CA2779184A1 - Protein kinase inhibitors - Google Patents
Protein kinase inhibitors Download PDFInfo
- Publication number
- CA2779184A1 CA2779184A1 CA2779184A CA2779184A CA2779184A1 CA 2779184 A1 CA2779184 A1 CA 2779184A1 CA 2779184 A CA2779184 A CA 2779184A CA 2779184 A CA2779184 A CA 2779184A CA 2779184 A1 CA2779184 A1 CA 2779184A1
- Authority
- CA
- Canada
- Prior art keywords
- mmol
- compound
- alkyl
- added
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 title description 2
- 239000003909 protein kinase inhibitor Substances 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims description 68
- 125000000217 alkyl group Chemical group 0.000 claims description 35
- 125000003118 aryl group Chemical group 0.000 claims description 24
- 125000000623 heterocyclic group Chemical group 0.000 claims description 24
- 125000001072 heteroaryl group Chemical group 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 17
- 125000003342 alkenyl group Chemical group 0.000 claims description 14
- 125000000304 alkynyl group Chemical group 0.000 claims description 11
- 125000004452 carbocyclyl group Chemical group 0.000 claims description 11
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 10
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 10
- 125000004475 heteroaralkyl group Chemical group 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 6
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 abstract description 12
- 102000001253 Protein Kinase Human genes 0.000 abstract description 11
- 108060006633 protein kinase Proteins 0.000 abstract description 11
- 239000000543 intermediate Substances 0.000 description 99
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 69
- 239000000243 solution Substances 0.000 description 43
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 42
- 230000002829 reductive effect Effects 0.000 description 36
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 31
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 238000000746 purification Methods 0.000 description 24
- 239000007787 solid Substances 0.000 description 23
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 23
- 239000012267 brine Substances 0.000 description 22
- 239000012044 organic layer Substances 0.000 description 22
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 22
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 21
- 235000019341 magnesium sulphate Nutrition 0.000 description 21
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 20
- 108091000080 Phosphotransferase Proteins 0.000 description 20
- -1 cornpositions Substances 0.000 description 20
- 102000020233 phosphotransferase Human genes 0.000 description 20
- 238000010898 silica gel chromatography Methods 0.000 description 17
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 239000003039 volatile agent Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 12
- 125000001424 substituent group Chemical group 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 235000019270 ammonium chloride Nutrition 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- ONDSBJMLAHVLMI-UHFFFAOYSA-N trimethylsilyldiazomethane Chemical compound C[Si](C)(C)[CH-][N+]#N ONDSBJMLAHVLMI-UHFFFAOYSA-N 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 229940125904 compound 1 Drugs 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 8
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 7
- 125000005842 heteroatom Chemical group 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 229910000024 caesium carbonate Inorganic materials 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000012230 colorless oil Substances 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 125000000392 cycloalkenyl group Chemical group 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 4
- 229940126657 Compound 17 Drugs 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 4
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229940126214 compound 3 Drugs 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 238000010189 synthetic method Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 125000002837 carbocyclic group Chemical group 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940126142 compound 16 Drugs 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229940043355 kinase inhibitor Drugs 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 210000004988 splenocyte Anatomy 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- IAVREABSGIHHMO-UHFFFAOYSA-N 3-hydroxybenzaldehyde Chemical compound OC1=CC=CC(C=O)=C1 IAVREABSGIHHMO-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- FFDGPVCHZBVARC-UHFFFAOYSA-N N,N-dimethylglycine Chemical compound CN(C)CC(O)=O FFDGPVCHZBVARC-UHFFFAOYSA-N 0.000 description 2
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 108091008606 PDGF receptors Proteins 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 2
- 102000012515 Protein kinase domains Human genes 0.000 description 2
- 108050002122 Protein kinase domains Proteins 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 102100029823 Tyrosine-protein kinase BTK Human genes 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000003367 polycyclic group Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 2
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 230000003393 splenic effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 2
- VEPTXBCIDSFGBF-UHFFFAOYSA-M tetrabutylazanium;fluoride;trihydrate Chemical compound O.O.O.[F-].CCCC[N+](CCCC)(CCCC)CCCC VEPTXBCIDSFGBF-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- PTHGDVCPCZKZKR-UHFFFAOYSA-N (4-chlorophenyl)methanol Chemical compound OCC1=CC=C(Cl)C=C1 PTHGDVCPCZKZKR-UHFFFAOYSA-N 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical class CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- CHZCERSEMVWNHL-UHFFFAOYSA-N 2-hydroxybenzonitrile Chemical compound OC1=CC=CC=C1C#N CHZCERSEMVWNHL-UHFFFAOYSA-N 0.000 description 1
- DGMOBVGABMBZSB-UHFFFAOYSA-N 2-methylpropanoyl chloride Chemical compound CC(C)C(Cl)=O DGMOBVGABMBZSB-UHFFFAOYSA-N 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- DENKGPBHLYFNGK-UHFFFAOYSA-N 4-bromobenzoyl chloride Chemical compound ClC(=O)C1=CC=C(Br)C=C1 DENKGPBHLYFNGK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010029445 Agammaglobulinaemia Tyrosine Kinase Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000131390 Glis Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 101000864342 Homo sapiens Tyrosine-protein kinase BTK Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 240000005265 Lupinus mutabilis Species 0.000 description 1
- 235000008755 Lupinus mutabilis Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027452 Metastases to bone Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- NUGPIZCTELGDOS-QHCPKHFHSA-N N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclopentanecarboxamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CC[C@@H](C=1C=NC=CC=1)NC(=O)C1CCCC1)C NUGPIZCTELGDOS-QHCPKHFHSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 235000019095 Sechium edule Nutrition 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108010009978 Tec protein-tyrosine kinase Proteins 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 102100039079 Tyrosine-protein kinase TXK Human genes 0.000 description 1
- 101710101516 Tyrosine-protein kinase TXK Proteins 0.000 description 1
- 238000010751 Ullmann type reaction Methods 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical class ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000010072 bone remodeling Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- DVECBJCOGJRVPX-UHFFFAOYSA-N butyryl chloride Chemical compound CCCC(Cl)=O DVECBJCOGJRVPX-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 230000009702 cancer cell proliferation Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 108700003601 dimethylglycine Proteins 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 108010075324 emt protein-tyrosine kinase Proteins 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005448 ethoxyethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- ORCQTMZHDQSNOJ-UHFFFAOYSA-N ethyl 2-methyl-1,3-thiazole-5-carboxylate Chemical compound CCOC(=O)C1=CN=C(C)S1 ORCQTMZHDQSNOJ-UHFFFAOYSA-N 0.000 description 1
- XZIAFENWXIQIKR-UHFFFAOYSA-N ethyl 4-bromobenzoate Chemical compound CCOC(=O)C1=CC=C(Br)C=C1 XZIAFENWXIQIKR-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- JSIVSGGPEZUGDV-UHFFFAOYSA-N hydrazine methanimidamide Chemical compound NN.NC=N JSIVSGGPEZUGDV-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- AWIJRPNMLHPLNC-UHFFFAOYSA-N methanethioic s-acid Chemical compound SC=O AWIJRPNMLHPLNC-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 229940078490 n,n-dimethylglycine Drugs 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 102000037979 non-receptor tyrosine kinases Human genes 0.000 description 1
- 108091008046 non-receptor tyrosine kinases Proteins 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000015929 positive regulation of B cell proliferation Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- UIJXHKXIOCDSEB-QMMMGPOBSA-N tert-butyl (3s)-3-hydroxypiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC[C@H](O)C1 UIJXHKXIOCDSEB-QMMMGPOBSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- DUYAAUVXQSMXQP-UHFFFAOYSA-M thioacetate Chemical compound CC([S-])=O DUYAAUVXQSMXQP-UHFFFAOYSA-M 0.000 description 1
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to a novel family of inhibitors of protein kinases.
In particular, the present invention relates to inhibitors of the members of the Tec and Src protein kinase families, more particularly Btk.
In particular, the present invention relates to inhibitors of the members of the Tec and Src protein kinase families, more particularly Btk.
Description
PROTEIN KINASE INHIBITORS
FIELD OF INVENTION
The present invention relates to a novel family of inhibitors of protein kinases. In particular, the present invention relates to inhibitors of the members of the Tec and Src protein kinase families, more particularly Btk.
BACKGROUND OF THE INVENTION
Protein kinases are a large group of intracellular and transmembrane signaling proteins in eukaryotic cells. These enzymes are responsible for transfer of the terminal (gamma) phosphate from ATP to specific amino acid residues of target proteins. Phosphorylation of specific tyrosine, serine or threonine amino acid residues in target proteins can modulate their activity leading to profound changes in cellular signaling and metabolism. Protein kinases can be found in the cell membrane, cytosol and organelles such as the nucleus and are responsible for mediating multiple cellular functions including metabolism, cellular growth and division, cellular signaling, modulation of immune responses, and apoptosis. The receptor tyrosine kinases are a large family of cell surface receptors with protein tyrosine kinase activity that respond to extracellular cues and activate intracellular signaling cascades (Plowman et al. (1994) DN&P, 7(6):334-339).
Aberrant activation or excessive expression of various protein kinases are implicated in the mechanism of multiple diseases and disorders characterized by benign and malignant proliferation, excess angiogenesis, as well as diseases resulting from inappropriate activation of the immune system. Thus, inhibitors of select kinases or kinase families are expected to be useful in the treatment of cancer, autoimmune diseases, and inflammatory conditions including, but not limited to: solid tumors, hematological malignancies, arthritis, graft versus host disease, lupus erythematosus, psoriasis, colitis, illeitis, multiple sclerosis, uveitis, coronary artery vasculopathy, systemic sclerosis, atherosclerosis, asthma, transplant rejection, allergy, dermatomyositis, pemphigus and the like.
Examples of kinases that can be targeted to modulate disease include receptor tyrosine kinases such as members of the platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor (VEGFR) families and intracellular proteins such as members of the Syk, SRC, and Tec families of kinases.
Tec kinases are non-receptor tyrosine kinases predominantly, but not exclusively, expressed in cells of hematopoietic origin (Bradshaw 3M. Cell Signal. 2010,22:1175-84). The Tec family includes Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (RIk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Btk is a Tec family kinase which is important in B-cell receptor signaling. Btk is activated by Src-family kinases and phosphorylates PLC gamma leading to effects on B-cell function and survival. Additionally, Btk is important in signal transduction in response to immune complex recognition by macrophage, mast cells and neutrophils. Btk inhibition is also important in survival of lymphoma cells (Herman, SEM. Blood 2011, 117:6287-6289) suggesting that inhibition of Btk may be useful in the treatment of lymphomas. As such, inhibitors of Btk and related kinases are of great interest as anti-inflammatory as well as anti-cancer agents.
cSRC is the prototypical member of the SRC family of tyrosine kinases which includes Lyn, Fyn, Lck, Hck, Fgr, Blk, Syk, Yrk, and Yes. cSRC is critically involved in signaling pathways involved in cancer and is often over-expressed in human malignancies (Kim LC, Song L, Haura EB. Nat Rev Clin Oncol. 2009 6(10):587-9). The role of cSRC in cell adhesion, migration and bone remodeling strongly implicate this kinase in the development and progression of bone metastases. cSRC is also involved in signaling downstream of growth factor receptor tyrosine kinases and regulates cell cycle progression suggesting that cSRC inhibition would impact cancer cell proliferation.
Additionally, inhibition of SRC family members may be useful in treatments designed to modulate immune function. SRC family members, including Lck, regulate T-cell receptor signal transduction which leads to gene regulation events resulting in cytokine release, survival and proliferation. Thus, inhibitors of Lck have been keenly sought as immunosuppressive agents with potential application in graft rejection and T-cell mediated autoimmune disease (Martin et al. Expert Opin Ther Pat. 2010, 20:1573-93).
Inhibition of kinases using small molecule inhibitors has successfully led to several approved therapeutic agents used in the treatment of human conditions. Herein, we disclose a novel family of kinase inhibitors. Further, we demonstrate that modifications in compound substitution can influence kinase selectivity and therefore the biological function of that agent.
SUMMARY OF THE INVENTION
The present invention relates to a novel family of kinase inhibitors.
Compounds of this class have been found to have inhibitory activity against members of the Tec and Scr protein kinase families, more particularly Btk.
One aspect of the present invention is directed to a compound of Formula 1:
NH2 y_z_w N N, Formula 1 wherein n is an integer from 0 to 2;
X is selected from the group consisting of:
1) hydrogen, 2) alkyl, 3) heteroalkyl, 4) carbocyclyl, 5) heterocyclyl;
wherein the alkyl, heteroalkyl, carbocyclyl and heterocyclyl may be further substituted by the groups consisting of:
1) hydroxy, 2) alkoxy, 3) alkyl, 4) -0C(0)R4, 5) -0C(0)NR5R6, 6) -C(0)R4, 7) -C(0)NR5R6, 8) -NR5R6, 9) -NR2C(0)R4, 10) -NR2S(0)nR4, 11) -NR2C(0)NR5R6;
Y is selected from:
1 o (X2)n Z is selected from:
X1 and X2 are independently selected from hydrogen, halogen or cyano;
W is independently selected from:
1) alkyl, 2) aralkyl, 3) heteroaralkyl, 4) -0R3, 5) -0C(0)R4, 6) -0C(0)NR5R6, 7) -CH2O-R4, 8) -NR5R6, 9) -NR2C(0)R4, 10) -NR2S(0)R4, 11) -NR2C(0)NR5R6;
wherein the alkyl, aralkyl and heteraralkyl may be further substituted;
R2 is selected from hydrogen or alkyl;
R3 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;
R4 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl or heteroaryl;
R5 and R6 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl or R5 and R6 can be fused to form a 3 to 8 membered heterocyclyl ring system.
