CA2906047C - Methods and compositions for stimulating the production of hydrocarbons from subterranean formations - Google Patents
Methods and compositions for stimulating the production of hydrocarbons from subterranean formations Download PDFInfo
- Publication number
- CA2906047C CA2906047C CA2906047A CA2906047A CA2906047C CA 2906047 C CA2906047 C CA 2906047C CA 2906047 A CA2906047 A CA 2906047A CA 2906047 A CA2906047 A CA 2906047A CA 2906047 C CA2906047 C CA 2906047C
- Authority
- CA
- Canada
- Prior art keywords
- microemulsion
- terpene
- emulsion
- surfactant
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 75
- 239000000203 mixture Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000005755 formation reaction Methods 0.000 title abstract description 90
- 229930195733 hydrocarbon Natural products 0.000 title abstract description 27
- 150000002430 hydrocarbons Chemical class 0.000 title abstract description 27
- 230000004936 stimulating effect Effects 0.000 title abstract description 12
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 180
- 150000003505 terpenes Chemical class 0.000 claims abstract description 152
- 235000007586 terpenes Nutrition 0.000 claims abstract description 147
- 239000004094 surface-active agent Substances 0.000 claims abstract description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 72
- 239000000839 emulsion Substances 0.000 claims abstract description 71
- 239000010779 crude oil Substances 0.000 claims abstract description 47
- 239000012530 fluid Substances 0.000 claims description 63
- 238000006073 displacement reaction Methods 0.000 claims description 51
- 238000011282 treatment Methods 0.000 claims description 41
- -1 alkylene glycol Chemical compound 0.000 claims description 39
- 230000008014 freezing Effects 0.000 claims description 37
- 238000007710 freezing Methods 0.000 claims description 37
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 34
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 31
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 25
- 150000003839 salts Chemical class 0.000 claims description 19
- 239000012267 brine Substances 0.000 claims description 18
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 17
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 claims description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 11
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- FUDNBFMOXDUIIE-UHFFFAOYSA-N 3,7-dimethylocta-1,6-diene Chemical compound C=CC(C)CCC=C(C)C FUDNBFMOXDUIIE-UHFFFAOYSA-N 0.000 claims description 5
- 229920000151 polyglycol Polymers 0.000 claims description 4
- 239000010695 polyglycol Substances 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 3
- 239000003129 oil well Substances 0.000 claims 4
- 239000002563 ionic surfactant Substances 0.000 claims 1
- YKFLAYDHMOASIY-UHFFFAOYSA-N γ-terpinene Chemical compound CC(C)C1=CCC(C)=CC1 YKFLAYDHMOASIY-UHFFFAOYSA-N 0.000 claims 1
- 239000003921 oil Substances 0.000 abstract description 48
- 239000007789 gas Substances 0.000 description 62
- 239000012071 phase Substances 0.000 description 35
- 235000019198 oils Nutrition 0.000 description 26
- 239000002904 solvent Substances 0.000 description 26
- 150000001875 compounds Chemical class 0.000 description 22
- 125000004432 carbon atom Chemical group C* 0.000 description 20
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 18
- 239000007788 liquid Substances 0.000 description 18
- 239000000654 additive Substances 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 14
- 239000004576 sand Substances 0.000 description 13
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 12
- 239000004927 clay Substances 0.000 description 11
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 10
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 9
- ROKSAUSPJGWCSM-UHFFFAOYSA-N 2-(7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethanol Chemical group C1C2C(C)(C)C1CC=C2CCO ROKSAUSPJGWCSM-UHFFFAOYSA-N 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229960005233 cineole Drugs 0.000 description 9
- 238000010790 dilution Methods 0.000 description 9
- 239000012895 dilution Substances 0.000 description 9
- 150000001298 alcohols Chemical class 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 150000001335 aliphatic alkanes Chemical class 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 235000021317 phosphate Nutrition 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 6
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 6
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 6
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 6
- 239000005792 Geraniol Substances 0.000 description 6
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- 229940113087 geraniol Drugs 0.000 description 6
- 229930007744 linalool Natural products 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229940041616 menthol Drugs 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229930007503 menthone Natural products 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- 239000003180 well treatment fluid Substances 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229940123973 Oxygen scavenger Drugs 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000003158 alcohol group Chemical group 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000002877 alkyl aryl group Chemical group 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 239000003139 biocide Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 229930003658 monoterpene Natural products 0.000 description 4
- 150000002773 monoterpene derivatives Chemical class 0.000 description 4
- 235000002577 monoterpenes Nutrition 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 239000002455 scale inhibitor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 241000207199 Citrus Species 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 125000002015 acyclic group Chemical group 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 125000002837 carbocyclic group Chemical group 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 235000020971 citrus fruits Nutrition 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 150000005690 diesters Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 125000002006 1,8-cineol group Chemical group 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000019743 Choline chloride Nutrition 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Chemical class OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical class CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical class C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 2
- 229960003178 choline chloride Drugs 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical group 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Natural products O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical class OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Chemical class 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical class COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229940057867 methyl lactate Drugs 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- CFJYNSNXFXLKNS-UHFFFAOYSA-N p-menthane Chemical compound CC(C)C1CCC(C)CC1 CFJYNSNXFXLKNS-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 125000005561 phenanthryl group Chemical group 0.000 description 2
- XOKSLPVRUOBDEW-UHFFFAOYSA-N pinane Chemical compound CC1CCC2C(C)(C)C1C2 XOKSLPVRUOBDEW-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- 150000003509 tertiary alcohols Chemical class 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Chemical class OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- IHPKGUQCSIINRJ-CSKARUKUSA-N (E)-beta-ocimene Chemical compound CC(C)=CC\C=C(/C)C=C IHPKGUQCSIINRJ-CSKARUKUSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- FAMJUFMHYAFYNU-UHFFFAOYSA-N 1-methyl-4-(propan-2-yl)cyclohex-1-ene Chemical compound CC(C)C1CCC(C)=CC1 FAMJUFMHYAFYNU-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- RGDLKJRBAWEFAV-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)ethyl 2-hydroxypropanoate Chemical compound CC(O)C(=O)OCCOC(=O)C(C)O RGDLKJRBAWEFAV-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- IKCQWKJZLSDDSS-UHFFFAOYSA-N 2-formyloxyethyl formate Chemical class O=COCCOC=O IKCQWKJZLSDDSS-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- IXOCGRPBILEGOX-UHFFFAOYSA-N 3-[3-(dodecanoylamino)propyl-dimethylazaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)CS([O-])(=O)=O IXOCGRPBILEGOX-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000005644 Dazomet Substances 0.000 description 1
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 101100208039 Rattus norvegicus Trpv5 gene Proteins 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 125000005526 alkyl sulfate group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000005377 alkyl thioxy group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000001388 alpha-terpinene derivatives Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000005165 aryl thioxy group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 150000001594 beta-terpinene derivatives Chemical class 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- QAYICIQNSGETAS-UHFFFAOYSA-N dazomet Chemical compound CN1CSC(=S)N(C)C1 QAYICIQNSGETAS-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960004670 didecyldimethylammonium chloride Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229930004069 diterpene Natural products 0.000 description 1
- 125000000567 diterpene group Chemical group 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002194 fatty esters Chemical group 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Chemical class CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 150000002268 gamma-terpinene derivatives Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000005378 heteroarylthioxy group Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229930002839 ionone Natural products 0.000 description 1
- 150000002499 ionone derivatives Chemical class 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 150000002628 limonene derivativess Chemical class 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 229930004008 p-menthane Natural products 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000002972 pentoses Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229930006728 pinane Natural products 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229930006978 terpinene Natural products 0.000 description 1
- 150000003507 terpinene derivatives Chemical class 0.000 description 1
- 150000003508 terpinolene derivatives Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- YIEDHPBKGZGLIK-UHFFFAOYSA-L tetrakis(hydroxymethyl)phosphanium;sulfate Chemical compound [O-]S([O-])(=O)=O.OC[P+](CO)(CO)CO.OC[P+](CO)(CO)CO YIEDHPBKGZGLIK-UHFFFAOYSA-L 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 125000000464 thioxo group Chemical group S=* 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- AKUNSPZHHSNFFX-UHFFFAOYSA-M tributyl(tetradecyl)phosphanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC AKUNSPZHHSNFFX-UHFFFAOYSA-M 0.000 description 1
- 229940087291 tridecyl alcohol Drugs 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Colloid Chemistry (AREA)
- Medicinal Preparation (AREA)
Abstract
Methods and compositions for stimulating of the production of hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations are provided. In some embodiments, the compositions are emulsions or microemulsions, which may include water, a terpene, and a surfactant. In some embodiments, methods of selecting a composition for treating an oil or gas well are provided.
Description
METHODS AND COMPOSITIONS FOR STIMULATING THE
PRODUCTION OF HYDROCARBONS FROM SUBTERRANEAN
FORMATIONS
Related Applications This application claims priority to U.S. Patent Application No. 13/829,495 filed March 14, 2013, entitled "Methods and Compositions for Stimulating the Production of Hydrocarbons from Subterranean Formations," (published as US
2014/0262261A1) and to U.S. Patent Application No. 13/829,434 filed March 14, 2013 entitled "Methods and Compositions for Stimulating the Production of Hydrocarbons from Subterranean Formations" (published as US 2014/0274817A1).
Field of Invention The present invention generally provides methods and compositions for stimulating the production of hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations.
Background of Invention For many years, petroleum has been recovered from subterranean reservoirs through the use of drilled wells and production equipment. During the production of desirable hydrocarbons, such as crude oil and natural gas, a number of other naturally occurring substances may also be encountered within the subterranean environment.
The term "stimulation" generally refers to the treatment of geological formations to improve the recovery of liquid hydrocarbons (e.g., formation crude oil and/or formation gas). Common stimulation techniques include well fracturing and acidizing operations.
Oil and natural gas are found in, and produced from, porous and permeable subterranean formations. The porosity and permeability of the formation determine its ability to store hydrocarbons, and the facility with which the hydrocarbons can be extracted from the formation. Hydraulic fracturing is commonly used to stimulate low permeability geological formations to improve the recovery of hydrocarbons.
The process can involve suspending chemical agents in a well-treatment fluid (e.g., fracturing fluid) and injecting the fluid down the wellbore. However, the assortment of chemicals pumped down the well can cause damage to the surrounding formation by entering the reservoir rock and blocking the pore throats. It is known that fluid invasion can have a
PRODUCTION OF HYDROCARBONS FROM SUBTERRANEAN
FORMATIONS
Related Applications This application claims priority to U.S. Patent Application No. 13/829,495 filed March 14, 2013, entitled "Methods and Compositions for Stimulating the Production of Hydrocarbons from Subterranean Formations," (published as US
2014/0262261A1) and to U.S. Patent Application No. 13/829,434 filed March 14, 2013 entitled "Methods and Compositions for Stimulating the Production of Hydrocarbons from Subterranean Formations" (published as US 2014/0274817A1).
Field of Invention The present invention generally provides methods and compositions for stimulating the production of hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations.
Background of Invention For many years, petroleum has been recovered from subterranean reservoirs through the use of drilled wells and production equipment. During the production of desirable hydrocarbons, such as crude oil and natural gas, a number of other naturally occurring substances may also be encountered within the subterranean environment.
The term "stimulation" generally refers to the treatment of geological formations to improve the recovery of liquid hydrocarbons (e.g., formation crude oil and/or formation gas). Common stimulation techniques include well fracturing and acidizing operations.
Oil and natural gas are found in, and produced from, porous and permeable subterranean formations. The porosity and permeability of the formation determine its ability to store hydrocarbons, and the facility with which the hydrocarbons can be extracted from the formation. Hydraulic fracturing is commonly used to stimulate low permeability geological formations to improve the recovery of hydrocarbons.
The process can involve suspending chemical agents in a well-treatment fluid (e.g., fracturing fluid) and injecting the fluid down the wellbore. However, the assortment of chemicals pumped down the well can cause damage to the surrounding formation by entering the reservoir rock and blocking the pore throats. It is known that fluid invasion can have a
2 detrimental effect on gas permeability and can impair well productivity. In addition, fluids may become trapped in the formation due to capillary end effects in and around the vicinity of the formation fractures.
In efforts to reduce phase trapping, additives have been incorporated into well-treatment fluids. Generally, the composition of additives comprises multi-component chemical substances and compositions that contain mutually distributed nanodomains of normally immiscible solvents, such as water and hydrocarbon-based organic solvents, stabilized by surfactants (e.g., microemulsions). The incorporation of additives into well-treatment fluids can increase crude oil or formation gas, for example by reducing 1() capillary pressure and/or minimizing capillary end effects.
Although a number of additives are known in the art, there is a continued need for more effective additives for increasing crude oil or formation gas for wellbore remediation, drilling operations, and formation stimulation.
Summary of Invention Methods and compositions for stimulating the production of hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations are provided.
In some embodiments, methods of selecting a composition for treating an oil or gas well having a wellbore are provided comprising determining whether displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated for the oil or gas well having a wellbore; and selecting an emulsion or a microemulsion for injection into the wellbore to increase formation crude oil or formation gas production by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant, the ratio of water to terpene by weight is between about 3:1 and about 1:2;
wherein the terpene has a phase inversion temperature greater than 43 C when displacement of residual aqueous treatment fluid by formation crude oil is preferentially stimulated, or wherein the terpene has a phase inversion temperature less than 43 C when displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated. In some embodiments, the method further comprises injecting the emulsion or the microemulsion into the wellbore to increase production of formation crude oil or formation gas by the well.
In efforts to reduce phase trapping, additives have been incorporated into well-treatment fluids. Generally, the composition of additives comprises multi-component chemical substances and compositions that contain mutually distributed nanodomains of normally immiscible solvents, such as water and hydrocarbon-based organic solvents, stabilized by surfactants (e.g., microemulsions). The incorporation of additives into well-treatment fluids can increase crude oil or formation gas, for example by reducing 1() capillary pressure and/or minimizing capillary end effects.
Although a number of additives are known in the art, there is a continued need for more effective additives for increasing crude oil or formation gas for wellbore remediation, drilling operations, and formation stimulation.
Summary of Invention Methods and compositions for stimulating the production of hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations are provided.
In some embodiments, methods of selecting a composition for treating an oil or gas well having a wellbore are provided comprising determining whether displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated for the oil or gas well having a wellbore; and selecting an emulsion or a microemulsion for injection into the wellbore to increase formation crude oil or formation gas production by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant, the ratio of water to terpene by weight is between about 3:1 and about 1:2;
wherein the terpene has a phase inversion temperature greater than 43 C when displacement of residual aqueous treatment fluid by formation crude oil is preferentially stimulated, or wherein the terpene has a phase inversion temperature less than 43 C when displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated. In some embodiments, the method further comprises injecting the emulsion or the microemulsion into the wellbore to increase production of formation crude oil or formation gas by the well.
3 In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation crude oil and increase production of formation crude oil by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant; wherein the ratio of water to terpene by weight is between about 3:1 and about 1:2;
and wherein the terpene has a phase inversion temperature greater than 43 'C.
In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation gas and increase production of formation gas by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio of water to terpene by weight is between about 3:1 and about 1:2; and wherein the terpene has a phase inversion temperature less than 43 C.
In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising using an emulsion or a microemulsion to stimulate displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas by injecting the emulsion or the microemulsion into the wellbore of the oil or gas well, and increase production of formation crude oil or formation gas by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant; wherein the ratio of water to terpene by weight is between about 10:1 and about 3:1; and wherein the terpene has a phase inversion temperature of greater than 43 C.
In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising using an emulsion or a microemulsion to stimulate displacement of residual aqueous treatment fluid by oil or displacement of residual aqueous treatment fluid by gas by injecting the emulsion or the microemulsion into the wellbore of the oil or gas well, and increase production of formation crude oil or formation gas by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio of water to terpene by weight is between about 10:1 and about 3:1; and wherein the terpene has a phase inversion temperature of less than 43 C.
and wherein the terpene has a phase inversion temperature greater than 43 'C.
In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation gas and increase production of formation gas by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio of water to terpene by weight is between about 3:1 and about 1:2; and wherein the terpene has a phase inversion temperature less than 43 C.
In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising using an emulsion or a microemulsion to stimulate displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas by injecting the emulsion or the microemulsion into the wellbore of the oil or gas well, and increase production of formation crude oil or formation gas by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant; wherein the ratio of water to terpene by weight is between about 10:1 and about 3:1; and wherein the terpene has a phase inversion temperature of greater than 43 C.
In some embodiments, methods of treating an oil or gas well having a wellbore are provided comprising using an emulsion or a microemulsion to stimulate displacement of residual aqueous treatment fluid by oil or displacement of residual aqueous treatment fluid by gas by injecting the emulsion or the microemulsion into the wellbore of the oil or gas well, and increase production of formation crude oil or formation gas by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio of water to terpene by weight is between about 10:1 and about 3:1; and wherein the terpene has a phase inversion temperature of less than 43 C.
4 In some embodiments, an emulsion or a microemulsion for stimulating an oil or gas well is provided comprising an aqueous phase; a surfactant; a freezing point depression agent; and a terpene, wherein the terpene is nopol.
In some embodiments, an emulsion or a microemulsion for stimulating an oil or gas well is provided comprising an aqueous phase; a surfactant; a freezing point depression agent; and a terpene, wherein the terpene is eucalyptol.
