CA3094551C - Extended release pharmaceutical composition containing fesoterodine and process for the preparation thereof - Google Patents
Extended release pharmaceutical composition containing fesoterodine and process for the preparation thereof Download PDFInfo
- Publication number
- CA3094551C CA3094551C CA3094551A CA3094551A CA3094551C CA 3094551 C CA3094551 C CA 3094551C CA 3094551 A CA3094551 A CA 3094551A CA 3094551 A CA3094551 A CA 3094551A CA 3094551 C CA3094551 C CA 3094551C
- Authority
- CA
- Canada
- Prior art keywords
- agents
- pharmaceutical composition
- active ingredient
- fesoterodine
- glycerol dibehenate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229960002978 fesoterodine Drugs 0.000 title claims abstract description 40
- DCCSDBARQIPTGU-HSZRJFAPSA-N fesoterodine Chemical compound C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(CO)C=2)OC(=O)C(C)C)=CC=CC=C1 DCCSDBARQIPTGU-HSZRJFAPSA-N 0.000 title claims abstract description 40
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 32
- 238000013265 extended release Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims description 16
- 230000008569 process Effects 0.000 title claims description 13
- 238000002360 preparation method Methods 0.000 title claims description 11
- GNWCZBXSKIIURR-UHFFFAOYSA-N (2-docosanoyloxy-3-hydroxypropyl) docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCCCCCC GNWCZBXSKIIURR-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000004480 active ingredient Substances 0.000 claims abstract description 38
- 239000003381 stabilizer Substances 0.000 claims abstract description 27
- 239000000546 pharmaceutical excipient Substances 0.000 claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 21
- 150000003839 salts Chemical class 0.000 claims abstract description 21
- 230000015556 catabolic process Effects 0.000 claims abstract description 13
- 238000006731 degradation reaction Methods 0.000 claims abstract description 13
- 239000002552 dosage form Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims description 68
- -1 antifoamers Substances 0.000 claims description 42
- MWHXMIASLKXGBU-RNCYCKTQSA-N (e)-but-2-enedioic acid;[2-[(1r)-3-[di(propan-2-yl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl] 2-methylpropanoate Chemical group OC(=O)\C=C\C(O)=O.C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(CO)C=2)OC(=O)C(C)C)=CC=CC=C1 MWHXMIASLKXGBU-RNCYCKTQSA-N 0.000 claims description 24
- 229960004524 fesoterodine fumarate Drugs 0.000 claims description 21
- 239000000314 lubricant Substances 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 239000000454 talc Substances 0.000 claims description 12
- 229910052623 talc Inorganic materials 0.000 claims description 12
- 239000008187 granular material Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 9
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 9
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 9
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 8
- 239000003085 diluting agent Substances 0.000 claims description 8
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical group OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 8
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 6
- 229940075614 colloidal silicon dioxide Drugs 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000007909 melt granulation Methods 0.000 claims description 6
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 6
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 6
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000003086 colorant Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000007900 aqueous suspension Substances 0.000 claims description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 3
- 239000012943 hotmelt Substances 0.000 claims description 3
- 239000008101 lactose Substances 0.000 claims description 3
- 238000005461 lubrication Methods 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims description 3
- 239000001692 EU approved anti-caking agent Substances 0.000 claims description 2
- 239000004909 Moisturizer Substances 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims description 2
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 239000002671 adjuvant Substances 0.000 claims description 2
- 230000002421 anti-septic effect Effects 0.000 claims description 2
- 239000003146 anticoagulant agent Substances 0.000 claims description 2
- 229940127219 anticoagulant drug Drugs 0.000 claims description 2
- 239000004599 antimicrobial Substances 0.000 claims description 2
- 229940064004 antiseptic throat preparations Drugs 0.000 claims description 2
- 239000002738 chelating agent Substances 0.000 claims description 2
- 239000008139 complexing agent Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000003398 denaturant Substances 0.000 claims description 2
- 239000002274 desiccant Substances 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims description 2
- 239000003974 emollient agent Substances 0.000 claims description 2
- 239000003995 emulsifying agent Substances 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 239000000796 flavoring agent Substances 0.000 claims description 2
- 235000019634 flavors Nutrition 0.000 claims description 2
- 239000003349 gelling agent Substances 0.000 claims description 2
- 239000003630 growth substance Substances 0.000 claims description 2
- 239000003906 humectant Substances 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims description 2
- 230000001333 moisturizer Effects 0.000 claims description 2
- 239000003605 opacifier Substances 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 239000004014 plasticizer Substances 0.000 claims description 2
- 239000003340 retarding agent Substances 0.000 claims description 2
- 238000000518 rheometry Methods 0.000 claims description 2
- 239000003352 sequestering agent Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000000375 suspending agent Substances 0.000 claims description 2
- 239000002562 thickening agent Substances 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims 1
- 235000003599 food sweetener Nutrition 0.000 claims 1
- 239000003765 sweetening agent Substances 0.000 claims 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims 1
- 239000002207 metabolite Substances 0.000 abstract description 16
- 239000000047 product Substances 0.000 description 12
- 239000003826 tablet Substances 0.000 description 11
- 235000012222 talc Nutrition 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000001913 cellulose Substances 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 235000010981 methylcellulose Nutrition 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical class COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 235000019814 powdered cellulose Nutrition 0.000 description 3
- 229920003124 powdered cellulose Polymers 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 229960002920 sorbitol Drugs 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 229940001407 toviaz Drugs 0.000 description 3
- 239000000811 xylitol Substances 0.000 description 3
- 235000010447 xylitol Nutrition 0.000 description 3
- 229960002675 xylitol Drugs 0.000 description 3
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 3
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- DUXZAXCGJSBGDW-HXUWFJFHSA-N Desfesoterodine Chemical compound C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(CO)C=2)O)=CC=CC=C1 DUXZAXCGJSBGDW-HXUWFJFHSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229920002774 Maltodextrin Polymers 0.000 description 2
- 239000005913 Maltodextrin Substances 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 229920001100 Polydextrose Polymers 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 239000000905 isomalt Substances 0.000 description 2
- 235000010439 isomalt Nutrition 0.000 description 2
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 2
- 229960001375 lactose Drugs 0.000 description 2
- 229960001021 lactose monohydrate Drugs 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229940035034 maltodextrin Drugs 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 235000013856 polydextrose Nutrition 0.000 description 2
- 239000001259 polydextrose Substances 0.000 description 2
- 229940035035 polydextrose Drugs 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 238000005550 wet granulation Methods 0.000 description 2
- YJRJVBRVTVDQQT-XTEKXEGTSA-N (2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-[(2R,3S,4R,5R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol trihydrate Chemical compound O.O.O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O YJRJVBRVTVDQQT-XTEKXEGTSA-N 0.000 description 1
- LFKMOLWAKAJMHB-LFPSBFENSA-N (2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-[(2R,3S,4R,5R,6R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol dihydrate Chemical compound O.O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O LFKMOLWAKAJMHB-LFPSBFENSA-N 0.000 description 1
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- 101100495842 Caenorhabditis elegans cht-3 gene Proteins 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 206010020853 Hypertonic bladder Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 229940121948 Muscarinic receptor antagonist Drugs 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000009722 Overactive Urinary Bladder Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001305 Poly(isodecyl(meth)acrylate) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 229940078495 calcium phosphate dibasic Drugs 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 229940084030 carboxymethylcellulose calcium Drugs 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 229940082483 carnauba wax Drugs 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 229940096516 dextrates Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007907 direct compression Methods 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960002737 fructose Drugs 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000005414 inactive ingredient Substances 0.000 description 1
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 description 1
- 229960003988 indigo carmine Drugs 0.000 description 1
- 235000012738 indigotine Nutrition 0.000 description 1
- 239000004179 indigotine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 description 1
- 229960003511 macrogol Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- HBNDBUATLJAUQM-UHFFFAOYSA-L magnesium;dodecyl sulfate Chemical compound [Mg+2].CCCCCCCCCCCCOS([O-])(=O)=O.CCCCCCCCCCCCOS([O-])(=O)=O HBNDBUATLJAUQM-UHFFFAOYSA-L 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003149 muscarinic antagonist Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 208000020629 overactive bladder Diseases 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920000111 poly(butyric acid) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000129 polyhexylmethacrylate Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000182 polyphenyl methacrylate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920001291 polyvinyl halide Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2054—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/222—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
The present invention relates to an extended release pharmaceutical composition for oral administration comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite or derivative thereof, as an active ingredient, an effective quantity of glycerol dibehenate as a stabilizing agent in order to prevent the degradation and improve the physicochemical stability of the active ingredient in the finished dosage form and at least one pharmaceutically acceptable excipient as a rate controlling agent to modify/control the release of the active ingredient in the finished dosage form.