Preferred embodiment includes compounds of Formula 1 where W is selected from -0R3 and R3 is selected from substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl.
Preferred embodiment includes compounds of Formula 1 where W is selected from the group consisting of:
N, ¨0 = ¨0 II 00 ¨0 ¨0 Ho ¨0 /
lit ¨0 N
rN rN
--0/ / \
s-or Preferred embodiment includes compounds of Formula 1 where X is selected from the group consisting of:
JVVV JVL/11 'NW
JVV,/
.Aftn/
VVIIV
NH
H, Me, acetyl, cis.? 0 0 , 0 ONV
JVW
Ny0< N rN) ( , ./VVV
N) , ,or More preferred embodiment includes compounds of Formula 1 where W is selected from the group consisting of:
or More preferred embodiment includes compounds of Formula 1 where Z is selected from the group consisting of:
j Another aspect of the present invention provides a pharmaceutical composition comprising an effective amount of a compound of Formula 1 and a pharmaceutically acceptable carrier, diluent or excipient.
In another aspect of the present invention, there is provided a use of the compound of Formula 1 as an inhibitor of protein kinase, more particularly, as an inhibitor of Btk.
Another aspect of the present invention provides a method of modulating kinase function, the method comprising contacting a cell with a compound of the present invention in an amount sufficient to modulate the enzymatic activity of a given kinase or kinases, such as Btk, thereby modulating the kinase function.
Another aspect of the present invention provides a method of modulating the target kinase function, the method comprising a) contacting a cell with a compound of the present invention in an amount sufficient to modulate the target kinase function, thereby b) modulating the target kinase activity and signaling.
Another aspect of the present invention provides a probe, the probe comprising a compound of Formula 1 labeled with a detectable label or an affinity tag. In other words, the probe comprises a residue of a compound of Formula 1 covalently conjugated to a detectable label. Such detectable labels include, but are not limited to, a fluorescent moiety, a chemiluminescent moiety, a paramagnetic contrast agent, a metal chelate, a radioactive isotope-containing moiety, or biotin.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention relates to novel kinase inhibitors. These compounds are found to have activity as inhibitors of protein kinases: including members of the tyrosine kinases Aurora, SRC (more specifically Lck) and Tec (more specifically Btk) kinase families.
Compounds of the present invention may be formulated into a pharmaceutical composition which comprises an effective amount of a compound of Formula 1 with a pharmaceutically acceptable diluent or carrier.
For example, the pharmaceutical compositions may be in a conventional pharmaceutical form suitable for oral administration (e.g., tablets, capsules, granules, powders and syrups), parenteral administration (e.g., injections (intravenous, intramuscular, or subcutaneous)), drop infusion preparations, inhalation, eye lotion, topical administration (e.g., ointment), or suppositories. Regardless of the route of administration selected the compounds may be formulated into pharmaceutically acceptable dosage forms by conventional methods known to those skilled in the art.
The phrase "pharmaceutically acceptable" is employed herein to refer to those ligands, materials, cornpositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase "pharmaceutically acceptable carrier" as used herein means a pharmaceutically acceptable material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material.
Each carrier must be acceptable in the sense of being compatible with the other ingredients of the formulation, including the active ingredient, and not injurious or harmful to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose, and sucrose; (2) starches, such as corn starch, potato starch, and substituted or unsubstituted (3-cyclodextrin; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc;
(8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
The term "pharmaceutically acceptable salt" refers to the relatively non-toxic, inorganic and organic acid addition salts of the compound(s). These salts can be prepared in situ during the final isolation and purification of the compound(s), or by separately reacting a purified compound(s) in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, laurylsulphonate salts, and amino acid salts, and the like (See, for example, Berge et al. (1977) "Pharmaceutical Salts", J. Pharm. Sci. 66:
1-19).
In other cases, the compounds of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases.
The term "pharmaceutically acceptable salts" in these instances refers to the relatively non-toxic inorganic and organic base addition salts of a compound(s). These salts can likewise be prepared in situ during the final isolation and purification of the compound(s), or by separately reacting the purified compound(s) in its free acid form with a suitable base, such as the hydroxide, carbonate, or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts, and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, and the like (see, for example, Berge et al., supra).
As used herein, the term "affinity tag" means a ligand or group, linked either to a compound of the present invention or to a protein kinase domain, that allows the conjugate to be extracted from a solution.
The term "alkyl" refers to substituted or unsubstituted saturated hydrocarbon groups, including straight-chain alkyl and branched-chain alkyl groups, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc. Representative alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, (cyclohexyl)methyl, cyclopropylmethyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. The terms "alkenyl" and "alkynyl" refer to substituted or unsubstituted unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
Representative alkenyl groups include vinyl, propen-2-yl, crotyl, isopenten-2-yl, 1,3-butadien-2-y1), 2,4-pentadienyl, and 1,4-pentadien-3-yl.
Representative alkynyl groups include ethynyl, 1- and 3-propynyl, and 3-butynyl. In certain preferred embodiments, alkyl substituents are lower alkyl groups, e.g., having from 1 to 6 carbon atoms. Similarly, alkenyl and alkynyl preferably refer to lower alkenyl and alkynyl groups, e.g., having from 2 to 6 carbon atoms. As used herein, "alkylene" refers to an alkyl group with two open valencies (rather than a single valency), such as -(0-12)1-10- and substituted variants thereof.
The term "alkoxy" refers to an alkyl group having an oxygen attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like. An "ether" is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxy.
The term "alkoxyalkyl" refers to an alkyl group substituted with an alkoxy group, thereby forming an ether.
The terms "amide" and "amido" are art-recognized as an amino-substituted carbonyl and includes a moiety that can be represented by the general formula:
wherein R9, R1 are as defined above. Preferred embodiments of the amide will not include imides, which may be unstable.
The terms "amine" and "amino" are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by the general formulae:
or ¨N¨+
Rl Rlo R1o.
wherein R9, Rim and Rim' each independently represent a hydrogen, an alkyl, an alkenyl, -(CH2)m-R8, or R9 and R' taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocyclyl or a polycyclyl; and m is zero or an integer from 1 to 8. In preferred embodiments, only one of R9 or 111 can be a carbonyl, e.g., R9, R10, and the nitrogen together do not form an imide. In even more preferred embodiments, R9 and R1 (and optionally R10') each independently represent a hydrogen, an alkyl, an alkenyl, or -(CH2)m-R8. In certain embodiments, the amino group is basic, meaning the protonated form has a pKa > 7.00.
The term "aralkyl", as used herein, refers to an alkyl group substituted with an aryl group, for example -(CH2)n-Ar.
The term "heteroaralkyl", as used herein, refers to an alkyl group substituted with a heteroaryl group, for example -(CH2)õ-Het.
The term "aryl" as used herein includes 5-, 6-, and 7-membered substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon. The term "aryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, anthracene, and phenanthrene.
The terms "carbocycle" and "carbocyclyl", as used herein, refer to a non-aromatic substituted or unsubstituted ring in which each atom of the ring is carbon. The terms "carbocycle" and "carbocycly1" also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is carbocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Representative carbocyclic groups include cyclopentyl, cyclohexyl, 1-cyclohexenyl, and 3-cyclohexen-1-yl, cycloheptyl.
The term "carbonyl" is art-recognized and includes such moieties as can be represented by the general formula:
x,R"
wherein X is a bond or represents an oxygen or a sulfur, and RH represents a hydrogen, an alkyl, an alkenyl, -(CH2)m-R8 or a pharmaceutically acceptable salt. Where X is an oxygen and RH is not hydrogen, the formula represents an "ester". Where X is an oxygen, and Ril is a hydrogen, the formula represents a "carboxylic acid".
The terms "heteroaryl" includes substituted or unsubstituted aromatic 5- to 7-membered ring structures, more preferably 5- to 6-membered rings, whose ring structures include one to four heteroatoms. The term "heteroaryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, isoxazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
FIELD OF INVENTION
The present invention relates to a novel family of inhibitors of protein kinases. In particular, the present invention relates to inhibitors of the members of the Tec and Src protein kinase families, more particularly Btk.
BACKGROUND OF THE INVENTION
Protein kinases are a large group of intracellular and transmembrane signaling proteins in eukaryotic cells. These enzymes are responsible for transfer of the terminal (gamma) phosphate from ATP to specific amino acid residues of target proteins. Phosphorylation of specific tyrosine, serine or threonine amino acid residues in target proteins can modulate their activity leading to profound changes in cellular signaling and metabolism. Protein kinases can be found in the cell membrane, cytosol and organelles such as the nucleus and are responsible for mediating multiple cellular functions including metabolism, cellular growth and division, cellular signaling, modulation of immune responses, and apoptosis. The receptor tyrosine kinases are a large family of cell surface receptors with protein tyrosine kinase activity that respond to extracellular cues and activate intracellular signaling cascades (Plowman et al. (1994) DN&P, 7(6):334-339).
Aberrant activation or excessive expression of various protein kinases are implicated in the mechanism of multiple diseases and disorders characterized by benign and malignant proliferation, excess angiogenesis, as well as diseases resulting from inappropriate activation of the immune system. Thus, inhibitors of select kinases or kinase families are expected to be useful in the treatment of cancer, autoimmune diseases, and inflammatory conditions including, but not limited to: solid tumors, hematological malignancies, arthritis, graft versus host disease, lupus erythematosus, psoriasis, colitis, illeitis, multiple sclerosis, uveitis, coronary artery vasculopathy, systemic sclerosis, atherosclerosis, asthma, transplant rejection, allergy, dermatomyositis, pemphigus and the like.
Examples of kinases that can be targeted to modulate disease include receptor tyrosine kinases such as members of the platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor receptor (VEGFR) families and intracellular proteins such as members of the Syk, SRC, and Tec families of kinases.
Tec kinases are non-receptor tyrosine kinases predominantly, but not exclusively, expressed in cells of hematopoietic origin (Bradshaw 3M. Cell Signal. 2010,22:1175-84). The Tec family includes Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (RIk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Btk is a Tec family kinase which is important in B-cell receptor signaling. Btk is activated by Src-family kinases and phosphorylates PLC gamma leading to effects on B-cell function and survival. Additionally, Btk is important in signal transduction in response to immune complex recognition by macrophage, mast cells and neutrophils. Btk inhibition is also important in survival of lymphoma cells (Herman, SEM. Blood 2011, 117:6287-6289) suggesting that inhibition of Btk may be useful in the treatment of lymphomas. As such, inhibitors of Btk and related kinases are of great interest as anti-inflammatory as well as anti-cancer agents.
cSRC is the prototypical member of the SRC family of tyrosine kinases which includes Lyn, Fyn, Lck, Hck, Fgr, Blk, Syk, Yrk, and Yes. cSRC is critically involved in signaling pathways involved in cancer and is often over-expressed in human malignancies (Kim LC, Song L, Haura EB. Nat Rev Clin Oncol. 2009 6(10):587-9). The role of cSRC in cell adhesion, migration and bone remodeling strongly implicate this kinase in the development and progression of bone metastases. cSRC is also involved in signaling downstream of growth factor receptor tyrosine kinases and regulates cell cycle progression suggesting that cSRC inhibition would impact cancer cell proliferation.
Additionally, inhibition of SRC family members may be useful in treatments designed to modulate immune function. SRC family members, including Lck, regulate T-cell receptor signal transduction which leads to gene regulation events resulting in cytokine release, survival and proliferation. Thus, inhibitors of Lck have been keenly sought as immunosuppressive agents with potential application in graft rejection and T-cell mediated autoimmune disease (Martin et al. Expert Opin Ther Pat. 2010, 20:1573-93).
Inhibition of kinases using small molecule inhibitors has successfully led to several approved therapeutic agents used in the treatment of human conditions. Herein, we disclose a novel family of kinase inhibitors. Further, we demonstrate that modifications in compound substitution can influence kinase selectivity and therefore the biological function of that agent.
SUMMARY OF THE INVENTION
The present invention relates to a novel family of kinase inhibitors.
Compounds of this class have been found to have inhibitory activity against members of the Tec and Scr protein kinase families, more particularly Btk.
