CA2828940A1 - Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer - Google Patents
Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer Download PDFInfo
- Publication number
- CA2828940A1 CA2828940A1 CA2828940A CA2828940A CA2828940A1 CA 2828940 A1 CA2828940 A1 CA 2828940A1 CA 2828940 A CA2828940 A CA 2828940A CA 2828940 A CA2828940 A CA 2828940A CA 2828940 A1 CA2828940 A1 CA 2828940A1
- Authority
- CA
- Canada
- Prior art keywords
- pharmaceutical composition
- triiodofluorescein
- halogenated xanthene
- chemoablative
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 121
- 230000009885 systemic effect Effects 0.000 title claims abstract description 61
- 230000002519 immonomodulatory effect Effects 0.000 title claims abstract description 50
- 238000011282 treatment Methods 0.000 title claims abstract description 46
- 201000011510 cancer Diseases 0.000 title claims abstract description 23
- 238000002560 therapeutic procedure Methods 0.000 title description 51
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 125
- 238000000034 method Methods 0.000 claims abstract description 64
- 125000001834 xanthenyl group Chemical class C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 claims abstract description 60
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 239000002246 antineoplastic agent Substances 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims description 31
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 23
- 239000000427 antigen Substances 0.000 claims description 20
- 108091007433 antigens Proteins 0.000 claims description 20
- 102000036639 antigens Human genes 0.000 claims description 20
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical group O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 claims description 19
- 201000001441 melanoma Diseases 0.000 claims description 18
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 15
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 claims description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 13
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 claims description 12
- 229930187593 rose bengal Natural products 0.000 claims description 12
- 229940081623 rose bengal Drugs 0.000 claims description 12
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- -1 panitumumab Chemical compound 0.000 claims description 11
- 102000000589 Interleukin-1 Human genes 0.000 claims description 10
- 108010002352 Interleukin-1 Proteins 0.000 claims description 10
- 108010002350 Interleukin-2 Proteins 0.000 claims description 10
- 102000000588 Interleukin-2 Human genes 0.000 claims description 10
- 102000004889 Interleukin-6 Human genes 0.000 claims description 10
- 108090001005 Interleukin-6 Proteins 0.000 claims description 10
- 239000003814 drug Substances 0.000 claims description 10
- 102000005962 receptors Human genes 0.000 claims description 10
- 108020003175 receptors Proteins 0.000 claims description 10
- 230000000735 allogeneic effect Effects 0.000 claims description 9
- 238000002659 cell therapy Methods 0.000 claims description 9
- 230000008685 targeting Effects 0.000 claims description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 239000011575 calcium Substances 0.000 claims description 8
- 229940079593 drug Drugs 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 229960003862 vemurafenib Drugs 0.000 claims description 8
- 206010006187 Breast cancer Diseases 0.000 claims description 7
- 208000026310 Breast neoplasm Diseases 0.000 claims description 7
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 7
- 108010050904 Interferons Proteins 0.000 claims description 7
- 102000014150 Interferons Human genes 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 7
- UWBXIFCTIZXXLS-UHFFFAOYSA-L disodium;2,3,4,5-tetrachloro-6-(2,4,5,7-tetraiodo-3-oxido-6-oxoxanthen-9-yl)benzoate Chemical group [Na+].[Na+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 UWBXIFCTIZXXLS-UHFFFAOYSA-L 0.000 claims description 7
- 210000002865 immune cell Anatomy 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 7
- 230000001394 metastastic effect Effects 0.000 claims description 7
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 7
- 230000000174 oncolytic effect Effects 0.000 claims description 7
- 230000037361 pathway Effects 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 229960005486 vaccine Drugs 0.000 claims description 7
- OALHHIHQOFIMEF-UHFFFAOYSA-N 3',6'-dihydroxy-2',4',5',7'-tetraiodo-3h-spiro[2-benzofuran-1,9'-xanthene]-3-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 OALHHIHQOFIMEF-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 6
- 229910002651 NO3 Inorganic materials 0.000 claims description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 6
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 6
- 206010041067 Small cell lung cancer Diseases 0.000 claims description 6
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 150000001768 cations Chemical class 0.000 claims description 6
- 229960005386 ipilimumab Drugs 0.000 claims description 6
- 201000007270 liver cancer Diseases 0.000 claims description 6
- 208000014018 liver neoplasm Diseases 0.000 claims description 6
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 6
- GVKCHTBDSMQENH-UHFFFAOYSA-L phloxine B Chemical compound [Na+].[Na+].[O-]C(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 GVKCHTBDSMQENH-UHFFFAOYSA-L 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 6
- 229960001603 tamoxifen Drugs 0.000 claims description 6
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 6
- RIWLPSIAFBLILR-WVNGMBSFSA-N (2s)-1-[(2s)-2-[[(2s,3s)-2-[[(2s)-2-[[(2s,3r)-2-[[(2r,3s)-2-[[(2s)-2-[[2-[[2-[acetyl(methyl)amino]acetyl]amino]acetyl]amino]-3-methylbutanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]pentanoyl]amino]-3-methylpentanoyl]amino]-5-(diaminomethy Chemical compound CC(=O)N(C)CC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@H]1C(=O)NCC RIWLPSIAFBLILR-WVNGMBSFSA-N 0.000 claims description 5
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 claims description 5
- WLCZTRVUXYALDD-IBGZPJMESA-N 7-[[(2s)-2,6-bis(2-methoxyethoxycarbonylamino)hexanoyl]amino]heptoxy-methylphosphinic acid Chemical compound COCCOC(=O)NCCCC[C@H](NC(=O)OCCOC)C(=O)NCCCCCCCOP(C)(O)=O WLCZTRVUXYALDD-IBGZPJMESA-N 0.000 claims description 5
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 claims description 5
- 108010078049 Interferon alpha-2 Proteins 0.000 claims description 5
- 108010047761 Interferon-alpha Proteins 0.000 claims description 5
- 102000006992 Interferon-alpha Human genes 0.000 claims description 5
- 108010074328 Interferon-gamma Proteins 0.000 claims description 5
- 102000008070 Interferon-gamma Human genes 0.000 claims description 5
- 239000005517 L01XE01 - Imatinib Substances 0.000 claims description 5
- 239000005551 L01XE03 - Erlotinib Substances 0.000 claims description 5
- 239000005511 L01XE05 - Sorafenib Substances 0.000 claims description 5
- 239000002136 L01XE07 - Lapatinib Substances 0.000 claims description 5
- 239000005536 L01XE08 - Nilotinib Substances 0.000 claims description 5
- 239000003798 L01XE11 - Pazopanib Substances 0.000 claims description 5
- 239000002118 L01XE12 - Vandetanib Substances 0.000 claims description 5
- 108010072915 NAc-Sar-Gly-Val-(d-allo-Ile)-Thr-Nva-Ile-Arg-ProNEt Proteins 0.000 claims description 5
- 102000002938 Thrombospondin Human genes 0.000 claims description 5
- 108060008245 Thrombospondin Proteins 0.000 claims description 5
- ULXXDDBFHOBEHA-CWDCEQMOSA-N afatinib Chemical compound N1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC1=CC=C(F)C(Cl)=C1 ULXXDDBFHOBEHA-CWDCEQMOSA-N 0.000 claims description 5
- 102000015736 beta 2-Microglobulin Human genes 0.000 claims description 5
- 108010081355 beta 2-Microglobulin Proteins 0.000 claims description 5
- 229960000397 bevacizumab Drugs 0.000 claims description 5
- 229960000590 celecoxib Drugs 0.000 claims description 5
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 claims description 5
- 229960002465 dabrafenib Drugs 0.000 claims description 5
- BFSMGDJOXZAERB-UHFFFAOYSA-N dabrafenib Chemical compound S1C(C(C)(C)C)=NC(C=2C(=C(NS(=O)(=O)C=3C(=CC=CC=3F)F)C=CC=2)F)=C1C1=CC=NC(N)=N1 BFSMGDJOXZAERB-UHFFFAOYSA-N 0.000 claims description 5
- 229940029030 dendritic cell vaccine Drugs 0.000 claims description 5
- 229960001433 erlotinib Drugs 0.000 claims description 5
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 claims description 5
- 229950011548 fadrozole Drugs 0.000 claims description 5
- 229960002411 imatinib Drugs 0.000 claims description 5
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 claims description 5
- 229940079322 interferon Drugs 0.000 claims description 5
- 229960003507 interferon alfa-2b Drugs 0.000 claims description 5
- 229960004891 lapatinib Drugs 0.000 claims description 5
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 claims description 5
- 210000000265 leukocyte Anatomy 0.000 claims description 5
- 229960001346 nilotinib Drugs 0.000 claims description 5
- HHZIURLSWUIHRB-UHFFFAOYSA-N nilotinib Chemical compound C1=NC(C)=CN1C1=CC(NC(=O)C=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)=CC(C(F)(F)F)=C1 HHZIURLSWUIHRB-UHFFFAOYSA-N 0.000 claims description 5
- 229960001972 panitumumab Drugs 0.000 claims description 5
- 229960000639 pazopanib Drugs 0.000 claims description 5
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 claims description 5
- 229960003407 pegaptanib Drugs 0.000 claims description 5
- 239000013612 plasmid Substances 0.000 claims description 5
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 claims description 5
- 229960004622 raloxifene Drugs 0.000 claims description 5
- 229960003876 ranibizumab Drugs 0.000 claims description 5
- 229960000371 rofecoxib Drugs 0.000 claims description 5
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 claims description 5
- MIXCUJKCXRNYFM-UHFFFAOYSA-M sodium;diiodomethanesulfonate;n-propyl-n-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide Chemical compound [Na+].[O-]S(=O)(=O)C(I)I.C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl MIXCUJKCXRNYFM-UHFFFAOYSA-M 0.000 claims description 5
- 229960003787 sorafenib Drugs 0.000 claims description 5
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 claims description 5
- 229960005314 suramin Drugs 0.000 claims description 5
- 229940022511 therapeutic cancer vaccine Drugs 0.000 claims description 5
- 229960004066 trametinib Drugs 0.000 claims description 5
- LIRYPHYGHXZJBZ-UHFFFAOYSA-N trametinib Chemical compound CC(=O)NC1=CC=CC(N2C(N(C3CC3)C(=O)C3=C(NC=4C(=CC(I)=CC=4)F)N(C)C(=O)C(C)=C32)=O)=C1 LIRYPHYGHXZJBZ-UHFFFAOYSA-N 0.000 claims description 5
- 229960000575 trastuzumab Drugs 0.000 claims description 5
- 229950007217 tremelimumab Drugs 0.000 claims description 5
- 241001529453 unidentified herpesvirus Species 0.000 claims description 5
- 229960000241 vandetanib Drugs 0.000 claims description 5
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 claims description 5
- 229960001771 vorozole Drugs 0.000 claims description 5
- XLMPPFTZALNBFS-INIZCTEOSA-N vorozole Chemical compound C1([C@@H](C2=CC=C3N=NN(C3=C2)C)N2N=CN=C2)=CC=C(Cl)C=C1 XLMPPFTZALNBFS-INIZCTEOSA-N 0.000 claims description 5
- KKVYYGGCHJGEFJ-UHFFFAOYSA-N 1-n-(4-chlorophenyl)-6-methyl-5-n-[3-(7h-purin-6-yl)pyridin-2-yl]isoquinoline-1,5-diamine Chemical compound N=1C=CC2=C(NC=3C(=CC=CN=3)C=3C=4N=CNC=4N=CN=3)C(C)=CC=C2C=1NC1=CC=C(Cl)C=C1 KKVYYGGCHJGEFJ-UHFFFAOYSA-N 0.000 claims description 4
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 claims description 4
- 102000004127 Cytokines Human genes 0.000 claims description 4
- 108090000695 Cytokines Proteins 0.000 claims description 4
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 claims description 4
- 229940102550 Estrogen receptor antagonist Drugs 0.000 claims description 4
- 239000005411 L01XE02 - Gefitinib Substances 0.000 claims description 4
- 239000002147 L01XE04 - Sunitinib Substances 0.000 claims description 4
- 239000002067 L01XE06 - Dasatinib Substances 0.000 claims description 4
- 102000043129 MHC class I family Human genes 0.000 claims description 4
- 108091054437 MHC class I family Proteins 0.000 claims description 4
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 claims description 4
- 101100381978 Mus musculus Braf gene Proteins 0.000 claims description 4
- 102000001253 Protein Kinase Human genes 0.000 claims description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 4
- 239000004473 Threonine Substances 0.000 claims description 4
- 108010046722 Thrombospondin 1 Proteins 0.000 claims description 4
- 102100036034 Thrombospondin-1 Human genes 0.000 claims description 4
- 108010014659 acetyl-glycyl-valyl-allo-isoleucyl-seryl-glutaminyl-isoleucyl-arginyl-prolyl-cysteinamide Proteins 0.000 claims description 4
- 108700025316 aldesleukin Proteins 0.000 claims description 4
- 229960005310 aldesleukin Drugs 0.000 claims description 4
- 229960003437 aminoglutethimide Drugs 0.000 claims description 4
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 claims description 4
- 229960002932 anastrozole Drugs 0.000 claims description 4
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 claims description 4
- 230000033115 angiogenesis Effects 0.000 claims description 4
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 claims description 4
- 239000003886 aromatase inhibitor Substances 0.000 claims description 4
- 229940046844 aromatase inhibitors Drugs 0.000 claims description 4
- 229960005395 cetuximab Drugs 0.000 claims description 4
- 229940111134 coxibs Drugs 0.000 claims description 4
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 claims description 4
- 229960002448 dasatinib Drugs 0.000 claims description 4
- 229960000255 exemestane Drugs 0.000 claims description 4
- 229960004421 formestane Drugs 0.000 claims description 4
- OSVMTWJCGUFAOD-KZQROQTASA-N formestane Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1O OSVMTWJCGUFAOD-KZQROQTASA-N 0.000 claims description 4
- 229960002584 gefitinib Drugs 0.000 claims description 4
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 claims description 4
- GXESHMAMLJKROZ-IAPPQJPRSA-N lasofoxifene Chemical compound C1([C@@H]2[C@@H](C3=CC=C(C=C3CC2)O)C=2C=CC(OCCN3CCCC3)=CC=2)=CC=CC=C1 GXESHMAMLJKROZ-IAPPQJPRSA-N 0.000 claims description 4
- 229960002367 lasofoxifene Drugs 0.000 claims description 4
- WOSKHXYHFSIKNG-UHFFFAOYSA-N lenvatinib Chemical compound C=12C=C(C(N)=O)C(OC)=CC2=NC=CC=1OC(C=C1Cl)=CC=C1NC(=O)NC1CC1 WOSKHXYHFSIKNG-UHFFFAOYSA-N 0.000 claims description 4
- 229960003784 lenvatinib Drugs 0.000 claims description 4
- 229960003881 letrozole Drugs 0.000 claims description 4
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 claims description 4
- 108010032806 molgramostim Proteins 0.000 claims description 4
- 229960003063 molgramostim Drugs 0.000 claims description 4
- 108010092853 peginterferon alfa-2a Proteins 0.000 claims description 4
- 108010092851 peginterferon alfa-2b Proteins 0.000 claims description 4
- 108060006633 protein kinase Proteins 0.000 claims description 4
- 239000003909 protein kinase inhibitor Substances 0.000 claims description 4
- 108010038379 sargramostim Proteins 0.000 claims description 4
- 229960002530 sargramostim Drugs 0.000 claims description 4
- 229960001796 sunitinib Drugs 0.000 claims description 4
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 claims description 4
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 claims description 4
- 229960005353 testolactone Drugs 0.000 claims description 4
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 claims description 4
- 229960005026 toremifene Drugs 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 229960002004 valdecoxib Drugs 0.000 claims description 4
- LNPDTQAFDNKSHK-UHFFFAOYSA-N valdecoxib Chemical compound CC=1ON=C(C=2C=CC=CC=2)C=1C1=CC=C(S(N)(=O)=O)C=C1 LNPDTQAFDNKSHK-UHFFFAOYSA-N 0.000 claims description 4
- 229960005521 allovectin-7 Drugs 0.000 claims description 3
- 229960003130 interferon gamma Drugs 0.000 claims description 3
- 229940100601 interleukin-6 Drugs 0.000 claims description 3
- 201000010099 disease Diseases 0.000 description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 24
- 210000000987 immune system Anatomy 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 238000013459 approach Methods 0.000 description 17
- 230000004044 response Effects 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 16
- 238000009121 systemic therapy Methods 0.000 description 13
- 238000002626 targeted therapy Methods 0.000 description 12
- 230000003902 lesion Effects 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 230000002411 adverse Effects 0.000 description 9
- 238000002512 chemotherapy Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 238000002648 combination therapy Methods 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 230000002195 synergetic effect Effects 0.000 description 7
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 6
- 206010027476 Metastases Diseases 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000001900 immune effect Effects 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 5
- 229960004316 cisplatin Drugs 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 238000009097 single-agent therapy Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 231100000569 acute exposure Toxicity 0.000 description 4
- 229940127089 cytotoxic agent Drugs 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000003828 downregulation Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002955 immunomodulating agent Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 206010025652 Malignant melanoma in situ Diseases 0.000 description 3
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 230000006023 anti-tumor response Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000003463 hyperproliferative effect Effects 0.000 description 3
