[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CA2616769A1 - Compositions and methods of increasing stress tolerance in plants - Google Patents

Compositions and methods of increasing stress tolerance in plants Download PDF

Info

Publication number
CA2616769A1
CA2616769A1 CA002616769A CA2616769A CA2616769A1 CA 2616769 A1 CA2616769 A1 CA 2616769A1 CA 002616769 A CA002616769 A CA 002616769A CA 2616769 A CA2616769 A CA 2616769A CA 2616769 A1 CA2616769 A1 CA 2616769A1
Authority
CA
Canada
Prior art keywords
seq
nucleic acid
ppi
polypeptide
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002616769A
Other languages
French (fr)
Inventor
Yafan Huang
Maryse Chalifoux
Yang Wang
Monika D. Kuzma
Angela P. Gilley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Performance Plants Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from CA002448318A external-priority patent/CA2448318C/en
Publication of CA2616769A1 publication Critical patent/CA2616769A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

The present invention provides novel isolated FT polynucleotides and polypeptides encoded by the FT polynucleotides. Also provided are the antibodies that immunospecifically bind to a FT polypeptide or any derivative, variant, mutant or fragment of the FT polypeptide, polynucleotide or antibody. The invention additionally provides methods of constructing transgenic plants that have altered levels of FT polynucleotides and polypeptides.

Description

COMPOSITIONS AND METHODS OF INCREASING STRESS TOLERANCE IN
PLANTS
This is a division of CA 2,448,318, filed May 31, 2002, the contents of which are incorporated herein by reference, FIELD OF THE INVENTION

The invention relates in part to novel plant farnesyl transferase alpha and beta subunit polynucleotides and polypeptides. Also included are transgenic plants expressing the novel polynucleotides and polypeptides. The invention also includes trausgenic plant cells, tissues and plants having novel phenotypes resulting from the expression of these polynucleotides in either the sense or antisense orientation.

BACKGROUND OF THE INVENTION

Most higher plants encounter at least transient decreases in relative water content at some stage of their life cycle and, as a result, have evolved a number of desiccation protection mechanisms. If however, the change in water deficit is prolonged the effects on the plants growth and development can be profound. Decreased water content due to drought, cold or salt stress can irreparably damage plant cells which in turn limits plant growth and crop productivity in agriculture.

Plants respond to adverse conditions of drought, salinity and cold with a variety of morphological and physiological changes. Although our understanding of plant tolerance mechanisms to these stresses is incomplete, the plant hormone abscisic acid (ABA) is believed to be an essential mediator between environmental stimulus and plant responses.
ABA levels increase in response to water deficits and exogenously applied ABA
mimics many of the responses induced by water-stress. Once ABA is synthesized it causes the closure of the leaf stomata thereby decreasing water loss through transpiration.

The identification of genes that transduce ABA into a cellular response opens the possibility of exploiting these regulators to enhance desiccation tolerance in crop species.
In principle, these ABA signaling genes can be coupled with the appropriate controlling elements to allow optirnal plant growth, development and productivity. Thus, not only would these genes allow the genetic tailoring of crops to withstand transitory 3o environmental stresses, but they should also broaden the environments where traditional crops can be grown.

The recent isolation of an Arabidopsis thaliana mutant, eral, is hypersensitive to ABA and has been shown to also be tolerant to conditions of water deprivation.
ERAI has been identified as aP subunit of farnesyl transferase. Farnesyl transferase is a heterodimeric enzyme that provides the specific addition of a farnesyl pyrophosphate moiety onto the substrate target sequence. The target sequence is defined as a sequence of four amino acids which are present at the carboxy terminus of the protein and is referred to as a CaaX motif in which the "C" is cysteine, "a" is any aliphatic amino acid and "X" is any amino acid. The a subunit is common with a second prenylation enzyme, geranylgeranyl transferase, that has a different (3 subunit and adds a geranylgeranyl isoprenyl pyrophosphate moiety to the target sequence.

Prenylation is a multistep pathway which includes prenylation of the cysteine residue of the Ca.aX site, cleavage of the =aaX tripeptide and methylation of the prenyl-cysteine residue. Potentially, each of these steps could represent a target for genetic manipulation of the prenylation process to generate a desired phenotype such as stress tolerance.

In plants, prenylation has been linked to cell cycle control, meristem development, and phytohormone signal transduction, however, few details of the role of prenylation, the substrate proteins or the extent to which the plant system will be analogous to the mammalian and yeast systems are known. The most characterized substrates for CaaX
modification are the Ras and a-factor proteins of yeast. Although there are three steps to complete protein maturation, abolition or modification of any one step does not necessarily result in cessation of target biological activities. Ras function is attenuated if the -aaX tripeptide is not cleaved but not abolished and some proteins retain the -aaX
tripeptide after farnesylation. These observations may be substrate specific as, in contrast, there are examples indicating some proteins are fully functional only after being properly prenylated such as in regulating processes such as mitogen response in mammals and mating pheromone in yeast.

In Arabidopsis thaliana, more than 600 proteins contain a CaaX motif, suggesting a role for the post-translational modification by prenylation in numerous cellular processes. In Arabidopsis thaliana, it has been demonstrated that the loss-of-function of the ~-subunit of farnesyl transferase will result in a ABA-hypersensitive phenotype.
Although it is still not clear why plants lacking the functional p-subunit of farnesyl transferase become more sensitive to ABA, it clearly suggests that protein prenylation is involved in regulation of the homeostasis of ABA sensitivity. The balance of ABA
cellular responses, whether more sensitive or less sensitive to ABA, is possibly regulated by the relative activities of prenylated proteins.

This invention is directed at the manipulation of the farnesyl transferase (FT) subunits, either a or 0 (FTA, FTB) to alter farnesyl transferase enzyme expression and activity. Farnesyl transferase catalyses the first step of farnesylation in which a 15-carbon farnesyl moiety is added to the cysteine residue of the target sequence CaaX.
Included in this invention are vector constructs containing FTA or FTB sequences under the control of appropriate regulatory sequences to produce phenotypes such as, but not limited to, water-stress tolerance, increased biomass accumulation, increased yield or delayed senescence.
Manipulation of the FTA subunit may also affect the activity of geranylgeranyl transferase and the phenoytypes associated with this manipulation are encompassed by this invention.
SUMMARY OF THE INVENTION

The present invention is based in part upon the discovery of novel farnesyl transferase nucleic'acid sequences and polypeptides from Arabidopsis thaliana, Brassica napus, Glycine max and Zea maize. The nucleic acids, polynucleotides, proteins and polypeptides, or fragments thereof described herein are collectively referred to as FT
nucleic acids and polypeptides.
Accordingly, in one aspect, the invention provides an isolated nucleic acid molecule that includes the sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ
ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37, or a fragment, homolog, analog or derivative thereof. The nucleic acid can include, e.g., a nucleic acid sequence encoding a polypeptide at least 99% identical to a polypeptide that includes the amino acid sequences of SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:9, SEQ ID NO:33, SEQ ID NO:36, or SEQ ID NO:37, a nucleic acid sequence encoding a polypeptide at least 85%
identical to a polypeptide that includes the amino acid sequences of SEQ ID NO:5, SEQ ID
NO:7, or SEQ ID NO:9 or a nucleic acid sequence encoding a polypeptide at least 99%
identical to a polypeptide that includes the amino acid sequences of SEQ ID NO:33, SEQ ID
NO:36, or SEQ ID NO:39 The nucleic acid can be, e.g., a genomic DNA fragment, or a eDNA
molecule.
The invention also includes the nucleic acid sequences of SEQ ID NO: 2, 3, 4, 29, 30, 32, 35, 38, 40-57 or 58. Also included in the invention is a vector containing one or more of the nucleic acids described herein, and a cell containing the vectors or nucleic acids described herein. In some aspects the FT nucleic acid is operably linked to a promoter. Examples of promoter includes a constitutive promoter (e.g., 35S
CaMV, MuA), an ABA inducible promoter (e.g., RD29A), tissue specific promoters (e.g., CUTI) or a guard cell-specific promoter (e.g., 35S, MuA and RD29A) The invention is also directed to host cells transformed with a vector comprising any of the nucleic acid molecules described herein.
The invention is also directed to plants and cells transformed with a FT
nucleic acid or a vector comprising a FT nucleic acid. Also included in the invention is the seed, and progeny of the transformed plants or cells.
The invention is also further directed to the use of plants and cells transformed with a FT nucleic acid or a vector comprising a FT nucleic acid in generation of mutant libraries and genetic screening protocols.
In a further aspect, the invention includes a substantially purified FT
polypeptide, e.g., any of the FT polypeptides encoded by an FT nucleic acid, and fragments, homologs, analogs, and derivatives thereof.
In still a further aspect, the invention provides an antibody that binds specifically to an FT polypeptide. The antibody can be, e.g., a monoclonal or polyclonal antibody, and fragments, homologs, analogs, and derivatives thereof. The invention is also directed to isolated antibodies that bind to an epitope on a polypeptide encoded by any of the nucleic acid molecules described above.
The invention also includes a method of producing a transgenic plant which has increased stress resistance such as, but not limited to, water deficit, or increased biomass, increased yield; delayed senescence or increases ABA sensitivity by introducing into one or more cells of a plant a compound that alters FT expression or activity in the plant. In one aspect the compound is a FT nucleic acid. The nucleic acid can be for example a inhibitor or farnesylation or genanylgerylation. Alternatively, the compound is a FT
double stranded RNA-inhibition hair-pin nucleic acid or FT antisense nucleic acid.
The invention further provides a method for producing a FT polypeptide by providing a cell containing an FT nucleic acid, e.g., a vector that includes a FT nucleic 3o acid, and culturing the cell under conditions sufficient to express the FT
polypeptide encoded by the nucleic acid. The expressed FT polypeptide is then recovered from the cell. Preferably, the cell produces little or no endogenous FT polypeptide.
The cell can be, e.g., a prokaryotic cell or eukaryotic cell.
The invention is also directed to methods of identifying a FT polypeptide or nucleic acid in a sample by contacting the sample with a compound that specifically binds to the polypeptide or nucleic acid, and detecting complex fomiation, if present.
The invention further provides methods of identifying a compound that modulates the activity of a FT polypeptide by contacting a FT polypeptide with a compound and determining whether the FT polypeptide activity is modified.
The invention is also directed to compounds that modulate FT polypeptide activity identified by contacting a FT polypeptide with the compound and determining whether the compound modifies activity of the FT polypeptide, binds to the FT polypeptide, or binds lo to a nucleic acid molecule encoding a FT polypeptide.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

BRIEF DESCItIPTION OF THE DRAWINCS

Figure l is an illustration depicting the pBI121 antisense FTA vector construct.
Figure 2 is an illustration of genomic Southern hybridization analysis of anti-FTA
transgenic Arabidopsis thaliana.
Figure 3 is an illustration ofNorthem analysis of five 3 5 S-anti-FTA
Arabidopsis thaliana lines (T3 plants).
Figure 4 shows a Western expression analysis using anti-FTA antibodies to detect the FTA polypeptides.
Figure 5 is a set of photographs showing ABA effects on seedling growth and development. FTA Antisense transgenic seedlings exhibit enhanced ABA
sensitivity.
Figure 6 shows the effect of ABA on seedling growth and development.
Figure 7 shows photographs of wild type Columbia (A) and four antisense FTA
transgenic lines (B, C, D, E) ofArabidopsfs thaliana after 8 days without watering.
Figure 8 is an illustration of the homology among FTA nucleic acid (A) and amino acid (B) sequences from various plant species based on ClustalW anaysis (percent identity shown).
Figure 9 is an illustration of the homology among FTB nucleic acid and amino acid sequences from various plant species based on ClustalW anaysis (percent identity shown).
Figure 10 is an illustration of transgenic performance during water stress.

Figure 1 I is an illustration of shoot fresh weight, or biomass accumulation, after 6 t0 days of water stress treatment and 6 days recovery time.

Figure 12 is an illustration of seed yield (grams) obtained under optimal conditions or following a 6 day water stress treatment.

Figure 13 is an illustration of vegitative growth under optimal conditions, shown is shoot fresh weight 6 days after the first flower opened.

Figure 14 is an illustration of the effect of a biotic stress coupled with drought stress treatment on seed yield.

Figure 15 is a representitive illustration of gel electrophoresis analysis of PCR
products in an assay to detect transgenic lines of Brassica napus.

DETAILED DESCRIPTION OF INVENTION

The present invention provides a novel farnesyl transferase (FT) nucleic acid sequences (SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37) and their encoded polypeptides (SEQ ID NO:5, SEQ ID NO:7, SEQ
ID
NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39) isolated from Brassica napus (Bn), Arabidopsis thalfana (At), Glycine max (Gm) and Zea maize (Zm). The sequences are collectively referred to as "FT nucleic acids" or FT polynucleotides" and the corresponding encoded polypeptide is referred to as a "FT polypeptide" or "FT
protein".
Farnesyl transferase subunits, Alpha (a) and Beta (0) are referred to as FTA
and FTB, respectively. Glycine max is also refered to as soy or soybean throughout the specification. Zea maize is also refered to as Zea mays or corn throughout the specification. These terms are interchangeable. Unless indicated otherwise, "FT" is meant to refer to any of the novel sequences disclosed herein.
Table A provides a summary of the FT nucleic acids and their encoded polypeptides.

TABLE A. Sequences and Corresponding SEQ ID Numbers Fr IdentiTication SEQ ID NO SEQ ID NO
Assignment (nucleic acid) ol e tlde 1 Arabidopsis thatiana farnesyl transerase al ha subunit 1 5 2 Brassica us fames l transerase alpha subunit 6 7 3 Brassica napus farnes l transerase beta subunit 8 9 4 G ine maz alpha subunit 31 33 G ine max beta subunit 34 36 6 Zea maize beta subunit 37 39 5 Also included in the invention are nucleic acids that are complementary to the disclosed FT nucleic acid sequences. For example, SEQ ID NO: 2, 3, 29, 30, 32, 35 or 38.
Further provide by the invention are constructs comprising FT antisense nucleic acid molecules as disclosed in for example SEQ ID NO:4, 40-58.
Based on their structural and functional relatedness to known farnesyl transferase 1o proteins, the FT proteins are novel members of the farnesyl transferase family of proteins.
( See, Example 3) FT nucleic acids, and their encoded polypeptides, according to the invention are useful in a variety of applications and contexts. For example, the nucleic acids can be used produce transgenic plants that have an increase resistance to biotic and abiotic stresses, e.g., chilling stress, salt stress, heat stress, water stress, wound healing, pathogen challenge, or herbicides.
This invention includes methods to up-regulate the FT enzytne activity in transgenic plants, cells and tissue cultures by using an over-expression vector construct and methods to down-regulate the FT enzyme activity in transgenic plants, cells and tissue cultures by using a double stranded RNA-inhibition, hairpin vector construct.
These methods are by way of example to produce the up-regulation or down-regulation effects and are not meant to be limiting as to the method of achieving this outcome.

Additionally, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit, FT
activity. Alternatively, the FT nucleic acids and polypeptides can be used to identify proteins that are members of the farnesyl transferase family of associated proteins.
Further, the modulation or inhibition of FT activity maybe achieved by modifications to the nucleic acid sequences of FTA or FTB by the actions of chemical mutagens or irradiation. Expression of FT nucleic acids which encode enzymatically non-functional FT polypeltides can be used to evoke a dominant-negative inhibitory effect on FT activity.

Additional utilities for FT nucleic acids and polypeptides according to the invention are disclosed herein.

FT Nucleic Acids The nucleic acids of the invention include those that encode a FT polypeptide or protein. As used herein, the terms polypeptide and protein are interchangeable.
In some embodiments, a FT nucleic acid encodes a mature FT polypeptide. As used herein, a "mature" form of a polypeptide or protein described herein relates to the to product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full length gene product, encoded by the corresponding gene.
Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an open reading frame described herein. The product "mature" form arises, again by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell in which the gene product arises. Examples of such processing steps leading to a "mature" foini of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an open reading frame, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues I to N, where residue I is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues I to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a"mature" form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristoylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.
Among the FT nucleic acids is the nucleic acid whose sequence is provided in SEQ
ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID
NO:37 or a fragment thereof. Additionally, the invention includes mutant or variant nucleic acids of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID

S

NO:34, or SEQ ID NO:37, or a fragment thereof, any of whose bases may be changed from the corresponding base shown in SEQ ID NO: 1, SEQ ID NO:6, SEQ ID NO:8, SEQ
ID NO:31, SEQ ID NO:34, or SEQ ID NO:37, while still encoding a protein that maintains at least one of its FT-like activities and physiological functions.
The invention further includes the complement of the nucleic acid sequence of SEQ ID NO: 1, SEQ ID
NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37, including fragments, derivatives, analogs and homologs thereof. The invention additionally includes nucleic acids or nucleic acid fragments, or complements thereto, whose structures include chemical modifications.
One aspect of the invention pertains to isolated nucleic acid molecules that encode FT proteins or biologically active portions thereof. Also included are nucleic acid fragments sufficient for use as hybridization probes to identify FT-encoding nucleic acids (e.g., FT mRNA) and fragments for use as polymerase chain reaction (PCR) primers for the amplification or mutation of FT nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, arid derivatives, fragments and homologs thereof. The riucleic acid:
molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
"Probes" refer to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), 100 nt, or as many as about, e.g., 6,000 nt, depending on use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and much slower to hybridize than oligomers.
Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.
An "isolated" nucleic acid molecule is one that is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid. Examples of isolated nucleic acid molecules include, but are not limited to, recombinant DNA
molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA
or RNA
molecules. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated FT nucleic acid molecule can contain less than about 50 kb, 25 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a eDNA
molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.
A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ
ID
lo NO:31, SEQ ID NO:34, or SEQ ID NO:37, or a complement of any one of the nucleotide sequences, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ
ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID
NO:37 as a hybridization probe, FT nucleic acid sequences can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., MOLECUL=AR CLONING: A LABORATORY MANUAL 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., eds., CURRENT
PROTOCOLS IN.
MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.) A nucleic acid of the invention can be amplified using cDNA, mRNA or altematively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
Furthermore, oligonucleotides corresponding to FT nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.
Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at lease 6 contiguous nucleotides of SEQ ID NO:1, SEQ ID
NO:6, SEQ

ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37, or a complement thereof.
Oligonucleotides may be chemically synthesized and may be used as probes.
In another embodiment, an isolated nucleic acid molecule of the invention includes a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID
NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37.
For example, a complimentary nucleic acid sequence of SEQ ID NO:2, SEQ ID
NO:3, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:35 or SEQ ID NO:38. In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID
lo NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID
NO:37, or a portion of this nucleotide sequence. A nucleic acid molecule that is complementary to the nucleotide sequence shown in SEQ ID NO:l, SEQ ID NO:6, SEQ ID NO:8, SEQ ID
NO:31, SEQ II) NO:34, or SEQ ID NO:37 is one that is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID
NO:31, SEQ ID NO:34, or SEQ ID NO:37 that it can hydrogen bond with little or no mismatches to.the nucleotide sequence shown in SEQ ID NO: 1, SEQ ID
NO=:6;.SEQ=ID
NO:8; SEQ-.ID.NO:31, SEQ ID NO:34, or SEQ ID NO:37, thereby formutg a=stable :, duplex.
- As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen 2o base pairing between nucleotide units of a nucleic acid molecule, and the term "binding"
means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, Von der Waals, hydrophobic interactions, etc. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
Moreover, the nucleic acid molecule of the invention can comprise only a portion of the nucleic_ acid sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID
3o NO:31, SEQ ID NO:34, or SEQ ID NO:37, e.g., a fragment that can be used as a probe or primer, or a fragment encoding a biologically active portion of FT. Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, ~i respectively, and are at most some portion less than a full length sequence.
Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice. Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution.
Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type.
Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below.
Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at. least about 70%, 80%, 85%, 90%, 95%, 98%, or even 99% identity (with a preferred identity of 80-99%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned seqiience in which the alignment is done by a computer homology.program, lFnown in the art, dr whose encoding nucleic acid is capable of hybridizing to the~comprement of a sequence encoding the aforementioned proteins under stringent,-moderately:stringent, or low_stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN
MOLECULAR
BioLoGv, John Wiley & Sons, New York, NY, 1993, and below. An exemplary program is the Gap program (Wisconsin Sequence Analysis Package, Version 8 for UNIX, Genetics Computer Group, University Research Park, Madison, WI) using the default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2:
482-489, which is incorporated herein by reference in its entirety).
A "homologous nucleic acid sequence" or "homologous amino acid sequence," or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences encode those sequences coding for isoforms of a FT polypeptide. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA.
3o Alternatively, isoforms can be encoded by different genes. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID
NO:33, SEQ ID NO:36 or SEQ ID NO:39, as well as a polypeptide having FT activity, e.g.
substrate binding.
The nucleotide sequence determined from the cloning of the Arabidopsis thaliana FT gene allows for the generation of probes and primers designed for use in identifying and/or cloning FT homologues in other cell types, e.g., from other tissues, as well as FT
homologues from other plants. The probe/primer typically comprises a substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 or more consecutive sense strand nucleotide sequence of SEQ
l0 ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID
NO:37; or an anti-sense strand nucleotide sequence of SEQ ID NO:I, SEQ ID
NO:6, SEQ
ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37; or of a naturally occurring mutant of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37.
Probes based on the Arabidopsis thaliana FT nucleotide sequence can be used to =,detect transcripts or genomic sequences encoding the same oshomologous proteins. In evarious embodiments, the probe further comprises a label groulr-attached thereto, e.g., the .label group can be a radioisotope, a fluorescent compound, an enzyme; or an enzyme =:co-factor. Such probes can be used as a part of a diagnostic test kit foridentifying cells or tissue which misexpress a FT protein, such as by measuring a level of a FT-encoding nucleic acid in a sample of cells from a subject e.g., detecting FT mRNA
levels or determining whether a genomic FT gene has been mutated or deleted.
A "polypeptide having a biologically active portion of F"T" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologically active portion of FT" can be prepared by isolating a portion of SEQ ID NO:1, SEQ ID
NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37 that encodes a polypeptide having a FT biological activity (biological activities of the FT
proteins are described below), expressing the encoded portion of FT protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of FT.
In another embodiment, a nucleic acid fragment encoding a biologically active portion of FT includes one or more regions.

FT Variants The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID
NO:31, SEQ ID NO:34, or SEQ ID NO:37 due to the degeneracy of the genetic code.
These nucleic acids thus encode the same FT protein as that encoded by the nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID
NO:34, or SEQ ID NO:37, e.g., the polypeptide of SEQ ID NO:5, SEQ ID NO:7, SEQ
ID
NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO:5, SEQ ID NO:7, SEQ
ID
NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39.
In addition to the Arabidopsis ihaliana FT nucleotide sequence shown in SEQ ID
NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of FT may exist within a population (e.g., the plant). Such genetic polymorphism in the FT gene may exist.among individuals within a population due to natural allelic variation. As used.herein,;the terms "gene"
and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a FT protein, preferably a plant FT protein. Such;natural allelic variations can 2o typically result in 1-5% variance in the nucleotide sequence of the FT
gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in FT that are the result of natural allelic variation and that do not alter the functional activity of FT are intended to be within the scope of the invention.
Moreover, nucleic acid molecules encoding FT proteins from other species, and thus that have a nucleotide sequence that differs from the sequence of SEQ ID
NO:1, SEQ
ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37 are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the FT cDNAs of the invention can be isolated based on their homology to the Arabidopsis thaliana FT nucleic acids disclosed herein using the cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ
ID

NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500 or 750 nucleotides in length. In another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other.
Homologs (i.e., nucleic acids encoding FT proteins derived from species other than Arabidopsis thaliana) or other related sequences (e.g., paralogs) can be obtained by low, lo moderate or high stringency hybridization with all or a portion of the particular sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.
As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 C lower than the thermal melting point (Tm) for the -specific sequence at a defmed ionic strength and pH. The Tm is the temperature (under'defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence 2o hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium.
Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M
sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH
7.0 to 8.3 and the temperature is at least about 30 C for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60 C for longer probes, primers and oligonucleotides.
Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.
Stringent conditions are known to those skilled in the art and can be found in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 3o 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions is hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCI (pH
7.5), 1 mM
EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mglml denatured salmon sperm DNA at 65 C. This hybridization is followed by one or more washes in 0.2X SSC, 0.01%
BSA at 50 C. An isolated nucleic acid moleoule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ
ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37 corresponds to a naturally occurring nucleic acid molecule. As used herein, a"naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ
ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A
non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X
Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 C, followed by one or more washes in 1X SSC, 0.1% SDS at 37 C. Other conditions of moderate stringency that may be used are well known in the art_ See, e.g., Ausubel et al.
(eds.), 1993, CURRENT PROTOCOLS!IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and ICriegler, 1990, GENE TRANSFER AND:E7EPRESSION, A LABORATORY MANUAL, Stockton Press, NY.
In a third embodiment, a nucleic acid=that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO:6, SEQ
ID
NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35%
formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40 C, followed by one or more washes in 2X SSC, 25 mM Tris-HCI (pH 7.4), 5 mM EDTA, and 0.1%
SDS at 50 C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981, Proc Natl Acad Sci USA 78: 6789-6792.

Conservative mutations In addition to naturally-occurring allelic variants of the FT sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ ID
NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37, thereby leading to changes in the amino acid sequence of the encoded FT protein, without altering the functional ability of the FT protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID
NO: 1, SEQ
ID NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37. A
1o "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of FT without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are conserved among the FT proteins of the present invention, are predicted to be particularly unamenable to alteration.
Another aspect of the invention pertains to nucleic acid molecules encoding FT
proteins that contain changes in amino acid residues that are not essential for activity.
Such FT proteins differ in amino acid sequence from SEQ ID NO:5, SEQ ID NO:7, SEQ
ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39, yet retain biological activity.
In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 75% homologous to the amino acid sequence of SEQ ID NO:5, SEQ ID NO:7, SEQ ID
NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39. Preferably, the protein encoded by the nucleic acid is at least about 80% homologous to SEQ ID NO:5, SEQ ID
NO:7, SEQ ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39, more preferably at least about 90%, 95%, 98%, and most preferably at least about 99% homologous to SEQ
ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID
NO:39.
An isolated nucleic acid molecule encoding a FT protein homologous to the protein of SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:1, SEQ ID
NO:6, SEQ
ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.

Mutations can be introduced into the nucleotide sequence of SEQ ID NO:I, SEQ
ID NO:6, SEQ ID NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37 by standard techniques, such as site-directed mutagenesis and PCR mediated.mutagenesis.
Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e_g , tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in FT is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a FT coding sequence, such as by saturation mutagenesis, and the resultant mutants'cai- be:=scieened for FT biological activity to identify' mutants that retain activity. Following'iYiutaienesis of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID' NO:31, SEQ ID NO:34, oi-SEQ ID NO:37 the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.
In one embodiment, a mutant FT protein can be assayed for (1) the ability to form protein:protein interactions with other FT proteins, other cell-surface proteins, or biologically active portions thereof, (2) complex formation between a mutant FT protein and a FT receptor; (3) the ability of a mutant FT protein to bind to an intracellular target protein or biologically active portion thereof; (e.g., avidin proteins); (4) the ability to bind FT protein; or (5) the ability to specifically bind an anti-FT protein antibody.

