CA2741617A1 - Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same - Google Patents
Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same Download PDFInfo
- Publication number
- CA2741617A1 CA2741617A1 CA2741617A CA2741617A CA2741617A1 CA 2741617 A1 CA2741617 A1 CA 2741617A1 CA 2741617 A CA2741617 A CA 2741617A CA 2741617 A CA2741617 A CA 2741617A CA 2741617 A1 CA2741617 A1 CA 2741617A1
- Authority
- CA
- Canada
- Prior art keywords
- drill bit
- bottom hole
- hole assembly
- orifice
- orifices
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000712 assembly Effects 0.000 title abstract description 6
- 238000000429 assembly Methods 0.000 title abstract description 6
- 239000012530 fluid Substances 0.000 claims abstract description 35
- 230000006641 stabilisation Effects 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 6
- 230000000087 stabilizing effect Effects 0.000 claims 6
- 238000005553 drilling Methods 0.000 description 45
- 238000005520 cutting process Methods 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/60—Drill bits characterised by conduits or nozzles for drilling fluids
- E21B10/602—Drill bits characterised by conduits or nozzles for drilling fluids the bit being a rotary drag type bit with blades
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/60—Drill bits characterised by conduits or nozzles for drilling fluids
- E21B10/61—Drill bits characterised by conduits or nozzles for drilling fluids characterised by the nozzle structure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/10—Wear protectors; Centralising devices, e.g. stabilisers
- E21B17/1092—Gauge section of drill bits
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Drilling And Boring (AREA)
- Drilling Tools (AREA)
Abstract
The present invention provides self-stabilized and anti-whirl drill bits (105) and bottom-hole assemblies and systems for using the same. One embodiment of the invention provides a drill bit including an interior cavity in fluid communication with a drill string, and a plurality of gauge pads (206a) located on the exterior of the drill bit. One or more of the gauge pads include an orifice (212) in communication with the interior cavity. The drill bit is configured such that a fluid continuously flows from each of the orifices.
Description
Self-Stabilized and Anti-Whirl Drill Bits and Bottom-Hole Assemblies and Systems for Using the Same FIELD OF THE INVENTION
The present invention relates to systems and methods for preventing whirl and other deviations of the drill bit and/or bottom-hole assembly while drilling within a wellbore.
BACKGROUND OF THE INVENTION
Drill bit whirl and deviations are a significant problem within the drilling industry. Oil, gas, water, and other natural resources are often located between 4,000 and 10,000 feet below ground. As a result, even a one-degree deviation of an well can result in a significant increase in drilling distance, time and cost.
In some application, the driller seeks a vertical wellbore. A smooth vertical wellbore facilitates running larger casing with minimal clearance and affords the possibility of using an extra string of casing at some later state in well construction operations. A wellbore that drifts away from and back into verticality can eliminate this option. Additionally, if multiple wellbore are drilled from a single platform, deviations can cause drill string collisions.
Even in controlled steering or directional drilling applications, it may be highly desirable to maintain the desired trajectory, for example when drilling to targets below faulted rocks, in steeply dipping beds, or in tectonically active areas.
Additionally, drill bit whirl, a condition wherein the bit's center of rotation shifts away from its geometric center, leads to several problems. These problems include non-cylindrical holes, wellbore deviation, and excessive bit wear.
Conventional anti-whirl drill bits attempt to reduce whirl by creating an imbalanced side force by cutter(s)-rock interaction. This imbalance force will only have a predictable magnitude and direction if the cutting action is smooth and continuous and the cutters are not worn or damaged. Neither of these conditions occur regularly as cutting action is often a discrete process rather than a continuous one (as when the cutters generate chips rather than continuous cuttings). When the rock is removed by a chipping action, the magnitude and direction is neither constant nor predictable.
Accordingly, there is a continued need for apparatus and methodology for preventing whirl and deviations.
DESCRIPTION OF THE DRAWINGS
For a fuller understanding of the nature and desired objects of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawing figures wherein like reference characters denote corresponding parts throughout the several views and wherein:
FIG. 1 illustrates a wellsite system in which the present invention can be employed.
FIG. 2 illustrates a drill bit according to the present inventions.
FIG. 2A illustrates a drill bit according to the present inventions within a borehole.
FIG. 3A illustrates a cross-section of a drill bit centered within a borehole.
FIG. 3B illustrates a cross-section of a drill bit located off-center within a borehole.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides apparatus and methods for preventing whirl and other deviations of the drill bit and/or bottom-hole assembly while drilling within a wellbore.
The inventions provide herein are adapted for use in a range of drilling operations such as oil, gas, and water drilling. As such, the bit body is designed for incorporation in wellsite systems that are commonly used in the oil, gas, and water industries. An exemplary wellsite system is depicted in FIG. 1.
The present invention relates to systems and methods for preventing whirl and other deviations of the drill bit and/or bottom-hole assembly while drilling within a wellbore.
BACKGROUND OF THE INVENTION
Drill bit whirl and deviations are a significant problem within the drilling industry. Oil, gas, water, and other natural resources are often located between 4,000 and 10,000 feet below ground. As a result, even a one-degree deviation of an well can result in a significant increase in drilling distance, time and cost.
In some application, the driller seeks a vertical wellbore. A smooth vertical wellbore facilitates running larger casing with minimal clearance and affords the possibility of using an extra string of casing at some later state in well construction operations. A wellbore that drifts away from and back into verticality can eliminate this option. Additionally, if multiple wellbore are drilled from a single platform, deviations can cause drill string collisions.