- 230000008629 immune suppression Effects 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 230000002584 immunomodulator Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 231100000682 maximum tolerated dose Toxicity 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 208000021039 metastatic melanoma Diseases 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000011521 systemic chemotherapy Methods 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical class [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 2
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 208000007660 Residual Neoplasm Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000005809 anti-tumor immunity Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 230000005975 antitumor immune response Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 239000012829 chemotherapy agent Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000011254 conventional chemotherapy Methods 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 229960003901 dacarbazine Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 231100000057 systemic toxicity Toxicity 0.000 description 2
- 229960004964 temozolomide Drugs 0.000 description 2
- 238000011287 therapeutic dose Methods 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 230000009278 visceral effect Effects 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 208000016216 Choristoma Diseases 0.000 description 1
- 206010061819 Disease recurrence Diseases 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 238000011050 LAL assay Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010025671 Malignant melanoma stage IV Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000959721 Rosa sempervirens Species 0.000 description 1
- 101710183263 Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 208000037842 advanced-stage tumor Diseases 0.000 description 1
- 229960001686 afatinib Drugs 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229940086768 aminoglutethimide 250 mg Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940086756 anastrozole 1 mg Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 229940000924 dasatinib 100 mg Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 229940006408 exemestane 25 mg Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229940002501 gefitinib 250 mg Drugs 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 230000002977 hyperthermial effect Effects 0.000 description 1
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 1
- 229940113174 imidurea Drugs 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 230000008902 immunological benefit Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229940080456 letrozole 2.5 mg Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108010000947 protamine zinc Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000011046 pyrogen test Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001835 salubrious effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940034766 sunitinib 50 mg Drugs 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 229940005855 toremifene 60 mg Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000037455 tumor specific immune response Effects 0.000 description 1
- 230000002476 tumorcidal effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/193—Colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2006—IL-1
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2013—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/204—IL-6
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/217—IFN-gamma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16021—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Endocrinology (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
Abstract
A method for the treatment of cancer comprising administration of a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition, or variant of said composition, in combination with a therapeutically effective amount of a systemic immunomodulatory anticancer agent. A further method for the treatment of cancer comprising administration of a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition, or variant of said composition, in combination with a therapeutically effective amount of a systemic targeted anticancer agent. The present invention is further directed to pharmaceutical compositions for treatment of cancer. The intralesional chemoablative pharmaceutical composition can comprise an IL chemoablative agent comprising primarily a halogenated xanthene.
Description
Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer Field of the Invention This invention relates to the fields of oncology and improved therapeutic regimens therefore.
Background of the Invention [0001] Pharmacologic approaches for treating cancer have traditionally relied on the use of various single agent systemic therapies (monotherapies). An archetypical example is chemotherapy, which utilizes broadly cytotoxic drugs that target rapidly dividing cells, including alkylating agents like dacarbazine (DTIC) or temozolomide (TMZ), or mitotic inhibitors like paclitaxel, to inhibit or kill the rapidly growing cells typical of cancer.
Tumors may not be completely responsive to such monotherapy, either due to their high collateral systemic toxicity necessitating lower, even sub-therapeutic doses or development of tumor resistance that circumvents the activity of the monotherapy agent.
More advanced chemotherapy strategies have been developed that are predicated on use of multiple agents in a combination therapy that simultaneously attack the tumor along multiple of biochemical pathways. Many of these regimens, such as the combination of doxorubicin, bleomycin, viblastine and DTIC for Hodgkin's lymphoma, have been developed through empirical testing. Because of the inherent limitations of their individual pharmacologic components, such approaches remain relatively non-specific with high morbidity, allowing considerable room for improvement in terms of efficacy and safety.
Background of the Invention [0001] Pharmacologic approaches for treating cancer have traditionally relied on the use of various single agent systemic therapies (monotherapies). An archetypical example is chemotherapy, which utilizes broadly cytotoxic drugs that target rapidly dividing cells, including alkylating agents like dacarbazine (DTIC) or temozolomide (TMZ), or mitotic inhibitors like paclitaxel, to inhibit or kill the rapidly growing cells typical of cancer.
Tumors may not be completely responsive to such monotherapy, either due to their high collateral systemic toxicity necessitating lower, even sub-therapeutic doses or development of tumor resistance that circumvents the activity of the monotherapy agent.
More advanced chemotherapy strategies have been developed that are predicated on use of multiple agents in a combination therapy that simultaneously attack the tumor along multiple of biochemical pathways. Many of these regimens, such as the combination of doxorubicin, bleomycin, viblastine and DTIC for Hodgkin's lymphoma, have been developed through empirical testing. Because of the inherent limitations of their individual pharmacologic components, such approaches remain relatively non-specific with high morbidity, allowing considerable room for improvement in terms of efficacy and safety.
[0002] Targeting cancers based on their selective overexpression of certain cell-surface receptors or reliance on specific signaling or metabolic pathways, in particular aberrant pathways present in certain cancers, provides another point of attack. For instance, it has been found that some cancers harbor mutations in certain protein kinases, such as those encoded by the serine/threonine-protein kinase B-Raf gene (BRAF), that are involved in cell signaling and hyperproliferative growth, thereby serving an oncogene role. Targeting these pathways through the use of inhibitors has proven attractive, at least initially, in controlling cancers by staving off the oncolytic signaling. A similar approach based on targeting overexpression of certain receptors, such as epidermal growth factor receptor (EGFR) or vascular endothelial growth factor (VEGF), provides the basis for damping the oncolytic activity of these receptors, for instance by use of antibodies to the targeted receptors (or by use of agents that inhibit the signaling stimulated by these receptors).
Unfortunately, as in the case of conventional chemotherapy, these receptors and pathways may play important physiologic roles peripheral to the tumor, leading to toxicity upon their targeting, while the targeted cells also may develop resistance by harnessing alternate biochemical processes or proliferating via selection of resistant clonal subpopulations of tumor cells. Thus, the challenges posed by these types of targeted therapies are substantially similar to those posed by conventional chemotherapy.
Unfortunately, as in the case of conventional chemotherapy, these receptors and pathways may play important physiologic roles peripheral to the tumor, leading to toxicity upon their targeting, while the targeted cells also may develop resistance by harnessing alternate biochemical processes or proliferating via selection of resistant clonal subpopulations of tumor cells. Thus, the challenges posed by these types of targeted therapies are substantially similar to those posed by conventional chemotherapy.
[0003] In a growing number of oncology indications it is now clear that cancerous tumors employ various methods to evade detection as aberrant tissue and to reduce immune system competency, thereby avoiding potential identification and destruction by the patient's immune system. As a consequence, a number of approaches have been developed to enhance the capability of the patient's immune system to detect and destroy cancers. For example, the anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) antibodies ipilimumab and tremelimumab are designed to counter dowm-egulation of the immune system by blocking CTLA-4 activity and thus augmenting T-cell response against cancer. Alternate approaches may utilize agents that stimulate certain components of the immune system (i.e., upregulation), including administering non-specific cytokines (such as interleukin 1, 2, or 6, "IL-1", "IL-2" or "IL-6"; interferon-alpha or gamma, "IFN-a" and "IFN-y"; and granulocyte macrophage colony stimulating factor, "GM-
4 CSF"), or that attempt to provoke a tumor-specific immune response to certain tumor antigens, such as dendritic cell vaccines and antibodies against specific tumor antigens and even adoptive T-cell therapy. Additional approaches have attempted to elicit systemic response following repeated inoculation of tumors with certain immunostimulatory agents, such as an intralesional vaccine containing an oncolytic herpes virus encoding GM-CSF or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic major histocompatibility complex (MHC) class I antigens. For various reasons including, but not limited to, potential systemic toxicity of these immunomodulating agents, differential expression of the targeted moieties or responsiveness of clonal subpopulations, increase of tumor burden during therapy induction, and development of resistance against the selected mode of attack, current regimens may not result in as robust an immune response as desired, again allowing considerable room for improvement in terms of efficacy and safety.
[0004] Combination of systemic immunomodulatory agents with systemic chemotherapy agents or kinase inhibitors has been proposed, for example by Jure-Kunkel and Lee (WO
2010/014784), however there is limited data to determine whether such an approach will be clinically significant. In principal, this approach combines the features of targeted therapy (using chemotherapy or a metabolic inhibitor) with immunomodulation in a combination therapy, and as is the case with standard chemotherapeutic combination therapy it provides a means to attack cancer simultaneously via several different paths, thereby increasing potency while reducing likelihood of resistance. Since the immunologic consequences of chemotherapy may at least partially counteract the activity of the immunomodulator, and their respective systemic adverse effects may be additive or synergistic, such a combination of modalities has significant potential shortcomings.
While not the topic of Jure-Kunkel and Lee, targeted therapies when combined with immunomodulatory agents can also have these negative effects. Perhaps most importantly, these potential combinations don't appear to afford additive or synergistic tumoricidal potency in terms of immunologic benefit since neither chemotherapy nor metabolic or aberrant gene targeting can be expected to significantly activate an = CA 02828940 2013-09-03 antitumor immune response, while the proposed anti-CTLA-4 targeting is similarly unlikely to increase sensitivity of tumor cells to the companion chemotherapy or tumor specific approach. The possibility of increased tumor burden during induction of immunomodulatory therapy further complicates the picture, raising the possibility that the disease may progress to an unacceptably advanced state during the early phases of the regimen.
[0004] Combination of systemic immunomodulatory agents with systemic chemotherapy agents or kinase inhibitors has been proposed, for example by Jure-Kunkel and Lee (WO
2010/014784), however there is limited data to determine whether such an approach will be clinically significant. In principal, this approach combines the features of targeted therapy (using chemotherapy or a metabolic inhibitor) with immunomodulation in a combination therapy, and as is the case with standard chemotherapeutic combination therapy it provides a means to attack cancer simultaneously via several different paths, thereby increasing potency while reducing likelihood of resistance. Since the immunologic consequences of chemotherapy may at least partially counteract the activity of the immunomodulator, and their respective systemic adverse effects may be additive or synergistic, such a combination of modalities has significant potential shortcomings.
While not the topic of Jure-Kunkel and Lee, targeted therapies when combined with immunomodulatory agents can also have these negative effects. Perhaps most importantly, these potential combinations don't appear to afford additive or synergistic tumoricidal potency in terms of immunologic benefit since neither chemotherapy nor metabolic or aberrant gene targeting can be expected to significantly activate an = CA 02828940 2013-09-03 antitumor immune response, while the proposed anti-CTLA-4 targeting is similarly unlikely to increase sensitivity of tumor cells to the companion chemotherapy or tumor specific approach. The possibility of increased tumor burden during induction of immunomodulatory therapy further complicates the picture, raising the possibility that the disease may progress to an unacceptably advanced state during the early phases of the regimen.
[0005] Further complicating the therapeutic challenge, tumors that shrink gradually over a long period of time and slowly release immunoreactive tumor materials in response to any of these conventional systemic therapies may fail to trigger a potent protective response and can instead facilitate reduced antitumor immunity. This phenomenon is similar to that underlying low dose therapies for allergies whereby the host is repeatedly exposed to low doses of antigenic material over a prolonged period, eliciting tolerance by causing the immune system to identify these persistent "background" antigens as "self' (i.e., a normal part of the host). In a similar fashion, the slow, low dose release of tumor antigens to the immune system in response to many systemic therapies may deceive the immune system into tolerance toward tumor antigens thereby reducing or negating possible antitumor response, potentially prolonging tumor survival, and allowing continued metastatic spread.
[0006] An alternate class of therapies is predicated on physical restriction of delivery of the therapeutic modality to diseased tissue. These localized therapies attempt to maximize potency of the therapy within tumor tissue while reducing systemic exposure.
Approaches include physical or chemical disruption of tumors using intralesional methods, such as percutaneous ethanol injection therapy (PEIT) and radiofrequency (RF) ablation, and locoregional delivery of potent cytotoxic agents, such as isolated limb perfusion (ILP), isolated limb infusion (ILI) or percutaneous hepatic perfusion (PHP), with melphalan (an alkylating agent) or similar agents. While these approaches are often quite effective in maximizing pharmacologic activity against the treated tumor, they have generally exhibited many of the same limitations of systemic therapies due to the inherent shortcomings of the underlying therapeutic modality, including limited specificity for the targeted cancer with significant locoregional toxicity, and minimal impact on systemic disease, particularly for those approaches having no mechanism for immune stimulation against the treated tumor.
Approaches include physical or chemical disruption of tumors using intralesional methods, such as percutaneous ethanol injection therapy (PEIT) and radiofrequency (RF) ablation, and locoregional delivery of potent cytotoxic agents, such as isolated limb perfusion (ILP), isolated limb infusion (ILI) or percutaneous hepatic perfusion (PHP), with melphalan (an alkylating agent) or similar agents. While these approaches are often quite effective in maximizing pharmacologic activity against the treated tumor, they have generally exhibited many of the same limitations of systemic therapies due to the inherent shortcomings of the underlying therapeutic modality, including limited specificity for the targeted cancer with significant locoregional toxicity, and minimal impact on systemic disease, particularly for those approaches having no mechanism for immune stimulation against the treated tumor.