Other aspects, embodiments, and features of the invention will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. All patent applications and patents incorporated herein by reference are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
Brief Description of the Drawings The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
Figure 1 shows an exemplary plot for determining the phase inversion temperature of a microemulsion, according to some embodiments.
Detailed Description The present invention generally relates to methods and well-treatment compositions (e.g., emulsions or microemulsions) for stimulating of the production of liquid hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations. In some embodiments, the compositions comprise an emulsion or a microemulsion, as described in more detail herein. The emulsions or the microemulsions may include water, a terpene, a surfactant, and optionally a freezing point depression agent or other components. In some embodiments, the methods relate to stimulating displacement of residual aqueous treatment fluid by formation crude oil or formation gas to increase production of liquid hydrocarbons, as described in more detail below. In some embodiments, methods of selecting an emulsion or a microemulsion comprising a terpene are provided, wherein the emulsion or the microemulsion is selected so as to increase liquid hydrocarbon production.
As described herein, in some embodiments, the inventors have found that microemulsions or emulsions comprising certain terpenes increase the displacement (e.g., flowback) of residual aqueous treatment fluid by liquid hydrocarbons (e.g., crude oil) as compared to other terpenes. In other embodiments, emulsions or microemulsions
In some embodiments, an emulsion or a microemulsion for stimulating an oil or gas well is provided comprising an aqueous phase; a surfactant; a freezing point depression agent; and a terpene, wherein the terpene is eucalyptol.
Other aspects, embodiments, and features of the invention will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. All patent applications and patents incorporated herein by reference are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
Brief Description of the Drawings The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
Figure 1 shows an exemplary plot for determining the phase inversion temperature of a microemulsion, according to some embodiments.
Detailed Description The present invention generally relates to methods and well-treatment compositions (e.g., emulsions or microemulsions) for stimulating of the production of liquid hydrocarbons (e.g., formation crude oil and/or formation gas) from subterranean formations. In some embodiments, the compositions comprise an emulsion or a microemulsion, as described in more detail herein. The emulsions or the microemulsions may include water, a terpene, a surfactant, and optionally a freezing point depression agent or other components. In some embodiments, the methods relate to stimulating displacement of residual aqueous treatment fluid by formation crude oil or formation gas to increase production of liquid hydrocarbons, as described in more detail below. In some embodiments, methods of selecting an emulsion or a microemulsion comprising a terpene are provided, wherein the emulsion or the microemulsion is selected so as to increase liquid hydrocarbon production.
As described herein, in some embodiments, the inventors have found that microemulsions or emulsions comprising certain terpenes increase the displacement (e.g., flowback) of residual aqueous treatment fluid by liquid hydrocarbons (e.g., crude oil) as compared to other terpenes. In other embodiments, emulsions or microemulsions
5 comprising certain terpenes increase the displacement of residual aqueous treatment fluid by gaseous hydrocarbons as compared to other terpenes. Laboratory tests may be conducted, as described herein, to determine the displacement of residual aqueous treatment fluid by liquid hydrocarbons and/or gaseous hydrocarbons of an emulsion or a microemulsion Petroleum is generally recovered from subterranean reservoirs through the use of drilled wells and production equipment. Wells are "stimulated" using various treatments (e.g., fracturing, acidizing) of geological formations to improve the recovery of liquid hydrocarbons. Oil and natural gas are found in, and produced from, porous and permeable subterranean formations. Based on techniques known in the art, as well as the preference for the desired product isolated (e.g., formation crude oil or formation gas), it may be preferential to stimulate either crude oil production or gas production from each well. A well drilled into a subterranean formation may penetrate formations containing liquid or gaseous hydrocarbons or both, as well as connate water or brine. The gas-to-oil ratio is termed the GOR. The operator of the well may choose to complete the well in such a way as to produce (for example) predominantly liquid hydrocarbons (crude oil).
Alternatively, the operator may be fracturing a tight gas shale formation containing predominantly gaseous hydrocarbons.
Incorporation of the emulsions or the microemulsions described herein (e.g., comprising water, a terpene, and a surfactant) into well-treatment fluids (e.g., fracturing fluids) can aid in reducing fluid trapping, for example, by reducing capillary pressure and/or minimizing capillary end effects. In additional, incorporation of the emulsions or the microemulsions described herein into well-treatment fluids can promote increased flow back of aqueous phases following well treatment, and thus, increase production of liquid and/or gaseous hydrocarbons. That is, incorporation of an emulsion or a microemulsion described herein can aid in the displacement of residual aqueous treatment fluid by formation crude oil and/or formation gas. Residual aqueous treatment fluids may include those fluids employed for fracturing, as well as residual aqueous fluids originally present in the well.
Alternatively, the operator may be fracturing a tight gas shale formation containing predominantly gaseous hydrocarbons.
Incorporation of the emulsions or the microemulsions described herein (e.g., comprising water, a terpene, and a surfactant) into well-treatment fluids (e.g., fracturing fluids) can aid in reducing fluid trapping, for example, by reducing capillary pressure and/or minimizing capillary end effects. In additional, incorporation of the emulsions or the microemulsions described herein into well-treatment fluids can promote increased flow back of aqueous phases following well treatment, and thus, increase production of liquid and/or gaseous hydrocarbons. That is, incorporation of an emulsion or a microemulsion described herein can aid in the displacement of residual aqueous treatment fluid by formation crude oil and/or formation gas. Residual aqueous treatment fluids may include those fluids employed for fracturing, as well as residual aqueous fluids originally present in the well.
6 In some embodiments, methods of treating an oil or gas well are provided. In some embodiments, the methods comprise injecting an emulsion or a microemulsion into the wellbore of the oil or gas well to stimulate displacement of residual aqueous treatment fluid by formation crude oil or formation gas, and increase production of liquid hydrocarbons by the well.
In some embodiments, methods are provided for selecting a composition for treating an oil or gas well. The inventors have discovered that certain terpenes are more effective at stimulating displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas for the oil .. or gas well and that the selection of the terpene may be influenced by the ratio of water to terpene in the emulsion or the microemulsion.
In some embodiments, if displacement of residual aqueous treatment fluid by formation crude oil is preferentially stimulated and the emulsion or the microemulsion comprises water to terpene at a ratio between about 3:1 and about 1:2, then the terpene may be selected to have a phase inversion temperature greater than 43 C, as determined by the method described herein. Alternatively, if displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated and the emulsion or the microemulsion comprises water to terpene at a ratio between about 3:1 and about 1:2, then the terpene may be selected to have a phase inversion temperature less than 43 C, as determined by the method described herein In some embodiments, the ratio of water to terpene by weight is between about 3:1 and about 1:1.5, or between about 2:1 and about 1:1.5.
In some embodiments, to stimulate displacement of residual aqueous treatment fluid by formation crude oil, the ratio of water to terpene by weight in the emulsion or the microemulsion may be between about 3:1 and about 1:2, or between about 2:1 and about 1:1.5, and the terpene may be selected to have a phase inversion temperature greater than 43 C, as determined by the method described herein. In some embodiments, to stimulate displacement of residual aqueous treatment fluid by formation crude oil or formation gas and increase production of formation gas the well, the ratio of water to terpene by weight in the emulsion or the microemulsion may be between about 3:1 and about 1:2, or between about 2:1 and about 1:1.5, and the terpene may be selected to have a phase inversion temperature less than 43 C, as determined by the method described herein.
In some embodiments, methods are provided for selecting a composition for treating an oil or gas well. The inventors have discovered that certain terpenes are more effective at stimulating displacement of residual aqueous treatment fluid by formation crude oil or displacement of residual aqueous treatment fluid by formation gas for the oil .. or gas well and that the selection of the terpene may be influenced by the ratio of water to terpene in the emulsion or the microemulsion.
In some embodiments, if displacement of residual aqueous treatment fluid by formation crude oil is preferentially stimulated and the emulsion or the microemulsion comprises water to terpene at a ratio between about 3:1 and about 1:2, then the terpene may be selected to have a phase inversion temperature greater than 43 C, as determined by the method described herein. Alternatively, if displacement of residual aqueous treatment fluid by formation gas is preferentially stimulated and the emulsion or the microemulsion comprises water to terpene at a ratio between about 3:1 and about 1:2, then the terpene may be selected to have a phase inversion temperature less than 43 C, as determined by the method described herein In some embodiments, the ratio of water to terpene by weight is between about 3:1 and about 1:1.5, or between about 2:1 and about 1:1.5.
In some embodiments, to stimulate displacement of residual aqueous treatment fluid by formation crude oil, the ratio of water to terpene by weight in the emulsion or the microemulsion may be between about 3:1 and about 1:2, or between about 2:1 and about 1:1.5, and the terpene may be selected to have a phase inversion temperature greater than 43 C, as determined by the method described herein. In some embodiments, to stimulate displacement of residual aqueous treatment fluid by formation crude oil or formation gas and increase production of formation gas the well, the ratio of water to terpene by weight in the emulsion or the microemulsion may be between about 3:1 and about 1:2, or between about 2:1 and about 1:1.5, and the terpene may be selected to have a phase inversion temperature less than 43 C, as determined by the method described herein.
7 In some embodiments, to stimulate displacement of residual aqueous treatment fluid by formation crude oil, wherein the ratio of water to terpene by weight in the emulsion or the microemulsion is between about 10:1 and about 3:1, the terpene may be selected to have a phase inversion temperature greater than 43 C, as determined by the method described herein. In some embodiments, to stimulate displacement of residual aqueous treatment fluid by formation gas and increase production of formation gas by the well, wherein the ratio of water to terpene by weight in the emulsion or the microemulsion is between about 10:1 and about 3:1, the terpene may be selected to have a phase inversion temperature less than 43 C, as determined by the method described herein. In some embodiments, the ratio of water to terpene by weight is between about 6:1 and about 5:1.
It should understood, that in embodiments where a microemulsion is said to be injected into a wellbore, that the microemulsion may be diluted and/or combined with other liquid component(s) prior to and/or during injection. For example, in some embodiments, the microemulsion is diluted with an aqueous carrier fluid (e.g., water, brine, sea water, fresh water, or a treatment fluid such as a fracturing fluid comprising polymers, sand, etc.) prior to and/or during injection into the wellbore. In some embodiments, a composition for injecting into a wellbore is provided comprising a microemulsion as described herein and an aqueous carrier fluid, wherein the microemulsion is present in an amount between about 0.1 and about 50 gallons per thousand gallons of dilution fluid ("gpt"), or between about 0.5 and about 10 gpt, or between about 0.5 and about 2 gpt. Generally, dilution of a microemulsion does not result in the breakdown of the microemulsion.
In some embodiments, emulsions or microemulsion are provided. The terms should be understood to include emulsions or microemulsions that have a water continuous phase, or that have an oil continuous phase, or microemulsions that are bicontinuous or multiple continuous phases of water and oil.
As used herein, the term "emulsion" is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of 100-1,000 nanometers. Emulsions may be thermodynamically unstable and/or require high shear forces to induce their formation.
As used herein, the term "microemulsion" is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets,
It should understood, that in embodiments where a microemulsion is said to be injected into a wellbore, that the microemulsion may be diluted and/or combined with other liquid component(s) prior to and/or during injection. For example, in some embodiments, the microemulsion is diluted with an aqueous carrier fluid (e.g., water, brine, sea water, fresh water, or a treatment fluid such as a fracturing fluid comprising polymers, sand, etc.) prior to and/or during injection into the wellbore. In some embodiments, a composition for injecting into a wellbore is provided comprising a microemulsion as described herein and an aqueous carrier fluid, wherein the microemulsion is present in an amount between about 0.1 and about 50 gallons per thousand gallons of dilution fluid ("gpt"), or between about 0.5 and about 10 gpt, or between about 0.5 and about 2 gpt. Generally, dilution of a microemulsion does not result in the breakdown of the microemulsion.
In some embodiments, emulsions or microemulsion are provided. The terms should be understood to include emulsions or microemulsions that have a water continuous phase, or that have an oil continuous phase, or microemulsions that are bicontinuous or multiple continuous phases of water and oil.
As used herein, the term "emulsion" is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets, with diameters approximately in the range of 100-1,000 nanometers. Emulsions may be thermodynamically unstable and/or require high shear forces to induce their formation.
As used herein, the term "microemulsion" is given its ordinary meaning in the art and refers to dispersions of one immiscible liquid in another, in the form of droplets,
8 PCT/1JS2014/028970 with diameters approximately in the range between about 1 and about 1000 nm, or between 10 and about 1000 nanometers, or between about 10 and about 500 nm, or between about 10 and about 300 nm, or between about 10 and about 100 nm.
Microemulsions are clear or transparent because they contain particles smaller than the wavelength of visible light. In addition, microemulsions are homogeneous thermodynamically stable single phases, and form spontaneously, and thus, differ markedly from thermodynamically unstable emulsions, which generally depend upon intense mixing energy for their formation. Microemulsions may be characterized by a variety of advantageous properties including, by not limited to, (i) clarity, (ii) very small .. particle size, (iii) ultra-low interfacial tensions, (iv) the ability to combine properties of water and oil in a single homogeneous fluid, (v) shelf life stability, and (vi) ease of preparation.
In some embodiments, the microemulsions described herein are stabilized microemulsions that are formed by the combination of a solvent-surfactant blend with an appropriate oil-based or water-based carrier fluid. Generally, the microemulsion forms upon simple mixing of the components without the need for high shearing generally required in the formation of ordinary emulsions. In some embodiments, the microemulsion is a thermodynamically stable system, and the droplets remain finely dispersed over time. In some cases, the average droplet size ranges from about 10 nm to about 300 nm.
It should be understood, that while much of the description herein focuses on microemulsions, this is by no means limiting, and emulsions may be employed where appropriate.
In some embodiments, the emulsion or microemulsion is a single emulsion or microemulsion. For example, the emulsion or microemulsion comprises a single layer of a surfactant. In other embodiments, the emulsion or microemulsion may be a double or multilamellar emulsion or microemulsion. For example, the emulsion or microemulsion comprises two or more layers of a surfactant. In some embodiments, the emulsion or microemulsion comprises a single layer of surfactant surrounding a core (e.g., one or more of water, oil, solvent, and/or other additives) or a multiple layers of surfactant (e.g., two or more concentric layers surrounding the core). In certain embodiments, the emulsion or microemulsion comprises two or more immiscible cores (e.g., one or more of water, oil, solvent, and/or other additives which have equal or about equal affinities for the surfactant).
In some embodiments, a microemulsion comprises water, a terpene, and a surfactant. In some embodiments, the microemulsion may further comprise additional components, for example, a freezing point depression agent. Details of each of the components of the microemulsions are described in detail herein. In some embodiments, the components of the mieroemulsions are selected so as to reduce or eliminate the hazards of the microemulsion to the environment and/or the subterranean reservoirs.
In some embodiments, the microemulsion comprises a terpene or a terpenoid.
The microemulsion may comprise a single terpene or terpenoid or a combination of two or more terpenes and/or terpenoids. For example, in some embodiments, the terpene or terpenoid comprises a first type of terpene or terpenoid and a second type of terpene or terpenoid. Terpenes may be generally classified as monoterpenes (e.g., having two isoprene units), sesquiterpenes (e.g., having 3 isoprene units), diterpenes, or the like.
The term terpenoid also includes natural degradation products, such as ionones, and natural and synthetic derivatives, e.g., terpene alcohols, aldehydes, ketones, acids, esters, epoxides, and hydrogenation products (e.g., see Ullmann's Encyclopedia of Industrial Chemistry, 2012, pages 29-45). It should be understood, that while much of the description herein focuses on terpenes, this is by no means limiting, and terpenoids may be employed where appropriate. In some cases, the terpene is a naturally occurring terpene. In some cases, the terpene is a non-naturally occurring terpene and/or a chemically modified terpene (e.g., saturated terpene, terpene amine, fluorinated terpene, or silylated terpene).
In some embodiments, the terpene is a monoterpene. Monoterpenes may be further classified as acyclic, monocyclic, and bicyclic (e.g., with a total number of carbons in the range between 18 and 20), as well as whether the monoterpene comprises one or more oxygen atoms (e.g., alcohol groups, ester groups, carbonyl groups, etc.). In some embodiments, the terpene is an oxygenated terpene, for example, a terpene comprising an alcohol, an aldehyde, and/or a ketone group. In some embodiments, the terpene comprises an alcohol group. Non-limiting examples of terpenes comprising an alcohol group are linalool, geraniol, nopol, a-terpineol, and menthol. In some embodiments, the terpene comprises an ether-oxygen, for example, eucalyptol, or a
Microemulsions are clear or transparent because they contain particles smaller than the wavelength of visible light. In addition, microemulsions are homogeneous thermodynamically stable single phases, and form spontaneously, and thus, differ markedly from thermodynamically unstable emulsions, which generally depend upon intense mixing energy for their formation. Microemulsions may be characterized by a variety of advantageous properties including, by not limited to, (i) clarity, (ii) very small .. particle size, (iii) ultra-low interfacial tensions, (iv) the ability to combine properties of water and oil in a single homogeneous fluid, (v) shelf life stability, and (vi) ease of preparation.
In some embodiments, the microemulsions described herein are stabilized microemulsions that are formed by the combination of a solvent-surfactant blend with an appropriate oil-based or water-based carrier fluid. Generally, the microemulsion forms upon simple mixing of the components without the need for high shearing generally required in the formation of ordinary emulsions. In some embodiments, the microemulsion is a thermodynamically stable system, and the droplets remain finely dispersed over time. In some cases, the average droplet size ranges from about 10 nm to about 300 nm.
