule encoding the enzymes of the claimed invention also may be accomplished by integrating the nucleic acid molecule into the genome.
1001731 In some embodiments, the promoter is a synapsin (Synl) promoter (see e.g., SEQ ID NO:
152). In one aspect, the promoter comprises a nucleic acid sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100%
identical, to SEQ ID NO:
152. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising a promoter comprising a nucleic acid sequence at least 80%
identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ
ID NO: 152.
[00174] Synapsin-1 (SEQ ID NO: 152) GAGGGCCCTGCGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGT
GCCTACCTGACGACCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATT
GCGCATCCCCTATCAGAGAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCAC
TGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCC
GCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCG
GCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGC
GAGATAGGGGGGCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCTGCC
TCAGICTGCGGIGGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAGTCG
[00175] In one aspect, provided herein is a composition comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 111. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 111. In some embodiments, the vector (e.g., rAAV) comprises a promoter (e.g., a synthetic nervous system specific promoter; see e.g., Tables 10-13) or fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs;
see e.g., Tables 13-15) that replaces the promoter and/or enhancer of SEQ ID NO: iii. In some embodiments, the vector (e.g., rAAV) comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100%
identical, to SEQ ID NO:
110, further comprises a promoter (e.g., a synthetic nervous system specific promoter; see e.g., Tables 10-13) or fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs; see e.g., Tables 13-15). In some embodiments, the enhancer is a CMV enhancer. In some embodiments, the promoter is an ACTB proximal promoter. In some embodiments, the vector further comprises an intron. In some embodiments, the intron comprises an ACTB intron/chimeric ACTB-HBB2 intron.
See, e.g., SEQ ID NO: 111, Table 16. In several embodiments, the foregoing compositions can be used, e.g., in the absence of an administered miRNA to treat a neurological disease or disorder as described herein. In various embodiments, the foregoing compositions can be used, e.g., in the presence of an administered miRNA to treat a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g., recombinant AAV comprising an isolated nucleic acid sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 111, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g recombinant AAV
comprising an isolated nucleic acid sequence SEQ ID NO: 111, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein; and wherein the CMV enhancer and/or, ACTB proximal promoter and/or, chimeric ACTB-HBB2 intron of SEQ ID NO:111, is replaced by one or, more of synthetic nervous system specific promoter selected from Tables 10-13 or, fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs) selected from the Tables 13-15.
[00176] SEQ ID NO: 111, 4036 bp, ITR to ITR sequence comprising CYP46A1 variant sequence (see e.g., SEQ ID NO: 110;).
1001771 Bolded text (e.g., nucleotides (nt) 1-130 of SEQ ID NO: 111) indicates the left ITR.
[00178] Italicized text (e.g., nt 182-436 of SEQ ID NO: 111) indicates the enhancer.
[00179] Bold italicized text (e.g., nt 550-804 of SEQ ID NO: 111) indicates the promoter.
[00180] Double underlined text (e.g., nt 824-1892 of SEQ ID NO: 111) indicates the intron.
[00181] Bolded double underlined text (e.g., nt 1966-3465 of SEQ ID NO: 111) indicates the coding sequence (CDS) of CYP46A1 variant sequence (see e.g., SEQ ID NO: 110).
[00182] Italicized double underlined text (e.g., nt 3629-3853 of SEQ ID NO:
111) indicates the polyA.
[00183] Bolded italicized double underlined text (e.g., nt 3907-4036 of SEQ ID
NO: 111) indicates the right ITR.
CTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCA
GTGAGC GAGC GAGC GC GCAGAGAGGGAGTGGC CAAC TCCATCAC TAGGGGTTCC TT GTAGT TAAT
GAT TAAC C C G
CCATGCTACTTATCTACGCCGCGCCacgcgtg-actag-tta ttaa tagta a tcaa ttacggg-gtca t taut tca ta gcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcc cattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagt atttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatg acggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacg tattagt cat cgctattaccatgg tcgaggtgagccccacgttctgc ttcactctccccatctcccccccctccc cacccccaattttgtatttatttattttttaattattttgtgcagcgatgggggcgggggggggggggggcgcgc gccaggcggggcggggcggggcgaggggcggggcggggcgaggaggagaggtgc ggcggcagcca a tcagagcgg cgcgctccgaaag-tttcc ttttatg-gcgag-g-cg-g-cgg-cggcg-gcggccc tataaa aagcgaagcgcgcggcggqc gggagtcgctgcgcgctgccttcgccccgtgccccgctccgccgccgcctcgcgccgcccgccccggctctgact gaccgcgttactcccacaggtgagcgggcgggacggccottctcctccgggctgtaattagcgcttggtttaatg acqqcttqtttcttttctqtqgctqcqtqaaagccttqaqqqqctccqqqaqqqccctttqtqcqqqqqqaqcqq ctcqqqqqqtqcqtqcqtqtqtqtqtqcqtqqqqaqcqccqcqtqcqqctccqcqctqcccqqcqqctqtqaqcq ctqcqqqcqcqqcqcqqqqctttqtqcqctccgcaqtqtqcqcqaqqqqaqcqcqqccqqqqqcqqtqccccqcq qtqcqqqqqqqqctqcgaggqqaacaaaggctqcgtqcqqqqtqtqtqcgtqqqqqqqtgagcaqqqqqtqtqqq cqcqtcqqtcqqqctqcaaccoccoctqcaccoccctccccqaqttqctqaqcacqqcccqqcttcqq-qtgcqqg qctccqtacqqqqcqtqqcqcqqqqctcgccqtqccqqqcqqqqqqtqqcqqcaqqtqqgqqtqccqqqcqqqqc qqqqccqcctcqqqccqqqqaqqqctcqqqqqaqqqgcqcqgcqqcccccqqaqcqccqqcqgctqtcqaqqcqc ggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagggacttcctttgtcccaaatctgtgc ggagccgaaatctgggaggcgccgccgcaccccctctagcgggcgcggggcgaagcggtgcggcgccggcaggaa ggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccocttctccctctccagcctoggggctgtcc qcqqqqqqacqqctqccttcqqqqqqqacqqqqcaqqqcqqqqttcqqcttctqqcqtqtqaccqqcqqctctaq agcctctgctaaccatgttcatgccttcttctttttcctacagctcctgggcaacgtgctggttattg-tgctgtc tcatcattttggcaaagaattgattaattcgagcgaacgcgtcgagtcgctoggtacgatttaaattgaattcct taagctatcataggaatgagccccgggctgctgctgctcggtagcgccgtcctgctcgccttcggcctctgctgc accttcgtgcaccgcgctcgcagccgctacgagcacatccccgggccgccgcggcccagtttccttctaggacac ctcccctgcttttggaaaaaggatgaggttggtggccgtgtgctccaagatgtgtttCtAgattgggctaagaag tatggacctgtAgtgcgggtcaacgtcttccacaaaacctcagtcatcgtcacgagtcctgagtcggttaagaag ttcctgatgtcaaccaagtacaacaaggactccaagatgtaccgtgcgctccagactgtgtttggtgagagactc ttcggccaaggcttggtgtccgaatgcaactatgagcgctggcacaagcagcggagagtGatagacctggccttc agccggagctccttggttagcttaatggaaacattcaacgaAaaggctgagcagctggtggagattctagaagcc aaggcagatgggcagaccccTgtGAGCatgcaggacatgctgacctacaccgccatggacatcctggccaaggca gcttttgggatggagaccagtatgctgctgggtgcccagaagcctctgtcccaggcagtgaaacttatgttggag ggaatcactgcgtcccgcaacactctggcaaagttcctgccagggaagaggaagcagctccgggaggtccgggag agcattcgcttcctgcgccaggtgggcagggactgggtccagcgccgccgggaagccctgaagaggggcgaggag gttcctgccgacatcctcacacagattctgaaagctgaagagggagcccaggacgacgagggtctgctggacaac ttcgtcaccttcttcattgctggtcacgagacctctgccaaccacttggcgttcacagtgatggagctgtctcgc caqccaqaqatcqtqqcaacmctqcaqqccqaqqtqqatqaAqtGattqqttctaaqaqqtacctqqatttcqacr gacctggggagactgcagtacctgtcccaggtcctcaaagagtcgctgaggctgtacccaccagcatggggcacc tttAGGctgctggaagaggagaccttgattgatggggtGagagtccccggcaacaccccgctcttgttcagcacc tatgtGatggggcggatggacacatactttgaggacccgctgactttcaaccccgatcgcttcggccctggagca cccaagccacggttcacctacttccccttctccctgggccaccgctcctgcatcgggcagcagtttgctcagatg gaggtgaaggtggtcatggcaaagctgctgcagaggctggagttccggctggtgcccgggcagcgcttcgggctg caggagcaggccacactcaagccactggaccccgtgctgtgcaccctgoggccccgcggctggcagcccgcaccc ccaccaccecectgctgagtgatagcttggtaccgagctcgatccaattgcaatgatcatcatgacagatctgcg cgcgatcgatatcagcgctttaaatttgcgcatgcagctatagttctagagggccctattctatagtgtcaccta aatgotagagotcgctgatcagoctogactgtgccttctagttgccagccatctgttgtttgcccctcccccgtg ccttccttgaccctggaaggtgccactcccactgtcctttcctaaLdaddtgaggaaattgcatcgcattgtctg agtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcagg catgctgggcratgcggtggactctatgggtttaaacGUGGCCGUGTAGATAAGTAGCATGGUGGGTTAATCATTA
ACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGAC
CAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAG (SEQ ID NO:
111) [00184] Table 16 Location in Feature SEQ ID Qualifier NO: 111 misc feature 1 130 /label=L-ITR
/label=CMVe enhancer 182 548 /label=CMVenhancer /note="GenBank: KX529075.1"
/label=ACTBp promoter 550 823 /label=ACTB proximal promoter misc_feature 824 1892 /label=chimeric ACTB-HBB2 intron /codon start=1 /product=">NM_006668.2 Homo sapiens CDS 1966 3468 cytochrome P450 family 46 subfamily A member 1 (CYP46A1), mRNA"
/label=bGH polyA /label=bGH\poly(A)\signal polyA signal 3629 3853 /note="Bovine growth hormone gene, complete cds.
GenBank:
M57764.1 ncbi.nlm.nih.gov/nuccore/M57764.1"
misc_fcaturc 3907 4036 /1abc1=R-ITR
1001851 In one aspect, provided herein is a composition comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 153. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 153. In some embodiments, the vector (e.g., rAAV) comprises a promoter (e.g., a synthetic nervous system specific promoter; see e.g., Tables 10-13) or fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs;
see e.g., Tables 13-15) that replaces the promoter and/or enhancer of SEQ ID NO: 153.
SEQ ID NO: 153 1 tctagagcta gcatatggat ccatcgattt agggataaca gggtaattat cagcacacaa 61 ttgcccatta tacgcgcgta taatggacta ttgtgtgctg atatctgtac acttaagggc 121 tagatcttag cttacgtcac tagagggtcc acgtttagtt tttaagatcc attgatctcc 181 taaacgctgc aagattcgca acctggtata cttagcctag gcgctaggtc ctagtgcagc 241 gggacttttt ttctaaagtc gttgagagga ggagtcgtca gaccagatag ctttgatgtc 301 ctgatcggaa ggatcgttgg cccccctgca ggcagctgtt aattaactgc gcgctcgctc 361 qctcactqaq qccgcccqqg caaagoccqg qcqtcqqqcq acctttqqtc qcccqqcctc 421 agtgagcgag cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta 481 gttaatgatt aacccgccat gctacttatc tacggcgcgc cacgcgtgac tagttattaa 541 tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 601 cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 661 atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggag 721 tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 781 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 841 tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtcgag 901 gtgagcccca cgttctgctt cactctcccc atctcccccc cctccccacc cccaattttg 961 tatttattta ttttttaatt attttgtgca gcgatggggg cggggggggg ggggggcgcg 1021 cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga ggtgcggcgg 1081 cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg cggcggcggc 1141 ggccotataa aaagcgaagc gcgoggcggg cgggagtcgc tgcgcgctgc cttcgcccog 1201 tgccccgctc cgccgccgcc tcgcgccgcc cgccccggct ctgactgacc gcgttactcc 1261 cacaggtgag cgggcgggac ggcccttctc ctccgggctg taattagcgc ttggtttaat 1321 gacggcttgt ttcttttctg tggctgcgtg aaagccttga ggggctccgg gagggccctt 1381 tgtgcggggg gagcggctcg gggcmg-tgcgt gcgtgtgtgt gtgcgtgggg agcgccgcgt 1441 gcggctccgc gctgcccggc ggctgtgagc gctgcgggcg cggcgcgggg ctttgtgcgc 1501 tccgcagtgt gcgcgagggg agcgcggccg ggggcggtgc cccgcggtgc ggggggggct 1561 gcgaggggaa caaaggctgc gtgcggggtg tgtgcgtggg ggggtgagca gggggtgtgg 1621 gcgcgtoggt cgggctgcaa coccocctgc acccccctcc ccgagttgct gagcacggcc 1681 cggcttcggg tgcggggctc cgtacggggc gtggcgcggg gctcgccgtg ccgggcgggg 1741 ggtggcggca ggtgggggtg ccgggcgggg cggggccgcc tcgggccggg gagggctcgg 1801 gggaggggcg cggcggcccc cggagcgccg gcggctgtcg aggcgcggcg agccgcagcc 1861 attgcctttt atggtaatcg tgcgagaggg cgcagggact tcctttgtcc caaatctgtg 1921 cggagccgaa atctgggagg cgccgccgca ccccctctag cgggcgcggg gcgaagcggt 1981 gcggcgccgg caggaaggaa atgggcgggg agggccttcg tgcgtcgccg cgccgccgtc 2041 cccttctccc tctccagcct cggggctgtc cgcgggggga cggctgcctt cgggggggac 2101 ggggcagggc ggggttcggc ttctggcgtg tgaccggcgg ctctagagcc tctgctaacc 2161 atgttcatgc cttcttcttt ttcctacagc tcctgggcaa cgtgctggtt attgtgctgt 2221 ctcatcattt tggcaaagaa ttgattaatt cgagcgaacg cgtcgagtcg ctcggtacga 2281 tttaaattga attccttaag ctatcatagg aatgagcccc gggctgctgc tgctcggtag 2341 cgccgtcctg ctcgccttcg gcctctgctg caccttcgtg caccgcgctc gcagccgcta 2401 cgagcacatc cccgggccgc cgcggcccag tttccttcta ggacacctcc cctgcttttg 2461 gaaaaaggat gaggttggtg gccgtgtgct ccaagatgtg tttctagatt gggctaagaa 2521 gtatggacct gtagtgcggg tcaacgtctt ccacaaaacc tcagtcatcg tcacgagtcc 2581 tgagtcggtt aagaagttcc tgatgtcaac caagtacaac aaggactcca agatgtaccg 2641 tgcgctccag actgtgtttg gtgagagact cttcggccaa ggcttggtgt ccgaatgcaa 2701 ctatgagcgc tggcacaagc agcggagagt gatagacctg gccttcagcc ggagctcctt 2761 ggttagctta atggaaacat tcaacgaaaa ggctgagcag ctggtggaga ttctagaagc 2821 caaggcagat gggcagaccc ctgtgagcat gcaggacatg ctgacctaca ccgccatgga 2881 catcctggcc aaggcagctt ttgggatgga gaccagtatg ctgctgggtg cccagaagcc 2941 tctgtcccag gcagtgaaac ttatgttgga gggaatcact gcgtcccgca acactctggc 3001 aaagttcctg ccagggaaga ggaagcagct ccgggaggtc cgggagagca ttcgcttcct 3061 gcgccaggtg ggcagggact gggtccagcg ccgccgggaa gccctgaaga ggggcgagga 3121 ggttcctgcc gacatcctca cacagattct gaaagctgaa gagggagccc aggacgacga 3181 gggtctgctg gacaacttcg tcaccttctt cattgctggt cacgagacct ctgccaacca 3241 cttggcgttc acagtgatgg agctgtctcg ccagccagag atcgtggcaa ggctgcaggc 3301 cgaggtggat gaagtgattg gttctaagag gtacctggat ttcgaggacc tggggagact 3361 gcagtacctg tcccaggtcc tcaaagagtc gctgaggctg tacccaccag catggggcac 3421 ctttaggctg ctggaagagg agaccttgat tgatggggtg agagtccccg gcaacacccc 3481 gctcttgttc agcacctatg tgatggggcg gatggacaca tactttgagg acccgctgac 3541 tttcaacccc gatcgcttcg gccctggagc acccaagcca cggttcacct acttcccctt 3601 ctccctgggc caccgctcct gcatcgggca gcagtttgct cagatggagg tgaaggtggt 3661 catggcaaag ctgctgcaga ggctggagtt ccggctggtg cccgggcagc gcttcgggct 3721 gcaggagcag gccacactca agccactgga ccccgtgctg tgcaccctgc ggccccgcgg 3781 ctggcagccc gcacccccac cacccccctg ctgagtgata gcttggtacc gagctcgatc 3841 caattgcaat gatcatcatg acagatctgc gcgcgatcga tatcagcgct ttaaatttgc 3901 gcatgcagct atagttctag agggccctat tctatagtgt cacctaaatg ctagagctcg 3961 ctgatcagcc tcgactgtgc cttctagttg ccagccatct gttgtttgcc cctcccccgt 4021 gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa atgaggaaat 4081 tgcatcgcat tgtctgagta ggtgtcattc tattctgggg ggtggggtgg ggcaggacag 4141 caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg gctctatggg 4201 tttaaacgcg gccgcgtaga taagtagcat ggcgggttaa tcattaacta caaggaaccc 4261 ctagtgatgg agttggccac tccctctctg cgcgctcgct cgctcactga ggccgggcga 4321 ccaaaggtcg cccgacgccc gggctttgcc cgggcggcct cagtgagcga gcgagcgcgc 4381 agttaattaa ggcgccctag gccgaccctt agactctgta ctcagttcta taaacgagcc 4441 attggatacg agatccgtag attgataagg gacacggaat atccccggac gcaatagaca 4501 ccggtggaca gcttggtatc ctgagcacag tcgrgrgtrr gaatctagct ctactttaga 4561 ggccccggat tctgatggtc gtagaccgca gaaccgattg gggggatgag atctactagt 4621 tatcagcaca caattgccca ttatacgcgc gtataatgga ctattgtgtg ctgatatagg 4681 gataacaggg taattctaga gctagcatat ggatccatcg atttgatgcg gtattttctc 4741 cttacgcatc tgtgcggtat ttcacaccgc atacgtcaaa gcaaccatag tacgcgccct 4801 gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg 4861 ccagcgccct agcgcccgct cctttcgctt tcttcccttc ctttctcgcc acgttcgccg 4921 gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac 4981 ggcacctcga ccccaaaaaa cttgatttgg gtgatggttc acgtagtggg ccatcgccct 5041 gaLagacggL LLLLcgcccL LLgacyLLgg agLccacgLL cLLLaaLagL gyacbcLLgL
5101 tccaaactgg aacaacactc aactctatct cgggctattc ttttgattta taagggattt 5161 tgccgatttc ggtctattgg ttaaaaaatg agctgattta acaaaaattt aacgcgaatt 5221 ttaacaaaat attaacgttt acaattttat ggtgcactct cagtacaatc tgctctgatg 5281 ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgcgccc tgacgggctt 5341 gtctgctccc ggcatccgct tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc 5401 agaggttttc accgtcatca ccgaaacgcg cgagacgaaa gggcctcgtg atacgcctat 5461 ttttataggt taatgtcatg ataataatgg tttcttagac gtcaggtggc acttttcggg 5521 gaaatgtgcg cggaacccct atttgtttat ttttctaaat acattcaaat atgtatccgc 5581 tcatgagaca ataaccctga taaatgcttc aataatattg aaaaaggaag agtatgagcc 5641 atattcaacg ggaaacgtcg aggccgcgat taaattccaa catggatgct gatttatatg 5701 ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat cgcttgtatg 5761 ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt gccaatgatg 5821 ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt ccgaccatca 5881 agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc cccggaaaaa 5941 cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt gatgcgctgg 6001 cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt aacagcgatc 6061 gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt gatgcgagtg 6121 attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa atgcataaac 6181 ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt gataacctta 6241 tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga atcgcagacc 6301 gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct tcattacaga 6361 aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg cagtttcatt 6421 tgatgctcga tgagtttttc taagcgtata atggtctaga gctagcatat ggatccatcg 6481 attccattat acgcctgtca gaccaagttt actcatatat actttagatt gatttaaaac 6541 ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc atgaccaaaa 6601 tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag atcaaaggat 6661 cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc 6721 taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg aaggtaactg 6781 gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag ttaggccacc 6841 acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg ttaccagtgg 6901 ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga tagttaccgg 6961 ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc ttggagcgaa 7021 cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc acgcttcccg 7081 aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga gagcgcacga 7141 gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt cgccacctct 7201 gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg aaaaacgcca 7261 gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac atgt (SEQ
ID NO: 153) [00186] Some of the aspects provided herein is a nucleic acid sequence as set forth in SEQ ID
NO: 153 is used to manufacture rAAV that lacks bacterial sequence. In some embodiments, the rAAV
is manufactured from plasmid DNA template e.g, as set forth in SEQ ID NO: 111.
In some embodiments, the rAAV is manufactured from close ended linear duplexed DNA
e.g., as set forth in SEQ ID NO: 153 or, SEQ ID NO:1 1 1.
Modified Capsids [00187] In one embodiment, the capsid described herein is further modified to increase tropism for the CNS. Provided herein is a composition comprising a modified viral capsid comprising a payload, wherein the payload comprises a regulatory sequence and a nucleic acid sequence flanked by inverted terminal repeats (ITRs) that target a central nervous system disorder, and wherein the modification is a chemical, non-chemical or amino acid modification. In some embodiments, the nucleic acid sequence of the payload comprises (a) an isolated nucleic acid encoding a transgene encoding one or more miR_NAs; and (b) an isolated nucleic acid encoding a CYP46A1 protein. In some embodiments, the nucleic acid sequence of the payload comprises an isolated nucleic acid encoding a transgene encoding one or more miRNAs. In some embodiments, the nucleic acid sequence of the payload comprises an isolated nucleic acid encoding a CYP46A1 protein.
[00188] Further provided herein is a composition comprising (a) a first modified viral capsid comprising a first payload, and (b) at least a second modified viral capsid comprising a second payload, wherein the payload comprises a regulatory sequence and a nucleic acid sequence flanked by inverted terminal repeats (ITRs) that target a central nervous system disorder, wherein the first and at least second modified viral capsids are the same, and the first and second payloads are different, and wherein the modification is a chemical, non-chemical or amino acid modification. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a transgene encoding one or more miRNAs. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a CYP46A1 protein.
[00189] Further provided herein is a composition comprising (a) a first modified capsid comprising a first payload, and (b) at least a second modified capsid comprising a second payload, wherein the payload comprises a regulatory sequence and a nucleic acid sequence flanked by inverted terminal repeats (ITRs) that target a central nervous system disorder, wherein the first and at least second modified capsids are different, and the first and second payloads can be the same or different, and wherein the modification is a chemical, non-chemical or amino acid modification. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a transgene encoding one or more miRNAs. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a CYP46A1 protein.
[00190] In certain embodiments, the modified viral capsid comprises modification that results in its preferential targeting of the CNS or PNS. For example, the modified viral capsid has increased tropism for the CNS, and/or decreased tropism for at least a second location, e.g., the liver.
Preferential targeting of the CNS does not exclude targeting to other sites, but rather indicates that it is more highly targeted to the CNS as compared to another site.
[00191] In one embodiment, the modified viral capsid comprises modification that results in its targeting of the CNS or PNS. For example, a modification to a capsid that typically targets a non-CNS
site (e.g., the liver) can redirect the capsid to now target both the CNS and the non-CNS site. In such embodiment, the CNS-targeting does not need to be preferential.
[00192] In one embodiment, the modification to the capsid is an amino acid modification, e.g., an amino acid deletion, insertion, or substitute. In one embodiment, the amino acid modification increases tropism for the CNS or PNS. In one embodiment, the amino acid modification targets the modified capsid to the CNS or PNS.
[00193] In one embodiment, the modified viral capsid has or consists of, or consists essentially of a nucleic acid sequence that is 90% identical to SEQ ID NOs 1-4 of US Patent Application No.
16/511,913, the contents of which are incorporated herein by references in its entirety. This US Patent application describes chimeric AAV capsid sequences that exhibit a dominant tropism for oligodendrocytcs, and can be used to create AAV vectors that transducc oligodendrocytes in the CNS
of subject.
[00194] In one embodiment, the modified viral capsid is an AAV
capsid protein comprising one or more amino acids substitutions, wherein the substitutions introduce a new glycan binding site into the AAV capsid protein. In some embodiments, the amino acid substitutions are in amino acid 266, amino acids 463-475 and amino acids 499-502 in AAV2 or the corresponding amino acid positions in AAV1, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 or AAV10. Such AAV capsid protein is further described in, e.g., US Patent Application No. 16/110,773; the contents of which are incorporated herein by references in its entirety.
[00195] In one embodiment, the modified viral capsid is an AAV
capsid protein that comprises, consists of, or consists essentially of an AAV 2.5 capsid protein (SEQ ID NO:
1 of International Patent Application No. PCT/US2020/029493; the contents of which are incorporated herein by references in its entirety) comprising one or more amino acid substitutions that introduce a new glycan binding site. Such amino acid substitutions can target the capsid to neurons and glial cells, such as astrocytes. In embodiments of the capsid proteins, capsids, viral vectors and methods described in the International Patent Application No. PCT/US2020/029493, the one or more amino acid substitutions comprise A267S, SQAGASDIRDQSR464-476SXIAGX2SX3X4X5X6QX7R, wherein X1-7 can be any amino acid, and EYSW 500-503EX8X9W, wherein X8-9 can be any amino acid. In embodiments of the capsid proteins, capsids, viral vectors and methods described herein, Xi is V or a conservative substitution thereof; X, is P or a conservative substitution thereof; X3 is N or a conservative substitution thereoff, X4 is M or a conservative substitution hereoff, X5 is A or a conservative substitution thereof, X6 is V or a conservative substitution thereof; X; is G or a conservative substitution thereof; Xs is F or a conservative substitution thereof; and/or X9 is A or a conservative substitution thereof. In embodiments of the capsid proteins, capsids, viral vectors and methods described herein, X1 is V, X2 is P, X-3 is N. X4 is M, X5 is A, X6 is V. X7 is G, X8 is F, and X9 is A, wherein the new glycan binding site is a galactose binding site. Such AAV capsid protein is further described in, e.g., International Patent Application No.
PCT/US2020/029493; the contents of which are incorporated herein by references in its entirety.
[00196] In one embodiment, the modified viral capsid is an AAV
capsid protein particle comprising a surface-bound peptide, wherein the peptide bound to the surface of the AAV particle is Angiopep-2, GSH, HIV-1 TAT (48-60), ApoE (159-167)2, Leptin 30 (61-90), TIM, PBS-3, PB5-5, PBS-14, or any combination thereof, as described in, e.g., US Patent Application No. 16/956,306; the contents of which are incorporated herein by references in its entirety. Such AAV capsid permits delivery, e.g., of a payload, across the blood brain barrier.
1001971 In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein), wherein the VP3 region of the capsid protein comprises modifications (e.g., replacement of a tyrosine residue with a non-tyrosine residue and/or a threonine residue with a non-threonine residue) at positions corresponding to: one or more of, or each of Y705, Y731, and T492 of a wild-type AAV1 capsid protein (e.g., SEQ ID NO: 1 of US
Patent Application No. 16/565,191; the contents of which are incorporated herein by references in its entirety); one or more of, or each of Y436, Y693, and Y719 of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No. 16/565,191); or one or more of, or each of Y705, Y731, and T492 of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US Patent Application No.
16/565,191). Such AAV capsids target neurons and astrocytes.
[00198] In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein) comprising Y to F (tyrosine to phenylalanine) modifications or T to V (threonine to valine) modifications in the VP3 region of the capsid at positions corresponding to:
one or more of or each of Y705F, Y73 IF, and T492V of a wild-type AAV1 capsid protein (e.g., SEQ
ID NO: 1 of US Patent Application No. 16/565,191); one or more of or each of Y436F, Y693F, and Y719F of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No.
16/565,191); or one or more of or each of Y705F, Y73 1F, and T492V of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US Patent Application No. 16/565,191). Such AAV
capsids target neurons and astrocytes.
[00199] In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein), wherein a VP3 region of the capsid protein comprises modifications (e.g., replacement of a tyrosine residue with a non-tyrosine residue and/or a threonine residue with a non-threonine residue) at positions corresponding to: one or more of or each of Y705, Y731, and T492 of a wild-type AAV1 capsid protein (e.g., SEQ ID NO: 1 of US Patent Application No.
16/565,191); one or more of or each of Y436, Y693, and Y719 of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No. 16/565,191); or one or more of or each of Y705, Y731, and T492 of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US
Patent Application No. 16/565,191). Such AAV capsids target neurons and astrocytes.
[00200] In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein) comprising Y to F (tyrosine to phenylalanine) modifications or T to V (threonine to valine) modifications in the VP3 region of the capsid protein at positions corresponding to: one or more of or each of Y705F, Y731F, and T492V of a wild-type AAV1 capsid protein (e.g., SEQ ID NO: 1 of US Patent Application No. 16/565,191); one or more of or each of Y436F, Y693F, and Y719F of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No. 16/565,191); or one or more of or each of Y705F, Y73 1F, and T492V of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US Patent Application No.
16/565,191). Such AAV
capsids target neurons and astrocytes.
[00201] In one embodiment, the amino acid modification permits the modified capsid to evade neutralizing antibodies, for example, that are generated against a viral vector, e.g., of the same serotype. In one embodiment, the amino acid modification permits the modified capsid to be used for repeat administration, for example, the modification will enable the capsid to have a therapeutic effect upon re-administration.
[00202] In one embodiment, the modified viral capsid is a chimeric capsid. A
"chimeric- capsid protein as used herein means an AAV capsid protein (e.g., any one or more of VP1, VP2 or VP3) that has been modified by substitutions in one or more (e.g., 2, 3, 4, 5, 6, 7, 8,
NO: 29 in W02016049230) W02016049230) [00144] The components to be cultured in the host cell to package a rAAV vector in an AAV
capsid may be provided to the host cell in trans. Alternatively, any one or more of the required components {e.g., recombinant AAV vector, rep sequences, cap sequences, and/or helper functions) may be provided by a stable host cell which has been engineered to contain one or more of the required components using methods known to those of skill in the art. Most suitably, such a stable host cell will contain the required component(s) under the control of an inducible promoter. However, the required component(s) may be under the control of a constitutive promoter.
Examples of suitable inducible and constitutive promoters are provided herein, in the discussion of regulatory elements suitable for use with the transgene. In still another alternative, a selected stable host cell may contain selected component(s) under the control of a constitutive promoter and other selected component(s) under the control of one or more inducible promoters. For example, a stable host cell may be generated which is derived from 293 cells (which contain El helper functions under the control of a constitutive promoter), but which contain the rep and/or cap proteins under the control of inducible promoters. Still other stable host cells may be generated by one of skill in the art. In some embodiments, the instant disclosure relates to a host cell containing a nucleic acid that comprises a coding sequence encoding a protein (e.g., wild-type huntingtin protein, optionally "hardened" wild-type huntingtin protein). In some embodiments, the instant disclosure relates to a composition comprising the host cell described above. In some embodiments, the composition comprising the host cell above further comprises a cryopreservative.
[00145] The recombinant AAV vector, rep sequences, cap sequences, and helper functions required for producing the rAAV of the disclosure may he delivered to the packaging host cell using any appropriate genetic element (vector). The selected genetic element may be delivered by any suitable method, including those described herein. The methods used to construct any embodiment of this disclosure are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. Similarly, methods of generating rAAV virions are well known and the selection of a suitable method is not a limitation on the present disclosure. See, e.g., K. Fisher etal., J. Virol., 70:520-532 (1993) and U.S.
Pat. No. 5,478,745.
1001461 In some embodiments, recombinant AAVs may be produced using the triple transfection method (described in detail in U.S. Pat. No. 6,001,650). Typically, the recombinant AAVs are produced by transfecting a host cell with a recombinant AAV vector (comprising a transgene) to be packaged into AAV particles, an AAV helper function vector, and an accessory function vector. An AAV helper function vector encodes the "AAV helper function" sequences (i.e., rep and cap), which function in trans for productive AAV replication and encapsidation.
Preferably, the AAV helper function vector supports efficient AAV vector production without generating any detectable wild-type AAV virions (i.e., AAV virions containing functional rep and cap genes). Non-limiting examples of vectors suitable for use with the present disclosure include pHLP19, described in U.S. Pat. No.
6,001,650 and pRep6cap6 vector, described in U.S. Pat. No. 6,156,303, the entirety of both incorporated by reference herein. The accessory function vector encodes nucleotide sequences for non-AAV derived viral and/or cellular functions upon which AAV is dependent for replication (i.e., "accessory functions"). The accessory functions include those functions required for AAV replication, including, without limitation, those moieties involved in activation of AAV
gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of cap expression products, and AAV capsid assembly. Viral-based accessory functions can be derived from any of the known helper viruses such as adenovirus, herpesvirus (other than herpes simplex virus type-1), and vaccinia virus.
[00147] In some aspects, the disclosure provides transfected host cells. The term "transfection" is used to refer to the uptake of foreign DNA by a cell, and a cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology, 52:456, Sambrook et al.
(1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al.
(1981) Gene 13: 197. Such techniques can be used to introduce one or more exogenous nucleic acids, such as a nucleotide integration vector and other nucleic acid molecules, into suitable host cells.
[00148] A "host cell" refers to any cell that harbors, or is capable of harboring, a substance of interest. Often a host cell is a mammalian cell. A host cell may be used as a recipient of an AAV
helper construct, an AAV minigene plasmid, an accessory function vector, or other transfer DNA
associated with the production of recombinant AAVs. The tenii includes the progeny of the original cell which has been transfected. Thus, a "host cell" as used herein may refer to a cell which has been transfected with an exogenous DNA sequence. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA
complement as the original parent, due to natural, accidental, or deliberate mutation.
1001491 As used herein, the term "cell line" refers to a population of cells capable of continuous or prolonged growth and division in vitro. Often, cell lines are clonal populations derived from a single progenitor cell. It is further known in the art that spontaneous or induced changes can occur in karyotype during storage or transfer of such clonal populations. Therefore, cells derived from the cell line referred to may not be precisely identical to the ancestral cells or cultures, and the cell line referred to includes such variants.
1001501 As used herein, the terms "recombinant cell" refers to a cell into which an exogenous DNA segment, such as DNA segment that leads to the transcription of a biologically-active polypeptide or production of a biologically active nucleic acid such as an RNA, has been introduced.
1001511 As used herein, the term "vector" includes any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, artificial chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors. One type of vector is a "plasmid," which refers to a circular double stranded DNA
loop into which additional DNA segments are ligated. Another type of vector is a viral vector, wherein additional DNA segments are ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors haying a bacterial origin of replication and episomal mammalian vectors). Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA
techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" is used interchangeably as the plasmid is the most commonly used form of vector.
However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
1001521 A cloning vector is one which is able to replicate autonomously or integrated in the genome in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence can be ligated such that the new recombinant vector retains its ability to replicate in the host cell. In the case of plasmids, replication of the desired sequence can occur many times as the plasmid increases in copy number within the host cell such as a host bacterium or just a single time per host before the host reproduces by mitosis. In the case of phage, replication can occur actively during a lytic phase or passively during a lysogenic phase.
1001531 An expression vector is one into which a desired DNA sequence can be inserted by restriction and ligation such that it is operably joined to regulatory sequences and can be expressed as an RNA transcript. Vectors can further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transformed or transfected with the vector. Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., 13-galactosidase, luciferase or alkaline phosphatasc), and genes which visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques (e.g., green fluorescent protein). In certain embodiments, the vectors used herein are capable of autonomous replication and expression of the structural gene products present in the DNA segments to which they are operably joined.
[00154] In some embodiments, useful vectors are contemplated to be those vectors in which the nucleic acid segment to be transcribed is positioned under the transcriptional control of a promoter. If it is desired that the coding sequences be translated into a functional protein, two DNA sequences are said to be operably joined if induction of a promoter in the 5' regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably joined to a coding sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript can be translated into the desired protein or polypeptide.
[00155] A "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. When the nucleic acid molecule that encodes any of the polypeptides described herein is expressed in a cell, a variety of transcription control sequences (e.g., promoter/enhancer sequences) can be used to direct its expression. The promoter can be a native promoter, i.e., the promoter of the gene in its endogenous context, which provides normal regulation of expression of the gene. In some embodiments the promoter can be constitutive, i.e., the promoter is unregulated allowing for continual transcription of its associated gene. A variety of conditional promoters also can be used, such as promoters controlled by the presence or absence of a molecule.
[00156] The precise nature of the regulatory sequences needed for gene expression can vary between species or cell types, but in general can include, as necessary, 5' non-transcribed and 5' non-translated sequences involved with the initiation of transcription and translation respectively, such as a TATA
box, capping sequence. CAAT sequence, and the like. In particular, such 5' non-transcribed regulatory sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined gene. Regulatory sequences can also include enhancer sequences or upstream activator sequences as desired. The vectors of the invention may optionally include 5' leader or signal sequences. The choice and design of an appropriate vector is within the ability and discretion of one of ordinary skill in the art.
1001571 Expression vectors containing all the necessary elements for expression are commercially available and known to those skilled in the art. See, e.g., Sambrook et al., Molecular Cloning: A
LaboratoryManual, Second Edition, Cold Spring Harbor Laboratory Press, 1989.
Cells arc genetically engineered by the introduction into the cells of heterologous DNA
(RNA). That heterologous DNA (RNA) is placed under operable control of transcriptional elements to permit the expression of the heterologous DNA in the host cell.
[00158] The phrases "operatively positioned," "under control" or "under transcriptional control"
means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene. The term "expression vector or construct" means any type of genetic construct containing a nucleic acid in which part or all of the nucleic acid encoding sequence is capable of being transcribed. In some embodiments, expression includes transcription of the nucleic acid, for example, to generate a biologically- active polypeptide product or functional RNA (e.g., guide RNA) from a transcribed gene.
[00159] The foregoing methods for packaging recombinant vectors in desired AAV capsids to produce the rAAVs of the disclosure are not meant to be limiting and other suitable methods will be apparent to the skilled artisan.
1001601 In some embodiments, any one or more thymidine (T) nucleotides or uridine (U) nucleotides in a sequence provided herein, including a sequence provided in the sequence listing, may be replaced with any other nucleotide suitable for base pairing (e.g., via a Watson- Crick base pair) with an adenosine nucleotide. For example, in some embodiments, any one or more thymidine (T) nucleotides in a sequence provided herein, including a sequence provided in the sequence listing, may be suitably replaced with a uridine (U) nucleotide or vice versa.
[00161] In some embodiments of any of the aspects, a nucleic acid (e.g., miRNA) is chemically modified to enhance stability or other beneficial characteristics. The nucleic acids described herein may be synthesized and/or modified by methods well established in the art, such as those described in "Current protocols in nucleic acid chemistry," Beaucage, S.L. et al. (Edrs.), John Wiley & Sons, Inc., New York, NY, USA, which is hereby incorporated herein by reference.
Modifications include, for example, (a) end modifications, e.g., 5' end modifications (phosphorylation, conjugation, inverted linkages, etc.) 3' end modifications (conjugation, DNA nucleotides, inverted linkages, etc.), (b) base modifications, e.g., replacement with stabilizing bases, destabilizing bases, or bases that base pair with an expanded repertoire of partners, removal of bases (abasic nucleotides), or conjugated bases, (c) sugar modifications (e.g., at the 2' position or 4' position) or replacement of the sugar, as well as (d) backbone modifications, including modification or replacement of the phosphodiester linkages.
Specific examples of nucleic acid compounds useful in the embodiments described herein include, but are not limited to nucleic acids containing modified backbones or no natural intemucleoside linkages.
nucleic acids having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified nucleic acids that do not have a phosphorus atom in their intemucleoside backbone can also be considered to be oligonucicosidcs. In some embodiments of any of the aspects, the modified nucleic acid will have a phosphorus atom in its intemucleoside backbone.
[00162] Modified nucleic acid backbones can include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those) having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'.
Various salts, mixed salts and free acid forms are also included. Modified nucleic acid backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl intemucleoside linkages, mixed heteroatoms and alkyl or cycloalkyl intemucleoside linkages, or one or more short chain heteroatomic or heterocyclic intemucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside);
siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene fonnacetyl and thiofonnacetyl backbones; alkene containing backbones;
sulfamate backbones; methyleneimino and methylenehydrazino backbones;
sulfonate and sulfonamide backbones; amide backbones; others having mixed N, 0, S and CH2 component parts, and oligonucleosides with heteroatom backbones, and in particular --CH2--NH--CH2--, --CH2--N(CH3)--0--CH2-4known as a methylene (methylimino) or MMI backbone], --CH2--0--N(CH3)--CH2--, --CH2--N(CH3)--N(CH3)--CH2-- and --N(CH3)--CH2--CH2-4wherein the native phosphodiester backbone is represented as --0--P--0--CH2--1.
1001631 In other nucleic acid mimetics, both the sugar and the intemucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an RNA mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an RNA is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
1001641 The nucleic acid can also be modified to include one or more locked nucleic acids (LNA).
A locked nucleic acid is a nucleotide having a modified ribose moiety in which the ribose moiety comprises an extra bridge connecting the 2' and 4' carbons. This structure effectively "locks" the ribose in the 3'-endo structural conformation. The addition of locked nucleic acids to siRNAs has been shown to increase siRNA stability in serum, and to reduce off-target effects (Elmen, J. et al., (2005) Nucleic Acids Research 33(1):439-447; Mook, OR. et al., (2007) Mol. Canc.
Ther. 6(3):833-843;
Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193).
[00165] Modified nucleic acids can also contain one or more substituted sugar moieties. The nucleic acids described herein can include one of the following at the 2' position: OH; F; 0-, S-, or N-alkyl; 0-, S-, or N-a1kenyl: 0-, S- or N-alkynyl; or 0-alkyl-0-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted Cl to C10 alkyl or C2 to C10 alkenyl and alkynyl.
Exemplary suitable modifications include 0(CH2)nO] mCH3, 0(CH2)nOCH3, 0(CH2)nNH2, 0(CH2) nCH3, 0(CH2)nONH2, and 0(CH2)n0NRCH2)nCH3)12, where n and m are from 1 to about 10. In some embodiments of any of the aspects, nucleic acids include one of the following at the 2' position: Cl to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, 0-alkaryl or 0-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, 0NO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkawl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA
cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of a nucleic acid, or a group for improving the pharmacodynamic properties of a nucleic acid, and other substituents having similar properties. In some embodiments of any of the aspects, the modification includes a 2' methoxyethoxy (2'-0--CH2CH200-13, also known as 2'-0-(2-methoxyethyl) or 2'-M0E) (Martin et al., Hely. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group. Another exemplary modification is 2'-dimethylaminooxyethoxy, i.e., a 0(CH2)20N(CH3)2 group, also known as 2'-DMA0E, as described in examples herein below, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-0-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-0--CH2--0--CH2--N(CH2)2, also described in examples herein below.
[00166] Other modifications include 2'-methoxy (2'-OCH3), 2'-aminopropoxy (2'-OCH2CH2CH2NH2) and 2'-fluoro (2'-F). Similar modifications can also be made at other positions on the nucleic acid, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked dsRNAs and the 5' position of 5' terminal nucleotide. Nucleic acids may also have sugar mimctics such as cyclobutyl moieties in place of the pentofuranosyl sugar.
[00167] A nucleic acid can also include nucleobase (often referred to in the art simply as "base-) modifications or substitutions. As used herein, -unmodified" or -natural"
nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases can include other synthetic and natural nucleobases including but not limited to as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl anal other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-daa7aadcninc and 3-dcazaguaninc and 3-dcazaadcninc. Certain of these nucleobases arc particularly useful for increasing the binding affinity of the inhibitory nucleic acids featured in the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2 C
(Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., Eds., dsRNA Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are exemplary base substitutions, even more particularly when combined with 2'-0-methoxyethyl sugar modifications. In some embodiments of any of the aspects, modified nucleobases can include d5SICS and dNAM, which arc a non-limiting example of unnatural nucleobases that can be used separately or together as base pairs (see e.g., Leconte et. al. J. Am.
Chem. Soc.2008, 130, 7, 2336-2343; Malyshey et. al. PNAS. 2012. 109 (30) 12005-12010). In some embodiments of any of the aspects, oligonucleotide tags (e.g., Oligopaint) comprise any modified nucleobases known in the art, i.e., any nucleobase that is modified from an unmodified and/or natural nucleobase.
1001681 The preparation of the modified nucleic acids, backbones, and nucleobases described above are well known in the art.
1001691 Another modification of a nucleic acid featured in the invention involves chemically linking to the nucleic acid to one or more ligands, moieties or conjugates that enhance the activity, cellular distribution, pharmacokinetic properties, or cellular uptake of the nucleic acid. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al.. Proc. Natl.
Acid. Sci. USA, 1989, 86: 6553-6556), cholic acid (Manoharan et al., Biorg.
Med. Chem. Let., 1994, 4:1053-1060), a thioether, e.g., beryl-S-tritylthiol (Manoharan et al., Ann.
