CA2718937C - A voltage source converter - Google Patents
A voltage source converter Download PDFInfo
- Publication number
- CA2718937C CA2718937C CA2718937A CA2718937A CA2718937C CA 2718937 C CA2718937 C CA 2718937C CA 2718937 A CA2718937 A CA 2718937A CA 2718937 A CA2718937 A CA 2718937A CA 2718937 C CA2718937 C CA 2718937C
- Authority
- CA
- Canada
- Prior art keywords
- converter
- path
- converter according
- semiconductor
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/007—Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/5388—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
Abstract
A Voltage Source Converter having at least one phase leg connected to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells (7) has an arrangement (25) configured to apply a pressure to opposite ends of stacks of semiconductor assemblies for pressing the assemblies towards each other so as to obtain electric contact between semiconductor assemblies in said stack while ensuring that the semiconductor assemblies of a first path (23) of each switching cellof the converter go into a permanently closed circuit state in case of a failure of the respective switching cell. A second path (27) of each switching cell has means (29) configured to keep said second path including an energy storing capacitor (20) non-conducting upon occurrence of a said failure.
Description
A Voltage Source Converter TECHNICAL FIELD OF THE INVENTION AND BACKGROUND
ART
The present invention relates to a Voltage Source Converter having at least one phase leg connecting to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having at least two current paths between the terminals thereof with a first current path formed by one or more first semiconductor assem-blies connected in series and having each a semiconductor de-vice of turn-off type and a free-wheeling diode connected in parallel therewith, and a second path including a series connec-tion of on one hand at least one second semiconductor assem-bly having a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor, a mid point of said series connection of switching cells forming a phase output being configured to be connected to an alternating voltage side of the converter, each said switching cell being configured to obtain two switching states by control of said semiconductor devices of each switching cell, namely a first switching state in which said first path is in a non-conducting state and the voltage across said at least one energy storing capacitor is applied across the terminals of the switching cell, and a second switching state, in which said first path is closed and a zero voltage is applied across the terminals of the switching cell, for obtaining a determined alternating voltage on said phase output.
ART
The present invention relates to a Voltage Source Converter having at least one phase leg connecting to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having at least two current paths between the terminals thereof with a first current path formed by one or more first semiconductor assem-blies connected in series and having each a semiconductor de-vice of turn-off type and a free-wheeling diode connected in parallel therewith, and a second path including a series connec-tion of on one hand at least one second semiconductor assem-bly having a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor, a mid point of said series connection of switching cells forming a phase output being configured to be connected to an alternating voltage side of the converter, each said switching cell being configured to obtain two switching states by control of said semiconductor devices of each switching cell, namely a first switching state in which said first path is in a non-conducting state and the voltage across said at least one energy storing capacitor is applied across the terminals of the switching cell, and a second switching state, in which said first path is closed and a zero voltage is applied across the terminals of the switching cell, for obtaining a determined alternating voltage on said phase output.
Such converters with any number of said phase legs are com-prised, but they have normally three such phase legs for having a three phase alternating voltage on the alternating voltage side thereof.
A Voltage Source Converter of this type may be used in all kinds of situations, in which direct voltage is to be converted into al-ternating voltage and conversely, in which examples of such uses are in stations of HVDC-plants (High Voltage Direct Cur-rent), in which direct voltage is normally converted into a three-phase alternating voltage or conversely, or in so-called back-to-back stations in which alternating voltage is firstly converted into direct voltage and this is then converted into alternating voltage, as well as in SVCs (Static Var Compensator), in which the direct voltage side consists of capacitors hanging freely.
However, the present invention is not restricted to these appli-cations, but other applications are also conceivable, such as in different types of drive systems for machines, vehicles etc.
A Voltage Source Converter of this type is known through for example DE 101 03 031 Al and WO 2007/023064 Al and is as disclosed there normally called a multi-cell converter or M2LC.
Reference is made to these publications for the functioning of a converter of this type. Said switching cells of the converter may have other appearances than those shown in said publications, and it is for instance possible that each switching cell has more than one said energy storing capacitor, as long as it is possible to control the switching cell to be switched between the two states mentioned in the introduction.
Another Voltage Source Converter of this type is known through US 5 642 275 used in a Static Var Compensator, in which the switching cells have a different appearance in the form of so-called full bridges.
A Voltage Source Converter of this type may be used in all kinds of situations, in which direct voltage is to be converted into al-ternating voltage and conversely, in which examples of such uses are in stations of HVDC-plants (High Voltage Direct Cur-rent), in which direct voltage is normally converted into a three-phase alternating voltage or conversely, or in so-called back-to-back stations in which alternating voltage is firstly converted into direct voltage and this is then converted into alternating voltage, as well as in SVCs (Static Var Compensator), in which the direct voltage side consists of capacitors hanging freely.
However, the present invention is not restricted to these appli-cations, but other applications are also conceivable, such as in different types of drive systems for machines, vehicles etc.
A Voltage Source Converter of this type is known through for example DE 101 03 031 Al and WO 2007/023064 Al and is as disclosed there normally called a multi-cell converter or M2LC.
Reference is made to these publications for the functioning of a converter of this type. Said switching cells of the converter may have other appearances than those shown in said publications, and it is for instance possible that each switching cell has more than one said energy storing capacitor, as long as it is possible to control the switching cell to be switched between the two states mentioned in the introduction.
Another Voltage Source Converter of this type is known through US 5 642 275 used in a Static Var Compensator, in which the switching cells have a different appearance in the form of so-called full bridges.
The present invention is primarily, but not exclusively, directed to such Voltage Source Converters configured to transmit high powers, and the case of transmitting high powers will for this reason mainly be discussed hereinafter for illuminating but not in any way restricting the invention thereto. When such a Volt-age Source Converter is used to transmit high powers this also means that high voltages are handled, and the voltage of the direct voltage side of the converter is determined by the volt-ages across said energy storing capacitors of the switching cells. This means that a comparatively high number of such switching cells are to be connected in series for a high number of semiconductor devices, i.e. said semiconductor assemeblies, are to be connected in series in each said switching cell, and a Voltage Source Converter of this type is particularly interesting when the number of the switching cells in said phase leg is comparatively high. A high number of such switching cells con-nected in series means that it will be possible to control these switching cells to change between said first and second switch-ing state and by that already at said phase output obtain an al-ternating voltage being very close to a sinusoidal voltage. This may be obtained already by means of substantially lower switching frequencies than typically used in known Voltage Source Converters of the type shown in Fig 1 in DE 101 03 031 Al having switching cells with at least one semiconductor device of turn-off type and at least one free- wheeling diode connected in anti-parallel therewith. This makes it possible to obtain sub-stantially lower losses and also considerably reduces problems of filtering and harmonic currents and radio interferences, so that equipment therefor may be less costly.