One aspect of the present invention is directed to a compound of Formula 1:
NH2 y_z_w N N, Formula 1 wherein n is an integer from 0 to 2;
X is selected from the group consisting of:
1) hydrogen, 2) alkyl, 3) heteroalkyl, 4) carbocyclyl, 5) heterocyclyl;
wherein the alkyl, heteroalkyl, carbocyclyl and heterocyclyl may be further substituted by the groups consisting of:
1) hydroxy, 2) alkoxy, 3) alkyl, 4) -0C(0)R4, 5) -0C(0)NR5R6, 6) -C(0)R4, 7) -C(0)NR5R6, 8) -NR5R6, 9) -NR2C(0)R4, 10) -NR2S(0)nR4, 11) -NR2C(0)NR5R6;
Y is selected from:
1 o (X2)n Z is selected from:
X1 and X2 are independently selected from hydrogen, halogen or cyano;
W is independently selected from:
1) alkyl, 2) aralkyl, 3) heteroaralkyl, 4) -0R3, 5) -0C(0)R4, 6) -0C(0)NR5R6, 7) -CH2O-R4, 8) -NR5R6, 9) -NR2C(0)R4, 10) -NR2S(0)R4, 11) -NR2C(0)NR5R6;
wherein the alkyl, aralkyl and heteraralkyl may be further substituted;
R2 is selected from hydrogen or alkyl;
R3 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;
R4 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl or heteroaryl;
R5 and R6 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl or R5 and R6 can be fused to form a 3 to 8 membered heterocyclyl ring system.
Preferred embodiment includes compounds of Formula 1 where W is selected from -0R3 and R3 is selected from substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl.
Preferred embodiment includes compounds of Formula 1 where W is selected from the group consisting of:
N, ¨0 = ¨0 II 00 ¨0 ¨0 Ho ¨0 /
lit ¨0 N
rN rN
--0/ / \
s-or Preferred embodiment includes compounds of Formula 1 where X is selected from the group consisting of:
JVVV JVL/11 'NW
JVV,/
.Aftn/
VVIIV
NH
H, Me, acetyl, cis.? 0 0 , 0 ONV
JVW
Ny0< N rN) ( , ./VVV
N) , ,or More preferred embodiment includes compounds of Formula 1 where W is selected from the group consisting of:
or More preferred embodiment includes compounds of Formula 1 where Z is selected from the group consisting of:
j Another aspect of the present invention provides a pharmaceutical composition comprising an effective amount of a compound of Formula 1 and a pharmaceutically acceptable carrier, diluent or excipient.
In another aspect of the present invention, there is provided a use of the compound of Formula 1 as an inhibitor of protein kinase, more particularly, as an inhibitor of Btk.
Another aspect of the present invention provides a method of modulating kinase function, the method comprising contacting a cell with a compound of the present invention in an amount sufficient to modulate the enzymatic activity of a given kinase or kinases, such as Btk, thereby modulating the kinase function.
Another aspect of the present invention provides a method of modulating the target kinase function, the method comprising a) contacting a cell with a compound of the present invention in an amount sufficient to modulate the target kinase function, thereby b) modulating the target kinase activity and signaling.
Another aspect of the present invention provides a probe, the probe comprising a compound of Formula 1 labeled with a detectable label or an affinity tag. In other words, the probe comprises a residue of a compound of Formula 1 covalently conjugated to a detectable label. Such detectable labels include, but are not limited to, a fluorescent moiety, a chemiluminescent moiety, a paramagnetic contrast agent, a metal chelate, a radioactive isotope-containing moiety, or biotin.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention relates to novel kinase inhibitors. These compounds are found to have activity as inhibitors of protein kinases: including members of the tyrosine kinases Aurora, SRC (more specifically Lck) and Tec (more specifically Btk) kinase families.
Compounds of the present invention may be formulated into a pharmaceutical composition which comprises an effective amount of a compound of Formula 1 with a pharmaceutically acceptable diluent or carrier.
For example, the pharmaceutical compositions may be in a conventional pharmaceutical form suitable for oral administration (e.g., tablets, capsules, granules, powders and syrups), parenteral administration (e.g., injections (intravenous, intramuscular, or subcutaneous)), drop infusion preparations, inhalation, eye lotion, topical administration (e.g., ointment), or suppositories. Regardless of the route of administration selected the compounds may be formulated into pharmaceutically acceptable dosage forms by conventional methods known to those skilled in the art.
The phrase "pharmaceutically acceptable" is employed herein to refer to those ligands, materials, cornpositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase "pharmaceutically acceptable carrier" as used herein means a pharmaceutically acceptable material, composition, or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material.
Each carrier must be acceptable in the sense of being compatible with the other ingredients of the formulation, including the active ingredient, and not injurious or harmful to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose, and sucrose; (2) starches, such as corn starch, potato starch, and substituted or unsubstituted (3-cyclodextrin; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc;
(8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
The term "pharmaceutically acceptable salt" refers to the relatively non-toxic, inorganic and organic acid addition salts of the compound(s). These salts can be prepared in situ during the final isolation and purification of the compound(s), or by separately reacting a purified compound(s) in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, laurylsulphonate salts, and amino acid salts, and the like (See, for example, Berge et al. (1977) "Pharmaceutical Salts", J. Pharm. Sci. 66:
1-19).
In other cases, the compounds of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases.
The term "pharmaceutically acceptable salts" in these instances refers to the relatively non-toxic inorganic and organic base addition salts of a compound(s). These salts can likewise be prepared in situ during the final isolation and purification of the compound(s), or by separately reacting the purified compound(s) in its free acid form with a suitable base, such as the hydroxide, carbonate, or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts, and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, and the like (see, for example, Berge et al., supra).
As used herein, the term "affinity tag" means a ligand or group, linked either to a compound of the present invention or to a protein kinase domain, that allows the conjugate to be extracted from a solution.
The term "alkyl" refers to substituted or unsubstituted saturated hydrocarbon groups, including straight-chain alkyl and branched-chain alkyl groups, including haloalkyl groups such as trifluoromethyl and 2,2,2-trifluoroethyl, etc. Representative alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, (cyclohexyl)methyl, cyclopropylmethyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. The terms "alkenyl" and "alkynyl" refer to substituted or unsubstituted unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
Representative alkenyl groups include vinyl, propen-2-yl, crotyl, isopenten-2-yl, 1,3-butadien-2-y1), 2,4-pentadienyl, and 1,4-pentadien-3-yl.
Representative alkynyl groups include ethynyl, 1- and 3-propynyl, and 3-butynyl. In certain preferred embodiments, alkyl substituents are lower alkyl groups, e.g., having from 1 to 6 carbon atoms. Similarly, alkenyl and alkynyl preferably refer to lower alkenyl and alkynyl groups, e.g., having from 2 to 6 carbon atoms. As used herein, "alkylene" refers to an alkyl group with two open valencies (rather than a single valency), such as -(0-12)1-10- and substituted variants thereof.
The term "alkoxy" refers to an alkyl group having an oxygen attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like. An "ether" is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxy.
The term "alkoxyalkyl" refers to an alkyl group substituted with an alkoxy group, thereby forming an ether.
The terms "amide" and "amido" are art-recognized as an amino-substituted carbonyl and includes a moiety that can be represented by the general formula:
wherein R9, R1 are as defined above. Preferred embodiments of the amide will not include imides, which may be unstable.
The terms "amine" and "amino" are art-recognized and refer to both unsubstituted and substituted amines and salts thereof, e.g., a moiety that can be represented by the general formulae:
or ¨N¨+
Rl Rlo R1o.
wherein R9, Rim and Rim' each independently represent a hydrogen, an alkyl, an alkenyl, -(CH2)m-R8, or R9 and R' taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocyclyl or a polycyclyl; and m is zero or an integer from 1 to 8. In preferred embodiments, only one of R9 or 111 can be a carbonyl, e.g., R9, R10, and the nitrogen together do not form an imide. In even more preferred embodiments, R9 and R1 (and optionally R10') each independently represent a hydrogen, an alkyl, an alkenyl, or -(CH2)m-R8. In certain embodiments, the amino group is basic, meaning the protonated form has a pKa > 7.00.
The term "aralkyl", as used herein, refers to an alkyl group substituted with an aryl group, for example -(CH2)n-Ar.
The term "heteroaralkyl", as used herein, refers to an alkyl group substituted with a heteroaryl group, for example -(CH2)õ-Het.
The term "aryl" as used herein includes 5-, 6-, and 7-membered substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon. The term "aryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, anthracene, and phenanthrene.
The terms "carbocycle" and "carbocyclyl", as used herein, refer to a non-aromatic substituted or unsubstituted ring in which each atom of the ring is carbon. The terms "carbocycle" and "carbocycly1" also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is carbocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Representative carbocyclic groups include cyclopentyl, cyclohexyl, 1-cyclohexenyl, and 3-cyclohexen-1-yl, cycloheptyl.
The term "carbonyl" is art-recognized and includes such moieties as can be represented by the general formula:
x,R"
wherein X is a bond or represents an oxygen or a sulfur, and RH represents a hydrogen, an alkyl, an alkenyl, -(CH2)m-R8 or a pharmaceutically acceptable salt. Where X is an oxygen and RH is not hydrogen, the formula represents an "ester". Where X is an oxygen, and Ril is a hydrogen, the formula represents a "carboxylic acid".
The terms "heteroaryl" includes substituted or unsubstituted aromatic 5- to 7-membered ring structures, more preferably 5- to 6-membered rings, whose ring structures include one to four heteroatoms. The term "heteroaryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heteroaromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls. Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, isoxazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
The term "heteroatom" as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, and sulfur.
The terms "heterocycly1" or "heterocyclic group" refer to substituted or unsubstituted non-aromatic 3- to 10-membered ring structures, more preferably 3- to 7-membered rings, whose ring structures include one to four heteroatoms. The term terms "heterocycly1" or "heterocyclic group" also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
Heterocyclyl groups include, for example, tetrahydrofuran, tetrahydropyran, piperidine, piperazine, pyrrolidine, morpholine, lactones, and lactams.
The term "hydrocarbon", as used herein, refers to a group that is bonded through a carbon atom that does not have a =0 or =S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms. Thus, groups like methyl, ethoxyethyl, 2-pyridyl, and trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a =0 substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not. Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
The terms "polycycly1" or "polycyclic" refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more carbons are common to two adjoining rings, e.g., the rings are "fused rings". Each of the rings of the polycycle can be substituted or unsubstituted.
As used herein, the term "probe" means a compound of the invention which is labeled with either a detectable label or an affinity tag, and which is capable of binding, either covalently or non-covalently, to a protein kinase domain. When, for example, the probe is non-covalently bound, it may be displaced by a test compound. When, for example, the probe is bound covalently, it may be used to form cross-linked adducts, which may be quantified and inhibited by a test compound.
The term "substituted" refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that "substitution" or "substituted with" includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term "substituted" is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. Substituents can include, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate.
Compounds of the invention also include all isotopes of atoms present in the intermediates and/or final compounds. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include deuterium and tritium.
General Synthetic Methods General Synthetic Method A:
W W W
Base, ligand, IW ir W catalyst 0 4:S: NaOH
) oxalyl chloride 0 ---b- 0 OH a Bo2c w Ho2c ir cloc le Br .' 1-i 1-iii 1-iv 1-v 1-ii 40w 0=w 0 =
1-v malononitrile io TMS-diazomethane 0 hydrazine . W
r- r NC
i \
CN meo -,.. CN ,N
CN CN H
1-vi 1-ii 1-viii 0 = 0 =
formamidine ________ 3. NH2 = W __________________ fa W
Ph3P, DIAD
1-viii . NH2 1,1 N N N 1-x R, 1-ix Scheme 1 Ulmann condensation of phenol 1-i with ester 1-ii provided intermediate 1-iii.
Saponification of intermediate 1-iii yielded intermediate 1-iv. Conversion of intermediate 1-iv to its acid chloride, using for example oxalyl chloride and DMF, provided intermediate 1-v. Condensation of intermediate 1-v with malononitrile yielded intermediate 1-vi. Methylation of intermediate 1-vi with TMS-diazomethane provided intermediate 1-vii. Condensation of 1-vii with hydrazine yielded intermediate 1-viii. Condensation of intermediate 1-viii with formamidine yielded intermediate 1-ix. Intermediate 1-ix was treated with alcohol R1OH, under Mitsunobu conditions, to provide the desired compounds or intermediates of general formula 1-x.
General Synthetic Method B:
malononitrile TMS-diazomethane hydrazine CN
,c) CN
NC
\
CN
2-i 2-ii 2-ili 2-iv X=I, Br X 0*
X
2-iv formamidine Ph3P, DIAD, NH2 Base, ligand, = NH2 catalyst NH2 N \ \
RICH L ,N 1 N IN
I
N". \N N, N N
10 w , R1 N N
2-vii 2 OH-v 2-vi 2-viii Scheme 2 Benzoyl chlorides of formula 2-i were condensed with malononitrile to provide intermediate 2-ii. Methylation of intermediate 2-ii with TMS-diazomethane provided intermediate 2-iii. Condensation of intermediate 2-iii with hydrazine provided intermediate 2-iv. Further condensation of intermediate 2-iv with formamidine provided intermediate 2-v. Intermediate 2-v was treated with alcohol WON, under Mitsunobu conditions, to provide intermediate 2-vi. Ullmann condensation of intermediate 2-vi with phenolic intermediates 2-vii provided the desired compounds or intermediates of general formula 2-viii.