N.Y. Acad. Sci., 1992, 660:306-309; Manoharan et al., Biorg. Med, Chem, Let., 1993, 3:2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20:533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Bchmoaras et al., EMBO J, 1991, 10:1111-1118; Kabanov et al., FEBS
Lett., 1990, 259:327-330; Svinarchuk et al., Biochimie, 1993, 75:49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl -ammonium 1,2-di-O-hexadecyl-rac-glycero-3-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36:3651-3654; Shea et al., Nucl.
Acids Res., 1990.
18:3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides &
Nucleotides, 1995, 14:969-973), or adamantane acetic acid (Manoharan etal., Tetrahedron Lett., 1995, 36:3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Ac-ta, 1995, 1264:229-237), or an octadecylamine or hexylamino-carbonyloxycholesterol moiety (Crooke et al., J. Pharmacol.
Exp. Ther., 1996, 277:923-937).
1001701 In some embodiments of any of the aspects, the vector is pEMBL. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-hCG intron only. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-hCGin-2x control pre-miR. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-liCGin-2x artificial pre-miR. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-CYP46A1-hCGin-2x artificial pre-miR. In some embodiments of any of the aspects, the vector is pEMBL-D(+)Synl-luc-HTT-3'UTR/mutant. In some embodiments of any of the aspects, the vector comprises at least one of the following: at least one (e.g., 2) ITRs; Synl promoter; at least one (e.g., 2) hCG intron; at least one (e.g., 2) copy of a premiR (e.g., control pre-miR; artificial pre-miR; SEQ ID NO: 6-17, 40-44, or 50-66); small polyA;
CYP46A1; luciferase;
HTT targeting sequences; and/or HTT-3'UTR/mutant. In some embodiments, the vector comprises a neuron specific synthetic promoter selected from Tables 10-13, and/or a CRE
selected from Tables 13-15. In certain aspects of embodiments, the miRNA targets wild type HTT
allele. In other aspects of the embodiments, the miRNA targets mutant HTT allele. In yet another embodiment, the miRNA
targets both wild type and mutant HTT alleles. In yet another embodiment, the miRNA targets any HTT mRNA.
1001711 In some embodiments, one or more of the recombinantly expressed gene can be integrated into die genome of the cell.
[00172] A nucleic acid molecule that encodes the enzyme of the claimed invention can be introduced into a cell or cells using methods and techniques that are standard in the art. For example, nucleic acid molecules can be introduced by standard protocols such as transformation including chemical transformation and electroporation, transduction, particle bombardment, etc.
Expressing the nucleic acid molecule encoding the enzymes of the claimed invention also may be accomplished by integrating the nucleic acid molecule into the genome.
1001731 In some embodiments, the promoter is a synapsin (Synl) promoter (see e.g., SEQ ID NO:
152). In one aspect, the promoter comprises a nucleic acid sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100%
identical, to SEQ ID NO:
152. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising a promoter comprising a nucleic acid sequence at least 80%
identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ
ID NO: 152.
[00174] Synapsin-1 (SEQ ID NO: 152) GAGGGCCCTGCGTATGAGTGCAAGTGGGTTTTAGGACCAGGATGAGGCGGGGTGGGGGT
GCCTACCTGACGACCGACCCCGACCCACTGGACAAGCACCCAACCCCCATTCCCCAAATT
GCGCATCCCCTATCAGAGAGGGGGAGGGGAAACAGGATGCGGCGAGGCGCGTGCGCAC
TGCCAGCTTCAGCACCGCGGACAGTGCCTTCGCCCCCGCCTGGCGGCGCGCGCCACCGCC
GCCTCAGCACTGAAGGCGCGCTGACGTCACTCGCCGGTCCCCCGCAAACTCCCCTTCCCG
GCCACCTTGGTCGCGTCCGCGCCGCCGCCGGCCCAGCCGGACCGCACCACGCGAGGCGC
GAGATAGGGGGGCACGGGCGCGACCATCTGCGCTGCGGCGCCGGCGACTCAGCGCTGCC
TCAGICTGCGGIGGGCAGCGGAGGAGTCGTGTCGTGCCTGAGAGCGCAGTCG
[00175] In one aspect, provided herein is a composition comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 111. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 111. In some embodiments, the vector (e.g., rAAV) comprises a promoter (e.g., a synthetic nervous system specific promoter; see e.g., Tables 10-13) or fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs;
see e.g., Tables 13-15) that replaces the promoter and/or enhancer of SEQ ID NO: iii. In some embodiments, the vector (e.g., rAAV) comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100%
identical, to SEQ ID NO:
110, further comprises a promoter (e.g., a synthetic nervous system specific promoter; see e.g., Tables 10-13) or fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs; see e.g., Tables 13-15). In some embodiments, the enhancer is a CMV enhancer. In some embodiments, the promoter is an ACTB proximal promoter. In some embodiments, the vector further comprises an intron. In some embodiments, the intron comprises an ACTB intron/chimeric ACTB-HBB2 intron.
See, e.g., SEQ ID NO: 111, Table 16. In several embodiments, the foregoing compositions can be used, e.g., in the absence of an administered miRNA to treat a neurological disease or disorder as described herein. In various embodiments, the foregoing compositions can be used, e.g., in the presence of an administered miRNA to treat a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g., recombinant AAV comprising an isolated nucleic acid sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical to SEQ ID NO: 111, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein. In some embodiments, recombinant viral vector, e.g recombinant AAV
comprising an isolated nucleic acid sequence SEQ ID NO: 111, is administered to a subject in need therof for expressing the CYP46A1 protein and/or, for treating a neurological disease or disorder as described herein; and wherein the CMV enhancer and/or, ACTB proximal promoter and/or, chimeric ACTB-HBB2 intron of SEQ ID NO:111, is replaced by one or, more of synthetic nervous system specific promoter selected from Tables 10-13 or, fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs) selected from the Tables 13-15.
[00176] SEQ ID NO: 111, 4036 bp, ITR to ITR sequence comprising CYP46A1 variant sequence (see e.g., SEQ ID NO: 110;).
1001771 Bolded text (e.g., nucleotides (nt) 1-130 of SEQ ID NO: 111) indicates the left ITR.
[00178] Italicized text (e.g., nt 182-436 of SEQ ID NO: 111) indicates the enhancer.
[00179] Bold italicized text (e.g., nt 550-804 of SEQ ID NO: 111) indicates the promoter.
[00180] Double underlined text (e.g., nt 824-1892 of SEQ ID NO: 111) indicates the intron.
[00181] Bolded double underlined text (e.g., nt 1966-3465 of SEQ ID NO: 111) indicates the coding sequence (CDS) of CYP46A1 variant sequence (see e.g., SEQ ID NO: 110).
[00182] Italicized double underlined text (e.g., nt 3629-3853 of SEQ ID NO:
111) indicates the polyA.
[00183] Bolded italicized double underlined text (e.g., nt 3907-4036 of SEQ ID
NO: 111) indicates the right ITR.
CTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCA
GTGAGC GAGC GAGC GC GCAGAGAGGGAGTGGC CAAC TCCATCAC TAGGGGTTCC TT GTAGT TAAT
GAT TAAC C C G
CCATGCTACTTATCTACGCCGCGCCacgcgtg-actag-tta ttaa tagta a tcaa ttacggg-gtca t taut tca ta gcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcc cattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagt atttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatg acggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacg tattagt cat cgctattaccatgg tcgaggtgagccccacgttctgc ttcactctccccatctcccccccctccc cacccccaattttgtatttatttattttttaattattttgtgcagcgatgggggcgggggggggggggggcgcgc gccaggcggggcggggcggggcgaggggcggggcggggcgaggaggagaggtgc ggcggcagcca a tcagagcgg cgcgctccgaaag-tttcc ttttatg-gcgag-g-cg-g-cgg-cggcg-gcggccc tataaa aagcgaagcgcgcggcggqc gggagtcgctgcgcgctgccttcgccccgtgccccgctccgccgccgcctcgcgccgcccgccccggctctgact gaccgcgttactcccacaggtgagcgggcgggacggccottctcctccgggctgtaattagcgcttggtttaatg acqqcttqtttcttttctqtqgctqcqtqaaagccttqaqqqqctccqqqaqqqccctttqtqcqqqqqqaqcqq ctcqqqqqqtqcqtqcqtqtqtqtqtqcqtqqqqaqcqccqcqtqcqqctccqcqctqcccqqcqqctqtqaqcq ctqcqqqcqcqqcqcqqqqctttqtqcqctccgcaqtqtqcqcqaqqqqaqcqcqqccqqqqqcqqtqccccqcq qtqcqqqqqqqqctqcgaggqqaacaaaggctqcgtqcqqqqtqtqtqcgtqqqqqqqtgagcaqqqqqtqtqqq cqcqtcqqtcqqqctqcaaccoccoctqcaccoccctccccqaqttqctqaqcacqqcccqqcttcqq-qtgcqqg qctccqtacqqqqcqtqqcqcqqqqctcgccqtqccqqqcqqqqqqtqqcqqcaqqtqqgqqtqccqqqcqqqqc qqqqccqcctcqqqccqqqqaqqqctcqqqqqaqqqgcqcqgcqqcccccqqaqcqccqqcqgctqtcqaqqcqc ggcgagccgcagccattgccttttatggtaatcgtgcgagagggcgcagggacttcctttgtcccaaatctgtgc ggagccgaaatctgggaggcgccgccgcaccccctctagcgggcgcggggcgaagcggtgcggcgccggcaggaa ggaaatgggcggggagggccttcgtgcgtcgccgcgccgccgtccocttctccctctccagcctoggggctgtcc qcqqqqqqacqqctqccttcqqqqqqqacqqqqcaqqqcqqqqttcqqcttctqqcqtqtqaccqqcqqctctaq agcctctgctaaccatgttcatgccttcttctttttcctacagctcctgggcaacgtgctggttattg-tgctgtc tcatcattttggcaaagaattgattaattcgagcgaacgcgtcgagtcgctoggtacgatttaaattgaattcct taagctatcataggaatgagccccgggctgctgctgctcggtagcgccgtcctgctcgccttcggcctctgctgc accttcgtgcaccgcgctcgcagccgctacgagcacatccccgggccgccgcggcccagtttccttctaggacac ctcccctgcttttggaaaaaggatgaggttggtggccgtgtgctccaagatgtgtttCtAgattgggctaagaag tatggacctgtAgtgcgggtcaacgtcttccacaaaacctcagtcatcgtcacgagtcctgagtcggttaagaag ttcctgatgtcaaccaagtacaacaaggactccaagatgtaccgtgcgctccagactgtgtttggtgagagactc ttcggccaaggcttggtgtccgaatgcaactatgagcgctggcacaagcagcggagagtGatagacctggccttc agccggagctccttggttagcttaatggaaacattcaacgaAaaggctgagcagctggtggagattctagaagcc aaggcagatgggcagaccccTgtGAGCatgcaggacatgctgacctacaccgccatggacatcctggccaaggca gcttttgggatggagaccagtatgctgctgggtgcccagaagcctctgtcccaggcagtgaaacttatgttggag ggaatcactgcgtcccgcaacactctggcaaagttcctgccagggaagaggaagcagctccgggaggtccgggag agcattcgcttcctgcgccaggtgggcagggactgggtccagcgccgccgggaagccctgaagaggggcgaggag gttcctgccgacatcctcacacagattctgaaagctgaagagggagcccaggacgacgagggtctgctggacaac ttcgtcaccttcttcattgctggtcacgagacctctgccaaccacttggcgttcacagtgatggagctgtctcgc caqccaqaqatcqtqqcaacmctqcaqqccqaqqtqqatqaAqtGattqqttctaaqaqqtacctqqatttcqacr gacctggggagactgcagtacctgtcccaggtcctcaaagagtcgctgaggctgtacccaccagcatggggcacc tttAGGctgctggaagaggagaccttgattgatggggtGagagtccccggcaacaccccgctcttgttcagcacc tatgtGatggggcggatggacacatactttgaggacccgctgactttcaaccccgatcgcttcggccctggagca cccaagccacggttcacctacttccccttctccctgggccaccgctcctgcatcgggcagcagtttgctcagatg gaggtgaaggtggtcatggcaaagctgctgcagaggctggagttccggctggtgcccgggcagcgcttcgggctg caggagcaggccacactcaagccactggaccccgtgctgtgcaccctgoggccccgcggctggcagcccgcaccc ccaccaccecectgctgagtgatagcttggtaccgagctcgatccaattgcaatgatcatcatgacagatctgcg cgcgatcgatatcagcgctttaaatttgcgcatgcagctatagttctagagggccctattctatagtgtcaccta aatgotagagotcgctgatcagoctogactgtgccttctagttgccagccatctgttgtttgcccctcccccgtg ccttccttgaccctggaaggtgccactcccactgtcctttcctaaLdaddtgaggaaattgcatcgcattgtctg agtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaatagcagg catgctgggcratgcggtggactctatgggtttaaacGUGGCCGUGTAGATAAGTAGCATGGUGGGTTAATCATTA
ACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGAC
CAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAG (SEQ ID NO:
111) [00184] Table 16 Location in Feature SEQ ID Qualifier NO: 111 misc feature 1 130 /label=L-ITR
/label=CMVe enhancer 182 548 /label=CMVenhancer /note="GenBank: KX529075.1"
/label=ACTBp promoter 550 823 /label=ACTB proximal promoter misc_feature 824 1892 /label=chimeric ACTB-HBB2 intron /codon start=1 /product=">NM_006668.2 Homo sapiens CDS 1966 3468 cytochrome P450 family 46 subfamily A member 1 (CYP46A1), mRNA"
/label=bGH polyA /label=bGH\poly(A)\signal polyA signal 3629 3853 /note="Bovine growth hormone gene, complete cds.
GenBank:
M57764.1 ncbi.nlm.nih.gov/nuccore/M57764.1"
misc_fcaturc 3907 4036 /1abc1=R-ITR
1001851 In one aspect, provided herein is a composition comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 153. In one aspect, provided herein is a composition comprising a recombinant viral vector comprising an isolated nucleic acid comprising a sequence at least 80% identical, e.g., at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or 100% identical, to SEQ ID NO: 153. In some embodiments, the vector (e.g., rAAV) comprises a promoter (e.g., a synthetic nervous system specific promoter; see e.g., Tables 10-13) or fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs;
see e.g., Tables 13-15) that replaces the promoter and/or enhancer of SEQ ID NO: 153.
SEQ ID NO: 153 1 tctagagcta gcatatggat ccatcgattt agggataaca gggtaattat cagcacacaa 61 ttgcccatta tacgcgcgta taatggacta ttgtgtgctg atatctgtac acttaagggc 121 tagatcttag cttacgtcac tagagggtcc acgtttagtt tttaagatcc attgatctcc 181 taaacgctgc aagattcgca acctggtata cttagcctag gcgctaggtc ctagtgcagc 241 gggacttttt ttctaaagtc gttgagagga ggagtcgtca gaccagatag ctttgatgtc 301 ctgatcggaa ggatcgttgg cccccctgca ggcagctgtt aattaactgc gcgctcgctc 361 qctcactqaq qccgcccqqg caaagoccqg qcqtcqqqcq acctttqqtc qcccqqcctc 421 agtgagcgag cgagcgcgca gagagggagt ggccaactcc atcactaggg gttccttgta 481 gttaatgatt aacccgccat gctacttatc tacggcgcgc cacgcgtgac tagttattaa 541 tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 601 cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 661 atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggag 721 tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 781 cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 841 tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtcgag 901 gtgagcccca cgttctgctt cactctcccc atctcccccc cctccccacc cccaattttg 961 tatttattta ttttttaatt attttgtgca gcgatggggg cggggggggg ggggggcgcg 1021 cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga ggtgcggcgg 1081 cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg cggcggcggc 1141 ggccotataa aaagcgaagc gcgoggcggg cgggagtcgc tgcgcgctgc cttcgcccog 1201 tgccccgctc cgccgccgcc tcgcgccgcc cgccccggct ctgactgacc gcgttactcc 1261 cacaggtgag cgggcgggac ggcccttctc ctccgggctg taattagcgc ttggtttaat 1321 gacggcttgt ttcttttctg tggctgcgtg aaagccttga ggggctccgg gagggccctt 1381 tgtgcggggg gagcggctcg gggcmg-tgcgt gcgtgtgtgt gtgcgtgggg agcgccgcgt 1441 gcggctccgc gctgcccggc ggctgtgagc gctgcgggcg cggcgcgggg ctttgtgcgc 1501 tccgcagtgt gcgcgagggg agcgcggccg ggggcggtgc cccgcggtgc ggggggggct 1561 gcgaggggaa caaaggctgc gtgcggggtg tgtgcgtggg ggggtgagca gggggtgtgg 1621 gcgcgtoggt cgggctgcaa coccocctgc acccccctcc ccgagttgct gagcacggcc 1681 cggcttcggg tgcggggctc cgtacggggc gtggcgcggg gctcgccgtg ccgggcgggg 1741 ggtggcggca ggtgggggtg ccgggcgggg cggggccgcc tcgggccggg gagggctcgg 1801 gggaggggcg cggcggcccc cggagcgccg gcggctgtcg aggcgcggcg agccgcagcc 1861 attgcctttt atggtaatcg tgcgagaggg cgcagggact tcctttgtcc caaatctgtg 1921 cggagccgaa atctgggagg cgccgccgca ccccctctag cgggcgcggg gcgaagcggt 1981 gcggcgccgg caggaaggaa atgggcgggg agggccttcg tgcgtcgccg cgccgccgtc 2041 cccttctccc tctccagcct cggggctgtc cgcgggggga cggctgcctt cgggggggac 2101 ggggcagggc ggggttcggc ttctggcgtg tgaccggcgg ctctagagcc tctgctaacc 2161 atgttcatgc cttcttcttt ttcctacagc tcctgggcaa cgtgctggtt attgtgctgt 2221 ctcatcattt tggcaaagaa ttgattaatt cgagcgaacg cgtcgagtcg ctcggtacga 2281 tttaaattga attccttaag ctatcatagg aatgagcccc gggctgctgc tgctcggtag 2341 cgccgtcctg ctcgccttcg gcctctgctg caccttcgtg caccgcgctc gcagccgcta 2401 cgagcacatc cccgggccgc cgcggcccag tttccttcta ggacacctcc cctgcttttg 2461 gaaaaaggat gaggttggtg gccgtgtgct ccaagatgtg tttctagatt gggctaagaa 2521 gtatggacct gtagtgcggg tcaacgtctt ccacaaaacc tcagtcatcg tcacgagtcc 2581 tgagtcggtt aagaagttcc tgatgtcaac caagtacaac aaggactcca agatgtaccg 2641 tgcgctccag actgtgtttg gtgagagact cttcggccaa ggcttggtgt ccgaatgcaa 2701 ctatgagcgc tggcacaagc agcggagagt gatagacctg gccttcagcc ggagctcctt 2761 ggttagctta atggaaacat tcaacgaaaa ggctgagcag ctggtggaga ttctagaagc 2821 caaggcagat gggcagaccc ctgtgagcat gcaggacatg ctgacctaca ccgccatgga 2881 catcctggcc aaggcagctt ttgggatgga gaccagtatg ctgctgggtg cccagaagcc 2941 tctgtcccag gcagtgaaac ttatgttgga gggaatcact gcgtcccgca acactctggc 3001 aaagttcctg ccagggaaga ggaagcagct ccgggaggtc cgggagagca ttcgcttcct 3061 gcgccaggtg ggcagggact gggtccagcg ccgccgggaa gccctgaaga ggggcgagga 3121 ggttcctgcc gacatcctca cacagattct gaaagctgaa gagggagccc aggacgacga 3181 gggtctgctg gacaacttcg tcaccttctt cattgctggt cacgagacct ctgccaacca 3241 cttggcgttc acagtgatgg agctgtctcg ccagccagag atcgtggcaa ggctgcaggc 3301 cgaggtggat gaagtgattg gttctaagag gtacctggat ttcgaggacc tggggagact 3361 gcagtacctg tcccaggtcc tcaaagagtc gctgaggctg tacccaccag catggggcac 3421 ctttaggctg ctggaagagg agaccttgat tgatggggtg agagtccccg gcaacacccc 3481 gctcttgttc agcacctatg tgatggggcg gatggacaca tactttgagg acccgctgac 3541 tttcaacccc gatcgcttcg gccctggagc acccaagcca cggttcacct acttcccctt 3601 ctccctgggc caccgctcct gcatcgggca gcagtttgct cagatggagg tgaaggtggt 3661 catggcaaag ctgctgcaga ggctggagtt ccggctggtg cccgggcagc gcttcgggct 3721 gcaggagcag gccacactca agccactgga ccccgtgctg tgcaccctgc ggccccgcgg 3781 ctggcagccc gcacccccac cacccccctg ctgagtgata gcttggtacc gagctcgatc 3841 caattgcaat gatcatcatg acagatctgc gcgcgatcga tatcagcgct ttaaatttgc 3901 gcatgcagct atagttctag agggccctat tctatagtgt cacctaaatg ctagagctcg 3961 ctgatcagcc tcgactgtgc cttctagttg ccagccatct gttgtttgcc cctcccccgt 4021 gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa atgaggaaat 4081 tgcatcgcat tgtctgagta ggtgtcattc tattctgggg ggtggggtgg ggcaggacag 4141 caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg gctctatggg 4201 tttaaacgcg gccgcgtaga taagtagcat ggcgggttaa tcattaacta caaggaaccc 4261 ctagtgatgg agttggccac tccctctctg cgcgctcgct cgctcactga ggccgggcga 4321 ccaaaggtcg cccgacgccc gggctttgcc cgggcggcct cagtgagcga gcgagcgcgc 4381 agttaattaa ggcgccctag gccgaccctt agactctgta ctcagttcta taaacgagcc 4441 attggatacg agatccgtag attgataagg gacacggaat atccccggac gcaatagaca 4501 ccggtggaca gcttggtatc ctgagcacag tcgrgrgtrr gaatctagct ctactttaga 4561 ggccccggat tctgatggtc gtagaccgca gaaccgattg gggggatgag atctactagt 4621 tatcagcaca caattgccca ttatacgcgc gtataatgga ctattgtgtg ctgatatagg 4681 gataacaggg taattctaga gctagcatat ggatccatcg atttgatgcg gtattttctc 4741 cttacgcatc tgtgcggtat ttcacaccgc atacgtcaaa gcaaccatag tacgcgccct 4801 gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg 4861 ccagcgccct agcgcccgct cctttcgctt tcttcccttc ctttctcgcc acgttcgccg 4921 gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac 4981 ggcacctcga ccccaaaaaa cttgatttgg gtgatggttc acgtagtggg ccatcgccct 5041 gaLagacggL LLLLcgcccL LLgacyLLgg agLccacgLL cLLLaaLagL gyacbcLLgL
5101 tccaaactgg aacaacactc aactctatct cgggctattc ttttgattta taagggattt 5161 tgccgatttc ggtctattgg ttaaaaaatg agctgattta acaaaaattt aacgcgaatt 5221 ttaacaaaat attaacgttt acaattttat ggtgcactct cagtacaatc tgctctgatg 5281 ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgcgccc tgacgggctt 5341 gtctgctccc ggcatccgct tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc 5401 agaggttttc accgtcatca ccgaaacgcg cgagacgaaa gggcctcgtg atacgcctat 5461 ttttataggt taatgtcatg ataataatgg tttcttagac gtcaggtggc acttttcggg 5521 gaaatgtgcg cggaacccct atttgtttat ttttctaaat acattcaaat atgtatccgc 5581 tcatgagaca ataaccctga taaatgcttc aataatattg aaaaaggaag agtatgagcc 5641 atattcaacg ggaaacgtcg aggccgcgat taaattccaa catggatgct gatttatatg 5701 ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat cgcttgtatg 5761 ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt gccaatgatg 5821 ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt ccgaccatca 5881 agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc cccggaaaaa 5941 cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt gatgcgctgg 6001 cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt aacagcgatc 6061 gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt gatgcgagtg 6121 attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa atgcataaac 6181 ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt gataacctta 6241 tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga atcgcagacc 6301 gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct tcattacaga 6361 aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg cagtttcatt 6421 tgatgctcga tgagtttttc taagcgtata atggtctaga gctagcatat ggatccatcg 6481 attccattat acgcctgtca gaccaagttt actcatatat actttagatt gatttaaaac 6541 ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc atgaccaaaa 6601 tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag atcaaaggat 6661 cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc 6721 taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg aaggtaactg 6781 gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag ttaggccacc 6841 acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg ttaccagtgg 6901 ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga tagttaccgg 6961 ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc ttggagcgaa 7021 cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc acgcttcccg 7081 aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga gagcgcacga 7141 gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt cgccacctct 7201 gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg aaaaacgcca 7261 gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac atgt (SEQ
ID NO: 153) [00186] Some of the aspects provided herein is a nucleic acid sequence as set forth in SEQ ID
NO: 153 is used to manufacture rAAV that lacks bacterial sequence. In some embodiments, the rAAV
is manufactured from plasmid DNA template e.g, as set forth in SEQ ID NO: 111.
In some embodiments, the rAAV is manufactured from close ended linear duplexed DNA
e.g., as set forth in SEQ ID NO: 153 or, SEQ ID NO:1 1 1.
Modified Capsids [00187] In one embodiment, the capsid described herein is further modified to increase tropism for the CNS. Provided herein is a composition comprising a modified viral capsid comprising a payload, wherein the payload comprises a regulatory sequence and a nucleic acid sequence flanked by inverted terminal repeats (ITRs) that target a central nervous system disorder, and wherein the modification is a chemical, non-chemical or amino acid modification. In some embodiments, the nucleic acid sequence of the payload comprises (a) an isolated nucleic acid encoding a transgene encoding one or more miR_NAs; and (b) an isolated nucleic acid encoding a CYP46A1 protein. In some embodiments, the nucleic acid sequence of the payload comprises an isolated nucleic acid encoding a transgene encoding one or more miRNAs. In some embodiments, the nucleic acid sequence of the payload comprises an isolated nucleic acid encoding a CYP46A1 protein.
[00188] Further provided herein is a composition comprising (a) a first modified viral capsid comprising a first payload, and (b) at least a second modified viral capsid comprising a second payload, wherein the payload comprises a regulatory sequence and a nucleic acid sequence flanked by inverted terminal repeats (ITRs) that target a central nervous system disorder, wherein the first and at least second modified viral capsids are the same, and the first and second payloads are different, and wherein the modification is a chemical, non-chemical or amino acid modification. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a transgene encoding one or more miRNAs. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a CYP46A1 protein.
[00189] Further provided herein is a composition comprising (a) a first modified capsid comprising a first payload, and (b) at least a second modified capsid comprising a second payload, wherein the payload comprises a regulatory sequence and a nucleic acid sequence flanked by inverted terminal repeats (ITRs) that target a central nervous system disorder, wherein the first and at least second modified capsids are different, and the first and second payloads can be the same or different, and wherein the modification is a chemical, non-chemical or amino acid modification. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a transgene encoding one or more miRNAs. In some embodiments, the nucleic acid sequence of the first or second payload comprises an isolated nucleic acid encoding a CYP46A1 protein.
[00190] In certain embodiments, the modified viral capsid comprises modification that results in its preferential targeting of the CNS or PNS. For example, the modified viral capsid has increased tropism for the CNS, and/or decreased tropism for at least a second location, e.g., the liver.
Preferential targeting of the CNS does not exclude targeting to other sites, but rather indicates that it is more highly targeted to the CNS as compared to another site.
[00191] In one embodiment, the modified viral capsid comprises modification that results in its targeting of the CNS or PNS. For example, a modification to a capsid that typically targets a non-CNS
site (e.g., the liver) can redirect the capsid to now target both the CNS and the non-CNS site. In such embodiment, the CNS-targeting does not need to be preferential.
[00192] In one embodiment, the modification to the capsid is an amino acid modification, e.g., an amino acid deletion, insertion, or substitute. In one embodiment, the amino acid modification increases tropism for the CNS or PNS. In one embodiment, the amino acid modification targets the modified capsid to the CNS or PNS.
[00193] In one embodiment, the modified viral capsid has or consists of, or consists essentially of a nucleic acid sequence that is 90% identical to SEQ ID NOs 1-4 of US Patent Application No.
16/511,913, the contents of which are incorporated herein by references in its entirety. This US Patent application describes chimeric AAV capsid sequences that exhibit a dominant tropism for oligodendrocytcs, and can be used to create AAV vectors that transducc oligodendrocytes in the CNS
of subject.
[00194] In one embodiment, the modified viral capsid is an AAV
capsid protein comprising one or more amino acids substitutions, wherein the substitutions introduce a new glycan binding site into the AAV capsid protein. In some embodiments, the amino acid substitutions are in amino acid 266, amino acids 463-475 and amino acids 499-502 in AAV2 or the corresponding amino acid positions in AAV1, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 or AAV10. Such AAV capsid protein is further described in, e.g., US Patent Application No. 16/110,773; the contents of which are incorporated herein by references in its entirety.
[00195] In one embodiment, the modified viral capsid is an AAV
capsid protein that comprises, consists of, or consists essentially of an AAV 2.5 capsid protein (SEQ ID NO:
1 of International Patent Application No. PCT/US2020/029493; the contents of which are incorporated herein by references in its entirety) comprising one or more amino acid substitutions that introduce a new glycan binding site. Such amino acid substitutions can target the capsid to neurons and glial cells, such as astrocytes. In embodiments of the capsid proteins, capsids, viral vectors and methods described in the International Patent Application No. PCT/US2020/029493, the one or more amino acid substitutions comprise A267S, SQAGASDIRDQSR464-476SXIAGX2SX3X4X5X6QX7R, wherein X1-7 can be any amino acid, and EYSW 500-503EX8X9W, wherein X8-9 can be any amino acid. In embodiments of the capsid proteins, capsids, viral vectors and methods described herein, Xi is V or a conservative substitution thereof; X, is P or a conservative substitution thereof; X3 is N or a conservative substitution thereoff, X4 is M or a conservative substitution hereoff, X5 is A or a conservative substitution thereof, X6 is V or a conservative substitution thereof; X; is G or a conservative substitution thereof; Xs is F or a conservative substitution thereof; and/or X9 is A or a conservative substitution thereof. In embodiments of the capsid proteins, capsids, viral vectors and methods described herein, X1 is V, X2 is P, X-3 is N. X4 is M, X5 is A, X6 is V. X7 is G, X8 is F, and X9 is A, wherein the new glycan binding site is a galactose binding site. Such AAV capsid protein is further described in, e.g., International Patent Application No.
PCT/US2020/029493; the contents of which are incorporated herein by references in its entirety.
[00196] In one embodiment, the modified viral capsid is an AAV
capsid protein particle comprising a surface-bound peptide, wherein the peptide bound to the surface of the AAV particle is Angiopep-2, GSH, HIV-1 TAT (48-60), ApoE (159-167)2, Leptin 30 (61-90), TIM, PBS-3, PB5-5, PBS-14, or any combination thereof, as described in, e.g., US Patent Application No. 16/956,306; the contents of which are incorporated herein by references in its entirety. Such AAV capsid permits delivery, e.g., of a payload, across the blood brain barrier.
1001971 In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein), wherein the VP3 region of the capsid protein comprises modifications (e.g., replacement of a tyrosine residue with a non-tyrosine residue and/or a threonine residue with a non-threonine residue) at positions corresponding to: one or more of, or each of Y705, Y731, and T492 of a wild-type AAV1 capsid protein (e.g., SEQ ID NO: 1 of US
Patent Application No. 16/565,191; the contents of which are incorporated herein by references in its entirety); one or more of, or each of Y436, Y693, and Y719 of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No. 16/565,191); or one or more of, or each of Y705, Y731, and T492 of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US Patent Application No.
16/565,191). Such AAV capsids target neurons and astrocytes.
[00198] In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein) comprising Y to F (tyrosine to phenylalanine) modifications or T to V (threonine to valine) modifications in the VP3 region of the capsid at positions corresponding to:
one or more of or each of Y705F, Y73 IF, and T492V of a wild-type AAV1 capsid protein (e.g., SEQ
ID NO: 1 of US Patent Application No. 16/565,191); one or more of or each of Y436F, Y693F, and Y719F of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No.
16/565,191); or one or more of or each of Y705F, Y73 1F, and T492V of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US Patent Application No. 16/565,191). Such AAV
capsids target neurons and astrocytes.
[00199] In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein), wherein a VP3 region of the capsid protein comprises modifications (e.g., replacement of a tyrosine residue with a non-tyrosine residue and/or a threonine residue with a non-threonine residue) at positions corresponding to: one or more of or each of Y705, Y731, and T492 of a wild-type AAV1 capsid protein (e.g., SEQ ID NO: 1 of US Patent Application No.
16/565,191); one or more of or each of Y436, Y693, and Y719 of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No. 16/565,191); or one or more of or each of Y705, Y731, and T492 of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US
Patent Application No. 16/565,191). Such AAV capsids target neurons and astrocytes.
[00200] In one embodiment, the modified viral capsid is AAV capsid protein (e.g., an AAV1, AAV5, or AAV6 capsid protein) comprising Y to F (tyrosine to phenylalanine) modifications or T to V (threonine to valine) modifications in the VP3 region of the capsid protein at positions corresponding to: one or more of or each of Y705F, Y731F, and T492V of a wild-type AAV1 capsid protein (e.g., SEQ ID NO: 1 of US Patent Application No. 16/565,191); one or more of or each of Y436F, Y693F, and Y719F of a wild-type AAV5 capsid protein (e.g., SEQ ID NO: 2 of US Patent Application No. 16/565,191); or one or more of or each of Y705F, Y73 1F, and T492V of a wild-type AAV6 capsid protein (e.g., SEQ ID NO: 3 of US Patent Application No.
16/565,191). Such AAV
capsids target neurons and astrocytes.
[00201] In one embodiment, the amino acid modification permits the modified capsid to evade neutralizing antibodies, for example, that are generated against a viral vector, e.g., of the same serotype. In one embodiment, the amino acid modification permits the modified capsid to be used for repeat administration, for example, the modification will enable the capsid to have a therapeutic effect upon re-administration.
[00202] In one embodiment, the modified viral capsid is a chimeric capsid. A
"chimeric- capsid protein as used herein means an AAV capsid protein (e.g., any one or more of VP1, VP2 or VP3) that has been modified by substitutions in one or more (e.g., 2, 3, 4, 5, 6, 7, 8,
9, 10, etc.) amino acid residues in the amino acid sequence of the capsid protein relative to wild type, as well as insertions and/or deletions of one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) amino acid residues in the amino acid sequence relative to wild type. In some embodiments, complete or partial domains, functional regions, epitopes, etc., from one AAV serotype can replace the corresponding wild type domain, functional region, epitope, etc. of a different AAV serotype, in any combination, to produce a chimeric capsid protein of this invention. Production of a chimeric capsid protein can be carried out according to protocols well known in the art and a significant number of chimeric capsid proteins are described in the literature as well as herein that can be included in the capsid of this invention.
[00203] In one embodiment, the modified viral capsid is a haploid capsid. As used herein, the term -haploid AAV- shall mean that AAV as described in International Application W02018/170310, or US Application US2018/037149, which are incorporated herein in their entirety by reference. In some embodiments, a population of virions is a haploid AAV population where a virion particle can be constructed wherein at least one viral protein from the group consisting of AAV capsid proteins, VP1, VP2 and VP3, is different from at least one of the other viral proteins, required to form the virion particle capable of encapsulating an AAV genome. For each viral protein present (VP1, VP2, and/or VP3), that protein is the same type (e.g., all AAV2 VP1). In one instance, at least one of the viral proteins is a chimeric viral protein and at least one of the other two viral proteins is not a chimeric. In one embodiment VP1 and VP2 are chimeric and only VP3 is non-chimeric. For example, only the viral particle composed of VP1NP2 from the chimeric AAV2/8 (the N-terminus of AAV2 and the C-temiinus of AA V8) paired with only VP3 from AAV2; or only the chimeric VP1/VP2 28m-2P3 (the N-terminal from AAV8 and the C-terminal from AAV2 without mutation of VP3 start codon) paired with only VP3 from AAV2. In another embodiment only VP3 is chimeric and VP1 and VP2 are non-chimeric. In another embodiment at least one of the viral proteins is from a completely different serotype. For example, only the chimeric VP1/VP2 28m-2P3 paired with VP3 from only AAV3. In another example, no chimeric protein is present.
[00204] In some embodiments of the technology described herein, a modified viral capsid comprises one or more modifications, e.g., a chemical modification, a non-chemical modification, or an amino acid modification to the capsid. Such modifications can, for example, modify the tissue-type tropism or cell-type tropism of the modified capsid, among other things.
[00205] Modifications can alter the properties of the capsid, including biochemical properties such as receptor binding, directly, such that the modification itself alters the behavior of the capsid, or can permit further modification, such as the attachment of a ligand which in turn modifies behavior of the capsid in a desired manner.
[00206] In one embodiment, chemical modification of cysteine residues, which may be naturally present or introduced by genetic modification of a capsid polypeptide coding sequence, permits the covalent attachment of a ligand via disulfide bond formation (see, e.g., WO
2005/106046, the contents of which are incorporated herein by reference).
[00207] Various ligands arc contemplated, including but not limited to antibodies or antigen-binding fragments thereof that, for example, target a cell-surface protein expressed by a target cell (see, e.g., WO 2000/002654, which is incorporated herein by reference).
[00208] W02015/062516, the contents of which are also incorporated herein by reference, describes the insertion of an amino acid comprising an azido group by genetic modification of the capsid gene, followed by chemical conjugation of a ligand via the azido group.
1002091 The modification of AAV capsid tropism by glycation, or chemical conjugation of sugar moieties, is described by Horowitz et al., Bioconjugate Chem. 22: 529-532 (2011). That approach, and similar approaches are contemplated for modification of capsids as described herein.
[00210] In other embodiments, the coating of a viral capsid with a polymer, such as polyethylene glycol (PEG) or poly-(N-hydroxypropyl)methacrylamide (pHPMA) is specifically contemplated.
Such modification can, for example, reduce specific and nonspecific interactions with non-target tissues.
[00211] In other embodiments, carbodiimide coupling is specifically contemplated. See, e.g., Joo et al. ACS Nano 5, titled "Enhanced Real-time Monitoring of Adeno-Associated Virus Trafficking by Virus-Quantum Dot Conjugates" (2011).
[00212] In other embodiments, the viral capsid can be modified, e.g., as described in WO
2017/212019, see also U.S. National Phase USSN 16/308,740, the contents of which are each incorporated herein by reference. The approach described therein couples a viral capsid to a ligand via bonds comprising ¨CSNH- and an aromatic moiety. While genetically modified viral capsids can be further modified by this approach, the modifications described therein do not require genetic modification of the viral capsid. Ligands described therein include, for example, a targeting agent, a steric shielding agent for avoiding neutralizing antibody interactions, a labeling agent or a magnetic agent. Targeting ligands described therein include, for example, a cell-type specific ligand, a protein, a mono- or polysaccharide, a steroid hormone, an RGD motif peptide (e.g., Arg-Gly-Asp, a cell adhesion motif which can mimic cell adhesion proteins and bind to integrins), a vitamin, and a small molecule.
[00213] In one embodiment, the chemical modification of the invention is a modification described in International patent application PCT/EP2017/064089, the content of which is incorporated herein by reference in its entirety.
[00214] In one embodiment, the chemical modification of the invention is a modification described in International patent application PCT/EP2020/069554, the content of which is incorporated herein by reference in its entirety.
[00215] In one embodiment, the capsid has at least one chemically-modified tyrosine residue in its capsid, wherein said chemically-modified tyrosine residue is of formula (I):
[00216] wherein:
[00217] -X1 is selected from the group consisting of:
H N
(a), and 0 (b), and [00218] -Ar is an aryl or a heteroaryl moiety optionally substituted.
[00219] In one embodiment, the capsid has at least one chemically-modified tyrosine residue is of formula (Ia):
--o oR
x, 13 m [00220] wherein:
[00221] -Xi, and Ar arc as defined herein above, [00222] - Spacer is a group for linking the "Ar" group to the functional moiety "M" which preferably comprises up to 1000 carbon atoms and which is preferably in the form of a chemical chain which optionally comprises heteroatoms and/or cyclic moieties, 1002231 -n is 0 or 1; and [00224] -M is a functional moiety comprising a steric agent, a labelling agent, cell-types specific ligand or a drug moiety.
[00225] In one embodiment, Xi is of formula (a) and/or "Ar" is selected from substituted or unsubstituted phenyl, pyridyl, naplithyl, and anthracenyl.
[00226] In one embodiment, the capsid has at least one chemically-modified tyrosine is of formula (Ic):
N=7 NI
gm;
0,) [00227] wherein:
[00228] -X2 is -C(=0)-NH, -C(=0)-0, -C(=0)-0-C(=0)-, 0-(C=0)-, NH-C(=0)-, NH-C(=0)-NH, -0-C=0-0-, 0, NH, -NH(C=S)-, or -(C=S)-NH-, preferably ¨(C=0)-NH- or [00229] -X2 is at position para, meta or ortho, preferably at position para of the phenyl group, [00230] -Spacer, n and M are as defined herein above.
[00231] In one embodiment, "Spacer", when present, is selected from the group consisting of saturated or unsaturated, linear or branched C2-C40 hydrocarbon chains, optionally substituted, polyethylene glycol, polypropylene glycol, pHPMA (polymer of N-(2-Hydroxypropyl)methacrylamide), Poly Lactic-co-Glycolic Acid (PLGA), polymers of alkyl diamincs and combinations thereof, and/or [00232] "M" comprises, or consists of, cell-type targeting ligand, preferably selected from a mono- or a polysaccharide, a hormone, including a steroid hormone, a peptide such as RGD peptide (e.g., Arg-Gly-Asp, a cell adhesion motif which can mimic cell adhesion proteins and bind to integrins), a muscle targeting peptide (MTP) or Angiopep-2, a protein or a fragment thereof, a membrane receptor or a fragment thereof, an aptamer, an antibody including heavy-chain antibody, and fragments thereof such as antigen-binding fragment (Fab), Fab' (which is the antigen-binding fragment further comprising a free sulfhydryl group), and VHH, a single-chain fragment variable (ScFv), a spiegelmer, a peptide aptamer, vitamins and drugs such as Cannabinoid receptor 1 (CB1) and/or Cannabinoid receptor 2 (CB2) ligands.
[00233] In one embodiment, "Spacer" (when present) is selected from the group consisting of linear or branched C2-C20 alkyl chains, polyethylene glycol, polypropylene glycol, pHPMA, PLGA, polymer of alkyl diamine and combinations thereof, said polymers having from 2 to 20 monomers and/or "M" comprises, or consists of, a cell-type specific ligand derived from a protein selected from transferrin, Epidermal Growth Factor (EGF), and basic Fibroblast Growth Factor 13FGF, a mono- or a polysaccharide comprising one or several galactose, mannose, N-acetylgalactosamine residues, bridge GalNac, or mannose-6-phosphate, MTP selected from SEQ ID NO:1 to SEQ ID
NO:7, and vitamins such as folic acid.
[00234] In one embodiment, the capsid further has at least one additional chemically modified amino acid residue in the capsid, which is different from a tyrosine residue, said amino acid residue preferably bearing an amino group chemically modified with a group of formula (V):
Ar SPACER __ [00235] wherein:
[00236] - N* being the nitrogen of the amino group of an amino acid residue, e.g. of a lysine residue or arginine residue, and [00237] - Ar, Spacer, n and M has the same definition as Ar, Spacer, n and M of formula (II) of claim 2.
[00238] In one embodiment, the capsid is incubated a chemical reagent bearing a reactive group selected from an aryl diazonium, and a 4-phenyl-1,2,4-triazole-3,5-dione (PTAD) moiety in conditions conducive for reacting said reactive group with a tyrosine residue present in the capsid so as to form a covalent bound.
[00239] In one embodiment, the capsid is incubated with a chemical reagent of formula VId to obtain the at least one chemically-modified tyrosine residue in the capsid of formula Ic.
N- N
x; ISO
(VId) Administration [00240] The rAAVs of the disclosure may be delivered to a subject in compositions according to any appropriate methods known in the art. For example, an rAAV, preferably suspended in a physiologically compatible carrier (i.e., in a composition), may be administered to a subject, i.e. host animal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse, cow, goat, pig, guinea pig, hamster, chicken, turkey, or a non-human primate (e.g., Macaque). In some embodiments a host animal does not include a human.
[00241] Delivery of the rAAVs to a mammalian subject may be by, for example, intramuscular injection or by administration into the bloodstream of the mammalian subject.
Administration into the bloodstream may be by injection into a vein, an artery, or any other vascular conduit. In some embodiments, the rAAVs are administered into the bloodstream by way of isolated limb perfusion, a technique well known in the surgical arts, the method essentially enabling the artisan to isolate a limb from the systemic circulation prior to administration of the rAAV virions. A
variant of the isolated limb perfusion technique, described in U.S. Pat. No. 6,177,403, can also be employed by the skilled artisan to administer the virions into the vasculature of an isolated limb to potentially enhance transduction into muscle cells or tissue. Moreover, in certain instances, it may be desirable to deliver the virions to the CNS of a subject. By "CNS" is meant all cells and tissue of the brain and spinal cord of a vertebrate. Thus, the term includes, but is not limited to, neuronal cells, glial cells, astrocytes, cerebrospinal fluid (CSF), interstitial spaces, bone, cartilage and the like.