In a Voltage Source Converter of this type, where several switching cells may be connected in series in order to handle high voltages, reliability may be reduced since a failure in a single switching cell or semiconductor assembly thereof may jeopardize the operation of the entire converter. WO
2007/023064 discloses a solution to this problem by achieving redundancy. This is made by short-circuiting a failing switching cell by the arrangement of a by-pass switch. However, this puts high demands on the reliability of the means, i.e. the switch, used for short-circuiting the switching cell and it also requires provision of a reliable control of said means.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a Voltage Source Converter of the type defined in the introduction ad-dressing the problem of obtaining redundancy for handling fail-ure of a switching cell thereof in a way being in at least some aspect more preferred than the solution already known.
This object is according to the invention obtained by providing a Voltage Source Converter of the type defined in the introduction, in which said first semiconductor assemblies of said switching cells are arranged in stacks comprising each at least one semi-conductor assembly, the converter comprises an arrangement configured to obtain electric contact between semiconductor assemblies in said stack while ensuring that the semiconductor assemblies of said first path go into a permanently closed circuit state in case of a failure of the respective switching cell, and said second path of each switching cell has means configured to keep said second path non-conducting upon occurrence of a said failure.
Thus, according to an aspect of the present invention there is provided a voltage source converter for converting direct voltage into alternating voltage and conversely having at least one phase leg connecting to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having at least two current paths between terminals thereof with a first current path formed by one or more first semiconductor assemblies connected in series and having each a semi-conductor device of turn-off type and a free-wheeling diode connected in parallel therewith, and a second path including a series connection of at least one second semiconductor assembly having a semiconductor device of the turn-off 4a type and a free-wheeling diode connected in parallel therewith and at least one energy storing capacitor, a midpoint of said series connection of switching cells forming a phase output being connected to an alternating voltage side of the converter, wherein said one or more first semiconductor assemblies of said switching cells are arranged in stacks comprising each at least one semiconductor assembly, wherein the converter comprises an arrangement for applying a pressure to said stack to provide electric contact through semiconductor assemblies in said stack while ensuring that the semiconductor assemblies of said first path go into a permanently closed circuit state in case of a failure of the respective switching cell, and wherein said second path of each switching cell has means for keeping said second path non-conducting upon occurrence of said failure.
By using the so-called press pack technique known through US
patent 5 705 853 for interconnecting the first semiconductor as-semblies in said first path between the terminals of each switching cell it may be ensured that said first path will go into a permanently closed circuit state and by that the switching cell failing will be automatically by-passed upon occurrence of a fail-ure thereof. Furthermore, the arrangement of said means in said second path of each switching cell ensures that said second path is kept non-conducting upon occurrence of a said failure, so that the energy storing capacitor will be disconnected in case of such a failure, which is very important for protecting other components of the converter. Thus, said means enables a good function of the press pack technique in the series connection of 5 switching cells by ensuring that the capacitors will be "isolated"
upon occurrence of a said failure. Accordingly, the present in-vention presents switching cells with an intrinsic reliability achieved by very simple means.
According to an embodiment of the present invention said means comprises a member configured to interconnect second semiconductor assemblies in said second path and configured to break and by that transfer said second path into an open circuit state upon occurrence of a said failure. This constitutes a reli-able and cost efficient way of obtaining that said second path will be non-conducting upon occurrence of a said failure of a switching cell. An attractive way of obtaining this is defined in another embodiment of the invention, in which said member comprises at least one wire bonding second semiconductor as-semblies to each other and configured to burn through and electrically disconnect said semiconductor assemblies by an over-current through this wire upon occurrence of a said failure.
Such wire-bonded modules of semiconductor assemblies con-nected in series are less costly than modules in the form of stacks utilizing the so-called press pack technique, and this conventional way of interconnecting the second semiconductor assemblies may be used for obtaining a reliable disconnection of the energy storing capacitor in the case of a failure of the switching cell.
According to another embodiment of the invention said means comprises a member connected in series with said energy stor-ing capacitor in said second path and configured to burn through by an over-current resulting in said second path therethrough upon occurrence of a said failure. It is then advantageous that this member is a fuse. This means that it would be possible to have also said second semiconductor assemblies stacked while using said press pack technique if this would be desired for keeping the dimensions of the converter as low as possible while still ensuring that the energy storing capacitor of a failing switching cell is disconnected upon occurrence of as said fail-ure.
According to another embodiment of the invention said means comprises a member connected in series with said energy stor-ing capacitor in said second path and configured to mechani-cally interrupt said second path therethrough upon occurrence of a said failure. The invention also covers the case of arranging a mechanical switch in said second path for isolating the energy storing capacitor upon occurrence of a said failure.
According to another embodiment of the invention said ar-rangement comprises means configured to apply a spring loaded pressure to each said stack urging the two ends of the stack to-wards each other while releasing potential energy stored in members of said means. Said members may be of any type storing potential energy when compressed and are according to another embodiment of the invention springs acting on at least one end of each said stack, in which said spring may be me-chanical springs as well as other types of springs, such as gas springs. This means that electric contact between the semicon-ductor assemblies in said stack may be obtained with a high re-liability irrespectively of irregularities in the dimension thereof, such as for instance in the case of parallel connection of semi-conductor assemblies in said stack. There is also no risk that the interconnection of the adjacent semiconductor assemblies will be destroyed by the over-current resulting upon occurrence of a said failure making a faulty semiconductor assembly permanently conducting and accordingly by-passing the switching cell.
In a Voltage Source Converter of this type, where several switching cells may be connected in series in order to handle high voltages, reliability may be reduced since a failure in a single switching cell or semiconductor assembly thereof may jeopardize the operation of the entire converter. WO
2007/023064 discloses a solution to this problem by achieving redundancy. This is made by short-circuiting a failing switching cell by the arrangement of a by-pass switch. However, this puts high demands on the reliability of the means, i.e. the switch, used for short-circuiting the switching cell and it also requires provision of a reliable control of said means.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a Voltage Source Converter of the type defined in the introduction ad-dressing the problem of obtaining redundancy for handling fail-ure of a switching cell thereof in a way being in at least some aspect more preferred than the solution already known.
This object is according to the invention obtained by providing a Voltage Source Converter of the type defined in the introduction, in which said first semiconductor assemblies of said switching cells are arranged in stacks comprising each at least one semi-conductor assembly, the converter comprises an arrangement configured to obtain electric contact between semiconductor assemblies in said stack while ensuring that the semiconductor assemblies of said first path go into a permanently closed circuit state in case of a failure of the respective switching cell, and said second path of each switching cell has means configured to keep said second path non-conducting upon occurrence of a said failure.