Even in controlled steering or directional drilling applications, it may be highly desirable to maintain the desired trajectory, for example when drilling to targets below faulted rocks, in steeply dipping beds, or in tectonically active areas.
Additionally, drill bit whirl, a condition wherein the bit's center of rotation shifts away from its geometric center, leads to several problems. These problems include non-cylindrical holes, wellbore deviation, and excessive bit wear.
Conventional anti-whirl drill bits attempt to reduce whirl by creating an imbalanced side force by cutter(s)-rock interaction. This imbalance force will only have a predictable magnitude and direction if the cutting action is smooth and continuous and the cutters are not worn or damaged. Neither of these conditions occur regularly as cutting action is often a discrete process rather than a continuous one (as when the cutters generate chips rather than continuous cuttings). When the rock is removed by a chipping action, the magnitude and direction is neither constant nor predictable.
Accordingly, there is a continued need for apparatus and methodology for preventing whirl and deviations.
DESCRIPTION OF THE DRAWINGS
For a fuller understanding of the nature and desired objects of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawing figures wherein like reference characters denote corresponding parts throughout the several views and wherein:
FIG. 1 illustrates a wellsite system in which the present invention can be employed.
FIG. 2 illustrates a drill bit according to the present inventions.
FIG. 2A illustrates a drill bit according to the present inventions within a borehole.
FIG. 3A illustrates a cross-section of a drill bit centered within a borehole.
FIG. 3B illustrates a cross-section of a drill bit located off-center within a borehole.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides apparatus and methods for preventing whirl and other deviations of the drill bit and/or bottom-hole assembly while drilling within a wellbore.
The inventions provide herein are adapted for use in a range of drilling operations such as oil, gas, and water drilling. As such, the bit body is designed for incorporation in wellsite systems that are commonly used in the oil, gas, and water industries. An exemplary wellsite system is depicted in FIG. 1.
FIG. 1 illustrates a wellsite system in which the present invention can be employed. The wellsite can be onshore or offshore. In this exemplary system, a borehole 11 is formed in subsurface formations by rotary drilling in a manner that is well known. Embodiments of the invention can also use directional drilling, as will be described hereinafter.
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string.
The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system could alternatively be used.
In the example of this embodiment, the surface system further includes drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
The bottom hole assembly 100 of the illustrated embodiment includes a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a roto-steerable system and motor, and drill bit 105.
The LWD module 120 is housed in a special type of drill collar, as is known in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, e.g. as represented at 120A. (References, throughout, to a module at the position of 120 can alternatively mean a module at the position of 120A as well.) The LWD module includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present embodiment, the LWD module includes a pressure measuring device.
The MWD module 130 is also housed in a special type of drill collar, as is known in the art, and can contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool further includes an apparatus (not shown) for generating electrical power to the downhole system.
This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. In the present embodiment, the MWD module includes one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
A particularly advantageous use of the system hereof is in conjunction with controlled steering or "directional drilling." In this embodiment, a roto-steerable subsystem 150 (FIG. 1) is provided. Directional drilling is the intentional deviation of the wellbore from the path it would naturally take.
In other words, directional drilling is the steering of the drill string so that it travels in a desired direction.
Directional drilling is, for example, advantageous in offshore drilling because it enables many wells to be drilled from a single platform.
Directional drilling also enables horizontal drilling through a reservoir. Horizontal drilling enables a longer length of the wellbore to traverse the reservoir, which increases the production rate from the well.
A directional drilling system may also be used in vertical drilling operation as well. Often the drill bit will veer off of a planned drilling trajectory because of the unpredictable nature of the formations being penetrated or the varying forces that the drill bit experiences. When such a deviation occurs, a directional drilling system may be used to put the drill bit back on course.
A known method of directional drilling includes the use of a rotary steerable system ("RSS"). In an RSS, the drill string is rotated from the surface, and downhole devices cause the drill bit to drill in the desired direction.
Rotating the drill string greatly reduces the occurrences of the drill string getting hung up or stuck during drilling. Rotary steerable drilling systems for drilling deviated boreholes into the earth may be generally classified as either "point-the-bit"
systems or "push-the-bit" systems.
In the point-the-bit system, the axis of rotation of the drill bit is deviated from the local axis of the bottom hole assembly in the general direction of the new hole. The hole is propagated in accordance with the customary three point geometry defined by upper and lower stabilizer touch points and the drill bit.
The angle of deviation of the drill bit axis coupled with a finite distance between the drill bit and lower stabilizer results in the non-collinear condition required for a curve to be generated. There are many ways in which this may be achieved including a fixed bend at a point in the bottom hole assembly close to the lower stabilizer or a flexure of the drill bit drive shaft distributed between the upper and lower stabilizer. In its idealized form, the drill bit is not required to cut sideways because the bit axis is continually rotated in the direction of the curved hole.
Examples of point-the-bit type rotary steerable systems, and how they operate are described in U.S. Patent Application Publication Nos. 2002/0011359;
2001/0052428 and U.S. Patent Nos. 6,394,193; 6,364,034; 6,244,361;
6,158,529; 6,092,610; and 5,113,953 all herein incorporated by reference.