Exemplification The following synthetic methods are intended to be representative of the chemistry used to prepare compounds of Formula 1 and are not intended to be limiting.
Synthesis of Compound 1:
,L0 )LOH 0 OBn OH K2CO3 Al OBn CuCI, Cs2CO3 ________________ = ______________________ =
Benzyl bromide IP 0 0 EtO2C
3-a Br 3-b OBn S I. OBn NaOH oxaly1 chloride 3-b ________ .. o __________ = o Ho2c CIOC
3-c 3-d DIPEA TMS-diazomethane 3-d ________ 0.
malononitrile (1101 0 0 \ CN \ CN
HO Me0 CN CN
3-e 3-f 0 . 0 *
hydrazine 0 formamidine 0 3-f _______ =
NC NH2 *
N .
/ \ N
= \
H2N N N'' I , H N [NI
3-g Compound 1 Scheme 3 Step 1: Intermediate 3-a Benzyl bromide (27.0 ml, 227 mmol) was added drop wise to a stirred suspension of resorcinol (25.0 g, 227 mmol) and potassium carbonate (31.4 g, 227 mmol) in acetone (150 ml) and the reaction was heated under reflux overnight. Volatiles were removed under reduced pressure. Water and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by silica gel chromatography provided intermediate 3-a as a beige oil.
Step 2: Intermediate 3-b To a solution of 3-a (15.0 g, 74.9 mmol) in 1,4-dioxane (200 ml) were sequentially added ethyl 4-bromobenzoate (20.59 g, 90 mmol), N,N-dimethylglycine (4.25 g, 41.2 mmol), copper(I) chloride(3.71 g, 37.5 mmol) and cesium carbonate (61.0 g, 187 mmol). The reaction mixture was stirred at reflux overnight and then cooled to room temperature. Water and ethyl acetate were added, the organic layer was separated, washed with saturated aqueous NaHCO3, brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 3-b as a colorless oil.
Step 3: Intermediate 3-c To a solution of 3-b (17.5 g, 50.2 mmol) in THF (200 ml) and Me0H (100 ml) was added 2N sodium hydroxide (100 ml, 200 mmol) and the reaction was stirred at room temperature overnight. Volatiles were removed under reduced pressure. 10% Aqueous HCI and ethyl acetate were added to the residue, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide intermediate 3-c as beige solid.
Step 4: Intermediate 3-d To a suspension of 3-c (16.1 g, 50.3 mmol) in dichloromethane (100 ml) were added DMF (0.1 ml, 1.29 mmol) and oxalyl chloride (4.4 ml, 50.3 mmol). The solution was stirred at room temperature for 2 hours. Volatiles were removed under reduced pressure to provide intermediate 3-d as beige solid.
Step 5: Intermediate 3-e To a solution of intermediate 3-d (16.5 g, 48.9 mmol) in toluene (50 ml) and THF (7 ml), cooled to -10 C, were added malononitrile (3.19 ml, 50.2 mmol) and DIPEA (17.5 ml, 100 mmol) in toluene (50 mL), drop wise, over a period of 30 minutes. After the addition was completed, the reaction was stirred for 1 hour at 0 C and room temperature overnight. Volatiles were removed under reduced pressure. 1M aqueous HCI and ethyl acetate were added, the organic layer was separated, washed with 1M HCI and brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide intermediate 3-e as beige solid.
Step 6: Intermediate 3-f To a solution of intermediate 3-e (18.1 g, 49.1 mmol) in acetonitrile (177 ml) and methanol (19.0 ml), cooled to 0 C, were added DIPEA (10.3 ml, 59.0 mmol) and a 2M solution of (diazomethyl)trimethylsilane in hexanes (27.0 ml, 54.0 mmol). After the addition was completed, the reaction was stirred at room temperature overnight. Acetic acid (0.56 ml, 9.83 mmol) was added, the reaction was then stirred for 30 minutes and volatiles were removed under reduced pressure. Saturated aqueous NaHCO3 and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 3-f as yellow solid.
Step 7: Intermediate 3-g To a suspension of intermediate 3-f (8.05 g, 21.1 mmol) in ethanol (10.5 ml) was added a solution of hydrazine nionohydrate (2.76 ml, 56.8 mmol). The reaction was stirred at 100 C for 1 hour and then cooled to room temperature. Water was added; a precipitate formed and was collected by filtration, washed with diethyl ether and dried in vacuo to provide intermediate 3-g as an off-white solid.
Step 8: Compound 1 Intermediate 3-g (8 g, 20.92 mmol) was added to a solution of formamidine (58.4 ml, 1464 mmol) and the reaction was stirred at 180 C for 2 hours and then cooled to room temperature. Water and ethyl acetate were added; the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide compound 1 as beige solid. MS (m/z) M+H= 410.2 Synthesis of Compound 2:
o * o *
NH2 * Ph3P, DIAD NH2 =
N \ OH N \
N
, 1_ I ,N
N N
Compound 1 Compound 2 Scheme 4 To a solution of cyclopentanol (316 mg, 3.66 mmol) in THF was added triphenylphosphine (961 mg, 3.66 mmol) and DIAD (712 id, 3.66 mmol). The yellow solution was stirred 5 minutes, compound 1 (1.0 g, 2.44 mmol) was added and the reaction was then stirred at room temperature overnight.
Volatiles were removed under reduced pressure. Purification by silica gel chromatography provided compound 2 as an off-white solid. MS (m/z) M+H=478.2 Synthesis of Compound 3:
0= 0=
Ph3P, DIAD
NH2 qk \ NV' \
N
I N
N
N
Compound 1 0 Compound 3 Scheme 5 To a solution of (S)-tert-butyl 3-hydroxypiperidine-1-carboxylate (5.65 g, 28.1 mmol) in THF was added triphenylphosphine (7.37 g, 28.1 mmol) and DIAD (5.46 ml, 28.1 mmol). The yellow solution was stirred 5 minutes, compound 1 (10 g, 24.42 mmol) was added and the reaction was then stirred at room temperature overnight. Volatiles were removed under reduced pressure. Purification by silica gel chromatography provided compound 3 as white foam. MS (m/z) M+H= 593.1 Synthesis of Compound 4:
0* 0*
NH2 HCI*
NH2 *
elkN "- N
N N
N N
a NH
Compound 4 Compound 3 Scheme 6 To a solution of compound 3 (1.88 g, 3.17 mmol) in dichloromethane was added 4N HCI in 1,4-dioxane (19.82 ml, 79.0 mmol) and the reaction was stirred at room temperature for 2 hours. Volatiles were removed under reduced pressure. Purification by reverse phase chromatography eluting with a 1% aqueous HCl/methanol gradient provided compound 4.2HCI as white solid. MS (m/z) M+H= 493.1 Synthesis of compound 5 * *
N "N N
I' 1 N
N N
L bN
Compound 4 Compound 5 Scheme 7 To a solution of compound 4.2HCI (100 mg, 0.17 mmol) in dichloromethane (2 ml) cooled to 0 C were sequentially added TEA (99 pl, 0.70 mmol) and acryloyl chloride (17.61 mg, 0.19 mmol). The reaction was stirred at 0 C for 1 hour. A saturated aqueous solution of ammonium chloride was added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided compound 5 as white solid. MS (m/z) M+H= 547.1 Synthesis of compound 6 0* 0 =
TEA
\NI 0 2HCI N \ N , N N N N
LNH
Compound 4 Compound 6 Scheme 8 To a solution of compound 42HCI (1.8 g, 3.18 mmol) in dichloromethane (32 ml) cooled to 0 C were sequentially added TEA (1.77 ml, 12.73 mmol) and acetyl chloride (249 pl, 3.50 mmol). The reaction was stirred at 0 C for 1 hour and room temperature overnight. Saturated aqueous ammonium chloride was added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by reverse phase chromatography eluting with 1% aqueous HCl/methanol gradient provided compound 6=FICI as beige solid. MS (m/z) M+H= 535.1 Compounds 7 and 8 were prepared in a similar manner to compounds 6 by acylation of compound 4 with butanoyl chloride and iso-butanoyl chloride, respectively.
Synthesis of intermediate 9-d Br Br Br DIPEA
malononitrile 1110 TMS-diazomethane CN
CN
CN
9-a 9-b Br Br hydrazine formamidine 9-b __________________________________________ NH2 NC N
N
\
NH N
9-c 9-d Scheme 9 Step 1: Intermediate 9-a To a solution of 4-bromobenzoyl chloride (25 g, 114 mmol) in toluene (200 ml) and THF (30 ml), cooled to -10 C, were sequentially added malononitrile (7.60 ml, 120.0 mmol) and DIPEA (39.8 ml, 228 mmol) in toluene (50 mL) drop wise over a period of 1 hour. After the addition was completed, the reaction was stirred for 1 hour at 0 C and room temperature overnight.
Volatiles were removed under reduced pressure. 1M HCI and ethyl acetate were added to the residue, the organic layer was separated, washed twice with 1M HCI and brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide intermediate 9-a as yellow solid.
Step 2: Intermediate 9-b To a solution of intermediate 9-a (26.4 g, 106 mmol) in acetonitrile (300 ml) and methanol (35.0 ml), cooled to 0 C, was added DIPEA (22.2 ml, 127 mmol) and (diazomethyl)trimethylsilane (58.3 ml, 117 mmol). After the addition was completed, the reaction was stirred at room temperature overnight. Acetic acid (1.21 ml, 21.2 mmol) was added, the reaction was stirred for 30 minutes and volatiles were removed under reduced pressure.
Saturated aqueous NaHCO3 and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 9-b as a yellow solid.
Step 3: Intermediate 9-c To a suspension of intermediate 9-b (4.49 g, 17.07 mmol) in ethanol (8.5 ml) was added a solution of hydrazine monohydrate (2.23 ml, 46.1 mmol) and the reaction was stirred at 100 C for 1 hour and then cooled to room temperature. Volatiles were removed under reduced pressure to provide intermediate 9-c as a yellow solid.
Step 4: Intermediate 9-d Intermediate 9-c (4.49 g, 17.07 mmol) was added to a solution of formamidine (40.8 ml, 1024 mmol) and the reaction was stirred at 180 C
for 3 hours and then cooled to room temperature. Ethanol was added; a precipitate formed and was collected by filtration, dried in vacuo to provide intermediate 9-d as beige solid.
Synthesis of intermediate 10-a Br Ph3P, DIAD
9-d NH2 OH
IµV \ N
' N N
10-a Scheme 10 To a solution of intermediate 9-d (1.0 g, 3.45 mmol) in THF was added triphenylphosphine (1.35 g, 5.17 mmol), cyclopentanol (0.47 ml, 5.17 mmol) and DIAD (1.0 ml, 5.17 mmol) and the reaction was then stirred at room temperature overnight. Volatiles were removed under reduced pressure.
Purification by silica gel chromatography provided intermediate 10-a as white solid. MS (m/z) M+H= 359.6 =
Synthesis of Compound 9 CI
40 OH OTBS Ph3P, DIAD, roo 0 40 imidazole TBSCI CI
OH OH HO OTBS
11-a 11-b ci TBAF
11-b OH
11-c 0*
CuCI, CS2CO3, 1O-a+ 11-c ____________ = OH NH2 Wilk \ CI
1 NjN
1St N
Compound 9 Scheme 11 Step 1: Intermediate 11-a To a solution of resorcinol (15 g, 136 mmol) in DMF (100 ml), cooled to 0 C, were added imidazole (19.48 g, 286 mmol) and tert-butylchlorodimethylsilane (21.56 g, 143 mmol). The reaction was then stirred at room temperature overnight. Saturated aqueous ammonium chloride and ethyl acetate were added; the organic layer was separated, washed 3 times with a saturated aqueous solution of ammonium chloride and brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 11-a as a colorless oil.
Step 2: Intermediate 11-b To a solution of (4-chlorophenyl) methanol (1.52 g, 10.70 mmol) in THF (20 mL) were sequentially added intermediate 11-a (2.88 g, 12.84 mmol), triphenylphosphine (3.37 g, 12.84 mmol) and DIAD (2.53 ml, 12.84 mmol) drop wise at room temperature and the reaction was then stirred for 1 hour.
Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 11-b as a colorless oil.
Step 3: Intermediate 11-c Tetrabutylammonium fluoride trihydrate (3.93 g, 12.47 mmol) was added to a solution of intermediate 11-b (2.9 g, 8.31 mmol) in THF (15 mL) and the reaction was stirred at room temperature overnight. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 11-c as a colorless oil.