Thus, according to an aspect of the present invention there is provided a voltage source converter for converting direct voltage into alternating voltage and conversely having at least one phase leg connecting to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having at least two current paths between terminals thereof with a first current path formed by one or more first semiconductor assemblies connected in series and having each a semi-conductor device of turn-off type and a free-wheeling diode connected in parallel therewith, and a second path including a series connection of at least one second semiconductor assembly having a semiconductor device of the turn-off 4a type and a free-wheeling diode connected in parallel therewith and at least one energy storing capacitor, a midpoint of said series connection of switching cells forming a phase output being connected to an alternating voltage side of the converter, wherein said one or more first semiconductor assemblies of said switching cells are arranged in stacks comprising each at least one semiconductor assembly, wherein the converter comprises an arrangement for applying a pressure to said stack to provide electric contact through semiconductor assemblies in said stack while ensuring that the semiconductor assemblies of said first path go into a permanently closed circuit state in case of a failure of the respective switching cell, and wherein said second path of each switching cell has means for keeping said second path non-conducting upon occurrence of said failure.
By using the so-called press pack technique known through US
patent 5 705 853 for interconnecting the first semiconductor as-semblies in said first path between the terminals of each switching cell it may be ensured that said first path will go into a permanently closed circuit state and by that the switching cell failing will be automatically by-passed upon occurrence of a fail-ure thereof. Furthermore, the arrangement of said means in said second path of each switching cell ensures that said second path is kept non-conducting upon occurrence of a said failure, so that the energy storing capacitor will be disconnected in case of such a failure, which is very important for protecting other components of the converter. Thus, said means enables a good function of the press pack technique in the series connection of 5 switching cells by ensuring that the capacitors will be "isolated"
upon occurrence of a said failure. Accordingly, the present in-vention presents switching cells with an intrinsic reliability achieved by very simple means.
According to an embodiment of the present invention said means comprises a member configured to interconnect second semiconductor assemblies in said second path and configured to break and by that transfer said second path into an open circuit state upon occurrence of a said failure. This constitutes a reli-able and cost efficient way of obtaining that said second path will be non-conducting upon occurrence of a said failure of a switching cell. An attractive way of obtaining this is defined in another embodiment of the invention, in which said member comprises at least one wire bonding second semiconductor as-semblies to each other and configured to burn through and electrically disconnect said semiconductor assemblies by an over-current through this wire upon occurrence of a said failure.
Such wire-bonded modules of semiconductor assemblies con-nected in series are less costly than modules in the form of stacks utilizing the so-called press pack technique, and this conventional way of interconnecting the second semiconductor assemblies may be used for obtaining a reliable disconnection of the energy storing capacitor in the case of a failure of the switching cell.
According to another embodiment of the invention said means comprises a member connected in series with said energy stor-ing capacitor in said second path and configured to burn through by an over-current resulting in said second path therethrough upon occurrence of a said failure. It is then advantageous that this member is a fuse. This means that it would be possible to have also said second semiconductor assemblies stacked while using said press pack technique if this would be desired for keeping the dimensions of the converter as low as possible while still ensuring that the energy storing capacitor of a failing switching cell is disconnected upon occurrence of as said fail-ure.
According to another embodiment of the invention said means comprises a member connected in series with said energy stor-ing capacitor in said second path and configured to mechani-cally interrupt said second path therethrough upon occurrence of a said failure. The invention also covers the case of arranging a mechanical switch in said second path for isolating the energy storing capacitor upon occurrence of a said failure.
According to another embodiment of the invention said ar-rangement comprises means configured to apply a spring loaded pressure to each said stack urging the two ends of the stack to-wards each other while releasing potential energy stored in members of said means. Said members may be of any type storing potential energy when compressed and are according to another embodiment of the invention springs acting on at least one end of each said stack, in which said spring may be me-chanical springs as well as other types of springs, such as gas springs. This means that electric contact between the semicon-ductor assemblies in said stack may be obtained with a high re-liability irrespectively of irregularities in the dimension thereof, such as for instance in the case of parallel connection of semi-conductor assemblies in said stack. There is also no risk that the interconnection of the adjacent semiconductor assemblies will be destroyed by the over-current resulting upon occurrence of a said failure making a faulty semiconductor assembly permanently conducting and accordingly by-passing the switching cell.
According to another embodiment of the invention each said switching cell has N said first semiconductor assemblies follow-ing upon each other in a said stack, in which N is an integer or .4.
According to another embodiment of the invention the number of the switching cells of said phase leg is .4, 12, 30 or 50. A
converter of this type is, as already mentioned above, particu-larly interesting when the number of switching cells of a said phase leg is rather high resulting in a high number of possible levels of the voltage pulses delivered on said phase output.
According to another embodiment of the invention said semi-conductor device of the switching cell assemblies are IGBTs (In-sulated Gate Bipolar Transistor), IGCTs (Integrated Gate Commutated Thyristor) or GTOs (Gate Turn-Off Thyristor).
These are suitable semiconductor devices for such converters, although other semiconductor devices of turn-off type are also conceivable.
According to another embodiment of the invention said converter is configured to have said direct voltage side connected to a di-rect voltage network for transmitting High Voltage Direct Current (HVDC) and the alternating voltage side connected to an alter-nating voltage phase line belonging to an alternating voltage network. This is due to the high number of semiconductor as-semblies required a particularly interesting application of a con-verter of this type.
According to another embodiment of the invention the converter is a part of a SVC (Static Var Compensator) with a direct voltage side formed by said energy storing capacitors of the switching cells and the alternating voltage phase output connected to an alternating voltage network. When a failure occur in a so-called full bridge switching cell of a converter of this type this switching cell is transferred into a half bridge cell of the M2LC-type, and it is then important that said first path goes into a permanently closed circuit state and said second path is kept non-conducting while disconnecting the energy storing capacitor of the switching cell upon occurrence of a further failure in the' switching cell, and this is ensured by a converter according to this embodiment of the invention.
According to another embodiment of the invention the converter is configured to have a direct voltage across said two poles be-ing lkV ¨ 1200kV, 10kV ¨ 1200kV or 100kV ¨ 1200kV. The in-vention is the more interesting the higher said direct voltage is.
According to another aspect of the present invention there is provided a plant for transmitting electric power comprising a direct voltage network and at least one alternating voltage network connected thereto through a station, said station being adapted to perform transmitting of electric power between the direct voltage network and the alternating voltage network and comprises at least one multi-cell converter adapted to convert direct voltage into alternating voltage and conversely, wherein said station of the plant comprises a Voltage Source Converter as described herein. The stations of such a plant may be given attractive dimensions and a high reliability to a low cost.
Further advantages as well as advantageous features of the in-vention will appear from the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
With reference to the appended drawings, below follows a de-scription of embodiments of the invention cited as examples.