It should be understood, that while much of the description herein focuses on microemulsions, this is by no means limiting, and emulsions may be employed where appropriate.
In some embodiments, the emulsion or microemulsion is a single emulsion or microemulsion. For example, the emulsion or microemulsion comprises a single layer of a surfactant. In other embodiments, the emulsion or microemulsion may be a double or multilamellar emulsion or microemulsion. For example, the emulsion or microemulsion comprises two or more layers of a surfactant. In some embodiments, the emulsion or microemulsion comprises a single layer of surfactant surrounding a core (e.g., one or more of water, oil, solvent, and/or other additives) or a multiple layers of surfactant (e.g., two or more concentric layers surrounding the core). In certain embodiments, the emulsion or microemulsion comprises two or more immiscible cores (e.g., one or more of water, oil, solvent, and/or other additives which have equal or about equal affinities for the surfactant).
In some embodiments, a microemulsion comprises water, a terpene, and a surfactant. In some embodiments, the microemulsion may further comprise additional components, for example, a freezing point depression agent. Details of each of the components of the microemulsions are described in detail herein. In some embodiments, the components of the mieroemulsions are selected so as to reduce or eliminate the hazards of the microemulsion to the environment and/or the subterranean reservoirs.
In some embodiments, the microemulsion comprises a terpene or a terpenoid.
The microemulsion may comprise a single terpene or terpenoid or a combination of two or more terpenes and/or terpenoids. For example, in some embodiments, the terpene or terpenoid comprises a first type of terpene or terpenoid and a second type of terpene or terpenoid. Terpenes may be generally classified as monoterpenes (e.g., having two isoprene units), sesquiterpenes (e.g., having 3 isoprene units), diterpenes, or the like.
The term terpenoid also includes natural degradation products, such as ionones, and natural and synthetic derivatives, e.g., terpene alcohols, aldehydes, ketones, acids, esters, epoxides, and hydrogenation products (e.g., see Ullmann's Encyclopedia of Industrial Chemistry, 2012, pages 29-45). It should be understood, that while much of the description herein focuses on terpenes, this is by no means limiting, and terpenoids may be employed where appropriate. In some cases, the terpene is a naturally occurring terpene. In some cases, the terpene is a non-naturally occurring terpene and/or a chemically modified terpene (e.g., saturated terpene, terpene amine, fluorinated terpene, or silylated terpene).
In some embodiments, the terpene is a monoterpene. Monoterpenes may be further classified as acyclic, monocyclic, and bicyclic (e.g., with a total number of carbons in the range between 18 and 20), as well as whether the monoterpene comprises one or more oxygen atoms (e.g., alcohol groups, ester groups, carbonyl groups, etc.). In some embodiments, the terpene is an oxygenated terpene, for example, a terpene comprising an alcohol, an aldehyde, and/or a ketone group. In some embodiments, the terpene comprises an alcohol group. Non-limiting examples of terpenes comprising an alcohol group are linalool, geraniol, nopol, a-terpineol, and menthol. In some embodiments, the terpene comprises an ether-oxygen, for example, eucalyptol, or a
9 carbonyl oxygen, for example, menthone. In some embodiments, the terpene does not comprise an oxygen atom, for example, d-limonene.
Non-limiting examples of terpenes include linalool, geraniol, nopol, a-terpineol, menthol, eucalyptol, menthone, d-limonene, terpinolene, I3-occimene, y-terpinene, 5 a-pinene, and citronellene. In a particular embodiment, the terpene is selected from the group consisting of a-terpeneol, a-pinene, nopol, and eucalyptol. In one embodiment, the terpene is nopol. In another embodiment, the terpene is eucalyptol. In some embodiments, the terpene is not limonene (e.g., d-limonene). In some embodiments, the emulsion is free of limonene
Non-limiting examples of terpenes include linalool, geraniol, nopol, a-terpineol, menthol, eucalyptol, menthone, d-limonene, terpinolene, I3-occimene, y-terpinene, 5 a-pinene, and citronellene. In a particular embodiment, the terpene is selected from the group consisting of a-terpeneol, a-pinene, nopol, and eucalyptol. In one embodiment, the terpene is nopol. In another embodiment, the terpene is eucalyptol. In some embodiments, the terpene is not limonene (e.g., d-limonene). In some embodiments, the emulsion is free of limonene
10 In some embodiments, the terpene is a non-naturally occurring terpene and/or a chemically modified terpene (e.g., saturated terpene). In some cases, the terpene is a partially or fully saturated terpene (e.g., p-menthane, pinane). In some cases, the terpene is a non-naturally occurring terpene. Non-limiting examples of non-naturally occurring terpenes include, menthene, p-cymene, r-carvone, terpinenes (e.g., alpha-terpinenes, .. beta-terpinenes, gamma-terpinenes), dipentenes, terpinolenes, borneol, alpha-terpinamine, and pine oils.
In some embodiments, the terpene is classified in terms of its phase inversion temperature (PIT). The term phase inversion temperature is given its ordinary meaning in the art and refers to the temperature at which an oil in water microemulsion inverts to a water in oil microemulsion (or vice versa). Those of ordinary skill in the art will be aware of methods for determining the PIT for a microemulsion comprising a terpene (e.g., sec Strey, Colloid & Polymer Science, 1994. 272(8): p. 1005-1019;
Kahlweit et al., Angewandte Chemie International Edition in English, 1985. 24(8): p. 654-668).
The PIT
values described herein were determined using a 1:1 ratio of terpene (e.g., one or more terpenes):de-ionized water and varying amounts (e.g., between about 20 wt% and about 60 wt%; generally, between 3 and 9 different amounts are employed) of a 1:1 blend of surfactant comprising linear C12-C15 alcohol ethoxylates with on average 7 moles of ethylene oxide (e.g., Neodol 25-7):isopropyl alcohol wherein the upper and lower temperature boundaries of the microemulsion region can be determined and a phase .. diagram may be generated. Those of ordinary skill in the art will recognize that such a phase diagram (e.g., a plot of temperature against surfactant concentration at a constant oil-to-water ratio) may be referred to as fish diagram or a Kahlweit plot. The temperature at the vertex is the PIT. An exemplary fish diagram indicating the PIT is shown in Figure
In some embodiments, the terpene is classified in terms of its phase inversion temperature (PIT). The term phase inversion temperature is given its ordinary meaning in the art and refers to the temperature at which an oil in water microemulsion inverts to a water in oil microemulsion (or vice versa). Those of ordinary skill in the art will be aware of methods for determining the PIT for a microemulsion comprising a terpene (e.g., sec Strey, Colloid & Polymer Science, 1994. 272(8): p. 1005-1019;
Kahlweit et al., Angewandte Chemie International Edition in English, 1985. 24(8): p. 654-668).
The PIT
values described herein were determined using a 1:1 ratio of terpene (e.g., one or more terpenes):de-ionized water and varying amounts (e.g., between about 20 wt% and about 60 wt%; generally, between 3 and 9 different amounts are employed) of a 1:1 blend of surfactant comprising linear C12-C15 alcohol ethoxylates with on average 7 moles of ethylene oxide (e.g., Neodol 25-7):isopropyl alcohol wherein the upper and lower temperature boundaries of the microemulsion region can be determined and a phase .. diagram may be generated. Those of ordinary skill in the art will recognize that such a phase diagram (e.g., a plot of temperature against surfactant concentration at a constant oil-to-water ratio) may be referred to as fish diagram or a Kahlweit plot. The temperature at the vertex is the PIT. An exemplary fish diagram indicating the PIT is shown in Figure
11 1. PITs for non-limiting examples of terpenes determined using this experimental procedure outlined above are given in Table 1.
Table 1: Phase inversion temperatures for non-limiting examples of terpenes.
Terpene Phase Inversion Temperature C ( F) linalool -4 (24.8) geraniol -0.5 (31.1) nopol 2.5 (36.5) a-terpineol 4.6 (40.3) menthol 16 (60.8) eucalyptol 31 (87.8) menthone 32 (89.6) d-limonene 43 (109.4) terpinolene 48 (118.4) I3-occimene 49 (120.2) y-terpinene 49 (120.2) a-pinene 57 (134.6) citronellene 58 (136.4) In some embodiments, as described in more detail herein, the terpene has a PIT
greater than and/or less than 43 C, as determined by the method described herein. In some embodiments, the terpene has a PIT greater than 43 C, as determined by the method described herein. In some embodiments, the terpene has a PIT less than 43 C, as determined by the method described herein. In some embodiments, the terpene has a PIT
greater than 32 C, as determined by the method described herein. In some embodiments, the terpene has a PIT less than 32 C, as determined by the method described herein. In some embodiments, the PIT is between about -10 C and about 70 C, or between about -4 C and about 60 C, as determined by the method described herein. In some embodiments, the minimum PIT is -10 C, or -4 C, as determined by the method described herein. In some embodiments, the maximum PIT is 70 C, or 60 C, as determined by the method described herein.
In certain embodiments, the solvent utilized in the emulsion or microemulsion herein may comprise one or more impurities. For example, in some embodiments, a
Table 1: Phase inversion temperatures for non-limiting examples of terpenes.
Terpene Phase Inversion Temperature C ( F) linalool -4 (24.8) geraniol -0.5 (31.1) nopol 2.5 (36.5) a-terpineol 4.6 (40.3) menthol 16 (60.8) eucalyptol 31 (87.8) menthone 32 (89.6) d-limonene 43 (109.4) terpinolene 48 (118.4) I3-occimene 49 (120.2) y-terpinene 49 (120.2) a-pinene 57 (134.6) citronellene 58 (136.4) In some embodiments, as described in more detail herein, the terpene has a PIT
greater than and/or less than 43 C, as determined by the method described herein. In some embodiments, the terpene has a PIT greater than 43 C, as determined by the method described herein. In some embodiments, the terpene has a PIT less than 43 C, as determined by the method described herein. In some embodiments, the terpene has a PIT
greater than 32 C, as determined by the method described herein. In some embodiments, the terpene has a PIT less than 32 C, as determined by the method described herein. In some embodiments, the PIT is between about -10 C and about 70 C, or between about -4 C and about 60 C, as determined by the method described herein. In some embodiments, the minimum PIT is -10 C, or -4 C, as determined by the method described herein. In some embodiments, the maximum PIT is 70 C, or 60 C, as determined by the method described herein.
In certain embodiments, the solvent utilized in the emulsion or microemulsion herein may comprise one or more impurities. For example, in some embodiments, a
12 solvent (e.g., a terpene) is extracted from a natural source (e.g., citrus), and may comprise one or more impurities present from the extraction process. In some embodiment, the solvent comprises a crude cut (e.g., uncut crude oil, for example, made by settling, separation, heating, etc.). In some embodiments, the solvent is a crude oil (e.g., naturally occurring crude oil, uncut crude oil, crude oil extracted from the wellbore, synthetic crude oil, etc.). In some embodiments, the solvent is a citrus extract (e.g., crude orange oil, orange oil, etc.).
The terpene may be present in the microemulsion in any suitable amount. In some embodiments, terpene is present in an amount between about In some embodiments, terpene is present in an amount between about 2 wt% and about 60 wt%, or between about 5 wt% and about 40 wt%, or between about 5 wt% and about 30 wt%, versus the total microemulsion composition. In some embodiments, the terpene is present in an amount between about 1 wt% and about 99 wt%, or between about 2 wt% and about 90 wt %, or between about 1 wt% and about 60 wt%, or between about 2 wt%
and about 60 wt%, or between about 1 wt% and about 50 wt%, or between about 1 wt%
and about 30 wt%, or between about 5 wt% and about 40 wt%, or between about 5 wt%
and about 30 wt%, or between about 2 wt% and about 25 wt%, or between about 5 wt%
and about 25 wt%, or between about 60 wt% and about 95 wt%, or between about 70 wt% or about 95 wt%, or between about 75 wt% and about 90 wt%, or between about 80 wt%
and about 95 wt%, versus the total microemulsion composition.
The water to terpene ratio in a microemulsion may be varied, as described herein.
In some embodiments, the ratio of water to terpene, along with other parameters of the terpene (e.g., phase inversion temperature of the terpene) may be varied so that displacement of residual aqueous treatment fluid by formation gas and/or formation crude is preferentially stimulated. In some embodiments, the ratio of water to terpene by weight is between about 3:1 and about 1:2, or between about 2:1 and about 1:1.5. In other embodiments, the ratio of water to terpene is between about 10:1 and about 3:1, or between about 6:1 and about 5:1.
Generally, the microemulsion comprises an aqueous phase comprising water. The water may be provided from any suitable source (e.g., sea water, fresh water, deionized water, reverse osmosis water, water from field production). The water may be present in any suitable amount. In some embodiments, the total amount of water present in the microemulsion is between about 1 wt% about 95 wt%, or between about 1 wt%
about 90
The terpene may be present in the microemulsion in any suitable amount. In some embodiments, terpene is present in an amount between about In some embodiments, terpene is present in an amount between about 2 wt% and about 60 wt%, or between about 5 wt% and about 40 wt%, or between about 5 wt% and about 30 wt%, versus the total microemulsion composition. In some embodiments, the terpene is present in an amount between about 1 wt% and about 99 wt%, or between about 2 wt% and about 90 wt %, or between about 1 wt% and about 60 wt%, or between about 2 wt%
and about 60 wt%, or between about 1 wt% and about 50 wt%, or between about 1 wt%
and about 30 wt%, or between about 5 wt% and about 40 wt%, or between about 5 wt%
and about 30 wt%, or between about 2 wt% and about 25 wt%, or between about 5 wt%
and about 25 wt%, or between about 60 wt% and about 95 wt%, or between about 70 wt% or about 95 wt%, or between about 75 wt% and about 90 wt%, or between about 80 wt%
and about 95 wt%, versus the total microemulsion composition.
The water to terpene ratio in a microemulsion may be varied, as described herein.
In some embodiments, the ratio of water to terpene, along with other parameters of the terpene (e.g., phase inversion temperature of the terpene) may be varied so that displacement of residual aqueous treatment fluid by formation gas and/or formation crude is preferentially stimulated. In some embodiments, the ratio of water to terpene by weight is between about 3:1 and about 1:2, or between about 2:1 and about 1:1.5. In other embodiments, the ratio of water to terpene is between about 10:1 and about 3:1, or between about 6:1 and about 5:1.
Generally, the microemulsion comprises an aqueous phase comprising water. The water may be provided from any suitable source (e.g., sea water, fresh water, deionized water, reverse osmosis water, water from field production). The water may be present in any suitable amount. In some embodiments, the total amount of water present in the microemulsion is between about 1 wt% about 95 wt%, or between about 1 wt%
about 90
13 wt%, or between about 1 wt% and about 60 wt%, or between about 5 wt% and about 60 wt% or between about 10 and about 55 wt%, or between about 15 and about 45 wt%, versus the total microemulsion composition.
In some embodiments, at the emulsion or microemulsion may comprise mutual solvent which is miscible together with the water and the teipene. In some embodiments, the mutual solvent is present in an amount between about at 0.5 wt% to about 30% of mutual solvent. Non-limiting examples of suitable mutual solvents include ethyleneglycolmonobutyl ether (EGMBE), dipropylene glycol monomethyl ether, short chain alcohols (e.g., isopropanol), tetrahydrofuran, dioxane, dimethylformamide, and dimethylsulfoxide.
In some embodiments, the microemulsion comprises a surfactant. The microemulsion may comprise a single surfactant or a combination of two or more surfactants. For example, in some embodiments, the surfactant comprises a first type of surfactant and a second type of surfactant. The term "surfactant," as used herein, is given .. its ordinary meaning in the art and refers to compounds having an amphiphilic structure which gives them a specific affinity for oil/water-type and water/oil-type interfaces which helps the compounds to reduce the free energy of these interfaces and to stabilize the dispersed phase of a microemulsion. The term surfactant encompasses cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, zwitterionic surfactants, and mixtures thereof In some embodiments, the surfactant is a nonionic surfactant. Nonionic surfactants generally do not contain any charges.
Amphotcric surfactants generally have both positive and negative charges, however, the net charge of the surfactant can be positive, negative, or neutral, depending on the pH of the solution.
Anionic surfactants generally possess a net negative charge. Cationic surfactants generally possess a net positive charge. Awitterionic surfactants are generally no pH
dependent. not pH dependent. A zwitterion is a neutral molecule with a positive and a negative electrical charge, though multiple positive and negative charges can be present.
Zwitterions are distinct from dipole, at different locations within that molecule.
In some embodiments, the surfactant is an amphiphilic block copolymer where .. one block is hydrophobic and one block is hydrophilic. In some cases, the total molecular weight of the polymer is greater than 5000 daltons. The hydrophilic block of these polymers can be nonionic, anionic, cationic, amphoteric, or zwitterionic.
In some embodiments, at the emulsion or microemulsion may comprise mutual solvent which is miscible together with the water and the teipene. In some embodiments, the mutual solvent is present in an amount between about at 0.5 wt% to about 30% of mutual solvent. Non-limiting examples of suitable mutual solvents include ethyleneglycolmonobutyl ether (EGMBE), dipropylene glycol monomethyl ether, short chain alcohols (e.g., isopropanol), tetrahydrofuran, dioxane, dimethylformamide, and dimethylsulfoxide.