Step 4: Compound 9 A solution of intermediate 10-a (200 mg, 0.56 mmol), intermediate 11-c (229 mg, 0.977 mmol), quinolin-8-ol (16.21 mg, 0.112 mmol), copper (I) chloride (11.05 mg, 0.11 mmol) and cesium carbonate (546 mg, 1.67 mmol), in dimethylacetamide (1 ml), was degassed with argon for 10 minutes, sealed and heated in a sealed tube at 140 C overnight. The solution was cooled to room temperature, water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by reverse phase chromatography eluting with a 1%
HCl/methanol gradient provided compound 9.1-1CI as yellow solid. MS (m/z) M+H= 512.2 Synthesis of intermediate 12-a Br NH2 4Ik Ph3P, DIAD
9-d ________________________________ N
N
Me0H N
12-a Scheme 12 To a solution of intermediate 9-d (500 mg, 1.72 mmol), in THF (8.6 mL), were sequentially added methanol (105 pl, 2.59 mmol), triphenylphosphine (678 mg, 2.59 mmol) and DIAD (503 pi, 2.59 mmol), drop wise, at room temperature. The solution was then stirred at room temperature overnight.
A precipitate formed and was collected by filtration and dried in vacuo to provide intermediate 12-a as a white solid.
Synthesis of compound 16 0*
1410i, 23, 12-a + cueCSC0NH2 44Ik OH __ OH N1 ,N
3-a Compound 16 Scheme 13 A solution of intermediate 12-a (235 mg, 0.77 mmol), intermediate 3-a (271 mg, 1.35 mmol), quinolin-8-ol (22.4 mg, 0.15 mmol), copper (I) chloride (15.3 mg, 0.15 mmol) and cesium carbonate (755 mg, 2.31 mmol) in dimethylacetamide (1 ml) was degassed with nitrogen for 10 minutes, heated in a sealed tube at 140 C overnight and then cooled to room temperature. Water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by reverse phase chromatography eluting with 1% HCl/methanol gradient provided compound 16=HCI as a beige solid. MS (m/z) M+H= 424.2 Synthesis of compound 17 CHO CHO
DIPEA, TBSCI NaBH4 OH
OH OTBS OTBS
14-a 14-b 14-b ________ Ph3P, DIAD, 40 0 410 TBAF 0 CN CN
OTBS OH
HO
CN 14-c 14-d 0* CN
CuCI, CS2CO3, 0 12-a + 14-d N
\ Compound 17 Scheme 14 Step 1: Intermediate 14-a To a solution of 3-hydroxybenzaldehyde (14.73 g, 121 mmol) in dichloromethane (100 mL) were sequentially added triethylamine (25.08 ml, 181 mmol), tert-butylchlorodimethylsilane (20.0 g, 133 mmol), portion wise, and the reaction was stirred at room temperature overnight. 10% Citric acid was added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 14-a as a yellow oil.
Step 2: Intermediate 14-b To a solution of intermediate 14-a (16.0 g, 67.7 mmol) in methanol (100 ml) cooled to 0 C was added portion wise sodium borohydride (1.28 g, 33.8 mmol). After the addition was completed the reaction was stirred at room temperature for 2 hours. Volatiles were removed under reduced pressure.
Water and ethyl acetate were added to the residue, the organic layer was separated, washed with brine, dried over Mg504, filtered and concentrated under reduced pressure to provide intermediate 14-b as a yellow oil.
Step 3: Intermediate 14-c To a solution of intermediate 14-b (1.0 g, 2.09 mmol) in THF (42 mL) were sequentially added 2-hydroxybenzonitrile (600 mg, 5.03 mmol), triphenylphosphine (1.32 g, 5.03 mmol) and DIAD (991 pl, 5.03 mmol) drop wise at room temperature; the reaction was then stirred at reflux for 2 hours then cooled to room temperature. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by silica gel chromatography provided intermediate 14-c as a colorless oil.
Step 2: Intermediate 14-d To a solution of intermediate 14-c (1.22 g, 3.62 mmol) in THF (36.0 ml) was added tetrabutylammonium fluoride (946 mg, 3.62 mmol) and the reaction was stirred at room temperature for 1 hour. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 14-d as a white solid.
Step 2: Compound 17 A solution of intermediate 12-a (200 mg, 0.6 mmol), intermediate 14-cl (259 mg, 1.15 mmol), quinolin-8-ol (19.0 mg, 0.13 mmol), copper (I) chloride (13.0 mg, 0.13 mmol) and cesium carbonate (643 mg, 1.97 mmol) in dimethylacetamide (3.0 ml) was degassed with argon for 10 minutes, heated in a sealed tube at 140 C overnight. After cooling to room temperature, water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided compound 17 as a white solid. MS (m/z) M+H= 449.3 Synthesis of compound 18 rN
LIAIH4 Ph3P, DIAD, HO
14-b 15-a 15-b Oc TBAF
OH
15-c 0*
CuCI, CS2CO3 12-a +15-cOH NH2 sz,N
NH
, N
N N\ Compound 18 Scheme 15 Step 1: Intermediate 15-a To a solution of ethyl 2-methylthiazole-5-carboxylate (5.82 g, 34.0 mmol) in THF (170 ml), cooled to 0 C, was added a 1.0M solution of LiAIH4in THF (34 ml, 34.0 mmol) and the reaction was slowly warmed to room temperature and stirred overnight. Water (1.3 ml) was slowly added, followed by 15%
NaOH (1.3 mL). The solution was stirred for 2 hours at room temperature then filtered on celite. The filtrate was concentrated under reduced pressure to provide intermediate 15-a as a yellow oil.
Step 2: Intermediate 15-b To a solution of intermediate 15-a (7.75 g, 34.5 mmol) and intermediate 14-b (4.25 g, 32.9 mmol), in THF (33 mL), were sequentially added triphenylphosphine (10.35 g, 39.5 mmol) and DIAD (7.68 ml, 39.5 mmol), drop wise, at room temperature. The reaction was then stirred for 18 hours.
Volatiles were removed in vacuo. Purification by silica gel chromatography provided intermediate 15-b as a colorless oil.
Step 3: Intermediate 15-c To a solution of intermediate 15-b (5.5 g, 16.39 mmol), in THF (82.0 ml), was added a 1.0M solution of tetrabutylammonium fluoride in THF (16.4 ml, 16.4 mmol) and the reaction was stirred at room temperature for 30 minutes. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 15-c as beige solid.
Step 4: Compound 18 A solution of intermediate 12-a (200 mg, 0.65 mmol), intermediate 15-c (146 mg, 0.65 mmol), quinolin-8-ol (19.0 mg, 0.13 mmol), copper (I) chloride (13.0 mg, 0.13 mmol) and cesium carbonate (643 mg, 1.97 mmol) in dimethylacetamide (6.5 ml) was degassed with argon for 10 minutes, ealed, heated in a sealed tube at 140 C for 2 hours and then cooled to room temperature. Water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by reverse phase chromatography eluting with 1% HCl/methanol gradient provided compound 15.1-1CI as beige solid. MS (m/z) M+H= 445.1 Table 1 summarizes representative compound of Formula 1.
Table 1: Example Compounds of Formula 1 Compound Structure MS (m/z) 0*
1 NH2 [M+H]=410.2 \N
I N' 0=
NH2 =
[M+Hr=478.2 ,N
N
0=
NH2 th \ [M+H]+=593.1 N L ,N
UN-.?
0=
410 [M+H]=493.1 \
I ,N
N N
L\NH
0=
NH2 fa [M+H]=547.1 \
I ,N
N N
[M+H]=535.1 N "N
I , N N
0=
7 N' , I ,N [M+H]=563.1 N N
0*
8 N [M+H]=563.1 L ,N
N
L\N
*
[M+Hr=512.2 CI
N \N
L I =
N
0*
NH2 =
O [M+H]=508.1 N ' , \
L I ,N --0 d 0*
n.
NH2 = 0=
0, [M+H]=508.2 NV \
I'N
N N),...., U
_ 0*
CN
NH2 0 glis illit 12 [M+Hr=503.2 NI "
I ,NI
N N
d 0*
NH2 = =
13 [M+Hr=478.2 N' , "
I ,N
N N
d 0*
14 NH2 fi SN
[M+Hr=485.2 N' \N
I , N
[M+H]=503.3 N' \
I'N
N N
0*
441k NH2 41k [M+H]=424.2 N \N
I , N N
CN
The terms "heterocycly1" or "heterocyclic group" refer to substituted or unsubstituted non-aromatic 3- to 10-membered ring structures, more preferably 3- to 7-membered rings, whose ring structures include one to four heteroatoms. The term terms "heterocycly1" or "heterocyclic group" also include polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is heterocyclic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
Heterocyclyl groups include, for example, tetrahydrofuran, tetrahydropyran, piperidine, piperazine, pyrrolidine, morpholine, lactones, and lactams.
The term "hydrocarbon", as used herein, refers to a group that is bonded through a carbon atom that does not have a =0 or =S substituent, and typically has at least one carbon-hydrogen bond and a primarily carbon backbone, but may optionally include heteroatoms. Thus, groups like methyl, ethoxyethyl, 2-pyridyl, and trifluoromethyl are considered to be hydrocarbyl for the purposes of this application, but substituents such as acetyl (which has a =0 substituent on the linking carbon) and ethoxy (which is linked through oxygen, not carbon) are not. Hydrocarbyl groups include, but are not limited to aryl, heteroaryl, carbocycle, heterocycle, alkyl, alkenyl, alkynyl, and combinations thereof.
The terms "polycycly1" or "polycyclic" refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls) in which two or more carbons are common to two adjoining rings, e.g., the rings are "fused rings". Each of the rings of the polycycle can be substituted or unsubstituted.
As used herein, the term "probe" means a compound of the invention which is labeled with either a detectable label or an affinity tag, and which is capable of binding, either covalently or non-covalently, to a protein kinase domain. When, for example, the probe is non-covalently bound, it may be displaced by a test compound. When, for example, the probe is bound covalently, it may be used to form cross-linked adducts, which may be quantified and inhibited by a test compound.
The term "substituted" refers to moieties having substituents replacing a hydrogen on one or more carbons of the backbone. It will be understood that "substitution" or "substituted with" includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. As used herein, the term "substituted" is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and non-aromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. Substituents can include, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate.
Compounds of the invention also include all isotopes of atoms present in the intermediates and/or final compounds. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include deuterium and tritium.
General Synthetic Methods General Synthetic Method A:
W W W
Base, ligand, IW ir W catalyst 0 4:S: NaOH
) oxalyl chloride 0 ---b- 0 OH a Bo2c w Ho2c ir cloc le Br .' 1-i 1-iii 1-iv 1-v 1-ii 40w 0=w 0 =
1-v malononitrile io TMS-diazomethane 0 hydrazine . W
r- r NC
i \
CN meo -,.. CN ,N
CN CN H
1-vi 1-ii 1-viii 0 = 0 =
formamidine ________ 3. NH2 = W __________________ fa W
Ph3P, DIAD
1-viii . NH2 1,1 N N N 1-x R, 1-ix Scheme 1 Ulmann condensation of phenol 1-i with ester 1-ii provided intermediate 1-iii.
Saponification of intermediate 1-iii yielded intermediate 1-iv. Conversion of intermediate 1-iv to its acid chloride, using for example oxalyl chloride and DMF, provided intermediate 1-v. Condensation of intermediate 1-v with malononitrile yielded intermediate 1-vi. Methylation of intermediate 1-vi with TMS-diazomethane provided intermediate 1-vii. Condensation of 1-vii with hydrazine yielded intermediate 1-viii. Condensation of intermediate 1-viii with formamidine yielded intermediate 1-ix. Intermediate 1-ix was treated with alcohol R1OH, under Mitsunobu conditions, to provide the desired compounds or intermediates of general formula 1-x.
General Synthetic Method B:
malononitrile TMS-diazomethane hydrazine CN
,c) CN
NC
\
CN
2-i 2-ii 2-ili 2-iv X=I, Br X 0*
X
2-iv formamidine Ph3P, DIAD, NH2 Base, ligand, = NH2 catalyst NH2 N \ \
RICH L ,N 1 N IN
I
N". \N N, N N
10 w , R1 N N
2-vii 2 OH-v 2-vi 2-viii Scheme 2 Benzoyl chlorides of formula 2-i were condensed with malononitrile to provide intermediate 2-ii. Methylation of intermediate 2-ii with TMS-diazomethane provided intermediate 2-iii. Condensation of intermediate 2-iii with hydrazine provided intermediate 2-iv. Further condensation of intermediate 2-iv with formamidine provided intermediate 2-v. Intermediate 2-v was treated with alcohol WON, under Mitsunobu conditions, to provide intermediate 2-vi. Ullmann condensation of intermediate 2-vi with phenolic intermediates 2-vii provided the desired compounds or intermediates of general formula 2-viii.
Exemplification The following synthetic methods are intended to be representative of the chemistry used to prepare compounds of Formula 1 and are not intended to be limiting.
Synthesis of Compound 1:
,L0 )LOH 0 OBn OH K2CO3 Al OBn CuCI, Cs2CO3 ________________ = ______________________ =
Benzyl bromide IP 0 0 EtO2C
3-a Br 3-b OBn S I. OBn NaOH oxaly1 chloride 3-b ________ .. o __________ = o Ho2c CIOC
3-c 3-d DIPEA TMS-diazomethane 3-d ________ 0.
malononitrile (1101 0 0 \ CN \ CN
HO Me0 CN CN
3-e 3-f 0 . 0 *
hydrazine 0 formamidine 0 3-f _______ =
NC NH2 *
N .