Antisense FT Nucleic Acids Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: I, SEQ ID NO:6, SEQ ID NO:8, SEQ
ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the ta coding strand of a double-stranded cDNA molecule or complementary to an mRNA
sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at teast about 10, 25, 50, 100, 250 or 500 nucleotides or an entire FT coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a FT protein of SEQ ID NO:5, SEQ ID
N0:7, SEQ ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID N0:39, or antisense nucleic acids complementary to a FT nucleic acid sequence of SEQ ID NO:1, SEQ
ID
NO:6, SEQ ID NO:8, SEQ ID N0:31, SEQ ID NO:34, or SEQ ID N0:37 are additionally provided.
In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding FT (e.g. SEQ ID
NO:1, SEQ ID NO:6, SEQ ID NO:B, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37). The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the protein coding region of Arabidopsis thaliana FT corresponds to SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID N0:33, SEQ ID NO:36 or SEQ ID NO:39). In another embodiment, the antisense:::
nucleic acid=molecule is antisense to a "noncoding region" of the coding strand:ofa.i nucleotide sequence encoding FT (e.g. SEQ ID NO:1, SEQ ID NO:6, SEQ
ID:'NO:8;,SEQ,:
ID NO:31, SEQ ID:NO:34, or SEQ ID N0:37). The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).
In various embodiments the anti-sense FT nucleic acid molecule includes the sequences of SEQ ID NO: 2, 3, 29, 30, 32, 35 or 38.
Given the coding straad sequences encoding FT disclosed herein (e.g., SEQ ID
NO:1, SEQ ID N0:6, SEQ ID NO:8, SEQ ID N0:31, SEQ ID NO:34, or SEQ ID N0:37), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of FT mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of FT
mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of FT mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20,25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, t0 dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, I -methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pse.ndouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil;:4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic:.acid:(x); :
5:=methy.l:2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w; and ;
2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
The antisense nucleic acid molecules of the invention are generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a FT
protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix.
In yet another embodiment, the antisense nucleic acid molecule of the invention is an a-anomeric nucleic acid molecule. An a-anomeric nucleic acid molecule forms specific double-stranded, hybrids with complementary RNA in which, contrary to the usual 0-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res 15:

6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) NucleicAcids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).
Such modifications include, by way of nonlimiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized.
These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in applications.

to Double Stranded RNA Inhibition (RNAi) by Hairpin Nucleic Acids Another aspect of the invention pertains to the use of post transcriptional gene silencing (PTGS) to repress gene expression. Double stranded RNA can initiate the sequence specific repression of gene expression in plants and animals. Double stranded RNA is processed to short duplex oligomers of 21-23 nucleotides in length.
These small interfering RNA's suppress the expression of endogenous and heterologous genes in a sequence specific manner (Fire et al. Nature 391:806-811, Carthew, Curr.
Opiin. in Cell Biol., 13:244-248, Elbashir et al., Nature 411:494-498). A RNAi suppressing construct can be designed in a number of ways, for example, transcription of a inverted repeat which can form a long hair pin molecule, inverted repeats separated by a spacer sequence that could 2o be an unrelated sequence such as GUS or an intron sequence. Transcription of sense and antisense strands by opposing promoters or cotranscription of sense and antisense genes.
FT Ribozymes and PNA moieties In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave FT
mRNA transcripts to thereby inhibit translation of FT mRNA. A ribozyme having specificity for a FT-encoding nucleic acid can be designed based upon the nucleotide sequence of a FT DNA disclosed herein (i.e., SEQ ID NO:1, SEQ ID NO:6, SEQ ID
NO:8, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a FT-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S.
Pat. No.
5,116,742. Alternatively, FT mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.
Alternatively, FT gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the FT (e. g. , the FT
promoter and/or enhancers) to form triple helical structures that prevent transcription of the FT gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84;
Helene. et al.
(1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.
In various embodiments, the nucleic acids of FT can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs"
refer to nucleic acid mimics, e_g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the fourmatural nucleobases are retained. The neutral backbone of PNAs has been shownto allow=for specific hybridization to DNA and RNA under conditions of low ionic.strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et a1. (1996) above; Perry-O'Keefe et al. (1996) PNAS
93:
14670-675.
PNAs of FT can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of FT can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S l nucleases (Hyrup B.
(1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup el al. (1996), above; Perry-O'Keefe (1996), above).
In another embodiment, PNAs of FT can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of FT can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA

recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA
portion while the PNA portion would provide high binding atfuuty and specificity.
PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA
chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl) amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al.
(1975) Bloorg Med Chem Lett 5: 1119-11124.

FT Polypeptides A FT polypeptide of the invention includes the protein whose sequence is provided in SEQ ID NO:5, SEQ ID NO:7, OR SEQ ID NO:9. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residue shown in SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39 while still encoding a protein that maintains its FT-like activities and physiological functions, or a functional fragment thereof. In some embodiments, up to 20% or more of the residues may be so changed in the mutant or variant protein. In some embodiments, the FT polypeptide according to the invention is a mature polypeptide.
In general, a FT-like variant that preserves FT-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
One aspect of the invention pertains to isolated FT proteins, and biologically active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-FT
antibodies. In one embodiment, native FT proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, FT proteins are produced by recombinant DNA techniques.
Alternative to reoombinant expression, a FT protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the FT protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of FT protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language "substantially free of cellular material"
includes preparations of FT protein having less than about 30% (by dry weight) of non-FT
protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-FT protein, still more preferably less than about 10% of non-FT protein, and most preferably less than about 5% non-FT protein. When the FT protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most,preferably less than about 5% of the volume of the protein preparation.
The language "substantially free of chemical precursors or other chemicals"
includes preparations of FT protein in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals"
includes preparations of FT protein having less than about 30% (by dry weight) of chemical precursors or non-FT chemicals, more preferably less than about 20%
chemical precursors or non-FT chemicals, still more preferably less than about 10%
chemical precursors or non-FT chemicals, and most preferably less than about 5%
chemical precursors or non-FT chemicals.
Biologically active portions of a FT protein include peptides comprising amino 3o acid sequences sufficiently homologous to or derived from the amino acid sequence of the FT protein, e.g., the amino acid sequence shown in SEQ ID NO:5, SEQ ID NO:7, SEQ ID
NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39 that include fewer amino acids than the full length FT proteins, and exhibit at least one activity of a FT
protein, e.g.
substrate binding. Typically, biologically active portions comprise a domain or motif with at least one activity of the FT protein. A biologically active portion of a FT
protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.
A biologically active portion of a FT protein of the present invention may contain at least one of the above-identified domains conserved between the FT
proteins.
Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native FT protein.
A biologically active portion or a FT protein can be the N-terminal domain of the FT polypeptide. Alternatively, a biologically active portion or a FT protein can be the C-terminal domain of the FT polypeptide. Preferably, the biologically active portion comprises at least 75 amino acids of the C- terminal domain. More preferably, the biologically active portion comprises at least 25 amino acids of the C-terminal domain.
Most preferably, the biologically active portion comprises at least 10 amino acids of the C-terminal.
In an embodiment, the FT protein has an amino acid sequence of SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID.NO:33,.SEQ ID NO:36 or SEQ ID NO:39. In other embodiments, the FT-protein.is- substantially homologous to SEQ ID NO:5, SEQ ID =
NO:7, SEQ ID NO:9, SEQ 'ID NO:339.SEQ ID:NO:36 or SEQ ID NO:39 and retains the functional activity of the protein of SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID
NO:33, SEQ ID NO:36 or SEQ ID NO:39, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail below.
Accordingly, in another embodiment, the FT protein is a protein that comprises an amino acid sequence at least 45% homologous to the amino acid sequence of SEQ ID NO:5, SEQ ID NO:7, SEQ
ID NO:9, SEQ ID NO:33, SEQ ID NO:36 or SEQ ID NO:39 and retains the functional activity of the FT proteins of SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID
NO:33, SEQ ID NO:36 or SEQ ID NO:39.

Determining homology between two or more sequence To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in either of the sequences being compared for optimal alignment between the sequences). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").
The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package.
See, Needleman and Wunsch 1970 JMoI Bio148: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, to 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA
sequence shown in SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:31, SEQ ID NO:34, or SEQ ID NO:37.
The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region I S of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences:over that:region of comparison, determining the number of positions at which-the identical-nucleiaacid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences-tozyield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of 20 comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent 25 sequence identity as compared to a reference sequence over a comparison region. The term "percentage of positive residues" is calculated by comparing two optimally aligned sequences over that region of comparison, detenmining the number of positions at which the identical and conservative amino acid substitutions, as defined above, occur in both sequences to yield the number of matched positions, dividing the number of matched 30 positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of positive residues.

Chimeric and fusion proteins The invention also provides FT chimeric or fusion proteins. As used herein, a FT
"chimeric protein" or "fusion protein" comprises a FT polypeptide operatively linked to a non-FT polypeptide. An "FT polypeptide" refers to a polypeptide having an amino acid sequence corresponding to FT, whereas a"non-FT polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the FT protein, e.g., a protein that is different from the FT
protein and that is derived from the same or a different organism. Within a FT fusion protein the FT
polypeptide can correspond to all or a portion of a FT protein. In one embodiment, a FT
fusion protein comprises at least one biologically active portion of a FT
protein. In another embodiment, a FT fusion protein comprises at least two biologically active portions of a FT protein. Within the fusion protein, the term "operatively linked" is intended to indicate that the FT polypeptide and the non-FT polypeptide are fused in-frame to each other. The non-FT polypeptide can be fused to the N-terminus or C-terminus of the FT polypeptide.
A FT chimeric ortfusion.protein of the invention can be produced by standard recombinant DNA technig.ues.. Eor example, DNA fragments coding for the:different polypeptide sequencesare.ligated,together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR
amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e:~g., a GST polypeptide, a 6XI-iis-tag). A FT-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the FT protein.
FT agonists and antagonists The present invention also pertains to variants of the FT proteins that function as either FT agonists (rnimetics) or as FT antagonists. An agonist can be for example an antisense nucleic acid molecule. Variants of the FT protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the FT protein. An agonist of the FT protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the FT protein. An antagonist of the FT
protein can inhibit one or more of the activities of the naturally occurring form of the FT
protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the FT protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function.
Variants of the FT protein that function as either FT agonists (mimetics) or as FT
antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the FT protein for FT protein agonist or antagonist activity. In one embodiment, a variegated library of FT variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A
variegated library of FT variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential FT sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of FT
sequences therein. There: are;avariety -of methods which can be used to produce libraries of potential' ;
FT variants from_ardegenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence-can be performed in an automatic DNA synthesizer, and the =
synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential FT sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu Rev Biochem 53:323; Itakura et al. (1984) Science 198:1056;
Ike et al.
(1983) Nucl Acid Res 11:477.

Polypeptide libraries In addition, libraries of fragments of the FT protein coding sequence can be used to generate a variegated population of FT fragments for screening and subsequent selection of variants of a FT protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a FT coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA
that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S 1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal and internal fragments of various sizes of the FT
protein.
Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA
libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of FT
proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recrusive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify FT variants (Arkin and Yourvan (1992) PNAS
89:7811.=7815;
Delgrave etyal. (1993) Protein Engineering 6:327-331).

FT Antibodies FT polypeptides, including chimeric polypeptides, or derivatives, fragments, analogs or homologs thereof, may be utilized as immunogens to generate antibodies that immunospecifically-bind these peptide components. Such antibodies include, e.g., polyclonal, monoclonal, chimeric, single chain, Fab fragments and a Fab expression library. In a specific embodiment, fragments of the FT polypeptides are used as immunogens for antibody production. Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies to a FT
polypeptides, or derivative, fragment, analog or homolog thereof.
For the production of polyclonal antibodies, various host animals may be immunized by injection with the native peptide, or a synthetic variant thereof, or a derivative of the foregoing. Various adjuvants may be used to increase the immunological response and include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.) and human adjuvants such as Bacille Calmette-Guerin and Corynebacterium parvum.

For preparation of monoclonal antibodies directed towards a FT polypeptides, or derivatives, fragments, analogs or homologs thereof, any technique that provides for the production of antibody molecules by continuous cell line culture may be utilized. Such techniques include, but are not limited to, the hybridoma technique (see, Kohler and Milstein, 1975. Nature 256: 495-497); the trioma technique; the human B-cell hybridoma technique (see, Kozbor, et al., 1983. Immunol Today 4: 72) and the EBV
hybridoma technique to produce human monoclonal antibodies (see, Cole, et al., 1985. In:
Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).
Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by the use of human hybridomas (see, Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see, Cole, et al., 1985. In: Monoclonal Antibodies and Cancer Therapy (Alan R. Liss, Inc., pp. 77-96).
According to the invention, techniques can be adapted for the production of single-chain antibodies specific to a FT polypeptides (see, e.g., U.S. Patent No.
4,946,7:18). Intaddition, methodologies can be adapted for the construction of:Fab expression libraries (see, e.g., Huse, et al., 1989. Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for:a FT polypeptides or derivatives, fragments, analogs or homologs thereof.
Antibody fragments that contain the idiotypes to a FT polypeptides may be produced by techniques known in the art including, e.g., (i) an F(ab')2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab')2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.
In one embodiment, methodologies for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme-linked immunosorbent assay (ELISA) and other immunologically-mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of a FT polypeptides is facilitated by generation of hybridomas that bind to the fragment of a 3o FT polypeptides possessing such a domain. Antibodies that are specific for a domain within a FT polypeptides, or derivative, fragments, analogs or homologs thereof, are also provided herein. The anti-FT polypeptide antibodies may be used in methods known within the art relating to the localization and/or quantitation of a FT
polypeptide(e.g., for use in measuring levels of the peptide within appropriate physiological samples, for use in diagnostic methods, for use in imaging the peptide, and the like).

FT Recombinant Expression Vectors and Host Cells Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a FT protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication). Other vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herem as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specificaiio~n, "plasmid"
and'"vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors or plant transformation vectors, binary or otherwise, which serve equivalent functions.
The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY:
METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., FT proteins, mutant forms of FT proteins, fusion proteins, etc.).
The recombinant expression vectors of the invention can be designed for expression of FT proteins in prokaryotic or eukaryotic cells. For example, FT
proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells, plant cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN
ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Altematively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase. -Expression of proteins in prokaryotes is most often carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein, however carboxy terminus fusions are also common. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE
EXPRESSION
TECtnvoLoGY: METHODS itv ENzYMoI.oGY 185, Academic Press, San Diego, Calif.
(1990) 60-89).
One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, e.g., Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS
IN
ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA
synthesis techniques.
In another embodiment, the FT expression vector is a yeast expression vector.
Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSecl (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa. (Kurjanand Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene:;54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp; San Diego, Calif.).
Altematively, FT can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell.
Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a marnmalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC
(Kaufman, et al., 1987. EMBOJ 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
In yet another embodiment, a nucleic acid of the invention is expressed in plants cells using a plant expression vector. Examples of plant expression vectors systems include tumor inducing (Ti) plasmid or portion thereof found in Agrobacterium, cauliflower mosaic virus (CAMV) DNA and vectors such as pBI121 .
For expression in plants, the recombinant expression cassette will contain in addition to the FT nucleic acids, a plant promoter region, a transcription initiation site (if the coding sequence to transcribed lacks one), and a transcription termination/polyadenylation sequence. The termination/polyadenylation region may be obtained from the same gene as the promoter sequence or may be obtained from different genes. Unique restriction enzyme sites at the 5' and 3' ends of the cassette are typically included to allow for easy insertion into a pre-existing vector.
Examples of suitable promotors include promoters from plant viruses such as the 35S
promoter from cauliflower mosaic virus (CaMV). Odell, et al., Nature, 313: 810-(1985). and promoters from genes such as rice actin (McElroy, et al., Plant Cell, 163-171 (1990)); ubiquitin (Christensen, et al., Plant Mol. Biol., 12: 619-632 (1992);
and Christensen, et al., Plant Mol. Biol., 18: 675-689 (1992)); pEMU (Last, et al., Theor. Appl.
Genet., 81: 581-588 (1991)); MAS (Velten, et al., EMBO J., 3: 2723-2730 (1984)); maize H3 histone (Lepetit, et al., Mol. Gen. Genet.,:231: 276-285 (1992); and Atanassvoa, et al., Plant Journal, 2(3): 291-300 (1992)), the. 5'=:~or 3'-promoter derived from T-DNA of Agrobacterium tumefaciens, the Smas promoter, the=cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,683,439), the- Nos promoter, the rubisco promoter, the GRP1-8 promoter, ALS promoter, (WO 96/30530), a synthetic promoter, such as, Rsyn7, SCP and UCP promoters, ribulose- 1,3 -diphosphate carboxylase, fruit-specific promoters, heat shock promoters, seed-specific promoters and other transcription initiation regions from various plant genes, for example, include the various opine initiation regions, such as for example, octopine, mannopine, and nopaline.
Additional regulatory elements that may be connected to a FT encoding nucleic acid sequence for expression in plant cells include terminators, polyadenylation sequences, and nucleic acid sequences encoding signal peptides that permit localization within a plant cell or secretion of the protein from the cell. Such regulatory elements and methods for adding or exchanging these elements with the regulatory elements FT gene are known, and include, but are not limited to, 3' termination and/or polyadenylation regions such as those of the Agrobacterium tumefaciens nopaline synthase (nos) gene (Bevan, et al., Nucl. Acids Res., 12: 369-385 (1983)); the potato proteinase inhibitor II(PINII) gene (Keil, et al., Nucl. Acids Res., 14: 5641-5650 (1986) and hereby incorporated by reference);
and An, et al., Plant Cell, 1: 115-122 (1989)); and the CaMV 19S gene (Mogen, et al., Plant Cell, 2:
1261-1272 (1990)).
Plant signal sequences, including, but not limited to, signal-peptide encoding DNAJRNA sequences which target proteins to the extracellular matrix of the plant cell (Dratewka-Kos, et al., J. Biol. Chem., 264: 4896-4900 (1989)) and the Nicotiana plumbaginifolia extension gene (DeLoose, et al., Gene, 99: 95-100 (1991)), or signal peptides which target proteins to the vacuole like the sweet potato sporamin gene (Matsuka, et al., Proc. Nat'l Acad. Sci. (USA), 88: 834 (1991)) and the barley lectin gene (Wilkins, et al., Plant Cell, 2: 301-313 (1990)), or signals which cause proteins to be secreted such as that of PRIb (Lind, et al., Plant Mol. Biol., 18: 47-53 (1992)), or those which target proteins to the plastids such as that of rapeseed enoyl-ACP
reductase (Verwaert, et al., Plant Mol. Biol., 26: 189-202 (1994)) are useful in the invention.

In another embodiment, the recombinant expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Especiall'y usefuT in connection with the nucleic acids of the present invention are expression systems which are operable in plants. These include systems which are under control of a tissue-specific promoter, as well as those which involve promoters that are operable in all plarit'tissues.

Organ-specific promoters are also well known. For example, the patatin class I
promoter is transcriptionally activated only in the potato tuber and can be used to target gene expression in the tuber (Bevan, M., 1986, Nucleic Acids Research 14:4625-4636).
Another potato-specific promoter is the granule-bound starch synthase (GBSS) promoter (Visser, R.G.R, et al., 1991, Plant Molecular Biology 17:691-699).
Other organ-specific promoters appropriate for a desired target organ can be isolated using known procedures. These control sequences are generally associated with genes uniquely expressed in the desired organ. In a typical higher plant, each organ has thousands of mRNAs that are absent from other organ systems (reviewed in Goldberg, P., 1986, Trans.
R. Soc. London B314:343).
For in situ production of the antisense mRNA of GST, those regions of the GST
gene which are transcribed into GST mRNA, including the untranslated regions thereof, are inserted into the expression vector under control of the promoter system in a reverse orientation. The resulting transcribed mRNA is then complementary to that normally produced by the plant.

The resulting expression system or cassette is ligated into or otherwise constructed to be included in a recombinant vector which is appropriate for plant transformation. The vector may also contain a selectable marker gene by which transformed plant cells can be identified in culture. Usually, the marker gene will encode antibiotic resistance. These markers include resistance to G418, hygromycin, bleomycin, kanamycin, and gentamicin.
After transforming the plant cells, those cells having the vector will be identified by their ability to grow on a medium containing the particular antibiotic. Replication sequences, of bacterial or viral origin, are generally also included to allow the vector to be cloned in a bacterial or phage host, preferably a broad host range prokaryotic origin of replication is included. A selectable marker for bacteria should also be included to allow selection of bacterial cells bearing the desired construct. Suitable prokaryotic selectable markers also include resistance to antibiotics such as kanamycin or tetracycline.
Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art. For instance, in the case of Agrobacteriwn transformations, T-DNA sequences will also be included for subsequent transfer to plant chromosomes.
Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention:has been introduced. The terms "host cell"
and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell-but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell.
A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention encoded in a an open reading frame of a polynucleotide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.
A number of types of cells may act as suitable host cells for expression of a polypeptide encoded by an open reading frame in a polynucleotide of the invention. Plant host cells include, for example, plant cells that could function as suitable hosts for the expression of a polynucleotide of the invention include epidermal cells, mesophyll and other ground tissues, and vascular tissues in leaves, stems, floral organs, and roots from a variety of plant species, such as Arabidopsis thaliana, Nicotiana tabacum, Brassica napus, Zea mays, and Glycine max.
Alternatively, it may be possible to produce a polypeptide in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous polypeptides. If the polypeptide is made in yeast or bacteria; it may:be necessary to modify the polypeptide produced therein, for example by phosphorylation:or glycosylation of the appropriate sites, in order to obtain.,.
a functional polypeptide;sif the polypeptide is of sufficient length and conformation to have activity. Such covalent attachments may be accomplished using known chemical or enzymatic methods.
A polypeptide may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed polypeptide or protein may then be purified from such culture (e.g., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the polypeptide or protein may also include an affinity column containing agents which will bind to the protein;
one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl or Cibacrom blue 3GA Sepharose ; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.
Alternatively, a polypeptide or protein may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein containing a six-residue histidine tag. The histidine-tagged protein will then bind to a Ni-affinity column. Aiter elution of all other proteins, the histidine-tagged protein can be eluted to achieve rapid and efficient purification. One or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify a polypeptide. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant polypeptide. The protein or polypeptide thus purified is substantially free of other plant proteins or polypeptides and is defmed in accordance with the present invention as "isolated."

Transformed Plants Cells and Transgenic Plants The invention includes protoplast, plants cells, plant tissue and plants (e.g., monocots and dicots transformed with a FT nucleic acid, a vector containing a FT nucleic acid or an expression vector containing a FT nucleic acid. Examples of nucleic acids suitable for transforming plant cells and plants include those nucleic acid sequences of SEQ ID NO: 4, 40-57 or 58. As used herein, "plant" is meant to include not only a whole plant but also a portion thereof (i.e., cells, and tissues, including for example, leaves, stems, shoots,.roots, flowers, fruits and seeds).
.. . .-"~. . rt .
The plant can be any plant type including, for example, species from the genera.
Cucurbita, Rosa, Yitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihol, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeunm Secale, Triticum, Sorghum, Picea, Caco, and Populus.

In some aspects of the invention, the transformed plant is resistant to biotic and abiotic stresses, e.g., chilling stress, salt stress, heat stress, water stress, disease, grazing pests and wound healing. Additiona(ly, the invention also includes a transgenic plant that is resistant to pathogens such as for example fungi, bacteria, nematodes, viruses and parasitic weeds. Alternatively, the transgenic plant is resistant to herbicides. By resistant is meant the plant grows under stress conditions (e.g., high salt, decreased water, low temperatures) or under conditions that normally inhibit, to some degree, the growth of an untransformed plant. Methodologies to determine plant growth or response to stress include for example, height measurements, weight meaurements, leaf area, ability to flower, water use, transpiration rates and yield.
The invention also includes cells, tissues, including for example, leaves, stems, shoots, roots, flowers, fruits and seeds and the progeny derived from the tranformed plant.
Numerous methods for introducing foreign genes into plants are known and can be used to insert a gene into a plant host, including biological and physical plant transformation protocols. See, for example, Miki et al., (1993) "Procedure for Introducing Foreign DNA into Plants", In:1Vlethods in Plant Molecular Biology and Biotechnology, Glick and Thompson, eds., CRC Press, Inc., Boca Raton, pages 67-88 and Andrew Bent in, Clough SJ and Bent AF, 1998. Floral dipping: a simplified method for Agro bacterium-mediated transformation of Arabidopsis thaliana.. The methods chosen vary with the host plant, and include chemical transfection methods such as calcium phosphate, polyethylene glycol (PEG) transformation, microorganism-mediated gene transfer such as Agrobacterium (Horsch, et al., Science, 227: 1229-31 (1985)), electroporation, protoplast is transformation, micro-injection, flower dipping and particle or non-particle biolistic bombardment.

Agrobacterium-mediated Transformation . ,.
The most widely utilized method for introducing an expression vector into plants is based on the natural transformation system of Agrobacterium. A. tumefaciens and A.
rhizogenes are plant pathogenic soil bacteria which genetically transform plant cells. The Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectfully, carry genes responsible for genetic transformation of plants. See, for example, Kado, Crit. Rev. Plant Sci., 10: 1-32 (1991). Descriptions of the Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided in Gruber et al., supra; and Moloney, et al, Plant Cell Reports, 8: 238-242 (1989).

Transgenic Arabidopsis plants can be produced easily by the method of dipping flowering plants into an Agrobacterium culture, based on the method of Andrew Bent in, Clough SJ and Bent AF, 1998. Floral dipping: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Wild type plants are grown until the plant has both developing flowers and open flowers. The plant are inverted for 1 minutes into a solution of Agrobacterium culture carrying the appropriate gene construct. Plants are then left horizontal in a tray and kept covered for two days to maintain humidity and then righted and bagged to continue growth and seed development. Mature seed was bulk harvested.

Direct Gene Transfer A generally applicable method of plant transformation is microprojectile-mediated transformation, where DNA is carried on the surface of microprojectiles measuring about I to 4 mu.m. The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate the plant cell walls and membranes. (Sanford, et al., Part. Sci.
Technol., 5: 27-37 (1987); Sanford, Trends Biotech, 6: 299-302 (1988); Sanford, Physiol. Plant, 79: 206-209 (1990); Klein, et al., Biotechnology, 10: 286-291 (1992)).
Another method for physical delivery of DNA to plants is sonication of target cells io as described in Zang, et al., BioTechnology, 9: 996-996 (1991).
Alternatively, liposome or spheroplast fusions have been used to introduce expression vectors into plants. See, for example, Deshayes, et al., EMBO J., 4: 2731-2737 (1985); and Christou, et al., Proc. Nat'l.
Acad. Sci. (USA), 84: 3962-3966 (1987). Direct uptake of DNA into protoplasts using CaC12 precipitation, polyvinyl alcohol or poly-L-ornithine have also been reported. See, for example, Hain, et al., Mol. Gen. Genet., 199: 161 (1985); and Draper, et al., Plant Cell ;Physiol., 23: 451-458 (1982).
Electroporation of protoplasts and whole cells and tissues has, also been described.
See, for example, Donn, et al., (1990) In: Abstracts of the Vllth Int;l..
Congress= on Plant Cell and Tissue Culture IAPTC, A2-38, page 53; D'Halluin et al., Plant Cell, 4: 1495-1505 (1992); and Spencer et al., Plant Mol. Biol., 24: 51-61 (1994).
Plants may also be transformed using the method of Held et al. (U.S.
Application 20010026941). The method utilizes an accelerated aerosol beam of dropletes which carries the desired molecules, DNA, into the target cells. The size of droplets produced by this method are reproted to be sufficiently small as to transform bacterial cells of 1 to 2 microns in length.

Particle Wounding/Agrobacterium Delivery Another useful basic transformation protocol involves a combination of wounding by particle bombardment, followed by use of Agrobacterium for DNA delivery, as 3o described by Bidney, et al., Plant Mol. Biol., 18: 301-31 (1992). Useful plasmids for plant transformation include Bin 19. See Bevan, Nucleic Acids Research, 12: 8711-8721 (1984), and hereby incorporated by reference.
In general, the intact meristem transformation method involves imbibing seed for 24 hours in the dark, removing the cotyledons and root radical, followed by culturing of the meristem explants. Twenty-four hours later, the primary leaves are removed to expose the apical meristem. The explants are placed apical dome side up and bombarded, e.g., twice with particles, followed by co-cultivation with Agrobacterium. To start the co-cultivation for intact meristems, Agrobacterium is placed on the meristem.
After about a 3-day co-cultivation period the meristems are transferred to culture medium with cefotaxime plus kanamycin for the NPTII selection.
The split meristem method involves imbibing seed, breaking of the cotyledons to produce a clean fracture at the plane of the embryonic axis, excising the root tip and then bisecting the explants longitudinally between the primordial leaves. The two halves are placed cut surface up on the medium then bombarded twice with particles, followed by co-cultivation with Agrobacterium. For split meristems, after bombardment, the meristems are placed in an Agrobacterium suspension for 30 minutes. They are then removed from the suspension onto solid culture medium for three day co-cultivation. After this period, the meristems are transferred to fresh medium with cefotaxime plus kanamycin for selection.