In the push-the-bit rotary steerable system there is usually no specially identified mechanism to deviate the bit axis from the local bottom hole assembly axis; instead, the requisite non-collinear condition is achieved by causing either or both of the upper or lower stabilizers to apply an eccentric force or displacement in a direction that is preferentially orientated with respect to the direction of hole propagation. Again, there are many ways in which this may be achieved, including non-rotating (with respect to the hole) eccentric stabilizers (displacement based approaches) and eccentric actuators that apply force to the drill bit in the desired steering direction. Again, steering is achieved by creating non co-linearity between the drill bit and at least two other touch points. In its idealized form the drill bit is required to cut side ways in order to generate a curved hole. Examples of push-the-bit type rotary steerable systems, and how they operate are described in U.S. Patent Nos. 5,265,682; 5,553,678;
5,803,185;
A drill string 12 is suspended within the borehole 11 and has a bottom hole assembly 100 which includes a drill bit 105 at its lower end. The surface system includes platform and derrick assembly 10 positioned over the borehole 11, the assembly 10 including a rotary table 16, kelly 17, hook 18 and rotary swivel 19. The drill string 12 is rotated by the rotary table 16, energized by means not shown, which engages the kelly 17 at the upper end of the drill string.
The drill string 12 is suspended from a hook 18, attached to a traveling block (also not shown), through the kelly 17 and a rotary swivel 19 which permits rotation of the drill string relative to the hook. As is well known, a top drive system could alternatively be used.
In the example of this embodiment, the surface system further includes drilling fluid or mud 26 stored in a pit 27 formed at the well site. A pump 29 delivers the drilling fluid 26 to the interior of the drill string 12 via a port in the swivel 19, causing the drilling fluid to flow downwardly through the drill string 12 as indicated by the directional arrow 8. The drilling fluid exits the drill string 12 via ports in the drill bit 105, and then circulates upwardly through the annulus region between the outside of the drill string and the wall of the borehole, as indicated by the directional arrows 9. In this well known manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 27 for recirculation.
The bottom hole assembly 100 of the illustrated embodiment includes a logging-while-drilling (LWD) module 120, a measuring-while-drilling (MWD) module 130, a roto-steerable system and motor, and drill bit 105.
The LWD module 120 is housed in a special type of drill collar, as is known in the art, and can contain one or a plurality of known types of logging tools. It will also be understood that more than one LWD and/or MWD module can be employed, e.g. as represented at 120A. (References, throughout, to a module at the position of 120 can alternatively mean a module at the position of 120A as well.) The LWD module includes capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present embodiment, the LWD module includes a pressure measuring device.
The MWD module 130 is also housed in a special type of drill collar, as is known in the art, and can contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool further includes an apparatus (not shown) for generating electrical power to the downhole system.
This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. In the present embodiment, the MWD module includes one or more of the following types of measuring devices: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device.
A particularly advantageous use of the system hereof is in conjunction with controlled steering or "directional drilling." In this embodiment, a roto-steerable subsystem 150 (FIG. 1) is provided. Directional drilling is the intentional deviation of the wellbore from the path it would naturally take.
In other words, directional drilling is the steering of the drill string so that it travels in a desired direction.
Directional drilling is, for example, advantageous in offshore drilling because it enables many wells to be drilled from a single platform.
Directional drilling also enables horizontal drilling through a reservoir. Horizontal drilling enables a longer length of the wellbore to traverse the reservoir, which increases the production rate from the well.
A directional drilling system may also be used in vertical drilling operation as well. Often the drill bit will veer off of a planned drilling trajectory because of the unpredictable nature of the formations being penetrated or the varying forces that the drill bit experiences. When such a deviation occurs, a directional drilling system may be used to put the drill bit back on course.
A known method of directional drilling includes the use of a rotary steerable system ("RSS"). In an RSS, the drill string is rotated from the surface, and downhole devices cause the drill bit to drill in the desired direction.
Rotating the drill string greatly reduces the occurrences of the drill string getting hung up or stuck during drilling. Rotary steerable drilling systems for drilling deviated boreholes into the earth may be generally classified as either "point-the-bit"
systems or "push-the-bit" systems.
In the point-the-bit system, the axis of rotation of the drill bit is deviated from the local axis of the bottom hole assembly in the general direction of the new hole. The hole is propagated in accordance with the customary three point geometry defined by upper and lower stabilizer touch points and the drill bit.
The angle of deviation of the drill bit axis coupled with a finite distance between the drill bit and lower stabilizer results in the non-collinear condition required for a curve to be generated. There are many ways in which this may be achieved including a fixed bend at a point in the bottom hole assembly close to the lower stabilizer or a flexure of the drill bit drive shaft distributed between the upper and lower stabilizer. In its idealized form, the drill bit is not required to cut sideways because the bit axis is continually rotated in the direction of the curved hole.
Examples of point-the-bit type rotary steerable systems, and how they operate are described in U.S. Patent Application Publication Nos. 2002/0011359;
2001/0052428 and U.S. Patent Nos. 6,394,193; 6,364,034; 6,244,361;
6,158,529; 6,092,610; and 5,113,953 all herein incorporated by reference.
In the push-the-bit rotary steerable system there is usually no specially identified mechanism to deviate the bit axis from the local bottom hole assembly axis; instead, the requisite non-collinear condition is achieved by causing either or both of the upper or lower stabilizers to apply an eccentric force or displacement in a direction that is preferentially orientated with respect to the direction of hole propagation. Again, there are many ways in which this may be achieved, including non-rotating (with respect to the hole) eccentric stabilizers (displacement based approaches) and eccentric actuators that apply force to the drill bit in the desired steering direction. Again, steering is achieved by creating non co-linearity between the drill bit and at least two other touch points. In its idealized form the drill bit is required to cut side ways in order to generate a curved hole. Examples of push-the-bit type rotary steerable systems, and how they operate are described in U.S. Patent Nos. 5,265,682; 5,553,678;
5,803,185;
6,089,332; 5,695,015; 5,685,379; 5,706,905; 5,553,679; 5,673,763; 5,520,255;
5,603,385; 5,582,259; 5,778,992; 5,971,085 all herein incorporated by reference.