/ \ N
= \
H2N N N'' I , H N [NI
3-g Compound 1 Scheme 3 Step 1: Intermediate 3-a Benzyl bromide (27.0 ml, 227 mmol) was added drop wise to a stirred suspension of resorcinol (25.0 g, 227 mmol) and potassium carbonate (31.4 g, 227 mmol) in acetone (150 ml) and the reaction was heated under reflux overnight. Volatiles were removed under reduced pressure. Water and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by silica gel chromatography provided intermediate 3-a as a beige oil.
Step 2: Intermediate 3-b To a solution of 3-a (15.0 g, 74.9 mmol) in 1,4-dioxane (200 ml) were sequentially added ethyl 4-bromobenzoate (20.59 g, 90 mmol), N,N-dimethylglycine (4.25 g, 41.2 mmol), copper(I) chloride(3.71 g, 37.5 mmol) and cesium carbonate (61.0 g, 187 mmol). The reaction mixture was stirred at reflux overnight and then cooled to room temperature. Water and ethyl acetate were added, the organic layer was separated, washed with saturated aqueous NaHCO3, brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 3-b as a colorless oil.
Step 3: Intermediate 3-c To a solution of 3-b (17.5 g, 50.2 mmol) in THF (200 ml) and Me0H (100 ml) was added 2N sodium hydroxide (100 ml, 200 mmol) and the reaction was stirred at room temperature overnight. Volatiles were removed under reduced pressure. 10% Aqueous HCI and ethyl acetate were added to the residue, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide intermediate 3-c as beige solid.
Step 4: Intermediate 3-d To a suspension of 3-c (16.1 g, 50.3 mmol) in dichloromethane (100 ml) were added DMF (0.1 ml, 1.29 mmol) and oxalyl chloride (4.4 ml, 50.3 mmol). The solution was stirred at room temperature for 2 hours. Volatiles were removed under reduced pressure to provide intermediate 3-d as beige solid.
Step 5: Intermediate 3-e To a solution of intermediate 3-d (16.5 g, 48.9 mmol) in toluene (50 ml) and THF (7 ml), cooled to -10 C, were added malononitrile (3.19 ml, 50.2 mmol) and DIPEA (17.5 ml, 100 mmol) in toluene (50 mL), drop wise, over a period of 30 minutes. After the addition was completed, the reaction was stirred for 1 hour at 0 C and room temperature overnight. Volatiles were removed under reduced pressure. 1M aqueous HCI and ethyl acetate were added, the organic layer was separated, washed with 1M HCI and brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide intermediate 3-e as beige solid.
Step 6: Intermediate 3-f To a solution of intermediate 3-e (18.1 g, 49.1 mmol) in acetonitrile (177 ml) and methanol (19.0 ml), cooled to 0 C, were added DIPEA (10.3 ml, 59.0 mmol) and a 2M solution of (diazomethyl)trimethylsilane in hexanes (27.0 ml, 54.0 mmol). After the addition was completed, the reaction was stirred at room temperature overnight. Acetic acid (0.56 ml, 9.83 mmol) was added, the reaction was then stirred for 30 minutes and volatiles were removed under reduced pressure. Saturated aqueous NaHCO3 and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 3-f as yellow solid.
Step 7: Intermediate 3-g To a suspension of intermediate 3-f (8.05 g, 21.1 mmol) in ethanol (10.5 ml) was added a solution of hydrazine nionohydrate (2.76 ml, 56.8 mmol). The reaction was stirred at 100 C for 1 hour and then cooled to room temperature. Water was added; a precipitate formed and was collected by filtration, washed with diethyl ether and dried in vacuo to provide intermediate 3-g as an off-white solid.
Step 8: Compound 1 Intermediate 3-g (8 g, 20.92 mmol) was added to a solution of formamidine (58.4 ml, 1464 mmol) and the reaction was stirred at 180 C for 2 hours and then cooled to room temperature. Water and ethyl acetate were added; the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide compound 1 as beige solid. MS (m/z) M+H= 410.2 Synthesis of Compound 2:
o * o *
NH2 * Ph3P, DIAD NH2 =
N \ OH N \
N
, 1_ I ,N
N N
Compound 1 Compound 2 Scheme 4 To a solution of cyclopentanol (316 mg, 3.66 mmol) in THF was added triphenylphosphine (961 mg, 3.66 mmol) and DIAD (712 id, 3.66 mmol). The yellow solution was stirred 5 minutes, compound 1 (1.0 g, 2.44 mmol) was added and the reaction was then stirred at room temperature overnight.
Volatiles were removed under reduced pressure. Purification by silica gel chromatography provided compound 2 as an off-white solid. MS (m/z) M+H=478.2 Synthesis of Compound 3:
0= 0=
Ph3P, DIAD
NH2 qk \ NV' \
N
I N
N
N
Compound 1 0 Compound 3 Scheme 5 To a solution of (S)-tert-butyl 3-hydroxypiperidine-1-carboxylate (5.65 g, 28.1 mmol) in THF was added triphenylphosphine (7.37 g, 28.1 mmol) and DIAD (5.46 ml, 28.1 mmol). The yellow solution was stirred 5 minutes, compound 1 (10 g, 24.42 mmol) was added and the reaction was then stirred at room temperature overnight. Volatiles were removed under reduced pressure. Purification by silica gel chromatography provided compound 3 as white foam. MS (m/z) M+H= 593.1 Synthesis of Compound 4:
0* 0*
NH2 HCI*
NH2 *
elkN "- N
N N
N N
a NH
Compound 4 Compound 3 Scheme 6 To a solution of compound 3 (1.88 g, 3.17 mmol) in dichloromethane was added 4N HCI in 1,4-dioxane (19.82 ml, 79.0 mmol) and the reaction was stirred at room temperature for 2 hours. Volatiles were removed under reduced pressure. Purification by reverse phase chromatography eluting with a 1% aqueous HCl/methanol gradient provided compound 4.2HCI as white solid. MS (m/z) M+H= 493.1 Synthesis of compound 5 * *
N "N N
I' 1 N
N N
L bN
Compound 4 Compound 5 Scheme 7 To a solution of compound 4.2HCI (100 mg, 0.17 mmol) in dichloromethane (2 ml) cooled to 0 C were sequentially added TEA (99 pl, 0.70 mmol) and acryloyl chloride (17.61 mg, 0.19 mmol). The reaction was stirred at 0 C for 1 hour. A saturated aqueous solution of ammonium chloride was added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided compound 5 as white solid. MS (m/z) M+H= 547.1 Synthesis of compound 6 0* 0 =
TEA
\NI 0 2HCI N \ N , N N N N
LNH
Compound 4 Compound 6 Scheme 8 To a solution of compound 42HCI (1.8 g, 3.18 mmol) in dichloromethane (32 ml) cooled to 0 C were sequentially added TEA (1.77 ml, 12.73 mmol) and acetyl chloride (249 pl, 3.50 mmol). The reaction was stirred at 0 C for 1 hour and room temperature overnight. Saturated aqueous ammonium chloride was added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by reverse phase chromatography eluting with 1% aqueous HCl/methanol gradient provided compound 6=FICI as beige solid. MS (m/z) M+H= 535.1 Compounds 7 and 8 were prepared in a similar manner to compounds 6 by acylation of compound 4 with butanoyl chloride and iso-butanoyl chloride, respectively.
Synthesis of intermediate 9-d Br Br Br DIPEA
malononitrile 1110 TMS-diazomethane CN
CN
CN
9-a 9-b Br Br hydrazine formamidine 9-b __________________________________________ NH2 NC N
N
\
NH N
9-c 9-d Scheme 9 Step 1: Intermediate 9-a To a solution of 4-bromobenzoyl chloride (25 g, 114 mmol) in toluene (200 ml) and THF (30 ml), cooled to -10 C, were sequentially added malononitrile (7.60 ml, 120.0 mmol) and DIPEA (39.8 ml, 228 mmol) in toluene (50 mL) drop wise over a period of 1 hour. After the addition was completed, the reaction was stirred for 1 hour at 0 C and room temperature overnight.
Volatiles were removed under reduced pressure. 1M HCI and ethyl acetate were added to the residue, the organic layer was separated, washed twice with 1M HCI and brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide intermediate 9-a as yellow solid.
Step 2: Intermediate 9-b To a solution of intermediate 9-a (26.4 g, 106 mmol) in acetonitrile (300 ml) and methanol (35.0 ml), cooled to 0 C, was added DIPEA (22.2 ml, 127 mmol) and (diazomethyl)trimethylsilane (58.3 ml, 117 mmol). After the addition was completed, the reaction was stirred at room temperature overnight. Acetic acid (1.21 ml, 21.2 mmol) was added, the reaction was stirred for 30 minutes and volatiles were removed under reduced pressure.
Saturated aqueous NaHCO3 and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 9-b as a yellow solid.
Step 3: Intermediate 9-c To a suspension of intermediate 9-b (4.49 g, 17.07 mmol) in ethanol (8.5 ml) was added a solution of hydrazine monohydrate (2.23 ml, 46.1 mmol) and the reaction was stirred at 100 C for 1 hour and then cooled to room temperature. Volatiles were removed under reduced pressure to provide intermediate 9-c as a yellow solid.
Step 4: Intermediate 9-d Intermediate 9-c (4.49 g, 17.07 mmol) was added to a solution of formamidine (40.8 ml, 1024 mmol) and the reaction was stirred at 180 C
for 3 hours and then cooled to room temperature. Ethanol was added; a precipitate formed and was collected by filtration, dried in vacuo to provide intermediate 9-d as beige solid.
Synthesis of intermediate 10-a Br Ph3P, DIAD
9-d NH2 OH
IµV \ N
' N N
10-a Scheme 10 To a solution of intermediate 9-d (1.0 g, 3.45 mmol) in THF was added triphenylphosphine (1.35 g, 5.17 mmol), cyclopentanol (0.47 ml, 5.17 mmol) and DIAD (1.0 ml, 5.17 mmol) and the reaction was then stirred at room temperature overnight. Volatiles were removed under reduced pressure.
Purification by silica gel chromatography provided intermediate 10-a as white solid. MS (m/z) M+H= 359.6 =
Synthesis of Compound 9 CI
40 OH OTBS Ph3P, DIAD, roo 0 40 imidazole TBSCI CI
OH OH HO OTBS
11-a 11-b ci TBAF
11-b OH
11-c 0*
CuCI, CS2CO3, 1O-a+ 11-c ____________ = OH NH2 Wilk \ CI
1 NjN
1St N
Compound 9 Scheme 11 Step 1: Intermediate 11-a To a solution of resorcinol (15 g, 136 mmol) in DMF (100 ml), cooled to 0 C, were added imidazole (19.48 g, 286 mmol) and tert-butylchlorodimethylsilane (21.56 g, 143 mmol). The reaction was then stirred at room temperature overnight. Saturated aqueous ammonium chloride and ethyl acetate were added; the organic layer was separated, washed 3 times with a saturated aqueous solution of ammonium chloride and brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 11-a as a colorless oil.
Step 2: Intermediate 11-b To a solution of (4-chlorophenyl) methanol (1.52 g, 10.70 mmol) in THF (20 mL) were sequentially added intermediate 11-a (2.88 g, 12.84 mmol), triphenylphosphine (3.37 g, 12.84 mmol) and DIAD (2.53 ml, 12.84 mmol) drop wise at room temperature and the reaction was then stirred for 1 hour.
Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 11-b as a colorless oil.
Step 3: Intermediate 11-c Tetrabutylammonium fluoride trihydrate (3.93 g, 12.47 mmol) was added to a solution of intermediate 11-b (2.9 g, 8.31 mmol) in THF (15 mL) and the reaction was stirred at room temperature overnight. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 11-c as a colorless oil.
Step 4: Compound 9 A solution of intermediate 10-a (200 mg, 0.56 mmol), intermediate 11-c (229 mg, 0.977 mmol), quinolin-8-ol (16.21 mg, 0.112 mmol), copper (I) chloride (11.05 mg, 0.11 mmol) and cesium carbonate (546 mg, 1.67 mmol), in dimethylacetamide (1 ml), was degassed with argon for 10 minutes, sealed and heated in a sealed tube at 140 C overnight. The solution was cooled to room temperature, water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by reverse phase chromatography eluting with a 1%
HCl/methanol gradient provided compound 9.1-1CI as yellow solid. MS (m/z) M+H= 512.2 Synthesis of intermediate 12-a Br NH2 4Ik Ph3P, DIAD
9-d ________________________________ N
N
Me0H N
12-a Scheme 12 To a solution of intermediate 9-d (500 mg, 1.72 mmol), in THF (8.6 mL), were sequentially added methanol (105 pl, 2.59 mmol), triphenylphosphine (678 mg, 2.59 mmol) and DIAD (503 pi, 2.59 mmol), drop wise, at room temperature. The solution was then stirred at room temperature overnight.
A precipitate formed and was collected by filtration and dried in vacuo to provide intermediate 12-a as a white solid.