Transfer by Plant Breeding Alternatively, once a single transformed plant has been obtained by the foregoing recombinant DNA method, conventional plant breeding methods can be used to transfer the gene and associated regulatory sequences via crossing and backcrossing.
Such intermediate methods will comprise the further steps of: (1) sexually crossing the disease-resistant plant with a plant from the disease susceptible taxon; (2) recovering reproductive material from the progeny of the cross; and (3) growing disease-resistant plants from the reproductive material. Where desirable or necessary, the agronomic characteristics of the susceptible taxon can be substantially preserved by expanding this method to include the further steps of repetitively: (1) backcrossing the disease-resistant ptogeny with disease-susceptible plants from the susceptible taxon; and (2) selecting for expression of a hydrogen peroxide producing enzyme activity (or an associated marker gene) among the progeny of the backcross, until the desired percentage of the characteristics of the susceptible taxon are present in the progeny along with the gene or genes imparting oxalic 3o acid degrading and/or hydrogen peroxide enzyme activity.
By the term "taxon" herein is meant a unit of botanical classification. lt thus includes, genus, species, cultivars, varieties, variants and other minor taxonomic groups which lack a consistent nomenclature.

Regeneration of Transformants The development or regeneration of plants from either single plant protoplasts or various explants is well known in the art (Weissbach and Weissbach, 1988).
This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
The development or regeneration of plants containing the foreign, exogenous gene that encodes a polypeptide of interest introduced by Agrobacterium from leaf explants can be achieved by methods well known in the art such as described (Horsch et al., 1985). In this procedure, transformants are cultured in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant strain being transformed as described (Fraley et al., 1983). In particular, U.S. Pat. No. 5,349,124 (specification incorporated herein by reference) details the creation of genetically transformed lettuce cells and plants resulting therefrom which express hybrid crystal proteins conferring insecticidal activity against Lepidopteran larvae to such plants. .
This procedure typically produces shoots within two to four months and those shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Shoots that rooted in the presence of the selective agent to form plantlets are then transplanted to soil or other media to allow the production of roots. These procedures vary depending upon the particular plant strain employed, such variations being well known in the art.

Preferably, the regenerated plants are self-pollinated to provide homozygous transgenic plants, or pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important, preferably inbred lines. Conversely, pollen from plants of those important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.

A preferred transgenic plant is an independent segregant and can transmit the FT
gene and its activity to its progeny_ A more preferred transgenic plant is homozygous for the gene, and transmits that gene to all of its offspring on sexual mating.
Seed from a transgenic plant may be grown in the field or greenhouse, and resulting sexually mature transgenic plants are self-pollinated to generate true breeding plants. The progeny from these plants become true breeding lines that are evaluated for increased expression of the FT transgene.

Method of Producing Tansgenic Plants Included in the invention are methods of producing a transgenic plant that has increased stress resistance, delayed senesence or increased sensitivity to ABA. The method includes introducing into one or more plant cells a compound that alters famesyl transferase expression (i.e. farnesyl transferase alpha or beta) or activity in the plant. The compound can be, e.g., (i) a farnesyl transferase polypeptide inhibitor; (ii) a nucleic acid encoding a farnesyl transferase polypeptide inhibitor; (iii) a nucleic acid that decreases expression of a nucleic acid that encodes a farnesyl transferase polypeptide and, derivatives, fragments, analogs and homologs thereof; (iv) an antisense famesyl transferase nucleic acid. A nucleic acid that decreases expression of a nucleic acid that encodes a farnesyl transferase polypeptide includes, e.g., antisense nucleic acids or RNA
inhibitory nucleic acids. The nucleic acid can be either endogenous or exogenous.
Preferably the compound is a farnesyl transferase polypeptide or a nucleic acid encoding a farnesyl transferase polypeptide. For example the, compound is the nucleic acid sequence of SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:8, SEQ ID N0:31, SEQ ID NO:34, or SEQ
ID NO:37. More preferably the compound is a nucleic acid complemeatrty to a nucleic acid encoding a farnesyl transferase polypeptide. For example an anti-sense nucleic acid molecule. Exemplary compounds include SEQ ID NO: 1,3, 4, 29, 30, 32, 35, 38, and 58.
Also included in the invention is a plant where amutation has been introduced in the gen encoding farnesyl transferase (i.e. alpha or beta) which results in a plant that has decreased farnesyl transferase acitivity and increased tolerase to stree as compared to a wild type plant. The mutation may be introdueced by chemical or mechanical means.
Examples of stresses include, for example, chilling stress, heat stress, salt stress, water stress, nutrient limitation stress, disease, grazing pests, wound healing, pathogens such as for example fungi, bacteria, nematodes, viruses or parasitic weed and herbicides.

Increases stress resistance is meant that the trangenic plant can grows under stress conditions (e.g., high salt, decreased water, low temperatures) or under conditions that normally inhibit the growth of an untransformed plant. Methodologies to determine plant growth or response to stress include for example, height measurements, weight meaurements, leaf area, ability to flower, water use, transpiration rates and yield Sensitivity to ABA can be assessed using a concentration curve of ABA and germinating seeds on plates as described in Example 11. Often germination is assessed and used to determine sensitivity. However, sensitivity can be observed at more developmental stages than simply germination. For example, increased sensitivity may be observed at the stage of cotyledon expansion, expansion of the first true leaf, or developmental arrest in the seedling stage, The concentration of ABA at which sensitivity is observed varies in a species dependent manner. For example, transgenic Arabidopsis thaliana will demonstrate sensitivity at a lower concentration than observed in Brassica or soybean.

By increased ABA sensitivity it is meant that the trangenic plant is seen to display a phenotype at a lower concentration of ABA than that used to observe the same phenoltype in a wild type plant. Methodologies to determine ABA sensitivity include for example, plant germination, growth or development.

The plant can be any plant type including, for example, species from the genera Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea, Caco, and Populus.

Screening Methods The isolated nucleic acid molecules of the invention (e.g., SEQ ID NO:1, SEQ
ID
NO:6, SEQ ID NO:B, SEQ ID NO:3 1, SEQ ID NO:34, or SEQ ID NO:37) can be used to express FT protein (e.g., via a recombinant expression vector in a host cell), to detect FT
mRNA (e.g., in a biological sample) or a genetic lesion in a FT gene, and to modulate FT
activity, as described fiuther, below. In addition, the FT proteins can be used to screen compounds that modulate the FT protein activity or expression. In addition, the anti-FT
3o antibodies of the invention can be used to detect and isolate FT proteins and modulate FT
activity.

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind tD FT proteins or have a stimulatory or inhibitory effect on, e.g., FT protein expression or FT protein activity. The invention also includes compounds identified in the screening assays described herein.
The invention also includes methods of identifying related genes using the transgenic plants of this invention in screening protocols utilizing mutagenesis, gene tagging, insertional gene tagging, activation tagging or other such methods of gene or phenotype identification.
In one embodiment, the invention provides assays for screening candidate or test compounds which bind to a FT protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including:
biological libraries; spatially addressable parallel solid phase or solution phase libnaries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method;
and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide'lilifaries, while the other four approaches are .
applicable to peptide, non-peptidt oligoiner or small molecule libraries of compounds.
See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.
A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.
Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S A. 90: 6909; Erb, et al., 1994.
Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med.
Chem. 37:
2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew.
Chem. lnt. Ed.
3o Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. lnt. Ed. Engl. 33: 2061;
and Gallop, et al., 1994. J. Med. Chem. 37: 1233.
Libraries of compounds may be presented in solution (e.g., Houghten, 1992.
Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No.
5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al., 1992. Proc. Narl.
Acad Sci. USA
89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390;
Devlin, 1990.
Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad Sci. U.S.A. 87:
6378-6382;
Felici, 1991. J. Mol. Btol. 222: 301-3 10; Ladner, U.S. Patent No.
5,233,409.).
In one embodiment, an assay is a cell-based assay in which a cell which expresses a FT protein, or a biologically-active portion thereof, is contacted with a test compound and the ability of the test compound to bind to a FT protein determined. The cell, for example, can be of mammalian origin, plant cell or a yeast cell. Determining the ability of the test compound to bind to the FT protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the FT protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 1251, WS,14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting.
Alternatively, test ts compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase; and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell; which-expresses a FT protein, or a biologically-active portion thereof, with a known compound which binds FT to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a FT protein, wherein determining the ability of the test compound to interact with a FT protein comprises detemnining the ability of the test compound to preferentially bind to FT protein or a biologically-active portion thereof as compared to the known compound.
In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a FT protein, or a biologically-active portion thereof, with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the FT protein or biologically-active portion thereof.
Deten,nining the ability of the test compound to modulate the activity of FT or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the FT protein to bind to or interact with a FT target molecule, As used herein, a "target molecule" is a molecule with which a FT protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a FT interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A FT target molecule can be a non-FT molecule or a FT protein or polypeptide of the invention In one embodiment, a FT target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with FT.
Determining the ability of the FT protein to bind to or interact with a FT
target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, detemiining the ability of the FT protein to bind to or interact with a FT target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i. e.
intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a FT-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g.:;W
luciferase); or detecting a cellular response, for example, cell survival, cellular differentiation;-ormell proliferation.
= In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a FT protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the FT
protein or biologically-active portion thereof. Binding of the test compound to the FT
protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the FT protein or biologically-active portion thereof with a known compound which binds FT to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a FT protein, wherein determining the ability of the test compound to interact with a FT
protein comprises determining the ability of the test compound to preferentially bind to FT
or biologically-active portion thereof as compared to the known compound.
In still another embodiment, an assay is a cell-free assay comprising contacting FT
protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the FT
protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of FT can be accomplished, for example, by determining the ability of the FT protein to bind to a FT target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of FT
protein can be accomplished by determining the ability of the FT protein further modulate a FT target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described above.
In yet another embodiment, the cell-free assay comprises contacting the FT
protein or biologically-active portion thereof with a known compound which binds FT
protein to fonn an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a FT protein, wherein determining the ability of the test compound to interact with a FT protein comprises determining the ability of the FT protein to preferentially bind to or modulate the activity of a FT target molecule.
The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of FT protein. In the case of cell-free assays comprising the _tnembrane-bound form of FT protein, it may be desirable to utilize a solubHizing.:agent such that-the membrane-bound form of FT protein is= maintained in solution::
Exatnples of .such solubilizing agents include non-ionic detergents such as n-octylglucoside;.
n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton X- 100, Triton X- 114, Thesit , Isotridecypoly(ethylene glycol ether),,, N-dodecyl--N,N-dimethyl-3-ammonio-l-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-l-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-l-propane sulfonate (CHAPSO).
In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either FT protein or its target molecule to facilitate separation of complexed from uncomplexed fonns of one or both of the proteins, as well as to acconunodate automation of the assay. Binding of a test compound to FT
protein, or interaction of FT protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants.
Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes.
In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-FT fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or FT protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of FT protein binding or activity determined using standard techniques.
Other techniques for immobilizing proteins on matrices can also be used in the i0 screening assays of the invention. For example, either the FT protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
Biotinylated FT protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Iil.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with FT protein or target molecules, but which do not interfere with binding of the FT protein to its targetmolecule;i can be :;derivatized to the wells of the plate, and unbound target or FT=protein trapped in the wells ..by:antibody conjugation. Methods for detecting such complexes, imaddition to those de'scribed above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the FT protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the FT
protein or target molecule.
In another embodiment, modulators of FT protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of FT
mRNA or protein in the cell is determined. The level of expression of FT mRNA
or protein in the presence of the candidate compound is compared to the level of expression of FT mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of FT mRNA or protein expression based upon this comparison. For example, when expression of FT mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of FT mRNA
or protein expression. Alternatively, when expression of FT mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of FT mRNA or protein expression. The level of FT mRNA or protein expression in the cells can be determined by methods described herein for detecting FT mRNA or protein:
In yet another aspect of the invention, the FT proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317;
Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem.
268:
12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993.
Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with FT ("FT-binding proteins" or "FT-bp") and modulate FT
activity. Such FT-binding proteins are also likely to be involved in the propagation of signals by the FT
proteins as, for example, upstream or downstream elements of the FT pathway.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for FT is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA
sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and. the "prey" proteins are able to interact, in vivo, forming a FT-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor.
Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with FT.
In yet another aspect of the invention are methods which utilize the transgenic plants of the invention to identify FT-interacting components via genetic screening protocols. These componets can be for example, regulatory elements which modify FT-gene expression, interacting proteins which directly modify FT activity or interacting proteins which modify componets of the same signal transduction pathway and therby 3o exert an effect on the expression or activity of FT. Briefly, genetic screening protocols are applied to the transgenic plants of the invention and in so doing identify related genes which are not identified using a wild type background for the screen. For example an activation tagged library (Weigel, et al., 2000. Plant Physiol. 122: 1003-1013), can be produced using the transgenic plants of the invention as the genetic background. Plants are then screened for altered phenotypes from that displayed by the parent plants.
Alternative methods of generating libraries from the transgenic plants of the invention can be used, for example, chemical or irradiation induced mutations, insertional inactivation or activation methods.
The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof.
The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.
The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES
Example 1: Cloning ofArabidopsis tfialiana FfA and Constractivn of Transformation Vector The Arabidopsis thaliana FTA sequence was obtained..by RT-PCR from total RNA
isolated from leaf tissue using primers corresponding to SEQ ID NO:11 and SEQ
ID
2o NO: 12. The resulting fragment was digested with BamHI and SmaI and cloned into the plasmid pCR2.1 The Clonetech vector pBI121 was used as the backbone for the antisense construct. The GUS gene was removed by BamHI and Eco1CRI digestion and replaced with the FTA insert that was cut from pCR2.1-FTA using SmaI and BamHI and ligated into the vector SEQ ID NO:4.

Table 1.
SEQ ID NO: 1l: 5' - AAAGGATCCTCAAATTGCTGCCACTGTAAT -3' SEQ ID NO:12: 5' - AAACCCGGGATGAATTTCGACGAGAACGTG -3' Example 2: Cloning of non-full length Brassica napus FTA and FTB nucleic acid sequences RNA was isolated from leaf and root tissue using the Qiagen RNeasy kit. RT-PCR
was performed by known techniques using the primers shown in Table 2. The FTA

sequence was obtained using the primer pair SEQ ID NO: 19 and SEQ ID NO:20.
The FTB sequence was obtained using the primer pair SEQ ID NO:21 and SEQ ID NO:22.
Table 2.
SEQ ID NO:19: 5' -GGATCCATGGATTACTTCCGTGCGATTTACTTCTCC-3' SEQ IDNO:20: 5'-AAAAAGCTTCCATGCCCAATAGTTAGCTCTTATTGGATC-3' SEQ ID NO:21: 5' -AAAAAGCTTTGGCTTTGTTACTGGATTCTTCATTCAAT-3' SEQID NO:22: 5'-AAATCTAGAAGCTTCATAATACCGATCCAAGACAATGTT-3' PCR products were separated from the RT-PCR reaction mixture using the Qiagen PCR column spin kit and ligated into the cloning vector pBluescript KS +. The vector was digested with EcoRV and treated with Taq polymerase in the presence of dTTP to produce a 3' overhang for ligation with the PCR products. The ligation products were transformed into E. coli DH5a cells, positive colonies were selected and the resulting inserts Is sequenced.

Example 3: Cloning of non-full length FTA and FTB nucleic acid sequences from Glycine max and Zea maize RNA was isolated from leaf and root tissue using the Qiagen RNeasy kit. RT-PCR
was performed by known techniques using the primers shown in Table 3. The Glycine max FTA sequence was obtained using the primer pair SEQ ID NO:23 and SEQ ID NO:24.
The Glycine max FTB sequence was obtained using the primer pair SEQ ID NO:25 and SEQ ID NO:26. The Zea maize FTB sequence was obtained using the primer pair SEQ.ID
NO:27 and SEQ ID NO:28.

Table 3.

SEQ ID NO:23: 5' -AAAGGATCCATGGAATCTGGGTCTAGCGA-3' SEQ ID NO:24: 5' -AAATCTAGAAGGAAGTCTGCTCTTGCGC-3' SEQ ID NO:25: 5' -AAATCTAGAGCCACCATTCCTCGCAACG-3' SEQ ID NO:26: 5' -AAAGAGCTCGTGGTGGAGAATCTGGGTGC-3' SEQ ID NO:27: 5' -GGCGGATCCCGACCTACCGAGG-3' SEQ ID NO:28: 5' -AAAGAGCTCGTGGATGGATTGGCTCCAGC-3 ' PCR products were separated from the RT-PCR reaction mixture using the Qiagen PCR column spin ldt and ligated into the cloning vector pBluescript KS +. The vector was digested with EcoRV and treated with Taq polymerase in the presence of dTTP to produce a 3' overhang for ligation with the PCR products. The ligation products were transformed into E coli DH5a cells, positive colonies were selected and the resulting inserts sequenced.

Example 4: Sequence Analysis Arabidopsis thaliana FTA

A disclosed nucleic acid of 999 nucleotides (also referred to as FTl) is shown in Table 4A. The primers used in the PCR are depicted in bold.

Table 4A. FTl Nucleotide Sequence (SEQ ID NO:1).
aaacccgggatgaatttagacgagaccgtgccactgagccaacgattggagtqgtcagacgtggt cccattgactcaggacgatggtccgaatccagtggtgccaattgcctacaaggaagagttccgcg agactatggattacttccgtgcgatttacttttccgacgagcgatctcctcgcgcactacgactc acggaagaaaccctcctcttaaactccggcaactacacagtgtggcatttcaggcgcctagtact cgaggcccttaatcacgacttgtttgaagaactcgagttcatcgaacgcattgctgaggataact ctaagaactaccaactgtggeatcatcggcgatgggttgcagagaaactgggtectgatgttgca gggagagaacttgaatttacccgtagagtactttcacttgatgccaaacattatcatgcttggtc acataggcagtggacactacgggcattaggaggatgggaagatgagctcgattactgtcacgagc tccttgaagctgacgtctttaacaattccgcctggaatcagaggtattatgtcatcacccaatct cctttgttgggaggcctagaagecat-gagagaatctgaagtaagctacacaatcaaagccatttt aaccaatcctgcaaacgagagctcatggcgatacctaaaagcgctttacaaaqacgacaaagaat cctggattagtgatccaagtgtttcctcagtctgtttgaatgttctatcccgcacagattgcttc catggattcgctctgagcacccttttggatcttctatgtgatggactgagaccaaccaacgagca taaagactcagtgagagctctagctaatgaagaaccagagactaacttggccaatttggtgtgta ctattcttggtcgtgtagatcctataagagctaactattgggcatggaggaagagcaagattaca gtggcagcaatttgaggatccttt A disclosed FTI polypeptide (SEQ ID NO:5) encoded by SEQ ID NO:1 has 326 amino acid residues and is presented in Table 4B using the one-letter amino acid code.
Table 4B. Encoded FT1 protein sequence (SEQ ID NO:5).
MNFDETVPLSQRLEWSDVVPLTQDDGPNPVVPIAYKEEFRETMDYFRAIYFSDERSPRALRLTE
ETLLLNSGNYTVWHFRRLVLEALNHDLFEELEFIERIAEDNSKNYQLWHHRRWVAEFQ,GPDVAG
RELEFTRRVLSLDAKHYHAWSHRQWTLRALGGWEDELDYCHELLEADVFNNSAWNQRYYVITQS
PLLGGLEAMRESEVSYTIKAILTNPANESSWRYLKALYKDDKESWISDPSVSSVCLNVLSRTDC
FHGFALSTLLDLLCDGLRPTNEHKDSVRALANEEPETNLANLVCTILGRVDPIRANYWAWRKSK
ITVAAI

Due to the nature of the cloning strategy the sequence presented does not contain any 5' or 3' non-translated sequence. Using the sequences disclosed herein as hybridization probes, one is able to screen and isolate full length sequences from cDNA or genomic libraries or use the rapid amplification of cDNA ends (RACE) technology or other such PCR techniques. The percent identity of the Arabidopsis thaliana nucleotide sequence and its encoded amino acid sequence to that of published sequences is shown in Figure S.

The present invention also includes a nucleic acid sequence complimentary to the Arabidopsis thaliana farnesyl transferase alpha subunit of SEQ ID NO: 1. The disclosed complimenary sequence is shown as SEQ ID NO:2. The nucleic acid sequence of SEQ ID
NO:3 shows the nucleic acid sequence of SEQ ID NO:2 that has been prepared for ligation into an expression vector.

SEQ ID NO:2 aaaggatactcaaattgctgccactgtaatcttgctcttcctccatgcccaatagttagctcttataggatc tacacgaccaagaatagtacacaccaaattggccaagttagtctctggttcttcattagctagagctctcac tgagtctttatgctcgttggttggtctcagtccatcacatagaagatccaaaagggtgctcagagcgaatcc atggaagcaatctgtgcgggatagaacattcaaacagactgaggaaacacttggatcactaatccaggattc tttgtcgtctttgtaaagcgcttttaggtatcgccatgagctctcgtttgcaggattggttaaaatggcttt gattgtgtagcttacttcagattctctcatggcttctaggcctcccaacaaaggagattgggtgatgacata atacctctgattccaggcggaattgttaaagacgtcagcttcaaggagctcgtgacagtaatcgagctcatc ttcccatcctcctaatgcccgtagtgtccactgcctatgtgaccaagcatgataatgtttggcatcaagtga aagtactctacgggtaaattcaagttctctccctgcaacatcaggacccagtttctctgcaacccatcgccg atgatgccacagttggtagttcttagagttatcctcagcaatgcgttcgatgaactcgagttcttcaaacaa gtcgtgattaagggcctcgagtactaggcgcctgaaatgccacactgtgtagttgccggagtttaagaggag ggtttcttccgtgagtcgtagtgcgcgaggagatcgctcgtcggaaaagtaaatcgcacggaagtaatccat agtctcgcggaactcttccttgtaggcaattggcaccactggattcggaccatcgtcctgagtcaatgggac cacgtctgaccactccaatcgttggctcagtggcacggtctcgtcgaaattcatcccgggttt SEQ ID NO:3 gatcctcaaattgetgccactgtaatcttgctcttcctccatgcccaatagttagctcttataggatctaca cgaccaagaatagtacacaccaaattggccaagttagtctctggttcttcattagctagagctctcactgag tctttatgctcgttggttggtctcagtccatcacatagaagatccaaaagggtgctcagagcgaatccatgg aagcaatctgtgcgggatagaacattcaaacagactgaggaaacacttggatcactaatccaggattctttg tcgtctttgtaaagcgcttttaggtatcgccatgagctctcgtttgcaggattggttaaaatggctttgatt gtgtagcttacttcagattctctcatggcttctaggcctcccaacaaaggagattgggtgatgacata-atac ctctgattccaggcggaattgttaaagacgtcagcttcaaggagctcgtgacagtaatcgagctcatcttcc catcctcctaatgcccgtagtgtccactgcctatgtgaccaagcatgataatgtttggcatcaagtgaaagt actctacgggtaaattcaagttctctccctgcaacatcaggacccagtttctctgcaacccatcgccgatga tgccacagttggtagttcttagagttatcctcagcaatgcgttcgatgaactcgagttcttcaaacaagtcg tgattaagggcctcgagtactaggcgcctgaaatgccacactgtgtagttgccggagtttaagaggagggtt tcttccgtgagtcgtagtgcgcgaggagatcgctcgtcggaaaagtaaatcgcacggaagtaatccatagtc tcgcggaactcttccttgtaggcaattggcaccactggattcggaccatcgtcctgagtcaatgggaccacg tctgaccactccaatcgttggctcagtggcacggtctcgtcgaaattcatccc Brassica napus FTA
A disclosed nucleic acid of 822 nucleotides (also referred to as FT2) is shown in Table 5A.

Table 5A. IT2 Nucleotide Sequence (SEQ ID NO:6). -ATGGATTACTTCCGTGCGATTTACTTCTCCGACGAGCGTTCTGCTCGCGCGCTGCGACTCACGGA
AGAAGCTCTCCGCTTAAACTCGGGCAACTACACCGTGTGGCACTTCGGGCGCTTAGTACTCGAGG
AGCTTAATAACGACTTGTATGAAGAGCTCAAGTTCATCGAAAGCATTGCTGAGGATAACTCTAAG
AACTACCAGTTGTGGCATCATCGACGATGGGTCGCAGAGAAACTGGGTCCTGATGTTGCAGGAAA
GGAACTTGAGTTTACTCGGAGGGTACTATCACTTGATGCCAAGCATTATCATGCTTGGTCACATA
GGCAGTGGGCGCTACAAGCATTAGGAGGATGGGAAAATGAGCTTAACTACTGCCACGAGCTCCTT
GAAGCTGACGTCTTTAACAACTCTGCATGGAATCAGAGGTATTACGTTATAACTAGATCACCTTC
GTTGGGAGGCCTAGAAGCCATGAGAGAATCTGAAGTAAGCTACACAGTCAAAGCCATTTTAGCAA
ATCCCGGGAACGAGAGCTCTTGGAGGTACCTGAAAGCCCTTTACAAAGACGACACAGAGTCTTGG
ATTAGTGATCCAAGTGTTTCCTCAGTCTGTTTGAAAGTTCTCTCACGCGCGGACTGCTTCCATGG
ATTCGCTCTGAGCACCCTTTTGGATCTTCTGTGCGATGGGTTGAGACCAACCAACGAGCATAGAG
IACTCGGTGAAAGCTCTAGCTAATGAAGAACCAGAGACTAACTTGGCCAATTTGGTGTGTACCATT
CTGTGTCGTGTTGATCCAATAAGAGCTAACTATTGGGCATGG

A disclosed FT2 polypeptide (SEQ ID NO:7) encoded by SEQ ID NO:6 has 274 amino acid residues and is presented in Table 5B using the one-letter amino acid code.
Table 5B. Encoded FT2 protein sequence (SEQ ID NO:7).
MDYFRAIYFSDERSARALRLTEEALRLNSGNYTVWHFGRLVLEELNNDLYEELKFIESIAEDNS
KNYQLWHHRRWVAEKLGPDVAGLEKEFTRRVLSLDAKHYHAWSHRQWALQALGGWENELNYCHE
LLEADVFNNSAWNQRYYVITRSPSLGGLEAMRESEVSYTVKAILANPGNESSWRYLKALYKDDT
ESWISDPSVSSVCLKVLSRADCFHGFALSTLLDLLCDGLRPTNEHRDSVKALANEEPETNLANL
VCTILCRVDPIRANYWAWKL

Due to the nature of tlie cloning strategy the sequence presented is not full length.
Compared to the Arabidop'sis thaliana sequence there are 42 amino acids niissing from the amino tenminus and 10 amino acids from the carboxy terminus. The percent identity of the Brassica napus nucleotide sequence and its encoded amino acid sequence to that of published sequences is shown in Figure 8.
Using the sequences disclosed herein as hybridization probes, one is able to screen and isolate full length sequences from cDNA or genomic libraries or use the rapid amplification of cDNA ends (RACE) technology or other such PCR techniques.
The present invention also includes a nucleic acid sequence complimentary to the Brassica napsus farnesyl transferase alpha subunit of SEQ ID NO:6. The disclosed complimenary sequence is shown as SEQ ID NO:29.
SEQ ID NO:29 CCATGCCCAATAGTTAGCTCTTATTGGATCAACACGACACAGAATGGTACACACCAAATTGGCCAAGTTAGT
CTCTGGTTCTTCATTAGCTAGAGCTTTCACCGAGTCTCTATGCTCGTTGGTTGGTCTCAACCCATCGCACAG
AAGATCCAAAAGGGTGCTCAGAGCGAATCCATGGAAGCAGTCCGCGCGTGAGAGAACTTTCAAACAGACTGA
GGAAACACTTGGATCACTAATCCAAGACTCTGTGTCGTCTTTGTAAAGGGCTTTCAGGTACCTCCAAGAGCT
CTCGTTCCCGGGATTTGCTAAAATGGCTTTGACTGTGTAGCTTACTTCAGATTCTCTCATGGCTTCTAGGCC
TCCCAACGAAGGTGATCTAGTTATAACGTAATACCTCTGATTCCATGCAGAGTTGTTAAAGACGTCAGCTTC
AAGGAGCTCGTGGCAGTAGTTAAGCTCATTTTCCCATCCTCCTAATGCTTGTAGCGCCCACTGCCTATGTGA
CCAAGCATGATAATGCTTGGCATCAAGTGATAGTACCCTCCGAGTAAACTCAAGTTCCTTTCCTGCAACATC
AGGACCCAGTTTCTCTGCGACCCATCGTCGATGATGCCACAACTGGTAGTTCTTAGAGTTATCCTCAGCAAT
GCTTTCGATGAACTTGAGCTCTTCATACAAGTCGTTATTAAGCTCCTCGAGTACTAAGCGCCCGAAGTGCCA

CACGGTGTAGTTGCCCGAGTTTAAGCGGAGAGCTTCTTCCGTGAGTCGCAGCGCGCGAGCAGAACGCTCGTC
GGAGAAGTAAATCGCACGGAAGTAATCCAT

Brassica napus FTB
A disclosed nucleic acid of 1110 nucteotides (also referred to as FT3) is shown in Table 6A.