Recombinant AAVs may be delivered directly to the CNS or brain by injection into, e.g., the ventricular region, as well as to the striatum (e.g., the caudate nucleus or putamen of the striatum), spinal cord and neuromuscular junction, or cerebellar lobule, with a needle, catheter or related device, using neurosurgical techniques known in the art, such as by stereotactic injection (see, e.g., Stein et al., J Virol 73:3424-3429, 1999;
Davidson et al., PNAS 97:3428-3432, 2000; Davidson et al., Nat. Genet. 3:219-223, 1993; and Alisky and Davidson, Hum. Gene Ther. 11:2315-2329, 2000). In some embodiments, rAAV
as described in the disclosure are administered by intravenous injection. In some embodiments, the rAAV are administered by intracerebral injection. In some embodiments, the rAAV are administered by intrathecal injection. In some embodiments, the rAAV are administered by intrastriatal injection. In some embodiments, die rAAV are delivered by intracranial injection. In sonic embodiments, the rAAV are delivered by cistema magna injection. In some embodiments, the rAAV
are delivered by cerebral lateral ventricle injection.
[00242] Delivery of the compositions to a mammalian subject may be by, for example, by any know mean of deliver to a desire site, e.g., the CNS. It may be desirable to deliver the composition to the CNS of a subject. By "CNS" is meant all cells and tissue of the brain and spinal cord of a vertebrate. Thus, the term includes, but is not limited to, neuronal cells, glial cells, astrocytes, cerebrospinal fluid (CSF), interstitial spaces, bone, cartilage and the like.
Any composition described herein may be delivered directly to the CNS or brain by injection into, e.g., the ventricular region, as well as to the striatum (e.g., the caudate nucleus or putamcn of the striatum), spinal cord and neuromuscular junction, or cerebellar lobule, with a needle, catheter or related device, using neurosurgical techniques known in the art, such as by stereotactic injection (see, e.g., Stein et al., J
Virol 73:3424-3429, 1999; Davidson et al., PNAS 97:3428-3432, 2000; Davidson et al., Nat. Genet.
3:219-223, 1993; and Alisky and Davidson, Hum. Gene Ther. 11 :2315-2329, 2000). In some embodiments, compositions as described in the disclosure are administered by intravenous injection.
In some embodiments, compositions as described in the disclosure are administered by intraspinal injection. In some embodiments, compositions as described in the disclosure are administered by intracerebro ventricular injection. In some embodiments, compositions are administered by intracerebral injection. In some embodiments, compositions are administered by intrathecal injection.
In some embodiments, compositions are administered by intrastriatal injection.
In some embodiments, compositions are delivered by intracranial injection. In some embodiments, compositions are delivered by cis-tuna magna injection. In some embodiments, compositions are delivered by cerebral lateral ventricle injection.
[00243] The CNS includes, but is not limited to, certain regions of the CNS, neural pathways, somatosensory systems, visual systems, auditory systems, nerves, neuro endocrine systems, neuro vascular systems, brain neurotransmitter systems, and dural meningeal system.
[00244] Exemplary regions of the CNS include, but are not limited to Myelencephalon; Medulla oblongata; Medullary pyramids; Olivary body; Inferior olivary nucleus; Rostral ventrolateral medulla;
Caudal ventrolateral medulla; Solitary nucleus (Nucleus of the solitary tract); Respiratory center-Respiratory groups Dorsal respiratory group; Ventral respiratory group or Apncustic centre Pre-Botzinger complex; Botzinger complex; Retrotrapezoid nucleus; Nucleus retrofacialis; Nucleus retroambiguus; Nucleus para-ambiguus; Paramedian reticular nucleus;
Gigantocellular reticular nucleus; Parafacial zone; Cuneate nucleus; Gracile nucleus; Perihypoglossal nuclei; Intercalated nucleus; Prepositus nucleus; Sublingual nucleus; Area postrema; Medullary cranial nerve nuclei;
Inferior salivatory nucleus; Nucleus ambiguus; Dorsal nucleus of vagus nerve;
Hypoglossal nucleus;
Chemoreceptor trigger zone; Metencephalon; Pons; Pontine nuclei; Pontine cranial nerve nuclei;
Chief or pontine nucleus of the trigetninal nerve sensory nucleus; Motor nucleus for the trigeminal nerve; Abducens nucleus (VI); Facial nerve nucleus (VII); Vestibulocochlear nuclei (vestibular nuclei and cochlear nuclei) (VIII); Superior salivatory nucleus; Pontine tegmentum;
Pontine micturition center (Barrington's nucleus); Locus coeruleus; Pedunculopontine nucleus;
Laterodorsal tegmental nucleus; Tegmental pontine reticular nucleus; Nucleus incertus; Parabrachial area; Medial parabrachial nucleus; Lateral parabrachial nucleus; Subparabrachial nucleus (Kolliker-Fuse nucleus);
Pontine respiratory group; Superior olivary complex; Medial superior olive;
Lateral superior olive;
Medial nucleus of the trapezoid body; Paramedian pontinc reticular formation;
Parvocellular reticular nucleus; Caudal pontine reticular nucleus; Cerebellar peduncles; Superior cerebellar peduncle; Middle cerebellar peduncle; Inferior cerebellar peduncle; Fourth ventricle;
Cerebellum Cerebellar vcrmis;
Cerebellar hemispheres; Anterior lobe; Posterior lobe; Flocculonodular lobe;
Cerebellar nuclei;
Fastigial nucleus; Interposed nucleus; Globose nucleus; Emboliform nucleus;
Dentate nucleus;
Midbrain (mesencephalon); Tectum Corpora quadrigemina; Inferior colliculi;
Superior colliculi;
Pretectum; Tegmentum Periaqueductal gray; Rostral interstitial nucleus of medial longitudinal fasciculus; Midbrain reticular formation; Dorsal raphe nucleus; Red nucleus;
Ventral tegmental area;
Parabrachial pigmented nucleus; Paranigral nucleus; Rostromedial tegmental nucleus; Caudal linear nucleus; Rostral linear nucleus of the raphe; Interfascicular nucleus;
Substantia nigra; Pars compacta;
Pars reticulata; Interpeduncular nucleus; Cerebral peduncle; Crus cerebri;
Mesencephalic cranial nerve nuclei; Oculomotor nucleus (III); Edinger-Westphal nucleus; Trochlear nucleus (IV);
Mesencephalic duct (cerebral aqueduct, aqueduct of Sylvius); Forebrain (prosencephalon);
Diencephalon; Epithalamus; Pineal body (pineal gland); Habenular nuclei; Stria medullaris; Taenia thalami; Third ventricle; Subcommissural organ; Thalamus; Anterior nuclear group; Anteroventral nucleus (a.k.a. ventral anterior nucleus); Anterodorsal nucleus; Anteromedial nucleus; Medial nuclear group; Medial dorsal nucleus; Midline nuclear group; Paratenial nucleus;
Reuniens nucleus;
Rhomboidal nucleus; Intralaminar nuclear group; Centromedian nucleus;
Parafascicular nucleus;
Paracentral nucleus; Central lateral nucleus; Lateral nuclear group; Lateral dorsal nucleus; Lateral posterior nucleus; Pulvinar; Ventral nuclear group Ventral anterior nucleus;
Ventral lateral nucleus;
Ventral posterior nucleus; Ventral posterior lateral nucleus; Ventral posterior medial nucleus;
Metathalamus; Medial geniculate body; Lateral geniculate body; Thalamic reticular nucleus;
Hypothalamus (limbic system) (HPA axis); Anterior Medial area Parts of preoptic area; Medial preoptic nucleus INAH 1; INAH 2; INAH 3; INAH 4; Median preoptic nucleus;
Suprachiasmatic nucleus; Paraventricular nucleus; Supraoptic nucleus (mainly); Anterior hypothalamic nucleus;
Lateral area; Parts of preoptic area; Lateral preoptic nucleus; Anterior part of Lateral nucleus; Part of supraoptic nucleus; Other nuclei of preoptic area; Median preoptic nucleus;
Periventricular preoptic nucleus; Tuberal Medial area; Dorsomedial hypothalamic nucleus; Ventromedial nucleus; Arcuate nucleus; Lateral area Tuberal part of Lateral nucleus; Lateral tuberal nuclei;
Posterior Medial area Mammillary nuclei (part of mammillary bodies); Posterior nucleus; Lateral area Posterior part of Lateral nucleus; Surface Median eminence; Mammillary bodies; Pituitary stalk (infundibulum); Optic chiasm; Subfornical organ; Periventricular nucleus; Tuber cinereum; Tuberal nucleus;
Tuberomammillary nucleus; Tuberal region; Mammillary nucleus; Subthalamus (HPA
axis);
Subthalamic nucleus; Zona incerta; Pituitary gland (HPA axis);
Neurohypophysis; Pars intermedia (Intermediate Lobe); Adenohypophysis; Telencephalon (cerebrum); Cerebral hemispheres; White matter; Centrum semiovale; Corona radiata: Internal capsule; External capsule;
Extreme capsule;
Subcortical; Hippocampus (Medial Temporal Lobe); Dentate gyms; Cornu ammonis (CA fields);
Comu ammonis area 1 (CA1); Comu ammonis area 2 (CA2); Comu anunonis area 3 (CA3); Comu ammonis area 4 (CA4); Amygdala (limbic system) (limbic lobe); Central nucleus (autonomic nervous system); Medial nucleus (accessory olfactory system); Cortical and basomedial nuclei (main olfactory system); Lateral and basolateral nuclei (frontotemporal cortical system);
Extended amygdala; Stria terminalis Bed nucleus of the stria terminalis; Claustrum; Basal ganglia:
Striatum Dorsal striatum (a.k.a. neostriatum); Putamen; Caudate nucleus; Ventral striatum; Nucleus accumbens; Olfactory tubercle; Globus pallidus (forms nucleus lentiformis with putamen); Ventral pallidum; Subthalamic nucleus; Basal forebrain; Anterior perforated substance; Substantia innominata; Nucleus basalis;
Diagonal band of Broca; Septal nuclei; Medial septal nuclei; Lamina terminalis; Vascular organ of lamina terminalis; Rhinencephalon (paleocortex); Olfactory bulb; Olfactory tract; Anterior olfactory nucleus; Piriform cortex; Anterior commissure; Uncus; Periamygdaloid cortex;
Cerebral cortex (neocortex); Frontal lobe; Cortex Primary motor cortex (Precentral gyms, M1);
Supplementary motor cortex; Premotor cortex; Prefrontal cortex; Orbitofrontal cortex; Dorsolateral prefrontal cortex; Gyri Superior frontal gyms; Middle frontal gyms; Inferior frontal gyms; Brodmann areas: 4, 6, 8, 9, 10, 11, 12, 24, 25, 32, 33, 44, 45, 46, 47; Parietal lobe Cortex Primary somatosensory cortex (Si); Secondary somatosensory cortex (S2); Posterior parietal cortex; Gyri Postcentral gyms (Primary somesthetic area); Brodmann areas 1,2, 3 (Primary somesthetic area); 5, 7, 23, 26, 29, 31, 39, 40; Occipital lobe Cortex Primary visual cortex (V1), V2, V3, V4, V5/MT; Gyri Lateral occipital gyms; Brodmann areas 17 (V1, primary visual cortex); 18, 19; Temporal lobe Cortex Primary auditory cortex (Al);
Secondary auditory cortex (A2); Inferior temporal cortex; Posterior inferior temporal cortex; Gyri Superior temporal gyrus; Middle temporal gyms; Inferior temporal gyrus;
Entorhinal cortex;
Pcrirhinal cortex; Parahippocampal gyms; Fusiform gyms; Brodmann areas: 20, 21, 22, 27, 34, 35, 36, 37, 38, 41, 42; Insular cortex; Cingulate cortex Anterior cingulate;
Posterior cingulate;
Retrosplenial cortex; Indusium griseum; Subgenual area 25; Brodmann areas 23, 24; 26, 29, 30 (retrosplenial areas); 31, and 32.
[00245] Exemplary neural pathways include, but are not limited to Superior longitudinal fasciculus Arcuate fasciculus; Uncinate fasciculus; Perforant pathway;
Thalamocortical radiations;
Corpus callosum; Anterior commissure; Amygdalofugal pathway; Interthalamic adhesion; Posterior commissure; Habenular commissure; Fornix; Mammillotegmental ; fasciculus;
Incertohypothalamic pathway; Cerebral peduncle; Medial forebrain bundle; Medial longitudinal fasciculus; Myoclonic triangle; Solitary tract; Major dopaminergic pathways from dopaminergic cell groups; Mesocortical pathway; Mesolimbic pathway; Nigrostriatal pathway; Tuberoinfundibular pathway; Serotonergic pathways Raphe Nuclei; Norepinephrine Pathways Locus coeruleus and other noradrenergic cell groups; Epinephrine pathways from adrenergic cell groups; Glutamate and acetylcholine pathways from mesopontine nuclei; Motor systems / Descending fibers; Extrapyramidal system; Pyramidal tract; Corticospinal tract; or Cerebrospinal fibers; Lateral corticospinal tract; Anterior corticospinal tract; Corticopontine fibers; Frontopontine fibers; Temporopontine fibers;
Corticobulbar tract;
Corticomesencephalic tract; Tectospinal tract; Interstitiospinal tract;
Rubrospinal tract; Rubro-olivary tract; Olivocerebellar tract; Olivospinal tract; Vestibulospinal tract;
Lateral vestibulospinal tract;
Medial vestibulospinal tract; Reticulospinal tract; Lateral raphespinal tract;
Alpha system; and Gamma system.
[00246] Exemplary somatosensory systems include, but are not limited to Dorsal column-medial lemniscus pathway Gracile fasciculus; Cuneate fasciculus; Medial lemniscus;
Spinothalamic tract;
Lateral spinothalamic tract; Anterior spinothalamic tract; Spinomesencephalic tract; Spinocerebellar tract; Spino-olivary tract; and Spinoreticular tract.
[00247] Exemplary visual systems include, but are not limited to Optic tract; Optic radiation;
Retinohypothalamic and tract.
1002481 Exemplary auditory system include, but are not limited to Medullary striae of fourth ventricle; Trapezoid body; and Lateral lemniscus [00249] Exemplary nerves include, but arc not limited to Brain stem Cranial nerves Terminal (0);
Olfactory (1); Optic (11); Oculomotor (111); Trochlear (IV); Trigeminal (V);
Abducens (VI); Facial (VII); Vestibulocochlear (VIII); Glossopharyngeal (IX); Vagus(X); Accessory (XI); and Hypoglossal (XII) [00250] Exemplary neuro endocrine systems include, but are not limited to Hypothalamic-pituitary hormones; HPA axis; HPG axis; HPT axis; and GHRH - GH
[00251] Exemplary neuro vascular systems include, but are not limited to Middle cerebral artery;
Posterior cerebral artery; Anterior cerebral artery; Vertebral artery; Basilar artery; Circle of Willis (arterial system); Blood¨brain barrier; Glymphatic system; Venous systems; and Circumventricular organs.
[00252] Exemplary brain neurotransmitter systems; Noradrenaline system; Dopamine system;
Serotonin system; Cholinergic system; GABA; Neuropeptides Opioid peptides;
Endorphins;
Enkephalins; Dynorphins; Oxytocin; and Substance P.
[00253] Exemplary dural meningeal system include, but are not limited to Brain-cerebrospinal fluid barrier; Meningeal coverings Dura mater; Arachnoid mater; Pia mater;
Epidural space; Subdural space; Subarachnoid space Arachnoid septum; Superior cistern; Cistern of lamina terminalis, Chiasmatic cistern; Interpeduncular cistern; Pontine cistern; Cisterna magna;
Spinal subarachnoid space; Ventricular system; Cerebrospinal fluid; Third ventricle; Fourth ventricle; Lateral ventricles Angular bundle; Anterior horn; Body of lateral ventricle; Inferior horn;
Posterior horn Calcar avis;
and Subventricular zone.
[00254] In one embodiment, the AAV is administered to the PNS. The "PNS" refers to the nerves and ganglia outside the brain and spinal cord. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Unlike the CNS, the PNS is not protected by the vertebral column and skull, or by the blood¨brain barrier, which leaves it exposed to, e.g., toxins and mechanical injuries.
PNS is divided into the somatic nervous system and the autonomic nervous system.
In the somatic nervous system, the cranial nerves are part of the PNS with the exception of the optic nerve (cranial nerve II), along with the retina. The second cranial nerve is not a tnie peripheral nerve but a tract of the diencephalon. Cranial nerve ganglia originated in the CNS.
However, the remaining ten cranial nerve axons extend beyond the brain and are therefore considered part of the PNS. The autonomic nervous system exerts involuntary control over smooth muscle and glands. The connection between CNS and organs allows the system to be in two different functional states: sympathetic and parasympathetic.
1002561 The somatic nervous system is under voluntary control, and transmits signals from the brain to end organs such as muscles. The sensory nervous system is part of the somatic nervous system and transmits signals from senses such as taste and touch (including fine touch and gross touch) to the spinal cord and brain. The autonomic nervous system is a 'self-regulating' system which influences the function of organs outside voluntary control, such as the heart rate, or the functions of the digestive system [00257] The PNS can be described in various sections include the cervical spinal nerves (C1¨C4).
The first 4 cervical spinal nerves, Cl through C4, split and recombine to produce a variety of nerves that serve the neck and back of head. The spinal nerve Cl is called the suboccipital nerve, which provides motor innervation to muscles at the base of the skull. C2 and C3 form many of the nerves of the neck, providing both sensory and motor control. These include the greater occipital nerve, which provides sensation to the back of the head, the lesser occipital nerve, which provides sensation to the area behind the ears, the greater auricular nerve and the lesser auricular nerve. The phrenic nerve is a nerve essential for our survival which arises from nerve roots C3, C4 and C5.
It supplies the thoracic diaphragm, enabling breathing. If the spinal cord is transected above C3, then spontaneous breathing is not possible. The brachial plexus (C5¨T1). The last four cervical spinal nerves, C5 through C8, and the first thoracic spinal nerve, Tl, combine to form the brachial plexus, or plexus brachialis, a tangled array of nerves, splitting, combining and recombining, to form the nerves that subserve the upper-limb and upper back. Although the brachial plexus may appear tangled, it is highly organized and predictable, with little variation between people. The lumbosacral plexus (L1¨Co 1). The anterior divisions of the lumbar nerves, sacral nerves, and coccygeal nerve fonn the lumbosacral plexus, the first lumbar nerve being frequently joined by a branch from the twelfth thoracic. For descriptive purposes this plexus is usually divided into three parts: lumbar plexus, sacral plexus, and pudendal plexus. The autonomic nervous system. Exemplary autonomic nervous systems include the sympathetic nervous system; the parasympathetic nervous system and the enteric nervous system.
[00258] In one embodiment, administration results in delivery of the modified capsid to the CNS
or PNS of the subject. In one embodiment, administration results in delivery of the payload to the CNS or PNS of the subject. In one embodiment, administration results in delivery of the modified viral capsid to a CNS or PNS cell population. In one embodiment, administration results in delivery of the payload to a CNS or PNS cell population. Exemplary CNS cell populations include, but are not limited to, Neurons, Oligodendrocytes, Astrocytes, Microglial cells, Ependymal cells, Radial glia cells, and Pituicytes. One skilled in the art can identify a particular CNS
cell population using standard techniques, for example, assessing a cell population for known cellular markers. In one embodiment, administration results in delivery of the modified capsid to a cell type originating from the CNS, e.g., a cell that originates but extends away from the CNS, e.g., a nerve. In one embodiment, administration results in delivery of the payload to a cell type originating from the CNS, e.g., a cell that originates but extends away from the CNS, e.g., a nerve.
[00259] In one embodiment, when the composition of the invention is administered locally to the CNS or PNS, e.g., via a catheter, cannula or the like, administration results in a distribution of the composition that extends at least 0.5 inches from the initial site of administration. In one embodiment, administration results in a distribution of the composition that extends at least 1 inch, at least 1.5 inches, at least 2 inches, at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, at least 5.5 inches, at least 6 inches, at least 6.5 inches, at least 7 inches, at least 7.5 inches, at least 8 inches, at least 8.5 inches, at least 9 inches, at least 9.5 inches, at least 10 inches or more from the initial site of administration. That is, the modified viral capsids of the composition are detectable in a cell (i.e., it has transduced a cell) that is at least 0.5 inches, at least 1 inch, at least 1.5 inches, at least 2 inches, at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, at least 5.5 inches, at least 6 inches, at least 6.5 inches, at least 7 inches, at least 7.5 inches, at least 8 inches, at least 8.5 inches, at least 9 inches, at least 9.5 inches, at least 10 inches or more from the initial site of administration.
[00260] In one embodiment, when the composition of the invention is administered locally to the CNS or PNS, e.g., via a catheter, cannula or the like, administration results in expression of the modified capsid, viral vector, and/or payload in at least one cell type of the CNS or PNS. In one embodiment, when the composition of the invention is administered locally to the CNS or PNS, e.g., via a catheter, cannula or the like, administration results in expression of the modified capsid, viral vector, and/or payload in at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more cell types of the CNS or PNS. In certain embodiments, the at least 2 cell types are adjacent to each other in the CNS or PNS. Alternatively, the at least cell types need not be adjacent to each other.
[00261] Aspects of the instant disclosure relate to compositions comprising a recombinant AAV
comprising a capsid protein and a nucleic acid encoding a transgene, wherein the transgene comprises a nucleic acid sequence encoding one or more miRNAs. In some embodiments, each miRNA
comprises a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66. In some embodiments, the nucleic acid further comprises AAV ITRs. In some embodiments, the 1TR is an AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or AAV13 ITR. In some embodiments, a composition further comprises a pharmaceutically acceptable carrier. The compositions of the disclosure may comprise an rAAV alone, or in combination with one or more other viruses (e.g., a second rAAV encoding having one or more different transgenes). In some embodiments, a composition comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different rAAVs each having one or more different transgenes.
[00262] Suitable carriers may be readily selected by one of skill in the art in view of the indication for which the rAAV is directed. For example, one suitable carrier includes saline, which may be formulated with a variety of buffering solutions (e.g., phosphate buffered saline). Other exemplary carriers include sterile saline, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, and water. The selection of the carrier is not a limitation of the present disclosure.
[00263] Optionally, the compositions of the disclosure may contain, in addition to the rAAV and carrier(s), other conventional pharmaceutical ingredients, such as preservatives, or chemical stabilizers. Suitable exemplary preservatives include chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, and parachlorophenol.
Suitable chemical stabilizers include gelatin and albumin.
[00264] The rAAVs are administered in sufficient amounts to transfect the cells of a desired tissue and to provide sufficient levels of gene transfer and expression without undue adverse effects.
Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the selected organ (e.g., intraportal delivery to the liver), oral, inhalation (including intranasal and intratracheal delivery), intraocular, intravenous, intramuscular, subcutaneous, intradermal, intratumoral, and other parental routes of administration. Routes of administration may be combined, if desired. In some embodiments, all or, at least one of the nucleic acid sequences disclosed herein are delivered via non-viral DNA constructs comprising at least one DD-ITR. For example, the non viral DNA constructs as described in WO 2019/246554 can be utilized to deliver one or more of the nucleic acids described herein. WO 2019/246554 is incorporated herein by reference in its entirety.
[00265] The dose of rAAV virions required to achieve a particular "therapeutic effect," e.g., the units of dose in genome copies/per kilogram of body weight (GC/kg), will vary based on several factors including, but not limited to: the route of rAAV virion administration, the level of gene or RNA expression required to achieve a therapeutic effect, the specific disease or disorder being treated, and the stability of the gene or RNA product. One of skill in the art can readily determine a rAAV
virion dose range to treat a patient having a particular disease or disorder based on the aforementioned factors, as well as other factors that arc well known in the art.
[00266] An effective amount of an rAAV is an amount sufficient to target infect an animal, target a desired tissue. In some embodiments, an effective amount of an rAAV is an amount sufficient to produce a stable somatic transgenic animal model. The effective amount will depend primarily on factors such as the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among animal and tissue. For example, an effective amount of the rAAV is generally in the range of from about 1 ml to about 100 ml of solution containing from about 109 to 1016 genome copies. In some cases, a dosage between about 1011 to 1013 rAAV genome copies is appropriate. In certain embodiments, 10" or 10" rAAV genome copies is effective to target CNS
tissue. In some cases, stable transgenic animals are produced by multiple doses of an rAAV.
1002671 In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar day (e.g., a 24-hour period). In some embodiments, a dose of rAAV is administered to a subject no more than once per 2, 3, 4, 5, 6, or 7 calendar days. In some embodiments, a dose of rAAV
is administered to a subject no more than once per calendar week (e.g., 7 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than bi-weekly (e.g., once in a two calendar week period). In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar month (e.g., once in 30 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than once per six calendar months.
In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar year (e.g., 365 days or 366 days in a leap year).
[00268] In some embodiments, rAAV compositions arc formulated to reduce aggregation of AAV
particles in the composition, particularly where high rAAV concentrations are present (e.g., -10"
GC/m1 or more). Methods for reducing aggregation of rAAVs are well known in the art and, include, for example, addition of surfactants, pH adjustment, salt concentration adjustment, etc. (See, e.g., Wright FR, et al., Molecular Therapy (2005) 12, 171-178, the contents of which are incorporated herein by reference.) 1002691 Formulation of pharmaceutically-acceptable excipients and carrier solutions is well-known to those of skill in die art, as is the development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens.
[00270] Typically, these formulations may contain at least about 0.1% of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1% or 2% and about 70% or 80% or more of the weight or volume of the total formulation. Naturally, the amount of active compound in each therapeutically- useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.
[00271] In certain circumstances it will be desirable to deliver the rAAV-based therapeutic constructs in suitably formulated pharmaceutical compositions disclosed herein either subcutaneously, intrapancreatically, intranasally, parenterally, intravenously, intramuscularly, intrathecally, or orally, intraperitoneally, or by inhalation. In some embodiments, the administration modalities as described in U.S. Pat. Nos. 5,543,158; 5,641,515 and 5,399,363 (each specifically incorporated herein by reference in its entirety) may be used to deliver rAAVs. In some embodiments, a preferred mode of administration is by portal vein injection.
1002721 The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. In many cases the form is sterile and fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
[00273] For administration of an injectable aqueous solution, for example, the solution may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art. For example, one dosage may be dissolved in 1 ml of isotonic NaC1 solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the host. The person responsible for administration will, in any event, determine the appropriate dose for the individual host.
[00274] Sterile injectable solutions are prepared by incorporating the active rAAV in the required amount in the appropriate solvent with various of the other ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
1002751 The rAAV compositions disclosed herein may also be formulated in a neutral or salt form. Pharmaceutically-acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug-release capsules, and the like.
1002761 As used herein, "carrier" includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a host.
[00277] Delivery vehicles such as liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, may be used for the introduction of the compositions of the present disclosure into suitable host cells. In particular, the rAAV vector delivered transgenes may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.
[00278] Such formulations may be preferred for the introduction of pharmaceutically acceptable formulations of the nucleic acids or the rAAV constructs disclosed herein. The formation and use of liposomes is generally known to those of skill in the art. Recently, liposomes were developed with improved serum stability and circulation half-times (U.S. Pat. No. 5,741,516).
Further, various methods of liposomc and liposomc like preparations as potential drug carriers have been described (U.S. Pat. Nos. 5,567,434; 5,552,157; 5,565,213; 5,738,868 and 5,795,587).
[00279] Liposomes have been used successfully with a number of cell types that are normally resistant to transfection by other procedures. In addition, liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, drugs, radiotherapeutic agents, viruses, transcription factors and allosteric effectors into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed.
[00280] Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 nm to 4 gm. Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 A, containing an aqueous solution in the core.
[00281] Alternatively, nanocapsule formulations of the rAAV may be used. Nanocapsules can generally entrap substances in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 gm) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use.
[00282] In addition to the methods of delivery described above, the following techniques are also contemplated as alternative methods of delivering the rAAV compositions to a host. Sonophoresis (i.e., ultrasound) has been used and described in U.S. Pat. No. 5,656,016 as a device for enhancing the rate and efficacy of drug permeation into and through the circulatory system.
Other drug delivery alternatives contemplated are intraosseous injection (U.S. Pat. No.
5,779,708), microchip devices (U.S. Pat. No. 5,797,898), ophthalmic formulations (Bourlais et al., 1998), transdermal matrices (U.S.
Pat. Nos. 5,770,219 and 5,783,208) and feedback- controlled delivery (U.S.
Pat. No. 5,697,899).
[00283] In some embodiments, the methods described herein relate to treating a subject having or diagnosed as having a neurological disease or disorder, e.g., Huntington's disease with a nucleic acid described herein. Subjects having a neurological disease or disorder, e.g., Huntington's disease can be identified by a physician using current methods of diagnosing such diseases and disorders. For example, symptoms and/or complications of Huntington's disease which characterize these conditions and aid in diagnosis are well known in the art and include but are not limited to, depression and anxiety and with characteristic movement disturbances and chorea. Tests that may aid in a diagnosis of Huntington's disease, e.g. include, but are not limited to, genetic tests.
A family history of Huntington's disease can also aid in determining if a subject is likely to have Huntington's disease or in making a diagnosis of Huntington's disease.
[00284] The compositions and methods described herein can be administered to a subject having or diagnosed as haying a neurological disease or disorder. In some embodiments, the methods described herein comprise administering an effective amount of compositions described herein, e.g. a nucleic acid described herein to a subject in order to alleviate a symptom of a neurological disease or disorder. As used herein, "alleviating a symptom" is ameliorating any condition or symptom associated with a neurological disease or disorder. As compared with an equivalent untreated control, such reduction is by at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, 99%
or more as measured by any standard technique.
[00285] Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the minimal effective dose and/or maximal tolerated dose. The dosage can vary depending upon the dosage form employed and the route of administration utilized. A therapeutically effective dose can be estimated initially from cell culture assays. Also, a dose can be formulated in animal models to achieve a dosage range between the minimal effective dose and the maximal tolerated dose. The effects of any particular dosage can be monitored by a suitable bioassay, e.g., assay for neuronal degradation or functionality among others. The dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
Immune Modulators [00286] In some embodiments, the methods and compositions for treating a neurological disease or disorder, as described herein, further comprises administering an immune modulator. In some embodiments, the immune modulator can be administered at the time of rAAV
vector administration, before rAAV vector administration or, after the rAAV vector administration.
[00287] In some embodiments, the immune modulator is an immunoglobulin degrading enzyme such as IdeS, IdeZ, IdeS/Z, Endo S. or, their functional variant. Non-limiting examples of references of such immunoglobulin degrading enzymes and their uses as described in US
7,666,582, US
8,133,483, US 20180037962, US 20180023070, US 20170209550, US 8,889,128, WO
2010057626, US 9,707,279, US 8,323,908, US 20190345533, US 20190262434, and, WO
2020016318, each of which are incorporated in their entirety by reference.
[00288] In some embodiments, the immune modulator is Proteasome inhibitor. In certain aspects, the proteasome inhibitor is Bortezomib. In some aspects of the embodiment, the immune modulator comprises bortezomib and anti CD20 antibody, Rituximab. In other aspects of the embodiment, the immune modulator comprises bortezomib, Rituximab, methotrexate, and intravenous gamma globulin. Non-limiting examples of such references, disclosing proteasome inhibitors and their combination with Rituximab, methotrexate and intravenous gamma globulin, as described in US
[00203] In one embodiment, the modified viral capsid is a haploid capsid. As used herein, the term -haploid AAV- shall mean that AAV as described in International Application W02018/170310, or US Application US2018/037149, which are incorporated herein in their entirety by reference. In some embodiments, a population of virions is a haploid AAV population where a virion particle can be constructed wherein at least one viral protein from the group consisting of AAV capsid proteins, VP1, VP2 and VP3, is different from at least one of the other viral proteins, required to form the virion particle capable of encapsulating an AAV genome. For each viral protein present (VP1, VP2, and/or VP3), that protein is the same type (e.g., all AAV2 VP1). In one instance, at least one of the viral proteins is a chimeric viral protein and at least one of the other two viral proteins is not a chimeric. In one embodiment VP1 and VP2 are chimeric and only VP3 is non-chimeric. For example, only the viral particle composed of VP1NP2 from the chimeric AAV2/8 (the N-terminus of AAV2 and the C-temiinus of AA V8) paired with only VP3 from AAV2; or only the chimeric VP1/VP2 28m-2P3 (the N-terminal from AAV8 and the C-terminal from AAV2 without mutation of VP3 start codon) paired with only VP3 from AAV2. In another embodiment only VP3 is chimeric and VP1 and VP2 are non-chimeric. In another embodiment at least one of the viral proteins is from a completely different serotype. For example, only the chimeric VP1/VP2 28m-2P3 paired with VP3 from only AAV3. In another example, no chimeric protein is present.
[00204] In some embodiments of the technology described herein, a modified viral capsid comprises one or more modifications, e.g., a chemical modification, a non-chemical modification, or an amino acid modification to the capsid. Such modifications can, for example, modify the tissue-type tropism or cell-type tropism of the modified capsid, among other things.
[00205] Modifications can alter the properties of the capsid, including biochemical properties such as receptor binding, directly, such that the modification itself alters the behavior of the capsid, or can permit further modification, such as the attachment of a ligand which in turn modifies behavior of the capsid in a desired manner.
[00206] In one embodiment, chemical modification of cysteine residues, which may be naturally present or introduced by genetic modification of a capsid polypeptide coding sequence, permits the covalent attachment of a ligand via disulfide bond formation (see, e.g., WO
2005/106046, the contents of which are incorporated herein by reference).
[00207] Various ligands arc contemplated, including but not limited to antibodies or antigen-binding fragments thereof that, for example, target a cell-surface protein expressed by a target cell (see, e.g., WO 2000/002654, which is incorporated herein by reference).
[00208] W02015/062516, the contents of which are also incorporated herein by reference, describes the insertion of an amino acid comprising an azido group by genetic modification of the capsid gene, followed by chemical conjugation of a ligand via the azido group.
1002091 The modification of AAV capsid tropism by glycation, or chemical conjugation of sugar moieties, is described by Horowitz et al., Bioconjugate Chem. 22: 529-532 (2011). That approach, and similar approaches are contemplated for modification of capsids as described herein.
[00210] In other embodiments, the coating of a viral capsid with a polymer, such as polyethylene glycol (PEG) or poly-(N-hydroxypropyl)methacrylamide (pHPMA) is specifically contemplated.
Such modification can, for example, reduce specific and nonspecific interactions with non-target tissues.
[00211] In other embodiments, carbodiimide coupling is specifically contemplated. See, e.g., Joo et al. ACS Nano 5, titled "Enhanced Real-time Monitoring of Adeno-Associated Virus Trafficking by Virus-Quantum Dot Conjugates" (2011).
[00212] In other embodiments, the viral capsid can be modified, e.g., as described in WO
2017/212019, see also U.S. National Phase USSN 16/308,740, the contents of which are each incorporated herein by reference. The approach described therein couples a viral capsid to a ligand via bonds comprising ¨CSNH- and an aromatic moiety. While genetically modified viral capsids can be further modified by this approach, the modifications described therein do not require genetic modification of the viral capsid. Ligands described therein include, for example, a targeting agent, a steric shielding agent for avoiding neutralizing antibody interactions, a labeling agent or a magnetic agent. Targeting ligands described therein include, for example, a cell-type specific ligand, a protein, a mono- or polysaccharide, a steroid hormone, an RGD motif peptide (e.g., Arg-Gly-Asp, a cell adhesion motif which can mimic cell adhesion proteins and bind to integrins), a vitamin, and a small molecule.
[00213] In one embodiment, the chemical modification of the invention is a modification described in International patent application PCT/EP2017/064089, the content of which is incorporated herein by reference in its entirety.
[00214] In one embodiment, the chemical modification of the invention is a modification described in International patent application PCT/EP2020/069554, the content of which is incorporated herein by reference in its entirety.
[00215] In one embodiment, the capsid has at least one chemically-modified tyrosine residue in its capsid, wherein said chemically-modified tyrosine residue is of formula (I):
[00216] wherein:
[00217] -X1 is selected from the group consisting of:
H N
(a), and 0 (b), and [00218] -Ar is an aryl or a heteroaryl moiety optionally substituted.
[00219] In one embodiment, the capsid has at least one chemically-modified tyrosine residue is of formula (Ia):
--o oR
x, 13 m [00220] wherein:
[00221] -Xi, and Ar arc as defined herein above, [00222] - Spacer is a group for linking the "Ar" group to the functional moiety "M" which preferably comprises up to 1000 carbon atoms and which is preferably in the form of a chemical chain which optionally comprises heteroatoms and/or cyclic moieties, 1002231 -n is 0 or 1; and [00224] -M is a functional moiety comprising a steric agent, a labelling agent, cell-types specific ligand or a drug moiety.
[00225] In one embodiment, Xi is of formula (a) and/or "Ar" is selected from substituted or unsubstituted phenyl, pyridyl, naplithyl, and anthracenyl.
[00226] In one embodiment, the capsid has at least one chemically-modified tyrosine is of formula (Ic):
N=7 NI
gm;
0,) [00227] wherein:
[00228] -X2 is -C(=0)-NH, -C(=0)-0, -C(=0)-0-C(=0)-, 0-(C=0)-, NH-C(=0)-, NH-C(=0)-NH, -0-C=0-0-, 0, NH, -NH(C=S)-, or -(C=S)-NH-, preferably ¨(C=0)-NH- or [00229] -X2 is at position para, meta or ortho, preferably at position para of the phenyl group, [00230] -Spacer, n and M are as defined herein above.
[00231] In one embodiment, "Spacer", when present, is selected from the group consisting of saturated or unsaturated, linear or branched C2-C40 hydrocarbon chains, optionally substituted, polyethylene glycol, polypropylene glycol, pHPMA (polymer of N-(2-Hydroxypropyl)methacrylamide), Poly Lactic-co-Glycolic Acid (PLGA), polymers of alkyl diamincs and combinations thereof, and/or [00232] "M" comprises, or consists of, cell-type targeting ligand, preferably selected from a mono- or a polysaccharide, a hormone, including a steroid hormone, a peptide such as RGD peptide (e.g., Arg-Gly-Asp, a cell adhesion motif which can mimic cell adhesion proteins and bind to integrins), a muscle targeting peptide (MTP) or Angiopep-2, a protein or a fragment thereof, a membrane receptor or a fragment thereof, an aptamer, an antibody including heavy-chain antibody, and fragments thereof such as antigen-binding fragment (Fab), Fab' (which is the antigen-binding fragment further comprising a free sulfhydryl group), and VHH, a single-chain fragment variable (ScFv), a spiegelmer, a peptide aptamer, vitamins and drugs such as Cannabinoid receptor 1 (CB1) and/or Cannabinoid receptor 2 (CB2) ligands.
[00233] In one embodiment, "Spacer" (when present) is selected from the group consisting of linear or branched C2-C20 alkyl chains, polyethylene glycol, polypropylene glycol, pHPMA, PLGA, polymer of alkyl diamine and combinations thereof, said polymers having from 2 to 20 monomers and/or "M" comprises, or consists of, a cell-type specific ligand derived from a protein selected from transferrin, Epidermal Growth Factor (EGF), and basic Fibroblast Growth Factor 13FGF, a mono- or a polysaccharide comprising one or several galactose, mannose, N-acetylgalactosamine residues, bridge GalNac, or mannose-6-phosphate, MTP selected from SEQ ID NO:1 to SEQ ID
NO:7, and vitamins such as folic acid.
[00234] In one embodiment, the capsid further has at least one additional chemically modified amino acid residue in the capsid, which is different from a tyrosine residue, said amino acid residue preferably bearing an amino group chemically modified with a group of formula (V):
Ar SPACER __ [00235] wherein:
[00236] - N* being the nitrogen of the amino group of an amino acid residue, e.g. of a lysine residue or arginine residue, and [00237] - Ar, Spacer, n and M has the same definition as Ar, Spacer, n and M of formula (II) of claim 2.
[00238] In one embodiment, the capsid is incubated a chemical reagent bearing a reactive group selected from an aryl diazonium, and a 4-phenyl-1,2,4-triazole-3,5-dione (PTAD) moiety in conditions conducive for reacting said reactive group with a tyrosine residue present in the capsid so as to form a covalent bound.
[00239] In one embodiment, the capsid is incubated with a chemical reagent of formula VId to obtain the at least one chemically-modified tyrosine residue in the capsid of formula Ic.
N- N
x; ISO
(VId) Administration [00240] The rAAVs of the disclosure may be delivered to a subject in compositions according to any appropriate methods known in the art. For example, an rAAV, preferably suspended in a physiologically compatible carrier (i.e., in a composition), may be administered to a subject, i.e. host animal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse, cow, goat, pig, guinea pig, hamster, chicken, turkey, or a non-human primate (e.g., Macaque). In some embodiments a host animal does not include a human.
[00241] Delivery of the rAAVs to a mammalian subject may be by, for example, intramuscular injection or by administration into the bloodstream of the mammalian subject.
Administration into the bloodstream may be by injection into a vein, an artery, or any other vascular conduit. In some embodiments, the rAAVs are administered into the bloodstream by way of isolated limb perfusion, a technique well known in the surgical arts, the method essentially enabling the artisan to isolate a limb from the systemic circulation prior to administration of the rAAV virions. A
variant of the isolated limb perfusion technique, described in U.S. Pat. No. 6,177,403, can also be employed by the skilled artisan to administer the virions into the vasculature of an isolated limb to potentially enhance transduction into muscle cells or tissue. Moreover, in certain instances, it may be desirable to deliver the virions to the CNS of a subject. By "CNS" is meant all cells and tissue of the brain and spinal cord of a vertebrate. Thus, the term includes, but is not limited to, neuronal cells, glial cells, astrocytes, cerebrospinal fluid (CSF), interstitial spaces, bone, cartilage and the like.
Recombinant AAVs may be delivered directly to the CNS or brain by injection into, e.g., the ventricular region, as well as to the striatum (e.g., the caudate nucleus or putamen of the striatum), spinal cord and neuromuscular junction, or cerebellar lobule, with a needle, catheter or related device, using neurosurgical techniques known in the art, such as by stereotactic injection (see, e.g., Stein et al., J Virol 73:3424-3429, 1999;
Davidson et al., PNAS 97:3428-3432, 2000; Davidson et al., Nat. Genet. 3:219-223, 1993; and Alisky and Davidson, Hum. Gene Ther. 11:2315-2329, 2000). In some embodiments, rAAV
as described in the disclosure are administered by intravenous injection. In some embodiments, the rAAV are administered by intracerebral injection. In some embodiments, the rAAV are administered by intrathecal injection. In some embodiments, the rAAV are administered by intrastriatal injection. In some embodiments, die rAAV are delivered by intracranial injection. In sonic embodiments, the rAAV are delivered by cistema magna injection. In some embodiments, the rAAV
are delivered by cerebral lateral ventricle injection.
[00242] Delivery of the compositions to a mammalian subject may be by, for example, by any know mean of deliver to a desire site, e.g., the CNS. It may be desirable to deliver the composition to the CNS of a subject. By "CNS" is meant all cells and tissue of the brain and spinal cord of a vertebrate. Thus, the term includes, but is not limited to, neuronal cells, glial cells, astrocytes, cerebrospinal fluid (CSF), interstitial spaces, bone, cartilage and the like.
Any composition described herein may be delivered directly to the CNS or brain by injection into, e.g., the ventricular region, as well as to the striatum (e.g., the caudate nucleus or putamcn of the striatum), spinal cord and neuromuscular junction, or cerebellar lobule, with a needle, catheter or related device, using neurosurgical techniques known in the art, such as by stereotactic injection (see, e.g., Stein et al., J
Virol 73:3424-3429, 1999; Davidson et al., PNAS 97:3428-3432, 2000; Davidson et al., Nat. Genet.
3:219-223, 1993; and Alisky and Davidson, Hum. Gene Ther. 11 :2315-2329, 2000). In some embodiments, compositions as described in the disclosure are administered by intravenous injection.
In some embodiments, compositions as described in the disclosure are administered by intraspinal injection. In some embodiments, compositions as described in the disclosure are administered by intracerebro ventricular injection. In some embodiments, compositions are administered by intracerebral injection. In some embodiments, compositions are administered by intrathecal injection.
In some embodiments, compositions are administered by intrastriatal injection.
In some embodiments, compositions are delivered by intracranial injection. In some embodiments, compositions are delivered by cis-tuna magna injection. In some embodiments, compositions are delivered by cerebral lateral ventricle injection.
[00243] The CNS includes, but is not limited to, certain regions of the CNS, neural pathways, somatosensory systems, visual systems, auditory systems, nerves, neuro endocrine systems, neuro vascular systems, brain neurotransmitter systems, and dural meningeal system.