In the drawings:
Fig 1 is a very simplified view of a Voltage Source Converter of the type according to the present invention, Figs 2 and 3 illustrates two different known switching cells, which may be a part of the Voltage Source Converter accord-ing to the invention, Fig 4 is a simplified view very schematically illustrating a Voltage Source Converter according to the present in-vention, Fig 5 is a simplified view very schematically illustrating a switching cell of the type shown in Fig 3 as designed in a converter according to a first embodiment of the in-vention, Fig 6 is a view corresponding to Fig 5 of a switching cell in a converter according to a second embodiment of the in-vention, Fig 7 is a view corresponding to Fig 5 of a switching cell in a converter according to a third embodiment of the in-vention, Fig 8 illustrates very schematically a converter according to the present invention used in a Static Var Compensa-tor, Fig 9 schematically illustrates a switching cell of the con-verter shown in Fig 8, and Fig 10 illustrates what happens with the switching cell shown in Fig 9 upon occurrence of a failure therein.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVEN-TION
Fig 1 illustrates very schematically the general construction of a Voltage Source Converter 1 of the type to which the present in-vention relates. This converter has three phase legs 2-4 con-nected to opposite poles 5, 6 of a direct voltage side of the con-verter, such as a direct voltage network for transmitting high voltage direct current. Each phase leg comprises a series con-nection of switching cells 7 indicated by boxes, in the present case 16 to the number, and this series connection is divided into two equal parts, an upper valve branch 8 and a lower valve branch 9, separated by a mid point 10-12 forming a phase out-5 put being configured to be connected to an alternating voltage side of the converter. The phase outputs 10-12 may possibly through a transformer connect to a three phase alternating volt-age network, load, etc. Filtering equipment is also arranged on said alternating voltage side for improving the shape of the al-10 ternating voltage on said alternating voltage side.
A control arrangement 13 is arranged for controlling the switch-ing cells 7 and by that the converter to convert direct voltage into alternating voltage and conversely.
The Voltage Source Converter has switching cells 7 of the type having on one hand at least two semiconductor assemblies with each a semiconductor device of turn-off type, and a free-wheel-ing diode connected in parallel therewith and on the other at least one energy storing capacitor, and two examples of such switching cells are shown in Fig 2 and Fig 3. The terminals 14, 15 of the switching cell are adapted to be connected to adjacent switching cells in the series connection of switching cells form-ing a phase leg. The semiconductor devices 16, 17 are in this case IGBTs connected in parallel with diodes 18, 19. Although only one semiconductor device and one diode is shown per as-sembly these may stand for a number of semiconductor devices and diodes, respectively, connected in parallel for sharing the current flowing through the assembly. An energy storing ca-pacitor 20 is connected in parallel with the respective series connection of the diodes and the semiconductor devices. One terminal 14 is connected to the mid point between the two semi-conductor devices as well as the mid point between the two diodes. The other terminal 15 is connected to the energy storing capacitor 20, in the embodiment of Fig 2 to one side thereof and in the embodiment according to Fig 3 to the other side thereof. It is pointed out that each semiconductor device and each diode as shown in Fig 2 and Fig 3 may be more than one connected in series for being able to handle the voltages to be handled, and the semiconductor devices so connected in series may then be controlled simultaneously so as to act as one single semicon-ductor device.
The switching cells shown in Fig 2 and Fig 3 may be controlled to obtain one of a) a first switching state and b) a second switching state, in which for a) the voltage across the capacitor and for b) a zero voltage is applied across the terminals 14, 15. For obtaining the first state in Fig 2 the semiconductor de-vice 16 is turned on and the semiconductor device 17 turned off and in the embodiment according to Fig 3 the semiconductor 15 device 17 is turned on and the semiconductor 16 is turned off.
The switching cells are switched to the second state by chang-ing the state of the semiconductor devices, so that in the em-bodiment according to Fig 2 the semiconductor device 16 is turned off and 17 turned on and in Fig 3 the semiconductor de-20 vice 17 is turned off and 16 turned on.
Fig 4 shows a little more in detail how a phase leg of the con-verter according to Fig 1 is formed by switching cells of the type shown in Fig 3, in which totally ten switching cells have been left out for simplifying the drawing. The control arrangement 13 is adapted to control the switching cells by controlling the semi-conductor devices thereof, so that they will either deliver a zero voltage or the voltage across the capacitor to be added to the voltages of the other switching cells in said series connection. A
transformer 21 and filtering equipment 22 are here also indi-cated. It is shown how each valve branch is through a phase re-actor 50, 51 connected to the phase output 10, and such phase reactors should also be there in Fig 1 for the phase outputs 10, 11 and 12, but have there been left out for simplifying the illus-tration.
According to another embodiment of the invention the number of the switching cells of said phase leg is .4, 12, 30 or 50. A
converter of this type is, as already mentioned above, particu-larly interesting when the number of switching cells of a said phase leg is rather high resulting in a high number of possible levels of the voltage pulses delivered on said phase output.
According to another embodiment of the invention said semi-conductor device of the switching cell assemblies are IGBTs (In-sulated Gate Bipolar Transistor), IGCTs (Integrated Gate Commutated Thyristor) or GTOs (Gate Turn-Off Thyristor).
These are suitable semiconductor devices for such converters, although other semiconductor devices of turn-off type are also conceivable.
According to another embodiment of the invention said converter is configured to have said direct voltage side connected to a di-rect voltage network for transmitting High Voltage Direct Current (HVDC) and the alternating voltage side connected to an alter-nating voltage phase line belonging to an alternating voltage network. This is due to the high number of semiconductor as-semblies required a particularly interesting application of a con-verter of this type.
According to another embodiment of the invention the converter is a part of a SVC (Static Var Compensator) with a direct voltage side formed by said energy storing capacitors of the switching cells and the alternating voltage phase output connected to an alternating voltage network. When a failure occur in a so-called full bridge switching cell of a converter of this type this switching cell is transferred into a half bridge cell of the M2LC-type, and it is then important that said first path goes into a permanently closed circuit state and said second path is kept non-conducting while disconnecting the energy storing capacitor of the switching cell upon occurrence of a further failure in the' switching cell, and this is ensured by a converter according to this embodiment of the invention.
According to another embodiment of the invention the converter is configured to have a direct voltage across said two poles be-ing lkV ¨ 1200kV, 10kV ¨ 1200kV or 100kV ¨ 1200kV. The in-vention is the more interesting the higher said direct voltage is.
According to another aspect of the present invention there is provided a plant for transmitting electric power comprising a direct voltage network and at least one alternating voltage network connected thereto through a station, said station being adapted to perform transmitting of electric power between the direct voltage network and the alternating voltage network and comprises at least one multi-cell converter adapted to convert direct voltage into alternating voltage and conversely, wherein said station of the plant comprises a Voltage Source Converter as described herein. The stations of such a plant may be given attractive dimensions and a high reliability to a low cost.
Further advantages as well as advantageous features of the in-vention will appear from the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
With reference to the appended drawings, below follows a de-scription of embodiments of the invention cited as examples.