[0007] The use of cancer-specific cytotoxic agents delivered via an intralesional (IL) route (i.e., IL chemoablation) is a novel hybrid approach that has been described by one or more of the present inventors (for example in US 7,648,695, USSN 11/951,800 and USSN 12/315,781, which are incorporated herein in their entirety). This approach maximizes local efficacy against injected tumors while minimizing systemic exposure of the patient to the injected agent and resultant potential for systemic adverse effects. One or more of the present inventors have shown that IL use of a certain specific class of agent (for example certain formulations of certain halogenated xanthenes, exemplified by a 10% (w/v) solution of rose bengal disodium in saline, termed "PV-10" and undergoing clinical testing for treatment of metastatic melanoma, breast carcinoma and hepatocellular carcinoma) can elicit not only highly specific ablation of the injected lesion but also an antitumor immune response ("bystander effect") that can augment local efficacy in the injected tumor and lead to spontaneous regression of uninjected tumors.
Nonclinical evidence indicates that high levels of granulocytes (such as basophils, eosinophils and mast cells) may be expressed in the tissue surrounding tumors, indicating that the host is attempting to mount a non-specific immune response to tumor tissue.
Treatment of tumors with PV-10 can lead to modulation of this response to one that is more specific and effective (for example, by recruiting mononuclear tumor-infiltrating lymphocytes, TILs, or macrophages into and around the tumor). It is likely that acute tumor disruption resulting from IL chemoablation with PV-10 releases sequestered, intact tumor antigens to local antigen-presenting cells (APCs), facilitating modulation of the immune response and presentation of appropriate antigenic targets to T and B-cells.
Collateral destruction of granulocytes surrounding the turnor may precipitate chemokine release and local inflammation, and may serve an adjuvant role in promoting specific antitumor response. In situ destruction of the injected tumor assures presentation of tumor antigens in their natural context, thereby maximizing potential response of the immune system to the treated tumor and to tumors bearing the same immunologic signature. Since immune response is proportional to the intensity and duration of the insult to the host, the acute exposure achieved through IL chemoablation is immunologically advantageous relative to the lesser intensity insult produced by a systemic therapy that is spread out over a long duration, and this acute exposure potentially vaccinates the patient against the treated tumor.
Nonclinical evidence indicates that high levels of granulocytes (such as basophils, eosinophils and mast cells) may be expressed in the tissue surrounding tumors, indicating that the host is attempting to mount a non-specific immune response to tumor tissue.
Treatment of tumors with PV-10 can lead to modulation of this response to one that is more specific and effective (for example, by recruiting mononuclear tumor-infiltrating lymphocytes, TILs, or macrophages into and around the tumor). It is likely that acute tumor disruption resulting from IL chemoablation with PV-10 releases sequestered, intact tumor antigens to local antigen-presenting cells (APCs), facilitating modulation of the immune response and presentation of appropriate antigenic targets to T and B-cells.
Collateral destruction of granulocytes surrounding the turnor may precipitate chemokine release and local inflammation, and may serve an adjuvant role in promoting specific antitumor response. In situ destruction of the injected tumor assures presentation of tumor antigens in their natural context, thereby maximizing potential response of the immune system to the treated tumor and to tumors bearing the same immunologic signature. Since immune response is proportional to the intensity and duration of the insult to the host, the acute exposure achieved through IL chemoablation is immunologically advantageous relative to the lesser intensity insult produced by a systemic therapy that is spread out over a long duration, and this acute exposure potentially vaccinates the patient against the treated tumor.
[0008] Acute ablation of the injected tumor also quickly reduces tumor burden, which may be augmented by injecting all or a substantial fraction of a patient's tumors, either in a single treatment session or a series of treatments fractionated over a period of days or weeks. This may reduce the level of immune suppression exerted by the patient's tumor mass, leading to improved ability of their immune system to mount a successful attack against remaining tumor tissue. The inherent suitability of IL chemoablation for use against large or multiple cancerous lesions, when present, may further enhance outcome by facilitating in situ inoculation against potentially distinct clonal subpopulations in different tumors (or even within individual tumors) that may arise during tumor growth =
and metastasis.
and metastasis.
[0009] While IL chemoablation overcomes many of the shortcomings of prior therapeutic modalities (for example by achieving rapid reduction in tumor burden, maximizing acute exposure to intact tumor antigens in an appropriate context, and affording minimal potential for systemic adverse effects) one or more of the present inventors have found that it may not be ideal for all cancer cases, particularly certain advanced cases having rapidly proliferating tumors, those with widely disseminated disease and those that present in forms that are difficult to fully infiltrate with the IL agent.
Accordingly, additional advancements are needed in the fields of oncology and improved therapeutic regimens therefore.
Summary of the Invention
Accordingly, additional advancements are needed in the fields of oncology and improved therapeutic regimens therefore.
Summary of the Invention
[0010] The present invention is directed to a method for the treatment of cancer, said method comprising administration of a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition, or variant of said composition, in combination with a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
[0011] The present invention is also directed to a pharmaceutical composition for the treatment of cancer comprising: a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
[0012] In an embodiment of the above method and pharmaceutical composition, the systemic immunomodulatory anticancer agent comprises anti-CTLA-4 antibodies including ipilimumab and tremelinnunab.
[0013] In an embodiment of the above method and pharmaceutical composition, the systemic immunomodulatory anticancer agent is selected from the group consisting of non-specific cytokines, such as interleukin-1, interleukin-2, or interleukin-6 (IL-1, IL-2 or IL-6) and aldesleukin; interferon-alpha or interferon-gamma (IFN-a and IFN-y), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b); granulocyte macrophage colony stimulating factor (GM-CSF, molgramostim or sargramostim); dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF (OncoVex ) or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic MHC class I antigens (Allovectin-7 ); and antibodies against specific tumor antigens.
[0014] The present invention is also directed to a method for the treatment of cancer, said method comprising administration of a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition, or variant of said composition, = CA 02828940 2013-09-03 in combination with a therapeutically effective amount of a systemic targeted anticancer agent.
[0015] The present invention is also directed to a pharmaceutical composition for the =
treatment of cancer comprising: a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic targeted anticancer agent.
treatment of cancer comprising: a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic targeted anticancer agent.
[0016] In an embodiment of the above method and pharmaceutical composition, the systemic targeted anticancer agent is selected from the group consisting of drugs that target protein lcinases and the receptors that activate them, including afatinib (BIBW
2992), bevacizumab, cetuximab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, panitumumab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitinib, trastuzumab and vandetanib; serine/threonine-selective protein kinase inhibitors, including those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or R05185426), GSK2118436 and GSK1120212;
aromatase inhibitors, including aminoglutethimide, anastrozole, exemestane, fadrozole, fonnestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-a, IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898);
and immune cell therapy, including adoptive T-cell transfer and autologous immune cell therapy.
2992), bevacizumab, cetuximab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, panitumumab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitinib, trastuzumab and vandetanib; serine/threonine-selective protein kinase inhibitors, including those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or R05185426), GSK2118436 and GSK1120212;
aromatase inhibitors, including aminoglutethimide, anastrozole, exemestane, fadrozole, fonnestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-a, IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898);
and immune cell therapy, including adoptive T-cell transfer and autologous immune cell therapy.
[0017] In a further embodiment of all of the above methods and pharmaceutical compositions, the intralesional chemoablative pharmaceutical composition comprises an IL chemoablative agent comprising primarily a halogenated xanthene in an appropriate pharmaceutical composition, including a 0.1% (w/v)or higher concentration aqueous solution of the halogenated xanthene or mixtures thereof, or a physiologically acceptable salt of the halogenated xanthene.
[0018] In a further embodiment of all of the above methods and pharmaceutical compositions, the halogenated xanthene is rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein).
[0019] In a further embodiment of all of the above methods and pharmaceutical compositions, the halogenated xanthene is rose bengal disodium.
[0020] In a further embodiment of all of the above methods and pharmaceutical compositions, the halogenated xanthene is selected from the group consisting of erythrosin B, phloxine B, 4,5,6,7-tetrabromo-2',4',5',7'-tetraiodofluorescein, 2',4,5,6,7-pentachloro-4',5',7'-triiodofluorescein, 4,4',5,6,7-pentachloro-2',5',7'-triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'-diiodofluorescein, 2',4,5,5',6,7 -hexachloro-4',7'-diiodofluorescein, 4,5,6,7-tetrachloro-2',4',5'-triiodofluorescein, 4,5,6,7-tetrachloro-2',4',7'-triiodofluorescein, 4,5,6,7-tetrabromo-2',4',5'-triiodofluorescein, and 4,5,6,7-tetrabromo-2',4',7'-triiodofluorescein.
[0021] In a further embodiment of all of the above methods and pharmaceutical compositions,the halogenated xanthene has a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the phan-naceutical composition includes an electrolyte comprising at least one cation selected from the group consisting of sodium, potassim, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v).
[0022] In a further embodiment of all of the above methods and pharmaceutical compositions, the concentration of said electrolyte in the II, chemoablative pharmaceutical composition is between 0.5 to 1.5% (w/v).
[0023] In a further embodiment of all of the above methods and pharmaceutical compositions, the chemoablative pharmaceutical composition has an osmolality of the composition of greater than about 100 mOsin/kg.
[0024] In a further embodiment of all of the above methods and pharmaceutical compositions, the electrolyte is sodium chloride.
[0025] In a further embodiment of all of the above methods and pharmaceutical compositions, the pharmaceutical composition comprises a hydrophilic vehicle.
[0026] In a further embodiment of all of the above methods and pharmaceutical compositions, the pharmaceutical composition has a pH in the range of between about 4 to about 10.
[0027] In a further embodiment of all of the above methods and pharmaceutical compositions, the pharmaceutical composition has a pH in the range of between about 5 to about 7.
[0028] In a further embodiment of all of the above methods and pharmaceutical compositions, the methods and pharmaceutical compositions are for the treatment of cancers selected from melanoma, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer.
Detailed Description of the Presently Preferred Embodiments
Detailed Description of the Presently Preferred Embodiments
[0029] One aspect of the present invention is the result of unanticipated synergy resulting upon combination of certain local therapeutic modalities, and in particular certain local immunomodulative therapies such as for example IL chemoablation with PV-10 or another halogenated xanthene agent, with certain systemic therapeutic modalities. This combination can boost the therapeutic activity of both therapeutic modalities with the potential for no significant increase, or even an overall decrease, in morbidity relative to that typically achieved using the component therapies separately.
[0030] One or more of the present inventors have shown that IL chemoablation can lead to rapid reduction in a patient's tumor burden, reducing potential for tumor-induced immune suppression, extent and severity of the disease, and continued drag on the patient's immune and other physiologic functions. The resultant acute exposure of the patient's immune system to intact tumor antigens in proper biological context is markedly different from that achieved using systemic chemotherapy, targeted systemic therapies, or other local therapeutic modalities, each of which generally produce at best a gradual, low level chronic exposure of the immune system to tumor antigens, often in an inappropriate context. Chemoablation of entire tumors or substantially the entirety of tumors, and especially chemoablation of multiple tumors, enhances exposure of the patient's immune system to any distinct clonal subpopulations of tumor cells that may be present, maximizing overall response to the in situ antitumor vaccination. Hence, the immunomodulatory effects achieved may be superior in breadth and potency to those achieved using prior therapeutic approaches.
[0031] However, for cases where disease is rapidly proliferating, or is widely disseminated, or presents in a form difficult to fully infiltrate with the IL
chemoablative agent, use of complementary therapeutic modalities offers additive or synergistic benefit, particularly when they contribute irrununologic stimulation (i.e., immunodulation) that complements that afforded through IL chemoablation. The use of such complementary immunomodulative therapies may have further advantage in terms of additive or synergistic immunologic interactions that allow one or both therapies to be used at reduced doses (relative to that needed when used individually as monotherapies) while retaining high efficacy, thereby reducing undesirable adverse effects.
chemoablative agent, use of complementary therapeutic modalities offers additive or synergistic benefit, particularly when they contribute irrununologic stimulation (i.e., immunodulation) that complements that afforded through IL chemoablation. The use of such complementary immunomodulative therapies may have further advantage in terms of additive or synergistic immunologic interactions that allow one or both therapies to be used at reduced doses (relative to that needed when used individually as monotherapies) while retaining high efficacy, thereby reducing undesirable adverse effects.
[0032] In particular, the use of a potent local immunomodulative therapy, such as IL
chemoablation with, for example, PV-10 or another halogenated xanthene agent, in conjunction with one or more systemic immunomodulative therapies (especially those that elicit immune system upregulation or counter tumor-induced immune system down regulation) is highly attractive since this combination yields a uniquely salubrious combination: exposure of the patient's potentiated immune system to the intense antigenic "insult" produced upon IL chemoablation. The effects of such combination may be heightened by potentiation of the immune system at the time of chemoablation or subsequent to chemoablation. Since IL chemoablation is well suited to repeat treatment, continued potentiation of the patient's immune system, for example by continued administration of the systemic immunomodulatory therapy, while IL
chemoablation is administered one or more times, is a preferred embodiment. As an alternate embodiment, IL chemoablation may be followed by conunencement of systemic irrnnunomodulatory therapy, for example after a delay of several weeks or more when a reduction in local inflammation or other non-specific inununologic effects is desirable.
chemoablation with, for example, PV-10 or another halogenated xanthene agent, in conjunction with one or more systemic immunomodulative therapies (especially those that elicit immune system upregulation or counter tumor-induced immune system down regulation) is highly attractive since this combination yields a uniquely salubrious combination: exposure of the patient's potentiated immune system to the intense antigenic "insult" produced upon IL chemoablation. The effects of such combination may be heightened by potentiation of the immune system at the time of chemoablation or subsequent to chemoablation. Since IL chemoablation is well suited to repeat treatment, continued potentiation of the patient's immune system, for example by continued administration of the systemic immunomodulatory therapy, while IL
chemoablation is administered one or more times, is a preferred embodiment. As an alternate embodiment, IL chemoablation may be followed by conunencement of systemic irrnnunomodulatory therapy, for example after a delay of several weeks or more when a reduction in local inflammation or other non-specific inununologic effects is desirable.
[0033] The potential of benefits of combining local immunomodulatory therapy with a systemic immunomodulatory therapy regimen may make otherwise undesirable systemic immunomodulatory therapies viable: due to the resultant augmentation in potency of the systemic component of the combination therapy, reduced systemic dose regimens may be possible with commensurate reduction in adverse effects from the systemic therapy.
Further, since the adverse effect profile of the local immunomodulatory therapy (i.e., IL
chemoablation) is orthogonal to that of most systemic irnmunomodulatory therapies, a combined local and systemic immunomodulatory therapy is inherently safer and more attractive compared with prior combinations that can produce undesirable additive or synergistic adverse effects.