Particular embodiments of the inventions described herein provide drill bits 105 and bottom-hole assemblies 100 for reducing whirl and/or deviations.
Anti-Whirl Bits FIG. 2 depicts a drill bit 105. Drill bit 105 includes a trailing end 202 and a cutting portion 204. Trailing end 202 is adapted for direct or indirect connection with drill string 12. Cutting portion 204 includes one or more ribs 206a, 206b, 206c, 206d. Ribs 206 include gauge sections 208, which contact the walls of the borehole that has been drilled by cutters 210. Although cutters 210 are only depicted on rib 206b, cutters 210 can be configured on a plurality or all of ribs 206 as advantageous for particular drilling situations.
In embodiments of the present invention, one or more orifices 212 are located on the exterior of drill bit 105. Orifices 212 can be located on gauge sections 208 or in valleys 214 between ribs 206. The orifices 212 allow fluid from the interior of drill string 12 to exit the drill bit to achieve stability and reduce whirl. Additional orifices can be located on drill bit 105, for example, on the leading end 216 for lubrication and removal of cuttings as is known in the art.
In some embodiments, drill bit 105 contains a single orifice 212. Drill fluid 26 flows from orifice 212, and contacts the wall of borehole 11, creating a side force substantially perpendicular to the orientation of orifice 212 and gauge section 208. This force, creates an anti-whirl effect.
In some embodiments, the orifice 212 is positioned substantially opposite from the majority of cutters 210. For example, if the cutters 210 are located longitudinally along the drill bit 105, the orifice 212 can be located about from the cutters 210. In such an embodiment, drill fluid released from the orifice 212 creates a side force that pushes the bit in the direction of the cutters 210.
This embodiment (1) causes in increased contact between cutters 210 and the wall of borehole 11, and/or (2) neutralizes side forces resulting from contact between the cutters 210 and the borehole wall.
In other embodiments, the orifice 212 is positioned approximately 900 behind the majority of the cutters 210. As illustration of this principle, consider the situation depicted in FIG. 2A. Drill bit 105 is rotating counter-clockwise in borehole 11. Cutters 210 are about to impact a protuberance 218 from borehole wall 220. If protuberance 218 is particularly strong material, protuberance will remain intact at least momentarily when first contacted by cutters 210. The rotational force on drill bit 105 will cause drill bit 105 to move in the negative y direction until gauge pad 206a contacts borehole wall 220. However, if orifice 212 is located on gauge pad 206a, the drilling fluid 26 will generate a force in the positive y direction, counteracting the tendency of the drill bit 105 to move off center. Moreover, the positive yforce moves the entire bit 105, thereby providing additional force to cutters 210 and assisting in borehole propagation.
Other cutter 210 and orifice 212 configurations are within the scope of these inventions. For example, the aggregate force vector generated by the rotation of the drill bit 105 and contact with a plurality of cutters 210 can be calculated using known equations and technology. The orifice 212 can be configured to counteract the most probable force vectors.
By utilizing the hydraulic force of drilling fluid 26 from orifice 212, drill bits 105 produce a more predictable and constant imbalance force to reduce and/or prevent bit whirl. The direction of the imbalance force is known given the position of the port. The magnitude of the imbalance force is a function of the distance between the orifice 212 and borehole wall 220, the differential pressure between the drilling fluid 26 in the borehole and the drilling fluid 26 in the drill string 12, and the geometry (e.g. shape and size) of the orifice 212. Furthermore, wear and damage to the cutters 210 should not affect the amplitude and direction of the side force.
5,603,385; 5,582,259; 5,778,992; 5,971,085 all herein incorporated by reference.
Particular embodiments of the inventions described herein provide drill bits 105 and bottom-hole assemblies 100 for reducing whirl and/or deviations.
Anti-Whirl Bits FIG. 2 depicts a drill bit 105. Drill bit 105 includes a trailing end 202 and a cutting portion 204. Trailing end 202 is adapted for direct or indirect connection with drill string 12. Cutting portion 204 includes one or more ribs 206a, 206b, 206c, 206d. Ribs 206 include gauge sections 208, which contact the walls of the borehole that has been drilled by cutters 210. Although cutters 210 are only depicted on rib 206b, cutters 210 can be configured on a plurality or all of ribs 206 as advantageous for particular drilling situations.
In embodiments of the present invention, one or more orifices 212 are located on the exterior of drill bit 105. Orifices 212 can be located on gauge sections 208 or in valleys 214 between ribs 206. The orifices 212 allow fluid from the interior of drill string 12 to exit the drill bit to achieve stability and reduce whirl. Additional orifices can be located on drill bit 105, for example, on the leading end 216 for lubrication and removal of cuttings as is known in the art.
In some embodiments, drill bit 105 contains a single orifice 212. Drill fluid 26 flows from orifice 212, and contacts the wall of borehole 11, creating a side force substantially perpendicular to the orientation of orifice 212 and gauge section 208. This force, creates an anti-whirl effect.
In some embodiments, the orifice 212 is positioned substantially opposite from the majority of cutters 210. For example, if the cutters 210 are located longitudinally along the drill bit 105, the orifice 212 can be located about from the cutters 210. In such an embodiment, drill fluid released from the orifice 212 creates a side force that pushes the bit in the direction of the cutters 210.
This embodiment (1) causes in increased contact between cutters 210 and the wall of borehole 11, and/or (2) neutralizes side forces resulting from contact between the cutters 210 and the borehole wall.