Table 6A. FT3 Nucleotide Sequence (SEQ ID NO:8).
TGGCTTTGTTACTGGATTCTTCATTCAATTGCTTTGCTTGGGGAGTCTGTGGATGATGACTTAGA
AAACAATGCAATCGATTTTCTTGGACGTTGCCAGGGTTCTGATGGTGGATATGGTGGTGGTCCTG
GCCAACTTCCACATCTTGCAACAAGTTATGCTGCAGTGAATACACTTGTTACTTTAGGAGGTGAG
AAAGCCTTCTCTTCAATTAACAGAGAACAAATGGCTTGTTTCTTAAGACGAATGAAGGATACAAA
TGGAGGTTTCAGGATGCATAATATGGGAGAAATAGATGTGCGAGCGTGCTACACTGCGATTTTGA
TTGCAAGCATCCTGAACATTGTGGATGATGAACTCACCCGCGGCTTAGGAGATTACATTTTGAGT
TGCCAAACTTATGAAGGTGGCATTGGAGGGGAACCTGGCTCCGAAGCTCATGGTGGGTACACGTA
CTGTGGGTTGGCTACTATGATTTTAATCAATGAAGTCGACCGCTTGAATTTGGATTCGTTAATGA
ATTGGGTTGTACATCGACAAGGAGTAGAAATGGGATTCCAAGGTAGGACGAACAAATTGGTCGAC
GGTTGCTACACGTTTTGGCAGGCAGCCCCCTGTGTTCTACTACAGCGATTTTTTTCATCCCAGGA
TATGGCACCTCATGGATCATCATCACATATGTCACAAGGGACAGATGAAGATCACGAGGAACATG
GTCATGATGAAGATGATCCTGAAGACAGTGATGAAGATGATTCTGATGAGGATAGCGATGAAGAT
TCAGGGAATGGTCACCAAGTTCATCATACGTCTACCTACATTGACAGGAGAATTCAACCTGTTTT
TGATAGCCTCGGCTTGCAAAGATATGTGCTCTTGTGCTCTCAGGTTGCTGATGGTGGATTCAGAG
ACAAGCTGAGGAAACCCCGTGACTTCTACCACACATGTTACTGCCTAAGCGGTCTTTCCGTGGCT
CAACACGCTTGGTCAAAAGACGAGGACACTCCTCCTTTGACTCGTGACATTTTGGGTGGCTACGC
AAACCACCTTGAACCTGTTCACCTCCTCCACAACATTGTCTTGGATCGGTATTATGAAGCTTCTA
GATTT

A disclosed FT3 polypeptide (SEQ ID NO:9) encoded by SEQ ID NO:7 has 370 amino acid residues and is presented in Table 6B using the one-letter amino acid code.
Table 6B. Encoded FT3 protein sequence (SEQ ID NO:9).
WLCYWILHSIALLGESVDDDLENNAIDFLGRCQGSDGGYGGGPGQLPHLATSYAAVNTLVTLGG
EKAFSSINREQMACFLRRMKDTNGGFRMHNMGEIDVRACYTAILIASILNIVDDELTRGLGDYI
LSCQTYEGGIGGEPGSEAHGGYTYCGLATMILINEVDRLNLDSLMNWVVHRQGVEMGFQGRTNK
LVDGCYTFWQAAPCVLLQRFFSSQDMAPHGSSSHMSQGTDEDHEEHGHDEDDPEDSDEDDSDED
SDEDSGNGHQVHHTSTYIDRRIQPVFDSLGLQRYVLLCSQVADGGFRDKLRKPRDFYHTCYCLS
GLSVAQHAWSKDEDTPPLTRDILGGYANHLEPVHLLHNILVDRYYEASRF
Due to the nature of the cloning strategy the sequence presented is not full length.
Compared to the Arabidopsis thaliana sequence there are 31 amino acids missing from the amino terminus and 5 amino acids from the carboxy terminus. The percent identity of the Brassica napus nucleotide sequence and its encoded amino acid sequence to that of published sequences is shown in Figure 9.
Using the sequences disclosed herein as hybridization probes, one is able to screen and isolate full length sequences from cDNA or genomic libraries or use the rapid amplification of cDNA ends (RACE) technology or other such PCR techniques.
Sequence comparisons have been performed and percent identities are shown in Figure 8 and Figure 9.
The present invention also includes a nucleic acid sequence complimentary to the Brassica napsus famesyl transferase beta subunit of SEQ ID NO:8. The disclosed complimenary sequence is shown as SEQ ID NO:30.
SEQ ID NO:30 AAATCTAGAAGCTTCATAATACCGATCCAAGACAATGTTGTGGAGGAGGTGAACAGGTTCAAGGTGGTTTGC
GTAGCCACCCAAAATGTCACGAGTCAAAGGAGGAGTGTCCTCGTCTTTTGACCAAGCGTGTTGAGCCACGGA
AAGACCGCTTAGGCAGTAACATGTGTGGTAGAAGTCACGGGGTTTCCTCAGCTTGTCTCTGAATCCACCATC
AGCAACCTGAGAGCACAAGAGCACATATCTTTGCAAGCCGAGGCTATCAAAAACAGGTTGAATTCTCCTGTC
AATGTAGGTAGACGTATGATGAACTTGGTGACCATTCCCTGAATCTTCATCGCTATCCTCATCAGAATCATC
TTCATCACTGTCTTCAGGATCATCTTCATCATGACCATGTTCCTCGTGATCTTCATCTGTCCCTTGTGACAT
ATGTGATGATGATCCATGAGGTGCCATATCCTGGGATGAAAAAAATCGCTGTAGTAGAACACAGGGGGCTGC
CTGCCAAAACGTGTAGCAACCGTCGACCAATTTGTTCGTCCTACCTTGGAATCCCATTTCTACTCCTTGTCG
ATGTACAACCCAATTCATTAACGAATCCAAATTCAAGCGGTCGACTTCATTGATTAAAATCATAGTAGCCAA
CCCACAGTACGTGTACCCACCATGAGCTTCGGAGCCAGGTTCCCCTCCAATGCCACCTTCATAAGTTTGGCA
ACTCAAAATGTAATCTCCTAAGCCGCGGGTGAGTTCATCATCCACAATGTTCAGGATGCTTGCAATCAAAAT
CGCAGTGTAGCACGCTCGCACATCTATTTCTCCCATATTATGCATCCTGAAACCTCCATTTGTATCCTTCAT
TCGTCTTAAGAAACAAGCCATTTGTTCTCTGTTAATTGAAGAGAAGGCTTTCTCACCTCCTAAAGTAACAAG
TGTATTCACTGCAGCATAACTTGTTGCAAGATGTGGAAGTTGGCCAGGACCACCACCATATCCACCATCAGA
ACCCTGGCAACGTCCAAGAAAATCGATTGCATTGTTTTCTAAGTCATCATCCACAGACTCCCCAAGCAAAGC
AATTGAATGAAGAATCCAGTAACAAAGCCA

Glycine max FTA
A disclosed nucleic acid of 1041 nucleotides (also referred to as FT4) is shown in Table 7A.

Table 7A. FT4 Nucleotide Sequence (SEQ ID NO:31).
ATGGAATCTGGGTCTAGCGAAGGAGAAGAGGTGCAGCAACGCGTGCCGTTGAGGGAGAGAGTGGA
GTGGTCAGATGTTACTCCGGTTCCTCAAAACGACGGCCCTAACCCTGTCGTTCCGATCCAGTACA
CTGAAGAGTTTTCCGAAGTTATGGATTACTTTCGCGCCGTTTACCTCACCGATGAACGCTCCCCT
CGCGCCCTCGCTCTCACAGCCGAAGCCGTTCAATTCAACTCCGGCAACTACACTGTGTGGCATTT
CCGACGGTTGTTACTTGAGTCGCTAAAAGTCGACTTGAACGATGAACTGGAGTTTGTGGAGCGTA
TGGCCGCTGGAAATTCTAAAAATTATCAGATGTGnATGTTCTGTAGGCATCCTAGACGATGGGTT
GCCGAGAAGTTAGGTCCTGAAGCTAGAAACAATGAGCTCGAGTTCACCAAAAAGATACTGTCCGT
TGATGCCAAACATTATCATGCATGGTCTCATAGACAGTGGGCTCTTCAAACACTAGGAGGATGGG
AAGATGAACTTAATTATTGCACAGAACTACTTAAAGAAGACATTTTTAACAATTCTGCTTGGAAT
CAGAGATATTTTGTCATAACAAGGTCTCCTTTCTTGGGGGGCCTAAAAGCTATGAGAGAaTCTGA
AGTGCTTTACACCATCGAAGCCATTATAGCCTACCCTGAAAATGAAAGCTCGTGGAGATATCTAC
GAGGACTTTATAAAGGTGAAACTACTTCATGGGTAAATGATCCTCAAGTTTCTTCAGTATGCTTA
AAGATTTTGAGAACTAAGAGCAACTACGTGTTTGCTCTTAGCACTATTTTAGATCTTATATGCTT
TGGTTATCAACCAAATGAAGACATTAGAGATGCCATTGACGCCTTAAAGACCGCAGATATGGATA
AACAAGATTTAGATGATGATGAGAAAGGGGAACAACAAAATTTAAATATAGCACGAAATATTTGT
TCTATCCTAAAACAAGTTGATCCAATTAGAACCAACTATTGGATTTGGCGCAAGAGCAGACTTCC
T

A disclosed FT4 polypeptide (SEQ ID NO:33) encoded by SEQ ID NO:31 has 347 amino acid residues and is presented in Table 7B using the one-letter amino acid code.

Table 7B. Encoded FT4 protein sequence (SEQ ID NO:33).
MESGSSEGEEVQQRVPLRERVEWSDVTPVPQNDGPNPVVPIQYTEEFSEVMDYFRAVYLTDERS
PRALALTAEAVQFNSGNYTVWHFRRLLLESLKVDLNDELEFVERMAAGNSKNYQMXMFCRHPRR
WVAEKLGPEARNNELEFTKKILSVDAKHYHAWSHRQWALQTLGGWEDELNYCTELLKEDIFNNS
AWNQRYFVITRSPFLGGLKAMRESEVLYTIEAIIAYPENESSWRYLRGLYKGETTSWVNDPQVS
SVCLKILRTKSNYVFALSTILDLICFGYQPNEDIRDAIDALKTADMDKQDLDDDEKGEQQNLNI
ARNICSILKQVDPIRTNYWIWRKSRLP

Due to the nature of the cloning strategy the sequence presented is not full length.
The percent identity of the Glycine max nucleotide sequence and its encoded amino acid sequence to that of other sequences is shown in Figure 8.
Using the sequences disclosed herein as hybridization probes, one is able to screen and isolate full length sequences from cDNA or genomic libraries or use the rapid amplification of cDNA ends (RACE) technology or other such PCR techniques.
The present invention also includes a nucieic acid sequence compiimentary to the Glycine max alpha subunit of SEQ ID NO:3 1. The disclosed complimenary sequence is shown as SEQ ID NO:32.

SEQ ID NO:32 AGGAAGTCTGCTCTTGCGCCAAATCCAATAGTTGGTTCTAATTGGATCAACTTGTTTTAGGATAGAACAAAT
ATTTCGTGCTATATTTAAATTTTGTTGTTCCCCTTTCTCATCATCATCTAAATCTTGTTTATCCATATCTGC
GGTCTTTAAGGCGTCAATGGCATCTCTAATGTCTTCATTTGGTTGATAACCAAAGCATATAAGATCTAAAAT
AGTGCTAAGAGCAAACACGTAGTTGCTCTTAGTTCTCAAAATCTTTAAGCATACTGAAGAAACTTGAGGATC
ATTTACCCATGAAGTAGTTTCACCTTTATAAAGTCCTCGTAGATATCTCCACGAGCTTTCATTTTCAGGGTA
GGCTATAATGGCTTCGATGGTGTAAAGCACTTCAGACTCTCTCATAGCTTTTAGGCCCCCCAAGAAAGGAGA
CCTTGTTATGACAAAATATCTCTGATTCCAAGCAGAATTGTTAAAAATGTCTTCTTTAAGTAGTTCTGTGCA
ATAATTAAGTTCATCTTCCCATCCTCCTAGTGTTTGAAGAGCCCACTGTCTATGAGACCATGCATGATAATG
TTTGGCATCAACGGACAGTATCTTTTTGGTGAACTCGAGCTCATTGTTTCTAGCTTCAGGACCTAACTTCTC
GGCAACCCATCGTCTAGGATGCCTACAGAACATNCACATCTGATAATTTTTAGAATTTCCAGCGGCCATACG
CTCCACAAACTCCAGTTCATCGTTCAAGTCGACTTTTAGCGACTCAAGTAACAACCGTCGGAAATGCCACAC
AGTGTAGTTGCCGGAGTTGAATTGAACGGCTTCGGCTGTGAGAGCGAGGGCGCGAGGGGAGCGTTCATCGGT
GAGGTAAACGGCGCGAAAGTAATCCATAACTTCGGAAAACTCTTCAGTGTACTGGATCGGAACGACAGGGTT
AGGGCCGTCGTTTTGAGGAACCGGAGTAACATCTGACCACTCCACTCTCTCCCTCAACGGCACGCGTTGCTG
CACCTCTTCTCCTTCGCTAGACCCAGATTCCAT

Glycine max FTB
A disclosed nucleic acid of 1035 nucleotides (also referred to as FT5) is shown in Table 8A.

Table 8A. FT5 Nucleotide Sequence (SEQ ID NO:34).
GCCACCATTCCTCGCAACGCCCAAACCCTCATGTTGGAGCTTCAACGCGATAATCACATGCAGTA
TGTCTCCAAAGGCCTTCGCCATCTCAGTTCCGCATTTTCCGTTTTGGACGCTAATCGACCCTGGC
TCTGCTACTGGATCTTCCACTCCATTGCTTTGTTGGGAGAATCCGTCGATGATGAACTCGAAGAT
AACGCTATCGATTTTCTTAACCGTTGCCAGGATCCGAATGGTGGATATGCCGGGGGACCAGGCCA
GATGCCTCATATTGCCACAACTTATGCTGCTGTTAATTCACTTATTACTTTGGGTGGTGAGAAAT
CCCTGGCATCAATTAATAGAGATAAACTGTATGGGTTTCTGCGGCGGATGAAGCAACCAAATGGT
GGATTCAGGATGCATGATGAAGGTGAAATTGATGTTCGAGCTTGCTACACTGCCATTTCTGTTGC
AAGTGTTTTGAACATTTTGGATGATGAGCTGATCCAGAATGTTGGAGACTACATTATAAGCTGTC
AAACATATGAGGGTGGCATTGCTGGTGAGCCTGGTTCTGAGGCTCATGGTGGGTACACCTTTTGT
GGATTAGCTACAATGATTCTGATTGGTGAGGTTAATCACTTGGATCTGCCTCGATTAGTTGACTG
GGTGGTATTCCGACAAGGTAAGGAATGTGGATTCCAGGGGAGAACAAATAAACTGGTGGATGGAT
GCTATTCCTTTTGGCAGGGAGGTGCTGTTGCTCTATTGCAAAGATTATCTTCTATTATCAACAAA
CAGATGGAAGAGACATCACAGATTTTTGCGGTATCTTATGTATCTGAAGCAAAAGAAAGTTTGGA
TGGAACCTCTAGTCATGCAACATGCCGTGGTGAGCATGAAGGCACCAGTGAATCCAGTTCATCTG
ATTTTAAAAATATTGCCTATAAATTTATTAATGAGTGGAGAGCACAAGAACCACTTTTTCACAGT
ATTGCTTTACAGCAATATATTCTCTTATGTGCACAGGAGCAAGAGGGTGGACTGAGAGACAAACC
GGGTAAACGTAGAGATCATTATCACACATGTTACTGTTTAAGTGGACTCTCATTGTGCCAGTATA
GTTGGTCAAAGCACCCAGATTCTCCACCAC

A disclosed FT5 polypeptide (SEQ ID NO:36) encoded by SEQ ID NO:34 has 378 amino acid residues and is presented in Table 8B using the one-letter amino acid code.
Table SB. Encoded FT5 protein sequence (SEQ ID NO:36).
ATIPRNAQTLMLELQRDNHMQYVSKGLRHLSSAFSVLDANRPWLCYWIFHSIALLGESVDDELE
DNAIDFLNRCQDPNGGYAGGPGQMPHIATTYAAVNSLITLGGEKSLASINRDKLYGFLRRMKQP
=NGGFRMHDEGEIDVRACYTAISVASVLNILDDELIQNVGDYIISCQTYEGGIAGEPGSEAHGGY
TFCGLATMILIGEVNHLDLPRLVDWVVFRQGKECGFQGRTNKLVDGCYSFWQGGAVALLQRLSS
IINKQMEETSQIFAVSYVSEAKESLDGTSSHATCRGEHEGTSESSSSDFKNIAYKFINEWRAQE
PLFHSIALQQYILLCAQEQEGGLRDKPGKRRDHYHTCYCLSGLSLCQYSWSKHPDSPP:, Due to the nature of the cloning strategy the sequence presented is not full length.
The percent identity of the Glycine max nucleotide sequence and its encoded amino acid sequence to that of other sequences is shown in Figure 8.
Using the sequences disclosed herein as hybridization probes, one is able to screen and isolate full length sequences from cDNA or genomic libraries or use the rapid ] o amplification of cDNA ends (RACE) technology or other such PCR techniques.
The present invention also includes a nucleic acid sequence complimentary to the Glycine max beta subunit of SEQ ID NO:34. The disclosed complimenary sequence is shown as SEQ ID NO:35.

ls SEQ ID NO:35 GTGGTGGAGAATCTGGGTGCTTTGACCAACTATACTGGCACAATGAGAGTCCACTTAAACAGTAACATGTGT
GATAATGATCTCTACGTTTACCCGGTTTGTCTCTCAGTCCACCCTCTTGCTCCTGTGCACATAAGAGAATAT
ATTGCTGTAAAGCAATACTGTGAAAAAGTGGTTCTTGTGCTCTCCACTCATTAATAAATTTATAGGCAATAT
TTTTAAAATCAGATGAACTGGATTCACTGGTGCCTTCATGCTCACCACGGCATGTTGCATGACTAGAGGTTC

TGATAATAGAAGATAATCTTTGCAATAGAGCAACAGCACCTCCCTGCCAAAAGGAATAGCATCCATCCACCA
GTTTATTTGTTCTCCCCTGGAATCCACATTCCTTACCTTGTCGGAATACCACCCAGTCAACTAATCGAGGCA
GATCCAAGTGATTAACCTCACCAATCAGAATCATTGTAGCTAATCCACAAAAGGTGTACCCACCATGAGCCT

CAGAACCAGGCTCACCAGCAATGCCACCCTCATATGTTTGACAGCTTATAATGTAGTCTCCAACATTCTGGA
TCAGCTCATCATCCAAAATGTTCAAAACACTTGCAACAGAAATGGCAGTGTAGCAAGCTCGAACATCAATTT
CACCTTCATCATGCATCCTGAATCCACCATTTGGTTGCTTCATCCGCCGCAGAAACCCATACAGTTTATCTC
TATTAATTGATGCCAGGGATTTCTCACCACCCAAAGTAATAAGTGAATTAACAGCAGCATAAGTTGTGGCAA
TATGAGGCATCTGGCCTGGTCCCCCGGCATATCCACCATTCGGATCCTGGCAACGGTTAAGAAAATCGATAG
CGTTATCTTCGAGTTCATCATCGACGGATTCTCCCAACAAAGCAATGGAGTGGAAGATCCAGTAGCAGAGCC
AGGGTCGATTAGCGTCCAAAACGGAAAATGCGGAACTGAGATGGCGAAGGCCTTTGGAGACATACTGCATGT
GATTATCGCGTTGAAGCTCCAACATGAGGGTTTGGGCGTTGCGAGGAATGGTGGC

l0 Zea maize FTB
A disclosed nucleic acid of 1235 nucleotides (also referred to as FT6) is shown in Table 9A.

Table 9A. FT6 Nucleotide Sequence (SEQ ID NO:37).
GGCGGATCCCGACCTACCGAGGCTCACGGTGACGCAGGTGGAGCAGATGAAGGTGGAGGCCAGGG
TTGGCGACATCTACCGCTCCCTCTTCGGGGCCGCGCCCAACACGAAATCCATCATGCTAGAGCTG
TGGCGTGATCAGCATATCGAGTATCTGACGCCTGGGCTGAGGCATATGGGACCAGCCTTTCATGT
TCTAGATGCCAATCGCCCTTGGCTATGCTACTGGATGGTTCATCCACTTGCTTTGCTGGATGAAG
CACTTGATGATGATCTTGAGAATGATATCATAGACTTCTTAGCTCGATGTCAGGATAAAGATGGT
GGATATAGTGGTGGACCTGGACAGTTGCCTCACCTAGCTACGACTTATGCTGCTGTAAATACACT
TGTGACAATAGGGAGCGAAAGAGCATTGTCATCAATCAATAGGGGCAACCTGTACAATTTTATGC
TGCAGATGAAAGATGTATCAGGTGCTTTCAGAATGCATGATGGTGGCGAAATTGATGTCCGTGCT
TCCTACACCGCTATATCGGTTGCCAGCCTTGTGAATATTCTTGATTTTAAACTGGCAAAAGGTGT
AGGCGACTACATAGCAAGATGTCAAACTTATGAAGGTGGTATTGCTGGGGAGCCTTATGCTGAAG
CACATGGTGGGTATACATTCTGTGGATTGGCTGCTTTGATCCTGCTTAATGAGGCAGAGAAAGTT
GACTTGCCTAGTTTGATTGGCTGGGTGGCTTTTCGTCAAGGAGTGGAATGCGGATTTCAAGGACG
AACTAATAAATTGGTTGATGGTTGCTACTCCTTTTGGCAGGGAGCTGCCATTGCTTTCACACAAA
AGTTAATTACGATTGTTGATAAGCAATTGAGGTCCTCGTATTCCTGCAAAAGGCCATCAGGAGAG
GATGCCTGCAGCACCAGTTCATATGGGTGCACCGCGAATAAGTCTTCCTCTGCTGTGGACTATGC
GAAGTTTGGATTTGATTTTATACAACAGAGCAACCAAATTGGCCCACTCTTCCATAACATTGCCC
TGCAACAATACATCCTACTTTGTTCTCAGGTACTAGAGGGAGGCTTGAGGGATAAGCCTGGAAAG
AACAGAGATCACTATCATTCATGCTACTGCCTCAGTGGCCTCGCAGTTAGCCAGTACAGTGCCAT
GACTGATACTGGTTCGTGCCCATTACCTCAGCATGTGCTTGGACCGTACTCTAATTTGCTGGAGC
CAATCCATCC

A disclosed FT6 polypeptide (SEQ ID NO:39) encoded by SEQ ID NO:37 has 414 amino acid residues and is presented in Table 9B using the one-letter amino acid code.
Table 9B. Encoded FT6 protein sequence (SEQ ID NO:39).
ADPDLPRLTVTQVEQMKVEARVGDIYRSLFGAAPNTKSIMLELWRDQHIEYLTPGLRHMGPAFH
VLDANRPWLCYWMVHPLALLDEALDDDLENDIIDFLARCQDKDGGYSGGPGQLPHLATTYAAVN
TLVTIGSERALSSINRGNLYNFMLQMKDVSGAFRMHDGGEIDVRASYTAISVASLVNILDFKLA
KGVGDYIARCQTYEGGIAGEPYAEAHGGYTFCGLAALILLNEAEKVDLPSLIGWVAFRQGVECG
FQGRTNKLVDGCYSFWQGAAIAFTQKLITIVDKQLRSSYSCKRPSGEDACSTSSYGCTANKSSS
AVDYAKFGFDFIQQSNQIGPLFHNIALQQYILLCSQVLEGGLRDKPGKNRDHYHSCYCLSGLAV
SQYSAMTDTGSCPLPQHVLGPYSNLLEPIH

Due to the nature of the cloning strategy the sequence presented is not full length.
The percent identity of the Glycine max nucleotide sequence and its encoded amino acid sequence to that of other sequences is shown in Figure 8.

Using the sequences disclosed herein as hybridization probes, one is able to screen and isolate full length sequences from cDNA or genomic libraries or use the rapid amplification of cDNA ends (RACE) technology or other such PCR techniqiles.
The present invention also includes a nucleic acid sequence complimentary to the Zea maize beta subunit of SEQ ID NO:37. The disclosed complimenary sequence is shown as SEQ ID NO:38.

SEQ ID NO:38 GGATGGATTGGCTCCAGCAAATTAGAGTACGGTCCAAGCACATGCTGAGGTAATGGGCACGAACCAGTATCA
GTCATGGCACTGTACTGGCTAACTGCGAGGCCACTGAGGCAGTAGCATGAATGATAGTGATCTCTGTTCTTT
CCAGGCTTATCCCTCAAGCCTCCCTCTAGTACCTGAGAACAAAGTAGGATGTATTGTTGCAGGGCAATGTTA
TGGAAGAGTGGGCCAATTTGGTTGCTCTGTTGTATAAAATCAAATCCAAACTTCGCATAGTCCACAGCAGAG
GAAGACTTATTCGCGGTGCACCCATATGAACTGGTGCTGCAGGCATCCTCTCCTGATGGCCTTTTGCAGGAA
TACGAGGACCTCAATTGCTTATCAACAATCGTAATTAACTTTTGTGTGAAAGCAATGGCAGCTCCCTGCCAA
AAGGAGTAGCAACCATCAACCAATTTATTAGTTCGTCCTTGAAATCCGCATTCCACTCCTTGACGAAAAGCC
ACCCAGCCAATCAAACTAGGCAAGTCAACTTTCTCTGCCTCATTAAGCAGGAICAAAGCAGCCAATCCACAG
AATGTATACCCACCATGTGCTTCAGCATAAGGCTCCCCAGCAATACCACCTTCATAAGTTfiGACATCTTGCT
ATGTAGTCGCCTACACCTTTTGCCAGTTTAAAATCAAGAATATTCACAAGGCTGGCAACCGATATAGCGGTG
TAGGAAGCACGGACATCAATTTCGCCACCATCATGCATTCTGAAAGCACCTGATACATCTTTCATCTGCAGC
ATAAAATTGTACAGGTTGCCCCTATTGATTGATGACAATGCTCTTTCGCTCCCTATTGTCACAAGTGTATTT
ACAGCAGCATAAGTCGTAGCTAGGTGAGGCAACTGTCCAGGTCCACCACTATATCCACCATCTTTATCCTGA
CATCGAGCTAAGAAGTCTATGATATCATTCTCAAGATCATCATCAAGTGCTTCATCCAGCAAAGCAAGTGGA
TGAACCATCCAGTAGCATAGCCAAGGGCGATTGGCATCTAGAACATGAAAGGCTGGTCCCATATGCCTCAGC
CCAGGCGTCAGATACTCGATATGCTGATCACGCCACAGCTCTAGCATGATGGATTTCGTGTTGGGCGCGGCC
CCGAAGAGGGAGCGGTAGATGTCGCCAACCCTGGCCTCCACCTTCATCTGCTCCACCTGCGTCACCGTGAGC
CTCGGTAGGTCGGGATCCGCC

The FTA and FTB nucleic acids and amino acids disclosed above have homology to other members of the FT protein family (GenBank ID NOs: U63298, U83707, and U73203; WO 00/14207; Cutler et al., Science 273(5279):1239-41, 1996;
Ziegelhoffer et al., Proo Natl Acad Sci U S A. 97(13):7633-8, 2000). The homology between these and other sequences is shown graphically in the ClustalW analysis shown in Tables l0A-lOD.
In the ClustalW alignment, the black outlined amino acid residues indicate regions of conserved sequence (i.e., regions that may be required to preserve structural or functional properties), whereas non-highlighted amino -acid residues are less conserved and can potentially be altered to a much broader extent without altering protein structure or function.