Description
EXTENDED RELEASE PHARMACEUTICAL COMPOSITION CONTAINING
FESOTERODINE AND PROCESS FOR THE PREPARATION THEREOF
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improved extended release dosage form, and in particular to a pharmaceutical composition for oral administration comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite, or derivative thereof, as an active ingredient, and an effective quantity of glycerol dibehenate as stabilizing agent in order to prevent the degradation of said active ingredient, and a process for the preparation thereof.
BACKGROUND OF THE INVENTION
Fesoterodine is a muscarinic receptor antagonist used for the treatment of overactive bladder syndrome including urinary incontinence. Fesoterodine's chemical name is [2-[(1R)-3-(Di(propan-2-yl)amino)-1-phenylpropy11-4-(hydroxymethyl)phenyl]2-methylpropanoate) and its chemical structure is presented by the following Formula I.
nac 0 H
HO N 'CHt3, Formula I
Fesoterodine is rapidly hydrolyzed in vivo into its active metabolite 5-hydroxy methyl tolterodine, which binds and inhibits muscarinic receptors on the bladder detrusor muscle, thereby preventing bladder contractions or spasms caused by acetylcholine.
This results in the relaxation of bladder smooth muscle and greater bladder capacity, in addition to a reduction in involuntary muscle contractions and involuntary loss of urine.
Said conversion of fesoterodine into 5-hydroxymethyltolterodine under humid environment and at increased temperature is undesirable in the pharmaceutical formulation.
Therefore, there is a need to provide a pharmaceutical composition comprising fesoterodine that is stable against fesoterodine degradation over an extended period of time.
FESOTERODINE AND PROCESS FOR THE PREPARATION THEREOF
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improved extended release dosage form, and in particular to a pharmaceutical composition for oral administration comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite, or derivative thereof, as an active ingredient, and an effective quantity of glycerol dibehenate as stabilizing agent in order to prevent the degradation of said active ingredient, and a process for the preparation thereof.
BACKGROUND OF THE INVENTION
Fesoterodine is a muscarinic receptor antagonist used for the treatment of overactive bladder syndrome including urinary incontinence. Fesoterodine's chemical name is [2-[(1R)-3-(Di(propan-2-yl)amino)-1-phenylpropy11-4-(hydroxymethyl)phenyl]2-methylpropanoate) and its chemical structure is presented by the following Formula I.
nac 0 H
HO N 'CHt3, Formula I
Fesoterodine is rapidly hydrolyzed in vivo into its active metabolite 5-hydroxy methyl tolterodine, which binds and inhibits muscarinic receptors on the bladder detrusor muscle, thereby preventing bladder contractions or spasms caused by acetylcholine.
This results in the relaxation of bladder smooth muscle and greater bladder capacity, in addition to a reduction in involuntary muscle contractions and involuntary loss of urine.
Said conversion of fesoterodine into 5-hydroxymethyltolterodine under humid environment and at increased temperature is undesirable in the pharmaceutical formulation.
Therefore, there is a need to provide a pharmaceutical composition comprising fesoterodine that is stable against fesoterodine degradation over an extended period of time.
-2-Furthermore, the dissolution profile of extended release pharmaceutical compositions containing fesoterodine or a pharmaceutical acceptable salt, derivative and metabolite thereof can also be influenced by the selection of the excipients, as the drug release rate is dependent from the gastrointestinal pH-value and/or ionic strength. It is favorable for an extended release formulation to possess drug release rates, independent or less dependent from the ionic strength and/or pH of the environment through out the whole gastrointestinal tract in order to achieve better treatment to a patient.
Various methods are already known for the industrial preparation of extended release oral dosage forms comprising Fesoterodine or a pharmaceutical acceptable salt, derivative and metabolite thereof as an active ingredient due to its useful therapeutical properties. However, the prior art has encountered substantial difficulties in the production of a stable extended release and bioavailable fesoterodine composition of a desirable dissolution profile and a cost effective manufacturing process.
EP-B-2029134 discloses a pharmaceutical granulate comprising fesoterodine or a pharmaceutically acceptable salt or solvate thereof and a pharmaceutically acceptable stabilizer against hydrolysis, such as sorbitol, xylitol, polydextrose, isomalt, dextrose or combinations thereof. Further, said fesoterodine and stabilizer granulate is embedded in a gel matrix formed by a water swellable sustained release agent such as hydroxypropyl methylcellulose. According to said document, fesoterodine is more stable in a composition comprising sugar alcohols and in the presence of water e.g. by wet granulation. Dry granulation or direct compression resulted in higher amounts of undesirable degradation products.
EP-A-2508175 discloses a microencapsulated fesoterodine composition which is composed of a particle containing fesoterodine and a shell surrounding the fesoterodine-containing particle, wherein the shell comprises a hydrophobic polymer as rate-controlling agent, such as acrylate-based polymers, acrylates or methylacrylates and a pore-forming agent, such as water soluble polymer or water soluble salt. According to said document, in order to prevent degradation of fesoterodine, the proposed composition requires a complex-structured pharmaceutical composition.
Although each of the above patents represents an attempt to achieve a desirable release rate for once a day administration and to overcome the stability problems of the active ingredient associated with pharmaceuticals compositions comprising fesoterodine, there still exists a need for improving fesoterodine's stability of such pharmaceutical compositions in a less complicated production approach.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide an improved sustained release solid dosage composition for oral administration containing fesoterodine or pharmaceutical acceptable salt, derivative or metabolite thereof as an active ingredient, which overcomes the deficiencies of the prior art.
It is another, object of the present invention to provide a stable sustained release solid pharmaceutical composition for oral administration containing fesoterodine or pharmaceutical acceptable salt, derivative or metabolite thereof as an active ingredient, which is safe and effective with sufficient shelf-life and good pharmacotechnical properties.
Various methods are already known for the industrial preparation of extended release oral dosage forms comprising Fesoterodine or a pharmaceutical acceptable salt, derivative and metabolite thereof as an active ingredient due to its useful therapeutical properties. However, the prior art has encountered substantial difficulties in the production of a stable extended release and bioavailable fesoterodine composition of a desirable dissolution profile and a cost effective manufacturing process.