[00244] Exemplary regions of the CNS include, but are not limited to Myelencephalon; Medulla oblongata; Medullary pyramids; Olivary body; Inferior olivary nucleus; Rostral ventrolateral medulla;
Caudal ventrolateral medulla; Solitary nucleus (Nucleus of the solitary tract); Respiratory center-Respiratory groups Dorsal respiratory group; Ventral respiratory group or Apncustic centre Pre-Botzinger complex; Botzinger complex; Retrotrapezoid nucleus; Nucleus retrofacialis; Nucleus retroambiguus; Nucleus para-ambiguus; Paramedian reticular nucleus;
Gigantocellular reticular nucleus; Parafacial zone; Cuneate nucleus; Gracile nucleus; Perihypoglossal nuclei; Intercalated nucleus; Prepositus nucleus; Sublingual nucleus; Area postrema; Medullary cranial nerve nuclei;
Inferior salivatory nucleus; Nucleus ambiguus; Dorsal nucleus of vagus nerve;
Hypoglossal nucleus;
Chemoreceptor trigger zone; Metencephalon; Pons; Pontine nuclei; Pontine cranial nerve nuclei;
Chief or pontine nucleus of the trigetninal nerve sensory nucleus; Motor nucleus for the trigeminal nerve; Abducens nucleus (VI); Facial nerve nucleus (VII); Vestibulocochlear nuclei (vestibular nuclei and cochlear nuclei) (VIII); Superior salivatory nucleus; Pontine tegmentum;
Pontine micturition center (Barrington's nucleus); Locus coeruleus; Pedunculopontine nucleus;
Laterodorsal tegmental nucleus; Tegmental pontine reticular nucleus; Nucleus incertus; Parabrachial area; Medial parabrachial nucleus; Lateral parabrachial nucleus; Subparabrachial nucleus (Kolliker-Fuse nucleus);
Pontine respiratory group; Superior olivary complex; Medial superior olive;
Lateral superior olive;
Medial nucleus of the trapezoid body; Paramedian pontinc reticular formation;
Parvocellular reticular nucleus; Caudal pontine reticular nucleus; Cerebellar peduncles; Superior cerebellar peduncle; Middle cerebellar peduncle; Inferior cerebellar peduncle; Fourth ventricle;
Cerebellum Cerebellar vcrmis;
Cerebellar hemispheres; Anterior lobe; Posterior lobe; Flocculonodular lobe;
Cerebellar nuclei;
Fastigial nucleus; Interposed nucleus; Globose nucleus; Emboliform nucleus;
Dentate nucleus;
Midbrain (mesencephalon); Tectum Corpora quadrigemina; Inferior colliculi;
Superior colliculi;
Pretectum; Tegmentum Periaqueductal gray; Rostral interstitial nucleus of medial longitudinal fasciculus; Midbrain reticular formation; Dorsal raphe nucleus; Red nucleus;
Ventral tegmental area;
Parabrachial pigmented nucleus; Paranigral nucleus; Rostromedial tegmental nucleus; Caudal linear nucleus; Rostral linear nucleus of the raphe; Interfascicular nucleus;
Substantia nigra; Pars compacta;
Pars reticulata; Interpeduncular nucleus; Cerebral peduncle; Crus cerebri;
Mesencephalic cranial nerve nuclei; Oculomotor nucleus (III); Edinger-Westphal nucleus; Trochlear nucleus (IV);
Mesencephalic duct (cerebral aqueduct, aqueduct of Sylvius); Forebrain (prosencephalon);
Diencephalon; Epithalamus; Pineal body (pineal gland); Habenular nuclei; Stria medullaris; Taenia thalami; Third ventricle; Subcommissural organ; Thalamus; Anterior nuclear group; Anteroventral nucleus (a.k.a. ventral anterior nucleus); Anterodorsal nucleus; Anteromedial nucleus; Medial nuclear group; Medial dorsal nucleus; Midline nuclear group; Paratenial nucleus;
Reuniens nucleus;
Rhomboidal nucleus; Intralaminar nuclear group; Centromedian nucleus;
Parafascicular nucleus;
Paracentral nucleus; Central lateral nucleus; Lateral nuclear group; Lateral dorsal nucleus; Lateral posterior nucleus; Pulvinar; Ventral nuclear group Ventral anterior nucleus;
Ventral lateral nucleus;
Ventral posterior nucleus; Ventral posterior lateral nucleus; Ventral posterior medial nucleus;
Metathalamus; Medial geniculate body; Lateral geniculate body; Thalamic reticular nucleus;
Hypothalamus (limbic system) (HPA axis); Anterior Medial area Parts of preoptic area; Medial preoptic nucleus INAH 1; INAH 2; INAH 3; INAH 4; Median preoptic nucleus;
Suprachiasmatic nucleus; Paraventricular nucleus; Supraoptic nucleus (mainly); Anterior hypothalamic nucleus;
Lateral area; Parts of preoptic area; Lateral preoptic nucleus; Anterior part of Lateral nucleus; Part of supraoptic nucleus; Other nuclei of preoptic area; Median preoptic nucleus;
Periventricular preoptic nucleus; Tuberal Medial area; Dorsomedial hypothalamic nucleus; Ventromedial nucleus; Arcuate nucleus; Lateral area Tuberal part of Lateral nucleus; Lateral tuberal nuclei;
Posterior Medial area Mammillary nuclei (part of mammillary bodies); Posterior nucleus; Lateral area Posterior part of Lateral nucleus; Surface Median eminence; Mammillary bodies; Pituitary stalk (infundibulum); Optic chiasm; Subfornical organ; Periventricular nucleus; Tuber cinereum; Tuberal nucleus;
Tuberomammillary nucleus; Tuberal region; Mammillary nucleus; Subthalamus (HPA
axis);
Subthalamic nucleus; Zona incerta; Pituitary gland (HPA axis);
Neurohypophysis; Pars intermedia (Intermediate Lobe); Adenohypophysis; Telencephalon (cerebrum); Cerebral hemispheres; White matter; Centrum semiovale; Corona radiata: Internal capsule; External capsule;
Extreme capsule;
Subcortical; Hippocampus (Medial Temporal Lobe); Dentate gyms; Cornu ammonis (CA fields);
Comu ammonis area 1 (CA1); Comu ammonis area 2 (CA2); Comu anunonis area 3 (CA3); Comu ammonis area 4 (CA4); Amygdala (limbic system) (limbic lobe); Central nucleus (autonomic nervous system); Medial nucleus (accessory olfactory system); Cortical and basomedial nuclei (main olfactory system); Lateral and basolateral nuclei (frontotemporal cortical system);
Extended amygdala; Stria terminalis Bed nucleus of the stria terminalis; Claustrum; Basal ganglia:
Striatum Dorsal striatum (a.k.a. neostriatum); Putamen; Caudate nucleus; Ventral striatum; Nucleus accumbens; Olfactory tubercle; Globus pallidus (forms nucleus lentiformis with putamen); Ventral pallidum; Subthalamic nucleus; Basal forebrain; Anterior perforated substance; Substantia innominata; Nucleus basalis;
Diagonal band of Broca; Septal nuclei; Medial septal nuclei; Lamina terminalis; Vascular organ of lamina terminalis; Rhinencephalon (paleocortex); Olfactory bulb; Olfactory tract; Anterior olfactory nucleus; Piriform cortex; Anterior commissure; Uncus; Periamygdaloid cortex;
Cerebral cortex (neocortex); Frontal lobe; Cortex Primary motor cortex (Precentral gyms, M1);
Supplementary motor cortex; Premotor cortex; Prefrontal cortex; Orbitofrontal cortex; Dorsolateral prefrontal cortex; Gyri Superior frontal gyms; Middle frontal gyms; Inferior frontal gyms; Brodmann areas: 4, 6, 8, 9, 10, 11, 12, 24, 25, 32, 33, 44, 45, 46, 47; Parietal lobe Cortex Primary somatosensory cortex (Si); Secondary somatosensory cortex (S2); Posterior parietal cortex; Gyri Postcentral gyms (Primary somesthetic area); Brodmann areas 1,2, 3 (Primary somesthetic area); 5, 7, 23, 26, 29, 31, 39, 40; Occipital lobe Cortex Primary visual cortex (V1), V2, V3, V4, V5/MT; Gyri Lateral occipital gyms; Brodmann areas 17 (V1, primary visual cortex); 18, 19; Temporal lobe Cortex Primary auditory cortex (Al);
Secondary auditory cortex (A2); Inferior temporal cortex; Posterior inferior temporal cortex; Gyri Superior temporal gyrus; Middle temporal gyms; Inferior temporal gyrus;
Entorhinal cortex;
Pcrirhinal cortex; Parahippocampal gyms; Fusiform gyms; Brodmann areas: 20, 21, 22, 27, 34, 35, 36, 37, 38, 41, 42; Insular cortex; Cingulate cortex Anterior cingulate;
Posterior cingulate;
Retrosplenial cortex; Indusium griseum; Subgenual area 25; Brodmann areas 23, 24; 26, 29, 30 (retrosplenial areas); 31, and 32.
[00245] Exemplary neural pathways include, but are not limited to Superior longitudinal fasciculus Arcuate fasciculus; Uncinate fasciculus; Perforant pathway;
Thalamocortical radiations;
Corpus callosum; Anterior commissure; Amygdalofugal pathway; Interthalamic adhesion; Posterior commissure; Habenular commissure; Fornix; Mammillotegmental ; fasciculus;
Incertohypothalamic pathway; Cerebral peduncle; Medial forebrain bundle; Medial longitudinal fasciculus; Myoclonic triangle; Solitary tract; Major dopaminergic pathways from dopaminergic cell groups; Mesocortical pathway; Mesolimbic pathway; Nigrostriatal pathway; Tuberoinfundibular pathway; Serotonergic pathways Raphe Nuclei; Norepinephrine Pathways Locus coeruleus and other noradrenergic cell groups; Epinephrine pathways from adrenergic cell groups; Glutamate and acetylcholine pathways from mesopontine nuclei; Motor systems / Descending fibers; Extrapyramidal system; Pyramidal tract; Corticospinal tract; or Cerebrospinal fibers; Lateral corticospinal tract; Anterior corticospinal tract; Corticopontine fibers; Frontopontine fibers; Temporopontine fibers;
Corticobulbar tract;
Corticomesencephalic tract; Tectospinal tract; Interstitiospinal tract;
Rubrospinal tract; Rubro-olivary tract; Olivocerebellar tract; Olivospinal tract; Vestibulospinal tract;
Lateral vestibulospinal tract;
Medial vestibulospinal tract; Reticulospinal tract; Lateral raphespinal tract;
Alpha system; and Gamma system.
[00246] Exemplary somatosensory systems include, but are not limited to Dorsal column-medial lemniscus pathway Gracile fasciculus; Cuneate fasciculus; Medial lemniscus;
Spinothalamic tract;
Lateral spinothalamic tract; Anterior spinothalamic tract; Spinomesencephalic tract; Spinocerebellar tract; Spino-olivary tract; and Spinoreticular tract.
[00247] Exemplary visual systems include, but are not limited to Optic tract; Optic radiation;
Retinohypothalamic and tract.
1002481 Exemplary auditory system include, but are not limited to Medullary striae of fourth ventricle; Trapezoid body; and Lateral lemniscus [00249] Exemplary nerves include, but arc not limited to Brain stem Cranial nerves Terminal (0);
Olfactory (1); Optic (11); Oculomotor (111); Trochlear (IV); Trigeminal (V);
Abducens (VI); Facial (VII); Vestibulocochlear (VIII); Glossopharyngeal (IX); Vagus(X); Accessory (XI); and Hypoglossal (XII) [00250] Exemplary neuro endocrine systems include, but are not limited to Hypothalamic-pituitary hormones; HPA axis; HPG axis; HPT axis; and GHRH - GH
[00251] Exemplary neuro vascular systems include, but are not limited to Middle cerebral artery;
Posterior cerebral artery; Anterior cerebral artery; Vertebral artery; Basilar artery; Circle of Willis (arterial system); Blood¨brain barrier; Glymphatic system; Venous systems; and Circumventricular organs.
[00252] Exemplary brain neurotransmitter systems; Noradrenaline system; Dopamine system;
Serotonin system; Cholinergic system; GABA; Neuropeptides Opioid peptides;
Endorphins;
Enkephalins; Dynorphins; Oxytocin; and Substance P.
[00253] Exemplary dural meningeal system include, but are not limited to Brain-cerebrospinal fluid barrier; Meningeal coverings Dura mater; Arachnoid mater; Pia mater;
Epidural space; Subdural space; Subarachnoid space Arachnoid septum; Superior cistern; Cistern of lamina terminalis, Chiasmatic cistern; Interpeduncular cistern; Pontine cistern; Cisterna magna;
Spinal subarachnoid space; Ventricular system; Cerebrospinal fluid; Third ventricle; Fourth ventricle; Lateral ventricles Angular bundle; Anterior horn; Body of lateral ventricle; Inferior horn;
Posterior horn Calcar avis;
and Subventricular zone.
[00254] In one embodiment, the AAV is administered to the PNS. The "PNS" refers to the nerves and ganglia outside the brain and spinal cord. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Unlike the CNS, the PNS is not protected by the vertebral column and skull, or by the blood¨brain barrier, which leaves it exposed to, e.g., toxins and mechanical injuries.
PNS is divided into the somatic nervous system and the autonomic nervous system.
In the somatic nervous system, the cranial nerves are part of the PNS with the exception of the optic nerve (cranial nerve II), along with the retina. The second cranial nerve is not a tnie peripheral nerve but a tract of the diencephalon. Cranial nerve ganglia originated in the CNS.
However, the remaining ten cranial nerve axons extend beyond the brain and are therefore considered part of the PNS. The autonomic nervous system exerts involuntary control over smooth muscle and glands. The connection between CNS and organs allows the system to be in two different functional states: sympathetic and parasympathetic.
1002561 The somatic nervous system is under voluntary control, and transmits signals from the brain to end organs such as muscles. The sensory nervous system is part of the somatic nervous system and transmits signals from senses such as taste and touch (including fine touch and gross touch) to the spinal cord and brain. The autonomic nervous system is a 'self-regulating' system which influences the function of organs outside voluntary control, such as the heart rate, or the functions of the digestive system [00257] The PNS can be described in various sections include the cervical spinal nerves (C1¨C4).
The first 4 cervical spinal nerves, Cl through C4, split and recombine to produce a variety of nerves that serve the neck and back of head. The spinal nerve Cl is called the suboccipital nerve, which provides motor innervation to muscles at the base of the skull. C2 and C3 form many of the nerves of the neck, providing both sensory and motor control. These include the greater occipital nerve, which provides sensation to the back of the head, the lesser occipital nerve, which provides sensation to the area behind the ears, the greater auricular nerve and the lesser auricular nerve. The phrenic nerve is a nerve essential for our survival which arises from nerve roots C3, C4 and C5.
It supplies the thoracic diaphragm, enabling breathing. If the spinal cord is transected above C3, then spontaneous breathing is not possible. The brachial plexus (C5¨T1). The last four cervical spinal nerves, C5 through C8, and the first thoracic spinal nerve, Tl, combine to form the brachial plexus, or plexus brachialis, a tangled array of nerves, splitting, combining and recombining, to form the nerves that subserve the upper-limb and upper back. Although the brachial plexus may appear tangled, it is highly organized and predictable, with little variation between people. The lumbosacral plexus (L1¨Co 1). The anterior divisions of the lumbar nerves, sacral nerves, and coccygeal nerve fonn the lumbosacral plexus, the first lumbar nerve being frequently joined by a branch from the twelfth thoracic. For descriptive purposes this plexus is usually divided into three parts: lumbar plexus, sacral plexus, and pudendal plexus. The autonomic nervous system. Exemplary autonomic nervous systems include the sympathetic nervous system; the parasympathetic nervous system and the enteric nervous system.
[00258] In one embodiment, administration results in delivery of the modified capsid to the CNS
or PNS of the subject. In one embodiment, administration results in delivery of the payload to the CNS or PNS of the subject. In one embodiment, administration results in delivery of the modified viral capsid to a CNS or PNS cell population. In one embodiment, administration results in delivery of the payload to a CNS or PNS cell population. Exemplary CNS cell populations include, but are not limited to, Neurons, Oligodendrocytes, Astrocytes, Microglial cells, Ependymal cells, Radial glia cells, and Pituicytes. One skilled in the art can identify a particular CNS
cell population using standard techniques, for example, assessing a cell population for known cellular markers. In one embodiment, administration results in delivery of the modified capsid to a cell type originating from the CNS, e.g., a cell that originates but extends away from the CNS, e.g., a nerve. In one embodiment, administration results in delivery of the payload to a cell type originating from the CNS, e.g., a cell that originates but extends away from the CNS, e.g., a nerve.
[00259] In one embodiment, when the composition of the invention is administered locally to the CNS or PNS, e.g., via a catheter, cannula or the like, administration results in a distribution of the composition that extends at least 0.5 inches from the initial site of administration. In one embodiment, administration results in a distribution of the composition that extends at least 1 inch, at least 1.5 inches, at least 2 inches, at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, at least 5.5 inches, at least 6 inches, at least 6.5 inches, at least 7 inches, at least 7.5 inches, at least 8 inches, at least 8.5 inches, at least 9 inches, at least 9.5 inches, at least 10 inches or more from the initial site of administration. That is, the modified viral capsids of the composition are detectable in a cell (i.e., it has transduced a cell) that is at least 0.5 inches, at least 1 inch, at least 1.5 inches, at least 2 inches, at least 2.5 inches, at least 3 inches, at least 3.5 inches, at least 4 inches, at least 4.5 inches, at least 5 inches, at least 5.5 inches, at least 6 inches, at least 6.5 inches, at least 7 inches, at least 7.5 inches, at least 8 inches, at least 8.5 inches, at least 9 inches, at least 9.5 inches, at least 10 inches or more from the initial site of administration.
[00260] In one embodiment, when the composition of the invention is administered locally to the CNS or PNS, e.g., via a catheter, cannula or the like, administration results in expression of the modified capsid, viral vector, and/or payload in at least one cell type of the CNS or PNS. In one embodiment, when the composition of the invention is administered locally to the CNS or PNS, e.g., via a catheter, cannula or the like, administration results in expression of the modified capsid, viral vector, and/or payload in at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more cell types of the CNS or PNS. In certain embodiments, the at least 2 cell types are adjacent to each other in the CNS or PNS. Alternatively, the at least cell types need not be adjacent to each other.
[00261] Aspects of the instant disclosure relate to compositions comprising a recombinant AAV
comprising a capsid protein and a nucleic acid encoding a transgene, wherein the transgene comprises a nucleic acid sequence encoding one or more miRNAs. In some embodiments, each miRNA
comprises a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66. In some embodiments, the nucleic acid further comprises AAV ITRs. In some embodiments, the 1TR is an AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or AAV13 ITR. In some embodiments, a composition further comprises a pharmaceutically acceptable carrier. The compositions of the disclosure may comprise an rAAV alone, or in combination with one or more other viruses (e.g., a second rAAV encoding having one or more different transgenes). In some embodiments, a composition comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different rAAVs each having one or more different transgenes.
[00262] Suitable carriers may be readily selected by one of skill in the art in view of the indication for which the rAAV is directed. For example, one suitable carrier includes saline, which may be formulated with a variety of buffering solutions (e.g., phosphate buffered saline). Other exemplary carriers include sterile saline, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, and water. The selection of the carrier is not a limitation of the present disclosure.
[00263] Optionally, the compositions of the disclosure may contain, in addition to the rAAV and carrier(s), other conventional pharmaceutical ingredients, such as preservatives, or chemical stabilizers. Suitable exemplary preservatives include chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, and parachlorophenol.
Suitable chemical stabilizers include gelatin and albumin.
[00264] The rAAVs are administered in sufficient amounts to transfect the cells of a desired tissue and to provide sufficient levels of gene transfer and expression without undue adverse effects.
Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the selected organ (e.g., intraportal delivery to the liver), oral, inhalation (including intranasal and intratracheal delivery), intraocular, intravenous, intramuscular, subcutaneous, intradermal, intratumoral, and other parental routes of administration. Routes of administration may be combined, if desired. In some embodiments, all or, at least one of the nucleic acid sequences disclosed herein are delivered via non-viral DNA constructs comprising at least one DD-ITR. For example, the non viral DNA constructs as described in WO 2019/246554 can be utilized to deliver one or more of the nucleic acids described herein. WO 2019/246554 is incorporated herein by reference in its entirety.
[00265] The dose of rAAV virions required to achieve a particular "therapeutic effect," e.g., the units of dose in genome copies/per kilogram of body weight (GC/kg), will vary based on several factors including, but not limited to: the route of rAAV virion administration, the level of gene or RNA expression required to achieve a therapeutic effect, the specific disease or disorder being treated, and the stability of the gene or RNA product. One of skill in the art can readily determine a rAAV
virion dose range to treat a patient having a particular disease or disorder based on the aforementioned factors, as well as other factors that arc well known in the art.
[00266] An effective amount of an rAAV is an amount sufficient to target infect an animal, target a desired tissue. In some embodiments, an effective amount of an rAAV is an amount sufficient to produce a stable somatic transgenic animal model. The effective amount will depend primarily on factors such as the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among animal and tissue. For example, an effective amount of the rAAV is generally in the range of from about 1 ml to about 100 ml of solution containing from about 109 to 1016 genome copies. In some cases, a dosage between about 1011 to 1013 rAAV genome copies is appropriate. In certain embodiments, 10" or 10" rAAV genome copies is effective to target CNS
tissue. In some cases, stable transgenic animals are produced by multiple doses of an rAAV.
1002671 In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar day (e.g., a 24-hour period). In some embodiments, a dose of rAAV is administered to a subject no more than once per 2, 3, 4, 5, 6, or 7 calendar days. In some embodiments, a dose of rAAV
is administered to a subject no more than once per calendar week (e.g., 7 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than bi-weekly (e.g., once in a two calendar week period). In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar month (e.g., once in 30 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than once per six calendar months.
In some embodiments, a dose of rAAV is administered to a subject no more than once per calendar year (e.g., 365 days or 366 days in a leap year).
[00268] In some embodiments, rAAV compositions arc formulated to reduce aggregation of AAV
particles in the composition, particularly where high rAAV concentrations are present (e.g., -10"
GC/m1 or more). Methods for reducing aggregation of rAAVs are well known in the art and, include, for example, addition of surfactants, pH adjustment, salt concentration adjustment, etc. (See, e.g., Wright FR, et al., Molecular Therapy (2005) 12, 171-178, the contents of which are incorporated herein by reference.) 1002691 Formulation of pharmaceutically-acceptable excipients and carrier solutions is well-known to those of skill in die art, as is the development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens.
[00270] Typically, these formulations may contain at least about 0.1% of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1% or 2% and about 70% or 80% or more of the weight or volume of the total formulation. Naturally, the amount of active compound in each therapeutically- useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.
[00271] In certain circumstances it will be desirable to deliver the rAAV-based therapeutic constructs in suitably formulated pharmaceutical compositions disclosed herein either subcutaneously, intrapancreatically, intranasally, parenterally, intravenously, intramuscularly, intrathecally, or orally, intraperitoneally, or by inhalation. In some embodiments, the administration modalities as described in U.S. Pat. Nos. 5,543,158; 5,641,515 and 5,399,363 (each specifically incorporated herein by reference in its entirety) may be used to deliver rAAVs. In some embodiments, a preferred mode of administration is by portal vein injection.
1002721 The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. In many cases the form is sterile and fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
[00273] For administration of an injectable aqueous solution, for example, the solution may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art. For example, one dosage may be dissolved in 1 ml of isotonic NaC1 solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the host. The person responsible for administration will, in any event, determine the appropriate dose for the individual host.
[00274] Sterile injectable solutions are prepared by incorporating the active rAAV in the required amount in the appropriate solvent with various of the other ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
1002751 The rAAV compositions disclosed herein may also be formulated in a neutral or salt form. Pharmaceutically-acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug-release capsules, and the like.
1002761 As used herein, "carrier" includes any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a host.
[00277] Delivery vehicles such as liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, may be used for the introduction of the compositions of the present disclosure into suitable host cells. In particular, the rAAV vector delivered transgenes may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.
[00278] Such formulations may be preferred for the introduction of pharmaceutically acceptable formulations of the nucleic acids or the rAAV constructs disclosed herein. The formation and use of liposomes is generally known to those of skill in the art. Recently, liposomes were developed with improved serum stability and circulation half-times (U.S. Pat. No. 5,741,516).
Further, various methods of liposomc and liposomc like preparations as potential drug carriers have been described (U.S. Pat. Nos. 5,567,434; 5,552,157; 5,565,213; 5,738,868 and 5,795,587).
[00279] Liposomes have been used successfully with a number of cell types that are normally resistant to transfection by other procedures. In addition, liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, drugs, radiotherapeutic agents, viruses, transcription factors and allosteric effectors into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed.
[00280] Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 nm to 4 gm. Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 A, containing an aqueous solution in the core.
[00281] Alternatively, nanocapsule formulations of the rAAV may be used. Nanocapsules can generally entrap substances in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 gm) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use.
[00282] In addition to the methods of delivery described above, the following techniques are also contemplated as alternative methods of delivering the rAAV compositions to a host. Sonophoresis (i.e., ultrasound) has been used and described in U.S. Pat. No. 5,656,016 as a device for enhancing the rate and efficacy of drug permeation into and through the circulatory system.
Other drug delivery alternatives contemplated are intraosseous injection (U.S. Pat. No.
5,779,708), microchip devices (U.S. Pat. No. 5,797,898), ophthalmic formulations (Bourlais et al., 1998), transdermal matrices (U.S.
Pat. Nos. 5,770,219 and 5,783,208) and feedback- controlled delivery (U.S.
Pat. No. 5,697,899).
[00283] In some embodiments, the methods described herein relate to treating a subject having or diagnosed as having a neurological disease or disorder, e.g., Huntington's disease with a nucleic acid described herein. Subjects having a neurological disease or disorder, e.g., Huntington's disease can be identified by a physician using current methods of diagnosing such diseases and disorders. For example, symptoms and/or complications of Huntington's disease which characterize these conditions and aid in diagnosis are well known in the art and include but are not limited to, depression and anxiety and with characteristic movement disturbances and chorea. Tests that may aid in a diagnosis of Huntington's disease, e.g. include, but are not limited to, genetic tests.
A family history of Huntington's disease can also aid in determining if a subject is likely to have Huntington's disease or in making a diagnosis of Huntington's disease.
[00284] The compositions and methods described herein can be administered to a subject having or diagnosed as haying a neurological disease or disorder. In some embodiments, the methods described herein comprise administering an effective amount of compositions described herein, e.g. a nucleic acid described herein to a subject in order to alleviate a symptom of a neurological disease or disorder. As used herein, "alleviating a symptom" is ameliorating any condition or symptom associated with a neurological disease or disorder. As compared with an equivalent untreated control, such reduction is by at least 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 95%, 99%
or more as measured by any standard technique.
[00285] Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the minimal effective dose and/or maximal tolerated dose. The dosage can vary depending upon the dosage form employed and the route of administration utilized. A therapeutically effective dose can be estimated initially from cell culture assays. Also, a dose can be formulated in animal models to achieve a dosage range between the minimal effective dose and the maximal tolerated dose. The effects of any particular dosage can be monitored by a suitable bioassay, e.g., assay for neuronal degradation or functionality among others. The dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
Immune Modulators [00286] In some embodiments, the methods and compositions for treating a neurological disease or disorder, as described herein, further comprises administering an immune modulator. In some embodiments, the immune modulator can be administered at the time of rAAV
vector administration, before rAAV vector administration or, after the rAAV vector administration.
[00287] In some embodiments, the immune modulator is an immunoglobulin degrading enzyme such as IdeS, IdeZ, IdeS/Z, Endo S. or, their functional variant. Non-limiting examples of references of such immunoglobulin degrading enzymes and their uses as described in US
7,666,582, US
8,133,483, US 20180037962, US 20180023070, US 20170209550, US 8,889,128, WO
2010057626, US 9,707,279, US 8,323,908, US 20190345533, US 20190262434, and, WO
2020016318, each of which are incorporated in their entirety by reference.
[00288] In some embodiments, the immune modulator is Proteasome inhibitor. In certain aspects, the proteasome inhibitor is Bortezomib. In some aspects of the embodiment, the immune modulator comprises bortezomib and anti CD20 antibody, Rituximab. In other aspects of the embodiment, the immune modulator comprises bortezomib, Rituximab, methotrexate, and intravenous gamma globulin. Non-limiting examples of such references, disclosing proteasome inhibitors and their combination with Rituximab, methotrexate and intravenous gamma globulin, as described in US
10,028,993, US 9,592,247, and, US 8,809,282, each of which arc incorporated in their entirety by reference.
[00289] In alternative embodiments, the immune modulator is an inhibitor of the NF-kB pathway.
In certain aspects of the embodiment, the immune modulator is Rapamycin or, a functional variant.
Non-limiting examples of references disclosing rapamycin and its use described in US 10,071,114, US 20160067228, US 20160074531, US 20160074532, US 20190076458, US 10,046,064, are incorporated in their entirety. In other aspects of the embodiment, the immune modulator is synthetic nanocarriers comprising an immunosuppressant. Non limiting examples of references of immunosuppresants, immuno suppressants coupled to synthetic nanocarriers, synthetic nanocarriers comprising rapamycin, and/or, toloregenic synthetic nanocarriers, their doses, administration and use as described in US20150320728, US 20180193482, US 20190142974, US 20150328333, US20160243253, US 10,039,822, US 20190076522, US 20160022650, US 10,441,651, US
10,420,835, US 20150320870, US 2014035636, US 10,434,088, US 10,335,395, ITS
20200069659, US 10,357,483, US 20140335186, US 10,668,053, US 10,357,482, US 20160128986, US
20160128987, US 20200038462, US 20200038463, each of which arc incorporated in their entirety by reference.
[00290] In some embodiments, the immune modulator is synthetic nanocarriers comprising rapamycin (ImmTORTm nanoparticles) (Kishimoto, etal., 2016, Nat Nanotechnol,
[00289] In alternative embodiments, the immune modulator is an inhibitor of the NF-kB pathway.
In certain aspects of the embodiment, the immune modulator is Rapamycin or, a functional variant.
Non-limiting examples of references disclosing rapamycin and its use described in US 10,071,114, US 20160067228, US 20160074531, US 20160074532, US 20190076458, US 10,046,064, are incorporated in their entirety. In other aspects of the embodiment, the immune modulator is synthetic nanocarriers comprising an immunosuppressant. Non limiting examples of references of immunosuppresants, immuno suppressants coupled to synthetic nanocarriers, synthetic nanocarriers comprising rapamycin, and/or, toloregenic synthetic nanocarriers, their doses, administration and use as described in US20150320728, US 20180193482, US 20190142974, US 20150328333, US20160243253, US 10,039,822, US 20190076522, US 20160022650, US 10,441,651, US
10,420,835, US 20150320870, US 2014035636, US 10,434,088, US 10,335,395, ITS
20200069659, US 10,357,483, US 20140335186, US 10,668,053, US 10,357,482, US 20160128986, US
20160128987, US 20200038462, US 20200038463, each of which arc incorporated in their entirety by reference.
[00290] In some embodiments, the immune modulator is synthetic nanocarriers comprising rapamycin (ImmTORTm nanoparticles) (Kishimoto, etal., 2016, Nat Nanotechnol,
11(10): 890-899;
Maldonado, etal., 2015, PNAS, 112(2): E156-165), as disclosed in US20200038463, US Patent 9,006,254 each of which is incorporated herein in its entirety. In some embodiments, the immune modulator is an engineered cell, e.g., an immune cell that has been modified using SQZ technology as disclosed in W02017192786, which is incorporated herein in its entirety by reference.
[00291] In some embodiments, the immune modulator is selected from the group consisting of poly-ICLC, 1018 ISS, aluminum salts, Amplivax, A515, BCG, CP-870,893, CpG7909, CyaA, dSLIM, GM-CSF, 1C30, IC31, Imiquimod, ImuFact IMP321, IS Patch, ISS, ISCOMATRIX, Juvlmmune, LipoVac, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, OK-432, 0M-174, 0M-197-MP-EC, ONTAK, PEPTEL, vector system, PLGA microparticles, resiquimod, SRL172, Virosomes and other Virus-like particles, YF-17D, VEGF trap, R848, beta-glucan, Pam3Cys, and Aquila's QS21 stimulon. In another further embodiment, the immunomodulator or adjuvant is poly -ICLC
[00292] In some embodiments, the immune modulator is a small molecule that inhibits the innate immune response in cells, such as chloroquine (a TLR signaling inhibitor) and 2-aminopurine (a PKR
inhibitor), can also be administered in combination with the composition comprising at least one rAAV as disclosed herein. Some non-limiting examples of commercially available TLR-signaling inhibitors include BX795, chloroquine, CLI-095, OxPAPC, polymyxin B, and rapamycin (all available for purchase from INVIVOGENTm). In addition, inhibitors of pattern recognition receptors (PRR) (which are involved in innate immunity signaling) such as 2-aminopurine, BX795, chloroquine, and H-89, can also be used in the compositions and methods comprising at least one rAAV vector as disclosed herein for in vivo protein expression as disclosed herein.
[00293] In some embodiments, a rAAV vector can also encode a negative regulators of innate immunity such as NLRX1. Accordingly, in some embodiments, a rAAV vector can also optionally encode one or more, or any combination of NLRX1, NS1, NS3/4A, or A46R.
Additionally, in some embodiments, a composition comprising at least one rAAV vector as disclosed herein can also comprise a synthetic, modified-RNA encoding inhibitors of the innate immune system to avoid the innate immune response generated by the tissue or the subject.
[00294] In some embodiments, an immune modulator for use in the administration methods as disclosed herein is an immunosuppressive agent. As used herein, the term "immunosuppressive drug or agent" is intended to include pharmaceutical agents which inhibit or interfere with normal immune function. Examples of immunosuppressive agents suitable with the methods disclosed herein include agents that inhibit T-cell/B- cell costimulation pathways, such as agents that interfere with the coupling of T-cells and B-cells via the CTLA4 and B7 pathways, as disclosed in U.S. Patent Pub. No 2002/0182211. In one embodiment, an immunosuppressive agent is cyclosporine A.
Other examples include myophenylate mofetil, rapamicin, and anti- thymocyte globulin. In one embodiment, the immunosuppressive drug is administered in a composition comprising at least one rAAV vector as disclosed herein, or can be administered in a separate composition but simultaneously with, or before or after administration of a composition comprising at least one rAAV vector according to the methods of administration as disclosed herein. An immunosuppressive drug is administered in a formulation which is compatible with the route of administration and is administered to a subject at a dosage sufficient to achieve the desired therapeutic effect. In some embodiments, the immunosuppressive drug is administered transiently for a sufficient time to induce tolerance to the rAAV vector as disclosed herein.
[00295] In any embodiment of the methods and compositions as disclosed herein, a subject being administered a rAAV vector or rAAV genome as disclosed herein is also administered an immunosuppressive agent. Various methods are known to result in the immunosuppression of an immune response of a patient being administered AAV. Methods known in the art include administering to the patient an immunosuppressive agent, such as a proteasome inhibitor. One such proteasome inhibitor known in the art, for instance as disclosed in U.S.
Patent No. 9,169,492 and U.S.
Patent Application No. 15/796,137, both of which are incorporated herein by reference, is bortezomib.
In some embodiments, an immunosuppressive agent can be an antibody, including polyclonal, monoclonal, scfv or other antibody derived molecule that is capable of suppressing the immune response, for instance, through the elimination or suppression of antibody producing cells. In a further embodiment, the immunosuppressive element can be a short hairpin RNA
(shRNA). In such an embodiment, the coding region of the shRNA is included in the rAAV cassette and is generally located downstream, 3' of the poly-A tail. The shRNA can be targeted to reduce or eliminate expression of immunostimulatory agents, such as cytokines, growth factors (including transforming growth factors 131 and 02, TN F and others that are publicly known).
[00296] The use of such immune modulating agents facilitates the ability to for one to use multiple dosing (e.g., multiple administration) over numerous months and/or years. This permits using multiple agents as discussed below, e.g., a rAAV vector encoding multiple genes, or multiple administrations to the subject.
Kits [00297]
In one aspect, the instant disclosure relates to a nucleic acid, or recombinant viral vector comprising: (i) one or more inhibitory nucleic acids (e.g., miRNAs); and (ii) a nucleic acid encoding the CYP46A1 protein. In one aspect, the instant disclosure relates to the combination of (i) one or more inhibitory nucleic acids (e.g., miRNAs); and (ii) a nucleic acid encoding the CYP46A1 protein.
In a combination of (i) and (ii), the two or more elements can be provided in a mixture or single formulation. Alternatively, the two or more elements can be provided in separate formulations that are packaged or provided as a set or kit.
[00298] The agents, e.g., viral vectors, described herein may, in some embodiments, be assembled into pharmaceutical or diagnostic or research kits to facilitate their use in therapeutic, diagnostic or research applications. A kit may include one or more containers housing the components of the disclosure and instructions for use. Specifically, such kits may include one or more agents described herein, along with instructions describing the intended application and the proper use of these agents.
In certain embodiments agents in a kit may be in a pharmaceutical formulation and dosage suitable for a particular application and for a method of administration of the agents.
Kits for research purposes may contain the components in appropriate concentrations or quantities for running various experiments.
[00299] In some embodiments, the instant disclosure relates to a kit for producing a rAAV, the kit comprising a container housing one or more of:
a) an isolated nucleic acid comprising an miRNA, e.g., comprising or encoded by the sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 or comprising a seed sequence complementary to SEQ ID NO: 4, 18-39, or 46-49;
b) a recombinant viral vector comprising an isolated nucleic acid comprising a transgene encoding one or more miRNAs, e.g., wherein each miRNA comprises a seed sequence complementary to SEQ ID NO:
4, or wherein each miRNA comprises a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence;
c) a recombinant viral vector comprising an isolated nucleic acid encoding the protein; and/or d) a recombinant viral vector comprising a nucleic acid comprising a transgcne encoding one or more miRNAs, e.g., wherein each miRNA comprises a seed sequence complementary to SEQ ID NO:
4, or wherein each miRNA comprises a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence; and a nucleic acid encoding the CYP46A1 protein.
In some embodiments, the kit further comprises a container housing an isolated nucleic acid encoding an AAV capsid protein, for example an AAV9 capsid protein.
1003001 The kit may be designed to facilitate use of the methods described herein by researchers and can take many forms. Each of the compositions of the kit, where applicable, may be provided in liquid form (e.g., in solution), or in solid form, (e.g., a dry powder). In certain cases, some of the compositions may be constitutable or otherwise processable (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or a cell culture medium), which may or may not be provided with the kit. As used herein, "instructions" can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which instructions can also reflect approval by the agency of manufacture, use or sale for animal administration.
[00301] The kit may contain any one or more of the components described herein in one or more containers. As an example, in one embodiment, the kit may include instructions for mixing one or more components of the kit and/or isolating and mixing a sample and applying to a subject. The kit may include a container housing agents described herein. The agents may be in the form of a liquid, gel or solid (powder). The agents may be prepared sterilely, packaged in syringe and shipped refrigerated. Alternatively, it may be housed in a vial or other container for storage. A second container may have other agents prepared sterilely. Alternatively, the kit may include the active agents premixed and shipped in a syringe, vial, tube, or other container.
[00302] Exemplary embodiments of the invention will be described in more detail by the following examples. These embodiments are exemplary of the invention, which one skilled in the art will recognize is not limited to the exemplary embodiments.
Definitions [00303] For convenience, the meaning of some terms and phrases used in the specification, examples, and appended claims, are provided below. Unless stated otherwise, or implicit from context, the following terms and phrases include the meanings provided below.
The definitions are provided to aid in describing particular embodiments, and are not intended to limit the claimed invention, because the scope of the invention is limited only by the claims.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. If there is an apparent discrepancy between the usage of a term in the art and its definition provided herein, the definition provided within the specification shall prevail.
1003041 For convenience, certain terms employed herein, in the specification, examples and appended claims are collected here.
[00305] The terms -decrease", -reduced", -reduction", or -inhibit" arc all used herein to mean a decrease by a statistically significant amount. In some embodiments, "reduce,-"reduction" or "decrease" or "inhibit" typically means a decrease by at least 10% as compared to a reference level (e.g. the absence of a given treatment or agent) and can include, for example, a decrease by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or more. As used herein, -reduction" or -inhibition" does not encompass a complete inhibition or reduction as compared to a reference level. -Complete inhibition" is a 100% inhibition as compared to a reference level. A
decrease can be preferably down to a level accepted as within the range of normal for an individual without a given disorder.
[00306] The terms "increased", "increase", -enhance-, or "activate" are all used herein to mean an increase by a statically significant amount. In some embodiments, the terms "increased", "increase", "enhance", or "activate" can mean an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%
or up to and including a 100% increase or any increase between 10-100% as compared to a reference level, or at least about a 2-fold, or at least about a 3-fold, or at least about a 4-fold, or at least about a 5-fold or at least about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level. In the context of a marker or symptom, a "increase" is a statistically significant increase in such level.
1003071 As used herein, a "subject" means a human or animal. Usually the animal is a vertebrate such as a primate, rodent, domestic animal or game animal. Primates include chimpanzees, cynomologous monkeys, spider monkeys, and macaques, e.g., Rhesus. Rodents include mice, rats, woodchucks, ferrets, rabbits and hamsters. Domestic and game animals include cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon. In some embodiments, the subject is a mammal, e.g., a primate, e.g., a human. The terms, "individual," -patient" and "subject" are used interchangeably herein.
1003081 Preferably, the subject is a mammal. The mammal can be a human, non-human primate, mouse, rat, dog, cat, horse, or cow, but is not limited to these examples.
Mammals other than humans can be advantageously used as subjects that represent animal models of Huntington's disease.
A subject can be male or female.
1003091 A subject can be one who has been previously diagnosed with or identified as suffering from or having a condition in need of treatment (e.g. Huntington's disease) or one or more complications related to such a condition, and optionally, have already undergone treatment for the condition or the one or more complications related to the condition. Alternatively, a subject can also be one who has not been previously diagnosed as having the condition or one or more complications related to the condition. For example, a subject can be one who exhibits one or more risk factors for the condition or one or more complications related to the condition or a subject who does not exhibit risk factors.
[00310] A "subject in need" of treatment for a particular condition can be a subject having that condition, diagnosed as having that condition, or at risk of developing that condition.
[00311] As used herein, the terms "protein" and "polypeptide" are used interchangeably herein to designate a series of amino acid residues, connected to each other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues. The terms "protein", and "polypeptide" refer to a polymer of amino acids, including modified amino acids (e.g., phosphorylated, glycated, glycosylated, etc.) and amino acid analogs, regardless of its size or function. "Protein" and polypeptide" are often used in reference to relatively large polypeptides, whereas the term "peptide"
is often used in reference to small polypeptides, but usage of these terms in the art overlaps. The terms "protein" and "polypeptide" are used interchangeably herein when referring to a gene product and fragments thereof. Thus, exemplary polypeptides or proteins include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, fragments, and analogs of the foregoing.
[00312] A variant amino acid or DNA sequence can be at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or more, identical to a native or reference sequence. The degree of homology (percent identity) between a native and a mutant sequence can be determined, for example, by comparing the two sequences using freely available computer programs commonly employed for this purpose on the world wide web (e.g.
BLASTp or BLASTn with default settings).
[00313] Alterations of the native amino acid sequence can be accomplished by any of a number of techniques known to one of skill in the art. Mutations can be introduced, for example, at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.
Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered nucleotide sequence having particular codons altered according to the substitution, deletion, or insertion required. Techniques for making such alterations are very well established and include, for example, those disclosed by Walder et al. (Gene 42:133, 1986);
Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); and U.S. Pat. Nos. 4,518,584 and 4,737,462, which are herein incorporated by reference in their entireties. Any cysteine residue not involved in maintaining the proper conformation of the polypeptide also can be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
Conversely, cysteine bond(s) can be added to the polypeptide to improve its stability or facilitate oligomerization.
[00314] As used herein, the term "nucleic acid" or "nucleic acid sequence"
refers to any molecule, preferably a polymeric molecule, incorporating units of ribonucleic acid, deoxyribonucleic acid or an analog thereof. The nucleic acid can be either single-stranded or double-stranded. A single-stranded nucleic acid can be one nucleic acid strand of a denatured double- stranded DNA. Alternatively, it can be a single-stranded nucleic acid not derived from any double-stranded DNA. In one aspect, the nucleic acid can be DNA. In another aspect, the nucleic acid can be RNA.
Suitable DNA can include, e.g., genomic DNA or cDNA. Suitable RNA can include, e.g., mRNA, miRNA.
[00315] In some embodiments of any of the aspects, a polypeptide, nucleic acid, or cell as described herein can be engineered. As used herein, -engineered" refers to the aspect of having been manipulated by the hand of man. For example, a polypeptide is considered to be "engineered" when at least one aspect of the polypeptide, e.g., its sequence, has been manipulated by the hand of man to differ from the aspect as it exists in nature. As is common practice and is understood by those in the art, progeny of an engineered cell are typically still referred to as "engineered" even though the actual manipulation was performed on a prior entity.
[00316] A variant amino acid or DNA sequence can be at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or more, identical to a native or reference sequence. The degree of homology (percent identity) between a native and a mutant sequence can be determined, for example, by comparing the two sequences using freely available computer programs commonly employed for this purpose on the world wide web (e.g.
BLASTp or BLASTn with default settings).
[00317] In some embodiments of any of the aspects, the miRNA described herein is exogenous. In some cmbodimcnts of any of the aspects, the miRNA described herein is cctopic.
In some embodiments of any of the aspects, the miRNA described herein is not endogenous.
[00318] The term "exogenous" refers to a substance present in a cell other than its native source. The term "exogenous" when used herein can refer to a nucleic acid (e.g. a nucleic acid encoding a polypeptide) or a polypeptide that has been introduced by a process involving the hand of man into a biological system such as a cell or organism in which it is not normally found and one wishes to introduce the nucleic acid or polypeptide into such a cell or organism.
Alternatively, "exogenous" can refer to a nucleic acid or a polypeptide that has been introduced by a process involving the hand of man into a biological system such as a cell or organism in which it is found in relatively low amounts and one wishes to increase the amount of the nucleic acid or polypeptide in the cell or organism, e.g., to create ectopic expression or levels. In contrast, the term "endogenous"
refers to a substance that is native to the biological system or cell. As used herein, "ectopic- refers to a substance that is found in an unusual location and/or amount. An ectopic substance can be one that is normally found in a given cell, but at a much lower amount and/or at a different time. Ectopic also includes substance, such as a polypeptide or nucleic acid that is not naturally found or expressed in a given cell in its natural environment.