Table 10A. ClustalW Nucleic Acid Analysis of FT Alpha Subunits 1) BNA-12; FT2 (SEQ ID NO:6) 2) At-FT-A; FT 1(SEQ ID N0:1) 3) PPI-Soy-FTA; FT4 (SEQ ID NO:31) 4) Pea-FT-A (SEQ ID NO:59) 5) Tomato-FTA (SEQ ID NO;60) 6) Rice-FT-A (SEQ ID NO:61) 7) Zea mays-FT-A (SEQ ID NO:62) 8) Soy1-FT-A (SEQ ID NO:63) 9) Soy2-FT-A (SEQ (D NO:64) 10) Triticum-FT-A (SEQ ID NO:65) ....1....1....1....1....1....I ....I ....1....I ....I .... I....1.... I ....1 BnA-12 -----------------------------------------------------------At-FT-A ------------------------------------------------------ --PPI-Soy-FTA ----------------------------------------------------------- ----AT--Pea-FT-A CAACACCTACCTAGTGCTTCTAGTTCTGGTTCTAGGACTGAGAGTAAACAGAAGTGAAGAAGAATCC
Tomato-FTA ---TACCCCGAAGGCAATTCCAGTATTGAACTACCGCCGGCAGTTTTCCGATCGGATCCCGGAGCC
Rice-FT-A -----------GCACGAGGTTCTAACGCCGCCGCCGCCGCCGCCGTCTCCGCA-GAATCTGATCGAT
C
Zea mays-FT-A -----------------GCACGAGACAGCGCAATTACTTAAGCTATTTGTATTCGGATCTGATCCAACCC
Soyl-FT-A GCACGAGGATTAACGJkAGGAT--GfA
------------------------GCACGAGCTTGCGTGTGGAGTGAAGAAGATTAACGAAGGAT--Triticum-FT-A ---------------------------------------------------------------------....I....I....I--..I=--.I....I....I....1...-1....1....1--,.1....t....l BnA-12 ------------------------------------------------------------At-FT-A ---GAGT GAACAT ATTTC GAG--- -CCG ---- CAA TTGMMMI
PPI-Soy-FTA AT----C T G GGAG AGGTGC AA C GAG GT
Pea-FT-A ACATGGC CEGA4VTCEAGTTG GAAG--- CGAT GC TTAC CCTMEREM
Tomato-FTA ATCAAAT CA GT GT-- GAA-- -ACG GG CCCIFEM
Rice-FT-A GCCGTCGTC CG GTCGGAGGGTGCCTC-C CGAGT GT CCC CGGC CC C
Zea mays-FT-A TGGTGGTC TGCT~CGCGGA-GC ACT~GTCCCC AGTT GCCAWCTICI
Soyl-FT-A AT---- CT T GC GGA AGGTGC CAA CGBGMG G GTGEEMB
Soy2-FT-A AT---- CT TC GC GGAG AGGTGC GCAAC C T GAG GTGEMI
Triticum-FT-A ------------------------------- -- ---- - - -- - -------------I....I....I....I-...1....1....1.....1....1....1..._I...-I-..-I....I
BnA-12 ---------------------------------------------------------------------At-FT-A GT G T GC C
PPI-SOy-FTA CT T GIWCTIM03M
Pea-FT-A ACT C T C= ' G C C G C= CC T
Tomato-FTA AA CT GCC ' C C
Rice-E'1'-A C GGTC C G CC C C CC CGC C= C
Zea mays-FT-A C GGT G G T T C CC TCGA T T
Soyl-FT-A AC ACAWCTINEW
Soy2-FT-A TACT T C C C CA = CT T
Triticun-FT-A GC T C CTJWGCMGCMICMC

.-..I....1-...~....I-...I....1....1....1....1....1....1....1....1....1 BnA-12 --------- G = '1' = T G =
At-FT-A C ACT T G T G
PPI-SOy-FTA TC CT
Pea-FT-A TC TG CT
Tomato-FTA TC CC
Rice-FT-A C C A GT C
Zea mays-FT-A CG C C T C
Soyl-FT-A TC CT
Soy2-FT-A TC T C GCT
Triticum-FT-A C C C A

....I....I-...I-...1....1...-1....1....1....1....1-...I....I....I....I
BnA-12 TC GC CI T C= GA
At-FT-A TC T CCJA4ZMcM&S
PPI-Soy-FTA T C GT
Pea-FT-A T GGT C e =~ ~= ~ GT T T=
Tomato-FTA T T
Rice-FT-A C TC I~= ~=I TC T
Zea mays-FT-A G G = C~ i~l~ =~=I= ~= CC
Soyl-FT-A ,= ~ ~~ G
Soy2-FT-A G T i e== C GT GT
Triticum-FT-A C f .. . .. .. .. .. .. .. .. .. .. ..
.I. .I. -I. ..I. .I. .I= -I- .I. .I. .I- =I. =I= =I. _I
BnA-12 C_MTMMjAACZZM&;TA fnim, = TT C C= LCC
PPIES A-~A C T= CA lT CF T T 62 Pea-FT-A CAT T A GT
Tomato-FTA AT CGT C
8ice-FT-A C GT C C
Zea mays-FT-A T CT ~ G c A T
Soyl-FT-A C
Soy2-FT-A C CT
Triticum-FT-A TTGCT C TC

....~....~....~....~....I....~....~....~....I....~....~....~....~....I
BnA-12 MGTJM - -g AtFT-A MACZGM ------------------------------ PP-Soy-FTA ----ATGTTCTG----------TAG---------- Pea-FT-A HIGETM -----------------------------------Tomato-FTA SAMIAM --------------------_---_---_----Rice-FT-A sp4mcm -----------------------------------Zea mays-FT-A MJAMCM ----------------------------------Soyl-F-A MGMM ----------------------------------Soy2-FT-A TGTGATGCTCTGCTCTGCTCTTTCTTCCATACTTT

Triticum-FT-A MAiSCM ----------------------------------500 510 520 530 540 550 .~. .I. .I. .I.. .I. .~. .I. .I....I. .~. .I. .~. .I. .I
BnA 12 G CGG G
At-FT-A C G G T T CGT GAG C
ppI-SoyFTA C C
Pea-FT-A
Tomato-FTA CA
Rice-FT-A T C= C GG T
Zea mays-FT-A T T G
Soyl-FT-A
Soy2-FT-A
Triticus, FT-A

_...I....I....I....I....I..:.I....I....I....I....I..._~....I....i..,.l y-F-A -FT GCM
NI: AMCMC
-A s-A -A
-A
IN, m-FT-A CC' C' T A GC C

...I-..=I...=I= . . =I=
..=I=..-I=.. =I=..=I=..=I=.. .. =I= =I=. .=I= ..=I=.=-I
enA-12 = CT C G C Q
At-FT-A CII CT C M CC
PpI Soy-FTA
Pea-FT-A T C C
Tomato-FTA C
Rice-FT-A C CC
2ea mays-FT-A
Soyl-FT-A C T Oil Soy2-FT-A C
Tritictim-FT-A = C T C C C CC G C

....I....I....~....I....I....I....~....I_...I=...I....~....I....I....I
enA-12 C GC G C
At-FT-A C G
PpI-Soy-FTA T CA
Pea-FT-A C C ~C
Tomato-FTA C T
Rie-FT-A C
ZeC

....~.,..I....~....I-...I.,..I....I.._.I_...I....I....~....I....I....I
Mu AtF~'?A T~ C C=G M ~~= C T==. Affcc PPI-SOy-PTA CT 63 Pea-FT-A T T C T CG ABAT
Tomato-PTA C cwmr C CTA
Rice-FT-A C T C CT
Zea mays-FT-A A T A -FT-A 850 860 870 880 890 90C 910 ... .. . .. .. .. . .. . .. .. ..
I. I. ..I. .I. .I. .I. .I. .I. ..I....I....I. I. I. I
BnA-12 G C TC~CGCGCGGACT TC
At-FT-A C G C TCCCGCACAGATT TC G
PPI-Soy-FTA
Pea-FT-A i G T

TC GC CC TC --- C

GAFT-A C C = C G A---.. .. .. ..
I=I= I. I= I
BnA12 C T GIGA
C T GBGA
GTTCC C
C
TCG C
II'IUIDIIihI!II1IIfl1 ....I....l....I..:'.I....I....I.
..-I
....I....I....I.,..I....I....I....I
BnA-12 TC --- T-- -,__: G------- ------------------------- - C AC
At-FT-A G C "- = --- ---s ---------- --------------------- - AC
PPI-Soy-FTA T T CAAGATTTAGATGATGATGAGAAAGGGGAA T
Pea-FT-A T - T ------------------------------- - = C
Tomato-FTA TC --- - GCTC------------------------------ - T
Rice-FT-A C GCAGATGA-------------------- AG---C -GT C
Zea mays-FT-A T C CGC---------------------------------C A
Soyl-FT-A C T C T CAAGATTTAGATGATGATGAGAAAGGGGAAC T
Soy2-FT-A C T CAAGATTTAGATGATGATGAGAAAGGGGAAC T
Triticum-FT-A C GGG--------------------------------- C

.. .. .. .. .. .. .. .. .. .. .. ..
= =I. =I....I. .I. .I. .I....I. .I. .I. .I. .I- .I. .I. .I
BnA-12 T T AATTTGG GT CT C
At-FT-A T CT AATTTG TGGT T CT C
PPI-Soy-FTA G CC TT
Pea-FT-A AG TAAC T GTC GTC
Tomato-FTA AGCAC G T T
Rice-FT-A T ACTGC T C A CC T CC
2ea :i: CCT GC CC T TAGC C =C AT

....I---- I....I---- I....I.... I.... I.... I.... I.... I.... I---- I.... I----I
BnA-12 ----------------------------------------------------------------------At-FT-A AjGljMMGAMACA ----GTGGC-AGMATIPGAATATGTGACGCCCCAAAATCACACTTGAAAAA
PPI-Soy-FTA C C------ ---------------------------------------------Pea-FT-A C
ESMZJMAGAM&
------- - T GGAC ACTTATGTCATAT AATTTTTA
Tomato-FTA C TG GG----GT -ATT CT GAGTCA TGCAGAGAGGTTG TAATTTGA
Rice-FT-A T T CT----T - -- G----C grGCAGTGGCCTCCATIA ------ GG
zea mays-FT-A TT T CTCAGAT TG T C GGGTTC CCCTTGTCCGCGC GTCCGGGCT
Soyl-FT-A CHROMMMAS& ------- -AT T GTAACCA GTAATTAAA---G CAACTCTGT
Soy2-FT-A C ------- mcrDr- AACCP GTAATTAAA---G CAACTCTGT
Triticum-FT-A T C C T CT----T A-G -TTC GCTGAAGACAGTTTTAG------CA

....I....I,.-.I....I....I-...I....I....I....I..-.I....I-...I....I--..I
BnA-12 ---------------------------------------------------------------------At-FT-A jACjjPGATTlr~- AGT-M'f ACGT---------- AATTAACTGCTBABfQATGAATCACA G-TICAQ
PPI-Soy-FTA ------------------------------------------Pea-FT-A TTG T AC GAT---------- AACAGGGTGG TGTTATGATAT- 0 Tomato-FTA CAA --G,AC AGA---------- ATATTGTACT~T~CGAAATACA A-C GC
Rice-FT-A TC TG ATATCTTC ------------------------ C TGA---------T TG
Zea mays-ET-A CT GAT ACATGTT TAGTTTCATTGGACACCCAAACAGAGCGGACAGAGTGT GC C
Soyl-FT-A ~TATGTGT CC GT- GA----------- AACTGGATTT~~-ATTATTAT -T
Soy2-FT-A TATGTGT CC GT- GA-----------AACTGGATGT -ATTATTA -T
Triticum-FT-A CA GATGT C TC GGGGTT--------------GACGCA TGAAAAACC --T

....I....I....I....I....~....~....~....I....~....I....I-...~.. .~_...~
BnA-12 --------------------'-----------------'-------------------------------At-FT-A GT-TAACATUATEAAAAr-AATCTTGATTTCTCAIAAAAAAhAAAAAAAAMJAAAJNAMMM -------PPI-Soy-FTA -----'------------'------------------'---------Pea-FT-A CC-AGATGT T TATTTAACAGCAAAGTT TTAACAT GGTGTT TCTCCAA
GTG
Tomato-FTA ATCTAAGGT TC CG ACATGTGCTGGG GTGACTGAATATCACG ~C T= GC TTGA
Rice-FT-A GGCGTTGA C--- TACATTTGTTAT CTTTC GGCAT T T TAC-Zea mays-FT-A ACCTTCTCC G AGTGCTTGTAAC --TTTTG AGT TGT T TGCT
Soyl-FT-A GT-TGTCAT GTT ---- GCAAATTT------ ATC TGTC GC T GA
Soy2-FT-A GT-TGTCAT GTTT ---- GCAAATTT------ ATC TTGTC TGCGA
Tziticum FT A GTGATCTT CGG AA =TTTGTACT(~ TTTTAC GG C C C GCATG

I....I....~,...I....~....I....~....I....I-...I....~..._I..._I-.__~
BnA-12 -------------------------'------------'---------------------'---------At-FT-A ---------'--------------------------------------------------'--------PPI-Soy-FTA ----------------------------------------------------------------------Pea-FT-A AAAATC= GTT TATTTCTCTTCATTTGTCTGATTTTGTGGC CATTCTTGATGAT-TTTGTGGTA
Tomato-FTA ATTGGC ATTGTACTACTCCAAATAGGTCACTTTCGATGACT~TTTGTACTGCCTTGA-GTTTTGGCT
Rice-FT-A TCCAAT TGT CTAAA---------------------------------------------------Zea mays-FT-A CCAAA ACC ATGCAACCATATTTGAATAT---- TTCAC TAAGCT---TGA--------A-TC
Soyl-FT-A GTG--T GA AAAGCCATGCA------- GAATAAGAAATT GTTTTTT-------TTTCCGTTG
Soy2-FT-A GTG--T= GA GAAAGCCATGCA-------GAATAAGAAATT BkA
GTTTTTT-------TTTCCGTTG
Triticum-FT-A CCCAAC GT GTGTGAATATGTTACTGCCTGATATTCAC TTAGCAGAATGAGAATAACCAATC

.... I.... I .... i ....I .---I .... I.... I---- I---- I .... I .... I----I.... I.... I
BnA-12 --'--'------- --'---------'------------ ----- --------------At-FT-A --- --- --- ' ~+ =,, -- =
= --. ---------------------. .,~: - -- --------- --------PPI-Soy-FTA ------Pea fT A A19AAAA---------------------------'----------------------Tomato-FTA
CTGCTATGTTTTGTAkTTTTGGATATGGATGCATAGCTTATTGATACTTTTGGTGACTTAAAATACTCT
Rice-FT-A -- ---- - -----------'------------------'---------Zea mays-FT-A CAGGTGTGTTTGTTAATGTATTACACTT--G-CCATGGGAGCCTAAATGAGACCCATAATCACTTCCACT
Soyl-FT-A AAAA ------------------------------------------------------------------Soy2-FT-A AAAAAAAAAAAAAAAAAkAA ------------------------------------------Triticum-FT-A
AAACTCCAACGAGCAGATTGTTACAGTAACGGCCACTGGTGGTGTGAAAATCCTGAAATCTGCTTCAGTC

I_...I....I....I....I....I....I....I=...~....I.... ....I....~
BnA-12 -----------------------------------------------------------------'---At-FT-A -------------------'-----------'----------------------~--------------PPI-Soy-FTA --------'------'-----------------------------------------------------Pea-FT-A ---------------- -----------'-------------'------------------------Tomato-FTA
GGAAGGCAGGTAGCATGTGTATAATTCACTGTTACTTCCCATGTCGAGTTAGATGCTTGAAAATTTTAGT
Rice-FT-A ---------------'---------------'-------------------------- -----' --Zea mays-FT-A AGAGTCGGAAGACCGT-GTCGAGCAGTTCACTCATATGGTCACTTAAAGCA A-Soy1-FT-A ---'------------------------- -__--------'---------------------------Soy2-FT-A -------------------------------'--------------------------------------Triticum-FT-A
ACTTTGCCTTGTTTACAGTTGAGTCTGTTGTTGTGATCTGTACCTAATGCATGTACACAATCATCAAATT

....~....I-.._~....I....~....I..._I....~....I....I.-..I....I....I..__~
BnA-12 -----'---------------------------------------------'----------"-----At-FT-A -----------------"-----'----------------------------- ---------------PPI-Soy-FTA ---------------------------------------------------------------------Pea-FT-A ----------------------------------------------------------------------Tomato-FTA AGGTGTTCTTTTATGAAGCACACATTAATGTGG
Rice-FT-A -------------------------------------'----------------------------'---Zea mays-FT-A -----'--------------------------'------------------------------------Soyl-FT-A ----------------------'---'------------------------------------------Soy2-FT-A --'-------------------------------' ----------------------------------Triticum-FT-A ATTAGTTTTTGTACCAATGAGTATTCGATGAAAAAAAAAAAAAAAA ------------------------BnA-12 -At-FT-A -PPI-Soy-FTA -Pea-FT-A -Tomato-FfA A
Rice-FT-A -Zea mays-FT-A -Soyl-FT-A -Soy2-FT-A -Triticum-FT-A -Table lOB. ClustalW Amino Acid Analysis of FT Alpha Subunits 1) BNA-12; FT2 (SEQ ID NO:7) 2) At-FT-A; FT I(SEQ ID N0:5) 3) PPI-Soy-FTA; FT4 (SEQ ID NO:33) 4) Pea-FT-A (SEQ ID NO:66) 5) Tomato-FTA (SEQ ID NO:67) 6) Rice-FT-A (SEQ ID NO:68) 7) Zea mays-FT-A (SEQ ID N0:69) 8) SoyI-FT-A (SEQ ID N0:70) 9) Soy2-FT-A (SEQ ID NO:71) 10) Triticum-FT-A (SEQ ID N0:72) 20 30 40 50 60 7() .... I.... I.... I....I.... I.... I.... I.... I.... I.... I.... I.... I....
I.... I
BnA-12 --------------------------------------------------- I eSo R
At-FT-A --------- MNFDET LS S 'T ~= ~ FY= R
PPI-Soy-FTA -MESGSSEGEEVQQ L * e S ~ L
Pea-FT-A --MAGNIEVEE-DDR~ L P S~ I_' == S S S = =~ F L S
Tomato-FT-A -----MDSCEVTKTYt2 FK P' = = C S T~ = I
RiceFT-A MAPSSTSSEGASDEWL PS P L= *~ H = L FA H
Zea mays-FT-A ----------MEHTLSGPSSW L~ ~ Rp~ RG = L 7, R
Soyl-FT-A -MESGSSEGEEVQQR L S~ = a r =
Soy2-FT-A -MESGSSEGEEVQQR"LR = S = T=
Triticum-FT-A - '-, -.7 --------------- -=
RG, P = ~ R
80.= 90 100 110 120 130 140 ....~....~.:..I....I....I....~....I....I....I....I....~....I....I....I
BnA-12 Y_ E L
At-FT-A E TLL H= F=E i,;~------------PPI-Soy-FTA ~Q = ~ S K E
--------MFC
Pea-FT-A S K = ~. ~ =R ------------ =
Tomato-FT-A p== G ~ - _ = E :- _ ..
RiceFT-A p U R. = EC 5------------ ti Zea maye-FT-A TE P =~ p D w7 EC L=
'-----------Soyl-FT-A Q .. 7 :
S K -Soy2-FT-A WQ - == S KVMIN DALLCSFFHTL
.. .
Triticum-FT-A =~ p P D= LL ;H D= ES P y ------------....~....~....J....~....~....~....~....~....~....~....~....~....~....~
SnA-12 DVAGL
At-FT-A DVAG '== "
= D = y_ PPI-Soy-FTA ~== =T ~= w T T
pea-FT-A E~S = = = S S I
Tomato-FT-A =p~VT~I == ~ Q, I, RiceFT-A DI '= ~
Zea mays-FT-A GI H '~I= L T E DH
Soyl-FT-A q P~ ~M ~-~ ~'II =i~l ,1, I I~ . T
Soy2-FT-A =E ~( =I ~ :II~ T = I T Triticum-FT-A I '+~=~= N -~ S = ---' ... Fa .. i ....~....~....~....~....I....~....I-...~....~....~....~....I....~....~
BnA-12 S = L~Q[ =G D~ S PS S~DCE'JG MjK: At-FT-A L~Th DpK PS SRTDCFHG
PPI-SOy-FTA _ ~= Y=~ _' G~TT p ~-R KSN, Pea-FT-A ZMMMMM . = Y =. D _ +
Tomato-FT-A L = L ~= :TLi F 7 -~K~N~~Y=L
_ r' - ' ,-yT= QflL S= - LWD -TSQNS
RiceFT-A SL 7== ~ NLL ERI~ -KHDTC
2ea mays-FT- s ~5= AR K NL+E ~~ -KNDWTC
Soy1-FT-A F=Y=E T P= -TKSNY
Soy2-FT-A I Y~

Triticum-FT-A I A D D~~IVNQQ pDDNNLL AMNr DA -NKDWTCB

....I....I....I....I....I....I....I....I....I....I....I....I....I....I
BnA-12 D g a PPI-SO FTA = Y NEH K NE P----T'N--------------R '~ '=
At-FT-A NEH~ NE P---~ N--------------T~M---DKQDLDKGEQQNLNI~ RN =
Pea-FT-A = SASVd ED QIL---IKQ--DS -------- I IT =
Tomato-FT-A H= R HD 0, X'S YID PQSC---SPD------------ LA~TK ~ K
RiceFT-A QI NMPEADEAVDA-- -------_ =~RC I
Zea mays-FT-A G~ T~GT~ S~S!FH.P---~TADD-- ---------p C
Soyl-FT-A TA~DM---DKQDLD EKGEQQNLNI
TriticumAFT-A = NF} KGT ~ P---ET6QHAD- -KGEQQNLNI A~ C = 'I

I....I....I....I....I....
BnA-12 Ri --------------------At-FT -A TVAAI---------------PPI-Soy-FTA P-------------------Pea-FT-A PQAA----------------Tomato-FT-A RVQLLQSQNAERLANLSVQE
RiceFT-A SSQT---------------Zea mayS-FT-A SQIS----------------Soyl-FT-A PLSA----------------Soy2-FT-A PLSA----------------Triticum-FT-A SS------------------Table lOC. ClustalW Nucleic Acid Analysis of FT Beta Subunits 1) PPI-BnFTb; FT3 (SEQ ID NO;8) 2) eral (SEQ ID NO:73) 3) Wiggum (SEQ ID NO:74) 4) PPI-Soy-FTB; FT5 (SEQ ID NO:34) 5) DuP-Soy-FTB (SEQ ID NO:75) 6) PPI-Corn-FTB; FT6 (SEQ ID NO:37) 7) DuP-Corn-FTB (SEQ ID NO:76) 8) Pea-FT-B (SEQ ID NO:77) 9) Tomato (SEQ ID NO:78) 10) Tobacco (SEQ ID NO:79) I....I....I....I....I....I.... ....I....I....I....I....I....I....I
PPI-BnFTb -------------------------------------------------------------------eral --------------------------------------------------------Wiggum ATGCCAGTAGTAACCCGCTTGATTCGTTTGAAGTGTGTAGGGCTCAGACTTGACCGGAGTGGACTCAATC
PPI-Soy-FTB ---------------------------------------------------------------DuP-Soy-FTB ----------------------------------------------------------------------PPI-Corn-FTB --------------- ---------------------------------DuP-Corn-FTB ----------------------------------------------------------------------Pea FT-B -------------------------------------------------------Tomato ----------------------------------------------------GTAAACGAGCGTTGATTT
Tobacco ------------------------ --------------------------------------------.... I....I.... I....I....I...I....I.... I.... I.... I.... I-...I.... I....I
PPI-BnFTb ----------------------------------eral -----------------------------------------------Wiggum GGCGAATCTGTCACGGAGGACACGGGGAATCAACGCGGCGGAGAGTGATGGAAGAGCTTTCAAGCCTA C
PPI-Soy-FTB ------------------------------------------------------DuP-Soy-FTB ----------------------------------------------------------------------PPI-Corn-FTB -------------------------------------------GGCGGATCCCGACCTACCGAGGCTC=C
DuP-Corn-FTB -------------------------------------------GGCGGATCCCGACCTACCGAGGCTC
Pea FT-B ------- --------------------------CGGACCCCCCCGTCCACAATCGT T
Tomato GTCGCTGACGAAATTTACAGTCAAGAGTAGTAACCGGTTGTAGTGAAAAAATGGAGTCGAGGAAAGT C
Tobacco ------------------------------------------------------- GGCACGAGCGGC-C

....1....1....1....1....1....1....1....1....1....1....1....1....1....1 PPI-BnFTb ----------------------------------- ---------- -------- ----------eral --------------------------------Wiggum CGT GTCAGCGCGAGCAATTTCTGGTGGAGAACGATGTGTTCGGGATCTI1'AATTACT CGACGCCAGC
PPI-SOy-eTB ------------------------------------------------------------GCCACCATTC
DuP-Soy-FTB ------------------------------------------------------------GCCACCATTC
PPI-Corn-FTB GGT GCAGGTGGAGCAGATGAAGGTGGAGGCCAGGGTTGGCGACATCT CGCTCCC
CTTCGGGGCC
DuP-Corn-FTB GGT GCAGGTGGAGCAGATGAAGGTGGAGGCCAGGGTTGGCGACATCT CGCTCCC
CTTCGGGGCC
Pea FT-B GAT GTCTCCGCGAGCATTTCAACAACCAGTTACTCAAACCACCGCG TAACAC GGAAGCTTCA
Tomato G GCTGGAAGATCAATGGGTGGTGGAGCGTCGAGTCCGAGAGATAT GATTAT TACAGCATT
Tobacco GA ACTGGAAGATCAATGGATGGTGGAGCGTCAAGTTCGGGAGATAT AATTTTT TACAGCATT

.... I.... I.... I.... I---- I.... I.... 1.... 1.... 1.... 1.... 1.... 1....
1.... 1 PPI-BnFTb ----------------------------"---------------------------------eral ------------------------ T ----- UQTGA
Wiggum GACGTTTCT C' TACA T ---- GA
PPI-Soy-FTB CTC GC TCAT- C-GC ---- CTCCA
DuP-Soy-FTB CTC CG C TCAT C-GC ----- CTCCA
PPI-Corn-FTB GCGC C CATCAT = C G -C ----- ~CGC
DuP-Corn-FTB GCGC C GAP CATCA C = C TG C ---- CGC
Pea FT-B ACC GCGGAGAC CTCC C G TGG G CAG CTTTC
CIA CCTC TTomatc CTCC CNC CP.TT~CCG--CGACCACT = C CAAC = G CT -C C ~ ----- C CTC

I....I.... l.... l.... l.... l.... l....l.... l....l.... l....l....l....l PPI-BnFTb --------------------------------------------------------eral C --- EMSG-CA' TCC
CA TCC
Wiggum C ---MAMEM
EIZEG
PPI-SOy-FTB C C C C--- C C C
AETS ASTSC
DuP-SOy-FTB C C --- C C
PPI-Corn-FTB CT -MAMA C AT
DuP-Corn-FTB CT ---MAMA C CAT T C
Pea FT-B ATTTATC CT GCC TTC TCC C CCAATC TC T
Tomato --- T
Tobacco -- GT C

... ., .. .. .. .. .. .. .. .. .. .. .. ..
=I= =I= =I= =I= =I. .I. .I= =I= =I= =I= =i= .I. =I= =I
PPI-BnFTb C C =CT I C
eral C ~ aGC C
i!E-B
Tomato ' A T GC
Tobacco T CCC T

....I ....I.... I.... I.... I.... I.... I.... I.... I.... i.... l.... l....
l.... l PPI-BnFTb GG
eral GG CT T
wiggum G CT
PPI-Soy-FTB G
DuP-Soy-FTB G
PPI-Corn-FTB GC
DuP-Corri-FTB GC
Pea FT-B
Tomato GACC
Tobacco GAGC

....I....I....I....I....I....I....I....I-...I....~....I....I....I....I
PPI-BnFTb G le G CT C T = C
eral C C
Wiggum C T
PPI-Soy-FTB f ~ ~ T T == === e DuP-Soy-FTB T G T T
PPI-Corn-FTB G C T = C= C
DuP-Corn-FTB G G= G CC T = C= C
Pea FT-B T = C T G=T T = T
Tomato CAAACCT
Tobacco CA CAICCCT