In other embodiments, the orifice 212 is positioned approximately 900 behind the majority of the cutters 210. As illustration of this principle, consider the situation depicted in FIG. 2A. Drill bit 105 is rotating counter-clockwise in borehole 11. Cutters 210 are about to impact a protuberance 218 from borehole wall 220. If protuberance 218 is particularly strong material, protuberance will remain intact at least momentarily when first contacted by cutters 210. The rotational force on drill bit 105 will cause drill bit 105 to move in the negative y direction until gauge pad 206a contacts borehole wall 220. However, if orifice 212 is located on gauge pad 206a, the drilling fluid 26 will generate a force in the positive y direction, counteracting the tendency of the drill bit 105 to move off center. Moreover, the positive yforce moves the entire bit 105, thereby providing additional force to cutters 210 and assisting in borehole propagation.
Other cutter 210 and orifice 212 configurations are within the scope of these inventions. For example, the aggregate force vector generated by the rotation of the drill bit 105 and contact with a plurality of cutters 210 can be calculated using known equations and technology. The orifice 212 can be configured to counteract the most probable force vectors.
By utilizing the hydraulic force of drilling fluid 26 from orifice 212, drill bits 105 produce a more predictable and constant imbalance force to reduce and/or prevent bit whirl. The direction of the imbalance force is known given the position of the port. The magnitude of the imbalance force is a function of the distance between the orifice 212 and borehole wall 220, the differential pressure between the drilling fluid 26 in the borehole and the drilling fluid 26 in the drill string 12, and the geometry (e.g. shape and size) of the orifice 212. Furthermore, wear and damage to the cutters 210 should not affect the amplitude and direction of the side force.
In some embodiments, the exterior of orifice 212 is surrounding by a raised annulus or other geometric feature in order to form greater hydraulic pressure as drilling fluid 26 exits orifice 212. Such a feature and/or the entire gauge section 206 can be coated with or fabricated entirely from a wear resistant or hard faced material such as polycrystalline diamond (PCD).
Self-Stabilized Bits and Bottom Hole Assemblies Another embodiment of the invention utilizes one or more orifices 212 to stabilize a drill bit 105 and/or bottom hole assembly (BHA) within a borehole.
FIG. 3A depicts a cross-section of a drill bit 105 with three gauge pads 206a, 206b, 206c generally spaced (e.g. 120 on center) around the circumference of the drill bit 105, each having an orifice 212a, 212b, 212c, respectively. Drilling fluid 26 (represented by the thick lines) flows from inside the drill bit 105 through orifices 212a, 212b, 212c.
The drill bit 105 depicted in FIG. 3A is generally centered within borehole 11. Accordingly, any hydraulic forces created by the drilling fluid will cancel each other. However, if drill bit 105 moves off center as depicted in FIG.
3B, the amplitude of the force vector generated by drilling fluid 26 from orifice 212a will increase as the space between orifice 212a and borehole wall 220 decrease. Concurrently, any force vector generated by orifices 212b and 212c will decrease, resulting in a net force vector (represented by arrow 222) pushing the bit away from the wall 220.
In some embodiments, fluid flow to the one or more orifices is limited by one or more valve (e.g. choke valves). A single valve may be connected to each orifice by tubing or other means. More preferably, each orifice is independently regulated by a separate valve. Independent regulation ensures that the volume of drilling fluid 26 flowing to a particular orifice 212 does not increase beyond a desired threshold so as to deprive other orifices 212 or other ports (e.g.
ports located on the leading edge 216 of drill bit 105).
While the embodiment in FIGS. 3A and 3B depicts a drill bit 105 with three orifices 212, the inventions described herein encompass the use of fluid with any number of orifices 212 for the stabilization of a drill bit 105 or bottom hole assembly. For example, a drill bit 105 with a single orifice would produce a similar effect as a drill bit 105 with three orifices. As the drill bit 105 rotated, the force generated by the single orifice would increase in amplitude as the orifice passed through regions in which the drill bit 105 was closer to the borehole wall 220. This increased force would urge the drill bit 105 back center.
Furthermore, drill bits and bottom hole assemblies having two, three, four, five, or six orifices, and the like are within the scope of the invention.
The principles described herein can be applied to stabilization pads located along the exterior of bottom hole assembly 100 and other portions of the drill string 12. Stabilization pads act similarly to gauge pads to minimize movement of the bottom hole assembly and drill string. In such an embodiment, one or more orifices are added to one or more stabilization pads to allow drilling fluid 26 to act as described herein.
Combination Anti-Whirl and Self-Stabilized Bits The principles of anti-whirl and self-stabilized bits described herein can be combined to produce a bit 105 that produces net imbalanced side force to reduce whirl while still providing one or more orifices to correct a drift from center of the borehole 11. In such an embodiment, one of a plurality of orifices 212 is larger in cross-sectional area to produce an imbalance side force.
The foregoing specification and the drawings forming part hereof are illustrative in nature and demonstrate certain preferred embodiments of the invention. It should be recognized and understood, however, that the description is not to be construed as limiting of the invention because many changes, modifications and variations may be made therein by those of skill in the art without departing from the essential scope, spirit or intention of the invention.
Self-Stabilized Bits and Bottom Hole Assemblies Another embodiment of the invention utilizes one or more orifices 212 to stabilize a drill bit 105 and/or bottom hole assembly (BHA) within a borehole.
FIG. 3A depicts a cross-section of a drill bit 105 with three gauge pads 206a, 206b, 206c generally spaced (e.g. 120 on center) around the circumference of the drill bit 105, each having an orifice 212a, 212b, 212c, respectively. Drilling fluid 26 (represented by the thick lines) flows from inside the drill bit 105 through orifices 212a, 212b, 212c.