EP-B-2029134 discloses a pharmaceutical granulate comprising fesoterodine or a pharmaceutically acceptable salt or solvate thereof and a pharmaceutically acceptable stabilizer against hydrolysis, such as sorbitol, xylitol, polydextrose, isomalt, dextrose or combinations thereof. Further, said fesoterodine and stabilizer granulate is embedded in a gel matrix formed by a water swellable sustained release agent such as hydroxypropyl methylcellulose. According to said document, fesoterodine is more stable in a composition comprising sugar alcohols and in the presence of water e.g. by wet granulation. Dry granulation or direct compression resulted in higher amounts of undesirable degradation products.
EP-A-2508175 discloses a microencapsulated fesoterodine composition which is composed of a particle containing fesoterodine and a shell surrounding the fesoterodine-containing particle, wherein the shell comprises a hydrophobic polymer as rate-controlling agent, such as acrylate-based polymers, acrylates or methylacrylates and a pore-forming agent, such as water soluble polymer or water soluble salt. According to said document, in order to prevent degradation of fesoterodine, the proposed composition requires a complex-structured pharmaceutical composition.
Although each of the above patents represents an attempt to achieve a desirable release rate for once a day administration and to overcome the stability problems of the active ingredient associated with pharmaceuticals compositions comprising fesoterodine, there still exists a need for improving fesoterodine's stability of such pharmaceutical compositions in a less complicated production approach.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide an improved sustained release solid dosage composition for oral administration containing fesoterodine or pharmaceutical acceptable salt, derivative or metabolite thereof as an active ingredient, which overcomes the deficiencies of the prior art.
It is another, object of the present invention to provide a stable sustained release solid pharmaceutical composition for oral administration containing fesoterodine or pharmaceutical acceptable salt, derivative or metabolite thereof as an active ingredient, which is safe and effective with sufficient shelf-life and good pharmacotechnical properties.
-3-Moreover, it is another object of the present invention to provide a suitable process for the preparation of an extended release pharmaceutical composition for oral administration .. comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, derivative or metabolite thereof as an active ingredient, which is cost effective and reproducible.
In accordance with the above objects of the present invention, an extended release pharmaceutical composition for oral administration is provided comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite or derivative thereof, as an active ingredient and an effective quantity of glycerol dibehenate as a stabilizing agent in order to prevent the degradation and improve the physicochemical stability of the active ingredient in the finished dosage form.
According to another embodiment of the present invention, a process for the preparation of an extended release pharmaceutical composition for oral administration comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite or derivative thereof as an active ingredient, and an effective quantity of glycerol dibehenate as a stabilizing agent in order to prevent the degradation of said active ingredient is provided, wherein said process comprises following steps:
A. Dispensing: Weight individually the active ingredient and pass it through appropriate sieve.
B. Melting: Weight individually the stabilizing agent Glycerol Dibehenate and melt it at 85 C.
C. Melt Mixing (melt granulation): Add sieved active ingredient from step A to the molten liquid obtained from step B, mix for proper time and allow the granules to cool down D. Sizing: Pass the granules from step C to an appropriate sieve E. Pre- Mixing: Mix the sieved extragranular excipients (Lactose, microcrystalline cellulose, Hydroxypropyl methylcellulose, Talc, colloidal silicon dioxide) and lubricant (Glycerol Dibehenate) for appropriate time.
F. Mixing - Lubrication: Mix the powder resulting from step D with the mixture from step E for appropriate time.
.. G. Compression: Compress the powder resulting from step F into tablets in a rotary compression machine using appropriate punches.
H. Coating: Prepare an aqueous solution/suspension of OpadryTM and coat the tablets from step G.
Other objects and advantages of the present invention will become apparent to those skilled in the art in view of the following detailed description.
Date Regue/Date Received 2022-12-01
In accordance with the above objects of the present invention, an extended release pharmaceutical composition for oral administration is provided comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite or derivative thereof, as an active ingredient and an effective quantity of glycerol dibehenate as a stabilizing agent in order to prevent the degradation and improve the physicochemical stability of the active ingredient in the finished dosage form.
According to another embodiment of the present invention, a process for the preparation of an extended release pharmaceutical composition for oral administration comprising a therapeutically effective quantity of fesoterodine or a pharmaceutically acceptable salt, metabolite or derivative thereof as an active ingredient, and an effective quantity of glycerol dibehenate as a stabilizing agent in order to prevent the degradation of said active ingredient is provided, wherein said process comprises following steps:
A. Dispensing: Weight individually the active ingredient and pass it through appropriate sieve.
B. Melting: Weight individually the stabilizing agent Glycerol Dibehenate and melt it at 85 C.
C. Melt Mixing (melt granulation): Add sieved active ingredient from step A to the molten liquid obtained from step B, mix for proper time and allow the granules to cool down D. Sizing: Pass the granules from step C to an appropriate sieve E. Pre- Mixing: Mix the sieved extragranular excipients (Lactose, microcrystalline cellulose, Hydroxypropyl methylcellulose, Talc, colloidal silicon dioxide) and lubricant (Glycerol Dibehenate) for appropriate time.
F. Mixing - Lubrication: Mix the powder resulting from step D with the mixture from step E for appropriate time.
.. G. Compression: Compress the powder resulting from step F into tablets in a rotary compression machine using appropriate punches.
H. Coating: Prepare an aqueous solution/suspension of OpadryTM and coat the tablets from step G.
Other objects and advantages of the present invention will become apparent to those skilled in the art in view of the following detailed description.
Date Regue/Date Received 2022-12-01
-4-BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows dissolution profiles of fesoterodine containing pharmaceutical composition according to the present invention (composition 1) DETAILED DESCRIPTION OF THE INVENTION
For the purposes of the present invention, a pharmaceutical composition comprising fesoterodine or salts, metabolites or derivatives thereof is considered to be "stable" if said ingredient degradates less or more slowly than it does on its own and/or in known pharmaceutical compositions during storage.
An excipient is considered to be "incompatible" with fesoterodine or salts, metabolites or derivatives thereof if it promotes the degradation of said active ingredient, that is to say, if said active ingredient degrades more or faster in the presence of said excipient when compared with the degradation of said active ingredient on its own. The terms "incompatibility", "compatible"
and "compatibility" are defined accordingly.
The active ingredient contained in a dosage form is "bioavailable", if when administered in a dosage form is released from the dosage form, absorbed and reaches, at least the same, concentration levels in plasma as any of the marketed products containing the same quantity of the same active ingredient and intended for the same use.
Although the pharmaceutical composition may be in various forms, the preferred solid forms are tablets, capsules and caplets.
One of the main disadvantages of fesoterodine or salts, metabolites or derivatives thereof is the fact that, it is very labile and consequently many limitations concerning the choice of excipients are raised.
It has been surprisingly found that the object of the present invention is achieved by employing a glycerol dibehenate as stabilizing agent, in order to prevent the degradation and improve the physicochemical stability of the active ingredient in the finished dosage form.
Further, it has been found that Fesoterodine or salts, metabolites or derivatives thereof comprising glycerol dibehenate as stabilizing agent have very good stability and dissolution characteristics.
Glycerol dibehenate is a glyceride with a high melting point used as a modified release agent, lubricant in tablets, as stabilizer in lipid coating technologies and as lipid carrier for nanoparticles. Glycerol dibehenate is prepared by the esterification of glycerin with behenic acid (C22 fatty acid) without the use of catalysts. In the case of Compritol 888 ATO (Gattefosse), raw materials used are of vegetable origin, and the esterified material is atomized by spraycooling.