....I....I....I.... I....I....I.... I.... I.... I.... I.... I.... I.... I....
I
eralBnFTb W"I1Si~r~ ..~T"Ltii~"ii~"L'' T~

TG
Wiggum T T AEJGM!~M
PPI-Soy-FTB C G C GC C
DuP-Soy FTB C C GC C
PPI-Corn-FTB CC AAT TGT C CT = = = eGT DuP-Corn-FTB CC AA GT C CT
Pea FT-B GT C
Tomato GT AC C T
Tobacco aI' C C

~....I....~....~....I....I....I.,..I....I....I....I....I....I....I
PPI-BnFTb C
eral C
Wlggum CC C C
PPI-Soy-FTB T
DuP-Soy-FTB T
PPI-Corn-FTB C C C T CAA
DuP-CornFTB C CAA
Pea -B
Tomato C T TA
Tobacco C T ' T T TA

....I....I....I....I=--.~....~,...~....~....~....~....~....~....I....I
PPI-BnFTb GC T C
eral CT C = G C
Wiggum C CT C
PPI-Soy-FTB C == T
DuP-Soy-FTB
PPI-Corn-FTB C GC
DuP-Corn-FTB
Pea FT-B T ==
Tomato CC C
Tobacco G C T

....I....I....I....I....I....,....I....~....I....~....i....~....1....1 PI-b C CG C

... . .. .. .. .. .. .. .. . .. .. .. ..
.i. ..i. .i. .i. .i. .i. i. .i. .i.. .i. .i. .i. .i. .i PPI-BnF'Pb C C T
eral C G I CT cA T
Wiggum C G CT c T
PPT-Soy-FTB C C'= e AA C= =' ' = =
DuP-Soy-FTB C C C AA
PPI-Corn-FTB = T C CT T i C T
DuP-Corn-FTB GC = I==CT AC
Pea FT-B c I= CT =~ = GT
Tomato T ~= =i C =
Tobacco C

....~.-..~....~....i....l....i....l....l....i....l....i....~....1....~
PPI-BnFTb C C C T' c == TT TC
eral T C T C
Wiggum T C T C T
PPI-Soy-FTB a s T == T TC
DuP-Soy-FTB T T TC
PPI-Corn-FTB C CAC T
DuP-Carn-FTB c CAC= = T
Pea FT-B T T C
Tomato T GTT
Tobacco C AGC

....~....I....I....~..e~s~......I....~....;....I....I....I....I....I....~
PPI- eralBnFTb CAAT~C~TG CGUC------ ~TC~AT~CA----------- Tp p Y'P. G~L~~
1!ily~~A~GG~

Wiggum CAAT T C T -~ j A~AP
PPI-SOy-FTB T C ---- -G -----'----' TL~7R'TT
paG =- = -----------T T
DuP-Soy-FTB T C = G------G
PPI-Corn-FTB T T AGGTCC T----- -------------------- ----GG
DuP-Corn-FTB T T GAAGTCC T= ---- ------------------------GG
Pea FT-B T C - T~T~ -GJMGMG Tomato A CC C GGGCT G = TACAGAAAGTGCT TG Tobacco A
CC C GGGCT GAAC = TACAGAAAGTGCT TG 1060 1070 10 .... I.... I.... I---- I.... I.... I.... I.... I.... I --.I.... I.... I.... I.-.I
AA(MT T AAGATGA--- CTG
IrSqIG
PPI-BnFTb A C AGGA-AC GGTC
eral = AA T-------C GCTC= AA,'c-'T 'T' ATGATG CT
AA ATGATGAIG CT
Wiggum GAAC -------C GCTC ffrIAIG
PPI-Soy-FTB T ----'- GAIAIr GGAT T TGCC GA
DuP-Soy-FTB ------ C G GGAT T TGCC A
PPI-Corn-FTB CC G---- TGCCTGCAG---=~C GT T---- CC--------G- GA
DuP-Corn-FTB CC= G---- GCCTGCAG---- C GT --- CC-------- G- A
Pea FT-B ------ GGAR*B1'GGAC TCCC G
Tomato TT GAAGAGCATTTGGAAGGGAT 3'CCT C GTT~- TTCCC AMA
Tobacco TT T ---GAGCATTTGCAAGGGAC TC~T GTT -GAAG TGCCC TBGGAMA

.... I.... I.... I.... I.... I....I .... I....I.... I,...I.... I.... I....
I.... I
PPI BnFTb T-- - C - GG G C C CATC q eral C--------- C --- TG G CCATC= CWiggum C--------- C --- TG G CATC C PPI-SOy-FTB =C--------- CAG = A CT T CC DuP-Soy-FTB
EMMEIC
--------- CCA CT T CPPI-Corn-FTB ATMAIT ---- -----CT T GTG T C T
DuP-Corn-FTB AM4T TGTG CT C T

Pea FT-B C---------ITTG TCT GT Tomato GCTTGTCAAG T C CCC TAGA Tobacco EMMA ----.... I.... I.... I.... I.... I.... I.... I.... I.... I.... I.... I .... I....
I.... I
PPI-BnFTb ATTGA GA C eral ATTAA GA G C Wiggum ATTAAC= GA = G. C
PPI-Soy-FTB GAGTG = GC AA = T' C
DuP-Soy-FTB GAGTG ' G AA = T C r PPI-Corn-FTB AGAGC CCAA- GGC C C T C
DuP-Corn-FTB AGAGC CAA- GG C C'P C C C
Pea FT-B GAGTG = C T==
Tomato CGACCC=TAGCT GAG GTATC C T
Tobacco CGNAC TAGCT GC = C= T ATC C C C

....I....I....I....~....I....I....I....~....I....I....I....I....I....I
PPI-BnFTb GCT = T CTTJMBW C=
eral C CT C TT C C
IP ~-- T GG C =T= TT

I I....I....I....I....I....I....I....I....I....I....I....I....I
PPI-BnE'Tb T GCT = C G GA = GA~CGT~A~ T
eral C CT GCT C G GA T G'Pny~~~õCGC G
Wiggum C CT GCT = C GC GA T G CGC G
PPI-Say-FTB GC G ----- ---------DuP-SOy-FTB C GC ----------------PPI-Corn-FTB C C AGC = C GCCAT =CT C GTGC C CAGC GC
DuP-Corn-FTB C AGC = GCCAT CT T T C GTGC C CAGC C T
Pea FT-B GT GC T C GC GC A
Tomato T GCT C C CAG T
Tobacco GCT = C= C CAG T T

.... I.... I.... I.... I.... I.... I.... I........I.... I.... I.... I....
I.... I
PPI-BnFTb I~
eral LLL~~~GGC -M--~C~f = =~I'C~T~fT~TCAC C~T CA~AG~P.~
~~1 70 wiggum TGGC G-MU- CCB1' TGITMA.eTTMTCACMCABT CA ACMIAP
PPI-Soy-FTB ----------------------------------------------------------------------DuP-Soy-FTB -------------------------------------------------------------------PPI-Corn-FTB CC -= -- GC ----- --------------------------DuPCOrnTB CC - -- G II ------------------------.-----Pea FT B ~TTT~GG T~T G ~
CCT G GT TTC==C GT ffl~s Tobacco iCCT C T G TA C T

....I....I---.~....I...-I....I....I....~....I....~....I....~....I....~
PPI-BnFTb CTA T--------------------------------------------------------eral TCGAGCTTCTTTAAAGCAGCATGACCCGTTGTTGCTAATGTATGGGAAACCCCAAACATAAG
Wiggum TCGA CTTCTTTAAAGCAGCATGACCCGTTGTTGCTAATGTATGGGAAACTCCAAACATAAG
PPI-Soy-FTB ----------------------------------------------------------------------DuP-Soy-FTB ----------------------------------------------------------------------PPI-Corn-FTB ----------------------------------------------------------------------DuP-Corn-FTB ----------------------------------------------------------------------Pea FT-B MBEICATGAAIrCTTTTCTCAGTTGTGACGGATGACAAGGTTTTAGCTACCAATAGCTC-GATCATTAG
Tomato MIEICGCGAAQACT-CTCAGGCTTGTGAGACTGTTTCAC-CACTTTCATTAGCACCAAC--TTTTTCAG
Tobacco GTAG CTTCTCATGCTTGTGATAATATTTTACGCGATAGCTGTAGCTGGAAT--GTTACC--.... I.... I.... I.... I.... I.... I.... I....I....I.... I.... I.... I ....
I.... I
PPI-BnFTb ---------- -------------------------------------------------------eral AGTTTCCGTAGTGTTGTAACTTGTAAGATTTCAAAAG---------------------------------wiggum AGTTTTCGTAGTGTTGTAACTTGTAAGATTTCAAAAGAAGTTTCACTAATTTAACCTTAAAACCTGTTAC
PPI-Soy-FTB ----------------------------------------------------------------------DuP-Soy-FTB ---------------------------------------- ------- -PPI-Corn-FTB ----------------------------------------------------------------------DuP-Corn-FTB ------------------------------------------------------------ -Pea FT-B
AATGTAAAATGTAAACTAAAATATGAAATATGAAATACCAAAAAGATATTATTGGATGAAATTCACGTGG
Tomato AAACTTAGTTGCAATCCAGAAGTTAAAAGTGTCATTGGGTTCAAAAGAGTTGTGATCGTTTATGTACATA
Tobacco ---TCTAGTTG---TTCAGAATCAGAGACTAATCTATTATTTTGAGGGATTGGATTCAAAAAAAAAAAAA

....I ....I....I .... I.... I ....I .... I....I.... I.... I .... {.... I ....
I.... I
PPI-BnFTb : - r~- ~ ~~ ~ -~ ~N "~=~
eral --------------- '-=-wiggum TTTTTTATTACGt=k1TATACCATT'~SF~T,CATATCTTTGGTTTACGACTTAAAGAATTTGATGATTGTTGAAA
PPI-Soy-FTB -----DuP-Soy-FTB ------------- I ----------- --------------------------------------------r.r PPI-Corn-FTB ------------------------ ------------------------------------- - --DuP-Corn-FTB ---------------------------------------------------------------------Pea FT-B
ATCTAATACAACTGCGTGGTTTTCATTCCTGATTTGATTTTGATTTACATGAGTTAAAACGTTAAACCCT
Tomato TCCTTGCATTTGTATACGTGATACAAGTTGAGAGAATAACGGGTACTTTCTGAACTTGCTGAACTAGCAC
Tobacco AAAAAAA-------------------------------------------------------.... I.... I.... 1.... 1.... 1.... 1....1......... 1....1....I ....I
....1....I
PPI-BnFTb ----------------------------------------------------------------------eral -------------------- --------------------------------------------wiggum --------------------------------- -----------------PP1-Soy-FTB ----------------------------------------------------------------------DuP-Soy-FTB ---------------------- ------------------------------------------PPI-Corn-FTB ----------------------------------------------------------------------DuP-Corn-FT8 ------------------------------------------------------- ------Pea FT-B TCTTATTCATACATTTGTTAAGAGCTAAGGCTTAATGGTTAAGCCAATGATATAAATATTTATGCAGAA
Tomato GTAAATTCGTCTCTGGTTTAGTGAGGTCTGTAAACATCAATGTGAAATTGCGAGATATGCATGTAATAGT
Tobacco --------------------------------- ------------------....I....I....I....~....~....I....I....I....I....I....I....I....I....I
PPI-BnFTb ------------------------ --------eral -----------------------------------------------------------------wiggum ---------------------------- --------------------------PPI-Soy-FTB -------------------- -----------------------------------------DuP-Soy-FTB ----------------------------------------------------------------------PPI-Corn-FTB ---------------------------------------------------------------------DuP-Corn-FTB ----------------------------------------------------------------------Pea FT-B AGCTGTTGCTTATCACCAACGGTAATATTAATAAGCAAACAAGTATTCTGTGAT----------------Tomato GGCTAAGATTTACAAATCTGGATACCGGTTATTAGTGATCAGAAATTTCATTCAATTTCCCAAACGGTCA
Tobacco ----------------------------------------------I --------------------1e30 1840 1850 1860 1870 1830 1890 .... I.... I.... I.... I.... I.... I.... I.... I.... I.... I.... I.... I ....
I.... I
PPI-BnFTb ----------------------------------------------eral -----------------------------------------------------------------------------------------Wiggum ----------------------------------------PPI-Soy-FTB ---------------------------------------------------------- ---DuP-Soy-FTB ----------------------------------------------------------------------PPI-Corn-FTB ----------------------------------------------------------------------DuP-Corn-FTB ----------------------------------------------------------------------Pea FT-B ----------------------------------------------------------------------Tomato CCTAAGTTTAGGATATTGCTTTAAAATATTATTTATTTTTCATTTAAGAATCAAAAAAAAAAAAAAAAAA
Tobacco ----------------------------------------------------------------------....I....
PPI-BnFTb --------eral ---------wiggum ---------PPI-Soy-FTB ---------DuP-Soy-FTB ---------PPI-Corn-FTB ---------DuP-Corn-FTB ---------Pea FT-S ---------Tomato AAAAAAAAA
Tobacco ---------Table 10D. ClustalW Amino Acid Analysis of FT Beta Subunits 1) PPI-BnFTB; FT3 (SEQ ID NO:9) 2) eral (SEQ IDNO:80) 3) Wiggum (SEQ ID NO:81) 4) PPI-Soy-FTB; FT5 (SEQ ID NO:36) 5) DuP-Soy-FTB (SEQ ID NO:82) 6) PPI-Corn-FTB; FT6 (SEQ ID NO:39) 7) DuP-Corn-FTB (SEQ ID NO:83) 8) Pea-FT-B (SEQ ID NO:84) 9) Tomato (SEQ ID NO: 85) 10) Tobacco (SEQ ID NO:86) ....I .... I.... I....I.... I.... I.... I.... I .... I.... i.,..l.... l....
l.... l PPI-BnFTB ----------------------------------------------------------------------eral ------------------------------------------------------------Wiggum MPVVTRLIRLKCVGLRLDRSGLNRRICHGGHGESTRRRVMEELSSLTVSQREQFLVENDVFGIYNYFDAS
PPI-Soy-FTB --------------------------------------------------------------------ATI
DuP-Soy-FTB -------------------------------------------------------------------ATI
PPI-Corn-FTB --------------------------------------ADPDLPRLTVTQVEQMKVEARVGDIYRSLFGA
DuP-Corn-FTB --------------------------------------ADPDLPRLTVTQVEQMKVEARVGDIYRSLFGA
Pea FT-B -------------------------------------------------------------------MEA
Tomato --------------------------- -------MESRKVTKTLEDQWVVERRVREIYDYFYSI
Tobacco ------------------------------------------GTSGTRTLEDQWMVERQVREIYNFFYST

I....I.... I.... I.... I.... I....I.... I.... I.... I.... I....I....I....I
PPI-BnFT3 -------------------------------------------- ~ .~ .
eral -------- r 4~D ~ S ~ ,Si Wiggum DVSTQKY D ~ W S --- - 5 PPI-Soy-'r'fB PP ~L ] .~5~ =H SS~ ---- r ~ ~ ~ =
DuP-Soy-PTB P ~ = - ~ 3 H SSy ----- = S ~ = =
PPI-Corn-FTB AP M.T w' gE H. = ----- ~ P ~ =I
DuP-Corn-6TB A T~IM~ == IE H =----- A_ ~~ DI
Pea FT-B STAA~PTPT SQRDQWIVES -VFH~YQL ~N~PP QSII==
Tomato SP SPS E F KOM9 -------- TGGy Tobacco PP S---H~ TSTER FD =y K --- IQA=

....I....I....I....I....I....I....I....I....I....I....I....i....l....l PPI-BnFTB E G3= ~ = =~CAC
eral S S_ = , D ~ s Wiggum M S ~= D S
PPI-Soy-FTB r = Pr ~= i= M QPN
DuP-Soy-FTB P, = i * QPN
PPI-Corn-FTB E K= S=~' Z SEGN 'L~ C
DuP-Corn-FTB M S IZ ~~ Z SQ N L=
Pea FT-B PN QpN

Torftato acco ~ S ~ = $n'~ RPM EMOT
= E ~S_!L!R S P L =
To ~7 Srga~9'I~

....I....I....I....I..,.I....I....I....I....~....I....I...,I....~....I
PPI-BnFTB y ~ ~=~ ~ = G ~
=t s eral ~ f+ ~ ,=~ ') r = ~. ~
Wiggum = ' ~ T=
PPI-Soy-FTB ~== >7== IN I. =~=7= e =T H
DuP-Soy-FTB = ' ~e= - IQN H
PPI-Corn-FTB ~ S m ! = = ~ L 7 ~
DuPCorn-FTB r S
- - n Pea FT-B ~=~ I a Tomato = '== I = w Tobacco == IN

....I....I....I....I-...I....I....I....I....I....I....I....~....I....I
PPI-BnFTB H PC = F S PHG~~S. SHM~SQGTDEDHE
eral DS ~ 'f PCV = Y N HDYHG- SHI~EGTNEEH-Wiggum D PC D~HG- SHISEGTNEH-PPI-Soy-FTB ~ = t C ~+ A~ S ~ EF<~ IFA YVSEA-DuP-Soy-FTB ~ C = AV == y~ EET~ QIFA YVSF=A-PPI-Corn-FTB ~ S~ ZAFT ~ I ~ RSS~,YSCKRP EMACS
DuP-Corn-FTB C = WAFT I-: ~ KS~YSCKRP EDACS
Pea FT-B = = Y ,, FV~Tp DAPEE-Tomato H GLDLST D}~SSE
Tobacco G P. S= uH Ii ,GLS ELSYE DISSE

....I....I....I....I....I....I....I..._I....I....I....~....i....l=--I
PPI-BnFTB EHGHDM-DPE--D DEDD-S--DEbS--DED-w-$GNGHQV~HHT-ST~ ~*-- =~T= =r D ~ M
eral -HAHD.E- -- DDDDDS--DEwN--DEDSV GHR~HS~T-STI itM=L~ D
Wiggum -HAHDE~--D E-- DDDDDS--DEpN--DE~SVNwGHRIH~T-STr_ ~i I.,, PPI-Soy-FTB -----E-5 0 TCRG--EHEG---S SSDFK~]IA~ EWRAQ== H~ e DuP-Soy-FTB -----ifIE-S D TCRG--EHEG---TSE S~SSDFKNIA.Y. EWRAQ = 9I IP
PPI-Corn-FTB ------------ YGCTAN----------K'S= SVDYAKFG~D Q~SN~ HN~
DuP-Corn-FTB ------------ =GGTAK----------R~S S*VDYAKFGN QQSNQ== N~ ~Pea FT-B ----~-C I~ H~ATSHI--RHEG---MNE SDVKtaIG~N SEWR~S_ H~ Tobacco SELSDE~EHjQGI
pVQKTCPLGQ~GACQEN DPT.KIADTG.YD RTIA~2_ DpY =, Tomato 430 440 450 460 470 480 490 ....I....I....I....I....I....I....I....I....I.-..I....I....I....I....I
PPI-BnFTB A P S DE = T~D~ H
ral P~ P wnw ~== TwlDwo~~- QL
Wiggum K2P= P DE TRDI 'Q
PPI-Soy-FTB E4~ L c P
DuP-Soy-FTB E L ~ = C 5 P~ -+-------------------------PPI-Corn-FTB L ~ = ~ ~ - ~T P Q H - 1 P '1----------DuP-Corn-FTB L = ~ ~ , S GfTG C = P H V P ~ Z----------Pea FT-B EQ_ L= ' RP = P[F P N I~ P ~~'% =~
Tomato ~E =' Y_ I~' DE == PA P KC V r Tobacco ID- =õ= ~Np P$DN~ P QN qZ .~e õ

I....I....I...- -.--1 PPI-BnFTB Y SR-~-------------------ral N IE~FFKAA--------------e Wiagum N IEFFFKAA--------------PPI-Soy-FTB -------------------------DuP-Soy-FTB -------------------------PPI-Corn-FTB -------------------------DllP-Corn-FTB -------------------------Pea FT-B PMHE-IFSQL
RESQACETVSPLSLAPTFSET
Tobacco RSFFSCL---------------Also included in the invention is the farnesyl transferase alpha consensus sequence of SEQ ID NO:87 and the farnesyl transferase beta consensus sequence of SEQ ID
NO:88 To generate the consensus sequence, the farnesyl transferase alpha and farnesyl transferase beta sequences of the invention were aligned using the program BioEdit. The homology between the farnesyl transferase alpha (FTA) polypeptide sequences of the invention is shown graphically in the ClustalW analysis shown in Table 10E. The homology between the farnesyl transferase beta (FTB) polypeptide sequences of the invention is shown graphically in the ClustalW analysis shown in Table l OF.
Table 10E ClustalW Amino Acid Analysis of FT Alpha I....I....I....I....I.... ....(....I....I....~....I....~....(....I
BnA-12 --------------------------------------------------10 At-FT-A -------- MNPDET S= r ~
PPI-Soy-FTA MESGSSEGEEVQQR~~ = = ~== = S = õ L~' man"
Consensus -------- = ~= ~~

.... I....~....~....I....~.... ....~....I....I....I.... I.... I.... I ....I
BnA-12 ~ S r MMMEMMOMM
At-FT-A ----PPI-3oy-FTA Kr I MFC RN
Consensus .... I.... I....I.... I.... I....I.... I.... i.... l.... l.... l.... l....
l.... l BnA-1 S
At-FT-A = L
PPI-Soy-FTA FGR~Z T E 3 FMI
Consensus ....I....~....I....~....I....~....I....~....I....I....I....~....I....I
-30 _.: ;anA-lz - '. At-FT-A
PPI-SOy-FTA _ I = [~ GE T ;_ - KSN_Y_. I
=':Consensus = =

I....~....I....I....I....I-...I I....I- ~ ~...I- ~
BnA-12 .. .= '" ---------- ---- . C. r. .. ------At-FT-A r PPI-Soy-FTA DMDKQDLDDDK ,2 BnA-12 ~ -- (SEQ ID N0:7) At-FT-A AI (SEQ ID N0:2) PPI-Soy-FTA -- (SEQ ID NC:33) Consensus (SEQ ID N0:87) Table 10F ClustalW Amino Acid Analysis of FT Beta .... I.... I....I.... I....I.... I ....I ....I .... I.... I.... I.... i ....I
I
PPI-BnFTB --------------------------------------------------~-p~-,-----SS Consensus~~9 ADPDLPRL~yUTQVEQKKVEARVGDIYRSLFGAAP~~ iff: ~ L
8'P : ~GP~'H ; =
0 90 100 110 120 130lGli7! 140 ....I....~....I....(....I....~....I--..I....(....~....I....~....~....1 PPI BnFTB _~ ~== ~ Sr PPI Soy-FTB = E _ = P~1 I_= s~ ~ S
PPI-Corn-FTB p~ D ~I = r S_ E S
Consensus r = =
MOM~

.... i....l....i....i....i....i....l....i....~....i....i.... i.... i.... I
!iB sus r = rr _...I....~....~....~....I....I....i....l....l....l....~....~....~....1 PPI-BnFTB 'PCV
PPI-3oy-FTB -PPI-CornFTB ~ '= ~ II~I~' I ~
Consensus ~....I....I.... ....I....I....I....I
.... (.... I....I.... I....I.... I....
PPi-BnFTB E S PH S-- !ADEE DEDDPEDSDEDDS DE GHQUHHTSTYI
PPI-Soy-FTB = S E = QIF V"~~ SL DjMj[gA G ~S S K---~A~~''{~~',,'~W~A
PPI-Corn-FTB I - ~ RS -----Y KRPSDHE~aACS -MR, AK---FCID[~ SN(]
Consensus ---.I. .I. .I. .I. .I. =I. .I. =I. =I. =I= =I. _.I.. .I I
PPI-BnFTB
PPI-Soy-FTB _ = ~ ~ ----------_ C PHMP 3 PPI-Corn-FTB M PENN
Consensus = =

.... I.... I.... I ....I ...
PPI-BnFTB F~V~LLHNILVDRYYEASRF (SEQ ID NO:9) PPI-Soy-FTB ----------------------- (SEQ ID N0:36) ConsensusFTB ~L It ---- ------- (SEQ ID NO:BB) Also inclu ded in the invention is the farnesyl transferase alpha consensus sequence of SEQ ID NO:89 and the farnesyl transferase beta consensus sequence of SEQ ID
NO:90.
To generate the consensus sequence, the farnesyl transferase alpha and farnesyl transerase beta sequences of the invention were aligned using the program;BioEdit. The homology between the farnesyl transferase alpha (FTA) nucleic acid.sequerices of the invention is shown graphically in the ClustalW analysis shown in Table 106. The homology between the farnesyl transferase beta (FTB) nucleic acid sequences of the invention is shown graphically in the ClustalW analysis shown in Table I OH.
Table lOG ClustalW Nucleic Acid Analysis of FT Alpha ..1 ....I .... I.... I.... I ....I .... I.... I.... I.... I.... I.... I
BnA-12 ------------------------------------------------------------ 1 Con ensueTA ATGGAATCTGGGTCAAT G W ~