Synthesis of compound 16 0*
1410i, 23, 12-a + cueCSC0NH2 44Ik OH __ OH N1 ,N
3-a Compound 16 Scheme 13 A solution of intermediate 12-a (235 mg, 0.77 mmol), intermediate 3-a (271 mg, 1.35 mmol), quinolin-8-ol (22.4 mg, 0.15 mmol), copper (I) chloride (15.3 mg, 0.15 mmol) and cesium carbonate (755 mg, 2.31 mmol) in dimethylacetamide (1 ml) was degassed with nitrogen for 10 minutes, heated in a sealed tube at 140 C overnight and then cooled to room temperature. Water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by reverse phase chromatography eluting with 1% HCl/methanol gradient provided compound 16=HCI as a beige solid. MS (m/z) M+H= 424.2 Synthesis of compound 17 CHO CHO
DIPEA, TBSCI NaBH4 OH
OH OTBS OTBS
14-a 14-b 14-b ________ Ph3P, DIAD, 40 0 410 TBAF 0 CN CN
OTBS OH
HO
CN 14-c 14-d 0* CN
CuCI, CS2CO3, 0 12-a + 14-d N
\ Compound 17 Scheme 14 Step 1: Intermediate 14-a To a solution of 3-hydroxybenzaldehyde (14.73 g, 121 mmol) in dichloromethane (100 mL) were sequentially added triethylamine (25.08 ml, 181 mmol), tert-butylchlorodimethylsilane (20.0 g, 133 mmol), portion wise, and the reaction was stirred at room temperature overnight. 10% Citric acid was added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 14-a as a yellow oil.
Step 2: Intermediate 14-b To a solution of intermediate 14-a (16.0 g, 67.7 mmol) in methanol (100 ml) cooled to 0 C was added portion wise sodium borohydride (1.28 g, 33.8 mmol). After the addition was completed the reaction was stirred at room temperature for 2 hours. Volatiles were removed under reduced pressure.
Water and ethyl acetate were added to the residue, the organic layer was separated, washed with brine, dried over Mg504, filtered and concentrated under reduced pressure to provide intermediate 14-b as a yellow oil.
Step 3: Intermediate 14-c To a solution of intermediate 14-b (1.0 g, 2.09 mmol) in THF (42 mL) were sequentially added 2-hydroxybenzonitrile (600 mg, 5.03 mmol), triphenylphosphine (1.32 g, 5.03 mmol) and DIAD (991 pl, 5.03 mmol) drop wise at room temperature; the reaction was then stirred at reflux for 2 hours then cooled to room temperature. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure.
Purification by silica gel chromatography provided intermediate 14-c as a colorless oil.
Step 2: Intermediate 14-d To a solution of intermediate 14-c (1.22 g, 3.62 mmol) in THF (36.0 ml) was added tetrabutylammonium fluoride (946 mg, 3.62 mmol) and the reaction was stirred at room temperature for 1 hour. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 14-d as a white solid.
Step 2: Compound 17 A solution of intermediate 12-a (200 mg, 0.6 mmol), intermediate 14-cl (259 mg, 1.15 mmol), quinolin-8-ol (19.0 mg, 0.13 mmol), copper (I) chloride (13.0 mg, 0.13 mmol) and cesium carbonate (643 mg, 1.97 mmol) in dimethylacetamide (3.0 ml) was degassed with argon for 10 minutes, heated in a sealed tube at 140 C overnight. After cooling to room temperature, water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided compound 17 as a white solid. MS (m/z) M+H= 449.3 Synthesis of compound 18 rN
LIAIH4 Ph3P, DIAD, HO
14-b 15-a 15-b Oc TBAF
OH
15-c 0*
CuCI, CS2CO3 12-a +15-cOH NH2 sz,N
NH
, N
N N\ Compound 18 Scheme 15 Step 1: Intermediate 15-a To a solution of ethyl 2-methylthiazole-5-carboxylate (5.82 g, 34.0 mmol) in THF (170 ml), cooled to 0 C, was added a 1.0M solution of LiAIH4in THF (34 ml, 34.0 mmol) and the reaction was slowly warmed to room temperature and stirred overnight. Water (1.3 ml) was slowly added, followed by 15%
NaOH (1.3 mL). The solution was stirred for 2 hours at room temperature then filtered on celite. The filtrate was concentrated under reduced pressure to provide intermediate 15-a as a yellow oil.
Step 2: Intermediate 15-b To a solution of intermediate 15-a (7.75 g, 34.5 mmol) and intermediate 14-b (4.25 g, 32.9 mmol), in THF (33 mL), were sequentially added triphenylphosphine (10.35 g, 39.5 mmol) and DIAD (7.68 ml, 39.5 mmol), drop wise, at room temperature. The reaction was then stirred for 18 hours.
Volatiles were removed in vacuo. Purification by silica gel chromatography provided intermediate 15-b as a colorless oil.
Step 3: Intermediate 15-c To a solution of intermediate 15-b (5.5 g, 16.39 mmol), in THF (82.0 ml), was added a 1.0M solution of tetrabutylammonium fluoride in THF (16.4 ml, 16.4 mmol) and the reaction was stirred at room temperature for 30 minutes. Saturated aqueous ammonium chloride and ethyl acetate were added, the organic layer was separated, washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by silica gel chromatography provided intermediate 15-c as beige solid.
Step 4: Compound 18 A solution of intermediate 12-a (200 mg, 0.65 mmol), intermediate 15-c (146 mg, 0.65 mmol), quinolin-8-ol (19.0 mg, 0.13 mmol), copper (I) chloride (13.0 mg, 0.13 mmol) and cesium carbonate (643 mg, 1.97 mmol) in dimethylacetamide (6.5 ml) was degassed with argon for 10 minutes, ealed, heated in a sealed tube at 140 C for 2 hours and then cooled to room temperature. Water and ethyl acetate were added, the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. Purification by reverse phase chromatography eluting with 1% HCl/methanol gradient provided compound 15.1-1CI as beige solid. MS (m/z) M+H= 445.1 Table 1 summarizes representative compound of Formula 1.
Table 1: Example Compounds of Formula 1 Compound Structure MS (m/z) 0*
1 NH2 [M+H]=410.2 \N
I N' 0=
NH2 =
[M+Hr=478.2 ,N
N
0=
NH2 th \ [M+H]+=593.1 N L ,N
UN-.?
0=
410 [M+H]=493.1 \
I ,N
N N
L\NH
0=
NH2 fa [M+H]=547.1 \
I ,N
N N
[M+H]=535.1 N "N
I , N N
0=
7 N' , I ,N [M+H]=563.1 N N
0*
8 N [M+H]=563.1 L ,N
N
L\N
*
[M+Hr=512.2 CI
N \N
L I =
N
0*
NH2 =
O [M+H]=508.1 N ' , \
L I ,N --0 d 0*
n.
NH2 = 0=
0, [M+H]=508.2 NV \
I'N
N N),...., U
_ 0*
CN
NH2 0 glis illit 12 [M+Hr=503.2 NI "
I ,NI
N N
d 0*
NH2 = =
13 [M+Hr=478.2 N' , "
I ,N
N N
d 0*
14 NH2 fi SN
[M+Hr=485.2 N' \N
I , N
[M+H]=503.3 N' \
I'N
N N
0*
441k NH2 41k [M+H]=424.2 N \N
I , N N
CN
17 NH2 [M+H]=449.3 N' \N
I , N N
0=
I , N N
0=
18 NH2 * [M+H]=445.1 \N
' N N
4Ik [M+H]=431.4 \
L ,N
N
4Ik [M+1-1]=492.1 , ,N
N N
0 =
21 'IN[M+Hr=494.2 N
0 .
CN
22 NH2 ik [M+Hr=519.2 N' , \
1 ,N
N N
o 0 .
u3 23 NH2 O Ilk [M+H]=562.1 N' \N
I , N
U
0=
O_______\
24 NH2 Th 410 sN
[M+Hr=501.2 N' , \
I ,N
N N
a0 0* CN
N' \ [M+H]=560.2 I ,N
N
UN-{
0*
N \N [M+H]=603.1 I N' 0*
S,f`J
N' \N [M+H]=542.2 I , N
O CN
[M+Hr=560.2 N7 "N
' N
UN( NH2 410 [M+Hr=546.2 "N
= I
N
0 =
CN
NH2 [M+H]=449.4 \
= I ,N
N N
NH2 [M+H]+=492.1 N7 \
I ,N
N N
32 NH2 =
[M+H]=546.1 N
I ,N
N N
0=
o CF3 NH2*
N , [M+H]=603.1 L ,N
N
0=
34 NH2 sN
[M+H]=488.3 , I ,N
N N
N--35 NH2 4. NC 410 [M+H]=519.2 \N
I ' N
0 =
36 NH2 44, F3C
[M+Hr=562.2 "N
I ' N
0 =
37 NH2 40 [M-I-H]=499.1 "N
I' N
0 =
[M+H]=515.1 'N
N N)Th 0 =
39 [M+H]=514.2 ,N
N N\
N,.
0*
N' 40 \ ,N1 [M+H]=543.1 N N\
0*
0'\ _ N
41 N \ [M+Fir=522.1 IN
N N
\---6 N
0 =
42 N' \ [M+H]=521.2 L, I ,N
N N
0*
NH2 fa N
43 N' , \ [M+H]=500.2 L... 1 ,N
N Nym C--.) N
H
0*
0"---_ NH2 4*
N
44 N \ N [M+H]=530.1 I , N Nv --A
(N---\
=--0/
0=
45 NH2 lli . [M+H]=452.1 NV \N
I , N N\
/=0 F
0*
0---A___ 46 NH2 * N [M+H]=519.1 NV \N
I' N r).Th \-- ) 0*
NH2, 47 INV \
I ,N [M+Hr=542.1 N N)Th 0=
, NI/
48 [M+Hr=498.2 \N
' N
49 N \ [M +H] =600.1 L ,N
N
aN
0*
()Ars 50 NH2 * [M+I-1]+=503.2 N' 'N
N
0Il =
51 [M+Hr=500.2 N' N
I ' N N
L\NH
Kinase Binding Btk Kinase Inhibition Assay Fluorescence polarization-based kinase assays were performed in 384 well-plate format using histidine tagged recombinant human full-length Bruton Agammaglobulinemia Tyrosine Kinase (Btk) and a modified protocol of the KinEASE TM FP Fluorescein Green Assay supplied from Millipore. Kinase reaction were performed at room temperature for 60 minutes in presence of 250 11M substrate, 10 M ATP and variable test article concentrations. The reaction was stopped with EDTA/kinease detection reagents and the polarization measured on a Tecan 500 instrument. From the dose-response curve obtained, the ICso was calculated using Graph Pad Prisms using a non linear fit curve. The Km for ATP on each enzyme was experimentally determined and the Ki values calculated using the Cheng-Prusoff equation (see: Cheng Y, Prusoff WH. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction". Biochem Pharmacol 22 (23): 3099-108).
k, values are reported in Tables 2:
Table 2: Inhibition of Btk Compound ki (nM) Compound k, (nM) Compound k(nM) 1 a 16 a 31 a 2 a 17 a 32 a 3 a 18 a 33 a 4 a 19 a 34 a a 20 a 35 a 6 a 21 a 36 a 7 a 22 a 37 a 8 a 23 a 38 a 9 a 24 a 39 a a 25 a 40 a 11 a 26 a 41 a 12 a 27 a 42 a 13 a 28 a 43 a 14 a 29 a 44 a a 30 a 45 a a - Less than 100 nM; b - less than 1000 nM, c - more than 1000 nM
Splenic Cell Proliferation Assay Splenocytes were obtained from 6 week old male CD1 mice (Charles River Laboratories Inc.). Mouse spleens were manually disrupted in PBS and filtered using a 70um cell strainer followed by ammonium chloride red blood cell lysis. Cells were washed, resuspended in Splenocyte Medium (HyClone RPMI supplemented with 10% heat-inactivated FBS, 0.5X non-essential amino acids, 10mM HEPES, 50uM beta mercaptoethanol) and incubated at 37 C, 5% CO2 for 2h to remove adherent cells. Suspension cells were seeded in 96 well plates at 50,000 cells per well and incubated at 37 C, 5% CO2 for 1h.
Splenocytes were pre-treated in triplicate with 10,000 nM curves of Formula 1 compounds for 1h, followed by stimulation of B cell proliferation with 2.5ug/m1 anti-IgM F(a131)2 (Jackson ImmunoResearch) for 72h. Cell proliferation was measured by Cell Titer-Glo Luminescent Assay (Promega).
EC50 values (50% proliferation in the presence of compound as compared to vehicle treated controls) were calculated from dose response compound curves using GraphPad Prism Software.
EC50 values are reported in Table 2:
Table 2: Inhibition of splenic cell proliferation Compound ki (nM) Compound k, (nM) Compound k1(nM) 1 b 16 b 31 b 2 b 17 b 32 a 3 b 18 a 33 a 4 b 19 b 34 b a 20 a 35 a 6 a 21 a 36 a 7 b 22 a 37 a 8 a 23 a 38 a 9 b 24 a 39 b b 25 a 40 b 11 b 26 a 41 12 a 27 a 42 a 13 b 28 a 43 b 14 a 29 a 44 a 15 a 30 a 45 a - Less than 100 nM; b - less than 1000 nM, c ¨ more than 1000 nM
' N N
4Ik [M+H]=431.4 \
L ,N
N
4Ik [M+1-1]=492.1 , ,N
N N
0 =
21 'IN[M+Hr=494.2 N
0 .