Glycerol dibehenate is inert. It does not react with active pharmaceutical ingredients (API) or other excipients. Its inertness is explained by its chemical nature and robust production process:
= It is a lipid excipient with less than 1% of water = It does not have reactive groups = It has very low level of impurity:- low peroxide value, low iodine value As molten lipid excipient in hot melt coating it comes in effect with the solid drug particles in a suitable coating device, it produces a thin, homogeneous film coating that acts as an effective
Fig. 1 shows dissolution profiles of fesoterodine containing pharmaceutical composition according to the present invention (composition 1) DETAILED DESCRIPTION OF THE INVENTION
For the purposes of the present invention, a pharmaceutical composition comprising fesoterodine or salts, metabolites or derivatives thereof is considered to be "stable" if said ingredient degradates less or more slowly than it does on its own and/or in known pharmaceutical compositions during storage.
An excipient is considered to be "incompatible" with fesoterodine or salts, metabolites or derivatives thereof if it promotes the degradation of said active ingredient, that is to say, if said active ingredient degrades more or faster in the presence of said excipient when compared with the degradation of said active ingredient on its own. The terms "incompatibility", "compatible"
and "compatibility" are defined accordingly.
The active ingredient contained in a dosage form is "bioavailable", if when administered in a dosage form is released from the dosage form, absorbed and reaches, at least the same, concentration levels in plasma as any of the marketed products containing the same quantity of the same active ingredient and intended for the same use.
Although the pharmaceutical composition may be in various forms, the preferred solid forms are tablets, capsules and caplets.
One of the main disadvantages of fesoterodine or salts, metabolites or derivatives thereof is the fact that, it is very labile and consequently many limitations concerning the choice of excipients are raised.
It has been surprisingly found that the object of the present invention is achieved by employing a glycerol dibehenate as stabilizing agent, in order to prevent the degradation and improve the physicochemical stability of the active ingredient in the finished dosage form.
Further, it has been found that Fesoterodine or salts, metabolites or derivatives thereof comprising glycerol dibehenate as stabilizing agent have very good stability and dissolution characteristics.
Glycerol dibehenate is a glyceride with a high melting point used as a modified release agent, lubricant in tablets, as stabilizer in lipid coating technologies and as lipid carrier for nanoparticles. Glycerol dibehenate is prepared by the esterification of glycerin with behenic acid (C22 fatty acid) without the use of catalysts. In the case of Compritol 888 ATO (Gattefosse), raw materials used are of vegetable origin, and the esterified material is atomized by spraycooling.
Glycerol dibehenate is inert. It does not react with active pharmaceutical ingredients (API) or other excipients. Its inertness is explained by its chemical nature and robust production process:
= It is a lipid excipient with less than 1% of water = It does not have reactive groups = It has very low level of impurity:- low peroxide value, low iodine value As molten lipid excipient in hot melt coating it comes in effect with the solid drug particles in a suitable coating device, it produces a thin, homogeneous film coating that acts as an effective
-5-barrier against water vapor protecting substrate-API from relative humidity/degradation and resolving API compatibility problems. The mechanism of melt granulation is analogous to wet granulation. The initial particle-particle bonds are formed by the surface tension of liquid (molten hot-melt lipid excipient). On subsequent cooling, the molten lipid excipient solidifies forming solid bridges that permanently bind the particles together.
The weight ratio of fesoterodine fumarate to glycerol dibehenate in the solid composition according to the present invention may be selected from 1:0.5 to 1:40.
The pharmaceutical compositions of the present invention may also contain one or more additional formulation ingredients selected from a wide variety of excipients.
According to the desired properties of the composition, any number of ingredients may be selected, alone or in combination, based upon their known uses in preparation of solid dosage form compositions (tablet/capsule compositions).
Such ingredients include, but are not limited to, diluents, binders, rate controlling agents, compression aids, glidants, lubricants, water scavengers, colorants, coating agents and preservatives.
The optional excipients must be compatible with fesoterodine or salt, metabolite or derivative thereof so that it does not interfere with it in the composition.
Moreover, any excipient may optionally be added to the above composition, provided that they are compatible with the active ingredient of the composition, in order to overcome problems associated with unfavorable pharmacotechnical characteristics of these substances, and in order to increase the stability of the drug and the shelf-life of the pharmaceutical product, and provide a product exhibiting excellent bioavailability.
The composition of the present invention may include further additives (alone or in a combination) such as absorbents, acids, adjuvants, anticaking agents, glidants, antitacking agents, antifoamers, anticoagulants, antimicrobials, antiseptics, diluents, binders, chelating agents, sequestrants, coating agents, colorants, dyes, pigments, complexing agents, softeners, crystal growth regulators, denaturants, desiccants, dehydrating agents, dispersants, solubilizers, emollients, emulsifiers, fillers, flavor masking agents, gelling agents, humectants, lubricants, moisturizers, bufferants, p1-1 control agents, plasticizers, retarding agents, stabilizers, suspending agents, thickening agents, surfactants, opacifiers, coloring agents, preservatives, antigellants, rheology control agents, tonicifiers etc.
Diluents may be selected from calcium carbonate, calcium phosphate dibasic, calcium phosphate tribasic, calcium sulfate, microcrystalline cellulose, microcrystalline silicified cellulose, powdered cellulose, dextrates, dextrose, fructose, lactitol, lactose anhydrous, lactose monohydrate, lactose dihydrate, lactose trihydrate, mannitol, sorbitol, starch, pregelatinized starch, sucrose, talc, xylitol, maltose, isomalt, maltodextrin, maltitol and the like. Diluents may be in the range of 10-90 weight % of the total weight of the composition.
Binders may be selected from acacia, alginic acid, carbomer, carboxymethylcellulose calcium, carbomethylcellulose sodium, microcrystalline cellulose, powdered cellulose, ethyl cellulose, gelatin liquid glucose, guar gum, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, maltodextrin, methylcellulose, polydextrose, polyethylene =
The weight ratio of fesoterodine fumarate to glycerol dibehenate in the solid composition according to the present invention may be selected from 1:0.5 to 1:40.
The pharmaceutical compositions of the present invention may also contain one or more additional formulation ingredients selected from a wide variety of excipients.
According to the desired properties of the composition, any number of ingredients may be selected, alone or in combination, based upon their known uses in preparation of solid dosage form compositions (tablet/capsule compositions).
Such ingredients include, but are not limited to, diluents, binders, rate controlling agents, compression aids, glidants, lubricants, water scavengers, colorants, coating agents and preservatives.
The optional excipients must be compatible with fesoterodine or salt, metabolite or derivative thereof so that it does not interfere with it in the composition.
Moreover, any excipient may optionally be added to the above composition, provided that they are compatible with the active ingredient of the composition, in order to overcome problems associated with unfavorable pharmacotechnical characteristics of these substances, and in order to increase the stability of the drug and the shelf-life of the pharmaceutical product, and provide a product exhibiting excellent bioavailability.
The composition of the present invention may include further additives (alone or in a combination) such as absorbents, acids, adjuvants, anticaking agents, glidants, antitacking agents, antifoamers, anticoagulants, antimicrobials, antiseptics, diluents, binders, chelating agents, sequestrants, coating agents, colorants, dyes, pigments, complexing agents, softeners, crystal growth regulators, denaturants, desiccants, dehydrating agents, dispersants, solubilizers, emollients, emulsifiers, fillers, flavor masking agents, gelling agents, humectants, lubricants, moisturizers, bufferants, p1-1 control agents, plasticizers, retarding agents, stabilizers, suspending agents, thickening agents, surfactants, opacifiers, coloring agents, preservatives, antigellants, rheology control agents, tonicifiers etc.
Diluents may be selected from calcium carbonate, calcium phosphate dibasic, calcium phosphate tribasic, calcium sulfate, microcrystalline cellulose, microcrystalline silicified cellulose, powdered cellulose, dextrates, dextrose, fructose, lactitol, lactose anhydrous, lactose monohydrate, lactose dihydrate, lactose trihydrate, mannitol, sorbitol, starch, pregelatinized starch, sucrose, talc, xylitol, maltose, isomalt, maltodextrin, maltitol and the like. Diluents may be in the range of 10-90 weight % of the total weight of the composition.