[00319] The term "vector", as used herein, refers to a nucleic acid construct designed for delivery to a host cell or for transfer between different host cells. As used herein, a vector can be viral or non-viral. The term "vector" encompasses any genetic element that is capable of replication when associated with the proper control elements and that can transfer gene sequences to cells. A vector can include, but is not limited to, a cloning vector, an expression vector, a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc.
[00320] In some embodiments of any of the aspects, the vector is recombinant, e.g., it comprises sequences originating from at least two different sources. In some embodiments of any of the aspects, the vector comprises sequences originating from at least two different species. In some embodiments of any of the aspects, the vector comprises sequences originating from at least two different genes, e.g., it comprises a fusion protein or a nucleic acid encoding an expression product which is operably linked to at least one non-native (e.g., heterologous) genetic control element (e.g., a promoter, suppressor, activator, enhancer, response element, or the like).
[00321] In some embodiments of any of the aspects, the vector or nucleic acid described herein is codon-optimized, e.g., the native or wild-type sequence of the nucleic acid sequence has been altered or engineered to include alternative codons such that altered or engineered nucleic acid encodes the same polypeptide expression product as the native/wild-type sequence, but will be transcribed and/or translated at an improved efficiency in a desired expression system. In some embodiments of any of the aspects, the expression system is an organism other than the source of the native/wild-type sequence (or a cell obtained from such organism). In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a mammal or mammalian cell, e.g., a mouse, a murine cell, or a human cell. In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a human cell. In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a yeast or yeast cell.
In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a bacterial cell. In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in an E. coli cell.
[00322] As used herein, the term "expression vector refers to a vector that directs expression of an RNA or polypeptide from sequences linked to transcriptional regulatory sequences on the vector. The sequences expressed will often, but not necessarily, be heterologous to the cell. An expression vector may comprise additional elements, for example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in human cells for expression and in a prokaryotic host for cloning and amplification.
[00323] As used herein, the term "viral vector" refers to a nucleic acid vector construct that includes at least one element of viral origin and has the capacity to be packaged into a viral vector particle. The viral vector can contain the nucleic acid encoding a polypeptide as described herein in place of non-essential viral genes. The vector and/or particle may be utilized for the purpose of transferring any nucleic acids into cells either in vitro or in vivo. Numerous forms of viral vectors are known in the art.
Non-limiting examples of a viral vector of this invention include an AAV
vector, an adenovirus vector, a lentivirus vector, a rctrovirus vector, a herpcsvirus vector, an alphavirus vector, a poxvirus vector a baculovirus vector, and a chimeric virus vector.
[00324] It should be understood that the vectors described herein can, in some embodiments, be combined with other suitable compositions and therapies. In some embodiments, the vector is episomal. The use of a suitable episomal vector provides a means of maintaining the nucleotide of interest in the subject in high copy number extra chromosomal DNA thereby eliminating potential effects of chromosomal integration.
[00325] As used herein, the terms "treat," "treatment," "treating," or "amelioration" refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder, e.g. Huntington's disease. The term "treating" includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder. Treatment is generally "effective" if one or more symptoms or clinical markers are reduced. Alternatively, treatment is "effective" if the progression of a disease is reduced or halted. That is, -treatment" includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment. Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable. The term "treatment" of a disease also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment).
[00326] As used herein, the term "pharmaceutical composition" refers to the active agent in combination with a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry. The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. In some embodiments of any of the aspects, a pharmaceutically acceptable carrier can be a carrier other than water. In some embodiments of any of the aspects, a pharmaceutically acceptable carrier can be a cream, emulsion, gel, liposome, nanopartiele, and/or ointment. In some embodiments of any of the aspects, a pharmaceutically acceptable carrier can be an artificial or engineered carrier, e.g., a carrier that the active ingredient would not be found to occur in in nature.
[00327] As used herein, the term "administering," refers to the placement of a compound as disclosed herein into a subject by a method or route which results in at least partial delivery of the agent at a desired site. Pharmaceutical compositions comprising the compounds disclosed herein can be administered by any appropriate route which results in an effective treatment in the subject. In some embodiments, administration comprises physical human activity, e.g., an injection, act of ingestion, an act of application, and/or manipulation of a delivery device or machine. Such activity can be performed, e.g., by a medical professional and/or the subject being treated.
[00328] As used herein, "contacting" refers to any suitable means for delivering, or exposing, an agent to at least one cell. Exemplary delivery methods include, but are not limited to, direct delivery to cell culture medium, perfusion, injection, or other delivery method well known to one skilled in the art. In some embodiments, contacting comprises physical human activity, e.g., an injection; an act of dispensing, mixing, and/or decanting; and/or manipulation of a delivery device or machine.
[00329] The term "statistically significant" or "significantly" refers to statistical significance and generally means a two standard deviation (2SD) or greater difference.
[00330] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term "about." The term "about" when used in connection with percentages can mean 1%.
[00331] As used herein, the term "comprising" means that other elements can also be present in addition to the defined elements presented. The use of -comprising" indicates inclusion rather than limitation.
[00332] The term "consisting of" refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the embodiment.
[00333] As used herein the term "consisting essentially of' refers to those elements required for a given embodiment. The term permits the presence of additional elements that do not materially affect the basic and novel or functional characteristic(s) of that embodiment of the invention.
[00334] As used herein, the term "corresponding to" refers to an amino acid or nucleotide at the enumerated position in a first polypeptide or nucleic acid, or an amino acid or nucleotide that is equivalent to an enumerated amino acid or nucleotide in a second polypeptide or nucleic acid.
Equivalent enumerated amino acids or nucleotides can be determined by alignment of candidate sequences using degree of homology programs known in the art, e.g., BLAST.
[00335] As used herein, the term "specific binding- refers to a chemical interaction between two molecules, compounds, cells and/or particles wherein the first entity binds to the second, target entity with greater specificity and affinity than it binds to a third entity which is a non-target. In some embodiments, specific binding can refer to an affinity of the first entity for the second target entity which is at least 10 times, at least 50 times, at least 100 times, at least 500 times, at least 1000 times or greater than the affinity for the third non-target entity. A reagent specific for a given target is one that exhibits specific binding for that target under the conditions of the assay being utilized.
[00336] The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and"
unless the context clearly indicates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of this disclosure, suitable methods and materials are described below. The abbreviation, "e.g." is derived from the Latin exempli gratia, and is used herein to indicate a non-limiting example. Thus, the abbreviation "e.g." is synonymous with the term "for example."
1003371 Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
[00338] Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art to which this disclosure belongs. It should be understood that this invention is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which is defined solely by the claims. Definitions of common terms in immunology and molecular biology can be found in The Merck Manual of Diagnosis and Therapy, 20th Edition, published by Merck Sharp & Dohme Corp., 2018 (ISBN
0911910190, 978-0911910421); Robert S. Porter et al. (eds.), The Encyclopedia of Molecular Cell Biology and Molecular Medicine, published by Blackwell Science Ltd., 1999-2012 (ISBN
9783527600908); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8);
Immunology by Werner Luttmann, published by Elsevier, 2006; Janeway's Immunobiology, Kenneth Murphy, Allan Mowat, Casey Weaver (eds.), W. W. Norton & Company, 2016 (ISBN
0815345054, 978-0815345053); Lewin's Genes XI, published by Jones & Bartlett Publishers, 2014 (ISBN-1449659055); Michael Richard Green and Joseph Sambrook, Molecular Cloning: A
Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (2012) (ISBN
1936113414); Davis et al., Basic Methods in Molecular Biology, Elsevier Science Publishing, Inc., New York, USA (2012) (ISBN 044460149X); Laboratory Methods in Enzymology: DNA, Jon Lorsch (ed.) Elsevier, 2013 (ISBN 0124199542); Current Protocols in Molecular Biology (CPMB), Frederick M. Ausubel (ed.), John Wiley and Sons, 2014 (ISBN 047150338X, 9780471503385), Current Protocols in Protein Science (CPPS), John E. Coligan (ed.), John Wiley and Sons, Inc., 2005; and Current Protocols in Immunology (CPI) (John E. Coligan, ADA M Kruisbeek, David H Margulies, Ethan M Shevach, Warren Strobe, (eds.) John Wiley and Sons, Inc., 2003 (ISBN
0471142735, 9780471142737), WO 2018/057855A, US 10,457,940, the contents of each of which are all incorporated by reference herein in their entireties.
1003391 In some embodiments of any of the aspects, the disclosure described herein does not concern a process for cloning human beings, processes for modifying the germ line genetic identity of human beings, uses of human embryos for industrial or commercial purposes or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes.
1003401 Other terms are defined herein within the description of the various aspects of the invention.
1003411 All patents and other publications; including literature references, issued patents, published patent applications, and co-pending patent applications; cited throughout this application are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the technology described herein. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents.
1003421 The description of embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. While specific embodiments of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while method steps or functions are presented in a given order, alternative embodiments may perform functions in a different order, or functions may be performed substantially concurrently. The teachings of the disclosure provided herein can be applied to other procedures or methods as appropriate. The various embodiments described herein can be combined to provide further embodiments. Aspects of the disclosure can be modified, if necessary, to employ the compositions, functions and concepts of the above references and application to provide yet further embodiments of the disclosure. These and other changes can be made to the disclosure in light of the detailed description. All such modifications are intended to be included within the scope of the appended claims.
[00343] Specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure.
[00344] The technology described herein is further illustrated by the following examples which in no way should be construed as being further limiting.
[00345] Some embodiments of the technology described herein can be defined according to any of the following numbered paragraphs:
EXAMPLES
Example 1 [00346] In one aspect described herein are inhibitory RNAs that can be used for the treatment of Huntington's disease. In some embodiments of any of the aspects, the nucleic acid sequence of the inhibitory RNA comprises one of SEQ ID NO: 6-17, 40-44, or 50-66 or a sequence that is at least 95% (e.g., at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to the sequence of at least one of SEQ ID NO: 6-17, 40-44, or 50-66 that maintains the same functions as SEQ ID NO: 6-17, 40-44, or 50-66 (e.g., HTT inhibition).
1003471 Described here arc constructs comprising artificial miRNAs.
pEMBL-D(+)-Syn 1 -hCG
intron is a control vector, which is inserted with empty human chorionic gonadotropin (hCG) intron (11CGin) and driven with synapsin promoter. Two copies of control miRNA
precursor (random sequences or non-functional mutation) are inserted into hCGin in the vector pEMBL-D(+)-Synl-hCGin-2x control pre-miR. Two copies of artificial pre-miR (perfect match with 3'-UTR targeting sequences, including about 100-150bp flanked upstream and downstream sequences) are cloned into between the hCG introns. The vector pEMBL-D(+)-Synl-CYP46A1-hCGin-2x artificial pre-miR is a combo construct, which could produce both CYP46A1 and artificial miRNA at the same time. In order to identify whether the pre-miRNA could be processed into mature miRNA
and combined with HTT targeting sequences including CAG expansions, which are perfectly complementary with mature miRNA, are inserted behind luciferase gene. For the limit of package size, small poly A is used in the constructs. Synl can be replaced by any of the CMV enhancer and/or, ACTB
proximal promoter and/or, chimeric ACTB-HBB2 intron and one or, more of synthetic nervous system specific promoter selected from Tables 10-13 or, fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs) selected from the Tables 13-15.
[00348] The sequences of the following are known in the art: pEMBL; synapsin promoter (Syn 1);
ITRs (e.g., from AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or AAV13); hCG intron; small polyA; CYP46A1; luciferase; HTT
targeting sequences; and/or HTT-3'UTR/mutant.
[00349] Synapsin-1 (Synl) is a member of the synapsin gene family. Synapsins encode neuronal phosphoproteins which associate with the cytoplasmic surface of synaptic vesicles. Family members arc characterized by common protein domains, and they arc implicated in synaptogenesis and the modulation of neurotransmitter release, suggesting a potential role in several neuropsychiatric diseases. Syn 1 plays a role in regulation of axonogenesis and synaptogenesis.
Syn 1 protein serves as a substrate for several different protein kinases and phosphorylation may function in the regulation of this protein in the nerve terminal. Mutations in this gene may be associated with X-linked disorders with primary neuronal degeneration such as Rett syndrome. Alternatively, spliced transcript variants encoding different isoforms have been identified. In some embodiments of any of the aspects, the Synl promoter can comprise a human promoter Synl (see e.g., the Synl promoter associated with NCBI ref numbers NG_008437.1 RefSeqGene Range 5001-52957; NM_006950.3;
NP_008881.2;
NM 133499.2; NP 598006.1).
[00350] CYP46A1 is a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This endoplasmic reticulum protein is expressed in the brain, where it converts cholesterol to 24S-hydroxycholesterol. While cholesterol cannot pass the blood-brain barrier, 24S-hydroxycholesterol can be secreted in the brain into the circulation to be returned to the liver for catabolism. In some embodiments of any of the aspects, CYP46A1 can comprise a human CYP46A1 (see e.g., NCBI ref numbers NG_007963.1 RefSeqGene Range 4881-47884; NM 006668.2; NP 006659.1). CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease (see e.g., Boussicault et al., CY P46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease, Brain.
2016 Mar, 139(Pt 3):953-70; Kacher et al., CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington's disease, Brain. 2019 Aug 1;142(8):2432-2450; the contents of each of which are incorporated herein by reference in their entireties).
[00351] In some embodiments of any of the aspects, an miRNA comprises a sequence complementary to at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25) continuous bases of the sequence set forth in SEQ ID NO: 3 or 4 flanked by a miRNA backbone sequence. In some embodiments of any of the aspects, an miRNA
comprises a sequence complementary to at lcast two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
Maldonado, etal., 2015, PNAS, 112(2): E156-165), as disclosed in US20200038463, US Patent 9,006,254 each of which is incorporated herein in its entirety. In some embodiments, the immune modulator is an engineered cell, e.g., an immune cell that has been modified using SQZ technology as disclosed in W02017192786, which is incorporated herein in its entirety by reference.
[00291] In some embodiments, the immune modulator is selected from the group consisting of poly-ICLC, 1018 ISS, aluminum salts, Amplivax, A515, BCG, CP-870,893, CpG7909, CyaA, dSLIM, GM-CSF, 1C30, IC31, Imiquimod, ImuFact IMP321, IS Patch, ISS, ISCOMATRIX, Juvlmmune, LipoVac, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, OK-432, 0M-174, 0M-197-MP-EC, ONTAK, PEPTEL, vector system, PLGA microparticles, resiquimod, SRL172, Virosomes and other Virus-like particles, YF-17D, VEGF trap, R848, beta-glucan, Pam3Cys, and Aquila's QS21 stimulon. In another further embodiment, the immunomodulator or adjuvant is poly -ICLC
[00292] In some embodiments, the immune modulator is a small molecule that inhibits the innate immune response in cells, such as chloroquine (a TLR signaling inhibitor) and 2-aminopurine (a PKR
inhibitor), can also be administered in combination with the composition comprising at least one rAAV as disclosed herein. Some non-limiting examples of commercially available TLR-signaling inhibitors include BX795, chloroquine, CLI-095, OxPAPC, polymyxin B, and rapamycin (all available for purchase from INVIVOGENTm). In addition, inhibitors of pattern recognition receptors (PRR) (which are involved in innate immunity signaling) such as 2-aminopurine, BX795, chloroquine, and H-89, can also be used in the compositions and methods comprising at least one rAAV vector as disclosed herein for in vivo protein expression as disclosed herein.
[00293] In some embodiments, a rAAV vector can also encode a negative regulators of innate immunity such as NLRX1. Accordingly, in some embodiments, a rAAV vector can also optionally encode one or more, or any combination of NLRX1, NS1, NS3/4A, or A46R.
Additionally, in some embodiments, a composition comprising at least one rAAV vector as disclosed herein can also comprise a synthetic, modified-RNA encoding inhibitors of the innate immune system to avoid the innate immune response generated by the tissue or the subject.
[00294] In some embodiments, an immune modulator for use in the administration methods as disclosed herein is an immunosuppressive agent. As used herein, the term "immunosuppressive drug or agent" is intended to include pharmaceutical agents which inhibit or interfere with normal immune function. Examples of immunosuppressive agents suitable with the methods disclosed herein include agents that inhibit T-cell/B- cell costimulation pathways, such as agents that interfere with the coupling of T-cells and B-cells via the CTLA4 and B7 pathways, as disclosed in U.S. Patent Pub. No 2002/0182211. In one embodiment, an immunosuppressive agent is cyclosporine A.
Other examples include myophenylate mofetil, rapamicin, and anti- thymocyte globulin. In one embodiment, the immunosuppressive drug is administered in a composition comprising at least one rAAV vector as disclosed herein, or can be administered in a separate composition but simultaneously with, or before or after administration of a composition comprising at least one rAAV vector according to the methods of administration as disclosed herein. An immunosuppressive drug is administered in a formulation which is compatible with the route of administration and is administered to a subject at a dosage sufficient to achieve the desired therapeutic effect. In some embodiments, the immunosuppressive drug is administered transiently for a sufficient time to induce tolerance to the rAAV vector as disclosed herein.
[00295] In any embodiment of the methods and compositions as disclosed herein, a subject being administered a rAAV vector or rAAV genome as disclosed herein is also administered an immunosuppressive agent. Various methods are known to result in the immunosuppression of an immune response of a patient being administered AAV. Methods known in the art include administering to the patient an immunosuppressive agent, such as a proteasome inhibitor. One such proteasome inhibitor known in the art, for instance as disclosed in U.S.
Patent No. 9,169,492 and U.S.
Patent Application No. 15/796,137, both of which are incorporated herein by reference, is bortezomib.
In some embodiments, an immunosuppressive agent can be an antibody, including polyclonal, monoclonal, scfv or other antibody derived molecule that is capable of suppressing the immune response, for instance, through the elimination or suppression of antibody producing cells. In a further embodiment, the immunosuppressive element can be a short hairpin RNA
(shRNA). In such an embodiment, the coding region of the shRNA is included in the rAAV cassette and is generally located downstream, 3' of the poly-A tail. The shRNA can be targeted to reduce or eliminate expression of immunostimulatory agents, such as cytokines, growth factors (including transforming growth factors 131 and 02, TN F and others that are publicly known).
[00296] The use of such immune modulating agents facilitates the ability to for one to use multiple dosing (e.g., multiple administration) over numerous months and/or years. This permits using multiple agents as discussed below, e.g., a rAAV vector encoding multiple genes, or multiple administrations to the subject.
Kits [00297]
In one aspect, the instant disclosure relates to a nucleic acid, or recombinant viral vector comprising: (i) one or more inhibitory nucleic acids (e.g., miRNAs); and (ii) a nucleic acid encoding the CYP46A1 protein. In one aspect, the instant disclosure relates to the combination of (i) one or more inhibitory nucleic acids (e.g., miRNAs); and (ii) a nucleic acid encoding the CYP46A1 protein.
In a combination of (i) and (ii), the two or more elements can be provided in a mixture or single formulation. Alternatively, the two or more elements can be provided in separate formulations that are packaged or provided as a set or kit.
[00298] The agents, e.g., viral vectors, described herein may, in some embodiments, be assembled into pharmaceutical or diagnostic or research kits to facilitate their use in therapeutic, diagnostic or research applications. A kit may include one or more containers housing the components of the disclosure and instructions for use. Specifically, such kits may include one or more agents described herein, along with instructions describing the intended application and the proper use of these agents.
In certain embodiments agents in a kit may be in a pharmaceutical formulation and dosage suitable for a particular application and for a method of administration of the agents.
Kits for research purposes may contain the components in appropriate concentrations or quantities for running various experiments.
[00299] In some embodiments, the instant disclosure relates to a kit for producing a rAAV, the kit comprising a container housing one or more of:
a) an isolated nucleic acid comprising an miRNA, e.g., comprising or encoded by the sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 or comprising a seed sequence complementary to SEQ ID NO: 4, 18-39, or 46-49;
b) a recombinant viral vector comprising an isolated nucleic acid comprising a transgene encoding one or more miRNAs, e.g., wherein each miRNA comprises a seed sequence complementary to SEQ ID NO:
4, or wherein each miRNA comprises a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence;
c) a recombinant viral vector comprising an isolated nucleic acid encoding the protein; and/or d) a recombinant viral vector comprising a nucleic acid comprising a transgcne encoding one or more miRNAs, e.g., wherein each miRNA comprises a seed sequence complementary to SEQ ID NO:
4, or wherein each miRNA comprises a sequence set forth in any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence; and a nucleic acid encoding the CYP46A1 protein.
In some embodiments, the kit further comprises a container housing an isolated nucleic acid encoding an AAV capsid protein, for example an AAV9 capsid protein.
1003001 The kit may be designed to facilitate use of the methods described herein by researchers and can take many forms. Each of the compositions of the kit, where applicable, may be provided in liquid form (e.g., in solution), or in solid form, (e.g., a dry powder). In certain cases, some of the compositions may be constitutable or otherwise processable (e.g., to an active form), for example, by the addition of a suitable solvent or other species (for example, water or a cell culture medium), which may or may not be provided with the kit. As used herein, "instructions" can define a component of instruction and/or promotion, and typically involve written instructions on or associated with packaging of the disclosure. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which instructions can also reflect approval by the agency of manufacture, use or sale for animal administration.
[00301] The kit may contain any one or more of the components described herein in one or more containers. As an example, in one embodiment, the kit may include instructions for mixing one or more components of the kit and/or isolating and mixing a sample and applying to a subject. The kit may include a container housing agents described herein. The agents may be in the form of a liquid, gel or solid (powder). The agents may be prepared sterilely, packaged in syringe and shipped refrigerated. Alternatively, it may be housed in a vial or other container for storage. A second container may have other agents prepared sterilely. Alternatively, the kit may include the active agents premixed and shipped in a syringe, vial, tube, or other container.
[00302] Exemplary embodiments of the invention will be described in more detail by the following examples. These embodiments are exemplary of the invention, which one skilled in the art will recognize is not limited to the exemplary embodiments.
Definitions [00303] For convenience, the meaning of some terms and phrases used in the specification, examples, and appended claims, are provided below. Unless stated otherwise, or implicit from context, the following terms and phrases include the meanings provided below.
The definitions are provided to aid in describing particular embodiments, and are not intended to limit the claimed invention, because the scope of the invention is limited only by the claims.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. If there is an apparent discrepancy between the usage of a term in the art and its definition provided herein, the definition provided within the specification shall prevail.
1003041 For convenience, certain terms employed herein, in the specification, examples and appended claims are collected here.
[00305] The terms -decrease", -reduced", -reduction", or -inhibit" arc all used herein to mean a decrease by a statistically significant amount. In some embodiments, "reduce,-"reduction" or "decrease" or "inhibit" typically means a decrease by at least 10% as compared to a reference level (e.g. the absence of a given treatment or agent) and can include, for example, a decrease by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or more. As used herein, -reduction" or -inhibition" does not encompass a complete inhibition or reduction as compared to a reference level. -Complete inhibition" is a 100% inhibition as compared to a reference level. A
decrease can be preferably down to a level accepted as within the range of normal for an individual without a given disorder.
[00306] The terms "increased", "increase", -enhance-, or "activate" are all used herein to mean an increase by a statically significant amount. In some embodiments, the terms "increased", "increase", "enhance", or "activate" can mean an increase of at least 10% as compared to a reference level, for example an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%
or up to and including a 100% increase or any increase between 10-100% as compared to a reference level, or at least about a 2-fold, or at least about a 3-fold, or at least about a 4-fold, or at least about a 5-fold or at least about a 10-fold increase, or any increase between 2-fold and 10-fold or greater as compared to a reference level. In the context of a marker or symptom, a "increase" is a statistically significant increase in such level.
1003071 As used herein, a "subject" means a human or animal. Usually the animal is a vertebrate such as a primate, rodent, domestic animal or game animal. Primates include chimpanzees, cynomologous monkeys, spider monkeys, and macaques, e.g., Rhesus. Rodents include mice, rats, woodchucks, ferrets, rabbits and hamsters. Domestic and game animals include cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon. In some embodiments, the subject is a mammal, e.g., a primate, e.g., a human. The terms, "individual," -patient" and "subject" are used interchangeably herein.
1003081 Preferably, the subject is a mammal. The mammal can be a human, non-human primate, mouse, rat, dog, cat, horse, or cow, but is not limited to these examples.
Mammals other than humans can be advantageously used as subjects that represent animal models of Huntington's disease.
A subject can be male or female.
1003091 A subject can be one who has been previously diagnosed with or identified as suffering from or having a condition in need of treatment (e.g. Huntington's disease) or one or more complications related to such a condition, and optionally, have already undergone treatment for the condition or the one or more complications related to the condition. Alternatively, a subject can also be one who has not been previously diagnosed as having the condition or one or more complications related to the condition. For example, a subject can be one who exhibits one or more risk factors for the condition or one or more complications related to the condition or a subject who does not exhibit risk factors.
[00310] A "subject in need" of treatment for a particular condition can be a subject having that condition, diagnosed as having that condition, or at risk of developing that condition.
[00311] As used herein, the terms "protein" and "polypeptide" are used interchangeably herein to designate a series of amino acid residues, connected to each other by peptide bonds between the alpha-amino and carboxy groups of adjacent residues. The terms "protein", and "polypeptide" refer to a polymer of amino acids, including modified amino acids (e.g., phosphorylated, glycated, glycosylated, etc.) and amino acid analogs, regardless of its size or function. "Protein" and polypeptide" are often used in reference to relatively large polypeptides, whereas the term "peptide"
is often used in reference to small polypeptides, but usage of these terms in the art overlaps. The terms "protein" and "polypeptide" are used interchangeably herein when referring to a gene product and fragments thereof. Thus, exemplary polypeptides or proteins include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, fragments, and analogs of the foregoing.
[00312] A variant amino acid or DNA sequence can be at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or more, identical to a native or reference sequence. The degree of homology (percent identity) between a native and a mutant sequence can be determined, for example, by comparing the two sequences using freely available computer programs commonly employed for this purpose on the world wide web (e.g.
BLASTp or BLASTn with default settings).
[00313] Alterations of the native amino acid sequence can be accomplished by any of a number of techniques known to one of skill in the art. Mutations can be introduced, for example, at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion.
Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered nucleotide sequence having particular codons altered according to the substitution, deletion, or insertion required. Techniques for making such alterations are very well established and include, for example, those disclosed by Walder et al. (Gene 42:133, 1986);
Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); and U.S. Pat. Nos. 4,518,584 and 4,737,462, which are herein incorporated by reference in their entireties. Any cysteine residue not involved in maintaining the proper conformation of the polypeptide also can be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
Conversely, cysteine bond(s) can be added to the polypeptide to improve its stability or facilitate oligomerization.
[00314] As used herein, the term "nucleic acid" or "nucleic acid sequence"
refers to any molecule, preferably a polymeric molecule, incorporating units of ribonucleic acid, deoxyribonucleic acid or an analog thereof. The nucleic acid can be either single-stranded or double-stranded. A single-stranded nucleic acid can be one nucleic acid strand of a denatured double- stranded DNA. Alternatively, it can be a single-stranded nucleic acid not derived from any double-stranded DNA. In one aspect, the nucleic acid can be DNA. In another aspect, the nucleic acid can be RNA.
Suitable DNA can include, e.g., genomic DNA or cDNA. Suitable RNA can include, e.g., mRNA, miRNA.
[00315] In some embodiments of any of the aspects, a polypeptide, nucleic acid, or cell as described herein can be engineered. As used herein, -engineered" refers to the aspect of having been manipulated by the hand of man. For example, a polypeptide is considered to be "engineered" when at least one aspect of the polypeptide, e.g., its sequence, has been manipulated by the hand of man to differ from the aspect as it exists in nature. As is common practice and is understood by those in the art, progeny of an engineered cell are typically still referred to as "engineered" even though the actual manipulation was performed on a prior entity.
[00316] A variant amino acid or DNA sequence can be at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or more, identical to a native or reference sequence. The degree of homology (percent identity) between a native and a mutant sequence can be determined, for example, by comparing the two sequences using freely available computer programs commonly employed for this purpose on the world wide web (e.g.
BLASTp or BLASTn with default settings).
[00317] In some embodiments of any of the aspects, the miRNA described herein is exogenous. In some cmbodimcnts of any of the aspects, the miRNA described herein is cctopic.
In some embodiments of any of the aspects, the miRNA described herein is not endogenous.
[00318] The term "exogenous" refers to a substance present in a cell other than its native source. The term "exogenous" when used herein can refer to a nucleic acid (e.g. a nucleic acid encoding a polypeptide) or a polypeptide that has been introduced by a process involving the hand of man into a biological system such as a cell or organism in which it is not normally found and one wishes to introduce the nucleic acid or polypeptide into such a cell or organism.
Alternatively, "exogenous" can refer to a nucleic acid or a polypeptide that has been introduced by a process involving the hand of man into a biological system such as a cell or organism in which it is found in relatively low amounts and one wishes to increase the amount of the nucleic acid or polypeptide in the cell or organism, e.g., to create ectopic expression or levels. In contrast, the term "endogenous"
refers to a substance that is native to the biological system or cell. As used herein, "ectopic- refers to a substance that is found in an unusual location and/or amount. An ectopic substance can be one that is normally found in a given cell, but at a much lower amount and/or at a different time. Ectopic also includes substance, such as a polypeptide or nucleic acid that is not naturally found or expressed in a given cell in its natural environment.
[00319] The term "vector", as used herein, refers to a nucleic acid construct designed for delivery to a host cell or for transfer between different host cells. As used herein, a vector can be viral or non-viral. The term "vector" encompasses any genetic element that is capable of replication when associated with the proper control elements and that can transfer gene sequences to cells. A vector can include, but is not limited to, a cloning vector, an expression vector, a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc.
[00320] In some embodiments of any of the aspects, the vector is recombinant, e.g., it comprises sequences originating from at least two different sources. In some embodiments of any of the aspects, the vector comprises sequences originating from at least two different species. In some embodiments of any of the aspects, the vector comprises sequences originating from at least two different genes, e.g., it comprises a fusion protein or a nucleic acid encoding an expression product which is operably linked to at least one non-native (e.g., heterologous) genetic control element (e.g., a promoter, suppressor, activator, enhancer, response element, or the like).
[00321] In some embodiments of any of the aspects, the vector or nucleic acid described herein is codon-optimized, e.g., the native or wild-type sequence of the nucleic acid sequence has been altered or engineered to include alternative codons such that altered or engineered nucleic acid encodes the same polypeptide expression product as the native/wild-type sequence, but will be transcribed and/or translated at an improved efficiency in a desired expression system. In some embodiments of any of the aspects, the expression system is an organism other than the source of the native/wild-type sequence (or a cell obtained from such organism). In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a mammal or mammalian cell, e.g., a mouse, a murine cell, or a human cell. In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a human cell. In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a yeast or yeast cell.
In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in a bacterial cell. In some embodiments of any of the aspects, the vector and/or nucleic acid sequence described herein is codon-optimized for expression in an E. coli cell.
[00322] As used herein, the term "expression vector refers to a vector that directs expression of an RNA or polypeptide from sequences linked to transcriptional regulatory sequences on the vector. The sequences expressed will often, but not necessarily, be heterologous to the cell. An expression vector may comprise additional elements, for example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in human cells for expression and in a prokaryotic host for cloning and amplification.
[00323] As used herein, the term "viral vector" refers to a nucleic acid vector construct that includes at least one element of viral origin and has the capacity to be packaged into a viral vector particle. The viral vector can contain the nucleic acid encoding a polypeptide as described herein in place of non-essential viral genes. The vector and/or particle may be utilized for the purpose of transferring any nucleic acids into cells either in vitro or in vivo. Numerous forms of viral vectors are known in the art.
Non-limiting examples of a viral vector of this invention include an AAV
vector, an adenovirus vector, a lentivirus vector, a rctrovirus vector, a herpcsvirus vector, an alphavirus vector, a poxvirus vector a baculovirus vector, and a chimeric virus vector.
[00324] It should be understood that the vectors described herein can, in some embodiments, be combined with other suitable compositions and therapies. In some embodiments, the vector is episomal. The use of a suitable episomal vector provides a means of maintaining the nucleotide of interest in the subject in high copy number extra chromosomal DNA thereby eliminating potential effects of chromosomal integration.
[00325] As used herein, the terms "treat," "treatment," "treating," or "amelioration" refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder, e.g. Huntington's disease. The term "treating" includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder. Treatment is generally "effective" if one or more symptoms or clinical markers are reduced. Alternatively, treatment is "effective" if the progression of a disease is reduced or halted. That is, -treatment" includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment. Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable. The term "treatment" of a disease also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment).
[00326] As used herein, the term "pharmaceutical composition" refers to the active agent in combination with a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry. The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. In some embodiments of any of the aspects, a pharmaceutically acceptable carrier can be a carrier other than water. In some embodiments of any of the aspects, a pharmaceutically acceptable carrier can be a cream, emulsion, gel, liposome, nanopartiele, and/or ointment. In some embodiments of any of the aspects, a pharmaceutically acceptable carrier can be an artificial or engineered carrier, e.g., a carrier that the active ingredient would not be found to occur in in nature.
[00327] As used herein, the term "administering," refers to the placement of a compound as disclosed herein into a subject by a method or route which results in at least partial delivery of the agent at a desired site. Pharmaceutical compositions comprising the compounds disclosed herein can be administered by any appropriate route which results in an effective treatment in the subject. In some embodiments, administration comprises physical human activity, e.g., an injection, act of ingestion, an act of application, and/or manipulation of a delivery device or machine. Such activity can be performed, e.g., by a medical professional and/or the subject being treated.
[00328] As used herein, "contacting" refers to any suitable means for delivering, or exposing, an agent to at least one cell. Exemplary delivery methods include, but are not limited to, direct delivery to cell culture medium, perfusion, injection, or other delivery method well known to one skilled in the art. In some embodiments, contacting comprises physical human activity, e.g., an injection; an act of dispensing, mixing, and/or decanting; and/or manipulation of a delivery device or machine.
[00329] The term "statistically significant" or "significantly" refers to statistical significance and generally means a two standard deviation (2SD) or greater difference.
[00330] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term "about." The term "about" when used in connection with percentages can mean 1%.
[00331] As used herein, the term "comprising" means that other elements can also be present in addition to the defined elements presented. The use of -comprising" indicates inclusion rather than limitation.
[00332] The term "consisting of" refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the embodiment.
[00333] As used herein the term "consisting essentially of' refers to those elements required for a given embodiment. The term permits the presence of additional elements that do not materially affect the basic and novel or functional characteristic(s) of that embodiment of the invention.
[00334] As used herein, the term "corresponding to" refers to an amino acid or nucleotide at the enumerated position in a first polypeptide or nucleic acid, or an amino acid or nucleotide that is equivalent to an enumerated amino acid or nucleotide in a second polypeptide or nucleic acid.
Equivalent enumerated amino acids or nucleotides can be determined by alignment of candidate sequences using degree of homology programs known in the art, e.g., BLAST.
[00335] As used herein, the term "specific binding- refers to a chemical interaction between two molecules, compounds, cells and/or particles wherein the first entity binds to the second, target entity with greater specificity and affinity than it binds to a third entity which is a non-target. In some embodiments, specific binding can refer to an affinity of the first entity for the second target entity which is at least 10 times, at least 50 times, at least 100 times, at least 500 times, at least 1000 times or greater than the affinity for the third non-target entity. A reagent specific for a given target is one that exhibits specific binding for that target under the conditions of the assay being utilized.
[00336] The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and"
unless the context clearly indicates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of this disclosure, suitable methods and materials are described below. The abbreviation, "e.g." is derived from the Latin exempli gratia, and is used herein to indicate a non-limiting example. Thus, the abbreviation "e.g." is synonymous with the term "for example."
1003371 Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
[00338] Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art to which this disclosure belongs. It should be understood that this invention is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which is defined solely by the claims. Definitions of common terms in immunology and molecular biology can be found in The Merck Manual of Diagnosis and Therapy, 20th Edition, published by Merck Sharp & Dohme Corp., 2018 (ISBN
0911910190, 978-0911910421); Robert S. Porter et al. (eds.), The Encyclopedia of Molecular Cell Biology and Molecular Medicine, published by Blackwell Science Ltd., 1999-2012 (ISBN
9783527600908); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8);
Immunology by Werner Luttmann, published by Elsevier, 2006; Janeway's Immunobiology, Kenneth Murphy, Allan Mowat, Casey Weaver (eds.), W. W. Norton & Company, 2016 (ISBN
0815345054, 978-0815345053); Lewin's Genes XI, published by Jones & Bartlett Publishers, 2014 (ISBN-1449659055); Michael Richard Green and Joseph Sambrook, Molecular Cloning: A
Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (2012) (ISBN
1936113414); Davis et al., Basic Methods in Molecular Biology, Elsevier Science Publishing, Inc., New York, USA (2012) (ISBN 044460149X); Laboratory Methods in Enzymology: DNA, Jon Lorsch (ed.) Elsevier, 2013 (ISBN 0124199542); Current Protocols in Molecular Biology (CPMB), Frederick M. Ausubel (ed.), John Wiley and Sons, 2014 (ISBN 047150338X, 9780471503385), Current Protocols in Protein Science (CPPS), John E. Coligan (ed.), John Wiley and Sons, Inc., 2005; and Current Protocols in Immunology (CPI) (John E. Coligan, ADA M Kruisbeek, David H Margulies, Ethan M Shevach, Warren Strobe, (eds.) John Wiley and Sons, Inc., 2003 (ISBN
0471142735, 9780471142737), WO 2018/057855A, US 10,457,940, the contents of each of which are all incorporated by reference herein in their entireties.
1003391 In some embodiments of any of the aspects, the disclosure described herein does not concern a process for cloning human beings, processes for modifying the germ line genetic identity of human beings, uses of human embryos for industrial or commercial purposes or processes for modifying the genetic identity of animals which are likely to cause them suffering without any substantial medical benefit to man or animal, and also animals resulting from such processes.
1003401 Other terms are defined herein within the description of the various aspects of the invention.
1003411 All patents and other publications; including literature references, issued patents, published patent applications, and co-pending patent applications; cited throughout this application are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the technology described herein. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents.
1003421 The description of embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. While specific embodiments of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while method steps or functions are presented in a given order, alternative embodiments may perform functions in a different order, or functions may be performed substantially concurrently. The teachings of the disclosure provided herein can be applied to other procedures or methods as appropriate. The various embodiments described herein can be combined to provide further embodiments. Aspects of the disclosure can be modified, if necessary, to employ the compositions, functions and concepts of the above references and application to provide yet further embodiments of the disclosure. These and other changes can be made to the disclosure in light of the detailed description. All such modifications are intended to be included within the scope of the appended claims.
[00343] Specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure.
[00344] The technology described herein is further illustrated by the following examples which in no way should be construed as being further limiting.
[00345] Some embodiments of the technology described herein can be defined according to any of the following numbered paragraphs:
EXAMPLES
Example 1 [00346] In one aspect described herein are inhibitory RNAs that can be used for the treatment of Huntington's disease. In some embodiments of any of the aspects, the nucleic acid sequence of the inhibitory RNA comprises one of SEQ ID NO: 6-17, 40-44, or 50-66 or a sequence that is at least 95% (e.g., at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%) identical to the sequence of at least one of SEQ ID NO: 6-17, 40-44, or 50-66 that maintains the same functions as SEQ ID NO: 6-17, 40-44, or 50-66 (e.g., HTT inhibition).
1003471 Described here arc constructs comprising artificial miRNAs.
pEMBL-D(+)-Syn 1 -hCG
intron is a control vector, which is inserted with empty human chorionic gonadotropin (hCG) intron (11CGin) and driven with synapsin promoter. Two copies of control miRNA
precursor (random sequences or non-functional mutation) are inserted into hCGin in the vector pEMBL-D(+)-Synl-hCGin-2x control pre-miR. Two copies of artificial pre-miR (perfect match with 3'-UTR targeting sequences, including about 100-150bp flanked upstream and downstream sequences) are cloned into between the hCG introns. The vector pEMBL-D(+)-Synl-CYP46A1-hCGin-2x artificial pre-miR is a combo construct, which could produce both CYP46A1 and artificial miRNA at the same time. In order to identify whether the pre-miRNA could be processed into mature miRNA
and combined with HTT targeting sequences including CAG expansions, which are perfectly complementary with mature miRNA, are inserted behind luciferase gene. For the limit of package size, small poly A is used in the constructs. Synl can be replaced by any of the CMV enhancer and/or, ACTB
proximal promoter and/or, chimeric ACTB-HBB2 intron and one or, more of synthetic nervous system specific promoter selected from Tables 10-13 or, fragments thereof, and/or, an enhancer, and/or cis-regulatory elements (CREs) selected from the Tables 13-15.
[00348] The sequences of the following are known in the art: pEMBL; synapsin promoter (Syn 1);
ITRs (e.g., from AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or AAV13); hCG intron; small polyA; CYP46A1; luciferase; HTT
targeting sequences; and/or HTT-3'UTR/mutant.
[00349] Synapsin-1 (Synl) is a member of the synapsin gene family. Synapsins encode neuronal phosphoproteins which associate with the cytoplasmic surface of synaptic vesicles. Family members arc characterized by common protein domains, and they arc implicated in synaptogenesis and the modulation of neurotransmitter release, suggesting a potential role in several neuropsychiatric diseases. Syn 1 plays a role in regulation of axonogenesis and synaptogenesis.
Syn 1 protein serves as a substrate for several different protein kinases and phosphorylation may function in the regulation of this protein in the nerve terminal. Mutations in this gene may be associated with X-linked disorders with primary neuronal degeneration such as Rett syndrome. Alternatively, spliced transcript variants encoding different isoforms have been identified. In some embodiments of any of the aspects, the Synl promoter can comprise a human promoter Synl (see e.g., the Synl promoter associated with NCBI ref numbers NG_008437.1 RefSeqGene Range 5001-52957; NM_006950.3;
NP_008881.2;
NM 133499.2; NP 598006.1).
[00350] CYP46A1 is a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This endoplasmic reticulum protein is expressed in the brain, where it converts cholesterol to 24S-hydroxycholesterol. While cholesterol cannot pass the blood-brain barrier, 24S-hydroxycholesterol can be secreted in the brain into the circulation to be returned to the liver for catabolism. In some embodiments of any of the aspects, CYP46A1 can comprise a human CYP46A1 (see e.g., NCBI ref numbers NG_007963.1 RefSeqGene Range 4881-47884; NM 006668.2; NP 006659.1). CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease (see e.g., Boussicault et al., CY P46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease, Brain.
2016 Mar, 139(Pt 3):953-70; Kacher et al., CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington's disease, Brain. 2019 Aug 1;142(8):2432-2450; the contents of each of which are incorporated herein by reference in their entireties).
[00351] In some embodiments of any of the aspects, an miRNA comprises a sequence complementary to at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25) continuous bases of the sequence set forth in SEQ ID NO: 3 or 4 flanked by a miRNA backbone sequence. In some embodiments of any of the aspects, an miRNA
comprises a sequence complementary to at lcast two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25) continuous bases of the sequence of an untranslated region (e.g., 5' UTR, 3'UTR), exon, CAG repeat, or CAG jumper (e.g., CAG 5' jumper, CAG 3' jumper) associated with HTT (see e.g., NCBI Gene ID: 3064; e.g., SEQ ID NO: 4) flanked by a miRNA
backbone sequence.
[00352] An isolated nucleic acid encoding a transgene encoding one or more miRNAs and an isolated nucleic acid encoding a CYP46A1 protein, when administered to the same patient can provide an improved therapeutic effect than either administered alone. An isolated nucleic acid encoding a transgene encoding one or more miRNAs and an isolated nucleic acid encoding a CYP46A1 protein, when administered to the same patient can provide a synergistically (rather than an additively) improved therapeutic effect than either administered alone. The isolated nucleic acid encoding a transgene encoding one or more miRNAs and isolated nucleic acid encoding a CYP46A1 protein can be administered sequentially or concurrently to the subject, in accordance with any of the methods described herein. It is expected that, rAAV comprising CYP46A1 variant CDS (as set forth in SEQ ID NO: 110) will provide better therapeutic effect to treat neurological disease e.g Huntington's disease, than when administered rAAV comprising CYP46A1 non-variant sequence e.g as set forth in SEQ ID NO: 1. Similarly, it is expected that rAAV comprising miRNA (e.g., one or, more selected from SEQ ID NO: 6-17, or, 40-44, or 50-66) will provide better therapeutic effect to treat neurological disease e.g Huntington's disease when it is administered along with CYP46A1 variant CDS (as set forth in SEQ ID NO:110) than when it is administered along with CYP46A1 non-variant sequence e.g as set forth in SEQ ID NO: 1.