The drill bit 105 depicted in FIG. 3A is generally centered within borehole 11. Accordingly, any hydraulic forces created by the drilling fluid will cancel each other. However, if drill bit 105 moves off center as depicted in FIG.
3B, the amplitude of the force vector generated by drilling fluid 26 from orifice 212a will increase as the space between orifice 212a and borehole wall 220 decrease. Concurrently, any force vector generated by orifices 212b and 212c will decrease, resulting in a net force vector (represented by arrow 222) pushing the bit away from the wall 220.
In some embodiments, fluid flow to the one or more orifices is limited by one or more valve (e.g. choke valves). A single valve may be connected to each orifice by tubing or other means. More preferably, each orifice is independently regulated by a separate valve. Independent regulation ensures that the volume of drilling fluid 26 flowing to a particular orifice 212 does not increase beyond a desired threshold so as to deprive other orifices 212 or other ports (e.g.
ports located on the leading edge 216 of drill bit 105).
While the embodiment in FIGS. 3A and 3B depicts a drill bit 105 with three orifices 212, the inventions described herein encompass the use of fluid with any number of orifices 212 for the stabilization of a drill bit 105 or bottom hole assembly. For example, a drill bit 105 with a single orifice would produce a similar effect as a drill bit 105 with three orifices. As the drill bit 105 rotated, the force generated by the single orifice would increase in amplitude as the orifice passed through regions in which the drill bit 105 was closer to the borehole wall 220. This increased force would urge the drill bit 105 back center.
Furthermore, drill bits and bottom hole assemblies having two, three, four, five, or six orifices, and the like are within the scope of the invention.
The principles described herein can be applied to stabilization pads located along the exterior of bottom hole assembly 100 and other portions of the drill string 12. Stabilization pads act similarly to gauge pads to minimize movement of the bottom hole assembly and drill string. In such an embodiment, one or more orifices are added to one or more stabilization pads to allow drilling fluid 26 to act as described herein.
Combination Anti-Whirl and Self-Stabilized Bits The principles of anti-whirl and self-stabilized bits described herein can be combined to produce a bit 105 that produces net imbalanced side force to reduce whirl while still providing one or more orifices to correct a drift from center of the borehole 11. In such an embodiment, one of a plurality of orifices 212 is larger in cross-sectional area to produce an imbalance side force.
The foregoing specification and the drawings forming part hereof are illustrative in nature and demonstrate certain preferred embodiments of the invention. It should be recognized and understood, however, that the description is not to be construed as limiting of the invention because many changes, modifications and variations may be made therein by those of skill in the art without departing from the essential scope, spirit or intention of the invention.
Claims (17)
1. A drill bit comprising:
an interior cavity in fluid communication with a drill string; and a plurality of gauge pads located on the exterior of the drill bit, one or more of the gauge pads having an orifice in communication with the interior cavity, wherein the drill bit is configured such that a fluid continuously flows from each of the orifices to provide a net stabilizing effect.
an interior cavity in fluid communication with a drill string; and a plurality of gauge pads located on the exterior of the drill bit, one or more of the gauge pads having an orifice in communication with the interior cavity, wherein the drill bit is configured such that a fluid continuously flows from each of the orifices to provide a net stabilizing effect.
2. The drill bit of claim 1, wherein the fluid flow is sufficient to urge the drill bit away from a wall of a borehole.
3. The drill bit of claim 1, wherein the drill bit comprises a plurality of gauge pads having an orifice in communication with the interior cavity.
4. The drill bit of claim 3, wherein the drill bit comprises three gauge pads having an orifice in communication with the interior cavity.
5. The drill bit of claim 4, wherein the wherein the orifices are spaced about 1200 on center around the exterior of the drill bit.
6. The drill bit of claim 1, wherein one of the orifices has a larger cross-sectional area than the other orifices.
7. The drill bit of claim 1, further comprising:
a valve configured to regulate the aggregate flow of fluid to the one or more orifices.
a valve configured to regulate the aggregate flow of fluid to the one or more orifices.
8. The drill bit of claim 1, further comprising:
one or more valves, each valve configured to regulate the flow of fluid to a single orifice.
one or more valves, each valve configured to regulate the flow of fluid to a single orifice.
9. A bottom hole assembly comprising:
an interior cavity in fluid communication with a drill string; and a plurality of stabilization pads located on the exterior of the bottom hole assembly, wherein at least one or more of the gauge pads having an orifice in communication with the interior cavity to provide a net stabilizing force to the bottom hole assembly.
an interior cavity in fluid communication with a drill string; and a plurality of stabilization pads located on the exterior of the bottom hole assembly, wherein at least one or more of the gauge pads having an orifice in communication with the interior cavity to provide a net stabilizing force to the bottom hole assembly.
10. The bottom hole assembly of claim 9, wherein the bottom hole assembly is configured such that a fluid continuously flows from each of the one or more orifices.
11. The bottom hole assembly of claim 10, wherein the fluid flow is sufficient to urge the drill bit away from a wall of a borehole thereby stabilizing said drill bit in the borehole.
12. The bottom hole assembly of claim 9, wherein the bottom hole assembly comprises a plurality of stabilization pads having an orifice in communication with the interior cavity.
13. The bottom hole assembly of claim 12, wherein the bottom hole assembly comprises three gauge pads having an orifice in communication with the interior cavity.
14. The bottom hole assembly of claim 13, wherein the orifices are spaced about 120° on center around the exterior of the bottom hole assembly.