Binders may be selected from acacia, alginic acid, carbomer, carboxymethylcellulose calcium, carbomethylcellulose sodium, microcrystalline cellulose, powdered cellulose, ethyl cellulose, gelatin liquid glucose, guar gum, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, maltodextrin, methylcellulose, polydextrose, polyethylene =
-6-oxide, sodium alginate, starch paste, pregelatinized starch, sucrose, tragacanth, low-substituted hydroxypropyl cellulose, glucose, sorbitol. Binders may be in the range of 1-40 weight % of the total weight of the composition.
Rate controlling agents may be selected from one or more polymers/copolymers of cellulose or its derivatives such as hydroxypropylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, methylcellulose, carboxymethylcellulose and its salts;
polyacrylates, methylacrylates, polyethylene oxides, polyethylene glycols, gums, chitosan, starch derivatives, polyurethanes, galactomannans, polysaccharides, polyalcohols, acrylic acid or its derivatives, ethyl cellulose, glycerol palmitostearate, beeswax, glycowax, carnaubawax, hydrogenated vegetable oil, glycerol monostearate, stearylalcohol, glycerol dibehenate, polyanhydrides, methylacrylates, polyamides, polycarbonates, polyalkylene, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes, polystyrene, polymers of acrylic and methacrylic esters, polylactides, poly(butyric acid), poly(valeric acid), poly(lactide-co-glycolides), polyanhydrides, polyorthoesters, poly(fumaric acid), poly(maleic acid), cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethylcellulose, cellulose triacetate, cellulose sulfate sodium salt, poly(methylmethacrylate), poly(ethylmethacrylate), poly(butylmethacrylate), poly(isobutyl-methacrylate), poly(hexylmethacrylate), poly(isodecylmethacrylate), poly(lauryl-methacrylate), poly(phenylmethacrylate), poly(methylacrylate), poly (isopropyl-methacrylate) and the like. Rate controlling agents may be in the range of 1-95 weight % of the total weight of the composition.
Glidants may be selected from calcium silicate, powdered cellulose, starch, talc, colloidal silicon dioxide and the like. Glidants may be in the range of 0.01-5 weight % of the total weight of the composition.
Lubricants may be selected from magnesium stearate, stearic acid, sodium stearyl fumarate, magnesium lauryl sulphate, talc, polyethylene glycol, glycerol dibehenate and the like.
Lubricants may be in the range of 0.01-5 weight % of the total weight of the composition.
All percentages stated herein are weight percentages based on total composition weight, unless otherwise stated.
Another embodiment of the present invention is the use of a hot melt granulation process for the preparation of solid dosage forms for oral administration containing fesoterodine or salt, metabolite or derivative thereof. The steps in this technique may be as follows:
A. Dispensing: Weight individually the active ingredient and pass it through appropriate sieve.
B. Melting: Weight individually the stabilizing agent Glycerol Dibehenate and melt it at 85 C.
C. Melt Mixing (melt granulation): Add sieved active ingredient from step A to the molten liquid obtained from step B, mix for proper time and allow the granules to cool down D. Sizing: Pass the granules from step C to an appropriate sieve E. Pre- Mixing: Mix the sieved extragranular excipients (Lactose, microcrystalline cellulose, Hydroxypropyl methylcellulose, Talc, colloidal silicon dioxide) and lubricant (Glycerol Dibehenate) for appropriate time.
Rate controlling agents may be selected from one or more polymers/copolymers of cellulose or its derivatives such as hydroxypropylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, methylcellulose, carboxymethylcellulose and its salts;
polyacrylates, methylacrylates, polyethylene oxides, polyethylene glycols, gums, chitosan, starch derivatives, polyurethanes, galactomannans, polysaccharides, polyalcohols, acrylic acid or its derivatives, ethyl cellulose, glycerol palmitostearate, beeswax, glycowax, carnaubawax, hydrogenated vegetable oil, glycerol monostearate, stearylalcohol, glycerol dibehenate, polyanhydrides, methylacrylates, polyamides, polycarbonates, polyalkylene, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes, polystyrene, polymers of acrylic and methacrylic esters, polylactides, poly(butyric acid), poly(valeric acid), poly(lactide-co-glycolides), polyanhydrides, polyorthoesters, poly(fumaric acid), poly(maleic acid), cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethylcellulose, cellulose triacetate, cellulose sulfate sodium salt, poly(methylmethacrylate), poly(ethylmethacrylate), poly(butylmethacrylate), poly(isobutyl-methacrylate), poly(hexylmethacrylate), poly(isodecylmethacrylate), poly(lauryl-methacrylate), poly(phenylmethacrylate), poly(methylacrylate), poly (isopropyl-methacrylate) and the like. Rate controlling agents may be in the range of 1-95 weight % of the total weight of the composition.
Glidants may be selected from calcium silicate, powdered cellulose, starch, talc, colloidal silicon dioxide and the like. Glidants may be in the range of 0.01-5 weight % of the total weight of the composition.
Lubricants may be selected from magnesium stearate, stearic acid, sodium stearyl fumarate, magnesium lauryl sulphate, talc, polyethylene glycol, glycerol dibehenate and the like.
Lubricants may be in the range of 0.01-5 weight % of the total weight of the composition.
All percentages stated herein are weight percentages based on total composition weight, unless otherwise stated.
Another embodiment of the present invention is the use of a hot melt granulation process for the preparation of solid dosage forms for oral administration containing fesoterodine or salt, metabolite or derivative thereof. The steps in this technique may be as follows:
A. Dispensing: Weight individually the active ingredient and pass it through appropriate sieve.
B. Melting: Weight individually the stabilizing agent Glycerol Dibehenate and melt it at 85 C.
C. Melt Mixing (melt granulation): Add sieved active ingredient from step A to the molten liquid obtained from step B, mix for proper time and allow the granules to cool down D. Sizing: Pass the granules from step C to an appropriate sieve E. Pre- Mixing: Mix the sieved extragranular excipients (Lactose, microcrystalline cellulose, Hydroxypropyl methylcellulose, Talc, colloidal silicon dioxide) and lubricant (Glycerol Dibehenate) for appropriate time.
-7-F. Mixing - Lubrication: Mix the powder resulting from step D with the mixture from step E for appropriate time.
G. Compression: Compress the powder resulting from step F into tablets in a rotary compression machine using appropriate punches.
H. Coating: Prepare an aqueous solution/suspension of opadryTm and coat the tablets from step G.
The extended release pharmaceutical composition of the present invention comprising Fesoterodine fumarate as an active ingredient has been compared to extended release reference product Toviairm consisting of fesoterodine fumarate with the following excipients xylitol, Lactose monohydrate, Microcrystalline cellulose, Hypromellose, Glyceroldibehenate (as lubricant), Talc, and as film-coating comprising Poly(vinyl alcohol), Titanium dioxide, Macrogol, Talc, Soya lecithin and indigo carmine aluminium lake.
The pharmaceutical compositions according to the present invention are characterized by .. excellent pharmacotechnical properties, such as homogeneity, flowability and compressibility.
Thanks to these properties, the solid dosage forms prepared by the process according to the present invention exhibit excellent technical characteristics including dissolution rate, hardness, and stability.
One of the most critical pharmacotechnical tests is the Dissolution test as it is strongly correlated with the bioavailability of the product. For the dissolution method a Paddle Apparatus was used at rotation speed 75rpm, in aqueous dissolution medium with pH 6.8.