Further, since the adverse effect profile of the local immunomodulatory therapy (i.e., IL
chemoablation) is orthogonal to that of most systemic irnmunomodulatory therapies, a combined local and systemic immunomodulatory therapy is inherently safer and more attractive compared with prior combinations that can produce undesirable additive or synergistic adverse effects.
[0034] The combination of massive exposure to tumor antigens coupled with reduced tumor burden that results from IL chemoablation is particularly attractive in this context, since it maximizes potential immune activation while diminishing potential immune downregulation and physiologic demand from the tumor mass. When combined with a systemic therapy that further enhances immunologic upregulation or reduces downregulation, the effects on antitumor immunity, both at the ablated lesion and at uninjected sites, including those proximal and distant to the injection sites, will be additive or synergistic.
[0035] Many of the advantages accrued upon combining local iinmunomodulatory therapy with a systemic immunomodulatory therapy may be achieved through similar combination of local immunomodulatory therapy with a systemic targeted therapy, such as IL chemoablation combined with a targeted kinase inhibitor. Since IL
chemoablation has a uniquely disruptive effect on tumor tissue, combination of this modality with an approach that targets tumor viability via an orthogonal path, such as those that target aberrant growth signaling or overexpression of receptors involved in tumor hyperproliferation, can yield enhanced efficacy in the treated tumor. For example, by using a systemic targeted therapy to increase stress on the tumor or reduce tumor viability in the wake of IL chemoablation, the cytotoxicity of the IL treatment may be enhanced at the time of IL treatment; response of any remaining tumor tissue may also be increased to immunologic activation resulting from the IL treatment since the systemic therapy will counter proliferation of residual tumor tissue without interfering with development of the immune response from chemoablation. The rapid reduction in tumor burden resulting from IL chemoablation further augments these advantages by reducing immune suppression and physiologic demands from the tumor tissue. Since the systemic targeted therapy is not required to achieve complete control or eradication of substantial tumor masses in this context, but rather serves to augment the activity of the local immunomodulatory therapy, it may be possible to administer the systemic therapy at a reduced dose, thereby minimizing potential adverse effects and making the combined therapy safer and more attractive compared with prior systemic combinations.
Addition of the immunologic response resulting from the local immunomodulatory therapy component provides a means to counter resistance problems that have plagued many targeted systemic therapies, such as the BRAF inhibitors, particularly when continuous systemic therapies are required to maintain long terin control of the disease, since long term control will result from the immune response rather than perpetual reliance on the targeted systemic therapy.
chemoablation has a uniquely disruptive effect on tumor tissue, combination of this modality with an approach that targets tumor viability via an orthogonal path, such as those that target aberrant growth signaling or overexpression of receptors involved in tumor hyperproliferation, can yield enhanced efficacy in the treated tumor. For example, by using a systemic targeted therapy to increase stress on the tumor or reduce tumor viability in the wake of IL chemoablation, the cytotoxicity of the IL treatment may be enhanced at the time of IL treatment; response of any remaining tumor tissue may also be increased to immunologic activation resulting from the IL treatment since the systemic therapy will counter proliferation of residual tumor tissue without interfering with development of the immune response from chemoablation. The rapid reduction in tumor burden resulting from IL chemoablation further augments these advantages by reducing immune suppression and physiologic demands from the tumor tissue. Since the systemic targeted therapy is not required to achieve complete control or eradication of substantial tumor masses in this context, but rather serves to augment the activity of the local immunomodulatory therapy, it may be possible to administer the systemic therapy at a reduced dose, thereby minimizing potential adverse effects and making the combined therapy safer and more attractive compared with prior systemic combinations.
Addition of the immunologic response resulting from the local immunomodulatory therapy component provides a means to counter resistance problems that have plagued many targeted systemic therapies, such as the BRAF inhibitors, particularly when continuous systemic therapies are required to maintain long terin control of the disease, since long term control will result from the immune response rather than perpetual reliance on the targeted systemic therapy.
[0036] In some cases it may be desirable to corm-nence systemic targeted therapy prior to local immunomodulatory therapy, for instance when disease burden is very high or widespread, or when the disease is rapidly proliferating, potentially making effective administration of the local immunomodulatory therapy difficult or less effective. In this manner, the systemic targeted therapy may be used to control or reduce tumor burden prior to administration of local immunomodulatory therapy in order to enhance responsiveness of the disease to the local immunomodulatory therapy. Such an approach is tantamount to "down staging" disease status prior to commencement of local immunomodulatory therapy. For example, certain BRAF inhibiting drugs have proven effective at temporarily reducing disease burden in advanced stage metastatic melanoma, but resistance often develops within a period of months, negating long ten-n outcome.
Treatment of residual disease with local inununomodulatory therapy, such as IL
chemotherapy, while it remains under control of the targeted therapy provides a means for elimination of residual tumor burden while stimulating long term inununity to recurrence, thereby improving ultimate outcome.
Treatment of residual disease with local inununomodulatory therapy, such as IL
chemotherapy, while it remains under control of the targeted therapy provides a means for elimination of residual tumor burden while stimulating long term inununity to recurrence, thereby improving ultimate outcome.
[0037] Problems affecting attempts to develop and utilize therapeutic cancer vaccines may also be similarly mitigated or resolved through combination of such vaccines with local immunomodulatory therapy. Specifically, lack of survival benefit observed in clinical trials of some such vaccines in advanced stage cancer, such as Canvaxin for stage III or IV melanoma, appears to be due in part to failure of vaccination to overcome existing tumor burden present in patients at the time of vaccination and continued increase in their disease level during the induction interval necessary for development of an immune response from vaccination. As in the case with systemic targeted therapy, the rapid reduction in tumor burden resulting from IL chemoablation can mitigate suppression of the immune system by the patient's disease burden while providing critical time for onset of the inunune response from vaccination, thereby maximizing potential local and systemic antitumor effects through the combined action of the local immunomodulatory therapy and systemic vaccination.
[0038] Examples of combination therapies and method of treatment within the present invention include but are not limited to the following:
[0039] Local immunomodulative therapy combined with one or more systemic inhibitor of immune system down regulation, such as anti-CTLA-4 antibodies including but not limited to ipilimumab and tremelimumab.
[0040] Local immunomodulative therapy combined with one or more systemic immune upregulating agent, including: non-specific cytolcines, such as interleukin-1, -2, or -6 (IL-1, IL-2 or IL-6) and aldesleukin; interferon-alpha or gamma (IFN-a and IFN-y), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b); granulocyte macrophage colony stimulating factor (GM-CSF, molgramostim or sargramostim); dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF (OncoVexe)or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic MHC class I antigens (Allovectin-7e); and antibodies against specific tumor antigens.
[0041] Local immunomodulative therapy combined with one or more systemic targeted therapy agent, including: drugs that target protein kinases and the receptors that activate them, including but not limited to afatinib (BIBW 2992), bevacizumab, cetuximab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, panitumumab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitinib, trastuzumab and vandetanib;
serine/threonine-selective protein kinase inhibitors, including but not limited to those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or R05185426), GSK2118436 and GSK1120212; aromatase inhibitors, including but not limited to aminoglutethimide, anastrozole, exemestane, fadrozole, formestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including but not limited to lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including but not limited to celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-a, IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898); and inunune cell therapy, including but not limited to adoptive T-cell transfer and autologous immune cell therapy.
serine/threonine-selective protein kinase inhibitors, including but not limited to those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or R05185426), GSK2118436 and GSK1120212; aromatase inhibitors, including but not limited to aminoglutethimide, anastrozole, exemestane, fadrozole, formestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including but not limited to lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including but not limited to celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-a, IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898); and inunune cell therapy, including but not limited to adoptive T-cell transfer and autologous immune cell therapy.
[0042] Typically, monotherapy dose schedules are set by determining the maximum tolerated dose (MTD) in early-stage clinical trials. The MTD (or a close variation thereon) is then promulgated to later-stage clinical trials for assessment efficacy and more detailed assessment of safety. These MTDs frequently become the established therapeutic dose upon completion of clinical testing. Example dosing schedules for a number of systemic agents that may be combined in the present invention with local immunomodulative therapy are provided in Table 1.
Table 1. Example systemic immunomodulatory or targeted anticancer agents Systemic Agent Typical Dose Schedule Ipilimumab 3 mg/kg q21d for 4 treatments Tremelimumab 15 mg/kg q3m Aldesleulcin 600,000 IU/kg q8h (up to 14 doses before 9 day rest and repeat; rest at least 7 wks before repeat of course) interferon alfa-2b 20 million IU/m2 5 times per week for 4 weeks (induction phase) followed by 10 million IU/m2 three times per week (maintenance phase) pegylated interferon 6 ,g/kg qwk for eight weeks (induction phase) followed by 3 jig/kg qwk (maintenance phase) Oncovexl) 4 mL IL at 108 pfu/mL
GM-CSF 125 ptg/m2 daily for 14 wks followed by 14 days rest A11ovectin-7 2 mg IL qwk for 6 wks Afatinib 20-50 mg daily Bevacizumab 5-15 mg/kg ql4d-q21d Cetuxirnab 400 mg/m2 followed by weekly maintenance at 250 mg/1n2 Dasatinib 100 mg daily Erlotinib 100-150 mg daily Gefitinib 250 mg daily Imatinib 400-600 mg daily (increased to twice daily if well tolerated or disease progresses) Lapatinib 1250 mg daily for 21 day cycle Nilotinib 400 mg twice daily Panitumumab 6 mg/kg ql4d Pazopanib 800 mg daily Pegaptanib 0.3 mg q6wks Ranibizumab 0.5 mg q4wks Sorafenib 400 mg twice daily Sunitinib 50 mg daily for 4 weeks followed by 2 week recovery Trastuzumab 4 mg/kg followed by weekly maintenance at 2 mg/kg Vandetanib 200-300 mg daily Vemurafenib (PLX4032) 960 mg twice daily GSK2118436 a 150 mg twice daily GSK1120212 a 2 mg daily aminoglutethimide 250 mg q6h Anastrozole 1 mg daily Exemestane 25 mg daily Fadrozole 1 mg twice daily Formestane 250 mg daily Letrozole 2.5 mg daily Vorozole 2.5 mg daily Raloxifene 60 mg daily Tamoxifen 20-40 mg daily Toremifene 60 mg daily Celecoxib 200-400 mg twice daily Rofecoxib 20-25 mg daily Suramin 1 g qwk thrombospondin (ABT-510 a) 20 mg daily to 100 mg twice daily a Proprietary code name for drug under development for which no nonproprietary name is currently available.
Table 1. Example systemic immunomodulatory or targeted anticancer agents Systemic Agent Typical Dose Schedule Ipilimumab 3 mg/kg q21d for 4 treatments Tremelimumab 15 mg/kg q3m Aldesleulcin 600,000 IU/kg q8h (up to 14 doses before 9 day rest and repeat; rest at least 7 wks before repeat of course) interferon alfa-2b 20 million IU/m2 5 times per week for 4 weeks (induction phase) followed by 10 million IU/m2 three times per week (maintenance phase) pegylated interferon 6 ,g/kg qwk for eight weeks (induction phase) followed by 3 jig/kg qwk (maintenance phase) Oncovexl) 4 mL IL at 108 pfu/mL
GM-CSF 125 ptg/m2 daily for 14 wks followed by 14 days rest A11ovectin-7 2 mg IL qwk for 6 wks Afatinib 20-50 mg daily Bevacizumab 5-15 mg/kg ql4d-q21d Cetuxirnab 400 mg/m2 followed by weekly maintenance at 250 mg/1n2 Dasatinib 100 mg daily Erlotinib 100-150 mg daily Gefitinib 250 mg daily Imatinib 400-600 mg daily (increased to twice daily if well tolerated or disease progresses) Lapatinib 1250 mg daily for 21 day cycle Nilotinib 400 mg twice daily Panitumumab 6 mg/kg ql4d Pazopanib 800 mg daily Pegaptanib 0.3 mg q6wks Ranibizumab 0.5 mg q4wks Sorafenib 400 mg twice daily Sunitinib 50 mg daily for 4 weeks followed by 2 week recovery Trastuzumab 4 mg/kg followed by weekly maintenance at 2 mg/kg Vandetanib 200-300 mg daily Vemurafenib (PLX4032) 960 mg twice daily GSK2118436 a 150 mg twice daily GSK1120212 a 2 mg daily aminoglutethimide 250 mg q6h Anastrozole 1 mg daily Exemestane 25 mg daily Fadrozole 1 mg twice daily Formestane 250 mg daily Letrozole 2.5 mg daily Vorozole 2.5 mg daily Raloxifene 60 mg daily Tamoxifen 20-40 mg daily Toremifene 60 mg daily Celecoxib 200-400 mg twice daily Rofecoxib 20-25 mg daily Suramin 1 g qwk thrombospondin (ABT-510 a) 20 mg daily to 100 mg twice daily a Proprietary code name for drug under development for which no nonproprietary name is currently available.
[0043] Because of additive or synergistic effects, the combination therapies and method of treatment of the present invention will generally allow use of the systemic agent at a level at or below the typical dose schedule for the systemic agent, such as those described in Table 1, when used with a local immunomodulative therapy, such as that described infra.
[0044] Local immunomodulative therapy includes but is not limited to intralesional chemoablation using an IL chemoablative agent consisting primarily of rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein ) or another halogenated xanthene, including erythrosin B, phloxine B, 4,5,6,7-tetrabromo-2',4',5',7'-tetraiodofluorescein, 2',4,5,6,7-pentachloro-41,5',71-triiodofluorescein, 4,4',5,6,7-pentachloro-2',5',7'-triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'-diiodofluorescein, 2',4,5,5',6,7 -hexachloro-4',7'-diiodofluorescein, 4,5,6,7-tetrachloro-2',4',5'-triiodofluorescein, 4,5,6,7-tetrachloro-2',4',7'-triiodofluorescein, 4,5,6,7-tetrabromo-2',4',5'-triiodofluorescein, and 4,5,6,7-tetrabromo-2',4',7'-triiodofluorescein in an appropriate pharmaceutical composition, including a 0.1% (w/v) or higher concentration aqueous solution of rose bengal (i.e., PV-10) or equivalent solution of another halogenated xanthene or mixtures thereof. A
physiologically acceptable salt of the halogenated xanthene may be used in this composition.
physiologically acceptable salt of the halogenated xanthene may be used in this composition.
[0045] The present invention includes immunotherapeutic procedures wherein large amounts of tumor antigen are exposed to a patient's immune system, for example upon intralesional delivery of an immunomodulator, including but not limited to intralesional rose bengal, in combination with one or more systemic immunomodulator, to enhance the immune-mediated antitumor response.
[0046] About the preferred IL chemoablative agents:
[0047] Local immunomodulative therapy includes, as a preferred embodiment, intralesional chemoablation using rose bengal or another halogenated xanthene.