15. The bottom hole assembly of claim 9, further comprising:
a valve configured to regulate the aggregate flow of fluid to the orifices to provide a net stabilizing effect on the bottom hole assembly within a borehole.
a valve configured to regulate the aggregate flow of fluid to the orifices to provide a net stabilizing effect on the bottom hole assembly within a borehole.
16. The bottom hole assembly of claim 9, further comprising:
one or more valves, each valve configured to regulate the flow of fluid to a single orifice to provide a net stabilizing effect to the bottom hole assembly within the borehole.
one or more valves, each valve configured to regulate the flow of fluid to a single orifice to provide a net stabilizing effect to the bottom hole assembly within the borehole.
17. A wellsite system comprising:
a drill string;
a kelly coupled to the drill string; and a drill bit comprising:
an interior cavity in fluid communication with a drill string; and a plurality of gauge pads located on the exterior of the drill bit, one or more of the gauge pads having an orifice in communication with the interior cavity, wherein the drill bit is configured such that a fluid continuously flows from at least one of said orifices to provide a net stabilizing effect on the wellsite system.
a drill string;
a kelly coupled to the drill string; and a drill bit comprising:
an interior cavity in fluid communication with a drill string; and a plurality of gauge pads located on the exterior of the drill bit, one or more of the gauge pads having an orifice in communication with the interior cavity, wherein the drill bit is configured such that a fluid continuously flows from at least one of said orifices to provide a net stabilizing effect on the wellsite system.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/258,610 | 2008-10-27 | ||
US12/258,610 US20100101867A1 (en) | 2008-10-27 | 2008-10-27 | Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same |
PCT/GB2009/002545 WO2010049674A1 (en) | 2008-10-27 | 2009-10-26 | Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2741617A1 true CA2741617A1 (en) | 2011-05-06 |
Family
ID=41506506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2741617A Abandoned CA2741617A1 (en) | 2008-10-27 | 2009-10-26 | Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100101867A1 (en) |
JP (1) | JP5832897B2 (en) |
CN (1) | CN102227541B (en) |
CA (1) | CA2741617A1 (en) |
GB (1) | GB2479475B (en) |
NO (1) | NO20110679A1 (en) |
RU (1) | RU2509860C2 (en) |
WO (1) | WO2010049674A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9970235B2 (en) | 2012-10-15 | 2018-05-15 | Bertrand Lacour | Rotary steerable drilling system for drilling a borehole in an earth formation |
US11512540B2 (en) | 2019-10-31 | 2022-11-29 | Schlumberger Technology Corporation | Methods for mitigating whirl |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2167194A (en) * | 1936-03-14 | 1939-07-25 | Lane Wells Co | Apparatus for deflecting drill holes |
US2710741A (en) * | 1950-07-28 | 1955-06-14 | Sr Jesse E Hall | Apparatus for drilling or hole testing |
US2805045A (en) * | 1953-06-08 | 1957-09-03 | Globe Oil Tools Co | Well drilling bit |
US3215215A (en) * | 1962-08-27 | 1965-11-02 | Exxon Production Research Co | Diamond bit |
US3180440A (en) * | 1962-12-31 | 1965-04-27 | Jersey Prod Res Co | Drag bit |
US3237705A (en) * | 1963-11-13 | 1966-03-01 | Williams Joseph W | Reamer for enlarging and straightening bore holes |
FR1567862A (en) * | 1967-03-13 | 1969-05-23 | ||
SU480823A1 (en) * | 1972-07-31 | 1975-08-15 | Всесоюзный Научно-Исследовательский Институт Буровой Техники | Borehole calibration tool |
US3923109A (en) * | 1975-02-24 | 1975-12-02 | Jr Edward B Williams | Drill tool |
US4068731A (en) * | 1976-11-17 | 1978-01-17 | Smith International, Inc. | Extended nozzle and bit stabilizer and method of producing |
US4463220A (en) * | 1981-05-28 | 1984-07-31 | Gonzalez Eduardo B | Drill bit for forming a fluid cushion between the side of the drill bit and the side wall of a bore hole |
US4479558A (en) * | 1981-08-05 | 1984-10-30 | Gill Industries, Inc. | Drilling sub |
US4630694A (en) * | 1985-10-16 | 1986-12-23 | Walton Paul G | Integral blade hole opener |
CA2002135C (en) * | 1988-11-03 | 1999-02-02 | James Bain Noble | Directional drilling apparatus and method |
GB8926689D0 (en) * | 1989-11-25 | 1990-01-17 | Reed Tool Co | Improvements in or relating to rotary drill bits |
RU1819970C (en) * | 1989-12-04 | 1993-06-07 | Комплексная Геофизико-Геохимическая Экспедиция Научно-Производственного Объединения "Казрудгеология" | Gage and method of its manufacture |
US5111892A (en) * | 1990-10-03 | 1992-05-12 | Sinor L Allen | Imbalance compensated drill bit with hydrostatic bearing |
US5265682A (en) * | 1991-06-25 | 1993-11-30 | Camco Drilling Group Limited | Steerable rotary drilling systems |
US5553678A (en) * | 1991-08-30 | 1996-09-10 | Camco International Inc. | Modulated bias units for steerable rotary drilling systems |
GB9411228D0 (en) * | 1994-06-04 | 1994-07-27 | Camco Drilling Group Ltd | A modulated bias unit for rotary drilling |