.... I.... I....I.... I.... I.... I.... I.... I.... I.... I.... I.... I
BnA-1.2 ----------------------~--.-n--------------------r-}-'{-~------------ 1 Con e sus~A j, =G C~C:~ 649 .,..I.... I.... I .... I.... I.... I.... I.... (.... I.... I-...I.... I
BnA-12 -- ------------------------ = 29 At FT-A AM'fGCCA == 167 PPI-3oy-FTA _MCCA CT TC G = 179 Conaeneus + = = 111 ....1....(....I....I....I....I....I....I....I....~....I....I
BnA 12 89 At-FT-A T 227 PPI-3oy-FTA EICMlCPGCT 239 Conaensus C~ C 167 ... .. .. .. .. .. .. .. .. .. .. ..
=I= =I= =I= =I= =I= =I= =I= =I= =I= =I= =I= =I
BnA-12 C 49 At-FT-A C C 287 PPI-3oy-FTA GT 299 Conseneue 224 ....I....I....I....I....I....I-..-I....I....I....I,...I....I
BnA-12 209 At-FT-A = C 397 PPI-3oy-sTA C 359 wilim- Consensus 283 ---- I--..~....I....I....I--..~....~....I....1....~....(....I
HnA-12 257 At-FT-A 11 395 PPI-Soy-FTA NATGTTCTGTA ,=T 419 Conaensus ------------ ' = = ' ' 331 ....I....I....I....~....I....I....l....l....l....l....E....l BnA-12 317 At-FT-A 455 PPI-Soy-FTA 479 Conaensue 387 ....I....I....I....I....I....I....1....1....1....1....1....1 HnA12 77 At-FT-A 515 PPIOy-FTA T C = 539 Consensus 446 ....I....I....i....~....1....1....1~---I....~....I....I....I
SnA-12 437 At-FT-A C 575 PPI-Soy-FTA C T 599 consensus 505 ....I....~....I....~....I....I-...I....I--..I-...I....I....I
BrW-12 T C 97 At-FTA C 35 MMgtjjqj CTT 659 PPi-SOy-FTA C
Consensus 564 .. ..
. . .=I=..=I= . . =I. .. .I. . . .I. .. . .I. .. . .I= .. =I. . . .i. . . =I
BnA12 C C G 557 AtFTA 695 PPI-3oy-FTA C C 719 Consensus 622 ....I....I....I-...I....I....I....1....1....1....1....1....1 BnA-12 C 617 At-FT-A C 755 PPI-Soy-FTA ACT TC T 779 Conaensua 679 ....I....{....I....I....I....~....i....l....l--..I....I....I
BnA-12 C 677 At-FT-A C 815 PPI-Soy-FTA A-- T C T= 836 Consenaus = = = 734 ....I-...1....1....1....1....1....1....1....1....1--..I....~
HnA-12 737 At-FT-A C 875 PPI-Soy-FTA T TC T AT C CT C 896 Consensus 792 ....I....I.,,,I....I....I....I....1....1....1....1....1....1 BnA-12 797 At-FT-A 935 PPI-Soy-ETA C -- T ITTT T GG CAAC T A 954 Consensus = 850 ....I....I....I....I....~....~....I....I....I....I....I....I
BnA 12 -' -- -------------------------------- 822 At-FT-A T ' G~'}'E~ C AC TG 992 PPI-Soy-FTA TCTTAA~'~CGTT C T 1019 Consensus - --' C 889 .... I....I....I....I....I.... I....I.... I.... I-...I.... I....I
BnA-12 ------------------------------------------------------------ 822 Conse euaTA ~T C~~CT=~'~~~~GACTTGATTATTAGTTTTTACGTAATT 9001052 ....I....~....I....~....I=.-.~....(....I....I....I....I....I
BnA-12 ------------------------------------------------------------ 822 At-FT-A AACTGCTTATTTATGAATCACATGTTCATGTTAACATGTATCAAAACAATCTTGATTTCT 1112 PPI-Soy-FTA ------------------------------------------------------------ 1041 Consensus ------------------------------------------------------------- 900 ....I .... I.... I.... (.... I.... I.
BnA-12 ------------------------------- 822 (SEQ ID NO:6) At-FT-A C 1143 (SEQ ID N0:1) PPI-Soy-FTA ------------------------------- 1041 (SEQ ID N0:31) Consensus ------------------------------- 900 (SEQ ID N0:89) Table 10H ClustalW Nucleic Acid Analysis of FT Beta ... --.I....I....I....(.-..1....1...-.~....~. .- .~. I. I ,..,i:
, .
-PPI-snFTb ------------------------------------------'----------=~'-'-,-''a ----- ------------------------ - - -- - ..',1 ~ez=al:, , -PPI 'Soy-FTB --- --- - - - --PPI-Corn-FTB GGCGGATCCCGACCTACCGAGGCTCACGGTGACGCAGGTGGAGCAGATGAAGGTGGAGGC60'-Consenaus ------------------------------------------------------------ 70 30 ...I....I....I,...I....I..-.I.-..I....I....I....I....I-...I
PPI-BnETb ------------------------------------------------------------ I
eral ------------------------------------------------------------ 1 PPI-Soy-FTB ----------------------------GCCACCATTCCTCGCAACGCCCAAACCCTCAT 32 PPI-Corn-FTB CAGGGTTGGCGACATCTACCGCTCCCTCTTCGGGGCCGCGCCCAACACGAAATCCATCAT 120 Consensus ---------------------------- 1 ....~....I....~....~....I....I-...I....I-...I....I....~....I
PPI-BnFTb ------------------------------------------------------------ 1 ezal - TCAC ATGAAAM CT C T 59 PPI-Soy-FTB GT C C G CTCC C C C C 92 PPI-Corn-FTH GC TGC C T GACGCCT C G T 180 Consenaus 27 .... (.... I _...I .... I .... I---- (.... i.... I -...I ....I ....I ....I
PPI-BnFTb ----------------------------- ----- MENTOTINGMTCOMM 26 eral TC CA CTTCC 119 PPI-Soy-FTB TT GCAMITCCGTTISGW C = C CV 152 PPI-Corn-FTB AC GCCMICATGTTCEAST ~CMTGMMAMCMSMGGGMWj 240 Consensus EIM = 65 ---.~....I-...I....~....I....~....I~...I....~....I....~....I
PPI-Bi1FTb MG T T = C B6 ezal T GC== C 179 PPISoy-FTB T C MtEITMCET 212 PPI-Corn-FTB C = C TC= 300 Conaensua 111 .... I.... I.... I.... I.... I.... I.... I.... I ....I .... I.... I.... I
PPI-BnFTb GAm1' G TST= e~e ACffTmAMM 14 6 eral [EG GCTffr c lit39 ....~....I-...I-...~....~....I....~....I....I....~....~....~
ppI_Bn~ C 206 eral 299 PPI-Soy-FTB G 332 PPI-Corn-FTB ~ I= T 420 Consensus ~ = 211 ....I....~....I....I....~....I....I....I I....I....I....~
PPI-BnFTb = C 266 eral 359 PPI-Soy-FTB C B 392 PPI-Corn-FTB C C C T C T 480 ~ 259 Consensus .... I.... I.... I---- I.... I.... I.... I.... I.... I.... I.... I.... I
PPI-BnETb TG e G T 326 eral T 419 PPI-Soy-FTB 452 PPI-Corn-FTS GT 540 Consensus 311 IZF

....I ....I ....I ....I ....I .... I.... I ....I ....I ....I .... I.... I
PPI-BnFTb CC GC C TflZffMSMMTTB 386 BEE, CC C ~C CT 479 eral PPI-Soy-FTB T = AAT GlFEMBZIMTAU 512 PPI-Corn-FTB MZMCIT GC 600 Consensus a 359 610 620. t.=:: 630640 650 660 ..--~....I.,..~..-._I==.-..L.....I;:='..I._._I..--~-=--~----I----I
PFI-BnFTb GWMC GP c' 446 eral T C 539 BEENWEM
PPI-Soy-FTB = e ae e C Te=G ~ 572 mcammffmm PPI-Corn-FTB AMIAMT T T AT 660 Consensus 411 ....I..-.I....~....I....I....I....I---=~---.~_...I....~....I
PPI-BaFPb C = C== C C GC 506 eral T SAMC c C GT 599 PPI-Soy-FTB C T TG P C C 632 PPI-Corn-FTB T CC GC T =GAAA C 720 Consensus 456 .... I.... 1....I.... I .... I.... I ....I....I ....I ....I ....I ....I
PPI-BnE'Tb G C G 7JMC TC 566 eral G C G C = TCJMW 659 PPI-Soy-FTB CC CG TC TAA TGTEMWMMGM 692 PPI-Corn-FTB C GT GGC TTT T GC = C 7B0 Consensus 501 ....~....~....~....~....~....I....I....~....~....~....~....~
PPI-BnFTb GECM m C G CC CT 626 eral GOGHIC C Cc T 719 PPI-Soy-FTB AMtqW TT C GT TGT C T 752 PPI-Corn-FTB AMTET ~= T C m CAT ICRICAC 840 Consensus 547 .... I.... I.... I.... I .... I.... I.... I....I ....I .... I.... I....I
eralBnFTb GC T TCCAA ~ACGTCT~~AT~CA CATATATCAG 775 PPI-Soy-FTB .. . T TATC C- CAGATG~~~ G C-----AGATTT 805 PPI-Corn-FTB =='= T TGT - CAA---------------------------- 871 Consensus EM-fil im- - 574 ....I....I....I....I....I....~....I....I....I....I....~....I

PPI-BnETb C T C GGA C T IMAZATGAT C
eral C -----C T= TGA CAGTG 829 PPI-soy-FTB T C T C TATC GC T GAACCT GT GCAA 865 PPI-Corn-FTB TT T-CC GTATT~ ---C C= C AGGAT --C=-GCAC 924 Consensus 598 ....I....I....~....i....l....~....~....~....1....~....1....i PPI-HnFTb AT - AAGAMMCjA_MG C= 802 eral AT T T C GAAGAMMMTBAW G CC 889 PPI-Soy-FTB CATGCC GC CACC TCCA CT T 925 PPI-Corn-FTB CTCMA-W AC GT CCTC T GC GT 983 Conaensus ~

. .. .. . .. . .. .. .. .. .. ..
== =I. .I. .I= ==I= =I== =I= .I. =I. =I= =I. =I. .I
PPI-BnFTb ATC CC ATTG A C C C G 862 eral ATC C CCT ATT GA C C C 949 PPI-Hoy-HTB CCT T GAGTG GC AA = C CT C 985 PPI-Corn-FTB GAT A AC CAGAGEA-CCAMTGGCMA C 1043 Consensus 663 ....I....I....I....I....i....l.... l.... l.... I ....i....i.... l PPI-HnFTb CT 92 2 eral FCMM C' 1009 PPI-3oy-B 1045 PPI-Corn-FTB T 1103 Consensus 709 ....I ....I ....I .... I.... I....I.._.I.... I.... I.... I.... I.... I
PPI-BnF1'b OWICSTMCTTEW T C GCTEACEG 982 eral C CTT CT GCTMMCMG 1069 PPI-Soy-ETB T TCj1T T TGC TA 1105 PPI-Corn-FTB VLAABAMTC ITT = C e C AGC = 1163 Consensus 752:1 '.121~=. 422p~ 1230 1240 1250 1260 .j:j ...I......~r:::.i....l....~....1....1....1....~....1 eralBn~ C A CGAGCCC A PA~TGGC~T C 1042 PPI-Boy-FTH Gum GC= C TT SJSMAMA
C~AGC TG GCO 'fmP.CCC~'f~ ~28263 Consensus~H CCAT =TAC GTT GTGC MAMA

1270 1280 1290 1 300~YS 1310 1fl3~A20 ....I....I....I=...~....~....~....~....I....I....~....I....I
eralB~n ~PCTC~f~T~fTCTTCACAACATTGTCATGGATC GTATAATGAAGCTA 1189 PPI-Soy-FTB ------------------------------------------------------------ 1135 PPI-Corn-FTB M1=TTG ~G~C TBC-------------------------------------- 1245 Consensus 797 .... I.... I.... I.... I.... I.... I.... I.... I.... I.... I.... I.... I
PPI-BnFTb CTAGATTT---------------------------------------------------- 1110 oral TCGAGTTCTTCTTTAAAGCAGCATGACCCGTTGTTGCTAATGTATGGGAAACCCCAAACA 1249 PPI-Soy-FTB ------------------------------------------------------------ 1135 PPI-Corn-FTB -------------------------------------- -------------- 1245 Consensus ------------ ------------------------------- 797 ....I ....I ....I .... I.... I ....I ....I ....I .
PPI-BnFTb - --------------------------------- 1110 (SEQ ID N0:8) eral TAAGAGTTTCCGTAGTGTTGTAACTTGTAAGATTTCAAAAG 1290 (SEQ ID NO:731 PPI-Soy-FTB ----------------------------------------- 1135 (SEQ ID NO:34) PPI-Corn-FTB ----------------------------------------- 1245 (SEQ ID NO:37) Consensus ----------------------------------------- 797 (SEQ ID NO:90) Example 5: Vector constructs for Transformation The FTA or FTB sequences have be used to produce constructs suitable for transformation into plants and under the control of appropriate regulatory sequences. The gene sequences were in either the sense orientation for over-expression or the antisense orientation for down-regulation. Portions of these sequences have been used to construct a double-stranded-RNA-inhibition (dsRNAi) construct. A sequence of preferably not less than 21 nt was cloned as an inverse repeat separated by a linker that when expressed results in down-regulation of the target gene. Double antisense (DA) vectors have been created in which a direct repeat of an antisense sequence is separated by a spacer sequence such as GUS. Promoters have been used for constitutive expression such as the 35S CaMV
promoter, the MuA Zea inaize promoter or inducible by specific environmental or cellular cues such as the ABA levels or drought conditions which induce expression of the RD29A
promoter. Alternatively, tissue or organelle specific promoters such as the HIC or CUTI
promoter can be used. Such constructs have been transformed into Arabidopsis thaliana, Brassica, Zea maize, Glyeitfe:max. Other species can be transformed as desired, Each '''species to be tradnsformedjiiYy make use of specif c regulatory sequences as appropriate ' ' ..i .. . ~ 7"
for those particular';species:.T'ransformed plants have be selected and their phenotypic properties analyzed. The tr ansgenic plants were assessed for characteristics such as increased tolerance to drought, altered biomass accumulation, yield, nutritional requirements such as minerals or micro-nutrients, biotic stress such as fungal, bacterial, or other such pathogen infection or attack or any other such physical or biochemical characteristic.

Example 6: Plant Transformation Arabidopsis ihaliana transgenic plants were made by flower dipping method into an Agrobacterium culture. Wild type plants were grown under standard conditions imtil they began flowering. The plant was inverted for 2 min into a solution of Agrobacterium culture. Plants were then bagged for two days to maintain humidity and then uncovered to continue groAvth and seed development. Mature seed was bulk harvested.
Transformed T 1 plants were selected by germination and growth on MS plates containing 50 g/ml kanamycin. Green, kanamycin resistant seedlings were identified after 2 weeks growth and transplanted to soil. Plants were bagged to ensure self fertilization and the T2 seed of each plant harvested separately. During growth of T1 plants leaf samples were harvested, DNA extracted and Southem analysis performed.

T2 seeds were analyzed for KanR segregation. From those lines that showed a 3:1 resistant phenotype surviving T2 plants were grown, bagged during seed set, and T3 seed harvested from each line. T3 seed was again used for KanR segregation analysis and those lines showing 100% Kan R phenotype were selected as homozygous lines. Further analysis was done using T3 seed.
Transgenic Brassica napus plants were produced using Agrobacterium mediated transformation of cotyledon petiole tissue. Seeds were sterilized as follows.
Seeds were wetted with 95% ethanol for a short period of time such as 15 seconds.
Approximately 30 ml of sterilizing solution I was added (70% Javex, 10041 Tween20) and left for io approximately 15 minutes. Solution I was removed and replaced with 30 ml of solution II
(0.25% mecuric chloride, 100 1 Tween20) and incubated for about 10 minutes.
Seeds were rinsed with at least 500 ml double distilled sterile water and stored in a sterile dish.
Seeds were germinated on plates of 1/Z MS medium, pH 5.8, supplemented with 1%
sucrose and 0.7% agar. Fully expanded cotyledons were harvested and placed on Medium I(Murashige minimal organics (MMO), 3% sucrose, 4.5 mg/L benzyl adenine (BA), 0.7%
phytoagar, pH5:8). An-Agrobacterium culture containing the nucleic acid construct of interest was-groiwnifor-~Z days in AB Minimal media. The cotyledon explants were,dipped such that only the cui portion of the petiole is contacted by the Ag'robacterium solutiiin: :
The explants were then embedded in Medium I and maintained for 5 days at 24 C, with 16,8 hr light dark cycles. Explants were transferred to Medium II (Medium 1, 300 mg/L
timentin) for a fiu-ther 7 days and then to Medium III (Medium II, 20 mg/L
kanamycin).
Any root or shoot tissue which had developed at this time was dissected away.
Transfer explants to fresh plates of Medium III after 14 -21 days. When regenerated shoot tissue developed the regenerated tissue was transferred to Medium IV (MMO, 3%
sucrose, 1.0%
phytoagar, 300 mg/L timentin, 20 mg/L 20 mg/L kanamycin). Once healthy shoot tissue developed shoot tissue dissected from any callus tissue was dipped in l OX IBA
and transferred to Medium V (Murashige and Skooge (MS), 3% sucrose, 0.2 mg/L
indole butyric acid (IBA), 0.7% agar, 300 mg/L timentin, 20 mg/L 20 mg/L kanamycin) for rooting. Healthy plantlets were transferred to soil.
Transgenic Glycine max, Zea maize and cotton can be produced using Agrobacterium-based methods which are known to one of skill in the art.
Altematively one can use a particle or non-particle biolistic bombardment transformation method. An example of non-particle biolistic transformation is given in U.S. Patent Application 20010026941. Viable plants are propogated and homozygous lines are generated.
Plants are tested for the presence of drought tolerance, physiological and biochemical phenotypes as described elsewhere.
The following table indentifies the constructs and the species which they have been transformed.
Table 11.
SEQ ID NO: SEQ Species Transformed SEQ IDNO:4 pB1121-35S-anti-AtFTA Arabidopsis thaliana SEQ ID NO:40 pBI121-35S-AtFTA Arabidopsis Brassica thaliana napus SEQ ID NO:41 pBI121-rd29A-anti-AtFTA Arabidopsis Brassica thaliana napus SEQ ID NO:42 pBI121-35S-DA-AtFTA Arabidopsis Brassica thaliana napus SEQ ID NO:43 pB1121-RD29A-DA-AtFTA Arabidopsis Brassica thaliana napus SEQ ID NO:44 MuA-anti-GmFTA Glycine max SEQ ID NO:45 RD29A-anti-GmFTA Glycine max SEQ ID NO:46 MuA-HP-GmFTA-Nos-Term Glycine max SFQ ID NO:47 RD29AP-HP-GmFTA-Nos-Term Glycine inax SEQ ID NO:4$ pBI121-35S-Anti-AtFTB Arabidopsis Brassica thaliana napus SEQ IDNO:49, pBI121-RD29AP-Anti-AtFTB Arabidopsis Brassica thaliana napus SEQ ID NO:50 pBI121-35S-HP-AtFTB Arabidopsis Brassica thaliana napus SEQIDNO:51 pBIl21-RD29AP-HP-AtFTB Arabidopsis Brassica thaliana napus SEQ ID NO:52 pBI I21-35S-AtFTB Arabidopsis thaliana SEQ ID NO: 53 MuA-anti-GmFTB-Nos-Term Glycine max SEQ ID NO:54 RD29AP-anti-GmFTB-Nos-Term Glycine max SEQ 1D NO:55 MuA-HP-GmFTB-Nos-Term Glycine max SEQ ID NO:56 RD29AP-HP-GmFTB-Nos-Term Glycine max SEQ ID NO:57 MuA-anti-Zea maizeFTB-Nos-Term Zea maize SEQ ID NO:58 MuA-HP-Zea maizeFTB-Nos-Tenn Zea maize Non-limiting examples of vector constructs suitable for plant transformation are given in SEQ ID NO: 4, 40-58.

SEQ ID NO:4 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggetattcggctatgaetgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgaegggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctgqacgaa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatgqtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcaegagatttcgattecaccgccgacttctatgaaaggttgggotteggaategttttecgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttceggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg at~ciittaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcagcccaca gatgqttagagaqqcttacqaaqcaggtctcateaaqacgatctacccqaqcaataatctecaq aaatcaa ataccttcccaagaaqgttaaagatgcagtcaaaagattcaggactaact catcaa aacaca a aaa a tatatttctcaagatcagaagtactattccagtatgcracgattcaaggcttgcttcacaaaccaagqcaacit aatagagattggagtctctaaaaaggtagttcccactgaatcaaaggccatggaatcaaagattcaaata a ggacctaacagaactcgccgtaaagactggcgaacagttaatacagagtctettacgactcaa acaagaa gaaaatcttcqtcaacat tqqa cacqacacactt tctactccaaaaatatcaaa atacavtctcaga agaccaaagggcaattgagacttttcaacaaagggtaatatccggaaacctcctc qattccattgcccagc tatctgtcactttattgtgaagatagtggaaaaggaaggtggctcctacaaatcTccatcatt cgataaa g aaaggccatcgttgaagatgcctctgccgacagtaqtcccaaaqatagacccccacccacQaqqaqcatc t ggaaaaagaagacgttccaaccacgtcttcaaagcaaqtqgattqatgtqatatctccact ac taaggga tgacgcacaatcecactatccttcgcaagacccttcctctatataaggaagttcatttcatttggagagaac ac gactctagaggatcctcaaattgctgccactgtaatcttgctcttcctccatgcccaatagttagc tcttataggatctacacgaccaagaatagtacacaccaaattggccaagttagtctctggttcttcattagc tagagctctcactgagtctttatgctcgttggttggtctcagtccatcacatagaagatccaaaagggtgct cagagcgaatccatggaagcaatctgtgcgggatagaacattcaaacagactgaggaaacacttggatcact aatccaggattctttgtcgtctttgtaaaqcgcttttaggtatcgccatgagctctcgtttgcaggattggt taaaatggctttgattgtgtagcttacttcagattctctcatggcttctaggcctcccaacaaaggagattg ggtgatgacataatacctctgattccaggcggaattgttaaagacgtcagcttcaaggagctcgtgacagta atcgagctcatcttcccatcctcctaatgcccgtagtgtccactqcctatgtgaccaagcatgataatgttt gqcatcaagtgaaagtactctacgggtaaattcaagttctctccctgcaacatcaggacccagtttctctgc aacccatcgccgatgatgccacagttggtagttcttagagttatcctcagcaatgcgttcgatgaactcgag ttcttcaaacaagtcgtgattaagggcctcgagtactaggcgcctgaaatgccacactgtgtagttgccgga gtttaagaggagggtttcttccgtgagtcgtagtgcgcgaggagatcgttcgtcggaaaagtaaatcgcacg gaagtaatccatagtctcgcggaactcttccttgtaggcaattcgcaccactggattcggaccatcgtcctg agtcaatgggaccacgtctgaccactccaatcgttggctcagtcgcacggtctcgtcgaaattcatcccctc gaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgat gattatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttat gagatgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgc aaactaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattcactggccgtcgttttac aacgtcgtgactgggaaaaccctggegttacccaacttaatcgccttgcagcacatccccetttcgccagct ggcgtaatagcgaagaggeccgcaccgatcqcccttcccaacagttgcgcagcctgaatggcgccegctcct ttcgctttcttcccttcctttctcgccacgttcgccgqctttccccgtcaagctctaaatcgggggctccct ttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtagt gggecatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttq ttccaaactggaacaacactcaaccctatctcgggctattcttttgatttataagggattttgccgatttcg gaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagg gccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaceccagtacattaaa aacgtecgcaatgtgttattaagttgtctaagegtcaatttgtttacaccacaatatatcatgcca SEQ ID NO:4 is the nucleic acid sequence of pB1121-antisense-FTA vector construct used to transform Arabidopsis plants. Italicized sequences are the right and left border repeats (1-24, 5226-5230). Underlined sequence is the 35S promoter (2515-3318).
Bold sequence is the anti-sense Famesyl transferase alpha sequence (3334-4317).

SEQ ID NO:40 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaagqaqccactcagccgcgggtttctgqagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccgqatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg .gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca - gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaqqca ;--;,gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgt.t.gtcactgaagcggga 25_,;_}agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcacct.tgctcctgccgagaa a .;;~;'gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgc,ccattcgaccaccaa ...,i.,;gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgt.cgatcaggatgatctqgacg aa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc ,c;gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgctttt;ctggattcatcgac ~=tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgecgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattqgtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactqgaaagcqgqcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaat.tgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcagcccaca gatggttaqaqaqqcttac caqcaqqtctcatcaaqacqatctacccqaqcaataatctccaqqaaatcaa ataccttcccaagaagqttaaagatgcagtcaaaaqattcaqqactaactgcatcaaqaacaca a aaa a tatatttctcaagatcagaaqtactattccaqtatqqac attcaaqqcttqcttcacaaaccaaq caaqt aataqagattqgaqtctctaaaaaqqtaqttcccactqaatcaaaqqccatq a tcaaa attcaaataqa ggacctaacagaactcqccgtaaagactgqcgaacaqttcataca aqtctcttacqactcaatqacaaqaa gaaaatcttcgtcaacatggtqgaqcac acacacttqtctactccaaaaatatcaaaqatacagtctcaga agaccaaaqggcaattqaqacttttcaacaaaqqqtaatatccqqaaacctcctcggattccattgcccagc tatctqtcactttattqtqaagataqtq aaaaggaaqqtgqctcctacaaatgccatcattgcgataaagg aaaqqccatcgttgaaqatgcctctqccqacaqtq tcccaaaqatqqacccccacccacqaqqaqcatcqt qqaaaaa aaqacqttccaaccacqtcttcaaaqcaaqtqgattqatqtgatatctccactgacgtaaggga tgacgcacaatcccactatccttcgcaaqacccttcctctatataaggaagttcatttcatttggagagaac ac gactctagaggatccatgaatttcgacgagaccgtgccactgagccaacgattggagtggtcagac gtggtcccattgactcaggacgatggtcegaatccagtggtgccaattgcctacaaggaagagttccgcgag actatggattacttccgtgcgatttacttttcegacgagcgatctcctcgcgaactacgactcacggaagaa accctcctcttaaactceggcaactacacagtgtggcatttcaggcgcctagtactcgaggcccttaatcac gacttgtttgaagaactcgagttoatcgaacgcattgctgaggataaatotaagaactaccaactgtggcat catcggcgatgggttgcagagaaactgggtcctgatgttgcagggagagaacttgaatttacccgtagagta ctttcacttgatgccaaacattatcatgottggtcacataggcagtggacactacgggcattaggaggatgg gaagatgagctcgattactgtcacgagctocttgaagctgacgtctttaacaattccgoctggaatcagagg tattatgtcatcacccaatctcctttgttgggaggcctagaagccatgagagaatctgaagtaagctacaca atcaaagccattttaaccaatcctgcaaacgagagctcatggegatacctaaaagctctttacaaagacgac aaagaatcctggattagtgatccaagtgtttcctcagtctgtttgaatgttctatcccgcacagattgcttc catggattcgctctgagcacccttttggatcttctatgtgatggactgagaccaaccaacgagcataaagac tcagtgagagctctagctaatgaagaaccagagactaacttggccaatttggtgtgtactattcttggtcgt gtagatcctgtaagagctaactattgggcatggaggaagagcaagattacagtggcagcaatttgactcgaa tttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgat tatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgag atgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaa ctaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattcactggccgtcgttttacaac gtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggc gtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgcccgctcctttc gctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctcccttta gggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtagtggg ccatcgccctgatagacggtttttcgccctttgacgttgqagtccacgttctttaatagtggactcttgttc caaactggaacaacactcaaccctatctcgggctattcttttgatttataagggattttgccgatttcggaa ccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggcc '30 aggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccccagtacattaaaaac gtccgcaatgtgttattaagttgtctaagcgtcaatttgtttacaccacaaEatatcctgcca (Underlined Seq: 35S promoter; Bold: AtFTA) SEQ ID NO:41 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa qtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagcaggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctntgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctqtcgctactgattacqgtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcag a cc atagatgcaattcaatcaaactgaaatttctgcaagaatctcaaacacggagatctcaaaqtttgaaagaaa atttatttcttcgactcaaaacaaacttacgaaatttaggtagaacttatatacattatattgtaatttttt gtaacaaaatgtttttattattattatagaattttactggttaaattaaaaatgaatagaaaaqgtgaatta agaggagaqaggagqtaaacattttcttctattttttcatattttcaqgataaattattqtaaaaqtttaca agatttccatttgactagtgtaaatgaggaatattctctagtaagatcattatttcatctacttcttttatc ttctaccagtagaggaataaacaatatttagctcctttgtaaatacaaattaattttccttcttgacatcat tcaattttaattttacgtataaaataaaagatcatacctattagaacgattaaggagaaatacaattcqaat gagaaggatqtgccqtttgttataataaacaqccacacqacgtaaacqtaaaatqaccacatqatqqqccaa tagacatggaccgactactaataatagtaagttacattttagqatggaataaatatcataccgacatcagtt ttgaaagaaaagggaaaaaaaqaaaaaataaataaaagatatactaccqacatgagttccaaaaagcaaaaa aaaagatcaagccgacacagacacgcgtagagagcaaaatgactttgacgtcacaccacgaaaacagacgct tcatacgtgtccctttatctctctcaqtctctctataaacttaqtqagaccctcctctqttttactcacaaa tatgcaaactagaaaacaatcatcaggaataaagggtttgattacttctattggaaagactctagaggatcc tcaaattgctgccactgtaatcttgctcttcctccatgcccaatagttagctcttataggatctacacgacc aagaatagtacacaccaaattggccaagttagtctctggttcttcattagctagagctctcactgagtcttt atgctcgttggttggtctcagtccatcacatagaagatccaaaagggtgctcagagcgaatccatggaagca atctgtgcgggatagaacattcaaacagactgaggaaacacttggatcactaatccaggattctttgtcgtc tttgtaaagcgcttttaggtatcgccatgagctctcgtttgcaggattggttaaaatggctttgattgtgta gcttacttcagattctctcatggcttctaggcctcccaacaaaggagattgggtgatgacataatacctctg attccaggcggaattgttaaagacgtcagcttcaaggagctcgtgacagtaatcgagctcatcttcccatcc tcctaatgcccgtagtgtccactgcctatgtgaccaagcatgataatgtttggcatcaagtgaaagtactct acgggtaaattcaagttctotacctgcaacataaggacccagtttototgcaacccatcgccgatgatgcca cagttggtagttcttagagttatcctcagcaatgcgttcgatgaactcgagttcttcaaacaagtcgtgatt aagggcctcgagtactaggcgcctgaaatgccacactgtgtagttgccggagtttaagaggagggtttcttc cgtgagtcgtagtgcgcgaggagatcgctcgtcggaaaagtaaatcgcacggaagtaatccatagtctcgcg gaactottccttgtaggcaattggcaccactggattcggaccatcgtcctgagtcaatgggaccacgtctga ccactccaatcgttggctcagtggcacggtctcgtcgaaattcatcccctcgaatttccccgatcgttcaaa catttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgtt gaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattag agtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcg cgcggtgtcatctatgttactagatcgggaattcactggccgtcgttttacaacgtcgtgactgggaaaacc ctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggccc gcaccgatcgcccttcccaacagttgcgcagcctgaatggcgcccgctcctttcgctttcttcccttccttt ctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgct ttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctgatagacg gtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactc aaccctatctcgggctattcttttgatttataagggattttgccgatttcggaaccaccatcaaacaggatt ttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatc agctgttgcccgtctcactggtgaaaagaaaaaccaccccagtacattaaaaacgtccgcaatgtgttatta agttgtctaagcgtcaatttgtttacaccacaatatatcctgcca (Underlined Seq: RD29A promoter; Bold: Anti-sense-AtFTA) 5o SEQ ID NO:42 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcqgataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctqcagcccaca gatggttagagaggcttacgcagcaggtctcatcaa acqatctaccc agcaataatctccagaaaatcaa ataccttcccaagaaggttaaagatgcagtcaaaagattca gactaact catcaagaacaca aqaaa a tatatttctcaagatcagaagtactattccagtatggacgattcaaggcttgcttcacaaaccaaggcaagt aatagagattqqagtctctaaaaaqgtaqttcccactqaatcaaaqqccat qaqtcaaaqattcaaataqa ggacctaacagaactcgccgtaaaqactgqcgaacagttcatacagagtctcttac actcaat acaa aa gaaaatcttcgtcaacatqgtggagcacgacaca=cttgtctactccaaaaatatcaaagatacaqtctcaa agaccaaagggcaattgagacttttcaacaaaqggtaata:tccggaaacctcctcqgattccattgcccagc tatctqtcactttattqtqaaqataqtggaaaaqqaaqqtqqctcctacaaatqccatcattqcqataaaqg aaaqgccatcqttqaagatqcctctqccqacaqtq tcccaaa atqqacccccacccacqaqqaqcatcqt qgaaaaaqaaqacqttccaaccacqtcttcaaaAcaaqtqqattgatgtgatatctCCactgacgtaaggga tgacgcacaatcccactatccttcgcaagacccttcctcta,tataag aagttcatttcatttggaqaqaac ac gactctagaggatcctcGCTCTTCCTCCATGCCCAATAGTTAGCTCTTACAGGATCTACACGACCA
AGAATAGTACACACCAAATTGGCCAAGTTAGTCTCTGGTTCTTCATTAGCTAGAGCTCTCACTGAGTCTTTA
TGCTCGTTGGTTGGTCTCAGTCCATCACATAGAAGATCCAAAAGGGTGCTCAGAGCGAATCCATGGAAGCAA
TCTGTGCGGGATAGAACATTCAAACAGACTGAGGAAACACTTGGATCACTAATCCAGGATTCTTTGTCGTCT
TTGTAAAGAGCTTTTAGGTATCGCCATGAGCTCTCGTTTGCAGGATTGGTTAAAATGGCTTTGATTGTGTAG
CTTACTTCAGATTCTCTCATGGCTTCTAGGCCTCCCAACAAAGGAGATTGGGTGATGACATAATACCTCTGA
TTCCAGGCGGAATTGTTAAAGACGTCAGCTTCAAGGAGCTCGTGACAGTAATCGAGCTCATCTTCCCATCCT
CCTAATGCCCGgaggatccccATCTACCCGCTTCGCGTCGGCATCCGGTCAGTGGCAGTGAAGGGCGAACAG
TTCCTGATTAACCACAAACCGTTCTACTTTACTGGCTTTGGTCGTCATGA.AGATGCGGACTTGCGTGGCAAA
GGATTCGATAACGTGCTGATGGTGCACGACCACGCATT.i1ATGGACTGGATTGGGGCCAACTCCTACCGTACC
TCGCATTACCCTTACGCTGAAGAGATGCTCGACTGGGCAGATGAACATGGCATCGTGGTGATTGATGAAACT
GCTGCTGTCGGCTTTTCGCTCTCTTTAGGCATTGGTTTCGAAGCGGGCAACAAGCCGAAAGAACTGTACAGC
GAAGAGGCAGTCAACGGGGAAACTCAGCAAGCGCACTTACAGGCGATTAPAGAGCTGATAGCGCGTGACAAA
AACCACCCAAGCGTGGTGATGTGGAGTATTGCCAACGAACCGGATACCCGTCCGCAAGGTGCACGGGAATAT
TTCGCGCCACTGGCGGAAGCAACGCGTAAACTCGACCCGACGCGTCCGATCACCTGCGTCAATGTAATGTTC
TGCGACGCTCACACCGATACCATCAGCGATCTCTTTGATGTGCTGTGCCTGAACCGTTATTACGGATGGTAT
GTCCAAAGCGGCGATTTGGAAACGGCAGAGAAGGTACTGGAAAAAGAACTTCTGGCCTGGCAGGAGAAACTG
TACACCGACATGTGGAGTGAAGAGTATCAGTGTGCATGGCTGGATATGTATCACCGCGTCTTTGATCGCGTC
AGCGCCGTCGTCGGTGAACAGGTATGGAATTTCGCCGATTTTGCGACCTCGCAAGGCATATTGCGCGTTGGC
GGTAACAAGAAAGGGATCTTCACTCGCGACCGCAAACCGAAGTCGGCGGCTTTTCTGCTGCAAAAACGCTGG
ACTGGCATGAACTTCGGTGAAAAACCGCAGCAGGGAGGCAAACAATGAATCAACAACTCTCCTGGCGCACCA
TCGTCGGCTACAGCCTCGGGAATTGCTACCGAGCTCGCTCTTCCTCCATGCCCAATAGTTAGCTCTTACAGG
ATCTACACGACCAAGAATAGTACACACCAAATTGGCCAAGTTAGTCTCTGGTTCTTCATTAGCTAGAGCTCT
CACTGAGTCTTTATGCTCGTTGGTTGGTCTCAGTCCATCACATAGAAGATCCAAAAGGGTGCTCAGAGCGAA
TCCATGGAAGCAATCTGTGCGGGATAGAACATTCAAACAGACTGAGGAAACACTTGGATCACTAATCCAGGA
TTCTTTGTCGTCTTTGTAAAGAGCTTTTAGGTATCGCCATGAGCTCTCGTTTGCAGGATTGGTTAAAATGGC
TTTGATTGTGTAGCTTACTTCAGATTCTCTCATGGCTTCTAGGCCTCCCAP.CAAAGGAGATTGGGTGATGAC
ATAATACCTCTGATTCCAGGCGGAATTGTTAAAGACGTCAGCTTCAAGGAGCTCGTGACAGTAATCGAGCTC