A
preferred form, rose bengal disodium, has the following formula:
CI
Cl CI
CI COONa Na0
A
preferred form, rose bengal disodium, has the following formula:
CI
Cl CI
CI COONa Na0
[0048] Certain details of this preferred embodiment for the local immunomodulative composition are described in Applicants' co-pending application USSN
12/315,781, which is incorporated herein in its entirety. This preferred embodiment of the present invention is described here with particular relevance to melanoma. However, the present invention may also find application for the treatment of other hyperproliferative diseases including, but not limited to, cancers, such as for example, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer, and no limitation is intended thereby.
12/315,781, which is incorporated herein in its entirety. This preferred embodiment of the present invention is described here with particular relevance to melanoma. However, the present invention may also find application for the treatment of other hyperproliferative diseases including, but not limited to, cancers, such as for example, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer, and no limitation is intended thereby.
[0049] Malignant melanoma is the most serious form of skin cancer and accounts for 80% of skin cancer deaths.
[0050] The extent of spread of a disease is described by stages. Stage 0 melanoma is a very early stage disease known as melanoma in situ. Patients with melanoma in situ are classified as Tis (tumor in situ). The tumor is limited to the epidermis with no invasion of surrounding tissues, lymph nodes, or distant sites. Melanoma in situ is considered to be very low risk for disease recurrence or spread to lymph nodes or distant sites. Treatment is by surgical excision with a margin of healthy skin.
[0051] In stage I melanoma, the tumor has penetrated in to the skin by less than lmm but has not spread. Treatment is by wide local excision and the probability of disease free survival in five years is between 90 to 95%.
[0052] Stage II melanoma describes a tumor that has penetrated more than 1flarn into the skin but has not spread. Wide local excision is the preferred treatment.
However, excision at this stage carries a much higher risk and less favorable prognosis than excision of a Stage I tumor.
However, excision at this stage carries a much higher risk and less favorable prognosis than excision of a Stage I tumor.
[0053] Stage III melanoma is characterized by the existence of one or more nodal, in-transit or satellite metastasis but has not spread to distant or visceral sites. In-transit metastases are distant from the primary tumor but not reaching the draining nodal basin.
Satellite metastases are intralymphatic extensions of the primary tumor and are typically found closer to the primary tumor than in-transit metastasis. Five year survival for stage III patients ranges from approximately 24% (gross nodal disease) to 80%
(microscopic nodal disease).
Satellite metastases are intralymphatic extensions of the primary tumor and are typically found closer to the primary tumor than in-transit metastasis. Five year survival for stage III patients ranges from approximately 24% (gross nodal disease) to 80%
(microscopic nodal disease).
[0054] Stage IV melanoma is when the disease has spread to distant sites.
Survival of stage IV melanoma drops to approximately 10%.
Survival of stage IV melanoma drops to approximately 10%.
[0055] Similar staging systems exist for all major cancers, and are generally based on the clinical presentation and histopathologic details of the disease and how these factors have been shown to impact survival.
[0056] Standard treatment for easily removable Stage III tumors is wide area excision together with removal of lymph nodes. Adjunct treatment such as radiotherapy and chemotherapy and for regional limb metastases, regional infusion of melphalan or other chemotherapeutic agents may also be given. However, in some cases, surgery is contraindicated due to the number and/or location of tumors and other treatment options must be considered. Unfortunately, response levels for these other options are not high.
For example, melanoma is largely resistant to radiation therapy. Systemic chemotherapy also has modest response rates against melanoma. The most effective chemotherapy regimen to-date is single-agent dacarbazine, which is only successful in 10-15% of cases.
Two combination chemotherapy regimens commonly used in the treatment of patients with advanced-stage melanoma are the cisplatin, vinblastine and DTIC (CVD) regimen and the Dartmouth regimen, which is a combination of cisplatin, DTIC, carmustine and tamoxifen.
For example, melanoma is largely resistant to radiation therapy. Systemic chemotherapy also has modest response rates against melanoma. The most effective chemotherapy regimen to-date is single-agent dacarbazine, which is only successful in 10-15% of cases.
Two combination chemotherapy regimens commonly used in the treatment of patients with advanced-stage melanoma are the cisplatin, vinblastine and DTIC (CVD) regimen and the Dartmouth regimen, which is a combination of cisplatin, DTIC, carmustine and tamoxifen.
[0057] When melanoma occurs in the extremities, chemotherapy agents may be delivered via hyperthermic isolated limb perfusion (ILP). With this technique, blood vessels are accessed surgically, the blood flow to and from the limb is stopped using a tourniquet, and a warmed solution of chemotherapy drug is administered directly into the blood of the limb, allowing higher doses of drugs to be dispensed than with systemic treatment. A
less invasive regional therapy is isolated limb infusion (ILI) whereby vascular access is gained via a percutaneous route in the groin.
less invasive regional therapy is isolated limb infusion (ILI) whereby vascular access is gained via a percutaneous route in the groin.
[0058] Another treatment option is intralesional therapy in which a chemotherapeutic agent is injected directly into the tumor. Bacille Calmette Guerin (BCG) was one of the earliest reagents used for IL therapy. A review of data from 15 trials found 19% complete response (CR) and 26% partial response (PR) with extended survival in 13% of stage III
patients.
patients.
[0059] IL interferons (IFN) have yielded mixed results ranging from a report of 45%
objective response rate (ORR, 31% CR + 14% PR) for IFN-a to either no result or transient response with IFN-y. Both regimes produced significant toxicity and side effects.
objective response rate (ORR, 31% CR + 14% PR) for IFN-a to either no result or transient response with IFN-y. Both regimes produced significant toxicity and side effects.
[0060] IL interleulcin-2 appears to be the most promising IL therapy to date with an ORR
in 83% of patients (62%CR + 21% PR) receiving 2-3 weekly IL treatments. Some patients reported flu like symptoms and some authors noted that although new lesions appeared during the course of treatment, some patients experienced a marked slowing of the appearance of new cutaneous lesions.
in 83% of patients (62%CR + 21% PR) receiving 2-3 weekly IL treatments. Some patients reported flu like symptoms and some authors noted that although new lesions appeared during the course of treatment, some patients experienced a marked slowing of the appearance of new cutaneous lesions.
[0061] IL therapy with cisplatin or IL cisplatin with electroporation has yielded results ranging from 38%0RR (19%CR + 19%PR) to 53% ORR (47%CR + 7% PR). However, the ORR reported for lesions with a median diameter of 0.6cm of 53% decreased to 44%
for lesions having a median diameter of 3.0cm.
for lesions having a median diameter of 3.0cm.
[0062] Substantial efficacy has been reported upon a single electrochemotherapy treatment with IL bleomycin. However, as with cisplatin, response was generally reduced in larger nu-nors.
[0063] It may be appreciated that there remains a need for alternative methods for the treatment of hyperproliferative diseases and in particular stage III and IV
melanoma.
melanoma.
[0064] According to a preferred embodiment of the present invention, there is provided a method for the treatment of cancer in a patient, such as metastatic melanoma, the method comprising treatment of the cancer patient with a local inununomodulative therapy combined with one or more systemic immunomodulatory therapy or systemic targeted therapy, wherein said local immunomodulatory therapy comprises intralesional administration of a chemoablative pharmaceutical composition comprising a hydrophilic vehicle containing 4,5,6,7-Tetrachloro-2',4',5',7'-tetraiodofluorescein (i.e.
rose bengal), or certain other halogenated xanthene, or a physiologically acceptable salt thereof. It is preferred that the halogenated xanthene be present in this pharmaceutical composition at a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition include an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v). It is also preferred that the pH of the phan-naceutical composition be between about 4 to about 10.
rose bengal), or certain other halogenated xanthene, or a physiologically acceptable salt thereof. It is preferred that the halogenated xanthene be present in this pharmaceutical composition at a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition include an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v). It is also preferred that the pH of the phan-naceutical composition be between about 4 to about 10.
[0065] The term "physiologically acceptable salt" refers to any non-toxic alkali metal, alkaline earth metal, and ammonium salt commonly used in the pharmaceutical industry, including the sodium, potassium, lithium, calcium, magnesium, barium, ammonium and protamine zinc salts, which can be prepared by methods known in the art.
Preferably, the salts are sodium, potassium, calcium and ammonium in either the mono or dibasic salt form.
Preferably, the salts are sodium, potassium, calcium and ammonium in either the mono or dibasic salt form.
[0066] Especially preferred in this IL chemoablative pharmaceutical composition is the disodium salt of rose bengal. Previous work by one or more of the present inventors (WO
02/05812) reported their discovery that rose bengal exhibits preferential uptake into cancer cells but is essentially excluded from normal cells.
02/05812) reported their discovery that rose bengal exhibits preferential uptake into cancer cells but is essentially excluded from normal cells.
[0067] One or more of the present inventors have also reported their discovery that the nature of the vehicle in which the halogenated xanthene, or a physiologically acceptable salt thereof, is administered can significantly influence the degree of partitioning into tumor cells. In particular, one or more of the present inventors have surprisingly discovered that at an electrolyte concentration of between about 0.1% (w/v) and about 2.0% (w/v), partitioning into tumor cells may rapidly be increased.
[0068] An approximation of an agent's potential for tissue accuinulation can be estimated based upon the partition coefficient K. This in vitro parameter is purported to have predictive values relating to in vitro delivery at the cellular level. In particular, a value greater than unity is considered to indicate agents capable of localizing in tissue, and thereby being capable of exhibiting enhanced chemotherapeutic efficacy in such tissue.
One or more of the present inventors surmise that values much greater than approximately 50-100 may indicate excess lipophilicity (tendency to accumulate in organic environments) that may compromise delivery of an agent in a desirable aqueous (i.e., hydrophilic) formulation. Kp is determined by measuring the ratio of equilibrium concentrations of an agent in a lipophilic phase (n-octanol) contacted with an aqueous phase.
One or more of the present inventors surmise that values much greater than approximately 50-100 may indicate excess lipophilicity (tendency to accumulate in organic environments) that may compromise delivery of an agent in a desirable aqueous (i.e., hydrophilic) formulation. Kp is determined by measuring the ratio of equilibrium concentrations of an agent in a lipophilic phase (n-octanol) contacted with an aqueous phase.
[0069] One or more of the present inventors have also reported their discovery that it is preferred that the pH of the IL chemoablative pharmaceutical composition is in the range of between about 4 to about 10, and more preferably between about 5 to about 9, to yield maximum solubility of the halogenated xanthene in an aqueous vehicle and assure compatibility with biological tissue. A particularly preferred pH is between about 4 to about 7, preferably between about 5 to about 7, more preferably between about 6 to about 7. At these pH values, the halogenated xanthenes generally remain in dibasic form, rather than the water insoluble lactone that forms at low pH.
[0070] The pH of the IL chemoablative pharmaceutical composition may be regulated or adjusted by any suitable means known to those of skill in the art. The composition may be buffered or the pH adjusted by addition of acid or base or the like. As the halogenated xanthenes, or physiologically acceptable salts thereof, are weak acids, depending upon halogenated xanthene concentration and/or electrolyte concentration, the pH of the composition may not require the use of a buffer and/or pH modifying agent. It is especially preferred, however, that the composition does not contain any buffer, allowing it to conform to the biological environment once administered.
[0071] One or more of the present inventors have also reported their discovery that Kp is also dependent upon electrolyte concentration with the Kp value increasing with electrolyte concentration. Particularly preferred concentrations of electrolyte in the IL
chemoablative pharmaceutical composition are between 0.5 to 1.5% (w/v), and even more preferably at a concentration of about 0.8 to 1.2% (w/v) and most preferably at a concentration of about 0.9% (w/v), this latter concentration being especially preferred since it corresponds to an approximately isotonic solution.
chemoablative pharmaceutical composition are between 0.5 to 1.5% (w/v), and even more preferably at a concentration of about 0.8 to 1.2% (w/v) and most preferably at a concentration of about 0.9% (w/v), this latter concentration being especially preferred since it corresponds to an approximately isotonic solution.
[0072] In a further preferred embodiment of the present invention, the electrolyte in the IL chemoablative pharmaceutical composition is sodium chloride.
[0073] Electrolytes at such levels increase the osmolality of the IL
chemoablative pharmaceutical composition. Thus, as an alternative to specifying a range of electrolyte concentrations, osmolality may be used to characterize, in part, the electrolyte level of the composition. It is preferred that the osmolality of the composition be greater than about 100 mOsm/kg, and more preferably that the osmolality of the composition be greater than about 250 mOsm/kg and most preferably that it is about 300 ¨ 500 mOsm/kg.
chemoablative pharmaceutical composition. Thus, as an alternative to specifying a range of electrolyte concentrations, osmolality may be used to characterize, in part, the electrolyte level of the composition. It is preferred that the osmolality of the composition be greater than about 100 mOsm/kg, and more preferably that the osmolality of the composition be greater than about 250 mOsm/kg and most preferably that it is about 300 ¨ 500 mOsm/kg.
[0074] One or more of the present inventors have found that the preferred concentration of halogenated xanthene and/or dose of IL chemoablative pharmaceutical composition will be dependent upon factors including, but not limited to, tumor size, number and location. For visceral or other internal lesions, such as cancers of the liver, intralesional administration may be by percutaneous or intraoperative administration.
[0075] One or more of the present inventors have also found that halogenated xanthene concentrations in the IL chemoablative pharmaceutical composition above about 1%
(w/v) to 3% (w/v) are particularly useful for chemoablative use, since lower concentrations are generally insufficient to directly elicit destruction of target tissues.
Thus, in a preferred embodiment, the concentration of halogenated xanthene is in the range of from about 3% (w/v) to about 20% (w/v). In another embodiment, the concentration of halogenated xanthene is from about 3% (w/v) to about 10%
(w/v). In another embodiment, the concentration of halogenated xanthene is from about 10% (w/v) to about 20% (w/v). In still another embodiment, the concentration of halogenated xanthene is about 10% (w/v). One or more of the present inventors have surprisingly found that at these concentrations, not only can an efficient therapeutic response be obtained, but the solution is also highly stable and can be readily handled both in manufacture and use. These preferred concentrations may be expressed in weight to volume (w/v), however, concentration in weight to weight (w/w) is substantially equivalent.
(w/v) to 3% (w/v) are particularly useful for chemoablative use, since lower concentrations are generally insufficient to directly elicit destruction of target tissues.
Thus, in a preferred embodiment, the concentration of halogenated xanthene is in the range of from about 3% (w/v) to about 20% (w/v). In another embodiment, the concentration of halogenated xanthene is from about 3% (w/v) to about 10%
(w/v). In another embodiment, the concentration of halogenated xanthene is from about 10% (w/v) to about 20% (w/v). In still another embodiment, the concentration of halogenated xanthene is about 10% (w/v). One or more of the present inventors have surprisingly found that at these concentrations, not only can an efficient therapeutic response be obtained, but the solution is also highly stable and can be readily handled both in manufacture and use. These preferred concentrations may be expressed in weight to volume (w/v), however, concentration in weight to weight (w/w) is substantially equivalent.