[00353] SEQ ID NO: 3 Exon 1 of human HTT gene uugcugugug aggcagaacc ugcgggggca ggggcgggcu gguucccugg ccagccauug gcagaguccg caggcuaggg cugucaauca ugcuggccgg cguggccccg ccuccgccgg cgcggccccg ccuccgccgg cgcacgucug ggacgcaagg cgccgugggg gcugccggga cggguccaag auggacggcc gcucagguuc ugcuuuuacc ugcggcccag agccccauuc auugccccgg ugcugagcgg cgccgcgagu cggcccgagg ccuccgggga cugccgugcc gggcgggaga ccgccauggc gacccuggaa aagcugauga aggccuucga gucccucaag uccuuccagc agcagcagca gcagcagcag cagcagcagc agcagcagca gcagcagcag cagcagcagc aacagccgcc accgccgccg ccgccgccgc cgccuccuca gcuuccucag ccgccgccgc aggcacagcc gcugcugccu cagccgcagc cgcccccgcc gccgcccccg ccgccacccg gcccggcugu ggcugaggag ccgcugcacc gaccgugagu uugggcccgc ugcagcuccc uguc [00354] SEQ ID NO: 4: Human HTT mRNA sequence 1 gctgccggga cgggtccaag atggacggcc gctcaggttc tgcttttacc tgcggcccag 61 agccccattc attgccccgg tgctgagcgg cgccgcgagt cggcccgagg cctccgggga 121 ctgccgtgcc gggcgggaga ccgccatggc gaccctggaa aagctgatga aggccttcga 181 gtccctcaag tccttccagc agcagcagca gcagcagcag cagcagcagc agcagcagca 241 gcagcagcag cagcagcagc aacagccgcc accgccgccg ccgccgccgc cgcctcctca 301 gcttcctcag ccgccgccgc aggcacagcc gctgctgcct cagccgcagc cgcccccgcc 361 gccgcccccg ccgccacccg gcccggctgt ggctgaggag ccgctgcacc gaccaaagaa 421 agaactttca gctaccaaga aagaccgtgt gaatcattgt ctgacaatat gtgaaaacat 481 agtggcacag tctgtcagaa attctccaga atttcagaaa cttctgggca tcgctatgga 541 actttttctg ctgtgcagtg atgacgcaga gtcagatgtc aggatggtgg ctgacgaatg 601 cctcaacaaa gttatcaaag ctttgatgga ttctaatctt ccaaggttac agctcgagct 661 ctataaggaa attaaaaaga atggtgcccc tcggagtttg cgtgctgccc tgtggaggtt 721 tgctgagctg gctcacctgg ttcggcctca gaaatgcagg ccttacctgg tgaaccttct 781 gccgtgcctg actcgaacaa gcaagagacc cgaagaatca gtccaggaga ccttggctgc 841 agctgttccc aaaattatgg cttcttttgg caattttgua -------------------------------------- ddtgdcddtg dddttaaggt 901 tttgttaaag gccttcatag cgaacctgaa gtcaagctcc cccaccattc ggcggacagc 961 ggctggatca gcagtgagca tctgccagca ctcaagaagg acacaatatt tctatagttg 1021 gctactaaat gtgctcttag gcttactcgt tcctgtcgag gatgaacact ccactctgct 1081 gattcttggc gtgctgctca ccctgaggta tttggtgccc ttgctgcagc agcaggtcaa 1141 ggacacaagc ctgaaaggca gcttcggagt gacaaggaaa gaaatggaag tctctccttc 1201 tgcagagcag cttgtccagg tttatgaact gacgttacat catacacagc accaagacca 1261 caatgttgtg accggagccc tggagctgtt gcagcagctc ttcagaacgc ctccacccga 1321 gcttctgcaa accctgaccg cagtcggggg cattgggcag ctcaccgctg ctaaggagga 1381 gtctggtggc cgaagccgta gtgggagtat tgtggaactt atagctggag ggggttcctc 1441 atgcagccct gtcctttcaa gaaaacaaaa aggcaaagtg ctcttaggag aagaagaagc 1501 cttggaggat gactctgaat cgagatcgga tgtcagcagc tctgccttaa cagcctcagt 1561 gaaggatgag atcagtggag agctggctgc ttcttcaggg gtttccactc cagggtcagc 1621 aggtcatgac atcatcacag aacagccacg gtcacagcac acactgcagg cggactcagt 1681 ggatctggcc agctgtgact tgacaagctc tgccactgat ggggatgagg aggatatctt 1741 gagccacagc tccagccagg tcagcgccgt cccatctgac cctgccatgg acctgaatga 1801 tgggacccag gcctcgtcgc ccatcagcga cagctcccag accaccaccg aagggcctga 1861 ttcagctgtt accccttcag acagttctga aattgtgtta gacggtaccg acaaccagta 1921 tttgggcctg cagattggac agccccagga tgaagatgag gaagccacag gtattcttcc 1981 tgatgaagcc tcggaggcct tcaggaactc ttccatggcc cttcaacagg cacatttatt 2041 gaaaaacatg agtcactgca ggcagccttc tgacagcagt gttgataaat ttgtgttgag 2101 agatgaagct actgaaccgg gtgatcaaga aaacaagcct tgccgcatca aaggtgacat 2161 tggacagtcc actgatgatg actctgcacc tottgtccat tgtgtccgcc ttttatctgc 2221 ttcgtttttg ctaacagggg gaaaaaatgt gctggttccg gacagggatg tgagggtcag 2281 cgtgaaggcc ctggccctca gctgtgtggg agcagctgtg gccctccacc cggaatcttt 2341 cttcagcaaa ctctataaag ttcctcttga caccacggaa taccctgagg aacagtatgt 2401 ctcagacatc ttgaactaca tcgatcatgg agacccacag gttcgaggag ccactgccat 2461 totctgtggg accctcatct gctccatcct cagcaggtcc cgcttccacg tgggagattg 2521 gatgggcacc attagaaccc tcacaggaaa tacattttct ttggcggatt gcattccttt 2581 gctgcggaaa acactgaagg atgagtcttc tgttacttgc aagttagctt gtacagctgt 2641 gaggaactgt gtcatgagtc tctgcagcag cagctacagt gagttaggac tgcagctgat 2701 catcgatgtg ctgactctga ggaacagttc ctattggctg gtgaggacag agcttctgga 2761 aacccttgca gagattgact tcaggctggt gagctttttg gaggcaaaag cagaaaactt 2821 acacagaggg gctcatcatt atacagggct tttaaaactg caagaacgag tgctcaataa 2881 tgttgtcatc catttgcttg gagatgaaga ccccagggtg cgacatgttg ccgcagcatc 2941 actaattagg cttgtcccaa agctgtttta taaatgtgac caaggacaag ctgatccagt 3001 agtggccgtg gcaagagatc aaagcagtgt ttacctgaaa cttctcatgc atgagacgca 3061 gcctccatct catttctccg tcagcacaat aaccagaata tatagaggct ataacctact 3121 accaagcata acagacgtca ctatggaaaa taacctttca agagttattg cagcagtttc 3181 tcatgaacta atcacatcaa ccaccagagc actcacattt ggatgctgtg aagctttgtg 3241 tcttctttcc actgccttcc cagtttgcat ttggagttta ggttggcact gtggagtgcc 3301 tccactgagt gcctcagatg agtctaggaa gagctgtacc gttgggatgg ccacaatgat 3361 tctgaccctg ctctcgtcag cttggttccc attggatctc tcagcccatc aagatgcttt 3421 gattttggcc ggaaacttgc ttgcagccag tgctcccaaa tctctgagaa gttcatgggc 3481 ctctgaagaa gaagccaacc cagcagccac caagcaagag gaggtctggc cagccctggg 3541 ggaccgggcc ctggtgccca tggtggagca gctcttctct cacctgctga aggtgattaa 3601 catttgtgcc cacgtcctgg atgacgtggc tcctggaccc gcaataaagg cagccttgcc 3661 ttctctaaca aacccccctt ctctaagtcc catccgacga aaggggaagg agaaagaacc 3721 aggagaacaa gcatctgtac cgttgagtcc caagaaaggc agtgaggcca gtgcagcttc 3781 tagacaatct gatacctcag gtcctgttac aacaagtaaa tcctcatcac tggggagttt 3841 ctatcatctt ccttcatacc tcaaactgca tgatgtcctg aaagctacac acgctaacta 3901 caaggtcacg ctggatcttc agaacagcac ggaaaagttt ggagggtttc tccgctcagc 3961 cttggatgtt ctttctcaga tactagagct ggccacactg caggacattg ggaagtgtgt 4021 tgaagagatc ctaggatacc tgaaatcctg ctttagtcga gaaccaatga tggcaactgt 4081 ttgtgttcaa caattgttga agactctott tggcacaaac ttggcctccc agtttgatgg 4141 cttatcttcc aaccccagca agtcacaagg ccgagcacag cgccttggct cctccagtgt 4201 gaggccaggc ttgtaccact actgcttcat ggccccgtac acccacttca cccaggccct 4261 cgctgacgcc agcctgagga acatggtgca ggcggagcag gagaacgaca cctcgggatg 4321 gtttgatgtc ctccagaaag tgtctaccca gttgaagaca aacctcacga gtgtcacaaa 4381 gaaccgtgca gataagaatg ctattcataa tcacattcgt ttgtttgaac ctcttgttat 4441 aaaagcttta aaacagtaca cgactacaac atgtgtgcag ttacagaagc aggttttaga 4501 tttgctggcg cagctggttc agttacgggt taattactgt cttctggatt cagatcaggt 4561 gtttattggc tttgtattga aacagtttga atacattgaa gtgggccagt tcagggaatc 4621 agaggcaatc attccaaaca tctttttctt cttggtatta ctatcttatg aacgctatca 4681 ttcaaaacag atcattggaa ttcctaaaat cattcagctc tgtgatggca tcatggccag 4741 tggaaggaag gctgtgacac atgccatacc ggctctgcag cccatagtcc acgacctctt 4801 tgtattaaga ggaacaaata aagctgatgc aggaaaagag cttgaaaccc aaaaagaggt 4861 ggtggtgtca atgttactga gactcatcca gtaccatcag gtgttggaga tgttcattct 4921 tgtcctgcag cagtgccaca aggagaatga agacaagtgg aagcgactgt ctcgacagat 4981 agctgacatc atcctcccaa tgttagccaa acagcagatg cacattgact ctcatgaagc 5041 ccttggagtg ttaaatacat tatttgagat tttggcccct tcctccctcc gtccggtaga 5101 catgctttta cggagtatgt tcgtcactcc aaacacaatg gcgtccgtga gcactgttca 5161 actgtggata tcgggaattc tggccatttt gagggttctg atttcccagt caactgaaga 5221 tattgttctt tctcgtattc aggagctctc cttctctccg tatttaatct cctgtacagt 5281 aattaatagg ttaagagatg gggacagtac ttcaacgcta gaagaacaca gtgaagggaa 5341 acaaataaag aatttgccag aagaaacatt ttcaaggttt ctattacaac tggttggtat 5401 tcttttagaa gacattgtta caaaacagct gaaggtggaa atgagtgagc agcaacatac 5461 tttctattgc caggaactag gcacactgct aatgtgtctg atccacatct tcaagtctgg 5521 aatgttccgg agaatcacag cagctgccac taggctgttc cgcagtgatg gctgtggcgg 5581 cagtttctac accctggaca gcttgaactt gcgggctcgt tccatgatca ccacccaccc 5641 ggccctggtg ctgctctggt gtcagatact gctgcttgtc aaccacaccg actaccgctg 5701 gtgggcagaa gtgcagcaga ccccgaaaag acacagtctg tccagcacaa agttacttag 5761 tccccagatg tctggagaag aggaggattc tgacttggca gccaaacttg gaatgtgcaa 5821 tagagaaata gtacgaagag gggctctcat tctcttctgt gattatgtct gtcagaacct 5881 ccatgactcc gagcacttaa cgtggctcat tgtaaatcac attcaagatc tgatcagcct 5941 ttcccacgag cctccagtac aggacttcat cagtgccgtt catcggaact ctgctgccag 6001 cggcctgttc atccaggcaa ttcagtctcg ttgtgaaaac ctttcaactc caaccatgct 6061 gaagaaaact cttcagtgct tggaggggat ccatctcagc cagtcgggag ctgtgctcac 6121 gctgtatgtg gacaggcttc tgtgcacccc tttccgtgtg ctggctcgca tggtcgacat 6181 ccttgcttgt cgccgggtag aaatgcttct ggctgcaaat ttacagagca gcatggccca 6241 gttgccaatg gaagaactca acagaatcca ggaatacctt cagagcagcg ggctcgctca 6301 gagacaccaa aggctctatt ccctgctgga caggtttcgt ctctccacca tgcaagactc 6361 acttagtccc tctcctccag tctcttccca cccgctggac ggggatgggc acgtgtcact 6421 ggaaacagtg agtccggaca aagactggta cgttcatctt gtcaaatccc agtgttggac 6481 caggtcagat tctgcactgc tggaaggtgc agagctggtg aatcggattc ctgctgaaga 6541 tatgaatgcc ttcatgatga actcggagtt caacctaagc ctgctagctc catgcttaag 6601 cctagggatg agtgaaattt ctggtggcca gaagagtgcc ctttttgaag cagcccgtga 6661 ggtgactctg gcccgtgtga gcggcaccgt gcagcagctc cctgctgtcc atcatgtctt 6721 ccagcccgag ctgcctgcag agccggcggc ctactggagc aagttgaatg atctgtttgg 6781 ggatgctgca ctgtatcagt ccctgcccac tctggcccgg gccctggcac agtacctggt 6841 ggtggtctcc aaactgccca gtcatttgca ccttcctcct gagaaagaga aggacattgt 6901 gaaattcgtg gtggcaaccc ttgaggccct gtcctggcat ttgatccatg agcagatccc 6961 gctgagtctg gatctccagg cagggctgga ctgctgctgc ctggccctgc agctgcctgg 7021 cctctggagc gtggtctcct ccacagagtt tgtgacccac gcctgctccc tcatctactg 7081 tgtgcacttc atcctggagg ccgttgcagt gcagcctgga gagcagcttc ttagtccaga 7141 aagaaggaca aataccccaa aagccatcag cgaggaggag gaggaagtag atccaaacac 7201 acagaatcct aagtatatca ctgcagcctg tgagatggtg gcagaaatgg tggagtctct 7261 gcagtoggtg ttggccttgg gtcataaaag gaatagcggc gtgccggcgt ttctcacgcc 7321 attgctaagg aacatcatca tcagcctggc ccgcctgccc cttgtcaaca gctacacacg 7381 tgtgccccca ctggtgtgga agcttggatg gtcacccaaa ccgggagggg attttggcac 7441 agcattccct gagatccccg tggagttcct ccaggaaaag gaagtcttta aggagttcat 7501 ctaccgcatc aacacactag gctggaccag tcgtactcag tttgaagaaa cttgggccac 7561 cctccttggt gtcctggtga cgcagcccct cgtgatggag caggaggaga gcccaccaga 7621 agaagacaca gagaggaccc agatcaacgt cctggccgtg caggccatca cctcactggt 7681 gctcagtgca atgactgtgc ctgtggccgg caacccagct gtaagctgct tggagcagca 7741 gccccggaac aagcctctga aagctctcga caccaggttt gggaggaagc tgagcattat 7801 cagagggatt gtggagcaag agattcaagc aatggtttca aagagagaga atattgccac 7861 ccatcattta tatcaggcat gggatcctgt cccttctctg totccggcta ctacaggtgc 7921 cctcatcagc cacgagaagc tgctgctaca gatcaacccc gagcgggagc tggggagcat 7981 gagctacaaa ctcggccagg tgtccataca ctccgtgtgg ctggggaaca gcatcacacc 8041 cctgagggag gaggaatggg acgaggaaga ggaggaggag gccgacgccc ctgcaccttc 8101 gtcaccaccc acgtctccag tcaactccag gaaacaccgg gctggagttg acatccactc 8161 ctgttcgcag tttttgcttg agttgtacag ccgctggatc ctgccgtcca gctcagccag 8221 gaggaccccg gccatcctga tcagtgaggt ggtcagatcc cttctagtgg tctcagactt 8281 gttcaccgag cgcaaccagt ttgagctgat gtatgtgacg ctgacagaac tgcgaagggt 8341 gcacccttca gaagacgaga tcctcgctca gtacctggtg cctgccacct gcaaggcagc 8401 tgccgtcctt gggatggaca aggccgtggc ggagcctgtc agccgcctgc tggagagcac 8461 gctcaggagc agccacctgc ccagcagggt tggagccctg cacggcgtcc tctatgtgct 8521 ggagtgcgac ctgctggacg acactgccaa gcagctcatc ccggtcatca gcgactatct 8581 cctctccaac ctgaaaggga tcgcccactg cgtgaacatt cacagccagc agcacgtact 8641 ggtcatgtgt gccactgcgt tttacctcat tgagaactat cctctggacg tagggccgga 8701 attttcagca tcaataatac agatgtgtgg ggtgatgctg tctggaagtg aggagtccac 8761 cccctccatc atttaccact gtgccctcag aggcctggag cgcctcctgc tctctgagca 8821 gctctcccgc ctggatgcag aatcgctggt caagctgagt gtggacagag tgaacgtgca 8881 cagcccgcac cgggccatgg cggctctggg cctgatgctc acctgcatgt acacaggaaa 8941 ggagaaagtc agtccgggta gaacttcaga ccctaatcct gcagcccccg acagcgagtc 9001 agtgattgtt gctatggagc gggtatctgt tctttttgat aggatcagga aaggctttcc 9061 ttgtgaagcc agagtggtgg ccaggatcct gccccagttt ctagacgact tcttcccacc 9121 ccaggacatc atgaacaaag tcatcggaga gtttctgtcc aaccagcagc cataccccca 9181 gttcatggcc accgtggtgt ataaggtgtt tcagactctg cacagcaccg ggcagtcgtc 9241 catggtccgg gactgggtca tgctgtccct ctccaacttc acgcagaggg ccccggtcgc 9301 catggccacg tggagcctct cctgcttctt tgtcagcgcg tccaccagcc cgtgggtcgc 9361 ggcgatcctc ccacatgtca tcagcaggat gggcaagctg gagcaggtgg acgtgaacct 9421 tttctgcctg gtcgccacag acttctacag acaccagata gaggaggagc tcgaccgcag 9481 ggccttccag tctgtgcttg aggtggttgc agccccagga agcccatatc accggctgct 9541 gacttgttta cgaaatgtcc acaaggtcac cacctgctga gcgccatggt gggagagact 9601 gtgaggcggc agctggggcc ggagcctttg gaagtctgcg cccttgtgcc ctgcctccac 9661 cgagccagct tggtccctat gggcttccgc acatgccgcg ggcggccagg caacgtgcgt 9721 gtctctgcca tgtggcagaa gtgctctttg tggcagtggc caggcaggga gtgtctgcag 9781 tcctggtggg gctgagcctg aggccttcca gaaagcagga gcagctgtgc tgcaccccat 9841 gtgggtgacc aggtcctttc tcctgatagt cacctgctgg ttgttgccag gttgcagctg 9901 ctcttgcatc tgggccagaa gtcctccctc ctgcaggctg gctgttggcc cctctgctgt 9961 cctgcagtag aaggtgccgt gagcaggctt tgggaacact ggcctgggtc tccctggtgg 10021 ggtgtgcatg ccacgccccg tgtctggatg cacagatgcc atggcctgtg ctgggccagt 10081 ggctgggggt gctagacacc cggcaccatt ctcccttctc tcttttcttc tcaggattta 10141 aaatttaatt atatcagtaa agagattaat tttaacgtaa ctctttctat gcccgtgtaa 10201 agtatgtgaa tcgcaaggcc tgtgctgcat gcgacagcgt ccggggtggt ggacagggcc 10261 cccggccacg ctccctctcc tgtagccact ggcatagccc tcctgagcac ccgctgacat 10321 ttccgttgta catgttcctg tttatgcatt cacaaggtga ctgggatgta gagaggcgtt 10381 agtgggcagg tggccacagc aggactgagg acaggccccc attatcctag gggtgcgctc 10441 acctgcagcc cctcctcctc gggcacagac gactgtcgtt ctccacccac cagtcaggga 10501 cagcagcctc cctgtcactc agctgagaag gccagccctc cctggctgtg agcagcctcc 10561 actgtgtcca gagacatggg cctcccactc ctgttccttg ctagccctgg ggtggcgtct 10621 gcctaggagc tggctggcag gtgttgggac ctgctgctcc atggatgcat gccctaagag 10681 tgtcactgag ctgtgttttg tctgagcctc tctoggtcaa cagcaaagct tggtgtcttg 10741 gcactgttag tgacagagcc cagcatccct tctgcccccg ttccagctga catcttgcac 10801 ggtgacccct tttagtcagg agagtgcaga tctgtgctca tcggagactg ccccacggcc 10861 ctgtcagagc cgccactcct atccccaggc caggtccctg gaccagcctc ctgtttgcag 10921 gcccagagga gccaagtcat taaaatggaa gtggattctg gatggccggg ctgctgctga 10981 tgtaggagct ggatttggga gctctgcttg ccgactggct gtgagacgag gcaggggctc 11041 tgcttcctca gccctagagg cgagccaggc aaggttggcg actgtcatgt ggcttggttt 11101 ggtcatgccc gtcgatgttt tgggtattga atgtggtaag tggaggaaat gttggaactc 11161 tgtgcaggtg ctgccttgag acccccaagc ttccacctgt ccctctccta tgtggcagct 11221 ggggagcagc tgagatgtgg acttgtatgc tgcccacata cgtgaggggg agctgaaagg 11281 gagcccctcc totgaggagc ctctgccagg cctgtatgag gcttttccca ccagctccca 11341 acagaggcct cccccagcca ggaccacctc gtcctcgtgg cggggcagca ggagcggtag 11401 aaaggggtcc gatgtttgag gaggccctta agggaagcta ctgaattata acacgtaaga 11461 aaatcaccat tccgtattgg ttgggggctc ctgtttctca tcctagcttt ttcctggaaa 11521 gcccgctaga aggtttggga acgaggggaa agttctcaga actgttggct gctccccacc 11581 cgcctcccgc ctcccccgca ggttatgtca gcagctctga gacagcagta tcacaggcca 11641 gatgttgttc ctggctagat gtttacattt gtaagaaata acactgtgaa tgtaaaacag 11701 agccattccc ttggaatgca tatcgctggg ctcaacatag agtttgtctt cctcttgttt 11761 acgacgtgat ctaaaccagt cottagcaag gggctcagaa caccccgctc tggcagtagg 11821 tgtcccccac ccccaaagac ctgcctgtgt gctccggaga tgaatatgag ctcattagta 11881 aaaatgactt cacccacgca tatacataaa gtatccatgc atgtgcatat agacacatct 11941 ataattttac acacacacct ctcaagacgg agatgcatgg cctctaagag tgcccgtgtc 12001 ggttcttcct ggaagttgac tttccttaga cccgccaggt caagttagcc gcgtgacgga 12061 catccaggcg tgggacgtgg tcagggcagg gctcattcat tgcccactag gatcccactg 12121 gcgaagatgg tctccatatc agctctctgc agaagggagg aagactttat catgttccta 12181 aaaatctgtg gcaagcaccc atcgtattat ccaaattttg ttgcaaatgt gattaatttg 12241 gttgtcaagt tttgggggtg ggctgtgggg agattgcttt tgttttcctg ctggtaatat 12301 cgggaaagat tttaatgaaa ccagggtaga attgtttggc aatgcactga agcgtgtttc 12361 tttcccaaaa tgtgcctccc ttccgctgcg ggcccagctg agtctatgta ggtgatgttt 12421 ccagctgcca agtgctcttt gttactgtcc accctcattt ctgccagcgc atgtgtcctt 12481 tcaaggggaa aatgtgaagc tgaaccccct ccagacaccc agaatgtagc atctgagaag 12541 gccctgtgcc ctaaaggaca cccctcgccc ccatcttcat ggagggggtc atttcagagc 12601 cctcggagcc aatgaacagc tcctcctctt ggagctgaga tgagccccac gtggagctcg 12661 ggacggatag tagacagcaa taactcggtg tgtggccgcc tggcaggtgg aacttcctcc 12721 cgttgcgggg tggagtgagg ttagttctgt gtgtctggtg ggtggagtca ggcttctctt 12781 gctacctgtg agcatccttc ccagcagaca tcctcatcgg gctttgtccc tcccccgctt 12841 cctccctctg cggggaggac ccgggaccac agctgctggc cagggtagac ttggagctgt 12901 cctccagagg ggtcacgtgt aggagtgaga agaaggaaga tcttgagagc tgctgaggga 12961 ccttggagag ctcaggatgg ctcagacgag gacactcgct tgccgggcct gggcctcctg 13021 ggaaggaggg agctgctcag aatgccgcat gacaactgaa ggcaacctgg aaggttcagg 13081 ggccgctctt cccccatgtg cctgtcacgc tctggtgcag tcaaaggaac gccttcccct 13141 cagttgtttc taagagcaga gtctcccgct gcaatctggg tggtaactgc cagccttgga 13201 ggatcgtggc caacgtggac ctgcctacgg agggtgggct ctgacccaag tggggcctcc 13261 ttgtccaggt ctcactgctt tgcaccgtgg tcagagggac tgtcagctga gcttgagctc 13321 ccctggagcc agcagggctg tgatgggcga gtcccggagc cccacccaga cctgaatgct 13381 tctgagagca aagggaagga ctgacgagag atgtatattt aattttttaa ctgctgcaaa 13441 cattgtacat ccaaattaaa ggaaaaaaat ggaaaccatc aaaaaaaaaa aaaaaaaa 1003551 SEQ ID NO: 5 Human HTT protein sequence 1 matleklmka feslksfqqq qqqqqqqqqq qqqqqqqqqq pppppppppp pqlpqpppqa 61 gpllpqpqpp ppppppppgp avaeeplhrp kkelsatkkd rvnhcltice nivagsvrns 121 pefqkllgia melfllcsdd aesdvrmvad ec1nkvikal mdsnlprlql elykeikkng 181 aprslraalw rfaelahlvr pqkcrpylvn 11pcltrtsk rpeesvget1 aaavpkimas 241 fgnfandnei kvllkafian lksssptirr taagsaysic ghsrrtgyfy swllnvllgl 301 1vpvedehst 11i1gv11t1 rylvp11qqg vkdts1kgsf gvtrkemevs psaecilvqvy 361 eltlhhtqhq dhnvvtgale llqqlfrtpp pe11qtltav ggigqltaak eesggrsrsg 421 siveliaggg sscspvlsrk qkgkvllgee ea1edd5e5r sdvsssalta svkdeisgel 481 aassgvstpg saghdiiteq prsqhtlqad svdlascdlt ssatdgdeed ilshsssqvs 541 avpsdpamdl ndgtqasspi sdssqttteg pdsavtpsds seivldgtdn gylglgiggp 601 qdedeeatgi 1pdeaseafr nssmalqqah llknmshcrq psdssvdkfv lrdeatepgd 661 genkperikg digqstddds aplvhcvr11 sasflltggk nvlvpdrdvr vsvkalalsc 721 vgaavalhpe sffsklykvp ldtteypeeq yvsdilnyid hgdpqvrgat ailcgtlics 781 ilsrsrfhvg dwmgtirt1t gntfsladci p11rktlkde ssvtcklact avrncvmslc 841 sssyselglq liidvltlrn ssywlvrtel letlaeidfr lvsfleakae nlhrgahhyt 901 gllklgervl nnvvihllgd edprvrhvaa as1irlvpk1 fykcdqgqad pvvavardqs 961 svylkllmhe tqppshfsys titriyrgyn llpsitdvtm ennlsrviaa vshelitstt 1021 raltfgccea lcllstafpv ciwslgwhcg vpplsasdes rksctvgmat miltllssaw 1081 fpldlsahqd alilagnlla asapkslrss waseeeanpa atkqeevwpa lgdralvpmv 1141 eqlfshllkv inicahvldd vapgpaikaa 1psltnppsl spirrkgkek epgegasvp1 1201 spkkgseasa asrqsdtsgp vttsksss1g sfyhlpsylk 1hdv1katha nykvt1d1qn 1261 stekfggflr saldvlsqil elatlqdiqk cveeilgylk scfsrepmma tvcvgglikt 1321 lfgtnlasqf dglssnpsks ggragrlgss svrpglyhyc fmapythftq aladaslrnm 1381 vgaegendts gwfdvlqkvs tqlktnitsv tknradknai hnhirlfepl vikalkqytt 1441 ttcvqlqkqv ldllaglvq1 rvnyclldsd qvfigfvlkq feyievgqfr eseaiipnif 1501 fflvllsyer yhskgligip kliqlcdgim asgrkavtha ipalqpivhd lfvlrgtnka 1561 dagkeletqk evvvsmllrl igyhqvlemf ilvlqqchke nedkwkrlsr giadiilpml 1621 akqqmhidsh ealgvintlf eilapss1rp vdm11rsmfy tpntmasyst vq1wisgila 1681 ilrvlisqst edivlsriqe lsfspylisc tvinr1rdgd ststleehse gkqiknlpee 1741 tfsrfllqlv gilledivtk qlkvemseqg htfyccielgt llmclihifk sgmfrritaa 1801 atrlfrsdgc ggsfytldsl nlrarsmitt hpalvllwcq illlvnhtdy rwwaevqqtp 1861 krhslsstkl lspqmsgeee dsdiaakigm cnreivrrga lilfcdyvcq nlhdsehltw 1921 livnhiqdli slsheppvqd fisavhrnsa asglfigaig srcenlstpt mlkktlqcle 1981 gihlsqsgav ltlyvdr1lc tpfrvlarmv di1acrrvem llaanlqssm aqlpmeelnr 2041 igeylcissgl acirhgrlysl ldrfrlstmq ds1spsppvs shpldgdghv sletvspdkd 2101 wyvhlvksqc wtrsdsalle gaelvnripa edmnafmmns efnlsllapc 1s1gmseisg 2161 gqksalfeaa revtlarvsg tvqqlpavhh vfqpelpaep aaywsklndl fgdaalyqs1 2221 ptlaralaqy lvvvsklpsh lhlppekekd ivkfvvatle alswhliheq iplsldlqag 2281 ldccclalql pglwsvvsst efvthacsli ycvhfileav avqpgeglls perrtntpka 2341 iseeeeevdp ntqnpkyita acemvaemve slqsvlalgh krnsgvpafl tpllrniiis 2401 larlplvnsy trvpplvwkl gwspkpggdf gtafpeipve flqekevfke fiyrintlgw 2461 tsrtqfeetw atllgvlvtq plvmeqeesp peedtertqi nvlavqaits lvlsamtvpv 2521 agnpayscle qqprnkplka ldtrfgrk1s iirgiveqei qamvskreni athhlyqawd 2581 pvpslspatt galishekll lqinperelg smsyklgqvs ihsvwlgnsi tplreeewde 2641 eeeeeadapa psspptspvn srkhragvdi hscsqfllel ysrwilpsss arrtpailis 2701 evvrsllvvs dlfternqfe lmyvtltelr rvhpsedeil agylvpatck aaavlgmdka 2761 vaepvsrlle stlrsshlps rvgalhgvly vlecdllddt akcilipvisd yllsnlkgia 2821 hcvnihsqqh vlvmcatafy lienypldvg pefsasiiqm cgvmlsgsee stpsiiyhca 2881 1rgler111s eqlsrldaes 1vklsvdrvn vhsphramaa 1g1m1tcmyt gkekvspgrt 2941 sdpnpaapds esvivamery svlfdrirkg fpcearvvar ilpqflddff ppqdimnkvi 3001 geflsnqqpy pqfmatvvyk vfqtlhstgq ssmvrdwvml slsnftqrap vamatwslsc 3061 ffvsastspw vaailphvis rmgkleqvdv nlfclvatdf yrhqieeeld rrafqsvlev 3121 vaapgspyhr lltclrnvhk vttc [00356] SEQ ID NO: 109 CYP46A1 variant MSPGLLLLGSAVLLAFGLCCTFVHRARSRYEHIPGPPRP SFLLGH
LPCFWKKDEVGGRVLQDVFLDWAKKYGPVVRVNVFHKTSVIVTSPESVKKFLMSTKYNK
DSKMYRALQTVFGERLFGQGLVSECNYERWHKQRRVIDLAF SRSSLVSLMETFNEKAEQ
LVEILEAKADGQTPVSMQDMLTYTAMDILAKAAFGMETSMLLGAQKPL SQAVKLMLEGI
TA SRNTLAKFLPGKR KQLREVRESIRFLRQVGRDWVQRRREALKRGEEVPADILTQILK
AELGAQDDEGLLDNFVTFFIAGHETSANHLAFTVMEL SRQPEIVARLQAEVD EVIG SKR
YLDFEDLGRLQYL S QVLKESLRLYPPAWGTFRLLEEETLIDGVRVPGNTPLLF STYVMG
RMDTYFEDPLTFNPDRFGPGAPKPRFTYFPFSLGHR SCIGQQF A QMEVKVVMAKLLQRL
EFRLVPGQRFGLQEQATLKPLDPVLCTLRPRGWQPAPPPPPC
[00357] SEQ ID NO: 110 CYP46A 1 variant CDS
atgagc cccgggctgctgctg ctcggtag cgccgtc ctg ctcgccttcggcctctgctg caccttcgtgcaccgcg ctcg cagccgct acgagcacatc cccgggccgccgcggcccagtttccttctaggacacctcccctgcttttggaaaaaggatgaggttggtggccgtgt gctccaagatgtgtttCtAgattgggctaagaagtatggacctgtAgtgcgggtcaacgtettccacaaaacctcagtc atcgtcacg agtcctgagtcggttaagaagttcctgatgtcaaccaagtacaacaaggactccaagatgtaccgtgcgctccagactg tgtttggtga gagactcttcggccaaggettggtgtccgaatgcaactatgagcgctggcacaagcagoggagagtGatagacctggcc ttcagcc ggagctc cttggttagcttaatggaaacattcaacgaAaaggctgagcagctggtggagattctagaagccaaggc agatgggcag acc cc TgtGAGC atgcaggacatgctgacctacaccgc catggacatcctgg cc aaggcagctrttgggatgg agaccagtatg ctgctgggtgcccagaagc ctctgtcccaggcagtga aacttatgttggagggaatc actgcgtcc cgcaacactctggcaaagttcct gcc agggaagaggaagcagctccgggaggtc cgggagag c attcgcttcctgcgc c aggtgggcagggactgggtc cagcgcc gccgggaagccctgaagaggggcgaggaggttc ctgccgac atcctcacacagattctgaaagctgaagagggagcccaggacg acgagggtctgctggacaacttcgtcaccttcttcattgctggtcacgagacctctgccaac cacttggcgttc acagtgatggagctgt ctcgccagccagagatcgtggcaaggctgcaggccgaggtggatgaAgtGattggttctaagaggtacctggatttcga ggacctg gggagactgcagtacctgtcccaggtcctcaaagagtcgctgaggctgtacccaccagcatggggcacctttAGGctgc tggaag aggagaccttgattgatggggtGagagtccccggcaacacc ccgctcttgttcagcacctatgtGatggggcggatggacacatact ttgaggac ccgctgactttcaacc cc gatcgcttcggcc ctggagc accc aagccacggttcacctacttcc ccttctccctggg cc ac cgctcctgcatcgggcagcagtttgctcagatggaggtgaaggtggtcatggcaaagctgctgcagaggctggagttcc ggctggtg cccgggcagcgcttcgggctgcaggagcaggccacactcaagccactggaccccgtgctgtgcaccctgcggccccgcg gctgg cagcccgcacccccaccacccccctgc [00358] The synthetic NS-specific promoters according to the present invention were designed through reviewing scientific literature to identify genes and their respective promoters which are highly active in NS cells.
[00359] During the design of these promoters, particular shortcomings of known NS-specific promoters were considered. First of all, known NS-specific promoters which are specific for a NS cell type (e.g. Synapsin-1, CAMKIIa and GFAP) are not expressed in the whole cellular population (e.g.
not expressed in all neurones/astrocytes). This has been shown for GFAP by (Zhang et al., 2019) and can be seen from distribution of Syn-1 in neurones from the Allen brain atlas.
Secondly, the majority of the known CREs, promoter elements and promoters are too large to be included in a self-complementary AAV vector (scAAV) (depending on the size of the transgene, the size of the promoter may need to be less than 1000 bp, preferably less than 900 bp, more preferably less than 800 bp, most preferably less than 700 bp). Additionally, expression may be required in a specific cell type or a combination of cell types across the entire NS, suitably the entire CNS
or the entire brain.
[00360] Currently known promoters are not able to address these shortcomings and there is a need in gene therapy to develop short, cell-type NS-specific promoters both with targeted localised expression and also with expression across the entire NS. For example, the requirement for an expression across the entire NS (e.g. the entire brain) is highlighted by the expression pattern of the HTT (huntingtin) and CYP46A1 genes in the adult mouse brain shown in Fig. 6A
and Fig. 6B. Since the HTT (huntingtin) gene is expressed throughout the brain, it may be beneficial for any potential expression product suppressing the faulty huntingtin gene and/or counteracting or alleviating the detrimental effects of the faulty huntingtin to be expressed throughout the brain. Similarly, since the CYP46A1 gene is expressed throughout the brain, it may be beneficial for any potential supplementary CYP46A1 expression to be throughout the brain.
[00361] Gene expression in all neurons as well as astrocytes and/or oligodendrocytes across the CNS may be desirable in treatment of some diseases such as Huntington's disease. Expression in astrocytcs and oligodendrocytes may be beneficial as glial cells arc implicated in Huntington's disease (Shine! al., 2005).
[00362] Therefore, the present invention sets out to design tandem NS promoters which arc active in multiple NS cell types while addressing some of the shortcomings listed above. For example, the promoter design involved combination of one or more CRE together with a promoter element in order to broaden the cell tropism compared to the individual CRE/promoter element in order to create promoters active in multiple NS cell types and also to address the drawback of known promoters not being expressed in the whole cellular population. Additionally, in order to address the drawback of known CREs, promoter elements and promoters being too large to be included in an AAV vector such as self-complementary AAV vector (scAAV), some of the CREs and promoter elements of the present invention have been shortened using bioinformatic analysis, literature searching and publicly available genomic databases but are still expected to be active CREs and promoter elements.
1003631 The synthetic NS-specific promoters according to the present invention are operably linked to a nucleic acid sequence encoding the CYP46A1 transgene and a Human influenza hcmagglutinin (HA) tag and experimentally tested in w-ildtypc C57BL6/J mice.
The synthetic NS-specific promoters according to the present invention operably linked to a nucleic acid sequence encoding the CYP46A1 transgene and a HA tag are administered intravenously in a viral vector.
Vector copy number will be assessed in brain and spinal cord tissue sections by qPCR analysis of the viral transgene CYP46A1 normalised to internal genomic DNA copy number control to confirm equivalent injected doses. Western blot will be performed to assess the protein expression of the HA
tagged transgene in the brain and spinal cord tissue. Finally, immunofluorescent staining will be performed on brain and spinal cord tissue sections to assess the expression of the transgene within CNS cell typcs. Similarly, immunofluorescent staining can be performed on PNS
tissue sections to assess the expression of the transgene within PNS cell types. Specifically, double staining will be performed using the HA tag to mark CYP46A1 gene expression and standard markers for neurones, astrocytes, oligodendrocytes and microglia.
[00364] SP0013 (SEQ ID NO: 74) is predicted to be active in neurones and astrocytes. SP0014 (SEQ ID NO: 75) is predicted to be active in neurones and astrocytes. SP0026 (SEQ ID NO: 76) is predicted to be active in excitatory neurones and astrocytes. SP0027 (SEQ ID
NO: 77) is predicted to be active in excitatory neurones and astrocytes. SP0030 (SEQ ID NO: 78) is predicted to be active in neurones and astrocytes. SP0031 (SEQ ID NO: 79) is predicted to be active in neurones and astrocytes. SP0032 (SEQ ID NO: 80) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0033 (SEQ ID NO: 81) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0019 (SEQ ID NO: 82) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0020 (SEQ ID NO: 83) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0021 (SEQ ID NO: 84) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0022 (SEQ ID NO: 85) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0028 (SEQ ID NO: 86) is predicted to be active in excitatory neurones, astrocytcs and oligodendrocytcs. SP0029 (SEQ ID NO: 87) is predicted to bc active in excitatory neurones, astrocytes and oligodendrocytes. SP0011 (SEQ ID NO: 88) is predicted to be active in neurones and astrocytes. SP0034 (SEQ ID NO: 89) is predicted to be active in neurones and astrocytes. SP0035 (SEQ ID NO: 90) is predicted to be active in neurones and astrocytes. SP0036 (SEQ ID NO: 154) is predicted to be active in neurones and astrocytes.
[00365] Bioinformatic analysis of RNA sequencing data predicts that some of the genes associated with the CREs and/or promoter elements of the present invention (aqp4, cendl, eno2, gfap, ,s100B, ,syn 1) are expressed in the dorsal root ganglion and tibial nerve.
Therefore, CREs and/or promoter elements associated with these genes are predicted to be expressed in cells of the PNS.
CRE0001 SlOOB (SEQ ID NO: 106), CRE0002_S100B (SEQ ID NO: 108), CRE0005 GFAP
(SEQ
ID NO: 103), CRE0007 GFAP (SEQ ID NO: 104), CRE0009 SlOOB (SEQ ID NO: 107), CRE0006 GFAP (SEQ ID NO: 99), CRE0008 GFAP (SEQ ID NO: 100), CRE0006 AQP4 (SEQ
ID
NO: 101), CRE0008_AQP4 (SEQ ID NO: 102), or functional variants thereof arc predicted to be active in cells of the PNS.
[00366] Bioinfomiatic analysis of single cell RNA sequencing data predicts that some of the genes associated with the CREs and/or promoter elements of the present invention (aqp4, eend 1, eno2, gfap, s100B, synl) are expressed in sensory neurones, PNS sympathetic neurones and PNS
enteric neurones. Therefore, CREs and/or promoter elements associated with these genes are predicted to be expressed in sensory neurones, PNS sympathetic neurones and PNS enteric neurones.
CRE0001 SlOOB (SEQ ID NO: 106), CRE0002_S100B (SEQ ID NO: 108), CRE0005 GFAP
(SEQ
ID NO: 103), CRE0007_GFAP (SEQ ID NO: 104), CRE0009_S100B (SEQ ID NO: 107), CRE0006 GFAP (SEQ ID NO: 99), CRE0008 GFAP (SEQ ID NO: 100), CRE0006 AQP4 (SEQ
ID
NO: 101), CRE0008_AQP4 (SEQ ID NO: 102), or functional variants thereof are predicted to be active in sensory neurones. PNS sympathetic neurones and/or PNS enteric neurones.
[00367] Described herein in is a method of manufacturing viral vectors from ProlO/HEK293 cells that have been engineered to stably integrate the CYP46A1 gene.
[00368] The stable cell line, ProlO/HEK293, as described in U.S.
Patent Number 9,441,206, is ideal for scalable production of AAV vectors. This cell line can be contacted with an expression vector comprising CYP46A1 gene operatively linked to any NS-specific promoter described herein, for example as described in Tables 10-15, or variants thereof Clonal populations haying CYP46A1 integrated into their genome are selected using methods well known in the art.
ProlO/HEK293 cells stably encompassing CYP46A1 gene are transfected with a Packaging plasmid encoding Rep2 and serotype -specific Cap2: AAV-Rep/Cap, and the Ad-Helper plasmid (XX680:
encoding adenoviral helper sequences).
[00369] Transfection. On the day of transfection, the cells are counted using a ViCell XR
Viability Analyzer (Beckman Coulter) and diluted for transfection. To mix the transfection cocktail the following reagents are added to a conical tube in this order: plasmid DNA, OPTIMEMal I (Gibco) or OptiPro SFM (Gibco), or other senim free compatible transfection media, and then the transfection reagent at a specific ratio to plasmid DNA. The cocktail is inverted to mix prior to being incubated at room temperature. The transfection cocktail is pipetted into the flasks and placed back in the shaker/incubator. All optimization studies are carried out at 30mL culture volumes followed by validation at larger culture volumes. Cells are harvested 48 hours post-transfection.
1003701 Production of rAAV Using Wave Bioreactor Systems. Wave bags are seeded 2 days prior to transfection. Two days post-seeding the wave bag, cell culture counts are taken and the cell culture is then expanded/diluted before transfection. The wave bioreactor cell culture is then transfected. Cell culture is harvested from the wave bio-reactor bag at least 48 hours post-transfection.
1003711 Titer. AAV titers are calculated after DNase digestion using qPCR against a standard curve (AAV 1TR specific) and primers specific to CYP46A1 gene. Harvesting Suspension Cells from Shaker Flasks and 60 Wave Bioreactor Bags. 48 hours post-transfection, cell cultures are collected into 500 mL polypropylene conical tubes (Corning) either by pouring from shaker flasks or pumping from wave bioreactor bags. The cell culture is then centrifuged at 655xg for 10 min using a Sorvall RC3C plus centrifuge and H6000A rotor. The supernatant is discarded, and the cells are resuspended in 1xPBS, transferred to a 50 mL conical tube, and centrifuged at 655xg for 10 min. At this point, the pellet can either be stored in NLT-60 C or continued through purification.
1003721 Titering rAAV from Cell Lysate Using qPCR. 10 mL of cell culture is removed and centrifuged at 655xg for 10 min using a Sorvall RC3C plus centrifuge and H6000A rotor. The supernatant is decanted from the cell pellet. The cell pellet is then resuspended in 5 mL of DNase buffer (5 mM CaCl2, 5 mM MgCl2, 50 mM Tris-HC1 pH 8.0) followed by sonication to lyse the cells efficiently. 3001AL is then removed and placed into a 1.5 mL microfuge tube.
140 units of DNase I is then added to each sample and incubated at 37 C for 1 hour. To determine the effectiveness of the DNase digestion, 4-5 mg of CYP46A1 plasmid is spiked into a non-transfected cell lysate with and without the addition of DNase. 50uL of EDTA/Sarkosyl solution (6.3% sarkosyl, 62.5 mM EDTA pH
8.0) is added to each tube and incubated at 70 C for 20 minutes. 50 uL of Proteinase K (10 mg/mL) is then added and incubated at 55 C for at least 2 hours. Samples are boiled for 15 minutes to inactivate the Proteinase K. An aliquot is removed from each sample to be analyzed by qPCR. Two qPCR reactions are carried out in order to effectively determine how much rAAV
vector is generated per cell. One qPCR reaction is set up using a set of primers designed to bind to a homologous sequence on the backbones of plasmids XX680, pXR2 and CYP46A1. The second qPCR
reaction is set up using a set of primers to bind and amplify a region within the CYP46A1 gene, qPCR is conducted using Sybr green reagents and Light cycler 480 from Roche. Samples are denatured at 95 C for 10 minutes followed by 45 cycles (90 C for 10 sec, 62 C for 10 sec and 72 C for 10 see) and melting curve (1 cycle 99 C for 30 sec, 65 C. for 1 minute continuous).