TABLE 1: Dissolution profile of Composition 1 % Dissolved at p11,6.8 Time (hrs) Composition 1 1 14,8 2 28,2 4 49,0 6 64,1
G. Compression: Compress the powder resulting from step F into tablets in a rotary compression machine using appropriate punches.
H. Coating: Prepare an aqueous solution/suspension of opadryTm and coat the tablets from step G.
The extended release pharmaceutical composition of the present invention comprising Fesoterodine fumarate as an active ingredient has been compared to extended release reference product Toviairm consisting of fesoterodine fumarate with the following excipients xylitol, Lactose monohydrate, Microcrystalline cellulose, Hypromellose, Glyceroldibehenate (as lubricant), Talc, and as film-coating comprising Poly(vinyl alcohol), Titanium dioxide, Macrogol, Talc, Soya lecithin and indigo carmine aluminium lake.
The pharmaceutical compositions according to the present invention are characterized by .. excellent pharmacotechnical properties, such as homogeneity, flowability and compressibility.
Thanks to these properties, the solid dosage forms prepared by the process according to the present invention exhibit excellent technical characteristics including dissolution rate, hardness, and stability.
One of the most critical pharmacotechnical tests is the Dissolution test as it is strongly correlated with the bioavailability of the product. For the dissolution method a Paddle Apparatus was used at rotation speed 75rpm, in aqueous dissolution medium with pH 6.8.
TABLE 1: Dissolution profile of Composition 1 % Dissolved at p11,6.8 Time (hrs) Composition 1 1 14,8 2 28,2 4 49,0 6 64,1
8 72,7 12 85,6 16 91,5 20 94,9 As it is shown in Table 1, composition 1 according to the present invention shows an extended release of Fesoterodine as depicted in Fig. 1.
One of the main objects of the present invention was to prepare a product with acceptable stability. For this reason composition I was exposed to accelerated (40 C 2 C/75%- 5% RH) stability studies according to the current ICH guidelines.
The stability results are shown in TABLE 2 below.
TABLE 2: Stability results of Composition 1 directly after preparation and after 1 month of storage in aluminium blisters at accelerated conditions Impurities 0 Month 1 Month Accelerated Dial 0.09 0.27 Total 0.15 0.36 The results showed that the stability of the present invention was good.
The selection of appropriate materials (excipients, reagents etc.) should be done carefully in order to avoid any incompatibility problems or non-compliance with European Pharmacopoeia and FDA guidelines for inactive ingredients.
The tablets may be film coated with functional or non-functional coating.
The following examples illustrate preferred embodiments in accordance with the present invention without limiting the scope or spirit of the invention.
EXAMPLES
Example 1: Fesoterodine fumarate Composition 1 according to the present invention Composition 1 of the present invention is illustrated in TABLE 3 below.
TABLE 3: Fesoterodine fumarate Composition 1 Ingredients Composition 1 mg/tab Fesoterodine Fumarate 8.00 Glycerol dibehenate 36.00 Hydroxypropyl 92.00 methylcellulose MicroceLacTM 100 162.30 Aerosil TM 200 3.20 Talc 8.50 Glycerol dibehenate 10.00 Tab Total 320.00 Coating 19.00 Total 339.00 =
One of the main objects of the present invention was to prepare a product with acceptable stability. For this reason composition I was exposed to accelerated (40 C 2 C/75%- 5% RH) stability studies according to the current ICH guidelines.
The stability results are shown in TABLE 2 below.
TABLE 2: Stability results of Composition 1 directly after preparation and after 1 month of storage in aluminium blisters at accelerated conditions Impurities 0 Month 1 Month Accelerated Dial 0.09 0.27 Total 0.15 0.36 The results showed that the stability of the present invention was good.
The selection of appropriate materials (excipients, reagents etc.) should be done carefully in order to avoid any incompatibility problems or non-compliance with European Pharmacopoeia and FDA guidelines for inactive ingredients.
The tablets may be film coated with functional or non-functional coating.
The following examples illustrate preferred embodiments in accordance with the present invention without limiting the scope or spirit of the invention.
EXAMPLES
Example 1: Fesoterodine fumarate Composition 1 according to the present invention Composition 1 of the present invention is illustrated in TABLE 3 below.
TABLE 3: Fesoterodine fumarate Composition 1 Ingredients Composition 1 mg/tab Fesoterodine Fumarate 8.00 Glycerol dibehenate 36.00 Hydroxypropyl 92.00 methylcellulose MicroceLacTM 100 162.30 Aerosil TM 200 3.20 Talc 8.50 Glycerol dibehenate 10.00 Tab Total 320.00 Coating 19.00 Total 339.00 =
-9-Example 2: Fesoterodine fumarate Compositions 2, 3 and 4 according to the present invention Compositions 2, 3 and 4 of the present invention, as illustrated in TABLE 4 below, with different quantities of Glycerol Dibehenate were tested.
Composition 2 comprises Fesoterodine fumarate and Glycerol Dibehenate as stabilizing agent wherein the weight ratio of Fesoterodine fumarate to Glycerol Dibehenate is 1:9.
Composition 3 comprises Fesoterodine fumarate and Glycerol Dibehenate as stabilizing agent wherein the weight ratio of Fesoterodine fumarate to Glycerol Dibehenate is 1:4.5.
Composition 4 comprises of Fesoterodine fumarate and Glycerol Dibehenate as stabilizing agent wherein the weight ratio of Fesoterodine fumarate to Glycerol Dibehenate is 1:18.
TABLE 4: Fesoterodine fumarate Composition 2, 3 and 4 Ingredients Composition 2 Composition 3 Composition 4 mg/tab mg/tab mg/tab Intra - granular Fesoterodine Fumarate 8.0 8.0 8.0 Glycerol dibehenate 72.0 36.0 144.0 Extra - granular Hydroxypropyl 144 0 144.0 144.0 .
methylcellulose MicroceLacTM 100 74.3 110.3 2.3 Aerosil TM 200 3.2 3.2 3.2 Glidant - Lubricant Talc 8.5 8.5 8.5 Glycerol dibehenate 10.0 10.0
Composition 2 comprises Fesoterodine fumarate and Glycerol Dibehenate as stabilizing agent wherein the weight ratio of Fesoterodine fumarate to Glycerol Dibehenate is 1:9.
Composition 3 comprises Fesoterodine fumarate and Glycerol Dibehenate as stabilizing agent wherein the weight ratio of Fesoterodine fumarate to Glycerol Dibehenate is 1:4.5.
Composition 4 comprises of Fesoterodine fumarate and Glycerol Dibehenate as stabilizing agent wherein the weight ratio of Fesoterodine fumarate to Glycerol Dibehenate is 1:18.
TABLE 4: Fesoterodine fumarate Composition 2, 3 and 4 Ingredients Composition 2 Composition 3 Composition 4 mg/tab mg/tab mg/tab Intra - granular Fesoterodine Fumarate 8.0 8.0 8.0 Glycerol dibehenate 72.0 36.0 144.0 Extra - granular Hydroxypropyl 144 0 144.0 144.0 .
methylcellulose MicroceLacTM 100 74.3 110.3 2.3 Aerosil TM 200 3.2 3.2 3.2 Glidant - Lubricant Talc 8.5 8.5 8.5 Glycerol dibehenate 10.0 10.0
10.0 Purified water qs qs qs Tab Weight (mg) 320.0 320.0 320.0 Opadry TM 16.0 16.0 16.0 , Tablets of fesoterodine fumarate of the above Compositions 2, 3 and 4 were prepared according to the following manufacturing process:
At a first stage, fesoterodine fumarate was weighted individually and passed through appropriate sieve. Glycerol dibehenate as stabilizing agent was weighted individually and then, melted at 85 C. The sieved fesoterodine fumarate was added in the molten liquid of the stabilizing agent and mixed for appropriate time until the agglomerates cool down and the melt granulation process is completed with the solidification of the molten stabilizing agent.