[0076] Typical dosages of the IL chemoablative pharmaceutical composition administered by IL administration range from between 0.1 mL/cc lesion volume to about 2 mL/cc lesion volume, most preferably between about 0.25 mL/cc to about 0.75 mL/cc lesion volume. Such doses typically correspond to a patient dose of between about 10 mg to about 1500 mg of halogenated xanthene (which are significantly higher than those doses used for diagnostic liver tests).
[0077] Since the pharmaceutical composition is for IL administration, which is an intracorporeal route, it is further preferred that it be sterile, such as required for conformance to U. S. Pharmacopeia (USP) test <71>, and further that it contains negligible levels of pyrogenic material, such that it conforms to USP<85>
(limulus amebocyte lysate assay) or to USP <151> (rabbit pyrogen test), or to substantially equivalent requirements, at a pyrogen or endotoxin level equivalent to not more that (NMT) 10 endotoxin units (EU) per mL. Moreover, the pharmaceutical composition should conform to requirements limiting content of particulate matter as defined in USP
<788> (i.e., NMT 3000 particulates greater than 10 microns in size, and NMT
particulates greater than 25 microns in size, per container) or substantially equivalent requirements. Each of these references from the USP is incorporated herein by reference.
(limulus amebocyte lysate assay) or to USP <151> (rabbit pyrogen test), or to substantially equivalent requirements, at a pyrogen or endotoxin level equivalent to not more that (NMT) 10 endotoxin units (EU) per mL. Moreover, the pharmaceutical composition should conform to requirements limiting content of particulate matter as defined in USP
<788> (i.e., NMT 3000 particulates greater than 10 microns in size, and NMT
particulates greater than 25 microns in size, per container) or substantially equivalent requirements. Each of these references from the USP is incorporated herein by reference.
[0078] Still further, one or more of the present inventors have found that a hydrophilic vehicle is preferred for the pharmaceutical composition to maximize preference of the halogenated xanthene for partitioning into cancerous tissue. Accordingly, it is preferred that the pharmaceutical composition contains a minimum of non-hydrophilic components that might interfere with such partitioning. It is preferred that the hydrophilic vehicle is water, and it is most preferred that this pharmaceutical composition consists substantially of water.
[0079] One or more of the present inventors have found that such pharmaceutical compositions as described herein are optimally packaged in glass vials having a capacity of approximately 1 to 10 mL, and more preferably approximately 5 mL. Such capacities are well suited as unidose forms (i.e., single use packages) for IL
treatments.
treatments.
[0080] In a preferred embodiment, the formulation of the pharmaceutical composition is not buffered. In this case, it is preferred that packaging containers be made of the USP
Type I (low extractable or chemically resistant borosiciliate) or USP Type II
(low-extractable soda lime) glass and that the inside surface of such glass containers be surface treated to reduce surface alkalinity of the container that could adversely affect pH or long-term stability. Typical surface treatment applicable to such containers is described in USP<661>. The inside of such surface-treated glass containers should be rinsed with a suitable solvent, such as distilled water one or more times prior to filling in order to remove any residue of such surface treatment. The containers should also be depyrogenated prior to filling, for example, by heating to 250 C or higher for several hours or more, and should be sterile or sterilized prior to filling using methods common in the field. If is further preferred that such containers have a minimum neck size, for example, of less than 10 inm and more preferably 5 min or less, to reduce surface area of the closures of the containers (and hence exposure of the medicament to such closures).
Type I (low extractable or chemically resistant borosiciliate) or USP Type II
(low-extractable soda lime) glass and that the inside surface of such glass containers be surface treated to reduce surface alkalinity of the container that could adversely affect pH or long-term stability. Typical surface treatment applicable to such containers is described in USP<661>. The inside of such surface-treated glass containers should be rinsed with a suitable solvent, such as distilled water one or more times prior to filling in order to remove any residue of such surface treatment. The containers should also be depyrogenated prior to filling, for example, by heating to 250 C or higher for several hours or more, and should be sterile or sterilized prior to filling using methods common in the field. If is further preferred that such containers have a minimum neck size, for example, of less than 10 inm and more preferably 5 min or less, to reduce surface area of the closures of the containers (and hence exposure of the medicament to such closures).
[0081] One or more of the present inventors have further found that a septum-type closure, composed preferably of a pharmaceutical grade elastomeric material with a Teflon or similar inner coating, is particularly suitable for use with the IL
chemoablative pharmaceutical composition since it facilitates insertion of a needle into the container for withdrawal of a dose of medicament while exhibiting minimal potential for interaction with the container contents.
chemoablative pharmaceutical composition since it facilitates insertion of a needle into the container for withdrawal of a dose of medicament while exhibiting minimal potential for interaction with the container contents.
[0082] It is also preferred that the pharmaceutical composition does not include any preservatives. One or more of the present inventors have found that it is generally preferable to avoid use of preservatives, many of which may deleteriously interfere with the pharmaceutical composition or formulation thereof, or may complex or otherwise interact with or interfere with the delivery of the halogenated xanthene active component.
To the extent that a preservative may be used, one or more of the present inventors have found that imidurea is preferred as it does not interact with halogenated xanthenes, either in the pharmaceutical composition or upon administration.
To the extent that a preservative may be used, one or more of the present inventors have found that imidurea is preferred as it does not interact with halogenated xanthenes, either in the pharmaceutical composition or upon administration.
[0083] This description has been offered for illustrative purposes only and is not intended to limit the invention of this application.
[0084] What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.
Claims (58)
1. A method of treatment of cancer comprising administering a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition in combination with a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
2. The method of Claim 1 wherein said systemic immunomodulatory anticancer agent comprises anti-CTLA-4 antibodies including ipilimumab and tremelimumab.
3. The method of Claim 1 wherein said systemic immunomodulatory anticancer agent is selected from the group consisting of non-specific cytokines, such as interleukin-1, interleukin-2, or interleukin-6 (IL-1, IL-2 or IL-6) and aldesleukin;
interferon-alpha or interferon-gamma (IFN-.alpha., and IFN-.gamma.), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b);
granulocyte macrophage colony stimulating factor (GM-CSF, molgramostim or sargramostim);
dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF
(OncoVex ®) or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic MHC class I antigens (Allovectin-7®); and antibodies against specific tumor antigens.
interferon-alpha or interferon-gamma (IFN-.alpha., and IFN-.gamma.), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b);
granulocyte macrophage colony stimulating factor (GM-CSF, molgramostim or sargramostim);
dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF
(OncoVex ®) or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic MHC class I antigens (Allovectin-7®); and antibodies against specific tumor antigens.
4. The method of Claim 1 wherein said intralesional chemoablative pharmaceutical composition comprises an IL chemoablative agent comprising primarily a halogenated xanthene in an appropriate pharmaceutical composition, including a 0.1% (w/v) or higher concentration aqueous solution of the halogenated xanthene or mixtures thereof, or a physiologically acceptable salt of the halogenated xanthene.
5. The method of Claim 4 wherein the halogenated xanthene is rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein).
6. The method of Claim 5 wherein the halogenated xanthene is rose bengal disodium.
7. The method of Claim 4 wherein the halogenated xanthene is selected from the group consisting of erythrosin B, phloxine B, 4,5,6,7-tetrabromo-2',4',5',7'-tetraiodofluorescein, 2',4,5,6,7-pentachloro-4',5',7'-triiodofluorescein, 4,4%5,6,7-pentachloro-2',5',7'-triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'-diiodofluorescein, 2',4,5,5',6,7 -hexachloro-4',7'-diiodofluorescein, 4,5,6,7-tetrachloro-2',4',5'-triiodofluorescein, 4,5,6,7-tetrachloro-2',4',7'-triiodofluorescein, 4,5,6,7-tetrabromo-2',4',5'-triiodofluorescein, and 4,5,6,7-tetrabromo-2',4',7'-triiodofluorescein.
8. The method of Claim 4 wherein said halogenated xanthene has a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition includes an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v).
9. The method of Claim 8 wherein the concentration of said electrolyte in the IL
chemoablative pharmaceutical composition is between 0.5 to 1.5% (w/v).
chemoablative pharmaceutical composition is between 0.5 to 1.5% (w/v).
10. The method of Claim 4 wherein said chemoablative pharmaceutical composition has an osmolality of the composition of greater than about 100 mOsm/kg.
11. The method of Claim 8 wherein said electrolyte is sodium chloride.
12. The method of Claim 4 wherein said pharmaceutical composition comprises a hydrophilic vehicle.
13. The method of Claim 4 wherein said pharmaceutical composition has a pH
in the range of between about 4 to about 10.
in the range of between about 4 to about 10.
14. The method of Claim 13 wherein said pharmaceutical composition has a pH
in the range of between about 5 to about 7.
in the range of between about 5 to about 7.
15. The method of Claim 1 wherein said method is for the treatment of cancers selected from melanoma, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer.
16. A method of treatment of cancer comprising administering a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition in combination with a therapeutically effective amount of a systemic targeted anticancer agent.
17. The method of Claim 16 wherein said systemic targeted anticancer agent is selected from the group consisting of drugs that target protein kinases and the receptors that activate them, including afatinib (BIBW 2992), bevacizumab, cetuximab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, panitumumab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitinib, trastuzumab and vandetanib;
serine/threonine-selective protein kinase inhibitors, including those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or RO5185426), GSK2118436 and GSK1120212; aromatase inhibitors, including aminoglutethimide, anastrozole, exemestane, fadrozole, formestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-.alpha., IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898); and immune cell therapy, including adoptive T-cell transfer and autologous immune cell therapy.
serine/threonine-selective protein kinase inhibitors, including those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or RO5185426), GSK2118436 and GSK1120212; aromatase inhibitors, including aminoglutethimide, anastrozole, exemestane, fadrozole, formestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-.alpha., IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898); and immune cell therapy, including adoptive T-cell transfer and autologous immune cell therapy.
18. The method of Claim 16 wherein said intralesional chemoablative pharmaceutical composition comprises an IL chemoablative agent comprising primarily a halogenated xanthene in an appropriate pharmaceutical composition, including a 0.1% (w/v) or higher concentration aqueous solution of the halogenated xanthene or mixtures thereof, or a physiologically acceptable salt of the halogenated xanthene.
19. The method of Claim 18 wherein the halogenated xanthene is rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein).
20. The method of Claim 19 wherein the halogenated xanthene is rose bengal disodium.
21. The method of Claim 18 wherein the halogenated xanthene is selected from the group consisting of erythrosin B, phloxine B, 4,5,6,7-tetrabromo-2',4',5',7'-tetraiodofluorescein, 2',4,5,6,7-pentachloro-4',5',7'-triiodofluorescein, 4,4%5,6,7-pentachloro-2',5',7'-triiodaluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'-diiodofluorescein, 2%4,5,5'47 -hexachloro-4',7'-diiodofluorescein, 4,5,6,7-tetrachloro-2',4',5'-triiodofluorescein, 4,5,6,7-tetrachloro-2',4',7'-triiodofluorescein, 4,5,6,7-tetrabromo-2',4%5'-triiodaluorescein, and 4,5,6,7-tetrabromo-2',4',7'-triiodofluorescein.
22. The method of Claim 18 wherein said halogenated xanthene has a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition includes an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v).
23. The method of Claim 22 wherein the concentration of said electrolyte in the IL
chemoablative pharmaceutical composition is between 0.5 to 1.5% (w/v).
chemoablative pharmaceutical composition is between 0.5 to 1.5% (w/v).
24. The method of Claim 18 wherein said chemoablative pharmaceutical composition has an osmolality of the composition of greater than about 100 mOsm/kg.
25. The method of Claim 22 wherein said electrolyte is sodium chloride.
26. The method of Claim 18 wherein said pharmaceutical composition comprises a hydrophilic vehicle.
27. The method of Claim 18 wherein said pharmaceutical composition has a pH
in the range of between about 4 to about 10.
in the range of between about 4 to about 10.
28. The method of Claim 27 wherein said pharmaceutical composition has a pH
in the range of between about 5 to about 7.
in the range of between about 5 to about 7.
29. The method of Claim 16 wherein said method is for the treatment of cancers selected from melanoma, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer.
30. A pharmaceutical composition for the treatment of cancer comprising:
a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
31. The pharmaceutical composition of Claim 30 wherein said systemic immunomodulatory anticancer agent comprises anti-CTLA-4 antibodies including ipilimumab and tremelimumab.
32. The pharmaceutical composition of Claim 30 wherein said systemic immunomodulatory anticancer agent is selected from the group consisting of non-specific cytokines, such as interleukin-1, interleukin-2, or interleukin-6 (IL-1, IL-2 or IL-6) and aldesleukin; interferon-alpha or interferon-gamma (IFN-.alpha. and IFN-.gamma.), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b); granulocyte macrophage colony stimulating factor (GM-CSF, molgramostim or sargramostim); dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF (OncoVex ®) or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic MHC class I antigens (Allovectin-7®); and antibodies against specific tumor antigens.
33. The pharmaceutical composition of Claim 30 wherein said intralesional chemoablative pharmaceutical composition comprises an IL chemoablative agent comprising primarily a halogenated xanthene in an appropriate pharmaceutical composition, including a 0.1% (w/v) or higher concentration aqueous solution of the halogenated xanthene or mixtures thereof, or a physiologically acceptable salt of the halogenated xanthene.
34. The pharmaceutical composition of Claim 33 wherein the halogenated xanthene is rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein).
35. The pharmaceutical composition of Claim 34 wherein the halogenated xanthene is rose bengal disodium.
36. The pharmaceutical composition of Claim 33 wherein the halogenated xanthene is selected from the group consisting of erythrosin B, phloxine B, 4,5,6,7-tetrabromo-2',4',5',7'-tetraiodofluorescein, 2',4,5,6,7-pentachloro-4',5',7'-triiodofluorescein, 4,4',5,6,7-pentachloro-2',5',7'-triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'-diiodofluorescein, 2',4,5,5',6,7 -hexachloro-4',7'-diiodofluorescein, 4,5,6,7-tetrachloro-2',4',5'-triiodofluorescein, 4,5,6,7-tetrachloro-2',4',7'-triiodofluorescein, 4,5,6,7-tetrabromo-2',4',5'-triiodofluorescein, and 4,5,6,7-tetrabromo-2',4',7'-triiodofluorescein.
37. The pharmaceutical composition of Claim 33 wherein said halogenated xanthene has a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition includes an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2%
(w/v).
(w/v).
38. The pharmaceutical composition of Claim 37 wherein the concentration of said electrolyte in the IL chemoablative pharmaceutical composition is between 0.5 to 1.5%
(w/y).
(w/y).
39. The pharmaceutical composition of Claim 33 wherein said chemoablative pharmaceutical composition has an osmolality of the composition of greater than about 100 mOsm/kg.
40. The pharmaceutical composition of Claim 37 wherein said electrolyte is sodium chloride.
41. The pharmaceutical composition of Claim 33 wherein said pharmaceutical composition comprises a hydrophilic vehicle.
42. The pharmaceutical composition of Claim 33 wherein said pharmaceutical composition has a pH in the range of between about 4 to about 10.
43. The pharmaceutical composition of Claim 42 wherein said pharmaceutical composition has a pH in the range of between about 5 to about 7.