GB9503828D0 (en) * | 1995-02-25 | 1995-04-19 | Camco Drilling Group Ltd | "Improvements in or relating to steerable rotary drilling systems" |
GB9503829D0 (en) * | 1995-02-25 | 1995-04-19 | Camco Drilling Group Ltd | "Improvememnts in or relating to steerable rotary drilling systems" |
GB9503830D0 (en) * | 1995-02-25 | 1995-04-19 | Camco Drilling Group Ltd | "Improvements in or relating to steerable rotary drilling systems" |
GB9503827D0 (en) * | 1995-02-25 | 1995-04-19 | Camco Drilling Group Ltd | "Improvements in or relating to steerable rotary drilling systems |
GB9521972D0 (en) * | 1995-10-26 | 1996-01-03 | Camco Drilling Group Ltd | A drilling assembly for drilling holes in subsurface formations |
US5740873A (en) * | 1995-10-27 | 1998-04-21 | Baker Hughes Incorporated | Rotary bit with gageless waist |
GB2322651B (en) * | 1996-11-06 | 2000-09-20 | Camco Drilling Group Ltd | A downhole unit for use in boreholes in a subsurface formation |
US6092610A (en) * | 1998-02-05 | 2000-07-25 | Schlumberger Technology Corporation | Actively controlled rotary steerable system and method for drilling wells |
US6412579B2 (en) * | 1998-05-28 | 2002-07-02 | Diamond Products International, Inc. | Two stage drill bit |
US6158529A (en) * | 1998-12-11 | 2000-12-12 | Schlumberger Technology Corporation | Rotary steerable well drilling system utilizing sliding sleeve |
US6269893B1 (en) * | 1999-06-30 | 2001-08-07 | Smith International, Inc. | Bi-centered drill bit having improved drilling stability mud hydraulics and resistance to cutter damage |
CA2474223C (en) * | 1999-07-12 | 2008-04-01 | Halliburton Energy Services, Inc. | Fulcrum bearing assembly for a steerable rotary drilling device |
US6386302B1 (en) * | 1999-09-09 | 2002-05-14 | Smith International, Inc. | Polycrystaline diamond compact insert reaming tool |
US6394200B1 (en) * | 1999-10-28 | 2002-05-28 | Camco International (U.K.) Limited | Drillout bi-center bit |
US6364034B1 (en) * | 2000-02-08 | 2002-04-02 | William N Schoeffler | Directional drilling apparatus |
US20010052428A1 (en) * | 2000-06-15 | 2001-12-20 | Larronde Michael L. | Steerable drilling tool |
US6394193B1 (en) * | 2000-07-19 | 2002-05-28 | Shlumberger Technology Corporation | Downhole adjustable bent housing for directional drilling |
US6401842B2 (en) * | 2000-07-28 | 2002-06-11 | Charles T. Webb | Directional drilling apparatus with shifting cam |
US7287604B2 (en) * | 2003-09-15 | 2007-10-30 | Baker Hughes Incorporated | Steerable bit assembly and methods |
US7942213B2 (en) * | 2006-10-27 | 2011-05-17 | Schlumberger Technology Corporation | Using hydrostatic bearings for downhole applications |
US20090133931A1 (en) * | 2007-11-27 | 2009-05-28 | Schlumberger Technology Corporation | Method and apparatus for hydraulic steering of downhole rotary drilling systems |
-
2008
- 2008-10-27 US US12/258,610 patent/US20100101867A1/en not_active Abandoned
-
2009
- 2009-10-26 WO PCT/GB2009/002545 patent/WO2010049674A1/en active Application Filing
- 2009-10-26 GB GB1108683.2A patent/GB2479475B/en not_active Expired - Fee Related
- 2009-10-26 RU RU2011121351/03A patent/RU2509860C2/en not_active IP Right Cessation
- 2009-10-26 CA CA2741617A patent/CA2741617A1/en not_active Abandoned
- 2009-10-26 JP JP2011533807A patent/JP5832897B2/en not_active Expired - Fee Related
- 2009-10-26 CN CN200980147753.2A patent/CN102227541B/en not_active Expired - Fee Related
-
2011
- 2011-05-09 NO NO20110679A patent/NO20110679A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
GB2479475B (en) | 2013-03-13 |
GB2479475A (en) | 2011-10-12 |
US20100101867A1 (en) | 2010-04-29 |
WO2010049674A1 (en) | 2010-05-06 |
RU2011121351A (en) | 2012-12-10 |
NO20110679A1 (en) | 2011-05-09 |
RU2509860C2 (en) | 2014-03-20 |
CN102227541A (en) | 2011-10-26 |
GB201108683D0 (en) | 2011-07-06 |
CN102227541B (en) | 2014-04-23 |
JP2012506961A (en) | 2012-03-22 |
JP5832897B2 (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8960329B2 (en) | Steerable piloted drill bit, drill system, and method of drilling curved boreholes | |
CA2573888C (en) | Steerable underreamer/stabilizer assembly and method | |
US5937958A (en) | Drill bits with predictable walk tendencies | |
CA2776610C (en) | Drill bits and methods of drilling curved boreholes | |
US8474552B2 (en) | Piston devices and methods of use | |
US20100101864A1 (en) | Anti-whirl drill bits, wellsite systems, and methods of using the same | |
US11879334B2 (en) | Rotary steerable system with cutters | |
US8235145B2 (en) | Gauge pads, cutters, rotary components, and methods for directional drilling | |
US8235146B2 (en) | Actuators, actuatable joints, and methods of directional drilling | |
US20160258219A1 (en) | Deviated drilling system utilizing steerable bias unit | |
US20100101867A1 (en) | Self-stabilized and anti-whirl drill bits and bottom-hole assemblies and systems for using the same | |
US10557318B2 (en) | Earth-boring tools having multiple gage pad lengths and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20141024 |
|
FZDE | Discontinued |
Effective date: 20180327 |