In the drawings:
Fig 1 is a very simplified view of a Voltage Source Converter of the type according to the present invention, Figs 2 and 3 illustrates two different known switching cells, which may be a part of the Voltage Source Converter accord-ing to the invention, Fig 4 is a simplified view very schematically illustrating a Voltage Source Converter according to the present in-vention, Fig 5 is a simplified view very schematically illustrating a switching cell of the type shown in Fig 3 as designed in a converter according to a first embodiment of the in-vention, Fig 6 is a view corresponding to Fig 5 of a switching cell in a converter according to a second embodiment of the in-vention, Fig 7 is a view corresponding to Fig 5 of a switching cell in a converter according to a third embodiment of the in-vention, Fig 8 illustrates very schematically a converter according to the present invention used in a Static Var Compensa-tor, Fig 9 schematically illustrates a switching cell of the con-verter shown in Fig 8, and Fig 10 illustrates what happens with the switching cell shown in Fig 9 upon occurrence of a failure therein.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVEN-TION
Fig 1 illustrates very schematically the general construction of a Voltage Source Converter 1 of the type to which the present in-vention relates. This converter has three phase legs 2-4 con-nected to opposite poles 5, 6 of a direct voltage side of the con-verter, such as a direct voltage network for transmitting high voltage direct current. Each phase leg comprises a series con-nection of switching cells 7 indicated by boxes, in the present case 16 to the number, and this series connection is divided into two equal parts, an upper valve branch 8 and a lower valve branch 9, separated by a mid point 10-12 forming a phase out-5 put being configured to be connected to an alternating voltage side of the converter. The phase outputs 10-12 may possibly through a transformer connect to a three phase alternating volt-age network, load, etc. Filtering equipment is also arranged on said alternating voltage side for improving the shape of the al-10 ternating voltage on said alternating voltage side.
A control arrangement 13 is arranged for controlling the switch-ing cells 7 and by that the converter to convert direct voltage into alternating voltage and conversely.
The Voltage Source Converter has switching cells 7 of the type having on one hand at least two semiconductor assemblies with each a semiconductor device of turn-off type, and a free-wheel-ing diode connected in parallel therewith and on the other at least one energy storing capacitor, and two examples of such switching cells are shown in Fig 2 and Fig 3. The terminals 14, 15 of the switching cell are adapted to be connected to adjacent switching cells in the series connection of switching cells form-ing a phase leg. The semiconductor devices 16, 17 are in this case IGBTs connected in parallel with diodes 18, 19. Although only one semiconductor device and one diode is shown per as-sembly these may stand for a number of semiconductor devices and diodes, respectively, connected in parallel for sharing the current flowing through the assembly. An energy storing ca-pacitor 20 is connected in parallel with the respective series connection of the diodes and the semiconductor devices. One terminal 14 is connected to the mid point between the two semi-conductor devices as well as the mid point between the two diodes. The other terminal 15 is connected to the energy storing capacitor 20, in the embodiment of Fig 2 to one side thereof and in the embodiment according to Fig 3 to the other side thereof. It is pointed out that each semiconductor device and each diode as shown in Fig 2 and Fig 3 may be more than one connected in series for being able to handle the voltages to be handled, and the semiconductor devices so connected in series may then be controlled simultaneously so as to act as one single semicon-ductor device.
The switching cells shown in Fig 2 and Fig 3 may be controlled to obtain one of a) a first switching state and b) a second switching state, in which for a) the voltage across the capacitor and for b) a zero voltage is applied across the terminals 14, 15. For obtaining the first state in Fig 2 the semiconductor de-vice 16 is turned on and the semiconductor device 17 turned off and in the embodiment according to Fig 3 the semiconductor 15 device 17 is turned on and the semiconductor 16 is turned off.
The switching cells are switched to the second state by chang-ing the state of the semiconductor devices, so that in the em-bodiment according to Fig 2 the semiconductor device 16 is turned off and 17 turned on and in Fig 3 the semiconductor de-20 vice 17 is turned off and 16 turned on.
Fig 4 shows a little more in detail how a phase leg of the con-verter according to Fig 1 is formed by switching cells of the type shown in Fig 3, in which totally ten switching cells have been left out for simplifying the drawing. The control arrangement 13 is adapted to control the switching cells by controlling the semi-conductor devices thereof, so that they will either deliver a zero voltage or the voltage across the capacitor to be added to the voltages of the other switching cells in said series connection. A
transformer 21 and filtering equipment 22 are here also indi-cated. It is shown how each valve branch is through a phase re-actor 50, 51 connected to the phase output 10, and such phase reactors should also be there in Fig 1 for the phase outputs 10, 11 and 12, but have there been left out for simplifying the illus-tration.
Fig 5 illustrates very schematically the design of each switching cell 7 of the type shown in Fig 3 of a Voltage Source Converter according to a first embodiment of the invention. Each switching cell has a first current path 23 formed by a plurality of first semiconductor assemblies 24 schematically indicated by a plate, connected in series and having each a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith as shown in Fig 3. An arrangement 25 is configured to apply a pressure to opposite ends of such a stack 30 of first semiconductor assemblies for pressing the assemblies towards each other so as to obtain electric contact between semicon-ductor assemblies in said stack. The arrangement has for this sake members storing potential energy in the form of springs 26 acting on at least one end of each said stack for urging the two ends of the stack towards each other while releasing potential energy stored therein. This so called press pack arrangement of said first semiconductor assemblies results in an interconnection thereof able to take very high currents.
The switching cell also comprises a second path 27 including a series connection of on one hand at least one second semicon-ductor assembly 28 having a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor 20.
When a failure occurs in the switching cell it is important that the switching cell is short-circuited and that the energy storing capacitor 20 may not be discharged through the second path 27.
When a failure occurs the switching module constituted by the first semiconductor assemblies 24 and the switching module constituted of the second semiconductor assemblies 28 are opened. The discharge current from the capacitor 20 will then destroy the first semiconductor assemblies 24, so that these go into a permanently closed circuit state by-passing the switching cell 7. It is then also important that the second path 27 is kept non-conducting for disconnecting the capacitor 20 from the rest of the converter. This may be obtained in different ways. It is for instance possible to use IGCTs or GTOs which may block the voltage occurring in a failure case, as semiconductor devices in the second semiconductor assemblies, so that it is not neces-sary to transfer the second path into an open circuit state upon occurrence of a said failure for disconnecting the capacitor.
In the embodiment shown in Fig 5 it is also possible that the second semiconductor assemblies 28 in the second path are interconnected by conventional wires configured to burn through by an over-current resulting in the second path therethrough upon occurrence of a failure.
The switching cell in the embodiment shown in Fig 6 differs from the one according to Fig 5 by the arrangement of a member 29 connected in series with said energy storing capacitor in said second path 27 and configured to burn through by an over-cur-rent resulting in said second path therethrough upon occurrence of a said failure. This member is in this case a wire connecting the semiconductor assemblies to one terminal 14 of the switch-ing cell.
Fig 7 illustrates a switching cell according to another embodi-ment of the invention, in which said member burning through is formed by a fuse 29'. In the two embodiments shown in Figs 6 and 7 it is even possible to use the so-called press pack tech-nique for interconnecting the semiconductor assemblies 28 in the second path, since disconnection of the capacitor 20 is still ensured by the arrangement of the members 29 and 29', re-spectively. The member 29' in Fig 7 may also stand for a me-chanical switch configured to be opened upon occurrence of a said failure.