Subsequently, the obtained granules were passed through an appropriate sieve.
At a second stage, a mixture of the sieved extragranular excipients was formed by mixing for appropriate time MicroceLacTM 100 as diluent, Hydroxypropyl methylcellulose, as rate =
controlling agent, Talc and colloidal silicon dioxide (Aerosilml 200), as glidants and the quantity of Glycerol Dibehenate, as lubricant.
The powder obtained from the first stage was mixed with the mixture of the second stage until , complete homogeneity. The resulting powder was compressed into tablets in a rotary compression machine using appropriate punches. Then, the tablets were coated with an aqueous solution/suspension of OpadryTm, that was prepared.
Another object of the present invention was to prepare a pharmaceutical composition that is stable for a long period of storage time. Therefore, tablets of Compositions 2, 3 and 4 in closed High-density polyethylene (HDPE) vials were exposed to accelerated (40 C 2 C/75%5% RH) stability studies according to the current ICH guidelines.
The stability results of Compositions 2, 3 and 4 at accelerated conditions, in comparison to the reference product, Toviaz are shown in TABLE 5 below.
TABLE 5: Comparative stability results of Compositions 2, 3 and 4 vs reference product Toviaz Impurities 1Month Reference Composition Composition Composition Closed HDPE
Product 2 3 4 Accelerated 0.97/1.92 0.62/1.32 0.31/0.54 0.48/0.70 (Diol/Total) 0/0 The results showed that the stability of Compositions 2, 3 and 4 of the present invention was improved compared to reference product Toviaz . Particularly, diol content of Compositions 2, 3 and 4 was 0.62%, 0.31% and 0.48%, respectively, compared to reference product wherein diol impurity was 0.97% and total impurities of Compositions 2, 3 and 4 were 1.32%, 0.54% and 0.70%, respectively, compared to reference product wherein total impurities were 01.92%.
In addition, as shown in Fig. 1, Fesoterodine Composition 1 showed extended release of the active ingredient for a time period more than 20h.
Consequently, a novel improved extended release composition of fesoterodine fumarate has been achieved comprising fesoterodine, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable stabilizing agent, wherein said stabilizing agent is glycerol dibehenate. The use of glycerol dibehenate is able to improve the physicochemical stability of the active ingredient in the finished dosage form by protecting said active ingredient from degradation, and maintaining an extended release profile of said active ingredient.
The stability of the product as well as the simple and economic manufacturing process indicates the advantages of the present invention relative to the commonly used method and excipients for the formulation of fesoterodine.
While the present invention has been described with respect to the particular embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made in the invention without departing from the spirit and scope thereof, as defined in the appended claims.
At a first stage, fesoterodine fumarate was weighted individually and passed through appropriate sieve. Glycerol dibehenate as stabilizing agent was weighted individually and then, melted at 85 C. The sieved fesoterodine fumarate was added in the molten liquid of the stabilizing agent and mixed for appropriate time until the agglomerates cool down and the melt granulation process is completed with the solidification of the molten stabilizing agent.
Subsequently, the obtained granules were passed through an appropriate sieve.
At a second stage, a mixture of the sieved extragranular excipients was formed by mixing for appropriate time MicroceLacTM 100 as diluent, Hydroxypropyl methylcellulose, as rate =
controlling agent, Talc and colloidal silicon dioxide (Aerosilml 200), as glidants and the quantity of Glycerol Dibehenate, as lubricant.
The powder obtained from the first stage was mixed with the mixture of the second stage until , complete homogeneity. The resulting powder was compressed into tablets in a rotary compression machine using appropriate punches. Then, the tablets were coated with an aqueous solution/suspension of OpadryTm, that was prepared.
Another object of the present invention was to prepare a pharmaceutical composition that is stable for a long period of storage time. Therefore, tablets of Compositions 2, 3 and 4 in closed High-density polyethylene (HDPE) vials were exposed to accelerated (40 C 2 C/75%5% RH) stability studies according to the current ICH guidelines.
The stability results of Compositions 2, 3 and 4 at accelerated conditions, in comparison to the reference product, Toviaz are shown in TABLE 5 below.
TABLE 5: Comparative stability results of Compositions 2, 3 and 4 vs reference product Toviaz Impurities 1Month Reference Composition Composition Composition Closed HDPE
Product 2 3 4 Accelerated 0.97/1.92 0.62/1.32 0.31/0.54 0.48/0.70 (Diol/Total) 0/0 The results showed that the stability of Compositions 2, 3 and 4 of the present invention was improved compared to reference product Toviaz . Particularly, diol content of Compositions 2, 3 and 4 was 0.62%, 0.31% and 0.48%, respectively, compared to reference product wherein diol impurity was 0.97% and total impurities of Compositions 2, 3 and 4 were 1.32%, 0.54% and 0.70%, respectively, compared to reference product wherein total impurities were 01.92%.
In addition, as shown in Fig. 1, Fesoterodine Composition 1 showed extended release of the active ingredient for a time period more than 20h.
Consequently, a novel improved extended release composition of fesoterodine fumarate has been achieved comprising fesoterodine, or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable stabilizing agent, wherein said stabilizing agent is glycerol dibehenate. The use of glycerol dibehenate is able to improve the physicochemical stability of the active ingredient in the finished dosage form by protecting said active ingredient from degradation, and maintaining an extended release profile of said active ingredient.
The stability of the product as well as the simple and economic manufacturing process indicates the advantages of the present invention relative to the commonly used method and excipients for the formulation of fesoterodine.
While the present invention has been described with respect to the particular embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made in the invention without departing from the spirit and scope thereof, as defined in the appended claims.
Claims (10)
1. An extended release pharmaceutical composition for oral administration comprising fesoterodine or a pharmaceutically acceptable salt thereof as active ingredient, and an effective quantity of glycerol dibehenate as stabilizing agent in order to prevent degradation and improve the physicochemical stability of the active ingredient in a finished dosage form, which is prepared by hot melt process.
2. The pharmaceutical composition according to claim 1, wherein said active ingredient is fesoterodine fumarate.
3. The pharmaceutical composition according to claim 2, wherein a ratio of the fesoterodine fumarate to the glycerol dibehenate as stabilizing agent by weight is from 1:0.5 to 1:40.
4. The pharmaceutical composition according to claim 3, wherein the pharmaceutical composition further comprises at least one pharmaceutically acceptable excipient as rate controlling agent, to modify/control the release of the active ingredient in the finished dosage form.
5. The pharmaceutical composition according to claim 4, wherein the excipient is hydroxypropyl methylcellulose.
6. The pharmaceutical composition according to any one of claims 1-5, wherein the amount of glycerol dibehenate as stabilizing agent in the composition is at least 1% by weight of the total weight of the composition.