44. The pharmaceutical composition of Claim 30 wherein said pharmaceutical composition is for the treatment of cancers selected from melanoma, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer.
45. A pharmaceutical composition for treatment of cancer comprising:
a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic targeted anticancer agent.
a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic targeted anticancer agent.
46. The pharmaceutical composition of Claim 45 wherein said systemic targeted anticancer agent is selected from the group consisting of drugs that target protein kinases and the receptors that activate them, including afatinib (BIBW 2992), bevacizumab, cetuximab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, panitumumab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitinib, trastuzumab and vandetanib; serine/threonine-selective protein kinase inhibitors, including those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or RO5185426), GSK2118436 and GSK1120212; aromatase inhibitors, including aminoglutethimide, anastrozole, exemestane, fadrozole, formestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-.alpha., IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898); and immune cell therapy, including adoptive T-cell transfer and autologous immune cell therapy.
47. The pharmaceutical composition of Claim 45 wherein said intralesional chemoablative pharmaceutical composition comprises an IL chemoablative agent comprising primarily a halogenated xanthene in an appropriate pharmaceutical composition, including a 0.1% (w/v) or higher concentration aqueous solution of the halogenated xanthene or mixtures thereof, or a physiologically acceptable salt of the halogenated xanthene.
48. The pharmaceutical composition of Claim 47 wherein the halogenated xanthene is rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein).
49. The pharmaceutical composition of Claim 48 wherein the halogenated xanthene is rose bengal disodium.
50. The pharmaceutical composition of Claim 47 wherein the halogenated xanthene is selected from the group consisting of erythrosin B, phloxine B, 4,5,6,7-tetrabromo-2',4',5',7'-tetraiodofluorescein, 2',4,5,6,7-pentachloro-4',5',7'-triiodofluorescein, 4,4',5,6,7-pentachloro-2',5',7'-triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'-diiodofluorescein, 2',4,5,5',6,7 -hexachloro-4',7'-diiodofluorescein, 4,5,6,7-tetrachloro-2',4',5'-triiodofluorescein, 4,5,6,7-tetrachloro-2',4',7'-triiodofluorescein, 4,5,6,7-tetrabromo-2',4',5'-triiodofluorescein, and 4,5,6,7-tetrabromo-2',4',7'-triiodofluorescein.
51. The pharmaceutical composition of Claim 47 wherein said halogenated xanthene has a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition includes an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2%
(w/v).
(w/v).
52. The pharmaceutical composition of Claim 51 wherein the concentration of said electrolyte in the IL chemoablative pharmaceutical composition is between 0.5 to 1.5%
(w/v).
(w/v).
53. The pharmaceutical composition of Claim 47 wherein said chemoablative pharmaceutical composition has an osmolality of the composition of greater than about 100 mOsm/kg.
54. The pharmaceutical composition of Claim 51 wherein said electrolyte is sodium chloride.
55. The pharmaceutical composition of Claim 47 wherein said pharmaceutical composition comprises a hydrophilic vehicle.
56. The pharmaceutical composition of Claim 47 wherein said pharmaceutical composition has a pH in the range of between about 4 to about 10.
57. The pharmaceutical composition of Claim 56 wherein said pharmaceutical composition has a pH in the range of between about 5 to about 7.
58. The pharmaceutical composition of Claim 45 wherein said pharmaceutical composition is for the treatment of cancers selected from melanoma, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161451395P | 2011-03-10 | 2011-03-10 | |
US61/451,395 | 2011-03-10 | ||
PCT/US2012/028412 WO2012122444A1 (en) | 2011-03-10 | 2012-03-09 | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2828940A1 true CA2828940A1 (en) | 2012-09-13 |
CA2828940C CA2828940C (en) | 2024-04-16 |
Family
ID=46798564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2828940A Active CA2828940C (en) | 2011-03-10 | 2012-03-09 | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer |
Country Status (9)
Country | Link |
---|---|
US (7) | US9107887B2 (en) |
EP (1) | EP2710137B1 (en) |
JP (2) | JP6322413B2 (en) |
KR (1) | KR20140038382A (en) |
CN (1) | CN103476943A (en) |
CA (1) | CA2828940C (en) |
ES (1) | ES2699965T3 (en) |
MX (1) | MX360254B (en) |
WO (1) | WO2012122444A1 (en) |
Families Citing this family (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005283422C1 (en) * | 2004-09-17 | 2017-02-02 | Eisai R & D Management Co., Ltd. | Medicinal composition |
EP2281901B1 (en) | 2005-08-02 | 2013-11-27 | Eisai R&D Management Co., Ltd. | Anti-tumour pharmaceutical composition with angiogenesis inhibitors |
KR101353763B1 (en) | 2005-11-07 | 2014-01-21 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | USE OF COMBINATION OF ANTI-ANGIOGENIC SUBSTANCE AND c-kit KINASE INHIBITOR |
US20090209580A1 (en) * | 2006-05-18 | 2009-08-20 | Eisai R & D Management Co., Ltd. | Antitumor agent for thyroid cancer |
CA2676796C (en) * | 2007-01-29 | 2016-02-23 | Eisai R & D Management Co., Ltd. | Composition for treatment of undifferentiated gastric cancer |
WO2009060945A1 (en) * | 2007-11-09 | 2009-05-14 | Eisai R & D Management Co., Ltd. | Combination of anti-angiogenic substance and anti-tumor platinum complex |
KR101677790B1 (en) | 2010-06-25 | 2016-11-18 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Antitumor agent using compounds having kinase inhibitory effect in combination |
EP2710137B1 (en) | 2011-03-10 | 2018-09-19 | Provectus Pharmatech, Inc. | A combination of rose bengal and anti-ctla4 antibody for use in the treatment of cancer |
CN103402519B (en) * | 2011-04-18 | 2015-11-25 | 卫材R&D管理有限公司 | tumor therapeutic agent |
JP6038128B2 (en) | 2011-06-03 | 2016-12-07 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | A biomarker for predicting and evaluating the reactivity of thyroid and renal cancer subjects to lenvatinib compounds |
RU2609651C2 (en) | 2012-05-04 | 2017-02-02 | Пфайзер Инк. | Prostate-associated antigens and immunotherapy schemes based on vaccines |
CA2881851C (en) * | 2012-08-30 | 2021-01-26 | Amgen Inc. | A method for treating melanoma using a herpes simplex virus and an immune checkpoint inhibitor |
JPWO2014098176A1 (en) | 2012-12-21 | 2017-01-12 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Amorphous quinoline derivative and method for producing the same |
TWI726291B (en) * | 2013-01-07 | 2021-05-01 | 英屬維爾京群島商遠東超級實驗室有限公司 | Methods and compositions for treatment of bone, skin, subcutaneous, mucosal and/or submucosal cancer by percutaneous and/or transmucosal administration of interferon |
CA2909432A1 (en) | 2013-04-18 | 2014-10-23 | Tilt Biotherapeutics Oy | Enhanced adoptive cell therapy |
CN105264380B (en) | 2013-05-14 | 2017-09-05 | 卫材R&D管理有限公司 | Pleasure is cut down for the biological marker of Buddhist nun's compound response for predicting and evaluating carcinoma of endometrium subject |
EA201691683A1 (en) * | 2014-02-21 | 2017-04-28 | ЭББВИ СТЕМСЕНТРКС ЭлЭлСи | ANTIBODIES AGAINST DLL3 AND CONJUGATES ANTIBODY AND MEDICINE FOR USE FOR MELANOMA |
CN106132438B (en) * | 2014-02-21 | 2020-03-03 | 尼克塔治疗印度私人有限公司 | IL-2R β selective agonists in combination with anti-CTLA-4 antibodies or anti-PD-1 antibodies |
KR20160119867A (en) | 2014-03-05 | 2016-10-14 | 브리스톨-마이어스 스큅 컴퍼니 | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
CA2949121A1 (en) | 2014-05-15 | 2015-11-19 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
HRP20221047T1 (en) | 2014-08-28 | 2022-11-11 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
WO2016106146A1 (en) | 2014-12-23 | 2016-06-30 | The Regents Of The University Of California | Methods for immunomodulation of cancer and infectious disease therapy |
CN104459129A (en) * | 2015-01-05 | 2015-03-25 | 复旦大学附属华山医院 | Diagnostic kit for distinguishing active and latent mycobacterium tuberculosis infection |
HUE064614T2 (en) | 2015-02-25 | 2024-04-28 | Eisai R&D Man Co Ltd | Method for suppressing bitterness of quinoline derivative |
AU2015384801B2 (en) | 2015-03-04 | 2022-01-06 | Eisai R&D Management Co., Ltd. | Combination of a PD-1 antagonist and a VEGFR/FGFR/RET tyrosine kinase inhibitor for treating cancer |
KR20170138477A (en) | 2015-04-17 | 2017-12-15 | 브리스톨-마이어스 스큅 컴퍼니 | A composition comprising a combination of an anti-PD-1 antibody and another antibody |
WO2016176504A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
KR20170138555A (en) | 2015-04-28 | 2017-12-15 | 브리스톨-마이어스 스큅 컴퍼니 | Treatment of PD-L1-negative melanoma with anti-PD-1 antibody and anti-CTLA-4 antibody |
ES2889906T3 (en) | 2015-05-21 | 2022-01-14 | Harpoon Therapeutics Inc | Trispecific binding proteins and medical uses |
US20180155429A1 (en) | 2015-05-28 | 2018-06-07 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
WO2016196389A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
US11369623B2 (en) | 2015-06-16 | 2022-06-28 | Prism Pharma Co., Ltd. | Anticancer combination of a CBP/catenin inhibitor and an immune checkpoint inhibitor |
US10544224B2 (en) | 2015-07-14 | 2020-01-28 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
JP6758375B2 (en) | 2015-11-11 | 2020-09-23 | アガリムネ リミテッド | Glycolipid compounds and their use in the treatment of tumors |
CN108350081A (en) | 2015-11-18 | 2018-07-31 | 百时美施贵宝公司 | Use the combined therapy lung cancer of anti-PD-1 antibody and anti-CTLA-4 antibody |
US10130658B2 (en) * | 2015-12-18 | 2018-11-20 | Provectus Pharmatech, Inc. | Method of ex vivo enhancement of immune cell activity for cancer immunotherapy with a small molecule ablative compound |
RS63135B1 (en) | 2015-12-23 | 2022-05-31 | Modernatx Inc | Methods of using ox40 ligand encoding polynucleotides |
US11209441B2 (en) | 2016-04-05 | 2021-12-28 | Bristol-Myers Squibb Company | Cytokine profiling analysis |
US20190111111A1 (en) * | 2016-04-13 | 2019-04-18 | The Regents Of The University Of California | Treatment of Cerebral Cavernous Malformations |
WO2017201352A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Mrna combination therapy for the treatment of cancer |
EP3458474B1 (en) | 2016-05-18 | 2022-07-06 | ModernaTX, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
SI3458083T1 (en) | 2016-05-18 | 2023-03-31 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
HRP20240617T1 (en) | 2016-05-20 | 2024-07-19 | Biohaven Therapeutics Ltd. | Use of riluzole, riluzole prodrugs or riluzole analogs with immunotherapies to treat cancers |
EP4248990A3 (en) | 2016-06-02 | 2024-01-03 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
KR20240134249A (en) | 2016-06-03 | 2024-09-06 | 브리스톨-마이어스 스큅 컴퍼니 | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
US20190292260A1 (en) | 2016-06-03 | 2019-09-26 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
US20190315865A1 (en) | 2016-10-28 | 2019-10-17 | Bristol-Myers Squibb Company | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
JP7300394B2 (en) | 2017-01-17 | 2023-06-29 | ヘパリジェニックス ゲーエムベーハー | Protein kinase inhibition to promote liver regeneration or reduce or prevent hepatocyte death |
JP7458188B2 (en) | 2017-03-31 | 2024-03-29 | ブリストル-マイヤーズ スクイブ カンパニー | How to treat tumors |
TWI788340B (en) | 2017-04-07 | 2023-01-01 | 美商必治妥美雅史谷比公司 | Anti-icos agonist antibodies and uses thereof |
WO2018209298A1 (en) | 2017-05-12 | 2018-11-15 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
AU2018277559A1 (en) | 2017-05-30 | 2019-10-17 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-LAG-3 antibody, a PD-1 pathway inhibitor, and an immunotherapeutic agent |
GB201710097D0 (en) * | 2017-06-23 | 2017-08-09 | Univ Ulster | A sensitizer - peptide conjugate |
KR20220111743A (en) | 2017-10-13 | 2022-08-09 | 하푼 테라퓨틱스, 인크. | B cell maturation antigen binding proteins |
EP3694884A1 (en) | 2017-10-15 | 2020-08-19 | Bristol-Myers Squibb Company | Methods of treating tumor |
MX2020005535A (en) | 2017-11-29 | 2021-01-15 | Provectus Pharmatec Inc | Combination of local and systemic therapies for enhanced treatment of dermatologic conditions. |
US20210363242A1 (en) | 2018-01-16 | 2021-11-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
BR112020014574A2 (en) | 2018-01-22 | 2020-12-08 | Bristol-Myers Squibb Company | COMPOSITIONS AND METHODS FOR THE TREATMENT OF CANCER |
PE20210665A1 (en) | 2018-03-23 | 2021-03-31 | Bristol Myers Squibb Co | ANTIBODIES AGAINST MICA AND / OR MICB AND ITS USES |
WO2019191676A1 (en) | 2018-03-30 | 2019-10-03 | Bristol-Myers Squibb Company | Methods of treating tumor |
AU2019268353B2 (en) * | 2018-05-16 | 2023-05-04 | Provectus Pharmatech, Inc. | In vitro and xenograft anti-tumor activity of a halogenated-xanthene against refractory pediatric solid tumors |
MX2020012534A (en) | 2018-05-27 | 2021-04-28 | Biolinerx Ltd | Agi-134 combined with a checkpoint inhibitor for the treatment of solid tumors. |
WO2020014583A1 (en) | 2018-07-13 | 2020-01-16 | Bristol-Myers Squibb Company | Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor |
EP3856771A4 (en) | 2018-09-25 | 2022-06-29 | Harpoon Therapeutics, Inc. | Dll3 binding proteins and methods of use |
EP3870609A1 (en) | 2018-10-23 | 2021-09-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