In some embodiments, the microemulsion comprises a surfactant. The microemulsion may comprise a single surfactant or a combination of two or more surfactants. For example, in some embodiments, the surfactant comprises a first type of surfactant and a second type of surfactant. The term "surfactant," as used herein, is given .. its ordinary meaning in the art and refers to compounds having an amphiphilic structure which gives them a specific affinity for oil/water-type and water/oil-type interfaces which helps the compounds to reduce the free energy of these interfaces and to stabilize the dispersed phase of a microemulsion. The term surfactant encompasses cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, zwitterionic surfactants, and mixtures thereof In some embodiments, the surfactant is a nonionic surfactant. Nonionic surfactants generally do not contain any charges.
Amphotcric surfactants generally have both positive and negative charges, however, the net charge of the surfactant can be positive, negative, or neutral, depending on the pH of the solution.
Anionic surfactants generally possess a net negative charge. Cationic surfactants generally possess a net positive charge. Awitterionic surfactants are generally no pH
dependent. not pH dependent. A zwitterion is a neutral molecule with a positive and a negative electrical charge, though multiple positive and negative charges can be present.
Zwitterions are distinct from dipole, at different locations within that molecule.
In some embodiments, the surfactant is an amphiphilic block copolymer where .. one block is hydrophobic and one block is hydrophilic. In some cases, the total molecular weight of the polymer is greater than 5000 daltons. The hydrophilic block of these polymers can be nonionic, anionic, cationic, amphoteric, or zwitterionic.
14 The term surface energy, as used herein, is given its ordinary meaning in the art and refers to the extent of disruption of intermolecular bonds that occur when the surface is created (e.g., the energy excess associated with the surface as compared to the bulk).
Generally, surface energy is also referred to as surface tension (e.g., for liquid-gas .. interfaces) or interfacial tension (e.g., for liquid-liquid interfaces). As will be understood by those skilled in the art, surfactants generally orient themselves across the interface to minimize the extent of disruption of intermolecular bonds (i.e. lower the surface energy).
Typically, a surfactant at an interface between polar and non-polar phases orient themselves at the interface such that the difference in polarity is minimized.
Those of ordinary skill in the art will be aware of methods and techniques for selecting surfactants for use in the microemulsions described herein. In some cases, the surfactant(s) are matched to and/or optimized for the particular oil or solvent in use. In some embodiments, the surfactant(s) are selected by mapping the phase behavior of the microemulsion and choosing the surfactant(s) that gives the desired range of stability. In some cases, the stability of the microemulsion over a wide range of temperatures is targeted as the microemulsion may be subject to a wide range of temperatures due to the environmental conditions present at the subterranean formation and/or reservoir.
Suitable surfactants for use with the compositions and methods described herein will be known in the art. In some embodiments, the surfactant is an alkyl polyglycol ether, for example, having 2-250 ethylene oxide (EO) (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40) units and alkyl groups of 4-20 carbon atoms. In some embodiments, the surfactant is an alkylaryl polyglycol ether having 2-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40) and 8-20 carbon atoms in the alkyl and aryl groups. In some embodiments, the surfactant is an ethylene oxide/propylene oxide (E0/P0) block copolymer having 2-250 EO or PO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a fatty acid polyglycol ester having 6-24 carbon atoms and 2-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a polyglycol ether of hydroxyl-containing triglycerides (e.g., castor oil). In some embodiments, the surfactant is an alkylpolyglycoside of the general formula R"--0--Zõ, where R" denotes a linear or branched, saturated or unsaturated alkyl group having on average 8-24 carbon atoms and Z. denotes an oligoglycoside group having on average n=1-10 hexose or pentose units or mixtures thereof. In some embodiments, the surfactant is a fatty ester of glycerol, sorbitol, or pentaerythritol. In some embodiments, the surfactant is an amine oxide (e.g., dodecyldimethylamine oxide). In some embodiments, the surfactant is an alkyl sulfate, for example having a chain length of 8-18 carbon atoms, alkyl ether sulfates having 8-18 carbon atoms in the hydrophobic group and 1-40 ethylene oxide (E0) or propylene 5 oxide (PO) units. In some embodiments, the surfactant is a sulfonate, for example, an alkyl sulfonate having 8-18 carbon atoms, an alkylaryl sulfonate having 8-18 carbon atoms, an ester or half ester of sulfosuccinic acid with monohydric alcohols or alkylphenols having 4-15 carbon atoms, or a multisulfonate (e.g., comprising two, three, four, or more, sulfonate groups). In some cases, the alcohol or alkylphenol can also be 1() .. ethoxylated with 1-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is an alkali metal salt or ammonium salt of a carboxylic acid or poly(alkylene glycol) ether carboxylic acid having 8-20 carbon atoms in the alkyl, aryl, alkaryl or aralkyl group and 1-250 EO or PO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a partial
Generally, surface energy is also referred to as surface tension (e.g., for liquid-gas .. interfaces) or interfacial tension (e.g., for liquid-liquid interfaces). As will be understood by those skilled in the art, surfactants generally orient themselves across the interface to minimize the extent of disruption of intermolecular bonds (i.e. lower the surface energy).
Typically, a surfactant at an interface between polar and non-polar phases orient themselves at the interface such that the difference in polarity is minimized.
Those of ordinary skill in the art will be aware of methods and techniques for selecting surfactants for use in the microemulsions described herein. In some cases, the surfactant(s) are matched to and/or optimized for the particular oil or solvent in use. In some embodiments, the surfactant(s) are selected by mapping the phase behavior of the microemulsion and choosing the surfactant(s) that gives the desired range of stability. In some cases, the stability of the microemulsion over a wide range of temperatures is targeted as the microemulsion may be subject to a wide range of temperatures due to the environmental conditions present at the subterranean formation and/or reservoir.
Suitable surfactants for use with the compositions and methods described herein will be known in the art. In some embodiments, the surfactant is an alkyl polyglycol ether, for example, having 2-250 ethylene oxide (EO) (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40) units and alkyl groups of 4-20 carbon atoms. In some embodiments, the surfactant is an alkylaryl polyglycol ether having 2-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40) and 8-20 carbon atoms in the alkyl and aryl groups. In some embodiments, the surfactant is an ethylene oxide/propylene oxide (E0/P0) block copolymer having 2-250 EO or PO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a fatty acid polyglycol ester having 6-24 carbon atoms and 2-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a polyglycol ether of hydroxyl-containing triglycerides (e.g., castor oil). In some embodiments, the surfactant is an alkylpolyglycoside of the general formula R"--0--Zõ, where R" denotes a linear or branched, saturated or unsaturated alkyl group having on average 8-24 carbon atoms and Z. denotes an oligoglycoside group having on average n=1-10 hexose or pentose units or mixtures thereof. In some embodiments, the surfactant is a fatty ester of glycerol, sorbitol, or pentaerythritol. In some embodiments, the surfactant is an amine oxide (e.g., dodecyldimethylamine oxide). In some embodiments, the surfactant is an alkyl sulfate, for example having a chain length of 8-18 carbon atoms, alkyl ether sulfates having 8-18 carbon atoms in the hydrophobic group and 1-40 ethylene oxide (E0) or propylene 5 oxide (PO) units. In some embodiments, the surfactant is a sulfonate, for example, an alkyl sulfonate having 8-18 carbon atoms, an alkylaryl sulfonate having 8-18 carbon atoms, an ester or half ester of sulfosuccinic acid with monohydric alcohols or alkylphenols having 4-15 carbon atoms, or a multisulfonate (e.g., comprising two, three, four, or more, sulfonate groups). In some cases, the alcohol or alkylphenol can also be 1() .. ethoxylated with 1-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is an alkali metal salt or ammonium salt of a carboxylic acid or poly(alkylene glycol) ether carboxylic acid having 8-20 carbon atoms in the alkyl, aryl, alkaryl or aralkyl group and 1-250 EO or PO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a partial
15 phosphoric ester or the corresponding alkali metal salt or ammonium salt, e.g., an alkyl and alkaryl phosphate having 8-20 carbon atoms in the organic group, an alkylether phosphate or alkarylether phosphate having 8-20 carbon atoms in the alkyl or alkaryl group and 1-250 EO units (e.g., or 2-200, or 2-150, or 2-100, or 2-50, or 2-40). In some embodiments, the surfactant is a salt of primary, secondary, or tertiary fatty amine having 8-24 carbon atoms with acetic acid, sulfuric acid, hydrochloric acid, and phosphoric acid. In some embodiments, the surfactant is a quaternary alkyl-and alkylbenzylammonium salt, whose alkyl groups have 1-24 carbon atoms (e.g., a halide, sulfate, phosphate, acetate, or hydroxide salt). In some embodiments, the surfactant is an alkylpyridinium, an alkylimidazolinium, or an alkyloxazolinium salt whose alkyl chain has up to 18 carbons atoms (e.g., a halide, sulfate, phosphate, acetate, or hydroxide salt).
In some embodiments, the surfactant is amphoteric or zwitterionic, including sultaines (e.g., cocamidopropyl hydroxysultaine), betaines (e.g., cocamidopropyl betaine), or phosphates (e.g., lecithin). Non-limiting examples of specific surfactants include a linear C12-C15 ethoxylated alcohols with 5-12 moles of EO, lauryl alcohol ethoxylate with 4-8 moles of EO, nonyl phenol ethoxylate with 5-9 moles of EO, octyl phenol ethoxylate with 5-9 moles of EO, tridecyl alcohol ethoxylate with 5-9 moles of EO, Pluronic0 matrix of EO/PO copolymers, ethoxylated cocoamide with 4-8 moles of EO, ethoxylated coco fatty acid with 7-11 moles of EO, and cocoamidopropyl amine oxide.
In some embodiments, the surfactant is a siloxane surfactant as described in U.S. Patent Application Serial No. 13/831,410, filed March 14, 2014.
In some embodiments, the surfactant is a Gemini surfactant. Gemini surfactants generally have the structure of multiple amphiphilic molecules linked together by one or more covalent spacers. In some embodiments, the surfactant is an extended surfactant, wherein the extended surfactats has the structure where a non-ionic hydrophilic spacer (e.g. ethylene oxide or propylene oxide) connects an ionic hydrophilic group (e.g. carboxylate, sulfate, phosphate).
In some embodiments the surfactant is an alkoxylated polyimine with a relative solubility number (RSN) in the range of 5-20. As will be known to those of ordinary skill in the art, RSN values are generally determined by titrating water into a solution of surfactant in 1,4dioxane. The RSN values is generally defined as the amount of distilled water necessary to be added to produce persistent turbidity. In some embodiments the surfactant is an alkoxylated novolac resin (also known as a phenolic resin) with a relative solubility number in the range of 5-20. In some embodiments the surfactant is a block copolymer surfactant with a total molecular weight greater than 5000 daltons. The block copolymer may have a hydrophobic block that is comprised of a polymer chain that is linear, branched, hyperbranched, dendritic or cyclic. Non-limiting examples of monomeric repeat units in the hydrophobic chains of block copolymer surfactants are isomers of acrylic, methacrylic, styrenic, isoprene, butadiene, acrylamide, ethylene, propylene and norbornene. The block copolymer may have a hydrophilic block that is comprised of a polymer chain that is linear, branched, hyper branched, dendritic or cyclic.
Non-limiting examples of monomeric repeat units in the hydrophilic chains of the block copolymer surfactants are isomers of acrylic acid, maleic acid, methacrylic acid, ethylene oxide, and acrylamine.
In some embodiments, the surfactant has a structure as in Formula I:
In some embodiments, the surfactant is amphoteric or zwitterionic, including sultaines (e.g., cocamidopropyl hydroxysultaine), betaines (e.g., cocamidopropyl betaine), or phosphates (e.g., lecithin). Non-limiting examples of specific surfactants include a linear C12-C15 ethoxylated alcohols with 5-12 moles of EO, lauryl alcohol ethoxylate with 4-8 moles of EO, nonyl phenol ethoxylate with 5-9 moles of EO, octyl phenol ethoxylate with 5-9 moles of EO, tridecyl alcohol ethoxylate with 5-9 moles of EO, Pluronic0 matrix of EO/PO copolymers, ethoxylated cocoamide with 4-8 moles of EO, ethoxylated coco fatty acid with 7-11 moles of EO, and cocoamidopropyl amine oxide.
In some embodiments, the surfactant is a siloxane surfactant as described in U.S. Patent Application Serial No. 13/831,410, filed March 14, 2014.
In some embodiments, the surfactant is a Gemini surfactant. Gemini surfactants generally have the structure of multiple amphiphilic molecules linked together by one or more covalent spacers. In some embodiments, the surfactant is an extended surfactant, wherein the extended surfactats has the structure where a non-ionic hydrophilic spacer (e.g. ethylene oxide or propylene oxide) connects an ionic hydrophilic group (e.g. carboxylate, sulfate, phosphate).
In some embodiments the surfactant is an alkoxylated polyimine with a relative solubility number (RSN) in the range of 5-20. As will be known to those of ordinary skill in the art, RSN values are generally determined by titrating water into a solution of surfactant in 1,4dioxane. The RSN values is generally defined as the amount of distilled water necessary to be added to produce persistent turbidity. In some embodiments the surfactant is an alkoxylated novolac resin (also known as a phenolic resin) with a relative solubility number in the range of 5-20. In some embodiments the surfactant is a block copolymer surfactant with a total molecular weight greater than 5000 daltons. The block copolymer may have a hydrophobic block that is comprised of a polymer chain that is linear, branched, hyperbranched, dendritic or cyclic. Non-limiting examples of monomeric repeat units in the hydrophobic chains of block copolymer surfactants are isomers of acrylic, methacrylic, styrenic, isoprene, butadiene, acrylamide, ethylene, propylene and norbornene. The block copolymer may have a hydrophilic block that is comprised of a polymer chain that is linear, branched, hyper branched, dendritic or cyclic.
Non-limiting examples of monomeric repeat units in the hydrophilic chains of the block copolymer surfactants are isomers of acrylic acid, maleic acid, methacrylic acid, ethylene oxide, and acrylamine.
In some embodiments, the surfactant has a structure as in Formula I:
16
17 wherein each of R7, R8, R9, R1 , and R" are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl, and ¨CH=CHAr, wherein Ar is an aryl group, provided at least one of R7, R8, R9, R1 , and R" is ¨CH=CHAr, R12 is hydrogen or alkyl, n is 1-100, and each m is independently 1 or 2. In some embodiments, for a compound of Formula (I), R12 is hydrogen or C 1_6 alkyl. In some embodiments, for a compound of Formula (I), R12 is H, methyl, or ethyl. In some embodiments, for a compound of Formula (I), R12 is H.
In some embodiments, the surfactant has a structure as in Formula II:
XCley 11101 m 0 R19 (II) wherein each of R7, R8, R9, R1 , and R" are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl, and ¨CH=CHAr, wherein Ar is an aryl group, provided at least one of R7, R8, R9, R1 , and R" is ¨CH=CHAr, Y- is an anionic group, Xt is a cationic group, n is 1-100, and each m is independently 1 or 2.
In some embodiments, for a compound of Formula (II), X+ is a metal cation or N(R13)4, wherein each R13 is independently selected from the group consisting of hydrogen, optionally substituted alkyl, or optionally substituted aryl. In some embodiments, Xt is NH4. Non-limiting examples of metal cations are Nat, Kt, Mg+2, and Cat2. In some embodiments, for a compound of Formula (II), Y- is -0-, -S020-, or ¨0S020-.
In some embodiments, the surfactant has a structure as in Formula 111:
In some embodiments, the surfactant has a structure as in Formula II:
XCley 11101 m 0 R19 (II) wherein each of R7, R8, R9, R1 , and R" are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl, and ¨CH=CHAr, wherein Ar is an aryl group, provided at least one of R7, R8, R9, R1 , and R" is ¨CH=CHAr, Y- is an anionic group, Xt is a cationic group, n is 1-100, and each m is independently 1 or 2.
In some embodiments, for a compound of Formula (II), X+ is a metal cation or N(R13)4, wherein each R13 is independently selected from the group consisting of hydrogen, optionally substituted alkyl, or optionally substituted aryl. In some embodiments, Xt is NH4. Non-limiting examples of metal cations are Nat, Kt, Mg+2, and Cat2. In some embodiments, for a compound of Formula (II), Y- is -0-, -S020-, or ¨0S020-.
In some embodiments, the surfactant has a structure as in Formula 111:
18 R7 Ri R9 Z
(III) wherein each of R7, R8, R9, R1 , and R" are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl, and -CH=CHAr, wherein Ar is an aryl group, provided at least one of R7, R8, R9, R1 , and R" is -CH=CHAr, Z+ is a cationic group, n is 1-100, and each m is independently 1 or 2. In some embodiments, for a compound of Formula (III), Z is N(R13)1, wherein each R13 is independent selected from the group consisting of hydrogen, optionally substituted alkyl, or optionally substituted aryl.
In some embodiments, for a compound of Formula (I), (II), or (III), two of R7, R8, R9, R10, and R11 are -CH=CHAr. In some embodiments, for a compound of Formula (1), (II), or (III), one of R7, R8, R9, R10, and R11 is -CH=CHAr and each of the other groups is hydrogen. In some embodiments, for a compound of Formula (I), (II), or (III), two of R7, R8, R9, R1 , and R11 are -CH=CHAr and each of the other groups is hydrogen. In some embodiments, for a compound of Formula (1), (II), or (III), R7 and R8 are -CH=CHAr and R9, R10, and R11 are each hydrogen. In some embodiments, for a compound of Formula (I), (II), or (III), three of R7, R8, R9, R1 , and R11 are -CH=CHAr and each of the other groups is hydrogen. In some embodiments, for a compound of Formula (I), (II), or (III), R7, R8, and R9 are -CH=CHAr and R1 and R" are each hydrogen. In embodiments, for a compound of Formula (I), (II), or (III), Ar is phenyl. In some embodiments, for a compound of Formula (I), (II), or (III), each m is 1. In some embodiments, for a compound of Formula (I), (II), or (III), each m is 2. In some embodiments, for a compound of Formula (I), (II), or (III), n is 6-100, or 1-50, or 6-50, or 6-25, or 1-25, or 5-50, or 5-25, or 5-20.