Fig 8 illustrates the general construction of a Voltage Source Converter according to the present invention used in a Static Var Compensator for reactive power compensation. A direct voltage side of this converter is formed by said energy storing capacitors of the switching cells 7", and the switching cells 7" of this converter are so-called full bridges with semiconductor as-semblies having a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith as disclosed in US patent 5 642 275.
With reference made to Figs 9 and 10 we now assume that a failure appears in this switching cell 7". This means that one of the modules A and B will be permanently conducting and the other will be turned off. We assume that A is the module turning into a permanently conducting state and the module B will be turned off, which will then result in a circuit according to Fig 10, which corresponds to a switching cell according to Figs 5-7. The module C will then according to the invention be manufactured according to the press pack technique and the module D having the same feature as described for the second semiconductor as-semblies 28 in the switching cells according to any of Figs 5-7.
This means that when a further failure occurs in this switching cell the first path 23 will go into a permanently closed circuit state by destruction of the module C and the second path 27 will be transferred into a non-conducting state, such as a perma-nently open circuit state disconnecting the capacitor 20.
The invention is of course not in any way restricted to the em-bodiments described above, but many possibilities to modifica-tions thereof will be apparent to a person with ordinary skill in the art without departing from the basic idea of the invention as defined in the appended claims.
It is pointed out that it is within the scope of the invention to have only one semiconductor assembly in each said stack and that only one semiconductor device of this assembly has to be arranged according to said press pack arrangement. It is then possible to have individual pressure contacts for each semicon-ductor device and diode as disclosed in US 5 705 853. It is also possible to have disc type devices with wafer elements, where external pressure (e.g. in a pressurized stack) achieves the electric contact. The very schematic illustrations in Figs 5-7 are intended to cover these alternatives of use of the press pack 5 technique.
The switching cell also comprises a second path 27 including a series connection of on one hand at least one second semicon-ductor assembly 28 having a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor 20.
When a failure occurs in the switching cell it is important that the switching cell is short-circuited and that the energy storing capacitor 20 may not be discharged through the second path 27.
When a failure occurs the switching module constituted by the first semiconductor assemblies 24 and the switching module constituted of the second semiconductor assemblies 28 are opened. The discharge current from the capacitor 20 will then destroy the first semiconductor assemblies 24, so that these go into a permanently closed circuit state by-passing the switching cell 7. It is then also important that the second path 27 is kept non-conducting for disconnecting the capacitor 20 from the rest of the converter. This may be obtained in different ways. It is for instance possible to use IGCTs or GTOs which may block the voltage occurring in a failure case, as semiconductor devices in the second semiconductor assemblies, so that it is not neces-sary to transfer the second path into an open circuit state upon occurrence of a said failure for disconnecting the capacitor.
In the embodiment shown in Fig 5 it is also possible that the second semiconductor assemblies 28 in the second path are interconnected by conventional wires configured to burn through by an over-current resulting in the second path therethrough upon occurrence of a failure.
The switching cell in the embodiment shown in Fig 6 differs from the one according to Fig 5 by the arrangement of a member 29 connected in series with said energy storing capacitor in said second path 27 and configured to burn through by an over-cur-rent resulting in said second path therethrough upon occurrence of a said failure. This member is in this case a wire connecting the semiconductor assemblies to one terminal 14 of the switch-ing cell.
Fig 7 illustrates a switching cell according to another embodi-ment of the invention, in which said member burning through is formed by a fuse 29'. In the two embodiments shown in Figs 6 and 7 it is even possible to use the so-called press pack tech-nique for interconnecting the semiconductor assemblies 28 in the second path, since disconnection of the capacitor 20 is still ensured by the arrangement of the members 29 and 29', re-spectively. The member 29' in Fig 7 may also stand for a me-chanical switch configured to be opened upon occurrence of a said failure.
Fig 8 illustrates the general construction of a Voltage Source Converter according to the present invention used in a Static Var Compensator for reactive power compensation. A direct voltage side of this converter is formed by said energy storing capacitors of the switching cells 7", and the switching cells 7" of this converter are so-called full bridges with semiconductor as-semblies having a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith as disclosed in US patent 5 642 275.
With reference made to Figs 9 and 10 we now assume that a failure appears in this switching cell 7". This means that one of the modules A and B will be permanently conducting and the other will be turned off. We assume that A is the module turning into a permanently conducting state and the module B will be turned off, which will then result in a circuit according to Fig 10, which corresponds to a switching cell according to Figs 5-7. The module C will then according to the invention be manufactured according to the press pack technique and the module D having the same feature as described for the second semiconductor as-semblies 28 in the switching cells according to any of Figs 5-7.
This means that when a further failure occurs in this switching cell the first path 23 will go into a permanently closed circuit state by destruction of the module C and the second path 27 will be transferred into a non-conducting state, such as a perma-nently open circuit state disconnecting the capacitor 20.
The invention is of course not in any way restricted to the em-bodiments described above, but many possibilities to modifica-tions thereof will be apparent to a person with ordinary skill in the art without departing from the basic idea of the invention as defined in the appended claims.
It is pointed out that it is within the scope of the invention to have only one semiconductor assembly in each said stack and that only one semiconductor device of this assembly has to be arranged according to said press pack arrangement. It is then possible to have individual pressure contacts for each semicon-ductor device and diode as disclosed in US 5 705 853. It is also possible to have disc type devices with wafer elements, where external pressure (e.g. in a pressurized stack) achieves the electric contact. The very schematic illustrations in Figs 5-7 are intended to cover these alternatives of use of the press pack 5 technique.
Claims (21)
1. A voltage source converter for converting direct voltage into alternating voltage and conversely having at least one phase leg connecting to opposite poles of a direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having at least two current paths between terminals thereof with a first current path formed by one or more first semiconductor assemblies connected in series and having each a semi-conductor device of turn-off type and a free-wheeling diode connected in parallel therewith, and a second path including a series connection of at least one second semiconductor assembly having a semiconductor device of the turn-off type and a free-wheeling diode connected in parallel therewith and at least one energy storing capacitor, a midpoint of said series connection of switching cells forming a phase output being connected to an alternating voltage side of the converter, wherein said one or more first semiconductor assemblies of said switching cells are arranged in stacks comprising each at least one semiconductor assembly, wherein the converter comprises an arrangement for applying a pressure to said stack to provide electric contact through semiconductor assemblies in said stack while ensuring that the semiconductor assemblies of said first path go into a permanently closed circuit state in case of a failure of the respective switching cell, and wherein said second path of each switching cell has means for keeping said second path non-conducting upon occurrence of said failure.
2. A converter according to claim 1, wherein said means comprises a member configured to interconnect said at least one second semiconductor assembly in said second path and configured to break and by that transfer said second path into an open circuit state upon occurrence of said failure.