US20220001026A1 (en) | 2018-11-08 | 2022-01-06 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
WO2020102728A1 (en) | 2018-11-16 | 2020-05-22 | Neoimmunetech, Inc. | Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor |
CA3119838A1 (en) | 2018-11-16 | 2020-05-22 | Bristol-Myers Squibb Company | Anti-nkg2a antibodies and uses thereof |
US20220016079A1 (en) | 2018-11-26 | 2022-01-20 | Debiopharm International S.A. | Combination treatment of hiv infections |
GB201819853D0 (en) * | 2018-12-05 | 2019-01-23 | Innovation Ulster Ltd | Therapy |
CN113453712A (en) | 2018-12-28 | 2021-09-28 | 特兰斯吉恩股份有限公司 | M2-deficient poxvirus |
WO2020198672A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
CN113891748A (en) | 2019-03-28 | 2022-01-04 | 百时美施贵宝公司 | Method for treating tumors |
JP2022534982A (en) | 2019-05-30 | 2022-08-04 | ブリストル-マイヤーズ スクイブ カンパニー | Cellular localization signatures and their uses |
JP2022534967A (en) | 2019-05-30 | 2022-08-04 | ブリストル-マイヤーズ スクイブ カンパニー | Multiple tumor gene signatures and their uses |
WO2020243570A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Cell localization signature and combination therapy |
GB201912107D0 (en) | 2019-08-22 | 2019-10-09 | Amazentis Sa | Combination |
KR20220066334A (en) | 2019-09-22 | 2022-05-24 | 브리스톨-마이어스 스큅 컴퍼니 | Quantitative spatial profiling for LAG-3 antagonist therapy |
WO2021092220A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
WO2021092221A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
KR20220093349A (en) | 2019-11-08 | 2022-07-05 | 브리스톨-마이어스 스큅 컴퍼니 | LAG-3 antagonist therapy for melanoma |
US12064507B2 (en) | 2019-11-19 | 2024-08-20 | Provectus Pharmatech, Inc. | Composition and method for oral treatment of leukemia |
JP7528242B2 (en) * | 2019-11-19 | 2024-08-05 | プロヴェクタス ファーマテック,インク. | Compositions and methods for treating hematological cancers |
US11419844B2 (en) | 2019-11-19 | 2022-08-23 | Provectus Pharmatech, Inc. | Halogenated xanthene composition and method for treating hematologic cancers |
US20230089255A1 (en) | 2019-12-19 | 2023-03-23 | Bristol-Myers Squibb Company | Combinations of dgk inhibitors and checkpoint antagonists |
US20230087600A1 (en) | 2020-02-06 | 2023-03-23 | Bristol-Myers Squibb Company | Il-10 and uses thereof |
JP7512409B6 (en) | 2020-03-26 | 2024-07-23 | プロヴェクタス ファーマテック,インク. | Novel uses of halogenated xanthenes in oncology and virology. |
US11938182B2 (en) | 2020-03-26 | 2024-03-26 | Provectus Pharmatech, Inc. | Halogenated xanthenes as vaccine adjuvants |
US20230233474A1 (en) | 2020-05-28 | 2023-07-27 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
JP2023540255A (en) | 2020-08-28 | 2023-09-22 | ブリストル-マイヤーズ スクイブ カンパニー | LAG-3 antagonist therapy for hepatocellular carcinoma |
US20230303700A1 (en) | 2020-08-31 | 2023-09-28 | Bristol-Myers Squibb Company | Cell localization signature and immunotherapy |
MX2023004493A (en) | 2020-10-23 | 2023-05-10 | Bristol Myers Squibb Co | Lag-3 antagonist therapy for lung cancer. |
WO2022120179A1 (en) | 2020-12-03 | 2022-06-09 | Bristol-Myers Squibb Company | Multi-tumor gene signatures and uses thereof |
WO2022146948A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Subcutaneous administration of pd1/pd-l1 antibodies |
JP2024503265A (en) | 2020-12-28 | 2024-01-25 | ブリストル-マイヤーズ スクイブ カンパニー | Antibody compositions and methods of use thereof |
WO2022212876A1 (en) | 2021-04-02 | 2022-10-06 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
CA3224890A1 (en) | 2021-10-29 | 2023-05-04 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hematological cancer |
WO2023147371A1 (en) | 2022-01-26 | 2023-08-03 | Bristol-Myers Squibb Company | Combination therapy for hepatocellular carcinoma |
US20230277669A1 (en) | 2022-02-24 | 2023-09-07 | Amazentis Sa | Uses of urolithins |
MX2024010310A (en) | 2022-02-25 | 2024-08-28 | Bristol Myers Squibb Co | Combination therapy for colorectal carcinoma. |
WO2023168404A1 (en) | 2022-03-04 | 2023-09-07 | Bristol-Myers Squibb Company | Methods of treating a tumor |
AU2023230110A1 (en) | 2022-03-08 | 2024-10-24 | Alentis Therapeutics Ag | Use of anti-claudin-1 antibodies to increase t cell availability |
WO2023178329A1 (en) | 2022-03-18 | 2023-09-21 | Bristol-Myers Squibb Company | Methods of isolating polypeptides |
WO2023196987A1 (en) | 2022-04-07 | 2023-10-12 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
WO2023213763A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab |
WO2023235847A1 (en) | 2022-06-02 | 2023-12-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
WO2024003353A1 (en) | 2022-07-01 | 2024-01-04 | Transgene | Fusion protein comprising a surfactant-protein-d and a member of the tnfsf |
WO2024040175A1 (en) | 2022-08-18 | 2024-02-22 | Pulmatrix Operating Company, Inc. | Methods for treating cancer using inhaled angiogenesis inhibitor |
WO2024137776A1 (en) | 2022-12-21 | 2024-06-27 | Bristol-Myers Squibb Company | Combination therapy for lung cancer |
WO2024196952A1 (en) | 2023-03-20 | 2024-09-26 | Bristol-Myers Squibb Company | Tumor subtype assessment for cancer therapy |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2553131B1 (en) * | 1983-10-11 | 1986-02-21 | Ydais Pierre | ASSEMBLY OF MODULAR ELEMENTS ALLOWING THE REALIZATION OF STORAGE VOLUMES AND MORE PARTICULARLY OF CELLARS, GARDEN SHELTERS |
US5725855A (en) | 1991-04-05 | 1998-03-10 | The United States Of America As Represented By The Department Of Health And Human Services | Method of treating tumors with CD8+ -depleted or CD4+ T cell subpopulations |
US6689757B1 (en) * | 1996-02-12 | 2004-02-10 | M.L. Laboratories Plc | Methods for vaccination and vaccines therefor |
US20090117199A1 (en) * | 1998-08-06 | 2009-05-07 | Scott Timothy C | Method of treatment of cancer |
US8557298B2 (en) | 1998-08-06 | 2013-10-15 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
US7648695B2 (en) * | 1998-08-06 | 2010-01-19 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
US20020001567A1 (en) * | 1998-12-21 | 2002-01-03 | Photogen, Inc. | Intracorporeal medicaments for high energy phototherapeutic treatment of disease |
AU771569B2 (en) | 1999-04-08 | 2004-03-25 | Merck Sharp & Dohme Corp. | Melanoma therapy |
AU7057200A (en) * | 1999-08-13 | 2001-03-13 | Photogen, Inc. | Improved topical medicaments and methods for photodynamic treatment of disease |
CA2497597A1 (en) | 2002-09-11 | 2004-03-11 | Sequenom, Inc. | Methods for identifying subjects at risk of melanoma and treatments |
US7378233B2 (en) | 2003-04-12 | 2008-05-27 | The Johns Hopkins University | BRAF mutation T1796A in thyroid cancers |
US20050019918A1 (en) | 2003-06-03 | 2005-01-27 | Hidetoshi Sumimoto | Treatment of cancer by inhibiting BRAF expression |
EP1541695A1 (en) | 2003-12-09 | 2005-06-15 | Nanogen Recognomics GmbH | Use of a mutation in the BRAF gene for the determination of the malignancy of melanoma cells |
CA2566180A1 (en) * | 2004-05-10 | 2005-11-24 | Robert F. Hofmann | Use of targeted oxidative therapeutic formulation in treatment of cancer |
GB0423554D0 (en) | 2004-10-22 | 2004-11-24 | Cancer Rec Tech Ltd | Therapeutic compounds |
AU2005300315A1 (en) | 2004-11-04 | 2006-05-11 | Pfizer Products Inc. | CTLA-4 antibody and aromatase inhibitor or combination treatment for breast cancer |
GB0428082D0 (en) | 2004-12-22 | 2005-01-26 | Welcome Trust The Ltd | Therapeutic compounds |
US7442507B2 (en) | 2005-01-24 | 2008-10-28 | New York University School Of Medicine | Methods for detecting circulating mutant BRAF DNA |
US20090074787A1 (en) | 2005-03-23 | 2009-03-19 | Pfizer, Inc., Pfizer Products, Inc. | Anti-CTLA4 Antibody and Indolinone Combination Therapy for Treatment of Cancer |
AU2006321593B2 (en) * | 2005-12-07 | 2012-10-04 | E. R. Squibb & Sons, L.L.C. | CTLA-4 antibody dosage escalation regimens |
WO2007113648A2 (en) | 2006-04-05 | 2007-10-11 | Pfizer Products Inc. | Ctla4 antibody combination therapy |
AU2007245495A1 (en) | 2006-04-26 | 2007-11-08 | Astex Therapeutics Limited | Imidazo[4, 5-b]pyridin-2-one and oxazolo[4, 5-b]pyridin-2-one compounds and analogs thereof as cancer therapeutic compounds |
US7897762B2 (en) | 2006-09-14 | 2011-03-01 | Deciphera Pharmaceuticals, Llc | Kinase inhibitors useful for the treatment of proliferative diseases |
CA2639416C (en) | 2007-09-11 | 2019-12-31 | F. Hoffmann-La Roche Ag | Diagnostic test for susceptibility to b-raf kinase inhibitors |
BRPI0821227A2 (en) | 2007-12-19 | 2015-06-16 | Cancer Rec Tech Ltd | Compound, pharmaceutical composition, method for preparing same, use of a compound, method for treating a disease or disorder, for inhibiting raf function and for inhibiting cell proliferation, inhibiting cell cycle progression, promoting apoptosis, or a combination of one or more more of them |
US8119129B2 (en) * | 2008-08-01 | 2012-02-21 | Bristol-Myers Squibb Company | Combination of anti-CTLA4 antibody with dasatinib for the treatment of proliferative diseases |
CA2749339A1 (en) | 2009-01-12 | 2010-07-15 | Cytomx Therapeutics, Llc | Modified antibody compositions, methods of making and using thereof |
TW201041888A (en) | 2009-05-06 | 2010-12-01 | Plexxikon Inc | Compounds and methods for kinase modulation, and indications therefor |
SI2769737T1 (en) * | 2009-07-20 | 2017-06-30 | Bristol-Myers Squibb Company | Combination of an anti-CTLA4 antibody with etoposide for the synergistic treatment of proliferative diseases |
JP5671040B2 (en) * | 2009-09-18 | 2015-02-18 | プロヴェクタス ファーマスーティカルズ,インク. | 4,5,6,7-tetrachloro-3 ', 6'-dihydroxy-2', 4 ', 5', 7'-tetraiodo-3H-spiro [isobenzofuran-1,9'-xanthene] -3- Process for synthesizing on (rose bengal) and related xanthenes |
EP2710137B1 (en) | 2011-03-10 | 2018-09-19 | Provectus Pharmatech, Inc. | A combination of rose bengal and anti-ctla4 antibody for use in the treatment of cancer |
-
2012
- 2012-03-09 EP EP12755115.8A patent/EP2710137B1/en active Active
- 2012-03-09 US US13/416,494 patent/US9107887B2/en active Active
- 2012-03-09 WO PCT/US2012/028412 patent/WO2012122444A1/en active Application Filing
- 2012-03-09 KR KR1020137026664A patent/KR20140038382A/en not_active Application Discontinuation
- 2012-03-09 JP JP2013557888A patent/JP6322413B2/en active Active
- 2012-03-09 ES ES12755115T patent/ES2699965T3/en active Active
- 2012-03-09 CA CA2828940A patent/CA2828940C/en active Active
- 2012-03-09 MX MX2013010340A patent/MX360254B/en active IP Right Grant
- 2012-03-09 CN CN2012800182901A patent/CN103476943A/en active Pending
-
2015
- 2015-06-24 US US14/748,634 patent/US9808524B2/en active Active
- 2015-06-24 US US14/748,579 patent/US20150290309A1/en not_active Abandoned
- 2015-06-24 US US14/748,608 patent/US9839688B2/en active Active
-
2017
- 2017-11-06 US US15/804,357 patent/US10471144B2/en active Active
-
2018
- 2018-02-19 JP JP2018026788A patent/JP2018109036A/en active Pending
-
2019
- 2019-11-08 US US16/678,133 patent/US11071781B2/en active Active
-
2021
- 2021-07-22 US US17/382,943 patent/US20220008534A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US9107887B2 (en) | 2015-08-18 |
US20220008534A1 (en) | 2022-01-13 |
US20150290318A1 (en) | 2015-10-15 |
US9839688B2 (en) | 2017-12-12 |
JP6322413B2 (en) | 2018-05-09 |
US10471144B2 (en) | 2019-11-12 |
ES2699965T3 (en) | 2019-02-13 |
EP2710137A4 (en) | 2014-12-31 |
EP2710137A1 (en) | 2014-03-26 |
CA2828940C (en) | 2024-04-16 |
JP2014510728A (en) | 2014-05-01 |
US20150290309A1 (en) | 2015-10-15 |
EP2710137B1 (en) | 2018-09-19 |
JP2018109036A (en) | 2018-07-12 |
KR20140038382A (en) | 2014-03-28 |
US20180055926A1 (en) | 2018-03-01 |
CN103476943A (en) | 2013-12-25 |
US11071781B2 (en) | 2021-07-27 |
MX360254B (en) | 2018-10-26 |
US20150290165A1 (en) | 2015-10-15 |
US20120263677A1 (en) | 2012-10-18 |
US9808524B2 (en) | 2017-11-07 |
US20200138942A1 (en) | 2020-05-07 |
MX2013010340A (en) | 2013-11-01 |
WO2012122444A1 (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11071781B2 (en) | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer | |
Luo et al. | Emerging strategies in cancer therapy combining chemotherapy with immunotherapy | |
Newton et al. | Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition | |
JP6796623B2 (en) | Compositions and Methods for Reducing or Preventing Metastasis | |
JP2002523378A (en) | Activation and protection of T-cells (CD4 + and CD8 +) using H2-receptor agonists and other T-cell activating agents | |
WO2018071837A1 (en) | Radiofrequency field hyperthermia and solid tumor immunomodulation | |
Le Naour et al. | Trial watch: Toll-like receptor ligands in cancer therapy | |
EP3675891B1 (en) | Combination cancer therapy | |
US20230136346A1 (en) | Non-adult human dosing of anti-cd30 antibody-drug conjugates | |
US20190008918A1 (en) | Immunomodulation therapies for cancer | |
EP4378473A1 (en) | Her2 vaccine composition | |
CN110177552A (en) | For adjusting the composition of PD-1 signal transduction | |
US20230181633A1 (en) | Methods of treating cancer using a combination of tumor membrane vesicles and metformin | |
WO2011146559A1 (en) | Combination therapy with ae37 peptide and an antibody that binds to her2/neu protein | |
Kota et al. | Prophylactic and therapeutic cancer vaccine with continuous localized immunomodulation | |
US20130171243A1 (en) | Octreotide-modified nanomedicine for cancer treatment or cancer palliative care |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |
|
EEER | Examination request |
Effective date: 20151002 |