Those of ordinary skill in the art will be aware of methods and techniques for selecting surfactant for use in the microemulsions described herein. In some cases, the surfactant(s) are matched to and/or optimized for the particular oil or solvent in use. In some embodiments, the surfactant(s) are selected by mapping the phase behavior of the
(III) wherein each of R7, R8, R9, R1 , and R" are the same or different and are selected from the group consisting of hydrogen, optionally substituted alkyl, and -CH=CHAr, wherein Ar is an aryl group, provided at least one of R7, R8, R9, R1 , and R" is -CH=CHAr, Z+ is a cationic group, n is 1-100, and each m is independently 1 or 2. In some embodiments, for a compound of Formula (III), Z is N(R13)1, wherein each R13 is independent selected from the group consisting of hydrogen, optionally substituted alkyl, or optionally substituted aryl.
In some embodiments, for a compound of Formula (I), (II), or (III), two of R7, R8, R9, R10, and R11 are -CH=CHAr. In some embodiments, for a compound of Formula (1), (II), or (III), one of R7, R8, R9, R10, and R11 is -CH=CHAr and each of the other groups is hydrogen. In some embodiments, for a compound of Formula (I), (II), or (III), two of R7, R8, R9, R1 , and R11 are -CH=CHAr and each of the other groups is hydrogen. In some embodiments, for a compound of Formula (1), (II), or (III), R7 and R8 are -CH=CHAr and R9, R10, and R11 are each hydrogen. In some embodiments, for a compound of Formula (I), (II), or (III), three of R7, R8, R9, R1 , and R11 are -CH=CHAr and each of the other groups is hydrogen. In some embodiments, for a compound of Formula (I), (II), or (III), R7, R8, and R9 are -CH=CHAr and R1 and R" are each hydrogen. In embodiments, for a compound of Formula (I), (II), or (III), Ar is phenyl. In some embodiments, for a compound of Formula (I), (II), or (III), each m is 1. In some embodiments, for a compound of Formula (I), (II), or (III), each m is 2. In some embodiments, for a compound of Formula (I), (II), or (III), n is 6-100, or 1-50, or 6-50, or 6-25, or 1-25, or 5-50, or 5-25, or 5-20.
Those of ordinary skill in the art will be aware of methods and techniques for selecting surfactant for use in the microemulsions described herein. In some cases, the surfactant(s) are matched to and/or optimized for the particular oil or solvent in use. In some embodiments, the surfactant(s) are selected by mapping the phase behavior of the
19 microemulsion and choosing the surfactant(s) that gives the desired range of stability. In some cases, the stability of the microemulsion over a wide range of temperatures is targeting as the microemulsion may be subject to a wide range of temperatures due to the environmental conditions present at the subterranean formation.
In some embodiments, the emulsion or microemulsion may comprise one or more additives in addition to water, solvent (e.g., one or more types of solvents), and surfactant (e.g., one or more types of surfactants). In some embodiments, the additive is an alcohol, a freezing point depression agent, an acid, a salt, a proppant, a scale inhibitor, a friction reducer, a biocide, a corrosion inhibitor, a buffer, a viscosifier, a clay swelling R) inhibitor, an oxygen scavenger, and/or a clay stabilizer.
The surfactant may be present in the microemulsion in any suitable amount. In some embodiments, the surfactant is present in an amount between about 10 wt%
and about 70 wt%, or between about 15 wt% and about 55 wt% versus the total microemulsion composition, or between about 20 wt% and about 50 wt%, versus the total microemulsion composition. In some embodiments, the surfactant is present in an amount between about 0 wt% and about 99 wt%, or between about 10 wt% and about 70 wt%, or between about 0 wt% and about 60 wt%, or between about 1 wt% and about 60 wt%, or between about 5 wt% and about 60 wt%, or between about 10 wt% and about 60 wt%, or between 5 wt% and about 65 wt%, or between 5 wt% and about 55 wt%, or between about 0 wt% and about 40 wt%, or between about 15 wt% and about 55 wt%, or between about 20 wt% and about 50 wt%, versus the total microemulsion composition.
In some embodiments, the microemulsion comprises an alcohol. The alcohol may serve as a coupling agent between the solvent and the surfactant and aid in the stabilization of the microemulsion. The alcohol may also lower the freezing point of the microemulsion The microemulsion may comprise a single alcohol or a combination of two or more alcohols. In some embodiments, the alcohol is selected from primary, secondary and tertiary alcohols having between 1 and 20 carbon atoms. In some embodiments, the alcohol comprises a first type of alcohol and a second type of alcohol.
Non-limiting examples of alcohols include methanol, ethanol, isopropanol, n-propanol, n-butanol, i-butanol, sec-butanol, iso-butanol, and t-butanol. In some embodiments, the alcohol is ethanol or isopropanol. In some embodiments, the alcohol is isopropanol.
The alcohol may be present in the emulsion in any suitable amount. In some embodiments, the alcohol is present in an amount between about 0 wt% and about wt%, or between about 0.1 wt% and about 50 wt%, or between about 1 wt% and about 50 wt%, or between about 5 wt% and about 40 wt%, or between about 5 wt% and 35 wt%, versus the total microemulsion composition.
In some embodiments, the microemulsion comprises a freezing point depression 5 agent. The microemulsion may comprise a single freezing point depression agent or a combination of two or more freezing point depression agents. For example, in some embodiments, the freezing point depression agent comprises a first type of freezing point depression agent and a second type of freezing point depression agent. The term "freezing point depression agent" is given its ordinary meaning in the art and refers to a iu compound which is added to a solution to reduce the freezing point of the solution. That is, a solution comprising the freezing point depression agent has a lower freezing point as compared to an essentially identical solution not comprising the freezing point depression agent. Those of ordinary skill in the art will be aware of suitable freezing point depression agents for use in the microemulsions described herein. Non-limiting 15 examples of freezing point depression agents include primary, secondary, and tertiary alcohols with between 1 and 20 carbon atoms. In some embodiments, the alcohol comprises at least 2 carbon atoms, alkylene glycols including polyalkylene glycols, and salts. Non-limiting examples of alcohols include methanol, ethanol, i-propanol, n-propanol, t-butanol, n-butanol, n-pentanol, n-hexanol, and 2-ethyl-hexanol.
In some
In some embodiments, the emulsion or microemulsion may comprise one or more additives in addition to water, solvent (e.g., one or more types of solvents), and surfactant (e.g., one or more types of surfactants). In some embodiments, the additive is an alcohol, a freezing point depression agent, an acid, a salt, a proppant, a scale inhibitor, a friction reducer, a biocide, a corrosion inhibitor, a buffer, a viscosifier, a clay swelling R) inhibitor, an oxygen scavenger, and/or a clay stabilizer.
The surfactant may be present in the microemulsion in any suitable amount. In some embodiments, the surfactant is present in an amount between about 10 wt%
and about 70 wt%, or between about 15 wt% and about 55 wt% versus the total microemulsion composition, or between about 20 wt% and about 50 wt%, versus the total microemulsion composition. In some embodiments, the surfactant is present in an amount between about 0 wt% and about 99 wt%, or between about 10 wt% and about 70 wt%, or between about 0 wt% and about 60 wt%, or between about 1 wt% and about 60 wt%, or between about 5 wt% and about 60 wt%, or between about 10 wt% and about 60 wt%, or between 5 wt% and about 65 wt%, or between 5 wt% and about 55 wt%, or between about 0 wt% and about 40 wt%, or between about 15 wt% and about 55 wt%, or between about 20 wt% and about 50 wt%, versus the total microemulsion composition.
In some embodiments, the microemulsion comprises an alcohol. The alcohol may serve as a coupling agent between the solvent and the surfactant and aid in the stabilization of the microemulsion. The alcohol may also lower the freezing point of the microemulsion The microemulsion may comprise a single alcohol or a combination of two or more alcohols. In some embodiments, the alcohol is selected from primary, secondary and tertiary alcohols having between 1 and 20 carbon atoms. In some embodiments, the alcohol comprises a first type of alcohol and a second type of alcohol.
Non-limiting examples of alcohols include methanol, ethanol, isopropanol, n-propanol, n-butanol, i-butanol, sec-butanol, iso-butanol, and t-butanol. In some embodiments, the alcohol is ethanol or isopropanol. In some embodiments, the alcohol is isopropanol.
The alcohol may be present in the emulsion in any suitable amount. In some embodiments, the alcohol is present in an amount between about 0 wt% and about wt%, or between about 0.1 wt% and about 50 wt%, or between about 1 wt% and about 50 wt%, or between about 5 wt% and about 40 wt%, or between about 5 wt% and 35 wt%, versus the total microemulsion composition.
In some embodiments, the microemulsion comprises a freezing point depression 5 agent. The microemulsion may comprise a single freezing point depression agent or a combination of two or more freezing point depression agents. For example, in some embodiments, the freezing point depression agent comprises a first type of freezing point depression agent and a second type of freezing point depression agent. The term "freezing point depression agent" is given its ordinary meaning in the art and refers to a iu compound which is added to a solution to reduce the freezing point of the solution. That is, a solution comprising the freezing point depression agent has a lower freezing point as compared to an essentially identical solution not comprising the freezing point depression agent. Those of ordinary skill in the art will be aware of suitable freezing point depression agents for use in the microemulsions described herein. Non-limiting 15 examples of freezing point depression agents include primary, secondary, and tertiary alcohols with between 1 and 20 carbon atoms. In some embodiments, the alcohol comprises at least 2 carbon atoms, alkylene glycols including polyalkylene glycols, and salts. Non-limiting examples of alcohols include methanol, ethanol, i-propanol, n-propanol, t-butanol, n-butanol, n-pentanol, n-hexanol, and 2-ethyl-hexanol.
In some
20 embodiments, the freezing point depression agent is not methanol (e.g., due to toxicity).
Non-limiting examples of alkylene glycols include ethylene glycol (EG), polyethylene glycol (PEG), propylene glycol (PG), and triethylene glycol (TEG). In some embodiments, the freezing point depression agent is not ethylene oxide (e.g., due to toxicity). In some embodiments, the freezing point depression agent comprises an alcohol and an alkylene glycol. In some embodiments, the freezing point depression agent comprises a carboxycyclic acid salt and/or a di-carboxycylic acid salt.
Another non-limiting example of a freezing point depression agent is a combination of choline chloride and urea. In some embodiments, the microemulsion comprising the freezing point depression agent is stable over a wide range of temperatures, for example, between about -25 F to 150 F, or between about -50 F to 200 F.
The freezing point depression agent may be present in the microemulsion in any suitable amount. In some embodiments, the freezing point depression agent is present in an amount between about 1 wt% and about 40 wt%, or between about 3 wt% and about
Non-limiting examples of alkylene glycols include ethylene glycol (EG), polyethylene glycol (PEG), propylene glycol (PG), and triethylene glycol (TEG). In some embodiments, the freezing point depression agent is not ethylene oxide (e.g., due to toxicity). In some embodiments, the freezing point depression agent comprises an alcohol and an alkylene glycol. In some embodiments, the freezing point depression agent comprises a carboxycyclic acid salt and/or a di-carboxycylic acid salt.
Another non-limiting example of a freezing point depression agent is a combination of choline chloride and urea. In some embodiments, the microemulsion comprising the freezing point depression agent is stable over a wide range of temperatures, for example, between about -25 F to 150 F, or between about -50 F to 200 F.
The freezing point depression agent may be present in the microemulsion in any suitable amount. In some embodiments, the freezing point depression agent is present in an amount between about 1 wt% and about 40 wt%, or between about 3 wt% and about
21 20 wt%, or between about 8 wt% and about 16 wt%, versus the total microemulsion composition. In some embodiments, the freezing point depression agent is present in an amount between about 0 wt% and about 70 wt%, or between about 1 wt% and about 40 wt%, or between about 0 wt% and about 25 wt%, or between about 1 wt% and about 25 wt%, or between about 1 wt% and about 20 wt%, or between about 3 wt% and about 20 wt%, or between about 8 wt% and about 16 wt%, versus the total microemulsion composition.
Further non-limiting examples of other additives include proppants, scale inhibitors, friction reducers, biocides, corrosion inhibitors, buffers, viscosifiers, clay swelling inhibitors, paraffin dispersing additives, asphaltene dispersing additives, and oxygen scavengers.
Non-limiting examples of proppants (e.g., propping agents) include grains of sand, glass beads, crystalline silica (e.g., Quartz), hexamethylenetetramine, ceramic proppants (e.g., calcined clays), resin coated sands, and resin coated ceramic proppants.
Other proppants are also possible and will be known to those skilled in the art.
Non-limiting examples of scale inhibitors include one or more of methyl alcohol, organic phosphonic acid salts (e.g., phosphonate salt), polyacrylate, ethane-1,2-diol, calcium chloride, and sodium hydroxide. Other scale inhibitors are also possible and will be known to those skilled in the art.
Non-limiting examples of buffers include acetic acid, acetic anhydride, potassium hydroxide, sodium hydroxide, and sodium acetate. Other buffers are also possible and will be known to those skilled in the art.
Non-limiting examples of corrosion inhibitors include isopropanol, quaternary ammonium compounds, thiourea/formaldehyde copolymers, propargyl alcohol and methanol. Other corrosion inhibitors are also possible and will be known to those skilled in the art.
Non-limiting examples of biocides include didecyl dimethyl ammonium chloride, gluteral, Dazomet, bronopol, tributyl tetradecyl phosphonium chloride, tetrakis (hydroxymethyl) phosphonium sulfate, AQUCARTM, UCARCIDETM, glutaraldehyde, sodium hypochlorite, and sodium hydroxide. Other biocides are also possible and will be known to those skilled in the art.
Non-limiting examples of clay swelling inhibitors include quaternary ammonium chloride and tetramethylammonium chloride. Other clay swelling inhibitors are also possible and will be known to those skilled in the art.
Non-limiting examples of friction reducers include petroleum distillates, ammonium salts, polyethoxylated alcohol surfactants, and anionic polyacrylamide copolymers. Other friction reducers are also possible and will be known to those skilled in the art.
Non-limiting examples of oxygen scavengers include sulfites, and bisulfites.
Other oxygen scavengers are also possible and will be known to those skilled in the art.
Non-limiting examples of paraffin dispersing additives and asphaltene dispersing additives include active acidic copolymers, active alkylated polyester, active alkylated polyester amides, active alkylated polyester imides, aromatic naphthas, and active amine sulfonates. Other paraffin dispersing additives are also possible and will be known to those skilled in the art.
In some embodiments, for the formulations above, the other additives are present in an amount between about 0 wt% about 70 wt%, or between about 0 wt % and about 30 wt%, or between about 1 wt% and about 30 wt%, or between about 1 wt% and about wt%, or between about 1 and about 20 wt%, versus the total microemulsion composition.
In some embodiments, the microemulsion comprises an acid or an acid precursor.
For example, the microemulsion may comprise an acid when used during acidizing operations. The microemulsion may comprise a single acid or a combination of two or more acids. For example, in some embodiments, the acid comprises a first type of acid and a second type of acid. Non-limiting examples of acids or di-acids include hydrochloric acid, acetic acid, formic acid, succinic acid, maleic acid, malic acid, lactic acid, and hydrochloric-hydrofluoric acids. In some embodiments, the microemulsion comprises an organic acid or organic di-acid in the ester (or di-ester) form, whereby the ester (or diester) is hydrolyzed in the wellbore and/or reservoir to form the parent organic acid and an alcohol in the wellbore and/or reservoir. Non-limiting examples of esters or di-esters include isomers of methyl formate, ethyl formate, ethylene glycol diformate, a,a-4-trimethy1-3-cyclohexene-l-methylformate, methyl lactate, ethyl lactate, a,a-4-trimethyl 3-cyclohexene-1-methyllactate, ethylene glycol dilactate, ethylene glycol diacetate, methyl acetate, ethyl acetate, a,a,-4-trimethy1-3-cyclohexene-1-methylacetate, dimethyl succinate, dimethyl maleate, di(a,a-4-trimethy1-3-cyclohexene-1-
Further non-limiting examples of other additives include proppants, scale inhibitors, friction reducers, biocides, corrosion inhibitors, buffers, viscosifiers, clay swelling inhibitors, paraffin dispersing additives, asphaltene dispersing additives, and oxygen scavengers.
Non-limiting examples of proppants (e.g., propping agents) include grains of sand, glass beads, crystalline silica (e.g., Quartz), hexamethylenetetramine, ceramic proppants (e.g., calcined clays), resin coated sands, and resin coated ceramic proppants.
Other proppants are also possible and will be known to those skilled in the art.
Non-limiting examples of scale inhibitors include one or more of methyl alcohol, organic phosphonic acid salts (e.g., phosphonate salt), polyacrylate, ethane-1,2-diol, calcium chloride, and sodium hydroxide. Other scale inhibitors are also possible and will be known to those skilled in the art.
Non-limiting examples of buffers include acetic acid, acetic anhydride, potassium hydroxide, sodium hydroxide, and sodium acetate. Other buffers are also possible and will be known to those skilled in the art.