3. A converter according to claim 2, wherein said member comprises at least one wire bonded second semiconductor assembly to each other and configured to fuse and electrically disconnect said at least one second semiconductor assembly by an over-current through said at least one wire upon occurrence of said failure.
4. A converter according to claim 1, wherein said means comprises a member connected in series with said at least one energy storing capacitor in said second path and configured to burn through by an over-current resulting in said second path therethrough upon occurrence of said failure.
5. A converter according to claim 4, wherein said member is a fuse.
6. A converter according to claim 1, wherein said means comprises a member connected in series with said at least one energy storing capacitor in said second path and configured to mechanically interrupt said second path therethrough upon occurrence of said failure.
7. A converter according to any one of claims 1 to 6, wherein said arrangement comprises means configured to apply a spring loaded pressure to each said stack urging the two ends of the stack towards each other while releasing potential energy stored in members of said means.
8. A converter according to claim 7, wherein said members storing potential energy are springs acting on at least one end of each said stack.
9. A converter according to any one of claims 1 to 8, wherein each said switching cell has N said first semiconductor assemblies following upon each other in the corresponding stack, in which N is an integer >=2.
10. A converter according to any one of claims 1 to 8, wherein each said switching cell has N said first semiconductor assemblies following upon each other in said corresponding stack, in which N is an integer >=4
11. A converter according to any one of claims 1 to 10, wherein the number of the switching cells of said at least one phase leg is >=4.
12. A converter according to any one of claims 1 to 10, wherein the number of switching cells of said at least one phase leg is >=12.
13. A converter according to any one of claims 1 to 10, wherein the number of switching cells of said at least one phase leg is >=30.
14. A converter according to any one of claims 1 to 10, wherein the number of switching cells of said at least one phase leg is >=50.
15. A converter according to any one of claims 1 to 14 , wherein said semiconductor devices of the switching cell assemblies are IGBTs (Insulated Gate Bipolar Transistor), IGCTs (Integrated Gate Commutated Thyristor) or GTOs (Gate Turn-Off Thyristor).
16. A converter according to any one of claims 1 to 15, wherein the converter is configured to have said direct voltage side connected to a direct voltage network for transmitting High Voltage Direct Current (HVDC) and the alternating voltage side connected to an alternating voltage phase line belonging to an alternating voltage network.
17. A converter according to any one of claims 1 to 15, wherein the converter is a part of a SVC (Static Var Compensator) with the direct voltage side formed by said energy storing capacitors of the switching cells and an alternating voltage phase output connected to an alternating voltage network.
18. A converter according to any one of claims 1 to 17, wherein the converter is configured to have a direct voltage across said opposite poles of 1 kV - 1200 kV.
19. A converter according to any one of claims 1 to 17, wherein the converter is configured to have a direct voltage across said opposite poles of 10kV -1200kV.
20. A converter according to any one of claims 1 to 17, wherein the converter is configured to have a direct voltage across said opposite poles of 100kV-1200kV.
21. A plant for transmitting electric power comprising a direct voltage network and at least one alternating voltage network connected thereto through a station, said station being adapted to perform transmitting of electric power between the direct voltage network and the alternating voltage network and comprises at least one multi-cell converter adapted to convert direct voltage into alternating voltage and conversely, wherein said station of the plant comprises a Voltage Source Converter as defined in any one of claims 1 to 14.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2008/053394 WO2009115125A1 (en) | 2008-03-20 | 2008-03-20 | A voltage source converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2718937A1 CA2718937A1 (en) | 2009-09-24 |
CA2718937C true CA2718937C (en) | 2014-07-29 |
Family
ID=40091568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2718937A Expired - Fee Related CA2718937C (en) | 2008-03-20 | 2008-03-20 | A voltage source converter |
Country Status (9)
Country | Link |
---|---|
US (1) | US8614904B2 (en) |
EP (1) | EP2266198B1 (en) |
JP (1) | JP5215455B2 (en) |
KR (1) | KR101225322B1 (en) |
CN (1) | CN102017384B (en) |
BR (1) | BRPI0822496A2 (en) |
CA (1) | CA2718937C (en) |
WO (1) | WO2009115125A1 (en) |
ZA (1) | ZA201006703B (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4934703B2 (en) * | 2009-07-21 | 2012-05-16 | 株式会社日立製作所 | Power converter |
US9484835B2 (en) * | 2009-10-06 | 2016-11-01 | Abb Research Ltd | Modified voltage source converter structure |
JP5045772B2 (en) * | 2010-03-11 | 2012-10-10 | オムロン株式会社 | Capacitor capacity missing detection method in power conditioner, power conditioner for implementing the same, and photovoltaic power generation system including the same |
WO2011127983A1 (en) * | 2010-04-15 | 2011-10-20 | Abb Research Ltd | Modular multi -level power converter with second and third order harmonics reduction filter |
WO2013064310A1 (en) | 2011-11-03 | 2013-05-10 | Abb Technology Ag | Inverter circuit and method for operating such an inverter circuit |
JP2014533485A (en) * | 2011-11-15 | 2014-12-11 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Power electronics module |
US9178410B2 (en) * | 2012-01-06 | 2015-11-03 | General Electric Company | Adaptive power conversion system |
JP5963531B2 (en) * | 2012-05-15 | 2016-08-03 | オムロン株式会社 | Inverter device and photovoltaic power generation system |
US20130322142A1 (en) * | 2012-05-31 | 2013-12-05 | General Electric Company | Multilevel power converter |
US9762136B2 (en) | 2012-11-27 | 2017-09-12 | Abb Schweiz Ag | Thyristor based voltage source converter |
EP2907233A1 (en) * | 2012-12-10 | 2015-08-19 | Siemens Aktiengesellschaft | Submodule for limiting a surge current |
CN103280989B (en) * | 2013-05-15 | 2017-02-08 | 南京南瑞继保电气有限公司 | Current converter and control method thereof |