7. The pharmaceutical composition according to any one of claims 1-6, wherein said pharmaceutical composition further comprises pharmaceutically acceptable additives selected from a group comprising of absorbents, acids, adjuvants, anticaking agents, glidants, antitacking agents, antifoamers, anticoagulants, antimicrobials, antiseptics, diluents, binders, chelating agents, sequestrants, coating agents, colorants, dyes, pigments, complexing agents, softeners, crystal growth regulators, denaturants, desiccants, dehydrating agents, dispersants, solubilizers, emollients, emulsifiers, fillers, flavor masking agents, gelling agents, humectants, lubricants, moisturizers, bufferants, pH
control agents, plasticizers, retarding agents, stabilizers, suspending agents, sweeteners, Date Recue/Date Received 2023-07-04 thickening agents, surfactants, opacifiers, coloring agents, preservatives, antigellants, rheology control agents, tonicifiers and their combinations thereof.
control agents, plasticizers, retarding agents, stabilizers, suspending agents, sweeteners, Date Recue/Date Received 2023-07-04 thickening agents, surfactants, opacifiers, coloring agents, preservatives, antigellants, rheology control agents, tonicifiers and their combinations thereof.
8. The pharmaceutical composition according to claim 5, wherein said composition further comprises a diluent, Colloidal Silicon Dioxide and talc as glidants and additional glycerol dibehenate as lubricant.
9. A process for the preparation of an extended release phamiaceutical composition for oral administration comprising fesoterodine or a pharmaceutically acceptable salt thereof as active ingredient, and an effective quantity of glycerol dibehenate as stabilizing agent in order to prevent degradation and improve the physicochemical stability of the active ingredient in a finished dosage form, wherein said process comprises the steps of:
A. Dispensing: Weighing the active ingredient and passing it through a sieve;
B. Melting: Weighing the stabilizing agent glycerol dibehenate and melting it at 85 C to form a molten liquid;
C. Melt Mixing/melt granulation: Adding sieved active ingredient from step A
to the molten liquid obtained from step B to form granules, and allowing the granules to cool down;
D. Sizing: Passing the granules from step C through a sieve to form a powder;
E. Pre-Mixing: Mixing sieved extragranular excipients, lactose and microcrystalline cellulose as diluents, hydroxypropyl methylcellulose as rate controlling agent, talc and colloidal silicon dioxide as glidants, and additional glycerol dibehenate as lubricant to form a mixture;
F. Mixing - Lubrication: Mixing the powder resulting from step D with the mixture from step E for a time to form a second powder;
G. Compression: Compressing the second powder resulting from step F into tablets in a rotary compression machine using punches; and H. Coating: Preparing an aqueous solution/suspension of a pharmaceutically acceptable coating, and coating the tablets from step G.
Date Recue/Date Received 2023-07-04
A. Dispensing: Weighing the active ingredient and passing it through a sieve;
B. Melting: Weighing the stabilizing agent glycerol dibehenate and melting it at 85 C to form a molten liquid;
C. Melt Mixing/melt granulation: Adding sieved active ingredient from step A
to the molten liquid obtained from step B to form granules, and allowing the granules to cool down;
D. Sizing: Passing the granules from step C through a sieve to form a powder;
E. Pre-Mixing: Mixing sieved extragranular excipients, lactose and microcrystalline cellulose as diluents, hydroxypropyl methylcellulose as rate controlling agent, talc and colloidal silicon dioxide as glidants, and additional glycerol dibehenate as lubricant to form a mixture;
F. Mixing - Lubrication: Mixing the powder resulting from step D with the mixture from step E for a time to form a second powder;
G. Compression: Compressing the second powder resulting from step F into tablets in a rotary compression machine using punches; and H. Coating: Preparing an aqueous solution/suspension of a pharmaceutically acceptable coating, and coating the tablets from step G.
Date Recue/Date Received 2023-07-04
10. The process for the preparation of a pharmaceutical composition according to claim 9, wherein fesoterocline fumarate is included with the glycerol dibehenate as stabilizing agent in a ratio by weight from 1:0.5 to 1:40.
Date Recue/Date Received 2023-07-04
Date Recue/Date Received 2023-07-04
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2018/000223 WO2019206391A1 (en) | 2018-04-26 | 2018-04-26 | Extended release pharmaceutical composition containing fesoterodine and process for the preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CA3094551A1 CA3094551A1 (en) | 2019-10-31 |
CA3094551C true CA3094551C (en) | 2024-01-02 |
Family
ID=62530172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3094551A Active CA3094551C (en) | 2018-04-26 | 2018-04-26 | Extended release pharmaceutical composition containing fesoterodine and process for the preparation thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3784217A1 (en) |
CA (1) | CA3094551C (en) |
WO (1) | WO2019206391A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023145486A1 (en) * | 2022-01-28 | 2023-08-03 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PE20080331A1 (en) | 2006-06-09 | 2008-06-19 | Sanol Arznei Schwarz Gmbh | STABILIZED PHARMACEUTICAL COMPOSITIONS INCLUDING FESOTERODINE |
EP2508175A1 (en) | 2011-04-08 | 2012-10-10 | LEK Pharmaceuticals d.d. | Pharmaceutical composition comprising fesoterodine or a salt or a solvate thereof |
ES2674811T3 (en) * | 2012-07-02 | 2018-07-04 | Hetero Research Foundation | Stable Fesoterodine Compositions |
-
2018
- 2018-04-26 CA CA3094551A patent/CA3094551C/en active Active
- 2018-04-26 EP EP18729320.4A patent/EP3784217A1/en active Pending
- 2018-04-26 WO PCT/EP2018/000223 patent/WO2019206391A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2019206391A1 (en) | 2019-10-31 |
CA3094551A1 (en) | 2019-10-31 |
EP3784217A1 (en) | 2021-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2652712C (en) | Stabilized pharmaceutical compositions comprising fesoterodine | |
JP5278708B2 (en) | Nateglinide-containing hydrophilic pharmaceutical formulation | |
JP5794650B2 (en) | Solubility improving preparation for poorly soluble drugs | |
JP2012144568A (en) | Method for stabilizing anti-dementia drug | |
MX2014012349A (en) | New formulation. | |
JP4457003B2 (en) | Controlled release pharmaceutical composition | |
US20040037880A1 (en) | Extended release formulation of divalproex sodium | |
EP2603206B1 (en) | Pharmaceutical compositions of metabotropic glutamate 5 receptor (mglu5) antagonists | |
AU2011288256A1 (en) | Oral controlled release pharmaceutical compositions of Blonanserin | |
CA3094551C (en) | Extended release pharmaceutical composition containing fesoterodine and process for the preparation thereof | |
WO2005084636A2 (en) | A process for the preparation of controlled-release pharmaceutical composition of metoprolol | |
WO2009016608A2 (en) | Pharmaceutical compositions of fenofibrate | |
KR20120014583A (en) | Desfesoterodine in the form of a tartaric acid salt | |
EP3764983B1 (en) | A sustained release formulation comprising acemetacin with bimodal in vitro release | |
WO2019011393A1 (en) | Extended release pharmaceutical composition containing fesoterodine and process for the preparation thereof | |
Kestur et al. | Excipients for conventional oral solid dosage forms | |
JP2022514040A (en) | Tamsulosin hydrochloride-containing pharmaceutical composition having excellent acid resistance and a method for producing the same. | |
EP2303233A1 (en) | Solid oral dosage form containing anti-platelet agent clopidogrel and method for the preparation thereof | |
CN115804774B (en) | Pharmaceutical composition of oxarogeli, pharmaceutical preparation containing pharmaceutical composition and application of pharmaceutical composition | |
EP3796904A1 (en) | Sustained release acemetacin compositions | |
US20100285126A1 (en) | Pharmaceutical compositions of fenofibrate | |
US20220249479A1 (en) | Modified release formulation of a pyrimidinylamino-pyrazole compound, and methods of treatment | |
TR2022010736A2 (en) | ORAL DOSAGE FORMULATIONS CONTAINING EMPAGLIFLOZIN | |
TW201630601A (en) | Solid composition of pyrrole carboxamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |
|
EEER | Examination request |
Effective date: 20210608 |