Non-limiting examples of corrosion inhibitors include isopropanol, quaternary ammonium compounds, thiourea/formaldehyde copolymers, propargyl alcohol and methanol. Other corrosion inhibitors are also possible and will be known to those skilled in the art.
Non-limiting examples of biocides include didecyl dimethyl ammonium chloride, gluteral, Dazomet, bronopol, tributyl tetradecyl phosphonium chloride, tetrakis (hydroxymethyl) phosphonium sulfate, AQUCARTM, UCARCIDETM, glutaraldehyde, sodium hypochlorite, and sodium hydroxide. Other biocides are also possible and will be known to those skilled in the art.
Non-limiting examples of clay swelling inhibitors include quaternary ammonium chloride and tetramethylammonium chloride. Other clay swelling inhibitors are also possible and will be known to those skilled in the art.
Non-limiting examples of friction reducers include petroleum distillates, ammonium salts, polyethoxylated alcohol surfactants, and anionic polyacrylamide copolymers. Other friction reducers are also possible and will be known to those skilled in the art.
Non-limiting examples of oxygen scavengers include sulfites, and bisulfites.
Other oxygen scavengers are also possible and will be known to those skilled in the art.
Non-limiting examples of paraffin dispersing additives and asphaltene dispersing additives include active acidic copolymers, active alkylated polyester, active alkylated polyester amides, active alkylated polyester imides, aromatic naphthas, and active amine sulfonates. Other paraffin dispersing additives are also possible and will be known to those skilled in the art.
In some embodiments, for the formulations above, the other additives are present in an amount between about 0 wt% about 70 wt%, or between about 0 wt % and about 30 wt%, or between about 1 wt% and about 30 wt%, or between about 1 wt% and about wt%, or between about 1 and about 20 wt%, versus the total microemulsion composition.
In some embodiments, the microemulsion comprises an acid or an acid precursor.
For example, the microemulsion may comprise an acid when used during acidizing operations. The microemulsion may comprise a single acid or a combination of two or more acids. For example, in some embodiments, the acid comprises a first type of acid and a second type of acid. Non-limiting examples of acids or di-acids include hydrochloric acid, acetic acid, formic acid, succinic acid, maleic acid, malic acid, lactic acid, and hydrochloric-hydrofluoric acids. In some embodiments, the microemulsion comprises an organic acid or organic di-acid in the ester (or di-ester) form, whereby the ester (or diester) is hydrolyzed in the wellbore and/or reservoir to form the parent organic acid and an alcohol in the wellbore and/or reservoir. Non-limiting examples of esters or di-esters include isomers of methyl formate, ethyl formate, ethylene glycol diformate, a,a-4-trimethy1-3-cyclohexene-l-methylformate, methyl lactate, ethyl lactate, a,a-4-trimethyl 3-cyclohexene-1-methyllactate, ethylene glycol dilactate, ethylene glycol diacetate, methyl acetate, ethyl acetate, a,a,-4-trimethy1-3-cyclohexene-1-methylacetate, dimethyl succinate, dimethyl maleate, di(a,a-4-trimethy1-3-cyclohexene-1-
22
23 methyl)succinate, 1-methy1-4-(1-methyletheny1)-cyclohexylformate, 1-methy1-4-(1-ethylethenyl)cyclohexylactate, 1-methy1-4-(1-methylethenyl)cyclohexylacetate, di(1-methy-4-(1-methylethenyl)cyclohexyl)succinate.
In some embodiments, the microemulsion comprises a salt. The presence of the .. salt may reduce the amount of water needed as a carrier fluid, and in addition, may lower the freezing point of the microemulsion. The microemulsion may comprise a single salt or a combination of two or more salts. For example, in some embodiments, the salt comprises a first type of salt and a second type of salt. Non-limiting examples of salts include salts comprising K, Na, Br, Cr, Cs, or Li, for example, halides of these metals, including NaC1, KCl, CaCl2, and MgCl2.
In some embodiments, the microemulsion comprises a clay stabilizer. The microemulsion may comprise a single clay stabilizer or a combination of two or more clay stabilizers. For example, in some embodiments, the salt comprises a first type of clay stabilizer and a second type of clay stabilizer. Non-limiting examples of clay stabilizers include salts above, polymers (PAC, PHPA, etc.), glycols, sulfonated asphalt, lignite, sodium silicate, and choline chloride.
In some embodiments, for the formulations above, the other additives are present in an amount between about 0 wt% about 70 wt%, or between about 1 wt% and about 30 wt%, or between about 1 wt% and about 25 wt%, or between about 1 and about 20 wt%, versus the total microemulsion composition.
In some embodiments, the components of the microemulsion and/or the amounts of the components may be selected so that the microemulsion is stable over a wide-range of temperatures. For example, the microemulsion may exhibit stability between about -40 F and about 400 F, or between -40 F and about 300 F, or between about -and about 150 F. Those of ordinary skill in the art will be aware of methods and techniques for determining the range of stability of the microemulsion. For example, the lower boundary may be determined by the freezing point and the upper boundary may be determined by the cloud point and/or using spectroscopy methods. Stability over a wide range of temperatures may be important in embodiments where the microcmulsions are being employed in applications comprising environments wherein the temperature may vary significantly, or may have extreme highs (e.g., desert) or lows (e.g., artic).
The microemulsions described herein may be formed using methods known to those of ordinary skill in the art. In some embodiments, the aqueous and non-aqueous phases may be combined (e.g., the water and the terpene(s)), followed by addition of a surfactant(s) and optionally other components (e.g., freezing point depression agent(s)) and agitation. The strength, type, and length of the agitation may be varied as known in the art depending on various factors including the components of the microemulsion, the quantity of the microemulsion, and the resulting type of microemulsion formed. For example, for small samples, a few seconds of gentle mixing can yield a microemulsion, whereas for larger samples, longer agitation times and/or stronger agitation may be required.
Agitation may be provided by any suitable source, for example, a vortex mixer, a stirrer (e.g., magnetic stirrer), etc.
Any suitable method for injecting the microemulsion (e.g., a diluted microemulsion) into a wellbore may be employed. For example, in some embodiments, the microemulsion, optionally diluted, may be injected into a subterranean formation by injecting it into a well or wellbore in the zone of interest of the formation and thereafter pressurizing it into the formation for the selected distance. Methods for achieving the placement of a selected quantity of a mixture in a subterranean formation are known in the art. The well may be treated with the microemulsion for a suitable period of time. The microemulsion and/or other fluids may be removed from the well using known techniques, including producing the well.
In some embodiments, experiments may be carried out to determine displacement of residual aqueous treatment fluid by formation crude oil or formation gas by a microemulsion (e.g., a diluted microemulsion). For example, displacement of residual aqueous treatment fluid by formation crude oil may be determined using the method described in Example 3 and/or displacement of residual aqueous treatment fluid by formation gas may be determined using the method described in Example 2.
For convenience, certain terms employed in the specification, examples, and appended claims are listed here.
Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th La ¨ ..5 inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito: 1999.
Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis-
In some embodiments, the microemulsion comprises a salt. The presence of the .. salt may reduce the amount of water needed as a carrier fluid, and in addition, may lower the freezing point of the microemulsion. The microemulsion may comprise a single salt or a combination of two or more salts. For example, in some embodiments, the salt comprises a first type of salt and a second type of salt. Non-limiting examples of salts include salts comprising K, Na, Br, Cr, Cs, or Li, for example, halides of these metals, including NaC1, KCl, CaCl2, and MgCl2.
In some embodiments, the microemulsion comprises a clay stabilizer. The microemulsion may comprise a single clay stabilizer or a combination of two or more clay stabilizers. For example, in some embodiments, the salt comprises a first type of clay stabilizer and a second type of clay stabilizer. Non-limiting examples of clay stabilizers include salts above, polymers (PAC, PHPA, etc.), glycols, sulfonated asphalt, lignite, sodium silicate, and choline chloride.
In some embodiments, for the formulations above, the other additives are present in an amount between about 0 wt% about 70 wt%, or between about 1 wt% and about 30 wt%, or between about 1 wt% and about 25 wt%, or between about 1 and about 20 wt%, versus the total microemulsion composition.
In some embodiments, the components of the microemulsion and/or the amounts of the components may be selected so that the microemulsion is stable over a wide-range of temperatures. For example, the microemulsion may exhibit stability between about -40 F and about 400 F, or between -40 F and about 300 F, or between about -and about 150 F. Those of ordinary skill in the art will be aware of methods and techniques for determining the range of stability of the microemulsion. For example, the lower boundary may be determined by the freezing point and the upper boundary may be determined by the cloud point and/or using spectroscopy methods. Stability over a wide range of temperatures may be important in embodiments where the microcmulsions are being employed in applications comprising environments wherein the temperature may vary significantly, or may have extreme highs (e.g., desert) or lows (e.g., artic).
The microemulsions described herein may be formed using methods known to those of ordinary skill in the art. In some embodiments, the aqueous and non-aqueous phases may be combined (e.g., the water and the terpene(s)), followed by addition of a surfactant(s) and optionally other components (e.g., freezing point depression agent(s)) and agitation. The strength, type, and length of the agitation may be varied as known in the art depending on various factors including the components of the microemulsion, the quantity of the microemulsion, and the resulting type of microemulsion formed. For example, for small samples, a few seconds of gentle mixing can yield a microemulsion, whereas for larger samples, longer agitation times and/or stronger agitation may be required.
Agitation may be provided by any suitable source, for example, a vortex mixer, a stirrer (e.g., magnetic stirrer), etc.
Any suitable method for injecting the microemulsion (e.g., a diluted microemulsion) into a wellbore may be employed. For example, in some embodiments, the microemulsion, optionally diluted, may be injected into a subterranean formation by injecting it into a well or wellbore in the zone of interest of the formation and thereafter pressurizing it into the formation for the selected distance. Methods for achieving the placement of a selected quantity of a mixture in a subterranean formation are known in the art. The well may be treated with the microemulsion for a suitable period of time. The microemulsion and/or other fluids may be removed from the well using known techniques, including producing the well.
In some embodiments, experiments may be carried out to determine displacement of residual aqueous treatment fluid by formation crude oil or formation gas by a microemulsion (e.g., a diluted microemulsion). For example, displacement of residual aqueous treatment fluid by formation crude oil may be determined using the method described in Example 3 and/or displacement of residual aqueous treatment fluid by formation gas may be determined using the method described in Example 2.
For convenience, certain terms employed in the specification, examples, and appended claims are listed here.
Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th La ¨ ..5 inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito: 1999.
Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis-
24 and trans-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (0-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, 96:4, 97:3, 98:2, 99:1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
The term "aliphatic," as used herein, includes both saturated and unsaturated, nonaromatic, straight chain (i.e. unbranched), branched, acyclic, and cyclic (i.e. carbocyclic) hydrocarbons, which are optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, "aliphatic" is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties.
Thus, as used herein, the term "alkyl" includes straight, branched and cyclic alkyl groups. An analogous convention applies to other generic terms such as "alkenyl", "alkynyl", and the like. Furthermore, as used herein, the terms "alkyl", "alkenyl", "alkynyl", and the like encompass both substituted and unsubstituted groups. In certain embodiments, as used herein, "aliphatic" is used to indicate those aliphatic groups (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-20 carbon atoms. Aliphatic group substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety (e.g., aliphatic, alkyl, alkenyl, alkynyl, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, oxo, imino, thiooxo, cyano, isocyano, amino, azido, nitro, hydroxyl, thiol, halo, aliphaticamino, heteroaliphaticamino, alkylamino, heteroalkylamino, arylamino, heteroarylamino, alkylaryl, arylalkyl, aliphaticoxy, heteroaliphaticoxy, alkyloxy, heteroalkyloxy, aryloxy, heteroaryloxy, aliphaticthioxy, heteroaliphaticthioxy, alkylthioxy, heteroalkylthioxy, arylthioxy, heteroarylthioxy, acyloxy, and the like, each of which may or may not be further substituted).
The term "alkane" is given its ordinary meaning in the art and refers to a saturated hydrocarbon molecule. The term "branched alkane" refers to an alkane that includes one or more branches, while the term "unbranched alkane" refers to an alkane that is straight-chained. The teim "cyclic alkane" refers to an alkane that includes one or more ring structures, and may be optionally branched. The term "acyclic alkane" refers to an alkane that does not include any ring structures, and may be optionally branched.
The term "alkene" is given its ordinary meaning in the art and refers to an unsaturated hydrocarbon molecule that includes one or more carbon-carbon double bonds. The term "branched alkene" refers to an alkene that includes one or more branches, while the term "unbranched alkene" refers to an alkene that is straight-chained.
The term "cyclic alkene" refers to an alkene that includes one or more ring structures, and may be optionally branched. The term "acyclic alkene" refers to an alkene that does not include any ring structures, and may be optionally branched.
The term "aromatic" is given its ordinary meaning in the art and refers to aromatic carbocyclic groups, having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl, anthryl, or phenanthryl). That is, at least one ring may have a conjugated pi electron system, while other, adjoining rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls.
The term "aryl" is given its ordinary meaning in the art and refers to aromatic carbocyclic groups, optionally substituted, having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl, anthryl, or phenanthryl). That is, at least one ring may have a conjugated pi electron system, while other, adjoining rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls. The aryl group may be optionally substituted, as described herein. Substituents include, but are not limited to, any of the previously mentioned substitutents, i.e., the substituents recited for aliphatic moieties, or for other moieties as disclosed herein, resulting in the formation of a stable compound. In some cases, an aryl group is a stable mono- or polycyclic unsaturated moiety having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted.
These and other aspects of the present invention will be further appreciated upon consideration of the following Examples, which are intended to illustrate certain particular embodiments of the invention but are not intended to limit its scope, as defined by the claims.
Examples 1() Example 1:
A series of laboratory tests were conducted to characterize the effectiveness of a series of microemulsions incorporating a range of terpenes. For these experiments, samples of a base microemulsion were prepared in which a detergent range alcohol ethoxylate surfactant was first blended in a 1:1 ratio with isopropyl alcohol.
Suitable detergent range alcohol ethoxylate surfactants include Neodol 25-7 (obtained from Shell Chemical Co.; e.g., a surfactant comprising linear C12-C15 alcohol ethoxylates with on average 7 moles of ethylene oxide), or comparable linear and branched alcohol ethoxylate surfactants available from SASOL, Huntsman or Stepan. The examples in Table 2 were prepared using Neodol 25-7. 46 parts by weight of this blend was mixed with 27 parts by weight of terpene and 27 parts by weight of water. Although substantial differences in the microemulsion phase behavior of the different terpenes were observed, this composition was chosen because at this composition, the exemplary terpenes that were tested spontaneously formed transparent stable microemulsions with gentle mixing of the ingredients. Subsequently, 1-2 gallons per thousand (gpt) dilutions were prepared and tested.
A transparent low-viscosity mixture that exhibited the characteristic properties of a microemulsion was prepared using 46% by weight of a blend of Neodol 25-7 and isopropyl alcohol, 27% by weight of water, and 27% by weight of technical grade d-limonene. This mixture was identified as a microemulsion based on the spontaneous formation with minimal mechanical energy input to form a clear dispersion from an immiscible mixture of water and d-limonene upon addition of an appropriate amount of surfactant and co-solvent. The order of mixing of this and other compositions described in this example were not necessary, but for convenience, a procedure was generally followed in which a mixture of the surfactant and the isopropyl alcohol was first prepared then combined that with a mixture of the terpene and water. With small samples, in the laboratory, a few seconds of gentle mixing yielded a transparent dispersion.
The non-limiting telpenes used this example were classified by measuring their phase inversion temperature (PIT) using methods described in the literature (e.g., see Strey, Microemulsion microstructure and interfacial curvature. Colloid &
Polymer Science, 1994. 272(8): p. 1005-1019; Kahlweit et al., Phase Behavior of Ternary Systems of the Type H20-Oil-Nonionic Amphiphile (Microemulsions). Angewandte .. Chemie International Edition in English, 1985. 24(8): p. 654-668.). As will be known in the art, the PIT measured for a given oil or solvent depends on the surfactant and aqueous phase in which it is measured. In this example, a 1:1 mixture of terpene solvent and de-ionized water was combined with varying amounts of a 1:1 blend of Neodol 25-7 and IPA and the upper and lower temperature boundaries of the one-phase microemulsion region were determined. A phase diagram such as this, plotting temperature against surfactant concentration at a constant oil-to-water ratio is often called a "fish" diagram or a Kahlweit plot. The phase inversion temperature was determined as the point at the "fish-tail" at which the temperature range of one-phase microemulsion closes to a vertex. In this example, the temperature at the vertex was selected as the PIT. An exemplary fish diagram indicating the PIT is shown in Figure 1.
For the terpene solvents used in this example, the PIT values which were measured using this above-described procedure are shown in Table 2. Those terpenes containing alcohol groups (linalool, geraniol, nopol, ct-terpineol and menthol), gave PIT values between -4 C and 16 C. Eucalyptol, containing an ether-oxygen, and menthone, containing a carbonyl oxygen, gave somewhat higher values near 30 C. D-limonene gave 43 C, while other non-oxygen containing terpen es gave values between 48-58 C. As described in more detail below, displacement of residual treatment fluid (containing 1-2 gpt of the microemulsion well treatment) from a sand pack by crude oil or gas was found to correlate to the PIT values.