1003731 Purification of rAAV from Crude Lysate. Each cell pellet is adjusted to a final volume of mL. The pellets are vortexed briefly and sonicated for 4 minutes at 30% yield in one second on, one second off bursts. After sonication, 550 U of DNase is added and incubated at 37 C for 45 minutes. The pellets are then centrifuged at 9400xg using the Sorvall RCSB
centrifuge and HS-4 rotor to pellet the cell debris and the clarified lysate is transferred to a Type70Ti centrifuge tube (Beckman 361625). In regard to harvesting and lysing the suspension HEK293 cells for isolation of rAAV, one skilled in the art can use as mechanical methods such as microfluidization or chemical methods such as detergents, etc., followed by a clarification step using depth filtration or Tangential Flow Filtration (TFF).
[00374] AA V Vector Purjfication. Clarified AAV lysate is purified by column chromatography methods as one skilled in the art would be aware of and described in the following manuscripts (Allay et al., Davidoff et al., Kaludov et al., Zolotukhin et al., Zolotukin et al, etc.), which are incorporated herein by reference in their entireties.
[00375] A selection of the NS-specific promoters according to the present invention were tested in neuroblastoma-derived SH-SY5Y cells.
Materials and methods [00376] Cell maintenance and transfection. SH-SY5Y cells were cultured in HAM F12 media with 1 mM L-Glutamine (Gibco 11765-054), 15 % heat-inactivated FBS
(ThermoFisher 10500064), 1% non-essential amino acids (Merck M1745-100ML), and 1 %
penicillin/streptomycin (ThermoFisher 15140122). The cells were passaged twice a week between 1:3 and 1:4 to maintain a healthy cell density of between 70-80%. The cells were kept under passage number 20. For transfections, the cells were seeded at 105 cells/well into an adherent 48 well plate. 24 hours post-seeding, 300 ng plasmid was transfected into the cells using Lipofectamine3000 reagent (ThennoFisher L3000008).
[00377] The plasmid which was transfected into the SHSY5Y cell line comprises SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0033, SP0011, SP0034, SP0035 or SP0036 operably linked to GFP.
[00378] Flow Clvtometry. 48 hours after transfection, SH-SY5Y cells were washed with PBS
before dissociation with 0.05 % trypsin. The cells were collected and resuspended in 90 % PBS, 10 %
FBS solution. The GFP expression of the cells was assessed by flow cytometry using the Attune Nxt Acoustic Focusing Cytometer. The cell viability dye 7-AAD (ThermoFisher 00-6993-50) was mixed with the control cell population to identify and exclude the dead cells. The expression of GFP was measured in the living, single cell population using a blue 488 nm laser at the band-pass filter 510/10 nm. Untransfected cells were used to set the gates for GFP-negative and GFP-positive cells. The number of GFP-positive single cells and the median GFP fluorescence of all GFP-positive cells was calculated by the Attune Nxt Software.
Results [00379] The results of this experiment are shown in Fig 7A and 7B.
Neuroblastoma-derived SH-SY5Y cells transfected with expression cassette comprising SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0022, SP0011, SP0034, SP0035 or SP0036 operably linked to GFP were assessed for median GFP expression and percentage of GFP positive cells by flow cytometry. Expression cassettes comprising known promoters Synapsin-1 and CAG
operably linked to GFP were used as controls. All tested promoters have comparable transfection efficiency and median GFP expression to the neuronal-specific control promoter Synapsin-1 (see Fig 7A and 7B).
Control promoter CAG showed 2 to 3 times higher transfcction efficiency (Fig.
7B) and around 2.5 higher median GFP expression compared to control promoter Synapsin-1 and the tested synthetic NS-specific promoters (Fig. 7A).
[00380] Synthetic NS-specific promoter SP0028 (SEQ ID NO: 86) is a similar design to synthetic NS-specific promoter SP0019 (SEQ ID NO: 82) as both comprise identical elements. As such, SP0028 (SEQ ID NO: 86) may be expected to perform similarly to 5P0019 (SEQ ID
NO: 82).
[00381] Synthetic NS-specific promoter 5130029 (SEQ ID NO: 87) is a similar design to synthetic NS-specific promoter SP0021 (SEQ ID NO: 84) as both comprise identical elements. As such, SP0029 (SEQ ID NO: 87) may be expected to perform similarly to SP0021 (SEQ ID
NO: 84).
[00382] Synthetic NS-specific promoter SP0026 (SEQ ID NO: 76) is a similar design to synthetic NS-specific promoter SP0013 (SEQ ID NO: 74) as both comprise identical elements. As such, 5P0026 (SEQ ID NO: 76) may be expected to perform similarly to SP0013 (SEQ ID
NO: 74).
[00383] Synthetic NS-specific promoter SP0027 (SEQ ID NO: 77) is a similar design to synthetic NS-specific promoter SP0014 (SEQ ID NO: 75) as both comprise identical elements. As such, 5P0027 (SEQ ID NO: 77) may be expected to perform similarly to SP0014 (SEQ ID
NO: 75).
[00384] Synthetic NS-specific promoter SP0033 (SEQ ID NO. 81) is a similar design to SP0021 (SEQ ID NO: 84) as both comprise identical and similar elements. Therefore, SP0033 (SEQ ID NO:
81) is a shorter version of SP0021 (SEQ ID NO: 84) and, as such, may be expected to perform similarly.
[00385] Modified vector comprising-CYP46A1 or GFP and covalent mannosylation of the vector will be compared to Parental unmodified rAAV. Delivery of CYP46A1 by rAAV
drives abundant secretion of CYP46A1 from transduced neurons that can be visually detected by immunohistochemistry and quantified by EL1SA of tissue extracts. After infusion of Modified AAV-CYP46A1 into the thalamus, e.g., by convection-enhanced delivery described in US Patent application 13/146,640 or catheter delivery in monkey, the extent of CY P46A1-immunopositive staining will be assessed in the frontal cortex ipsilateral to the infusion site. The expression of CYP46A1 delivered with modified vector will be significantly enhanced as compared to un-modified vector and significantly extended from prefrontal association cortical areas (Cortical Areas 9 and 10) through the frontal eye-fields (Area 8), pre-motor cortex (Area 6), primary Somatosensory cortical areas (Areas 3, 1 and 2) to primary motor cortex (Area 4), and included expression in the cin_gulate cortex (Areas 23, 24, 32) and Broca's area (Area 44, 45). In addition to the intense staining of individual neuronal cell bodies and cellular processes, CYP46A1 staining will be observed across multiple layers of the frontal cortex with an intensity gradient that was highest in cortical Layers III
and IV, as compare to the same dose of unmodified vector.
[00386] Delivery of modified vector comprising GFP as compared to parent will also be tested in monkey model as describe in US Patent application 13/146,640. The relative amount of modified vector in the AN anterior nucleus; MD medio-dorsal nucleus; VA ventral anterior nucleus; VL ventral lateral nucleus; VP ventral posterior nucleus will be significantly higher than that of un-modified vector. In addition, modified vector is distributed widely and more efficiently throughout cortex as compared to un-modified vector. The percent of positive cells is significantly higher in each area and region as compared to parental vector. More efficient transduction of cortical layers 1-6 is also expected. Delivery to multiple lobes of the cerebral cortex or all of cortical areas 1-4, 6 and 8-10 can be achieved.
Region Area Pre-Frontal Cortex 9/10/46 Broca's Area 44/45 Frontal Eye Field 8 Secondary Motor Cortex 6 Anterior Cingulate Cortex 24/32 Somatosensory Cortex 1.2/03 Primary Motor Cortex 4 Posterior Cingulate Cortex 23/31 [00387] Surgical Delivery. Modified and un-modified rAAV vectors GFP) under the control of cytomegalovirus promoter were infused into the right thalamus of six adult Rhesus monkeys by convection enhanced delivery (CED) protocol. All experimentation is performed according to the National Institutes of Health guidelines and to the protocols approved by the Institutional Animal Care and Use Committee at the University of California San Francisco.
1003881 Immunostaining with antibodies against CYP46A1 (1:500, AF-212-NA, R&D Systems) and GFP (1:500, AB3080, Chemicon) is performed on Zamboni fixed 40-um coronal sections covering the entire frontal cortex and extending in a posterior direction to the level of the thalamus.
The localization of CYP46A1 and GFP immunopositive neurons is analyzed with reference to The Rhesus Monkey Brain in Stereotactic Coordinates to identify specific areas of immunostaining in the cortex and thalamus.
[00389] CYP46A1 Protein ELISA. Tissue punches from 3-mm coronal blocks of fresh frozen tissue are taken from a number of cortical, thalamic. Methods and Materials and striatal regions of a modified vector infused monkey. Surgical Delivery expressed is quantified by ELISA assay with a commercial ELISA kit (Emax ELISA, Promega, Wis.) human CYP46A1 clDNA or GFP
cDNA.
[00390] Next, to determine if changing the modification of a capsid enables re-administration, the modified vector comprising- CYP46A1 of Example 5 is redesigned to have a different chemical modification, but consists of the same capsid and comprises the same payload (i.e., CYP46A1) of the capsid of Example 5. An adult Rhesus monkeys are administered the first modified vector comprising- CYP46A1 of Example 2, and at 14 days post-administration, administered either a second dose of the same vector, or the redesigned modified capsid. CYP46A1 expression is assessed using the ELISA assay described above in Example 5. It was found that re-administration of the same vector has significantly reduced expression, likely due to neutralizing antibodies generated against vector following the first administration. Strikingly, expression of the redesigned vector was high and widespread, indicating that the change in modification of the capsid enabled expression of the redesigned vector.
backbone sequence.
[00352] An isolated nucleic acid encoding a transgene encoding one or more miRNAs and an isolated nucleic acid encoding a CYP46A1 protein, when administered to the same patient can provide an improved therapeutic effect than either administered alone. An isolated nucleic acid encoding a transgene encoding one or more miRNAs and an isolated nucleic acid encoding a CYP46A1 protein, when administered to the same patient can provide a synergistically (rather than an additively) improved therapeutic effect than either administered alone. The isolated nucleic acid encoding a transgene encoding one or more miRNAs and isolated nucleic acid encoding a CYP46A1 protein can be administered sequentially or concurrently to the subject, in accordance with any of the methods described herein. It is expected that, rAAV comprising CYP46A1 variant CDS (as set forth in SEQ ID NO: 110) will provide better therapeutic effect to treat neurological disease e.g Huntington's disease, than when administered rAAV comprising CYP46A1 non-variant sequence e.g as set forth in SEQ ID NO: 1. Similarly, it is expected that rAAV comprising miRNA (e.g., one or, more selected from SEQ ID NO: 6-17, or, 40-44, or 50-66) will provide better therapeutic effect to treat neurological disease e.g Huntington's disease when it is administered along with CYP46A1 variant CDS (as set forth in SEQ ID NO:110) than when it is administered along with CYP46A1 non-variant sequence e.g as set forth in SEQ ID NO: 1.
[00353] SEQ ID NO: 3 Exon 1 of human HTT gene uugcugugug aggcagaacc ugcgggggca ggggcgggcu gguucccugg ccagccauug gcagaguccg caggcuaggg cugucaauca ugcuggccgg cguggccccg ccuccgccgg cgcggccccg ccuccgccgg cgcacgucug ggacgcaagg cgccgugggg gcugccggga cggguccaag auggacggcc gcucagguuc ugcuuuuacc ugcggcccag agccccauuc auugccccgg ugcugagcgg cgccgcgagu cggcccgagg ccuccgggga cugccgugcc gggcgggaga ccgccauggc gacccuggaa aagcugauga aggccuucga gucccucaag uccuuccagc agcagcagca gcagcagcag cagcagcagc agcagcagca gcagcagcag cagcagcagc aacagccgcc accgccgccg ccgccgccgc cgccuccuca gcuuccucag ccgccgccgc aggcacagcc gcugcugccu cagccgcagc cgcccccgcc gccgcccccg ccgccacccg gcccggcugu ggcugaggag ccgcugcacc gaccgugagu uugggcccgc ugcagcuccc uguc [00354] SEQ ID NO: 4: Human HTT mRNA sequence 1 gctgccggga cgggtccaag atggacggcc gctcaggttc tgcttttacc tgcggcccag 61 agccccattc attgccccgg tgctgagcgg cgccgcgagt cggcccgagg cctccgggga 121 ctgccgtgcc gggcgggaga ccgccatggc gaccctggaa aagctgatga aggccttcga 181 gtccctcaag tccttccagc agcagcagca gcagcagcag cagcagcagc agcagcagca 241 gcagcagcag cagcagcagc aacagccgcc accgccgccg ccgccgccgc cgcctcctca 301 gcttcctcag ccgccgccgc aggcacagcc gctgctgcct cagccgcagc cgcccccgcc 361 gccgcccccg ccgccacccg gcccggctgt ggctgaggag ccgctgcacc gaccaaagaa 421 agaactttca gctaccaaga aagaccgtgt gaatcattgt ctgacaatat gtgaaaacat 481 agtggcacag tctgtcagaa attctccaga atttcagaaa cttctgggca tcgctatgga 541 actttttctg ctgtgcagtg atgacgcaga gtcagatgtc aggatggtgg ctgacgaatg 601 cctcaacaaa gttatcaaag ctttgatgga ttctaatctt ccaaggttac agctcgagct 661 ctataaggaa attaaaaaga atggtgcccc tcggagtttg cgtgctgccc tgtggaggtt 721 tgctgagctg gctcacctgg ttcggcctca gaaatgcagg ccttacctgg tgaaccttct 781 gccgtgcctg actcgaacaa gcaagagacc cgaagaatca gtccaggaga ccttggctgc 841 agctgttccc aaaattatgg cttcttttgg caattttgua -------------------------------------- ddtgdcddtg dddttaaggt 901 tttgttaaag gccttcatag cgaacctgaa gtcaagctcc cccaccattc ggcggacagc 961 ggctggatca gcagtgagca tctgccagca ctcaagaagg acacaatatt tctatagttg 1021 gctactaaat gtgctcttag gcttactcgt tcctgtcgag gatgaacact ccactctgct 1081 gattcttggc gtgctgctca ccctgaggta tttggtgccc ttgctgcagc agcaggtcaa 1141 ggacacaagc ctgaaaggca gcttcggagt gacaaggaaa gaaatggaag tctctccttc 1201 tgcagagcag cttgtccagg tttatgaact gacgttacat catacacagc accaagacca 1261 caatgttgtg accggagccc tggagctgtt gcagcagctc ttcagaacgc ctccacccga 1321 gcttctgcaa accctgaccg cagtcggggg cattgggcag ctcaccgctg ctaaggagga 1381 gtctggtggc cgaagccgta gtgggagtat tgtggaactt atagctggag ggggttcctc 1441 atgcagccct gtcctttcaa gaaaacaaaa aggcaaagtg ctcttaggag aagaagaagc 1501 cttggaggat gactctgaat cgagatcgga tgtcagcagc tctgccttaa cagcctcagt 1561 gaaggatgag atcagtggag agctggctgc ttcttcaggg gtttccactc cagggtcagc 1621 aggtcatgac atcatcacag aacagccacg gtcacagcac acactgcagg cggactcagt 1681 ggatctggcc agctgtgact tgacaagctc tgccactgat ggggatgagg aggatatctt 1741 gagccacagc tccagccagg tcagcgccgt cccatctgac cctgccatgg acctgaatga 1801 tgggacccag gcctcgtcgc ccatcagcga cagctcccag accaccaccg aagggcctga 1861 ttcagctgtt accccttcag acagttctga aattgtgtta gacggtaccg acaaccagta 1921 tttgggcctg cagattggac agccccagga tgaagatgag gaagccacag gtattcttcc 1981 tgatgaagcc tcggaggcct tcaggaactc ttccatggcc cttcaacagg cacatttatt 2041 gaaaaacatg agtcactgca ggcagccttc tgacagcagt gttgataaat ttgtgttgag 2101 agatgaagct actgaaccgg gtgatcaaga aaacaagcct tgccgcatca aaggtgacat 2161 tggacagtcc actgatgatg actctgcacc tottgtccat tgtgtccgcc ttttatctgc 2221 ttcgtttttg ctaacagggg gaaaaaatgt gctggttccg gacagggatg tgagggtcag 2281 cgtgaaggcc ctggccctca gctgtgtggg agcagctgtg gccctccacc cggaatcttt 2341 cttcagcaaa ctctataaag ttcctcttga caccacggaa taccctgagg aacagtatgt 2401 ctcagacatc ttgaactaca tcgatcatgg agacccacag gttcgaggag ccactgccat 2461 totctgtggg accctcatct gctccatcct cagcaggtcc cgcttccacg tgggagattg 2521 gatgggcacc attagaaccc tcacaggaaa tacattttct ttggcggatt gcattccttt 2581 gctgcggaaa acactgaagg atgagtcttc tgttacttgc aagttagctt gtacagctgt 2641 gaggaactgt gtcatgagtc tctgcagcag cagctacagt gagttaggac tgcagctgat 2701 catcgatgtg ctgactctga ggaacagttc ctattggctg gtgaggacag agcttctgga 2761 aacccttgca gagattgact tcaggctggt gagctttttg gaggcaaaag cagaaaactt 2821 acacagaggg gctcatcatt atacagggct tttaaaactg caagaacgag tgctcaataa 2881 tgttgtcatc catttgcttg gagatgaaga ccccagggtg cgacatgttg ccgcagcatc 2941 actaattagg cttgtcccaa agctgtttta taaatgtgac caaggacaag ctgatccagt 3001 agtggccgtg gcaagagatc aaagcagtgt ttacctgaaa cttctcatgc atgagacgca 3061 gcctccatct catttctccg tcagcacaat aaccagaata tatagaggct ataacctact 3121 accaagcata acagacgtca ctatggaaaa taacctttca agagttattg cagcagtttc 3181 tcatgaacta atcacatcaa ccaccagagc actcacattt ggatgctgtg aagctttgtg 3241 tcttctttcc actgccttcc cagtttgcat ttggagttta ggttggcact gtggagtgcc 3301 tccactgagt gcctcagatg agtctaggaa gagctgtacc gttgggatgg ccacaatgat 3361 tctgaccctg ctctcgtcag cttggttccc attggatctc tcagcccatc aagatgcttt 3421 gattttggcc ggaaacttgc ttgcagccag tgctcccaaa tctctgagaa gttcatgggc 3481 ctctgaagaa gaagccaacc cagcagccac caagcaagag gaggtctggc cagccctggg 3541 ggaccgggcc ctggtgccca tggtggagca gctcttctct cacctgctga aggtgattaa 3601 catttgtgcc cacgtcctgg atgacgtggc tcctggaccc gcaataaagg cagccttgcc 3661 ttctctaaca aacccccctt ctctaagtcc catccgacga aaggggaagg agaaagaacc 3721 aggagaacaa gcatctgtac cgttgagtcc caagaaaggc agtgaggcca gtgcagcttc 3781 tagacaatct gatacctcag gtcctgttac aacaagtaaa tcctcatcac tggggagttt 3841 ctatcatctt ccttcatacc tcaaactgca tgatgtcctg aaagctacac acgctaacta 3901 caaggtcacg ctggatcttc agaacagcac ggaaaagttt ggagggtttc tccgctcagc 3961 cttggatgtt ctttctcaga tactagagct ggccacactg caggacattg ggaagtgtgt 4021 tgaagagatc ctaggatacc tgaaatcctg ctttagtcga gaaccaatga tggcaactgt 4081 ttgtgttcaa caattgttga agactctott tggcacaaac ttggcctccc agtttgatgg 4141 cttatcttcc aaccccagca agtcacaagg ccgagcacag cgccttggct cctccagtgt 4201 gaggccaggc ttgtaccact actgcttcat ggccccgtac acccacttca cccaggccct 4261 cgctgacgcc agcctgagga acatggtgca ggcggagcag gagaacgaca cctcgggatg 4321 gtttgatgtc ctccagaaag tgtctaccca gttgaagaca aacctcacga gtgtcacaaa 4381 gaaccgtgca gataagaatg ctattcataa tcacattcgt ttgtttgaac ctcttgttat 4441 aaaagcttta aaacagtaca cgactacaac atgtgtgcag ttacagaagc aggttttaga 4501 tttgctggcg cagctggttc agttacgggt taattactgt cttctggatt cagatcaggt 4561 gtttattggc tttgtattga aacagtttga atacattgaa gtgggccagt tcagggaatc 4621 agaggcaatc attccaaaca tctttttctt cttggtatta ctatcttatg aacgctatca 4681 ttcaaaacag atcattggaa ttcctaaaat cattcagctc tgtgatggca tcatggccag 4741 tggaaggaag gctgtgacac atgccatacc ggctctgcag cccatagtcc acgacctctt 4801 tgtattaaga ggaacaaata aagctgatgc aggaaaagag cttgaaaccc aaaaagaggt 4861 ggtggtgtca atgttactga gactcatcca gtaccatcag gtgttggaga tgttcattct 4921 tgtcctgcag cagtgccaca aggagaatga agacaagtgg aagcgactgt ctcgacagat 4981 agctgacatc atcctcccaa tgttagccaa acagcagatg cacattgact ctcatgaagc 5041 ccttggagtg ttaaatacat tatttgagat tttggcccct tcctccctcc gtccggtaga 5101 catgctttta cggagtatgt tcgtcactcc aaacacaatg gcgtccgtga gcactgttca 5161 actgtggata tcgggaattc tggccatttt gagggttctg atttcccagt caactgaaga 5221 tattgttctt tctcgtattc aggagctctc cttctctccg tatttaatct cctgtacagt 5281 aattaatagg ttaagagatg gggacagtac ttcaacgcta gaagaacaca gtgaagggaa 5341 acaaataaag aatttgccag aagaaacatt ttcaaggttt ctattacaac tggttggtat 5401 tcttttagaa gacattgtta caaaacagct gaaggtggaa atgagtgagc agcaacatac 5461 tttctattgc caggaactag gcacactgct aatgtgtctg atccacatct tcaagtctgg 5521 aatgttccgg agaatcacag cagctgccac taggctgttc cgcagtgatg gctgtggcgg 5581 cagtttctac accctggaca gcttgaactt gcgggctcgt tccatgatca ccacccaccc 5641 ggccctggtg ctgctctggt gtcagatact gctgcttgtc aaccacaccg actaccgctg 5701 gtgggcagaa gtgcagcaga ccccgaaaag acacagtctg tccagcacaa agttacttag 5761 tccccagatg tctggagaag aggaggattc tgacttggca gccaaacttg gaatgtgcaa 5821 tagagaaata gtacgaagag gggctctcat tctcttctgt gattatgtct gtcagaacct 5881 ccatgactcc gagcacttaa cgtggctcat tgtaaatcac attcaagatc tgatcagcct 5941 ttcccacgag cctccagtac aggacttcat cagtgccgtt catcggaact ctgctgccag 6001 cggcctgttc atccaggcaa ttcagtctcg ttgtgaaaac ctttcaactc caaccatgct 6061 gaagaaaact cttcagtgct tggaggggat ccatctcagc cagtcgggag ctgtgctcac 6121 gctgtatgtg gacaggcttc tgtgcacccc tttccgtgtg ctggctcgca tggtcgacat 6181 ccttgcttgt cgccgggtag aaatgcttct ggctgcaaat ttacagagca gcatggccca 6241 gttgccaatg gaagaactca acagaatcca ggaatacctt cagagcagcg ggctcgctca 6301 gagacaccaa aggctctatt ccctgctgga caggtttcgt ctctccacca tgcaagactc 6361 acttagtccc tctcctccag tctcttccca cccgctggac ggggatgggc acgtgtcact 6421 ggaaacagtg agtccggaca aagactggta cgttcatctt gtcaaatccc agtgttggac 6481 caggtcagat tctgcactgc tggaaggtgc agagctggtg aatcggattc ctgctgaaga 6541 tatgaatgcc ttcatgatga actcggagtt caacctaagc ctgctagctc catgcttaag 6601 cctagggatg agtgaaattt ctggtggcca gaagagtgcc ctttttgaag cagcccgtga 6661 ggtgactctg gcccgtgtga gcggcaccgt gcagcagctc cctgctgtcc atcatgtctt 6721 ccagcccgag ctgcctgcag agccggcggc ctactggagc aagttgaatg atctgtttgg 6781 ggatgctgca ctgtatcagt ccctgcccac tctggcccgg gccctggcac agtacctggt 6841 ggtggtctcc aaactgccca gtcatttgca ccttcctcct gagaaagaga aggacattgt 6901 gaaattcgtg gtggcaaccc ttgaggccct gtcctggcat ttgatccatg agcagatccc 6961 gctgagtctg gatctccagg cagggctgga ctgctgctgc ctggccctgc agctgcctgg 7021 cctctggagc gtggtctcct ccacagagtt tgtgacccac gcctgctccc tcatctactg 7081 tgtgcacttc atcctggagg ccgttgcagt gcagcctgga gagcagcttc ttagtccaga 7141 aagaaggaca aataccccaa aagccatcag cgaggaggag gaggaagtag atccaaacac 7201 acagaatcct aagtatatca ctgcagcctg tgagatggtg gcagaaatgg tggagtctct 7261 gcagtoggtg ttggccttgg gtcataaaag gaatagcggc gtgccggcgt ttctcacgcc 7321 attgctaagg aacatcatca tcagcctggc ccgcctgccc cttgtcaaca gctacacacg 7381 tgtgccccca ctggtgtgga agcttggatg gtcacccaaa ccgggagggg attttggcac 7441 agcattccct gagatccccg tggagttcct ccaggaaaag gaagtcttta aggagttcat 7501 ctaccgcatc aacacactag gctggaccag tcgtactcag tttgaagaaa cttgggccac 7561 cctccttggt gtcctggtga cgcagcccct cgtgatggag caggaggaga gcccaccaga 7621 agaagacaca gagaggaccc agatcaacgt cctggccgtg caggccatca cctcactggt 7681 gctcagtgca atgactgtgc ctgtggccgg caacccagct gtaagctgct tggagcagca 7741 gccccggaac aagcctctga aagctctcga caccaggttt gggaggaagc tgagcattat 7801 cagagggatt gtggagcaag agattcaagc aatggtttca aagagagaga atattgccac 7861 ccatcattta tatcaggcat gggatcctgt cccttctctg totccggcta ctacaggtgc 7921 cctcatcagc cacgagaagc tgctgctaca gatcaacccc gagcgggagc tggggagcat 7981 gagctacaaa ctcggccagg tgtccataca ctccgtgtgg ctggggaaca gcatcacacc 8041 cctgagggag gaggaatggg acgaggaaga ggaggaggag gccgacgccc ctgcaccttc 8101 gtcaccaccc acgtctccag tcaactccag gaaacaccgg gctggagttg acatccactc 8161 ctgttcgcag tttttgcttg agttgtacag ccgctggatc ctgccgtcca gctcagccag 8221 gaggaccccg gccatcctga tcagtgaggt ggtcagatcc cttctagtgg tctcagactt 8281 gttcaccgag cgcaaccagt ttgagctgat gtatgtgacg ctgacagaac tgcgaagggt 8341 gcacccttca gaagacgaga tcctcgctca gtacctggtg cctgccacct gcaaggcagc 8401 tgccgtcctt gggatggaca aggccgtggc ggagcctgtc agccgcctgc tggagagcac 8461 gctcaggagc agccacctgc ccagcagggt tggagccctg cacggcgtcc tctatgtgct 8521 ggagtgcgac ctgctggacg acactgccaa gcagctcatc ccggtcatca gcgactatct 8581 cctctccaac ctgaaaggga tcgcccactg cgtgaacatt cacagccagc agcacgtact 8641 ggtcatgtgt gccactgcgt tttacctcat tgagaactat cctctggacg tagggccgga 8701 attttcagca tcaataatac agatgtgtgg ggtgatgctg tctggaagtg aggagtccac 8761 cccctccatc atttaccact gtgccctcag aggcctggag cgcctcctgc tctctgagca 8821 gctctcccgc ctggatgcag aatcgctggt caagctgagt gtggacagag tgaacgtgca 8881 cagcccgcac cgggccatgg cggctctggg cctgatgctc acctgcatgt acacaggaaa 8941 ggagaaagtc agtccgggta gaacttcaga ccctaatcct gcagcccccg acagcgagtc 9001 agtgattgtt gctatggagc gggtatctgt tctttttgat aggatcagga aaggctttcc 9061 ttgtgaagcc agagtggtgg ccaggatcct gccccagttt ctagacgact tcttcccacc 9121 ccaggacatc atgaacaaag tcatcggaga gtttctgtcc aaccagcagc cataccccca 9181 gttcatggcc accgtggtgt ataaggtgtt tcagactctg cacagcaccg ggcagtcgtc 9241 catggtccgg gactgggtca tgctgtccct ctccaacttc acgcagaggg ccccggtcgc 9301 catggccacg tggagcctct cctgcttctt tgtcagcgcg tccaccagcc cgtgggtcgc 9361 ggcgatcctc ccacatgtca tcagcaggat gggcaagctg gagcaggtgg acgtgaacct 9421 tttctgcctg gtcgccacag acttctacag acaccagata gaggaggagc tcgaccgcag 9481 ggccttccag tctgtgcttg aggtggttgc agccccagga agcccatatc accggctgct 9541 gacttgttta cgaaatgtcc acaaggtcac cacctgctga gcgccatggt gggagagact 9601 gtgaggcggc agctggggcc ggagcctttg gaagtctgcg cccttgtgcc ctgcctccac 9661 cgagccagct tggtccctat gggcttccgc acatgccgcg ggcggccagg caacgtgcgt 9721 gtctctgcca tgtggcagaa gtgctctttg tggcagtggc caggcaggga gtgtctgcag 9781 tcctggtggg gctgagcctg aggccttcca gaaagcagga gcagctgtgc tgcaccccat 9841 gtgggtgacc aggtcctttc tcctgatagt cacctgctgg ttgttgccag gttgcagctg 9901 ctcttgcatc tgggccagaa gtcctccctc ctgcaggctg gctgttggcc cctctgctgt 9961 cctgcagtag aaggtgccgt gagcaggctt tgggaacact ggcctgggtc tccctggtgg 10021 ggtgtgcatg ccacgccccg tgtctggatg cacagatgcc atggcctgtg ctgggccagt 10081 ggctgggggt gctagacacc cggcaccatt ctcccttctc tcttttcttc tcaggattta 10141 aaatttaatt atatcagtaa agagattaat tttaacgtaa ctctttctat gcccgtgtaa 10201 agtatgtgaa tcgcaaggcc tgtgctgcat gcgacagcgt ccggggtggt ggacagggcc 10261 cccggccacg ctccctctcc tgtagccact ggcatagccc tcctgagcac ccgctgacat 10321 ttccgttgta catgttcctg tttatgcatt cacaaggtga ctgggatgta gagaggcgtt 10381 agtgggcagg tggccacagc aggactgagg acaggccccc attatcctag gggtgcgctc 10441 acctgcagcc cctcctcctc gggcacagac gactgtcgtt ctccacccac cagtcaggga 10501 cagcagcctc cctgtcactc agctgagaag gccagccctc cctggctgtg agcagcctcc 10561 actgtgtcca gagacatggg cctcccactc ctgttccttg ctagccctgg ggtggcgtct 10621 gcctaggagc tggctggcag gtgttgggac ctgctgctcc atggatgcat gccctaagag 10681 tgtcactgag ctgtgttttg tctgagcctc tctoggtcaa cagcaaagct tggtgtcttg 10741 gcactgttag tgacagagcc cagcatccct tctgcccccg ttccagctga catcttgcac 10801 ggtgacccct tttagtcagg agagtgcaga tctgtgctca tcggagactg ccccacggcc 10861 ctgtcagagc cgccactcct atccccaggc caggtccctg gaccagcctc ctgtttgcag 10921 gcccagagga gccaagtcat taaaatggaa gtggattctg gatggccggg ctgctgctga 10981 tgtaggagct ggatttggga gctctgcttg ccgactggct gtgagacgag gcaggggctc 11041 tgcttcctca gccctagagg cgagccaggc aaggttggcg actgtcatgt ggcttggttt 11101 ggtcatgccc gtcgatgttt tgggtattga atgtggtaag tggaggaaat gttggaactc 11161 tgtgcaggtg ctgccttgag acccccaagc ttccacctgt ccctctccta tgtggcagct 11221 ggggagcagc tgagatgtgg acttgtatgc tgcccacata cgtgaggggg agctgaaagg 11281 gagcccctcc totgaggagc ctctgccagg cctgtatgag gcttttccca ccagctccca 11341 acagaggcct cccccagcca ggaccacctc gtcctcgtgg cggggcagca ggagcggtag 11401 aaaggggtcc gatgtttgag gaggccctta agggaagcta ctgaattata acacgtaaga 11461 aaatcaccat tccgtattgg ttgggggctc ctgtttctca tcctagcttt ttcctggaaa 11521 gcccgctaga aggtttggga acgaggggaa agttctcaga actgttggct gctccccacc 11581 cgcctcccgc ctcccccgca ggttatgtca gcagctctga gacagcagta tcacaggcca 11641 gatgttgttc ctggctagat gtttacattt gtaagaaata acactgtgaa tgtaaaacag 11701 agccattccc ttggaatgca tatcgctggg ctcaacatag agtttgtctt cctcttgttt 11761 acgacgtgat ctaaaccagt cottagcaag gggctcagaa caccccgctc tggcagtagg 11821 tgtcccccac ccccaaagac ctgcctgtgt gctccggaga tgaatatgag ctcattagta 11881 aaaatgactt cacccacgca tatacataaa gtatccatgc atgtgcatat agacacatct 11941 ataattttac acacacacct ctcaagacgg agatgcatgg cctctaagag tgcccgtgtc 12001 ggttcttcct ggaagttgac tttccttaga cccgccaggt caagttagcc gcgtgacgga 12061 catccaggcg tgggacgtgg tcagggcagg gctcattcat tgcccactag gatcccactg 12121 gcgaagatgg tctccatatc agctctctgc agaagggagg aagactttat catgttccta 12181 aaaatctgtg gcaagcaccc atcgtattat ccaaattttg ttgcaaatgt gattaatttg 12241 gttgtcaagt tttgggggtg ggctgtgggg agattgcttt tgttttcctg ctggtaatat 12301 cgggaaagat tttaatgaaa ccagggtaga attgtttggc aatgcactga agcgtgtttc 12361 tttcccaaaa tgtgcctccc ttccgctgcg ggcccagctg agtctatgta ggtgatgttt 12421 ccagctgcca agtgctcttt gttactgtcc accctcattt ctgccagcgc atgtgtcctt 12481 tcaaggggaa aatgtgaagc tgaaccccct ccagacaccc agaatgtagc atctgagaag 12541 gccctgtgcc ctaaaggaca cccctcgccc ccatcttcat ggagggggtc atttcagagc 12601 cctcggagcc aatgaacagc tcctcctctt ggagctgaga tgagccccac gtggagctcg 12661 ggacggatag tagacagcaa taactcggtg tgtggccgcc tggcaggtgg aacttcctcc 12721 cgttgcgggg tggagtgagg ttagttctgt gtgtctggtg ggtggagtca ggcttctctt 12781 gctacctgtg agcatccttc ccagcagaca tcctcatcgg gctttgtccc tcccccgctt 12841 cctccctctg cggggaggac ccgggaccac agctgctggc cagggtagac ttggagctgt 12901 cctccagagg ggtcacgtgt aggagtgaga agaaggaaga tcttgagagc tgctgaggga 12961 ccttggagag ctcaggatgg ctcagacgag gacactcgct tgccgggcct gggcctcctg 13021 ggaaggaggg agctgctcag aatgccgcat gacaactgaa ggcaacctgg aaggttcagg 13081 ggccgctctt cccccatgtg cctgtcacgc tctggtgcag tcaaaggaac gccttcccct 13141 cagttgtttc taagagcaga gtctcccgct gcaatctggg tggtaactgc cagccttgga 13201 ggatcgtggc caacgtggac ctgcctacgg agggtgggct ctgacccaag tggggcctcc 13261 ttgtccaggt ctcactgctt tgcaccgtgg tcagagggac tgtcagctga gcttgagctc 13321 ccctggagcc agcagggctg tgatgggcga gtcccggagc cccacccaga cctgaatgct 13381 tctgagagca aagggaagga ctgacgagag atgtatattt aattttttaa ctgctgcaaa 13441 cattgtacat ccaaattaaa ggaaaaaaat ggaaaccatc aaaaaaaaaa aaaaaaaa 1003551 SEQ ID NO: 5 Human HTT protein sequence 1 matleklmka feslksfqqq qqqqqqqqqq qqqqqqqqqq pppppppppp pqlpqpppqa 61 gpllpqpqpp ppppppppgp avaeeplhrp kkelsatkkd rvnhcltice nivagsvrns 121 pefqkllgia melfllcsdd aesdvrmvad ec1nkvikal mdsnlprlql elykeikkng 181 aprslraalw rfaelahlvr pqkcrpylvn 11pcltrtsk rpeesvget1 aaavpkimas 241 fgnfandnei kvllkafian lksssptirr taagsaysic ghsrrtgyfy swllnvllgl 301 1vpvedehst 11i1gv11t1 rylvp11qqg vkdts1kgsf gvtrkemevs psaecilvqvy 361 eltlhhtqhq dhnvvtgale llqqlfrtpp pe11qtltav ggigqltaak eesggrsrsg 421 siveliaggg sscspvlsrk qkgkvllgee ea1edd5e5r sdvsssalta svkdeisgel 481 aassgvstpg saghdiiteq prsqhtlqad svdlascdlt ssatdgdeed ilshsssqvs 541 avpsdpamdl ndgtqasspi sdssqttteg pdsavtpsds seivldgtdn gylglgiggp 601 qdedeeatgi 1pdeaseafr nssmalqqah llknmshcrq psdssvdkfv lrdeatepgd 661 genkperikg digqstddds aplvhcvr11 sasflltggk nvlvpdrdvr vsvkalalsc 721 vgaavalhpe sffsklykvp ldtteypeeq yvsdilnyid hgdpqvrgat ailcgtlics 781 ilsrsrfhvg dwmgtirt1t gntfsladci p11rktlkde ssvtcklact avrncvmslc 841 sssyselglq liidvltlrn ssywlvrtel letlaeidfr lvsfleakae nlhrgahhyt 901 gllklgervl nnvvihllgd edprvrhvaa as1irlvpk1 fykcdqgqad pvvavardqs 961 svylkllmhe tqppshfsys titriyrgyn llpsitdvtm ennlsrviaa vshelitstt 1021 raltfgccea lcllstafpv ciwslgwhcg vpplsasdes rksctvgmat miltllssaw 1081 fpldlsahqd alilagnlla asapkslrss waseeeanpa atkqeevwpa lgdralvpmv 1141 eqlfshllkv inicahvldd vapgpaikaa 1psltnppsl spirrkgkek epgegasvp1 1201 spkkgseasa asrqsdtsgp vttsksss1g sfyhlpsylk 1hdv1katha nykvt1d1qn 1261 stekfggflr saldvlsqil elatlqdiqk cveeilgylk scfsrepmma tvcvgglikt 1321 lfgtnlasqf dglssnpsks ggragrlgss svrpglyhyc fmapythftq aladaslrnm 1381 vgaegendts gwfdvlqkvs tqlktnitsv tknradknai hnhirlfepl vikalkqytt 1441 ttcvqlqkqv ldllaglvq1 rvnyclldsd qvfigfvlkq feyievgqfr eseaiipnif 1501 fflvllsyer yhskgligip kliqlcdgim asgrkavtha ipalqpivhd lfvlrgtnka 1561 dagkeletqk evvvsmllrl igyhqvlemf ilvlqqchke nedkwkrlsr giadiilpml 1621 akqqmhidsh ealgvintlf eilapss1rp vdm11rsmfy tpntmasyst vq1wisgila 1681 ilrvlisqst edivlsriqe lsfspylisc tvinr1rdgd ststleehse gkqiknlpee 1741 tfsrfllqlv gilledivtk qlkvemseqg htfyccielgt llmclihifk sgmfrritaa 1801 atrlfrsdgc ggsfytldsl nlrarsmitt hpalvllwcq illlvnhtdy rwwaevqqtp 1861 krhslsstkl lspqmsgeee dsdiaakigm cnreivrrga lilfcdyvcq nlhdsehltw 1921 livnhiqdli slsheppvqd fisavhrnsa asglfigaig srcenlstpt mlkktlqcle 1981 gihlsqsgav ltlyvdr1lc tpfrvlarmv di1acrrvem llaanlqssm aqlpmeelnr 2041 igeylcissgl acirhgrlysl ldrfrlstmq ds1spsppvs shpldgdghv sletvspdkd 2101 wyvhlvksqc wtrsdsalle gaelvnripa edmnafmmns efnlsllapc 1s1gmseisg 2161 gqksalfeaa revtlarvsg tvqqlpavhh vfqpelpaep aaywsklndl fgdaalyqs1 2221 ptlaralaqy lvvvsklpsh lhlppekekd ivkfvvatle alswhliheq iplsldlqag 2281 ldccclalql pglwsvvsst efvthacsli ycvhfileav avqpgeglls perrtntpka 2341 iseeeeevdp ntqnpkyita acemvaemve slqsvlalgh krnsgvpafl tpllrniiis 2401 larlplvnsy trvpplvwkl gwspkpggdf gtafpeipve flqekevfke fiyrintlgw 2461 tsrtqfeetw atllgvlvtq plvmeqeesp peedtertqi nvlavqaits lvlsamtvpv 2521 agnpayscle qqprnkplka ldtrfgrk1s iirgiveqei qamvskreni athhlyqawd 2581 pvpslspatt galishekll lqinperelg smsyklgqvs ihsvwlgnsi tplreeewde 2641 eeeeeadapa psspptspvn srkhragvdi hscsqfllel ysrwilpsss arrtpailis 2701 evvrsllvvs dlfternqfe lmyvtltelr rvhpsedeil agylvpatck aaavlgmdka 2761 vaepvsrlle stlrsshlps rvgalhgvly vlecdllddt akcilipvisd yllsnlkgia 2821 hcvnihsqqh vlvmcatafy lienypldvg pefsasiiqm cgvmlsgsee stpsiiyhca 2881 1rgler111s eqlsrldaes 1vklsvdrvn vhsphramaa 1g1m1tcmyt gkekvspgrt 2941 sdpnpaapds esvivamery svlfdrirkg fpcearvvar ilpqflddff ppqdimnkvi 3001 geflsnqqpy pqfmatvvyk vfqtlhstgq ssmvrdwvml slsnftqrap vamatwslsc 3061 ffvsastspw vaailphvis rmgkleqvdv nlfclvatdf yrhqieeeld rrafqsvlev 3121 vaapgspyhr lltclrnvhk vttc [00356] SEQ ID NO: 109 CYP46A1 variant MSPGLLLLGSAVLLAFGLCCTFVHRARSRYEHIPGPPRP SFLLGH
LPCFWKKDEVGGRVLQDVFLDWAKKYGPVVRVNVFHKTSVIVTSPESVKKFLMSTKYNK
DSKMYRALQTVFGERLFGQGLVSECNYERWHKQRRVIDLAF SRSSLVSLMETFNEKAEQ
LVEILEAKADGQTPVSMQDMLTYTAMDILAKAAFGMETSMLLGAQKPL SQAVKLMLEGI
TA SRNTLAKFLPGKR KQLREVRESIRFLRQVGRDWVQRRREALKRGEEVPADILTQILK
AELGAQDDEGLLDNFVTFFIAGHETSANHLAFTVMEL SRQPEIVARLQAEVD EVIG SKR
YLDFEDLGRLQYL S QVLKESLRLYPPAWGTFRLLEEETLIDGVRVPGNTPLLF STYVMG
RMDTYFEDPLTFNPDRFGPGAPKPRFTYFPFSLGHR SCIGQQF A QMEVKVVMAKLLQRL
EFRLVPGQRFGLQEQATLKPLDPVLCTLRPRGWQPAPPPPPC
[00357] SEQ ID NO: 110 CYP46A 1 variant CDS
atgagc cccgggctgctgctg ctcggtag cgccgtc ctg ctcgccttcggcctctgctg caccttcgtgcaccgcg ctcg cagccgct acgagcacatc cccgggccgccgcggcccagtttccttctaggacacctcccctgcttttggaaaaaggatgaggttggtggccgtgt gctccaagatgtgtttCtAgattgggctaagaagtatggacctgtAgtgcgggtcaacgtettccacaaaacctcagtc atcgtcacg agtcctgagtcggttaagaagttcctgatgtcaaccaagtacaacaaggactccaagatgtaccgtgcgctccagactg tgtttggtga gagactcttcggccaaggettggtgtccgaatgcaactatgagcgctggcacaagcagoggagagtGatagacctggcc ttcagcc ggagctc cttggttagcttaatggaaacattcaacgaAaaggctgagcagctggtggagattctagaagccaaggc agatgggcag acc cc TgtGAGC atgcaggacatgctgacctacaccgc catggacatcctgg cc aaggcagctrttgggatgg agaccagtatg ctgctgggtgcccagaagc ctctgtcccaggcagtga aacttatgttggagggaatc actgcgtcc cgcaacactctggcaaagttcct gcc agggaagaggaagcagctccgggaggtc cgggagag c attcgcttcctgcgc c aggtgggcagggactgggtc cagcgcc gccgggaagccctgaagaggggcgaggaggttc ctgccgac atcctcacacagattctgaaagctgaagagggagcccaggacg acgagggtctgctggacaacttcgtcaccttcttcattgctggtcacgagacctctgccaac cacttggcgttc acagtgatggagctgt ctcgccagccagagatcgtggcaaggctgcaggccgaggtggatgaAgtGattggttctaagaggtacctggatttcga ggacctg gggagactgcagtacctgtcccaggtcctcaaagagtcgctgaggctgtacccaccagcatggggcacctttAGGctgc tggaag aggagaccttgattgatggggtGagagtccccggcaacacc ccgctcttgttcagcacctatgtGatggggcggatggacacatact ttgaggac ccgctgactttcaacc cc gatcgcttcggcc ctggagc accc aagccacggttcacctacttcc ccttctccctggg cc ac cgctcctgcatcgggcagcagtttgctcagatggaggtgaaggtggtcatggcaaagctgctgcagaggctggagttcc ggctggtg cccgggcagcgcttcgggctgcaggagcaggccacactcaagccactggaccccgtgctgtgcaccctgcggccccgcg gctgg cagcccgcacccccaccacccccctgc [00358] The synthetic NS-specific promoters according to the present invention were designed through reviewing scientific literature to identify genes and their respective promoters which are highly active in NS cells.