FR3007226B1 (en) * | 2013-06-18 | 2017-04-28 | Renault Sas | METHOD FOR CONTROLLING A POWER CONVERTER AND ASSOCIATED DEVICE |
WO2015121983A1 (en) * | 2014-02-14 | 2015-08-20 | 三菱電機株式会社 | Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method |
DE102014004655A1 (en) | 2014-03-29 | 2014-09-25 | Daimler Ag | Circuit arrangement for a motor vehicle |
DE102014006449A1 (en) | 2014-05-02 | 2015-11-05 | Daimler Ag | Integrated polyphase tap of a battery |
DE102015103247A1 (en) | 2015-03-05 | 2016-09-08 | Ge Energy Power Conversion Technology Limited | Switch module with short-circuit protection and power electronics module with this |
WO2016170672A1 (en) * | 2015-04-24 | 2016-10-27 | 三菱電機株式会社 | Power conversion device |
DE102015109466A1 (en) * | 2015-06-15 | 2016-12-15 | Ge Energy Power Conversion Technology Limited | Power converter submodule with short-circuit device and converter with this |
CN105450045B (en) * | 2015-12-15 | 2018-02-02 | 清华大学 | A kind of modular multi-level converter based on diagonal bridge submodule |
WO2017137057A1 (en) * | 2016-02-08 | 2017-08-17 | Abb Schweiz Ag | Switching device for a high voltage power system and an arrangement comprising such a switching device |
JP7106567B2 (en) | 2017-03-16 | 2022-07-26 | サフラン パッセンジャー イノベーションズ, エルエルシー | Transportation Service Cart Power Supply |
EP3573227A1 (en) * | 2018-05-23 | 2019-11-27 | Nidec ASI S.A. | Electric power converter |
JP7302809B2 (en) | 2019-02-20 | 2023-07-04 | 株式会社Eサーモジェンテック | Insulated container |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US622284A (en) * | 1899-04-04 | Dust-receptacle | ||
US5210685A (en) * | 1985-03-08 | 1993-05-11 | Westinghouse Electric Corp. | Uninterruptible power supply system and load transfer static switch for such a system |
JP2774685B2 (en) * | 1990-09-12 | 1998-07-09 | 株式会社東芝 | Inverter control device with DC bias suppression control for three-phase transformer |
FI98255C (en) | 1994-04-14 | 1997-05-12 | Kone Oy | Surge Protection |
DE19530264A1 (en) * | 1995-08-17 | 1997-02-20 | Abb Management Ag | Power semiconductor module |
US5642275A (en) * | 1995-09-14 | 1997-06-24 | Lockheed Martin Energy System, Inc. | Multilevel cascade voltage source inverter with seperate DC sources |
JP3588932B2 (en) * | 1996-09-10 | 2004-11-17 | 三菱電機株式会社 | Power converter, control method therefor, and uninterruptible power supply using this power converter |
SE520786C2 (en) * | 1997-03-24 | 2003-08-26 | Abb Ab | Electric power transmission system |
US5986909A (en) * | 1998-05-21 | 1999-11-16 | Robicon Corporation | Multiphase power supply with plural series connected cells and failed cell bypass |
SE512795C2 (en) * | 1998-09-18 | 2000-05-15 | Abb Ab | VSCconverter |
US6519169B1 (en) * | 1999-03-29 | 2003-02-11 | Abb Ab | Multiphase inverter with series of connected phase legs |
DE10103031B4 (en) | 2001-01-24 | 2011-12-01 | Siemens Ag | Converter circuit with distributed energy storage and method for controlling such a converter circuit |
SE521885C2 (en) * | 2001-04-11 | 2003-12-16 | Abb Ab | DC Drives |
SE523486C2 (en) * | 2001-07-16 | 2004-04-20 | Abb Ab | Converter and method of controlling a converter |
EP1318545A1 (en) * | 2001-12-06 | 2003-06-11 | Abb Research Ltd. | Power semiconductor submodule and power semiconductor module |
US6603675B1 (en) * | 2002-01-17 | 2003-08-05 | Abb Ab | Apparatus and a method for voltage conversion |
JP2003259654A (en) * | 2002-03-05 | 2003-09-12 | Toshiba Corp | Power converter |
DE10217889A1 (en) * | 2002-04-22 | 2003-11-13 | Siemens Ag | Power supply with a direct converter |
DE10333798B4 (en) * | 2003-07-24 | 2018-11-29 | Siemens Aktiengesellschaft | Method for short-circuiting a defective partial converter |
CN100511955C (en) * | 2003-09-30 | 2009-07-08 | 三菱电机株式会社 | Inverter device |
US7164242B2 (en) * | 2004-02-27 | 2007-01-16 | York International Corp. | Variable speed drive for multiple loads |
DE102005040543A1 (en) * | 2005-08-26 | 2007-03-01 | Siemens Ag | Converter circuit with distributed energy storage |
DE102005045090B4 (en) * | 2005-09-21 | 2007-08-30 | Siemens Ag | Method for controlling a multiphase power converter with distributed energy storage |
-
2008
- 2008-03-20 CA CA2718937A patent/CA2718937C/en not_active Expired - Fee Related
- 2008-03-20 US US12/933,357 patent/US8614904B2/en active Active
- 2008-03-20 WO PCT/EP2008/053394 patent/WO2009115125A1/en active Application Filing
- 2008-03-20 EP EP08718105.3A patent/EP2266198B1/en active Active
- 2008-03-20 JP JP2011500052A patent/JP5215455B2/en not_active Expired - Fee Related
- 2008-03-20 KR KR1020107023379A patent/KR101225322B1/en active IP Right Grant
- 2008-03-20 CN CN200880128756.7A patent/CN102017384B/en active Active
- 2008-03-20 BR BRPI0822496-0A patent/BRPI0822496A2/en not_active IP Right Cessation
-
2010
- 2010-09-17 ZA ZA2010/06703A patent/ZA201006703B/en unknown
Also Published As
Publication number | Publication date |
---|---|
US8614904B2 (en) | 2013-12-24 |
ZA201006703B (en) | 2011-05-25 |
EP2266198B1 (en) | 2017-05-31 |
CN102017384B (en) | 2014-01-08 |
JP5215455B2 (en) | 2013-06-19 |
WO2009115125A1 (en) | 2009-09-24 |
CA2718937A1 (en) | 2009-09-24 |
CN102017384A (en) | 2011-04-13 |
KR20100124829A (en) | 2010-11-29 |
JP2011514799A (en) | 2011-05-06 |
KR101225322B1 (en) | 2013-01-23 |
US20110044082A1 (en) | 2011-02-24 |
EP2266198A1 (en) | 2010-12-29 |
BRPI0822496A2 (en) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2718937C (en) | A voltage source converter | |
CA2749042C (en) | Fault protection in voltage source converters with redundant switching cells via mechanical switches being closed pyrotechnically | |
CA2727112C (en) | A voltage source converter | |
EP2266137B1 (en) | A voltage source converter | |
JP2014533485A (en) | Power electronics module | |
CA2771910C (en) | Converter cell module, voltage source converter system comprising such a module and a method for controlling such a system | |
CN113424428B (en) | Converter unit with crowbar circuit | |
EP3695502B1 (en) | Modular multilevel converter | |
WO2010069399A1 (en) | A voltage source converter | |
RU2446550C1 (en) | Voltage converter | |
Steimer et al. | Robust, low-loss RCIGCT technology and MV applications | |
EP3796540A1 (en) | Cell for use in a converter | |
CN212063828U (en) | Modular multilevel converter and converter cell | |
EP4165763B1 (en) | A cell comprising a power link with a variable inductance | |
Sharma et al. | Thyristor dodged VSC: An Enhanced Efficiency Conception for HVDC Applications | |
WO2021175428A1 (en) | Assembly with crowbars and decoupling impedances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20190320 |