Table 2 shows results for displacement of residual aqueous treatment fluid by oil and gas for formulations (e.g., using the experimental procedures outlined in Examples 3 and 4) using dilutions of the microemulsions prepared in this example (e.g., the microemulsions comprising 46 parts of 1:1 Neodol 25-7, 27 parts deionized water, and 27 parts terpene solvent). The dilutions were prepared of each microemulsion in 2% KC1, at 2 gpt. The table shows that the terpene solvents with PIT values higher than 43 C all give approximately 90% recovery, while those below 43 C give significantly lower recovery. Table 2 also shows displacement by gas results for the dilutions that demonstrates that terpene solvents with PIT values higher than 43 C give approximately 40% recovery, while those with PIT values below 43 C give significantly higher recovery.
Table 2. PIT values for various terpene solvents (e.g., measured at 1:1 water-oil).
Displacement results for 2 gpt dilution of microemulsions comprising 46:27:27 surfactant:water:terpene + isopropanol formulations.
Terpene Phase Inversion % displacement of % displacement of Temperature ( C) brine by crude oil brine by gas Linalool -4 81.9 Geraniol -0.5 69.3 67.8 Nopol 2.5 80.3 58.8 u-Terpineol 4.6 80 92.9 Menthol 16 49.7 Eucalyptol 31 54.6 Menthone 32 79.4 d-Limonene 43 89.3 45.6 Terpinolene 48 90.5 41.8 P -0 ccimen e 49 90.2 44.2 y-Teryinene 49 89 32.2 a-Pinene 57 89.9 38.7 Citronellene 58 88.2 40.5 Table 3. Oil and Gas displacement results for a-pinene and a-terpineol as a function of surfactant concentration and solvent-to-water ratio.
Formulation Terpene % displacement of % displacement of T/S/W* brine by crude oil brine by gas 27-46-27 a-terpineol 80 92.9 27-46-27 a-pinene 89.9 38.7 21-46-33 a-terpineol 88 83 21-46-33 a-pinene 87 46 11-46-43 a-terpineol 88.5 80 11-46-43 a-pinene 96 47 15-56-28 a-terpineol 87.8 85 15-56-28 a-pinene 88.6 52 5 *T/S/W stands for terpene weight %/1:1 surfactant-IPA weight %/deionized water wt%
The results shown in Table 3 demonstrate that at a 1:1 ratio of terpene to water, and 46 weight % surfactant-IPA, the high PIT a-pinene performed better on oil displacement and much poorer on gas displacement than the low PIT a-terpineol.
As the 10 terpene-to-water ratio decreases from 27-27 to 21-33 to 11-43, the difference in oil displacement performance decreased, then increased again at the lower level.
Higher surfactant levels did not substantially increase or decrease the displacement (which may suggest that the microemulsion is performing differently than a surfactant package lacking the terpene solvent). The displacement by gas was better for the low PIT a-15 tetpineol than for the high PIT a-pinene.
20 Example 2:
Microemulsions were prepared having the following formulation, wherein the terpene was varied as indicated in Table 4. The water to terpene ratio was about 5.5:1..
Microemulsion formulation:
Water 27.35 wt%
Ethoxylated alcohol surfactant 52.5 wt%
2-propanol 8.75 wt%
Triethylene Glycol 3 wt%
Propylene Glycol 3.3 wt%
Ethoxylated castor oil 0.1 wt%
Terpene 5 wt%
1 gallon per thousand dilutions were prepared of each microemulsion in 2% KC1.
The dilutions were then employed to determine the displacement of brine by oil and gas (e.g., using the experimental procedures outlined in Examples 3 and 4). The results are given in Table 4.
Table 4: Brine displacement by oil and gas Terpene Effectiveness of brine Effectiveness of brine displacement by gas (%) displacement by oil (%) d-limonene 79 64 a-terpineol 90 88 a-pinerie 86 87 geraniol 87 89 linalool 88 87 nopol 89 88 turpentine 83 76 menthol 82 90 eucalyptol 77 90 terpinolene 79 72 p-ocimene 71 68 kgerpinene 74 60 citronellene 73 88 Example 3:
This example described a non-limiting experiment for determining displacement of residual aqueous treatment fluid by formation crude oil. A 25 cm long, 2.5 cm diameter capped glass chromatography column was packed with 77 grams of 100 mesh sand. The column was left open on one end and a PTFE insert containing a recessed bottom, 3.2 mm diameter outlet, and nipple was placed into the other end.
Prior to placing the insert into the column, a 3 cm diameter filter paper disc (Whatman, #40) was pressed firmly into the recessed bottom of the insert to prevent leakage of 100 mesh sand. A 2" piece of vinyl tubing was placed onto the nipple of the insert and a clamp was fixed in place on the tubing prior to packing. The columns were gravity-packed by pouring approximately 25 grams of the diluted microemulsions (e.g., the microemulsions described in Examples 1 or 2, and diluted with 2% KC1, e.g., to about 2 gpt, or about 1 gpt) into the column followed by a slow, continuous addition of sand. After the last portion of sand had been added and was allowed to settle, the excess of brine was removed from the column so that the level of liquid exactly matched the level of sand.
Pore volume in the packed column was calculated as the difference in mass of fluid prior to column packing and after the column had been packed. Three additional pore volumes of brine were passed through the column. After the last pore volume was passed, the level of brine was adjusted exactly to the level of sand bed. Light condensate oil was then added on the top of sand bed to form the 5 cm oil column above the bed.
Additional oil was placed into a separatory funnel with a side arm open to an atmosphere.
Once the setup was assembled, the clamp was released from the tubing, and timer was started.
Throughout the experiment the level of oil was monitored and kept constant at a 5 cm mark above the bed. Oil was added from the separatory funnel as necessary, to ensure this constant level of head in the column. Portions of effluent coming from the column were collected into plastic beakers over a measured time intervals. The amount of fluid was monitored. When both brine and oil were produced from the column, they were separated with a syringe and weighed separately. The experiment was conducted for .. 3 hours at which the steady-state conditions were typically reached. The cumulative % or aqueous fluid displaced from the column over 120 minute time period, and the steady-state mass flow rate of oil at t=120 min through the column were determined.
Example 4:
This example described a non-limiting experiment for determining displacement of residual aqueous treatment fluid by formation gas. A 51 cm long, 2.5 cm inner-diameter capped glass chromatography column was filled with approximately 410 + 20 g of 20/40 mesh Ottawa sand and the diluted microemulsions (e.g., the microemulsions described in Examples 1 or 2, and diluted with 2% KC1, e.g., to about 2 gpt, or about l gpt) To ensure uniform packing, small amounts of proppant were interchanged with small volumes of liquid. Periodically the mixture in the column was homogenized with the help of an electrical hand massager, in order to remove possible air pockets. Sand and brine were added to completely fill the column to the level of the upper cap. The exact amounts of fluid and sand placed in the column were determined in each experiment. The column was oriented vertically and was connected at the bottom to a nitrogen cylinder via a gas flow controller pre-set at a flow rate of 60 cm3/min. The valve at the bottom was slowly opened and liquid exiting the column at the top was collected into a tarred jar placed on a balance. Mass of collected fluid was recorded as a function of time by a computer running a data logging software. The experiments were conducted until no more brine could be displaced from the column. The total %
of fluid recovered was then calculated.
Example 5:
This examples describes a general preparation method for the production of diluted microemulsion. The microemulsions were prepared in the laboratory by mixing the ingredients listed in specific examples. All ingredients are commercially available materials. In some embodiments, the components were mixed together in the order water-alcohol-surfactant- citrus terpene solvent, but other order of addition may also be employed. The mixtures were then agitated on a magnetic stirrer for 5-10 minutes. The microemulsions were then diluted to concentrations of 1 or 2 gallons per 1000 gallons with 2% KC1 brine and these diluted fluids were used in displacement experiments described in Examples 3 and 4.
It will be evident to one skilled in the art that the present disclosure is not limited to the foregoing illustrative examples, and that it can be embodied in other specific forms without departing from the essential attributes thereof It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one."
The phrase "and/or," as used herein in the specification and in the claims, should be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, a reference to "A and/or B," when used in conjunction with open-ended language such as "comprising"
can refer, in one embodiment, to A without B (optionally including elements other than 13); in another embodiment, to B without A (optionally including elements other than A);
in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating 5 items in a list, "or" or "and/or" shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as "only one of" or "exactly one of," or, when used in the claims, "consisting of," will refer to the inclusion of exactly one element or a list of elements. In general, the term "or" as 10 .. used herein shall only be interpreted as indicating exclusive alternatives (i.e. "one or the other but not both") when preceded by terms of exclusivity, such as "either,"
"one of,"
"only one of," or "exactly one of." "Consisting essentially of," when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase "at least one," in 15 reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
This definition also allows that elements may optionally be present other than the 20 elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, "at least one of A and B" (or, equivalently, "at least one of A
or B," or, equivalently "at least one of A and/or B") can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally
Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, 96:4, 97:3, 98:2, 99:1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
The term "aliphatic," as used herein, includes both saturated and unsaturated, nonaromatic, straight chain (i.e. unbranched), branched, acyclic, and cyclic (i.e. carbocyclic) hydrocarbons, which are optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, "aliphatic" is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties.
Thus, as used herein, the term "alkyl" includes straight, branched and cyclic alkyl groups. An analogous convention applies to other generic terms such as "alkenyl", "alkynyl", and the like. Furthermore, as used herein, the terms "alkyl", "alkenyl", "alkynyl", and the like encompass both substituted and unsubstituted groups. In certain embodiments, as used herein, "aliphatic" is used to indicate those aliphatic groups (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-20 carbon atoms. Aliphatic group substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety (e.g., aliphatic, alkyl, alkenyl, alkynyl, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, oxo, imino, thiooxo, cyano, isocyano, amino, azido, nitro, hydroxyl, thiol, halo, aliphaticamino, heteroaliphaticamino, alkylamino, heteroalkylamino, arylamino, heteroarylamino, alkylaryl, arylalkyl, aliphaticoxy, heteroaliphaticoxy, alkyloxy, heteroalkyloxy, aryloxy, heteroaryloxy, aliphaticthioxy, heteroaliphaticthioxy, alkylthioxy, heteroalkylthioxy, arylthioxy, heteroarylthioxy, acyloxy, and the like, each of which may or may not be further substituted).
The term "alkane" is given its ordinary meaning in the art and refers to a saturated hydrocarbon molecule. The term "branched alkane" refers to an alkane that includes one or more branches, while the term "unbranched alkane" refers to an alkane that is straight-chained. The teim "cyclic alkane" refers to an alkane that includes one or more ring structures, and may be optionally branched. The term "acyclic alkane" refers to an alkane that does not include any ring structures, and may be optionally branched.
The term "alkene" is given its ordinary meaning in the art and refers to an unsaturated hydrocarbon molecule that includes one or more carbon-carbon double bonds. The term "branched alkene" refers to an alkene that includes one or more branches, while the term "unbranched alkene" refers to an alkene that is straight-chained.
The term "cyclic alkene" refers to an alkene that includes one or more ring structures, and may be optionally branched. The term "acyclic alkene" refers to an alkene that does not include any ring structures, and may be optionally branched.
The term "aromatic" is given its ordinary meaning in the art and refers to aromatic carbocyclic groups, having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl, anthryl, or phenanthryl). That is, at least one ring may have a conjugated pi electron system, while other, adjoining rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls.
The term "aryl" is given its ordinary meaning in the art and refers to aromatic carbocyclic groups, optionally substituted, having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple fused rings in which at least one is aromatic (e.g., 1,2,3,4-tetrahydronaphthyl, naphthyl, anthryl, or phenanthryl). That is, at least one ring may have a conjugated pi electron system, while other, adjoining rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls. The aryl group may be optionally substituted, as described herein. Substituents include, but are not limited to, any of the previously mentioned substitutents, i.e., the substituents recited for aliphatic moieties, or for other moieties as disclosed herein, resulting in the formation of a stable compound. In some cases, an aryl group is a stable mono- or polycyclic unsaturated moiety having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted.
These and other aspects of the present invention will be further appreciated upon consideration of the following Examples, which are intended to illustrate certain particular embodiments of the invention but are not intended to limit its scope, as defined by the claims.
Examples 1() Example 1:
A series of laboratory tests were conducted to characterize the effectiveness of a series of microemulsions incorporating a range of terpenes. For these experiments, samples of a base microemulsion were prepared in which a detergent range alcohol ethoxylate surfactant was first blended in a 1:1 ratio with isopropyl alcohol.
Suitable detergent range alcohol ethoxylate surfactants include Neodol 25-7 (obtained from Shell Chemical Co.; e.g., a surfactant comprising linear C12-C15 alcohol ethoxylates with on average 7 moles of ethylene oxide), or comparable linear and branched alcohol ethoxylate surfactants available from SASOL, Huntsman or Stepan. The examples in Table 2 were prepared using Neodol 25-7. 46 parts by weight of this blend was mixed with 27 parts by weight of terpene and 27 parts by weight of water. Although substantial differences in the microemulsion phase behavior of the different terpenes were observed, this composition was chosen because at this composition, the exemplary terpenes that were tested spontaneously formed transparent stable microemulsions with gentle mixing of the ingredients. Subsequently, 1-2 gallons per thousand (gpt) dilutions were prepared and tested.
A transparent low-viscosity mixture that exhibited the characteristic properties of a microemulsion was prepared using 46% by weight of a blend of Neodol 25-7 and isopropyl alcohol, 27% by weight of water, and 27% by weight of technical grade d-limonene. This mixture was identified as a microemulsion based on the spontaneous formation with minimal mechanical energy input to form a clear dispersion from an immiscible mixture of water and d-limonene upon addition of an appropriate amount of surfactant and co-solvent. The order of mixing of this and other compositions described in this example were not necessary, but for convenience, a procedure was generally followed in which a mixture of the surfactant and the isopropyl alcohol was first prepared then combined that with a mixture of the terpene and water. With small samples, in the laboratory, a few seconds of gentle mixing yielded a transparent dispersion.
The non-limiting telpenes used this example were classified by measuring their phase inversion temperature (PIT) using methods described in the literature (e.g., see Strey, Microemulsion microstructure and interfacial curvature. Colloid &
Polymer Science, 1994. 272(8): p. 1005-1019; Kahlweit et al., Phase Behavior of Ternary Systems of the Type H20-Oil-Nonionic Amphiphile (Microemulsions). Angewandte .. Chemie International Edition in English, 1985. 24(8): p. 654-668.). As will be known in the art, the PIT measured for a given oil or solvent depends on the surfactant and aqueous phase in which it is measured. In this example, a 1:1 mixture of terpene solvent and de-ionized water was combined with varying amounts of a 1:1 blend of Neodol 25-7 and IPA and the upper and lower temperature boundaries of the one-phase microemulsion region were determined. A phase diagram such as this, plotting temperature against surfactant concentration at a constant oil-to-water ratio is often called a "fish" diagram or a Kahlweit plot. The phase inversion temperature was determined as the point at the "fish-tail" at which the temperature range of one-phase microemulsion closes to a vertex. In this example, the temperature at the vertex was selected as the PIT. An exemplary fish diagram indicating the PIT is shown in Figure 1.
For the terpene solvents used in this example, the PIT values which were measured using this above-described procedure are shown in Table 2. Those terpenes containing alcohol groups (linalool, geraniol, nopol, ct-terpineol and menthol), gave PIT values between -4 C and 16 C. Eucalyptol, containing an ether-oxygen, and menthone, containing a carbonyl oxygen, gave somewhat higher values near 30 C. D-limonene gave 43 C, while other non-oxygen containing terpen es gave values between 48-58 C. As described in more detail below, displacement of residual treatment fluid (containing 1-2 gpt of the microemulsion well treatment) from a sand pack by crude oil or gas was found to correlate to the PIT values.
Table 2 shows results for displacement of residual aqueous treatment fluid by oil and gas for formulations (e.g., using the experimental procedures outlined in Examples 3 and 4) using dilutions of the microemulsions prepared in this example (e.g., the microemulsions comprising 46 parts of 1:1 Neodol 25-7, 27 parts deionized water, and 27 parts terpene solvent). The dilutions were prepared of each microemulsion in 2% KC1, at 2 gpt. The table shows that the terpene solvents with PIT values higher than 43 C all give approximately 90% recovery, while those below 43 C give significantly lower recovery. Table 2 also shows displacement by gas results for the dilutions that demonstrates that terpene solvents with PIT values higher than 43 C give approximately 40% recovery, while those with PIT values below 43 C give significantly higher recovery.
Table 2. PIT values for various terpene solvents (e.g., measured at 1:1 water-oil).
Displacement results for 2 gpt dilution of microemulsions comprising 46:27:27 surfactant:water:terpene + isopropanol formulations.
Terpene Phase Inversion % displacement of % displacement of Temperature ( C) brine by crude oil brine by gas Linalool -4 81.9 Geraniol -0.5 69.3 67.8 Nopol 2.5 80.3 58.8 u-Terpineol 4.6 80 92.9 Menthol 16 49.7 Eucalyptol 31 54.6 Menthone 32 79.4 d-Limonene 43 89.3 45.6 Terpinolene 48 90.5 41.8 P -0 ccimen e 49 90.2 44.2 y-Teryinene 49 89 32.2 a-Pinene 57 89.9 38.7 Citronellene 58 88.2 40.5 Table 3. Oil and Gas displacement results for a-pinene and a-terpineol as a function of surfactant concentration and solvent-to-water ratio.