[00359] During the design of these promoters, particular shortcomings of known NS-specific promoters were considered. First of all, known NS-specific promoters which are specific for a NS cell type (e.g. Synapsin-1, CAMKIIa and GFAP) are not expressed in the whole cellular population (e.g.
not expressed in all neurones/astrocytes). This has been shown for GFAP by (Zhang et al., 2019) and can be seen from distribution of Syn-1 in neurones from the Allen brain atlas.
Secondly, the majority of the known CREs, promoter elements and promoters are too large to be included in a self-complementary AAV vector (scAAV) (depending on the size of the transgene, the size of the promoter may need to be less than 1000 bp, preferably less than 900 bp, more preferably less than 800 bp, most preferably less than 700 bp). Additionally, expression may be required in a specific cell type or a combination of cell types across the entire NS, suitably the entire CNS
or the entire brain.
[00360] Currently known promoters are not able to address these shortcomings and there is a need in gene therapy to develop short, cell-type NS-specific promoters both with targeted localised expression and also with expression across the entire NS. For example, the requirement for an expression across the entire NS (e.g. the entire brain) is highlighted by the expression pattern of the HTT (huntingtin) and CYP46A1 genes in the adult mouse brain shown in Fig. 6A
and Fig. 6B. Since the HTT (huntingtin) gene is expressed throughout the brain, it may be beneficial for any potential expression product suppressing the faulty huntingtin gene and/or counteracting or alleviating the detrimental effects of the faulty huntingtin to be expressed throughout the brain. Similarly, since the CYP46A1 gene is expressed throughout the brain, it may be beneficial for any potential supplementary CYP46A1 expression to be throughout the brain.
[00361] Gene expression in all neurons as well as astrocytes and/or oligodendrocytes across the CNS may be desirable in treatment of some diseases such as Huntington's disease. Expression in astrocytcs and oligodendrocytes may be beneficial as glial cells arc implicated in Huntington's disease (Shine! al., 2005).
[00362] Therefore, the present invention sets out to design tandem NS promoters which arc active in multiple NS cell types while addressing some of the shortcomings listed above. For example, the promoter design involved combination of one or more CRE together with a promoter element in order to broaden the cell tropism compared to the individual CRE/promoter element in order to create promoters active in multiple NS cell types and also to address the drawback of known promoters not being expressed in the whole cellular population. Additionally, in order to address the drawback of known CREs, promoter elements and promoters being too large to be included in an AAV vector such as self-complementary AAV vector (scAAV), some of the CREs and promoter elements of the present invention have been shortened using bioinformatic analysis, literature searching and publicly available genomic databases but are still expected to be active CREs and promoter elements.
1003631 The synthetic NS-specific promoters according to the present invention are operably linked to a nucleic acid sequence encoding the CYP46A1 transgene and a Human influenza hcmagglutinin (HA) tag and experimentally tested in w-ildtypc C57BL6/J mice.
The synthetic NS-specific promoters according to the present invention operably linked to a nucleic acid sequence encoding the CYP46A1 transgene and a HA tag are administered intravenously in a viral vector.
Vector copy number will be assessed in brain and spinal cord tissue sections by qPCR analysis of the viral transgene CYP46A1 normalised to internal genomic DNA copy number control to confirm equivalent injected doses. Western blot will be performed to assess the protein expression of the HA
tagged transgene in the brain and spinal cord tissue. Finally, immunofluorescent staining will be performed on brain and spinal cord tissue sections to assess the expression of the transgene within CNS cell typcs. Similarly, immunofluorescent staining can be performed on PNS
tissue sections to assess the expression of the transgene within PNS cell types. Specifically, double staining will be performed using the HA tag to mark CYP46A1 gene expression and standard markers for neurones, astrocytes, oligodendrocytes and microglia.
[00364] SP0013 (SEQ ID NO: 74) is predicted to be active in neurones and astrocytes. SP0014 (SEQ ID NO: 75) is predicted to be active in neurones and astrocytes. SP0026 (SEQ ID NO: 76) is predicted to be active in excitatory neurones and astrocytes. SP0027 (SEQ ID
NO: 77) is predicted to be active in excitatory neurones and astrocytes. SP0030 (SEQ ID NO: 78) is predicted to be active in neurones and astrocytes. SP0031 (SEQ ID NO: 79) is predicted to be active in neurones and astrocytes. SP0032 (SEQ ID NO: 80) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0033 (SEQ ID NO: 81) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0019 (SEQ ID NO: 82) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0020 (SEQ ID NO: 83) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0021 (SEQ ID NO: 84) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0022 (SEQ ID NO: 85) is predicted to be active in neurones, astrocytes and oligodendrocytes. SP0028 (SEQ ID NO: 86) is predicted to be active in excitatory neurones, astrocytcs and oligodendrocytcs. SP0029 (SEQ ID NO: 87) is predicted to bc active in excitatory neurones, astrocytes and oligodendrocytes. SP0011 (SEQ ID NO: 88) is predicted to be active in neurones and astrocytes. SP0034 (SEQ ID NO: 89) is predicted to be active in neurones and astrocytes. SP0035 (SEQ ID NO: 90) is predicted to be active in neurones and astrocytes. SP0036 (SEQ ID NO: 154) is predicted to be active in neurones and astrocytes.
[00365] Bioinformatic analysis of RNA sequencing data predicts that some of the genes associated with the CREs and/or promoter elements of the present invention (aqp4, cendl, eno2, gfap, ,s100B, ,syn 1) are expressed in the dorsal root ganglion and tibial nerve.
Therefore, CREs and/or promoter elements associated with these genes are predicted to be expressed in cells of the PNS.
CRE0001 SlOOB (SEQ ID NO: 106), CRE0002_S100B (SEQ ID NO: 108), CRE0005 GFAP
(SEQ
ID NO: 103), CRE0007 GFAP (SEQ ID NO: 104), CRE0009 SlOOB (SEQ ID NO: 107), CRE0006 GFAP (SEQ ID NO: 99), CRE0008 GFAP (SEQ ID NO: 100), CRE0006 AQP4 (SEQ
ID
NO: 101), CRE0008_AQP4 (SEQ ID NO: 102), or functional variants thereof arc predicted to be active in cells of the PNS.
[00366] Bioinfomiatic analysis of single cell RNA sequencing data predicts that some of the genes associated with the CREs and/or promoter elements of the present invention (aqp4, eend 1, eno2, gfap, s100B, synl) are expressed in sensory neurones, PNS sympathetic neurones and PNS
enteric neurones. Therefore, CREs and/or promoter elements associated with these genes are predicted to be expressed in sensory neurones, PNS sympathetic neurones and PNS enteric neurones.
CRE0001 SlOOB (SEQ ID NO: 106), CRE0002_S100B (SEQ ID NO: 108), CRE0005 GFAP
(SEQ
ID NO: 103), CRE0007_GFAP (SEQ ID NO: 104), CRE0009_S100B (SEQ ID NO: 107), CRE0006 GFAP (SEQ ID NO: 99), CRE0008 GFAP (SEQ ID NO: 100), CRE0006 AQP4 (SEQ
ID
NO: 101), CRE0008_AQP4 (SEQ ID NO: 102), or functional variants thereof are predicted to be active in sensory neurones. PNS sympathetic neurones and/or PNS enteric neurones.
[00367] Described herein in is a method of manufacturing viral vectors from ProlO/HEK293 cells that have been engineered to stably integrate the CYP46A1 gene.
[00368] The stable cell line, ProlO/HEK293, as described in U.S.
Patent Number 9,441,206, is ideal for scalable production of AAV vectors. This cell line can be contacted with an expression vector comprising CYP46A1 gene operatively linked to any NS-specific promoter described herein, for example as described in Tables 10-15, or variants thereof Clonal populations haying CYP46A1 integrated into their genome are selected using methods well known in the art.
ProlO/HEK293 cells stably encompassing CYP46A1 gene are transfected with a Packaging plasmid encoding Rep2 and serotype -specific Cap2: AAV-Rep/Cap, and the Ad-Helper plasmid (XX680:
encoding adenoviral helper sequences).
[00369] Transfection. On the day of transfection, the cells are counted using a ViCell XR
Viability Analyzer (Beckman Coulter) and diluted for transfection. To mix the transfection cocktail the following reagents are added to a conical tube in this order: plasmid DNA, OPTIMEMal I (Gibco) or OptiPro SFM (Gibco), or other senim free compatible transfection media, and then the transfection reagent at a specific ratio to plasmid DNA. The cocktail is inverted to mix prior to being incubated at room temperature. The transfection cocktail is pipetted into the flasks and placed back in the shaker/incubator. All optimization studies are carried out at 30mL culture volumes followed by validation at larger culture volumes. Cells are harvested 48 hours post-transfection.
1003701 Production of rAAV Using Wave Bioreactor Systems. Wave bags are seeded 2 days prior to transfection. Two days post-seeding the wave bag, cell culture counts are taken and the cell culture is then expanded/diluted before transfection. The wave bioreactor cell culture is then transfected. Cell culture is harvested from the wave bio-reactor bag at least 48 hours post-transfection.
1003711 Titer. AAV titers are calculated after DNase digestion using qPCR against a standard curve (AAV 1TR specific) and primers specific to CYP46A1 gene. Harvesting Suspension Cells from Shaker Flasks and 60 Wave Bioreactor Bags. 48 hours post-transfection, cell cultures are collected into 500 mL polypropylene conical tubes (Corning) either by pouring from shaker flasks or pumping from wave bioreactor bags. The cell culture is then centrifuged at 655xg for 10 min using a Sorvall RC3C plus centrifuge and H6000A rotor. The supernatant is discarded, and the cells are resuspended in 1xPBS, transferred to a 50 mL conical tube, and centrifuged at 655xg for 10 min. At this point, the pellet can either be stored in NLT-60 C or continued through purification.
1003721 Titering rAAV from Cell Lysate Using qPCR. 10 mL of cell culture is removed and centrifuged at 655xg for 10 min using a Sorvall RC3C plus centrifuge and H6000A rotor. The supernatant is decanted from the cell pellet. The cell pellet is then resuspended in 5 mL of DNase buffer (5 mM CaCl2, 5 mM MgCl2, 50 mM Tris-HC1 pH 8.0) followed by sonication to lyse the cells efficiently. 3001AL is then removed and placed into a 1.5 mL microfuge tube.
140 units of DNase I is then added to each sample and incubated at 37 C for 1 hour. To determine the effectiveness of the DNase digestion, 4-5 mg of CYP46A1 plasmid is spiked into a non-transfected cell lysate with and without the addition of DNase. 50uL of EDTA/Sarkosyl solution (6.3% sarkosyl, 62.5 mM EDTA pH
8.0) is added to each tube and incubated at 70 C for 20 minutes. 50 uL of Proteinase K (10 mg/mL) is then added and incubated at 55 C for at least 2 hours. Samples are boiled for 15 minutes to inactivate the Proteinase K. An aliquot is removed from each sample to be analyzed by qPCR. Two qPCR reactions are carried out in order to effectively determine how much rAAV
vector is generated per cell. One qPCR reaction is set up using a set of primers designed to bind to a homologous sequence on the backbones of plasmids XX680, pXR2 and CYP46A1. The second qPCR
reaction is set up using a set of primers to bind and amplify a region within the CYP46A1 gene, qPCR is conducted using Sybr green reagents and Light cycler 480 from Roche. Samples are denatured at 95 C for 10 minutes followed by 45 cycles (90 C for 10 sec, 62 C for 10 sec and 72 C for 10 see) and melting curve (1 cycle 99 C for 30 sec, 65 C. for 1 minute continuous).
1003731 Purification of rAAV from Crude Lysate. Each cell pellet is adjusted to a final volume of mL. The pellets are vortexed briefly and sonicated for 4 minutes at 30% yield in one second on, one second off bursts. After sonication, 550 U of DNase is added and incubated at 37 C for 45 minutes. The pellets are then centrifuged at 9400xg using the Sorvall RCSB
centrifuge and HS-4 rotor to pellet the cell debris and the clarified lysate is transferred to a Type70Ti centrifuge tube (Beckman 361625). In regard to harvesting and lysing the suspension HEK293 cells for isolation of rAAV, one skilled in the art can use as mechanical methods such as microfluidization or chemical methods such as detergents, etc., followed by a clarification step using depth filtration or Tangential Flow Filtration (TFF).
[00374] AA V Vector Purjfication. Clarified AAV lysate is purified by column chromatography methods as one skilled in the art would be aware of and described in the following manuscripts (Allay et al., Davidoff et al., Kaludov et al., Zolotukhin et al., Zolotukin et al, etc.), which are incorporated herein by reference in their entireties.
[00375] A selection of the NS-specific promoters according to the present invention were tested in neuroblastoma-derived SH-SY5Y cells.
Materials and methods [00376] Cell maintenance and transfection. SH-SY5Y cells were cultured in HAM F12 media with 1 mM L-Glutamine (Gibco 11765-054), 15 % heat-inactivated FBS
(ThermoFisher 10500064), 1% non-essential amino acids (Merck M1745-100ML), and 1 %
penicillin/streptomycin (ThermoFisher 15140122). The cells were passaged twice a week between 1:3 and 1:4 to maintain a healthy cell density of between 70-80%. The cells were kept under passage number 20. For transfections, the cells were seeded at 105 cells/well into an adherent 48 well plate. 24 hours post-seeding, 300 ng plasmid was transfected into the cells using Lipofectamine3000 reagent (ThennoFisher L3000008).
[00377] The plasmid which was transfected into the SHSY5Y cell line comprises SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0033, SP0011, SP0034, SP0035 or SP0036 operably linked to GFP.
[00378] Flow Clvtometry. 48 hours after transfection, SH-SY5Y cells were washed with PBS
before dissociation with 0.05 % trypsin. The cells were collected and resuspended in 90 % PBS, 10 %
FBS solution. The GFP expression of the cells was assessed by flow cytometry using the Attune Nxt Acoustic Focusing Cytometer. The cell viability dye 7-AAD (ThermoFisher 00-6993-50) was mixed with the control cell population to identify and exclude the dead cells. The expression of GFP was measured in the living, single cell population using a blue 488 nm laser at the band-pass filter 510/10 nm. Untransfected cells were used to set the gates for GFP-negative and GFP-positive cells. The number of GFP-positive single cells and the median GFP fluorescence of all GFP-positive cells was calculated by the Attune Nxt Software.
Results [00379] The results of this experiment are shown in Fig 7A and 7B.
Neuroblastoma-derived SH-SY5Y cells transfected with expression cassette comprising SP0013, SP0014, SP0030, SP0031, SP0032, SP0019, SP0020, SP0021, SP0022, SP0011, SP0034, SP0035 or SP0036 operably linked to GFP were assessed for median GFP expression and percentage of GFP positive cells by flow cytometry. Expression cassettes comprising known promoters Synapsin-1 and CAG
operably linked to GFP were used as controls. All tested promoters have comparable transfection efficiency and median GFP expression to the neuronal-specific control promoter Synapsin-1 (see Fig 7A and 7B).
Control promoter CAG showed 2 to 3 times higher transfcction efficiency (Fig.
7B) and around 2.5 higher median GFP expression compared to control promoter Synapsin-1 and the tested synthetic NS-specific promoters (Fig. 7A).
[00380] Synthetic NS-specific promoter SP0028 (SEQ ID NO: 86) is a similar design to synthetic NS-specific promoter SP0019 (SEQ ID NO: 82) as both comprise identical elements. As such, SP0028 (SEQ ID NO: 86) may be expected to perform similarly to 5P0019 (SEQ ID
NO: 82).
[00381] Synthetic NS-specific promoter 5130029 (SEQ ID NO: 87) is a similar design to synthetic NS-specific promoter SP0021 (SEQ ID NO: 84) as both comprise identical elements. As such, SP0029 (SEQ ID NO: 87) may be expected to perform similarly to SP0021 (SEQ ID
NO: 84).
[00382] Synthetic NS-specific promoter SP0026 (SEQ ID NO: 76) is a similar design to synthetic NS-specific promoter SP0013 (SEQ ID NO: 74) as both comprise identical elements. As such, 5P0026 (SEQ ID NO: 76) may be expected to perform similarly to SP0013 (SEQ ID
NO: 74).
[00383] Synthetic NS-specific promoter SP0027 (SEQ ID NO: 77) is a similar design to synthetic NS-specific promoter SP0014 (SEQ ID NO: 75) as both comprise identical elements. As such, 5P0027 (SEQ ID NO: 77) may be expected to perform similarly to SP0014 (SEQ ID
NO: 75).
[00384] Synthetic NS-specific promoter SP0033 (SEQ ID NO. 81) is a similar design to SP0021 (SEQ ID NO: 84) as both comprise identical and similar elements. Therefore, SP0033 (SEQ ID NO:
81) is a shorter version of SP0021 (SEQ ID NO: 84) and, as such, may be expected to perform similarly.
[00385] Modified vector comprising-CYP46A1 or GFP and covalent mannosylation of the vector will be compared to Parental unmodified rAAV. Delivery of CYP46A1 by rAAV
drives abundant secretion of CYP46A1 from transduced neurons that can be visually detected by immunohistochemistry and quantified by EL1SA of tissue extracts. After infusion of Modified AAV-CYP46A1 into the thalamus, e.g., by convection-enhanced delivery described in US Patent application 13/146,640 or catheter delivery in monkey, the extent of CY P46A1-immunopositive staining will be assessed in the frontal cortex ipsilateral to the infusion site. The expression of CYP46A1 delivered with modified vector will be significantly enhanced as compared to un-modified vector and significantly extended from prefrontal association cortical areas (Cortical Areas 9 and 10) through the frontal eye-fields (Area 8), pre-motor cortex (Area 6), primary Somatosensory cortical areas (Areas 3, 1 and 2) to primary motor cortex (Area 4), and included expression in the cin_gulate cortex (Areas 23, 24, 32) and Broca's area (Area 44, 45). In addition to the intense staining of individual neuronal cell bodies and cellular processes, CYP46A1 staining will be observed across multiple layers of the frontal cortex with an intensity gradient that was highest in cortical Layers III
and IV, as compare to the same dose of unmodified vector.
[00386] Delivery of modified vector comprising GFP as compared to parent will also be tested in monkey model as describe in US Patent application 13/146,640. The relative amount of modified vector in the AN anterior nucleus; MD medio-dorsal nucleus; VA ventral anterior nucleus; VL ventral lateral nucleus; VP ventral posterior nucleus will be significantly higher than that of un-modified vector. In addition, modified vector is distributed widely and more efficiently throughout cortex as compared to un-modified vector. The percent of positive cells is significantly higher in each area and region as compared to parental vector. More efficient transduction of cortical layers 1-6 is also expected. Delivery to multiple lobes of the cerebral cortex or all of cortical areas 1-4, 6 and 8-10 can be achieved.
Region Area Pre-Frontal Cortex 9/10/46 Broca's Area 44/45 Frontal Eye Field 8 Secondary Motor Cortex 6 Anterior Cingulate Cortex 24/32 Somatosensory Cortex 1.2/03 Primary Motor Cortex 4 Posterior Cingulate Cortex 23/31 [00387] Surgical Delivery. Modified and un-modified rAAV vectors GFP) under the control of cytomegalovirus promoter were infused into the right thalamus of six adult Rhesus monkeys by convection enhanced delivery (CED) protocol. All experimentation is performed according to the National Institutes of Health guidelines and to the protocols approved by the Institutional Animal Care and Use Committee at the University of California San Francisco.
1003881 Immunostaining with antibodies against CYP46A1 (1:500, AF-212-NA, R&D Systems) and GFP (1:500, AB3080, Chemicon) is performed on Zamboni fixed 40-um coronal sections covering the entire frontal cortex and extending in a posterior direction to the level of the thalamus.
The localization of CYP46A1 and GFP immunopositive neurons is analyzed with reference to The Rhesus Monkey Brain in Stereotactic Coordinates to identify specific areas of immunostaining in the cortex and thalamus.
[00389] CYP46A1 Protein ELISA. Tissue punches from 3-mm coronal blocks of fresh frozen tissue are taken from a number of cortical, thalamic. Methods and Materials and striatal regions of a modified vector infused monkey. Surgical Delivery expressed is quantified by ELISA assay with a commercial ELISA kit (Emax ELISA, Promega, Wis.) human CYP46A1 clDNA or GFP
cDNA.
[00390] Next, to determine if changing the modification of a capsid enables re-administration, the modified vector comprising- CYP46A1 of Example 5 is redesigned to have a different chemical modification, but consists of the same capsid and comprises the same payload (i.e., CYP46A1) of the capsid of Example 5. An adult Rhesus monkeys are administered the first modified vector comprising- CYP46A1 of Example 2, and at 14 days post-administration, administered either a second dose of the same vector, or the redesigned modified capsid. CYP46A1 expression is assessed using the ELISA assay described above in Example 5. It was found that re-administration of the same vector has significantly reduced expression, likely due to neutralizing antibodies generated against vector following the first administration. Strikingly, expression of the redesigned vector was high and widespread, indicating that the change in modification of the capsid enabled expression of the redesigned vector.
Claims (113)
1. A method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs;
and (b) an isolated nucleic acid encoding a CYP46A1 protein.
and (b) an isolated nucleic acid encoding a CYP46A1 protein.
2. A method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of (a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs; and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
3. The method of any of claims 1-2, wherein the neurological disease or disorder is Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, polyglutamine repeat spinocerebellar ataxia, Krabbe's disease, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, neuropathic pain, trauma due to spinal cord or head injury, ophthalmic diseases and disorders, Tay-Sachs disease, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, psychosexual disorders, sleeping disorders, pain disorders, eating or weight disorders.
4. The method of any of claims 1-3, wherein the neurological disease or disorder is a central nervous system (CNS) disease or disorder.
5. The method of any of claims 1-4, wherein the CNS disease or disorder is selected from Huntington's disease, Alzheimer's disease, Polyglutamine repeat spinocerebellar ataxias, Amyotrophic lateral sclerosis and Parkinson's disease.
6. The method of any of claims 1-5, wherein the CNS disease or disorder is Alzheimer's disease and the at least one miRNA comprises a seed sequence complementary to Amyloid Precursor Protein (APP), Presenilin 1, Presenilin 2, ABCA7, SORL1, and disease-associated alleles thereof.
7. The method of any of claims 1-5, wherein the CNS disease or disorder is Parkinson's disease and the at least one miRNA comprises a seed sequence complementary to SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, EIF4G1, DNAJC13, CHCHD2, UCHL1, GBA1, and disease-associated alleles thereof.
8. The method of any of claims 1-5, wherein the CNS disease is Huntington's disease and at least one miRNA comprises a seed sequence complementary to SEQ ID NO: 4, or wherein at least one miRNA comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence.
9. The method of any of claims 1-8, wherein the CNS disease is Huntington's disease and at least one miRNA comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
10. The method of any of claims 8-9, wherein at least one of the miRNAs hybridizes with and inhibits expression of human huntingtin.
11. The method of any of claims 8-10, wherein the subject comprises a huntingtin gene having more than 36 CAG repeats, more than 40 repeats, or more than 100 repeats.
12. The method of any of claims 8-11, wherein the subject is less than 20 years of age.
13. The method of any of claims 1-12, wherein the recombinant viral vector is selected from the group consisting of: an AAV vector, an adenovirus vector, a lentivirus vector, a retrovirus vector, a herpesvirus vector, an alphavirus vector, a poxvirus vector, a baculovirus vector, and a chimeric virus vector.
14. The method of any of claims 2-13, wherein the recombinant viral vector comprising (a) is the same as the recombinant viral vector comprising (b).
15. The method of any of claims 1-13, wherein the isolated nucleic acid of (a) and (b) are comprised in separate recombinant viral vectors.
16. The method of any of claims 1-14, wherein the isolated nucleic acid of (a) and (b) are comprised in the same recombinant viral vector.
17. The method of any one of claims 1-16, wherein (a) and (b) are administered at substantially the same time.
18. The method of any one of claims 1-13 and 15, wherein (a) and (b) are administered at different time points.
19. The method of claim 18, wherein the different time points arc spaced by at least 1 min, at least 1 hour, at least 1 day, at least 1 week, at least 1 month, at least 1 year, or more.
20. The method of any of claims 18-19, wherein (a) is administered prior to the administration of (b).
21. The method of any of claims 18-19, wherein (b) is administered prior to the administration of (a).
22. The method of any of claims 1-21, wherein the administration of (a), (b), or (a) and (b) is repeated at least once.
23. The method of any of claims 1-22, wherein the transgene comprises two miRNAs in tandem that are flanked by introns.
24. The method of claim 23, wherein the flanking introns are identical.
25. The method of claim 23, wherein the flanking introns are from the same species.
26. The method of claim 23, wherein the flanking introns are hCG introns.
27. The method of any one of claims 1-26, wherein the transgene comprises a promoter.
28. The method of claim 27, wherein the promoter is a synapsin (Synl) promoter, or a promoter of Tables 10-13.
29. The method of any one of claims 1-28, wherein the one or more miRNAs are located in an untranslated portion of the transgene.
30. The method of claim 29, wherein the untranslated portion is an intron.
31. The method of claim 30, wherein the untranslated portion is between the last codon of the nucleic acid sequence encoding a protein and a poly-A tail sequence, or between the last nucleotide base of a promoter sequence and a poly-A tail sequence.
32. The method of any one of claims 1-31, further comprising a third region comprising a second adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof.
33. The method of any one of claims 1-33, wherein the ITR variant lacks a functional terminal resolution site (TRS), optionally wherein the ITR variant is a ATRS ITR.
34. The method of any of claims 1-33, wherein the administration results in delivery of the viral vector or isolated nucleic acid to the central nervous system (CNS) of the subject.
35. The method of any of claims 1-34, wherein the administration is via injection, optionally intravenous injection or intrastriatal injection.
36. The method of any of claims 2-35, wherein the viral vector is AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof.
37. The method of any of claims 2-36, the viral vector comprises a capsid protein from AAV
serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof
serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof
38. The method of claim 37, wherein the capsid protein is an AAV9 capsid protein.
39. The method of any of claims 2-38, wherein the viral vector is a self-complementary AAV
(scA AV)
(scA AV)
40. The method of any of claims 2-39, wherein the viral vector is formulated for delivery to the central nervous system (CNS).
41. A composition or combination comprising:
(a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs;
and (b) an isolated nucleic acid encoding a CYP46A1 protein.
(a) an isolated nucleic acid encoding a transgene encoding one or more miRNAs;
and (b) an isolated nucleic acid encoding a CYP46A1 protein.
42. A composition or combination comprising:
(a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs; and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
(a) a recombinant viral vector comprising an isolated nucleic acid comprising (i) a first region comprising a first adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof, and (ii) a second region comprising a transgene encoding one or more miRNAs; and (b) a recombinant viral vector comprising an isolated nucleic acid encoding the CYP46A1 protein.
43. The composition or combination of any of claims 41-42, for use in a method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of the composition or combination.
44. The composition or combination of claim 43, wherein the neurological disease or disorder is Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, Krabbe's disease, polyglutamine repeat spinocerebellar ataxia, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, neuropathic pain, trauma due to spinal cord or hcad injury, ophthalmic diseases and disorders, Tay-Sachs disease, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, psychosexual disorders, sleeping disorders, pain disorders, eating or weight disorders.
45. The composition or combination of claim 44, wherein the neurological disease or disorder is a central nervous system (CNS) disease or disorder.
46. The composition or combination of claim 45, wherein the CNS disease or disorder is selected from Huntington's disease, Alzheimer's disease, Polyglutamine repeat spinocerebellar ataxias, Amyotrophic lateral sclerosis and Parkinson's disease.
47. The composition or combination of any of claims 41-46, wherein the at least one miRNA
comprises a seed sequence complementary to Amyloid Precursor Protein (APP), Presenilin 1, Presenilin 2, ABCA7, SORL1, and disease-associated alleles thereof
comprises a seed sequence complementary to Amyloid Precursor Protein (APP), Presenilin 1, Presenilin 2, ABCA7, SORL1, and disease-associated alleles thereof
48. The composition or combination of any of claims 41-46, wherein the at least one miRNA
comprises a seed sequence complementary to SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, EIF4G1, DNAJC13, CHCHD2, UCHL1, GBA1, and disease-associated alleles thereof
comprises a seed sequence complementary to SNCA, LRRK2/PARK8, PRKN, PINK1, DJ1/PARK7, VPS35, EIF4G1, DNAJC13, CHCHD2, UCHL1, GBA1, and disease-associated alleles thereof
49. The composition or combination of any of claims 41-46, wherein the at least onc miRNA
comprises a seed sequence complementary to SEQ ID NO: 4, or wherein the at least one miRNA comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence.
comprises a seed sequence complementary to SEQ ID NO: 4, or wherein the at least one miRNA comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66 flanked by a miRNA backbone sequence.
50. The composition or combination of any of claims 41-46, wherein the at least one miRNA
comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
comprises the sequence of any one of SEQ ID NOs: 6-17, 40-44, or 50-66.
51. The composition or combination of any of claims 49-50, wherein at least one of thc miRNAs hybridizes with and inhibits expression of human huntingtin.
52. The composition or combination of any of claims 49-51, wherein the subject comprises a huntingtin gene having more than 36 CAG repeats, more than 40 repeats, or more than 100 repeats.
53. The composition or combination of any of claims 49-52, wherein the subject is less than 20 years of age.
54. The composition or combination of any of claims 42-53, wherein the recombinant viral vector is selected from the group consisting of: an AAV vector, an adenovirus vector, a lentivirus vector, a retrovirus vector, a herpesvirus vector, an alphavirus vector, a poxvirus vector a baculovirus vector, and a chimeric virus vector.
55. The composition or combination of any of claims 42-54, wherein the recombinant viral vector comprising (a) is the same as the recombinant viral vector comprising (b).
56. The composition or combination of any of claims 41-54, wherein the isolated nucleic acid of (a) and (b) are comprised in separate recombinant viral vectors.
57. The composition or combination of any of claims 41-55, wherein the isolated nucleic acid of (a) and (b) are comprised in the same recombinant viral vector.
58. The composition or combination of any of claims 41-57, wherein (a) and (b) are administered at substantially the same time.
59. The composition or combination of any of claims 41-54 and 56, wherein (a) and (b) are administered at different time points.
60. The composition or combination of claim 59, wherein the different time points are spaced by at least 1 min, at least 1 hour, at least 1 day, at least 1 week, at least 1 month, at least 1 year, or more.
61. The composition or combination of any of claims 59-60, wherein (a) is administered prior to the administration of (b).
62. The composition or combination of any of claims 59-60, wherein (b) is administered prior to the administration of (a).
63. The composition or combination of any of claims 59-60, wherein the administration of (a), (b), or (a) and (b) is repeated at least once.
64. The composition or combination of any of claims 41-65, wherein the transgene comprises two mi RN As in tandem that are flanked by introns.
65. The composition or combination of claim 64, wherein the flanking introns are identical.
66. The composition or combination of claim 64, wherein the flanking introns are from the same species.
67. The composition or combination of claim 64, wherein the flanking introns are hCG introns.
68. The composition or combination of any of claims 41-67, wherein the transgene comprises a promoter.
69. The composition or combination of claim 68, wherein the promoter is a synapsin (Syn 1 ) promoter or a promoter of Tables 10-13.
70. The composition or combination of any of claims 41-69, wherein the one or more miRNAs are located in an untranslated portion of the transgene.
71. The composition or combination of claim 70, wherein the untranslated portion is an intron.
72. The composition or combination of claim 70, wherein the untranslated portion is between the last codon of the nucleic acid sequence encoding a protein and a poly-A tail sequence, or between the last nucleotide base of a promoter sequence and a poly-A tail sequence.
73. The composition or combination of any of claims 41-72, further comprising a third region comprising a second adeno-associated virus (AAV) inverted terminal repeat (ITR), or a variant thereof.
74. The composition or combination of any of claims 41-73, wherein the ITR
variant lacks a functional terminal resolution site (TRS), optionally wherein the ITR variant is a ATRS ITR.
variant lacks a functional terminal resolution site (TRS), optionally wherein the ITR variant is a ATRS ITR.
75. The composition or combination of any of claims 41-74, wherein the administration results in delivery of the viral vector or isolated nucleic acid to the central nervous system (CNS) of the subject.
76. The composition or combination of any of claims 41-75, wherein the administration is via injection, optionally intravenous injection or intrastriatal injection.
77. The composition or combination of any of claims 42-76, wherein the viral vector is an AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or a chimera thereof.
78. The composition of any of claims 42-77, the viral vector comprises a capsid protein from AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof
79. The composition or combination of claim 78, wherein the capsid protein is an AAV9 capsid protein.
80. The composition or combination of any of claims 42-79, wherein the viral vector is a self-complementary AAV (scAAV).
81. The composition or combination of any of claims 42-80, wherein the viral vector is formulated for delivery to the central nervous system (CNS).
82. A composition comprising an isolated nucleic acid encoding a CYP46A1 protein, the nucleic acid comprising a sequence at least 80% identical to SEQ ID NO: 110, or, at least 80%
identical to SEQ ID No: 111, or, at least 80% identical to SEQ ID NO: 153.
identical to SEQ ID No: 111, or, at least 80% identical to SEQ ID NO: 153.
83. A composition comprising a recombinant viral vector comprising an isolated nucleic acid encoding a CYP46A1 protein, the nucleic acid comprising a sequence at least 80% identical to SEQ ID NO. 110. or, at least 80% identical to SEQ ID No. 111, or, at least 80% identical to SEQ ID NO: 153.
84. A method for treating a neurological disease or disorder in a subject in need thereof, the method comprising administering to a subject having or at risk of developing the neurological disease or disorder a therapeutically effective amount of a composition of claim 82 or 83.
85. The method of claim 84, wherein the neurological disease or disorder is Alzheimer's disease, Parkinson's disease, Huntington's disease, Canavan disease, Leigh's disease, spinal cerebral ataxia, polyglutaminc repeat spinocerebellar ataxia, Krabbc's disease, Batten's disease, Refsum disease, Tourette syndrome, primary lateral sclerosis, amyotrophic lateral sclerosis, progressive muscular atrophy, Pick's disease, muscular dystrophy, multiple sclerosis, myasthenia gravis, Binswanger's disease, neuropathic pain, trauma due to spinal cord or head injury, ophthalmic diseases and disorders, Tay-Sachs disease, Lesch-Nyhan disease, epilepsy, cerebral infarcts, depression, bipolar affective disorder, persistent affective disorder, secondary mood disorder, schizophrenia, drug dependency, neuroses, psychosis, dementia, paranoia, attention deficit disorder, psychosexual disorders, sleeping disorders, pain disorders, eating or weight disorders.
86. The method of any of claims 84-85, wherein the neurological disease or disorder is a central nervous system (CNS) disease or disorder.
87. The method of any of claims 84-86, wherein the CNS disease or disorder is selected from Huntington's disease, Alzheimer's disease, Polyglutamine repeat spinocerebellar ataxias, Amyotrophic lateral sclerosis and Parkinson's disease.
88. The composition or method of any of claims 83-87, wherein the recombinant viral vector is selected from the group consisting of an AAV vector, an adenovirus vector, a lentivirus vector, a retrovirus vector, a herpesvirus vector, an alphavirus vector, a poxvirus vector a baculovirus vector, and a chimeric virus vector.
89. The method of any of claims 84-88, wherein the administration is repeated at least once.
90. The method of any of claims 84-89, wherein the administration results in delivery of the viral vector or isolated nucleic acid to the central nervous system (CNS) of the subject.
91. The method of any of claims 84-90, wherein the administration is via injection, optionally intravenous injection or intrastriatal injection.
92. The composition or method of any of claims 83-91, wherein the viral vector is AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof.
93. The composition or method of any of claims 83-92, viral vector comprises a capsid protein from AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, or, AAV12, or a chimera thereof
94. The composition or method of claim 93, wherein the capsid protein is an AAV9 capsid protein.
95. The composition or method of any of claims 83-94, wherein the viral vector is a self-complementary AAV (scAAV).
96. The composition or method of any of claims 83-95, wherein the viral vector is formulated for delivery to the central nervous system (CNS).
97. The composition or method of any of claims 82-96, wherein the nucleic acid comprises a sequence at least 90% identical to SEQ ID NO: 110.
98. The composition or method of any of claims 82-96, wherein the nucleic acid comprises a sequence at least 95% identical to SEQ ID NO: 110.
99. The composition or method of any of claims 82-96, wherein the nucleic acid comprises a sequence identical to SEQ ID NO: 110.
100. The composition or method of any of claims 2-40, 42-81, 83-99, where the viral vector comprises a modified viral capsid.
101. The composition or method of any of claims 2-40, 42-81, 83-99, where the viral vector comprises a modification to a viral capsid.
102. The composition or method of claim 100 or 101, wherein the modification is a chemical, non-chemical or amino acid modification of the viral capsid.
103. The composition or method of claim 100 or 101, wherein at least one of the capsid modifications preferentially targets cells in the CNS or PNS.
104. The composition or method of claim 100 or 101, wherein the chemical modification comprises a chemically-modified tyrosine residue modified to comprise a covalently-linked mono- or polysaccharide moiety.
105. The composition or method of claim 104, wherein the chemically-modified tyrosine residue comprises a mono-saccharide selected from galactose, mannose, N-acetylgalactosamine, bridge GalNac, and mannose-6-phosphate.
106. The composition or method of claim 100 or 101, wherein the chemical modification comprises a ligand covalently linked to a primary amino group of a capsid polypeptide via a ¨
CSNH- bond.
CSNH- bond.
107. The composition or method of claim 106, wherein the ligand comprises an arylene or heteroarylene radical covalently bound to the ligand.
108. The composition or method of any of claims 100-107, wherein the modified viral capsid is a chimeric capsid or a haploid capsid.
109. The composition or method of any of claims 100-107, wherein the modified viral capsid is a haploid capsid.
110. The composition or method of any of claims 100-107, wherein the modified viral capsid is a chimeric or haploid capsid further comprising a modification.
111. The composition or method of any of claims 100-110, wherein the modified viral capsid is from an AAV serotype AAV1, AAV2, AAV3b, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, or a mutant modified from, a chimera, a mosaic, or a rational haploid thereof.
112. The composition or method of any of claims 100-111, wherein the modification changes the antigenic profile of the modified viral capsid as compared to the unmodified viral capsid.
113. The composition or method of any of claims 100-112, wherein the modified viral capsid can be used for repeat administration.
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063080925P | 2020-09-21 | 2020-09-21 | |
US63/080,925 | 2020-09-21 | ||
US202063121152P | 2020-12-03 | 2020-12-03 | |
US63/121,152 | 2020-12-03 | ||
US202163139410P | 2021-01-20 | 2021-01-20 | |
US63/139,410 | 2021-01-20 | ||
US202163140440P | 2021-01-22 | 2021-01-22 | |
US63/140,440 | 2021-01-22 | ||
US202163180407P | 2021-04-27 | 2021-04-27 | |
US63/180,407 | 2021-04-27 | ||
PCT/US2021/071534 WO2022061378A2 (en) | 2020-09-21 | 2021-09-21 | Methods for treating neurological disease |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3193406A1 true CA3193406A1 (en) | 2022-03-24 |
Family
ID=80776430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3193406A Pending CA3193406A1 (en) | 2020-09-21 | 2021-09-21 | Methods for treating neurological disease |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230365963A1 (en) |
EP (1) | EP4213891A2 (en) |
JP (1) | JP2023542211A (en) |
AU (1) | AU2021344607A1 (en) |
CA (1) | CA3193406A1 (en) |
IL (1) | IL301525A (en) |
WO (1) | WO2022061378A2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112023019981A2 (en) | 2021-03-29 | 2023-12-12 | Alnylam Pharmaceuticals Inc | COMPOSITIONS OF HUNTINGTINA IRNA AGENT (HTT) AND METHODS OF USE THEREOF |
TW202334418A (en) * | 2021-10-29 | 2023-09-01 | 美商艾拉倫製藥股份有限公司 | Huntingtin (htt) irna agent compositions and methods of use thereof |
WO2023147058A2 (en) * | 2022-01-27 | 2023-08-03 | Asklepios Biopharmaceutical, Inc. | Compositions for treating neurological disease |
WO2023212521A2 (en) * | 2022-04-25 | 2023-11-02 | Myrtelle Inc. | Treatments of disorders of myelin |
WO2024079317A1 (en) * | 2022-10-14 | 2024-04-18 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical composition for the treatment of alpha-synucleinopathies |
WO2024149844A1 (en) * | 2023-01-12 | 2024-07-18 | Nantes Université | Chemically-modified adeno-associated virus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2582200T3 (en) * | 2007-09-12 | 2016-09-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of viral vectors carrying the CYP46A1 gene for the treatment of Alzheimer's disease |
US8900627B2 (en) | 2008-06-06 | 2014-12-02 | Mirna Therapeutics, Inc. | Compositions for the in vivo delivery of RNAi agents |
EP2758036A2 (en) | 2011-09-21 | 2014-07-30 | Yissum Research and Development Company of The Hebrew University of Jerusalem | Nano delivery systems |
WO2013090523A2 (en) | 2011-12-13 | 2013-06-20 | Henry Ford Health System | Methods, systems, and compositions for cell-derived/vesicle-based microrna delivery |
US11499165B2 (en) * | 2015-12-11 | 2022-11-15 | California Institute Of Technology | Targeting peptides for directing adeno-associated viruses (AAVs) |
WO2019177550A1 (en) | 2018-03-10 | 2019-09-19 | Koc Universitesi | Therapeutic nanoparticles containing argonaute for microrna delivery and compositions and methods using same |
-
2021
- 2021-09-21 US US18/027,293 patent/US20230365963A1/en active Pending
- 2021-09-21 IL IL301525A patent/IL301525A/en unknown
- 2021-09-21 JP JP2023518391A patent/JP2023542211A/en active Pending
- 2021-09-21 WO PCT/US2021/071534 patent/WO2022061378A2/en active Application Filing
- 2021-09-21 AU AU2021344607A patent/AU2021344607A1/en active Pending
- 2021-09-21 EP EP21870467.4A patent/EP4213891A2/en active Pending
- 2021-09-21 CA CA3193406A patent/CA3193406A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2023542211A (en) | 2023-10-05 |
AU2021344607A9 (en) | 2024-09-12 |
EP4213891A2 (en) | 2023-07-26 |
AU2021344607A1 (en) | 2023-06-01 |
IL301525A (en) | 2023-05-01 |
US20230365963A1 (en) | 2023-11-16 |
WO2022061378A2 (en) | 2022-03-24 |
WO2022061378A3 (en) | 2022-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230365963A1 (en) | Methods for treating neurological disease | |
EP3198018B1 (en) | Adeno-associated virus vector variants for high efficiency genome editing and methods thereof | |
Coleman et al. | Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo | |
KR20200107949A (en) | Engineered DNA binding protein | |
CN107438671A (en) | Variant rnai | |
CN107828820A (en) | For to the adeno-associated virus particle of nervous system cell quiding gene | |
KR20220066225A (en) | Compositions and methods for selective gene regulation | |
KR20210132109A (en) | DNA-binding domain transactivators and uses thereof | |
KR20230043123A (en) | Adeno-associated viral vectors for GLUT1 expression and their use | |
KR20230003478A (en) | Non-viral DNA vectors and their use for expressing Gaucher therapeutics | |
US20220152223A1 (en) | Vector and method for treating angelman syndrome | |
US20230340470A1 (en) | Methods for treating huntington's disease | |
EP4422613A1 (en) | Methods for improving adeno-associated virus (aav) delivery | |
KR20220131273A (en) | Zinc Finger Protein Transcription Factor to Inhibit Tau Expression | |
CN116171325A (en) | Gene therapy vector for eEF1A2 and uses thereof | |
US20230279405A1 (en) | Dna-binding domain transactivators and uses thereof | |
JP2020519251A (en) | Gene therapy for tuberous sclerosis | |
CN116723868A (en) | Methods of treating neurological disorders | |
EA046157B1 (en) | COMPOSITIONS AND METHODS FOR SELECTIVE REGULATION OF GENE EXPRESSION | |
CN118339301A (en) | Capsid variants and methods of use thereof | |
CN117836420A (en) | Recombinant TERT-encoding viral genome and vector |