CN
22 NH2 ik [M+Hr=519.2 N' , \
1 ,N
N N
o 0 .
u3 23 NH2 O Ilk [M+H]=562.1 N' \N
I , N
U
0=
O_______\
24 NH2 Th 410 sN
[M+Hr=501.2 N' , \
I ,N
N N
a0 0* CN
N' \ [M+H]=560.2 I ,N
N
UN-{
0*
N \N [M+H]=603.1 I N' 0*
S,f`J
N' \N [M+H]=542.2 I , N
O CN
[M+Hr=560.2 N7 "N
' N
UN( NH2 410 [M+Hr=546.2 "N
= I
N
0 =
CN
NH2 [M+H]=449.4 \
= I ,N
N N
NH2 [M+H]+=492.1 N7 \
I ,N
N N
32 NH2 =
[M+H]=546.1 N
I ,N
N N
0=
o CF3 NH2*
N , [M+H]=603.1 L ,N
N
0=
34 NH2 sN
[M+H]=488.3 , I ,N
N N
N--35 NH2 4. NC 410 [M+H]=519.2 \N
I ' N
0 =
36 NH2 44, F3C
[M+Hr=562.2 "N
I ' N
0 =
37 NH2 40 [M-I-H]=499.1 "N
I' N
0 =
[M+H]=515.1 'N
N N)Th 0 =
39 [M+H]=514.2 ,N
N N\
N,.
0*
N' 40 \ ,N1 [M+H]=543.1 N N\
0*
0'\ _ N
41 N \ [M+Fir=522.1 IN
N N
\---6 N
0 =
42 N' \ [M+H]=521.2 L, I ,N
N N
0*
NH2 fa N
43 N' , \ [M+H]=500.2 L... 1 ,N
N Nym C--.) N
H
0*
0"---_ NH2 4*
N
44 N \ N [M+H]=530.1 I , N Nv --A
(N---\
=--0/
0=
45 NH2 lli . [M+H]=452.1 NV \N
I , N N\
/=0 F
0*
0---A___ 46 NH2 * N [M+H]=519.1 NV \N
I' N r).Th \-- ) 0*
NH2, 47 INV \
I ,N [M+Hr=542.1 N N)Th 0=
, NI/
48 [M+Hr=498.2 \N
' N
49 N \ [M +H] =600.1 L ,N
N
aN
0*
()Ars 50 NH2 * [M+I-1]+=503.2 N' 'N
N
0Il =
51 [M+Hr=500.2 N' N
I ' N N
L\NH
Kinase Binding Btk Kinase Inhibition Assay Fluorescence polarization-based kinase assays were performed in 384 well-plate format using histidine tagged recombinant human full-length Bruton Agammaglobulinemia Tyrosine Kinase (Btk) and a modified protocol of the KinEASE TM FP Fluorescein Green Assay supplied from Millipore. Kinase reaction were performed at room temperature for 60 minutes in presence of 250 11M substrate, 10 M ATP and variable test article concentrations. The reaction was stopped with EDTA/kinease detection reagents and the polarization measured on a Tecan 500 instrument. From the dose-response curve obtained, the ICso was calculated using Graph Pad Prisms using a non linear fit curve. The Km for ATP on each enzyme was experimentally determined and the Ki values calculated using the Cheng-Prusoff equation (see: Cheng Y, Prusoff WH. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction". Biochem Pharmacol 22 (23): 3099-108).
k, values are reported in Tables 2:
Table 2: Inhibition of Btk Compound ki (nM) Compound k, (nM) Compound k(nM) 1 a 16 a 31 a 2 a 17 a 32 a 3 a 18 a 33 a 4 a 19 a 34 a a 20 a 35 a 6 a 21 a 36 a 7 a 22 a 37 a 8 a 23 a 38 a 9 a 24 a 39 a a 25 a 40 a 11 a 26 a 41 a 12 a 27 a 42 a 13 a 28 a 43 a 14 a 29 a 44 a a 30 a 45 a a - Less than 100 nM; b - less than 1000 nM, c - more than 1000 nM
Splenic Cell Proliferation Assay Splenocytes were obtained from 6 week old male CD1 mice (Charles River Laboratories Inc.). Mouse spleens were manually disrupted in PBS and filtered using a 70um cell strainer followed by ammonium chloride red blood cell lysis. Cells were washed, resuspended in Splenocyte Medium (HyClone RPMI supplemented with 10% heat-inactivated FBS, 0.5X non-essential amino acids, 10mM HEPES, 50uM beta mercaptoethanol) and incubated at 37 C, 5% CO2 for 2h to remove adherent cells. Suspension cells were seeded in 96 well plates at 50,000 cells per well and incubated at 37 C, 5% CO2 for 1h.
Splenocytes were pre-treated in triplicate with 10,000 nM curves of Formula 1 compounds for 1h, followed by stimulation of B cell proliferation with 2.5ug/m1 anti-IgM F(a131)2 (Jackson ImmunoResearch) for 72h. Cell proliferation was measured by Cell Titer-Glo Luminescent Assay (Promega).
EC50 values (50% proliferation in the presence of compound as compared to vehicle treated controls) were calculated from dose response compound curves using GraphPad Prism Software.
EC50 values are reported in Table 2:
Table 2: Inhibition of splenic cell proliferation Compound ki (nM) Compound k, (nM) Compound k1(nM) 1 b 16 b 31 b 2 b 17 b 32 a 3 b 18 a 33 a 4 b 19 b 34 b a 20 a 35 a 6 a 21 a 36 a 7 b 22 a 37 a 8 a 23 a 38 a 9 b 24 a 39 b b 25 a 40 b 11 b 26 a 41 12 a 27 a 42 a 13 b 28 a 43 b 14 a 29 a 44 a 15 a 30 a 45 a - Less than 100 nM; b - less than 1000 nM, c ¨ more than 1000 nM
Claims (11)
1. Compound of Formula 1:
wherein X is selected from the group consisting of:
6) hydrogen, 7) alkyl, 8) heteroalkyl, 9) carbocyclyl, 10) heterocyclyl;
wherein the alkyl, heteroalkyl, carbocyclyl and heterocyclyl may be further substituted by the groups consisting of:
12) hydroxy, 13) alkoxy, 14) alkyl, 15) -OC(O)R4, 16) -OC(O)NR5R6, 17) -C(O)R4, 18) -C(O)NR5R6, 19) -NR5R6, 20) -NR2C(O)R4, 21) -NR2S(O),R4, 22) -NR2C(O)NR5R6;
Y is selected from:
Z is selected from:
X1 and X2 are independently selected from hydrogen, halogen or cyano;
n is an integer from 0 to 2;
W is independently selected from:
1) alkyl,
wherein X is selected from the group consisting of:
6) hydrogen, 7) alkyl, 8) heteroalkyl, 9) carbocyclyl, 10) heterocyclyl;
wherein the alkyl, heteroalkyl, carbocyclyl and heterocyclyl may be further substituted by the groups consisting of:
12) hydroxy, 13) alkoxy, 14) alkyl, 15) -OC(O)R4, 16) -OC(O)NR5R6, 17) -C(O)R4, 18) -C(O)NR5R6, 19) -NR5R6, 20) -NR2C(O)R4, 21) -NR2S(O),R4, 22) -NR2C(O)NR5R6;
Y is selected from:
Z is selected from:
X1 and X2 are independently selected from hydrogen, halogen or cyano;
n is an integer from 0 to 2;
W is independently selected from:
1) alkyl,
2) aralkyl,
3) heteroaralkyl,
4) -OR3,
5) -OC(O)R4,
6) -OC(O)NR5R6,
7) -CH2O-R4,
8) -NR5R6,
9) -NR2C(O)R4,
10) -NR2S(O)n R4,
11) -NR2C(O)NR5R6;
wherein the alkyl, aralkyl and heteroaralkyl may be further substituted;
R2 is selected from hydrogen or alkyl;
R3 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;
R4 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl or heteroaryl;
R5 and R6 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl or R5 and R6 can be fused to form a 3 to 8 membered heterocyclyl ring system.
2. Compound according to claim 1 wherein W is selected from -OR3 and R3 is selected from substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl.
3. Compound according to claim 1 wherein X is selected from H, Me, 4. Compound according to claim 1 wherein W is selected from the group consisting of 5. Compound of the following structure:
wherein the alkyl, aralkyl and heteroaralkyl may be further substituted;
R2 is selected from hydrogen or alkyl;
R3 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl, aralkyl or heteroaralkyl;
R4 is selected from substituted or unsubstituted alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl or heteroaryl;
R5 and R6 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, carbocyclyl, heterocyclyl, aryl, heteroaryl or R5 and R6 can be fused to form a 3 to 8 membered heterocyclyl ring system.
2. Compound according to claim 1 wherein W is selected from -OR3 and R3 is selected from substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl.
3. Compound according to claim 1 wherein X is selected from H, Me, 4. Compound according to claim 1 wherein W is selected from the group consisting of 5. Compound of the following structure:
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2779184A CA2779184A1 (en) | 2012-05-31 | 2012-05-31 | Protein kinase inhibitors |
CN201380028248.2A CN104379586B (en) | 2012-05-31 | 2013-05-28 | Kinases inhibitor |
RU2014145285A RU2678767C2 (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitors |
KR1020147036372A KR101972990B1 (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitors |
EP13796590.1A EP2855484A4 (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitors |
BR112014029718A BR112014029718A2 (en) | 2012-05-31 | 2013-05-28 | protein kinase inhibitors |
IN2338MUN2014 IN2014MN02338A (en) | 2012-05-31 | 2013-05-28 | |
PCT/CA2013/000513 WO2013177668A1 (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitors |
CA2874211A CA2874211A1 (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitors |
US14/404,497 US9796716B2 (en) | 2012-05-31 | 2013-05-28 | Selective inhibitors of Tec and Src protein kinase families |
JP2015514295A JP6175495B2 (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitor |
KR1020197011438A KR20190043648A (en) | 2012-05-31 | 2013-05-28 | Protein kinase inhibitors |
HK15109229.7A HK1208460A1 (en) | 2012-05-31 | 2015-09-18 | Protein kinase inhibitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2779184A CA2779184A1 (en) | 2012-05-31 | 2012-05-31 | Protein kinase inhibitors |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2779184A1 true CA2779184A1 (en) | 2013-11-30 |
Family
ID=49714083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2779184A Abandoned CA2779184A1 (en) | 2012-05-31 | 2012-05-31 | Protein kinase inhibitors |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2779184A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015074138A1 (en) * | 2013-11-21 | 2015-05-28 | Pharmascience Inc. | Protein kinase inhibitors |
WO2015077866A1 (en) * | 2013-11-26 | 2015-06-04 | Pharmascience Inc. | Protein kinase inhibitors |
WO2016187723A1 (en) * | 2015-05-27 | 2016-12-01 | Pharmascience Inc. | Inhibitors of the tec kinase enzyme family |
CN108290850A (en) * | 2015-12-07 | 2018-07-17 | Dic株式会社 | The manufacturing method of polymerizable compound |
-
2012
- 2012-05-31 CA CA2779184A patent/CA2779184A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015074138A1 (en) * | 2013-11-21 | 2015-05-28 | Pharmascience Inc. | Protein kinase inhibitors |
US9822120B2 (en) | 2013-11-21 | 2017-11-21 | Pharmascience Inc. | Protein kinase inhibitors |
WO2015077866A1 (en) * | 2013-11-26 | 2015-06-04 | Pharmascience Inc. | Protein kinase inhibitors |
WO2016187723A1 (en) * | 2015-05-27 | 2016-12-01 | Pharmascience Inc. | Inhibitors of the tec kinase enzyme family |
CN108290850A (en) * | 2015-12-07 | 2018-07-17 | Dic株式会社 | The manufacturing method of polymerizable compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2870158B1 (en) | 1-[4-(3-phenoxy)-phenyl]-1h-pyrazolo[4,3-d]pyrimidin-7-yl-amine derivatives as bruton's tyrosine kinase (btk) inhibitors for the treatment of e.g. proliferative diseases | |
EP2694515B1 (en) | Protein kinase inhibitors | |
JP6175495B2 (en) | Protein kinase inhibitor | |
CA2831813A1 (en) | Protein kinase inhibitors | |
CA2779184A1 (en) | Protein kinase inhibitors | |
CA2833701A1 (en) | Protein kinase inhibitors | |
CA2834528A1 (en) | Protein kinase inhibitors | |
CA2833867A1 (en) | Protein kinase inhibitors | |
WO2014029007A1 (en) | Protein kinase inhibitors | |
CA2813299A1 (en) | Protein kinase inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |
Effective date: 20150602 |
|
FZDE | Discontinued |
Effective date: 20150602 |