Formulation Terpene % displacement of % displacement of T/S/W* brine by crude oil brine by gas 27-46-27 a-terpineol 80 92.9 27-46-27 a-pinene 89.9 38.7 21-46-33 a-terpineol 88 83 21-46-33 a-pinene 87 46 11-46-43 a-terpineol 88.5 80 11-46-43 a-pinene 96 47 15-56-28 a-terpineol 87.8 85 15-56-28 a-pinene 88.6 52 5 *T/S/W stands for terpene weight %/1:1 surfactant-IPA weight %/deionized water wt%
The results shown in Table 3 demonstrate that at a 1:1 ratio of terpene to water, and 46 weight % surfactant-IPA, the high PIT a-pinene performed better on oil displacement and much poorer on gas displacement than the low PIT a-terpineol.
As the 10 terpene-to-water ratio decreases from 27-27 to 21-33 to 11-43, the difference in oil displacement performance decreased, then increased again at the lower level.
Higher surfactant levels did not substantially increase or decrease the displacement (which may suggest that the microemulsion is performing differently than a surfactant package lacking the terpene solvent). The displacement by gas was better for the low PIT a-15 tetpineol than for the high PIT a-pinene.
20 Example 2:
Microemulsions were prepared having the following formulation, wherein the terpene was varied as indicated in Table 4. The water to terpene ratio was about 5.5:1..
Microemulsion formulation:
Water 27.35 wt%
Ethoxylated alcohol surfactant 52.5 wt%
2-propanol 8.75 wt%
Triethylene Glycol 3 wt%
Propylene Glycol 3.3 wt%
Ethoxylated castor oil 0.1 wt%
Terpene 5 wt%
1 gallon per thousand dilutions were prepared of each microemulsion in 2% KC1.
The dilutions were then employed to determine the displacement of brine by oil and gas (e.g., using the experimental procedures outlined in Examples 3 and 4). The results are given in Table 4.
Table 4: Brine displacement by oil and gas Terpene Effectiveness of brine Effectiveness of brine displacement by gas (%) displacement by oil (%) d-limonene 79 64 a-terpineol 90 88 a-pinerie 86 87 geraniol 87 89 linalool 88 87 nopol 89 88 turpentine 83 76 menthol 82 90 eucalyptol 77 90 terpinolene 79 72 p-ocimene 71 68 kgerpinene 74 60 citronellene 73 88 Example 3:
This example described a non-limiting experiment for determining displacement of residual aqueous treatment fluid by formation crude oil. A 25 cm long, 2.5 cm diameter capped glass chromatography column was packed with 77 grams of 100 mesh sand. The column was left open on one end and a PTFE insert containing a recessed bottom, 3.2 mm diameter outlet, and nipple was placed into the other end.
Prior to placing the insert into the column, a 3 cm diameter filter paper disc (Whatman, #40) was pressed firmly into the recessed bottom of the insert to prevent leakage of 100 mesh sand. A 2" piece of vinyl tubing was placed onto the nipple of the insert and a clamp was fixed in place on the tubing prior to packing. The columns were gravity-packed by pouring approximately 25 grams of the diluted microemulsions (e.g., the microemulsions described in Examples 1 or 2, and diluted with 2% KC1, e.g., to about 2 gpt, or about 1 gpt) into the column followed by a slow, continuous addition of sand. After the last portion of sand had been added and was allowed to settle, the excess of brine was removed from the column so that the level of liquid exactly matched the level of sand.
Pore volume in the packed column was calculated as the difference in mass of fluid prior to column packing and after the column had been packed. Three additional pore volumes of brine were passed through the column. After the last pore volume was passed, the level of brine was adjusted exactly to the level of sand bed. Light condensate oil was then added on the top of sand bed to form the 5 cm oil column above the bed.
Additional oil was placed into a separatory funnel with a side arm open to an atmosphere.
Once the setup was assembled, the clamp was released from the tubing, and timer was started.
Throughout the experiment the level of oil was monitored and kept constant at a 5 cm mark above the bed. Oil was added from the separatory funnel as necessary, to ensure this constant level of head in the column. Portions of effluent coming from the column were collected into plastic beakers over a measured time intervals. The amount of fluid was monitored. When both brine and oil were produced from the column, they were separated with a syringe and weighed separately. The experiment was conducted for .. 3 hours at which the steady-state conditions were typically reached. The cumulative % or aqueous fluid displaced from the column over 120 minute time period, and the steady-state mass flow rate of oil at t=120 min through the column were determined.
Example 4:
This example described a non-limiting experiment for determining displacement of residual aqueous treatment fluid by formation gas. A 51 cm long, 2.5 cm inner-diameter capped glass chromatography column was filled with approximately 410 + 20 g of 20/40 mesh Ottawa sand and the diluted microemulsions (e.g., the microemulsions described in Examples 1 or 2, and diluted with 2% KC1, e.g., to about 2 gpt, or about l gpt) To ensure uniform packing, small amounts of proppant were interchanged with small volumes of liquid. Periodically the mixture in the column was homogenized with the help of an electrical hand massager, in order to remove possible air pockets. Sand and brine were added to completely fill the column to the level of the upper cap. The exact amounts of fluid and sand placed in the column were determined in each experiment. The column was oriented vertically and was connected at the bottom to a nitrogen cylinder via a gas flow controller pre-set at a flow rate of 60 cm3/min. The valve at the bottom was slowly opened and liquid exiting the column at the top was collected into a tarred jar placed on a balance. Mass of collected fluid was recorded as a function of time by a computer running a data logging software. The experiments were conducted until no more brine could be displaced from the column. The total %
of fluid recovered was then calculated.
Example 5:
This examples describes a general preparation method for the production of diluted microemulsion. The microemulsions were prepared in the laboratory by mixing the ingredients listed in specific examples. All ingredients are commercially available materials. In some embodiments, the components were mixed together in the order water-alcohol-surfactant- citrus terpene solvent, but other order of addition may also be employed. The mixtures were then agitated on a magnetic stirrer for 5-10 minutes. The microemulsions were then diluted to concentrations of 1 or 2 gallons per 1000 gallons with 2% KC1 brine and these diluted fluids were used in displacement experiments described in Examples 3 and 4.
It will be evident to one skilled in the art that the present disclosure is not limited to the foregoing illustrative examples, and that it can be embodied in other specific forms without departing from the essential attributes thereof It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one."
The phrase "and/or," as used herein in the specification and in the claims, should be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, a reference to "A and/or B," when used in conjunction with open-ended language such as "comprising"
can refer, in one embodiment, to A without B (optionally including elements other than 13); in another embodiment, to B without A (optionally including elements other than A);
in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating 5 items in a list, "or" or "and/or" shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as "only one of" or "exactly one of," or, when used in the claims, "consisting of," will refer to the inclusion of exactly one element or a list of elements. In general, the term "or" as 10 .. used herein shall only be interpreted as indicating exclusive alternatives (i.e. "one or the other but not both") when preceded by terms of exclusivity, such as "either,"
"one of,"
"only one of," or "exactly one of." "Consisting essentially of," when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase "at least one," in 15 reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
This definition also allows that elements may optionally be present other than the 20 elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, "at least one of A and B" (or, equivalently, "at least one of A
or B," or, equivalently "at least one of A and/or B") can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally
25 including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
30 In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving,"
"holding,"
and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of' and "consisting essentially of" shall be closed or semi-closed transitional phrases, respectively.
30 In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving,"
"holding,"
and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of' and "consisting essentially of" shall be closed or semi-closed transitional phrases, respectively.
Claims (18)
1. A method comprising:
selecting an emulsion or a microemulsion for injection into a wellbore of a well based on a determination of whether formation crude oil is produced;
wherein, when the formation crude oil is produced by the well, the emulsion or the microemulsion is selected to comprise a terpene having a phase inversion temperature greater than 43 °C and injecting the emulsion or the microemulsion into the wellbore.
selecting an emulsion or a microemulsion for injection into a wellbore of a well based on a determination of whether formation crude oil is produced;
wherein, when the formation crude oil is produced by the well, the emulsion or the microemulsion is selected to comprise a terpene having a phase inversion temperature greater than 43 °C and injecting the emulsion or the microemulsion into the wellbore.
2. A method of treating an oil well having a wellbore comprising:
injecting an emulsion or a microemulsion into the wellbore of the oil well to stimulate displacement of residual aqueous treatment fluid by formation crude oil and increase production of formation crude oil by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio by weight of the water to the terpene is between about 3:1 and about 1:2; and wherein the terpene has a phase inversion temperature greater than 43 °C.
injecting an emulsion or a microemulsion into the wellbore of the oil well to stimulate displacement of residual aqueous treatment fluid by formation crude oil and increase production of formation crude oil by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio by weight of the water to the terpene is between about 3:1 and about 1:2; and wherein the terpene has a phase inversion temperature greater than 43 °C.
3. A method of treating an oil well having a wellbore comprising:
using an emulsion or a microemulsion to stimulate displacement of residual aqueous treatment fluid by formation crude oil by injecting the emulsion or the microemulsion into the wellbore of the oil well, and increase production of formation crude oil by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio by weight of the water to the terpene is between about 10:1 and about 3:1; and wherein the terpene has a phase inversion temperature of greater than 43 °C.
using an emulsion or a microemulsion to stimulate displacement of residual aqueous treatment fluid by formation crude oil by injecting the emulsion or the microemulsion into the wellbore of the oil well, and increase production of formation crude oil by the well, wherein the emulsion or the microemulsion comprises water, a terpene, and a surfactant;
wherein the ratio by weight of the water to the terpene is between about 10:1 and about 3:1; and wherein the terpene has a phase inversion temperature of greater than 43 °C.
4. The method of any one of claims 2 or 3, wherein the ratio of the water to the terpene is about 1:1.
5. The method of any one of claims 1, 2 or 3, wherein the terpene is selected from the group consisting of terpinolene,.beta.-occimene, .gamma.-terpinene, .alpha.-pinene, and citronellene.
6. The method of any one of claims 1, 2 or 3, wherein the terpene comprises a first type of terpene and a second type of terpene.
7. The method of any one of claims 1, 2 or 3, wherein the emulsion or the microemulsion is diluted with an aqueous fluid prior to injection into the wellbore.
8. The method of claim 7, wherein the emulsion or the microemulsion is diluted with the aqueous fluid prior to injection into the wellbore between about 0.1 wt% and about 2 wt%
versus the total weight of the emulsion or the microemulsion.
versus the total weight of the emulsion or the microemulsion.
9. The method of claim 7, wherein the emulsion or the microemulsion is diluted with the aqueous fluid prior to injection into the wellbore between about 0.2 wt% and about 0.4 wt%
versus the total weight of the emulsion or the microemulsion.
versus the total weight of the emulsion or the microemulsion.
10. The method of claim 7, wherein the aqueous fluid comprises water or brine.
11. The method of any one of claims 1, 2 or 3, wherein the emulsion or the microemulsion further comprises a freezing point depression agent.
12. The method of claim 11, wherein the freezing point depression agent comprises a first type of freezing point depression agent and a second type of freezing point depression agent.
13. The method of claim 11, wherein the freezing point depression agent comprises an alkylene glycol, an alcohol, or a salt.
14. The method of claim 11, wherein the freezing point depression agent is present in an amount between about 5 wt% and about 40 wt% versus the total weight of the emulsion or the microemulsion.
15. The method of any one of claims 2 or 3, wherein the surfactant comprises a first type of surfactant and a second type of surfactant.
16. The method of any one of claims 2 or 3, wherein the surfactant is selected from the group consisting of alkyl polyglycol nonionic surfactants, alkyl polyglycoside nonionic surfactants and mixtures of said nonionic surfactants with an ionic surfactant.
17. The method of any one of claims 2 or 3, wherein the surfactant is present in an amount between about 15 wt% and 55 wt% versus the total weight of the emulsion or the microemulsion.
18. The method of any one of claims 2 or 3, wherein the phase inversion temperature is determined using a 1:1 ratio by weight of terpene:de-ionized water and a 1:1 ratio by weight of the surfactant, further comprising linear C12-C15 alcohol ethoxylates with on average 7 moles of ethylene oxide and isopropyl alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3059006A CA3059006C (en) | 2013-03-14 | 2014-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/829,495 | 2013-03-14 | ||
US13/829,434 | 2013-03-14 | ||
US13/829,495 US9428683B2 (en) | 2013-03-14 | 2013-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US13/829,434 US9068108B2 (en) | 2013-03-14 | 2013-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
PCT/US2014/028970 WO2014153078A1 (en) | 2013-03-14 | 2014-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3059006A Division CA3059006C (en) | 2013-03-14 | 2014-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2906047A1 CA2906047A1 (en) | 2014-09-25 |
CA2906047C true CA2906047C (en) | 2019-11-12 |
Family
ID=51581412
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3059006A Active CA3059006C (en) | 2013-03-14 | 2014-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
CA2906047A Active CA2906047C (en) | 2013-03-14 | 2014-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3059006A Active CA3059006C (en) | 2013-03-14 | 2014-03-14 | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2970750A4 (en) |
CN (1) | CN104755582B (en) |
AU (1) | AU2014236331B2 (en) |
CA (2) | CA3059006C (en) |
WO (1) | WO2014153078A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015227471B2 (en) * | 2015-03-11 | 2018-11-08 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
CN105419761B (en) * | 2015-12-09 | 2018-06-01 | 中国石油天然气股份有限公司 | Modifier for preventing calcium halide scaling |
CN107859507A (en) * | 2016-09-22 | 2018-03-30 | 中国石油化工股份有限公司 | Improve the method for increasing of oil well single well productivity |
US11473004B2 (en) * | 2016-12-02 | 2022-10-18 | University Of Wyoming | Microemulsions and uses thereof to displace oil in heterogeneous porous media |
CN116144338B (en) * | 2023-04-19 | 2023-07-07 | 太原理工大学 | Limonene leaching solution for improving extraction efficiency of coal bed gas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472291A (en) * | 1983-03-07 | 1984-09-18 | Rosano Henri L | High viscosity microemulsions |
US7380606B2 (en) * | 2002-03-01 | 2008-06-03 | Cesi Chemical, A Flotek Company | Composition and process for well cleaning |
US20080287324A1 (en) * | 2002-03-01 | 2008-11-20 | Cesi Chemical, Inc., A Flotek Company | Process for well cleaning |
US8272442B2 (en) * | 2007-09-20 | 2012-09-25 | Green Source Energy Llc | In situ extraction of hydrocarbons from hydrocarbon-containing materials |
BRPI0817129B1 (en) * | 2007-09-20 | 2017-05-23 | Green Source Energy Llc | hydrocarbon extraction method from hydrocarbon-containing material, hydrocarbon-containing organic matter extraction apparatus, apparatus and method for recovering said organic matter, and method for increasing its recovery |
US7989404B2 (en) * | 2008-02-11 | 2011-08-02 | Clearwater International, Llc | Compositions and methods for gas well treatment |
US7893010B2 (en) * | 2008-05-08 | 2011-02-22 | Schlumberger Technology Corporation | Composition and method for fluid recovery from well |
US8865632B1 (en) * | 2008-11-10 | 2014-10-21 | Cesi Chemical, Inc. | Drag-reducing copolymer compositions |
EP2406347A1 (en) * | 2009-03-13 | 2012-01-18 | Green Source Energy Llc | Extraction of hydrocarbons from hydrocarbon-containing materials and/or processing of hydrocarbon-containing materials |
US9102860B2 (en) * | 2011-06-16 | 2015-08-11 | Baker Hughes Incorporated | Method of inhibiting or controlling release of well treatment agent |
US10000693B2 (en) * | 2013-03-14 | 2018-06-19 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
CN108587590A (en) * | 2013-06-14 | 2018-09-28 | 弗洛泰克化学有限责任公司 | For stimulating the method and composition for producing hydro carbons from subsurface formations |
-
2014
- 2014-03-14 EP EP14769583.7A patent/EP2970750A4/en not_active Withdrawn
- 2014-03-14 WO PCT/US2014/028970 patent/WO2014153078A1/en active Application Filing
- 2014-03-14 CA CA3059006A patent/CA3059006C/en active Active
- 2014-03-14 CA CA2906047A patent/CA2906047C/en active Active
- 2014-03-14 AU AU2014236331A patent/AU2014236331B2/en active Active
- 2014-03-14 CN CN201480002624.5A patent/CN104755582B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CA3059006A1 (en) | 2014-09-25 |
EP2970750A1 (en) | 2016-01-20 |
WO2014153078A1 (en) | 2014-09-25 |
EP2970750A4 (en) | 2017-04-19 |
CA2906047A1 (en) | 2014-09-25 |
AU2014236331A1 (en) | 2015-10-29 |
CN104755582B (en) | 2019-04-12 |
AU2014236331B2 (en) | 2017-08-31 |
CA3059006C (en) | 2021-08-31 |
CN104755582A (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9790414B2 (en) | Methods and compositions for use in oil and/or gas wells | |
AU2017261565B2 (en) | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations | |
US9850418B2 (en) | Methods and compositions for use in oil and/or gas wells | |
CA2898770C (en) | Methods and compositions related to gelled layers in oil and/or gas wells | |
AU2018201361B2 (en) | Methods and compositions for use in oil and/or gas wells | |
US10287483B2 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol | |
CA2904733C (en) | Methods and compositions for use in oil and/or gas wells | |
US20190264094A1 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol | |
CA2904735C (en) | Methods and compositions for use in oil and/or gas wells | |
EP3144366A1 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol | |
CA2906047C (en) | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations | |
CA2904728C (en) | Polymers and emulsions for use in oil and/or gas wells | |
AU2015227467B2 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol | |
CA2904726A1 (en) | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20160613 |