ATCTTCCCATCCTCCTAATGCCCGctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaag attgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattacgttaagcatgtaataat taacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacatttaata cgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactaga tcgggaattcactggccgtcgttttacaacgtcgtgactgggaaaacactggcgttacccaacttaatcgcc ttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcacgcaccgatcgcccttcccaacagt tgcgcagcctgaatggcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccc cgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaa cttgatttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggag tccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattctttt gatttataagggattttgccgatttcggaaccaccatcaaacaggattttcgcctgctggggcaaaccagcg tggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtga aaagaaaaaccaccccagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaatttqttt acaccacaatatatcctgcca (Underlined Seq: 35S promoter; Bold: AtFTA anti-sense sequence separated by GUS
Seq.) SEQ ID NO:43 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatqcggcgqctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcgcgta:ctcggat.ggaagccggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagcc.gaactgtt,egccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtqacccatggcgatgcctgcttgccgaat,atcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtgqcggaccgctatcaggacatagcgttggctacccgtgatattgatgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaqgttggqcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaqgcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctqtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtqctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttc:cctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactggaaaccgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaqqcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcagggaqcc atagatgcaattcaatcaaactgaaatttctgcaaqaatctcaaacacggagatctcaaagtttgaaaqaaa atttatttcttcqactcaaaacaaacttacqaaatttaggtagaacttatatacattatattgtaatttttt gtaacaaaatgtttttattattattatagaattttactggttaaattaaaaatgaatagaaaaggtgaatta aqaqqagaqaggaggtaaacattttcttctattttttcatattttcaggataaattattgtaaaagtttaca aqatttccatttqactaqtqtaaatqaqqaatattctctaqtaaqatcattatttcatctacttcttttatc ttctaccagtagagqaataaacaatatttaqctcctttgtaaatacaaattaattttccttcttgacatcat tcaattttaattttacgtataaaataaaaqatcatacctattagaacgattaaggagaaatacaattcgaaL
qaqaaqgatgtgccgtttgttataataaacaqccacacgacgtaaacgtaaaatgaccacatgatqqqccaa tagacatqgaccgactactaataatagtaaqttacattttaqqatggaataaatatcataccgacatcaqtt ttgaaaqaaaagggaaaaaaaqaaaaaataaataaaaqatatactaccqacat aqttccaaaaaqcaaaaa aaaagatcaagccgacacagacacgcgtagagagcaaaatgactttgacgtcacaccacgaaaacagacgct tcatacgtgtcectttatctctctcagtctctctataaacttagtgagaccctcctctgttttactcacaaa tatqcaaactagaaaacaatcatcaggaataaagggtttgattacttctattqqaaaggactctagaggatc ctcGCTCTTCCTCCATGCCCAATAGTTAGCTCTTACAGGATCTACACGACCAAGAATAGTACACACCAAATT
GGCCAAGTTAGTCTCTGGTTCTTCATTAGCTAGAGCTCTCACTGAGTCTTTATGCTCGTTGGTTGGTCTCAG
TCCATCACATAGAAGATCCAAAAGGGTGCTCAGAGCGAATCCATGGAAGCAATCTGTGCGGGATAGAACATT
CAAACAGACTGAGGAAACACTTGGATCACTAATCCAGGATTCTTTGTCGTCTTTGTAAAGAGCTTTTAGGTA
TCGCCATGAGCTCTCGTTTGCAGGATTGGTTAAAATGGCTTTGATTGTGTAGCTTACTTCAGATTCTCTCAT
GGCTTCTAGGCCTCCCAACAAAGGAGATTGGGTGATGACATAATACCTCTGATTCCAGGCGGAATTGTTAAA
GACGTCAGCTTCAAGGAGCTCGTGACAGTAATCGAGCTCATCTTCCCATCCTCCTAATGCCCGgaggatccc cATCTACCCGCTTCGCGTCGGCATCCGGTCAGTGGCAGTGAAGGGCGAACAGTTCCTGATTAACCACAAACC
GTTCTACTTTACTGGCTTTGGTCGTCATGAAGATGCGGACTTGCGTGGCAAAGGATTCGATAACGTGCTGAT
GGTGCACGACCACGCATTAATGGACTGGATTGGGGCCAACTCCTACCGTACCTCGCATTACCCTTACGCTGA
AGAGATGCTCGACTGGGCAGATGAACATGGCATCGTGGTGATTGATGAAACTGCTGCTGTCGGCTTTTCGCT
CTCTTTAGGCATTGGTTTCGAAGCGGGCAACAAGCCGAAAGAACTGTACAGCGAAGAGGCAGTCAACGGGGA
AACTCAGCAAGCGCACTTACAGGCGATTAAAGAGCTGATAGCGCGTGACAAAAACCACCCAAGCGTGGTGAT
GTGGAGTATTGCCAACGAACCGGATACCCGTCCGCAAGGTGCACGGGAATATTTCGCGCCACTGGCGGAAGC
AACGCGTAAACTCGACCCGACGCGTCCGATCACCTGCGTCAATGTAATGTTCTGCGACGCTCACACCGATAC
CATCAGCGATCTCTTTGATGTGCTGTGCCTGAACCGTTATTACGGATGGTATGTCCAAAGCGGCGATTTGGA
AACGGCAGAGAAGGTACTGGAAAAAGAACTTCTGGCCTGGCAGGAGAAACTGTACACCGACATGTGGAGTGA
AGAGTATCAGTGTGCATGGCTGGATATGTATCACCGCGTCTTTGATCGCGTCAGCGCCGTCGTCGGTGAACA
GGTATGGAATTTCGCCGATTTTGCGACCTCGCAAGGCATATTGCGCGTTGGCGGTAACAAGAAAGGGATCTT
CACTCGCGACCGCAAACCGAAGTCGGCGGCTTTTCTGCTGCAAAAACGCTGGACTGGCATGAACTTCGGTGA
AAAACCGCAGCAGGGAGGCAAACAATGAATCAACAACTCTCCTGGCGCACCATCGTCGGCTACAGCCTCGGG
AATTGCTACCGAGCTCGCTCTTCCTCCATGCCCAATAGTTAGCTCTTACAGGATCTACACGACCAAGAATAG
TACACACCAAATTGGCCAAGTTAGTCTCTGGTTCTTCATTAGCTAGAGCTCTCACTGAGTCTTTATGCTCGT
TGGTTGGTCTCAGTCCATCACATAGAAGATCCAAAAGGGTGCTCAGAGCGAATCCATGGAAGCAATCTGTGC
GGGATAGAACATTCAAACAGACTGAGGAAACACTTGGATCACTAATCCAGGATTCTTTGTCGTCTTTGTAAA
GAGCTTTTAGGTATCGCCATGAGCTCTCGTTTGCAGGATTGGTTAAAATGGCTTTGATTGTGTAGCTTACTT
CAGATTCTCTCATGGCTTCTAGGCCTCCCAACAAAGGAGATTGGGTGATGACATAATACCTCTGATTCCAGG
CGGAATTGTTAAAGACGTCAGCTTCAAGGAGCTCGTGACAGTAATCGAGCTCATCTTCCCATCCTCCTAATG
CCCGctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtc ttgcgatgattatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgt tatttatgagatgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatat agcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattcactgqccgtc gttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttc gccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcycc cgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggg gctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttc acgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtgg actcttgttccaaactggaacaacactcaaccctatctcgggctattcttttgatttataagggattttgcc gatttcggaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactc tctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccccagta cattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaatttgtttacaccacaatatatcctgcc a (Underlined Seq: RD29A promoter; Bold: AtFTA anti-sense sequence, separated by GUS
Seq.) SEQ ID NO:44 GAATTCAAATTTTTCGCCAGTTCTAAATATCCGGAAACCTCTTGGGATGCCATTGCCCATCTATCTGTAATT
TATTGACGAAATAGACGAAAAGGAAGGTGGCTCCTATAAAGCACATCATTGCGATAACAGAAAGGCCATTGT
TGAAGATACCTCTGCTGACATTGGTCCCCAAGTGGAAGCACCACCCCATGAGGAGCACCGTGGAGTAAGAAG
ACGTTCGAGCCACGTCGAAAAAGCAAGTGTGTTGATGTAGTATCTCCATTGACGTAAGGGATGACGCACAAT
CCAACTATCCATCGCAAGACCATTGCTCTATATAAGAAAGTTAATATCATTTCGAGTGGCCACGCTGAGCTC
AGGAAGTCTGCTCTTGCGCCAAATCCAATAGTTGGTTCTAATTGGATCAACTTGTTTTAGGATAGAACAAAT
ATTTCGTGCTATATTTAAATTTTGTTGTTCCCCTTTCTCATCATCATCTAAATCTTGTTTATCCATATCTGC
GGTCTTTAAGGCGTCAATGGCATCTCTAATGTCTTCATTTGGTTGATAACCAAAGCATATAAGATCTAAAAT
AGTGCTAAGAGCAAACACGTAGTTGCTCTTAGTTCTCAAAATCTTTAAGCATACTGAAGAAACTTGAGGATC
ATTTACCCATGAAGTAGTTTCACCTTTATAAAGTCCTCGTAGATATCTCCACGAGCTTTCATTTTCAGGGTA
GGCTATAATGGCTTCGATGGTGTAAAGCACTTCAGACTCTCTCATAGCTTTTAGGCCCCCCAAGAAAGGAGA
CCTTGTTATGACAAAATATCTCTGATTCCAAGCAGAATTGTTAAAAATGTCTTCTTTAAGTAGTTCTGTGCA

ATAATTAAGTTCATCTTCCCATCCTCCTAGTGTTTGAAGAGCCCACTGTCTATGAGACCATGCATGATAATG
TTTGGCATCAACGGACAGTATCTTTTTGGTGAACTCGAGCTgagctcgaatttccccgatcgttcaaacatt tggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaat tacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtc ccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcg gtgtcatctatgttactagatcgggaattc (Underlined MuA Promoter; Bold: Glycine max anti-FTA; lower case: NOS
terminater Seq.) SEQ ID NO:45 GGAGCCATAGATGCAATTCAATCAAACTGAAATTTCTGCAAGAATCTCAAACACGGAGATCTCAAAGTTTGA
AAGAAAATTTATTTCTTCGACTCAAAACAAACTTACGAAATTTAGGTAGAACTTATATACATTATATTGTAA
TTTTTTGTAACAAAATGTTTTTATTATTATTATAGAATTTTACTGGTTAAATTAAAAATGAATAGAAAAGGT
GAATTAAGAGGAGAGAGGAGGTAAACATTTTCTTCTATTTTTTCATATTTTCAGGATAAATTATTGTAAAAG
TTTACAAGATTTCCATTTGACTAGTGTAAATGAGGAATATTCTCTAGTAAGATCATTATTTCATCTACTTCT
TTTATCTTCTACCAGTAGAGGAATAAACAATATTTAGCTCCTTTGTAAATACAAATTAATTTTCCTTCTTGA
CATCATTCAATTTTAATTTTACGTATAAAATAAAAGATCATACCTATTAGAACGATTAAGGAGAAATACAAT
TCGAATGAGAAGGATGTGCCGTTTGTTATAATAAACAGCCACACGACGTAAACGTAAAATGACCACATGATG
GGCCAATAGACATGGACCGACTACTAATAATAGTAAGTTACATTTTAGGATGGAATAAATATCATACCGACA
TCAGTTTTGAAAGAAAAGGGAAAAAAAGAAAAAATAP.ATAAAAGATATACTACCGACATGAGTTCCAAAAAG
CAAAAAAAAAGATCAAGCCGACACAGACACGCGTAGAGAGCAAAATGACTTTGACGTCACACCACGAAAACA
GACGCTTCATACGTGTCCCTTTATCTCTCTCAGTCTCTCTATAAACTTAGTGAGACCCTCCTCTGTTTTACT
CACAAATATGCAAACTAGAAAACAATCATCAGGAATAAAGGGTTTGATTACTTCTATTGGAAAGAGGAAGTC
TGCTCTTGCGCCAAATCCAATAGTTGGTTCTAATTGGATCAACTTGTTTTAGGATAGAACAAATATTTCGTG
CTATATTTAAATTTTGTTGTTCCCCTTTCTCATCATCATCTAAATCTTGTTTATCCATATCTGCGGTCTTTA
AGGCGTCAATGGCATCTCTAATGTCTTCATTTGGTTGATAACCAAAGCATATAAGATCTAAAATAGTGCTAA
GAGCAAACACGTAGTTGCTCT.TAGTTCTCAAAATCTTTAAGCATACTGAAGAAACTTGAGGATCATTTACCC
ATGAAGTAGTTTCACCTTTATAAAGTCCTCGTAGATATCTCCACGAGCTTTCATTTTCAGGGTAGGCTATAA_:
TGGCTTCGATGGTGTAAAGCACTTCAGACTCTCTCATAGCTTTTAGGCCCCCCAAGAAAGGAGACCTTGTTA.
TGACAAAATATCTCTGATTCCAAGCAGAATTGTTAAAAATGTCTTCTTTAAGTAGTTCTGTGCAATAATTAA, GTTCATCTTCCCATCCTCCTAGTGTTTGAAGAGCCCACTGTCTATGAGACCATGCATGATAATGTTTGGCAT-.'.
.,.
CAACGGACAGTATCTTTTTGGTGAACTCGAGCTgagctcgaatttccccgatcgttcaaacatttggcaata aagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataattt:tgttgaattacqttaa gcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaatt atacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatc tatgttactagatcgggaattc (Underlined RD29A Promoter; Bold: Glycine max anti-Glycine max FTA; lower case:
NOS terminater Seq.) SEQ ID NO:46 GAATTCAAATTTTTCGCCAGTTCTAAATATCCGGAAACCTCTTGGGATGCCATTGCCCATCTATCTGTAATT
TATTGACGAAATAGACGAAAAGL',AAGGTGGCTCCTATAAAGCACATCATTGCGATAACAGAAAGGCCATTGT
TGAAGATACCTCTGCTGACATTGGTCCCCAAGTGGAAGCACCACCCCATGAGGAGCACCGTGGAGTAAGAAG
ACGTTCGAGCCACGTCGAAAAAGCAAGTGTGTTGATGTAGTATCTCCATTGACGTAAGGGATGACGCACAAT
CCAACTATCCATCGCAAGACCATTGCTCTATATAAGAAAGTTAATATCATTTCGAGTGGCCACGCTGAGCTC
AGGAAGTCTGCTCTTGCGCCAAATCCAATAGTTGGTTCTAATTGGATCAACTTGTTTTAGGATAGAACAAAT
ATTTCGTGCTATATTTAAATTTTGTTGTTCCCCTTTCTCATCATCATCTAAATCTTGTTTATCCATATCTGC
GGTCTTTAAGGCGTCAATGGCATCTCTAATGTCTTCATTTGGTTGATAACCAAAGCATATAAGATCTAAAIAT
AGTGCTAAGAGCAAACACGTAGTTGCTCTTAGTTCTCAAAATCTTTAAGCATACTGAAGAAACTTGAGGATC
ATTTACCCATGAAGTAGTTTCACCTTTATAAAGTCCTCGTAGATATCTCCACGAGCTTTCATTTTCAGGGTA
GGCTATAATGGCTTCGATGGTGTAAAGCACTTCAGACTCTCTCATAGCTTTTAGGCCCCCCAAGAAAGGAGA
CCTTGTTATGACAAAATATCTCTGATTCCAAGCAGAATTGTTAAAAATGTCTTCTTTAAGTAGTTCTGTGCA
ATAATTAAGTTCATCTTCCCATCCTCCTAGTGTTTGAAGAGCCCACTGTCTATGAGACCATGCATGATAATG
TTTGGCATCAACGGACAGTATCTTTTTGGTGAACTCGAGCTTAAAGGTGAAACTACTTCATGGGTAAATGAT
CCTCAAGTTTCTTCAGTATGCTTAAAGATTTTGAGAACTAAGAGCAACTACGTGTTTGCTCTTAGCACTATT
TTAGATCTTATATGCTTTGGTTATCAACCAAATGAAGACATTAGAGATGCCATTGACGCCTTAAAGACCGCA
GATATGGATAAACAAGATTTAGATGATGATGAGAAAGGGGAACAACAAAATTTAAATATAGCACGAAATATT
TGTTCTATCCTAAAACAAGTTGATCCAATTAGAACCAACTATTGGATTTGGCGCAAGAGCAGACTTCCTgag ctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttqc gatgattatcatataatttctgttgaattacgttaaqcatgtaataattaacatgtaatgcatgacgttatt tatgagatgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcg cgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattc (Underlined: Glycine max FTA Anti-Sense section; Bold: MuA Promoter; Italics:
Glycine max FTA Sense section; lower case: NOS terminater Seq.) SEQ ID NO:47 ggagccatagatgcaattcaatcaaactgaaatttctgcaagaatctcaaacacggagatctcaaagtttga aagaaaatttatttcttcgactcaaaaaaaacttacgaaatttaggtagaacttatatacattatattgtaa ttttttgtaacaaaatgtttttattattattatagaattttactggttaaattaaaaatgaatagaaaaggt gaattaagaggagagaggaggtaaacattttcttctattttttcatattttcaggataaattattgtaaaag tttacaagatttccatttgactagtgtaaatgaggaatattctctagtaagatcattatttcatctacttct tttatcttctaccagtagaggaataaacaatatttagctcctttgtaaatacaaattaattttccttettga catcatteaattttaattttaegtataaaataaaagatcatacetattagaacgattaaggagaaatacaat tcgaatgagaaggatgtgccgtttgttataataaacagccacacgacgtaaacgtaaaatgaccacatgatg ggccaatagacatggaccgactactaataatagtaagttacattttaggatggaataaatatcataccgaca tcagttttgaaagaaaagggaaaaaaagaaaaaataaataaaagatatactaccgacatgagttccaaaaag caaaaaaaaagatcaagccgacacagaoacgcgtagagagcaaaatgactttgacgtcacaccacgaaaaca gacgettcatacgtgtccctttatctctctcagtctetetataaacttagtgagaccetectctgttttact cacaaatatgcaaactagaaaacaatcatcaggaataaagggtttgattacttctattggaaagAGGAAGTC
TGCTCTTGCGCCAAATCCAATAGTTGGTTCTAATTGGATCAACTTGTTTTAGGATAGAACAAATATTTCGTG
CTATATTTAAATTTTGTTGTTCCCCTTTCTCATCATCATCTAAATCTTGTTTATCCATATCTGCGGTCTTTA
AGGCGTCAATGGCATCTCTAATGTCTTCATTTGGTTGATAACCAAAGCATATAAGATCTAAAATAGTGCTAA
GAGCAAACACGTAGTTGCTCTTAGTTCTCAAAATCTTTAAGCATACTGAAGAAACTTGAGGATCATTTACCC
ATGAAGTAGTTTCACCTTTATAAAGTCCTCGTAGATATCTCCACGAGCTTTCATTTTCAGGGTAGGCTATAA
TGGCTTCGATGGTGTAAAGCACTTCAGACTCTCTCATAGCTTTTAGGCCCCCCAAGAAAGGAGACCTTGTTA
TGACAAAATATCTCTGATTCCAAGCAGAATTGTTAAAAATGTCTTCTTTAAGTAGTTCTGTGCAATAATTAA
GTTCATCTTCCCATCCTCCTAGTGTTTGAAGAGCCCACTGTCTATGAGACCATGCATGATAATGTTTGGCAT
CAACGGACAGTATCTTTTTGGTGAACTCGAGCTTAAAGGTGAAACTACTTCATGGGTAAATGATCCTCAAGT
TTCTTCAGTATGCTTAIIAGATTTTGAGAACTAAGAGCAACTACGTGTTTGCTCTTAGCACTATTI;.TAGATCT._ TATATGC.TT_TGGT.TA'):CAACCAAATGAAGACATTAGAGATGCCATTGACGCCTTAAAGACCGCAGATATGGA' TAAACAAGA:T_TTAGATGATGATGAGAAAGGGGAACAACAAAATTTAAATATAGCACGAAATATTTGT.TCTAT, CCTAAAACAAGTTGATCCAATTAGAACCAACTATTGGATTTGGCGCAAGAGCAGACTTCCTgagctcgaatt tccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgatta tcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagat gggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaact aggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattc (Bold lower case: RD29A Promoter; Underline, Upper case: Antisense GnIFTA;
Upper case: Sense GmFTA; lower case: NOS terminater) SEQ ID NO:48 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacgqccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccqaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctGcccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcagcccaca gatggttagagaggcttacqcagcaggtctcatcaagacqatctacccgaqcaataatctccaggaaatcaa ataccttcccaagaaggttaaagatgcagtcaaaagattcaggactaactgcatcaagaacacagagaaaqa tatatttctcaagatcagaagtactattccagtatggacgattcaaggcttgcttcacaaaccaaggcaagt aatagaqattggagtctctaaaaaggtagttcccactgaatcaaaggccatggagtcaaaqattcaaataga ggacctaacagaactcgccgtaaagactggcgaacagttcatacagagtctcttacgactcaatgacaagaa gaaaatcttcgtcaacatggtggagca qgacacacttgtctactccaaaaatatcaaagatacagtctcaga agaccaaaqqgcaattgaqacttttcaacaaagggtaatatccggaaacctcctcggattccattgcccagc tatctgtcactttattqtqaagatagtqgaaaaggaaqgtggctcctacaaatqccatcattgcqataaaqg aaaggccatcgttgaagatqcctctgccqacagtggtcccaaagatggacccccacccacqaqqaqcatcqt ggaaaaagaagaccttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaaggga tqacgcacaatcccactatccttcqcaagacccttcctctatataaqgaagttcatttcatttggagagaac acqqQqgactctagaggatccgtccggaattcccgggtcgacccacgcgtccgggagattcagcgagataag caattggattatctgatgaaaggcttaaggcagcttggtccgcagttttcttccttagatgctaatcgacct tggctttgttactggattcttcattcaatagctttgcttggggagactgtggatgatgaattagaaagcaat gccattgacttocttggacgctgccagggctctgaaggtggatacggtggtggtcctggccaacttccacat ';cttgcaactacttatgctgcagtgaatgcacttgttactttaggaggtgacaaagccctttcttcaat.taat =agagaaaaaatgtcttgttttttaagacggatgaaggatacaagtggaggtttcaggatgcatga.'Eatggga =~gaaatgga=tgttcgtgcatgctacactgcaatttcggttgcaagcatcctaaatatt'atggatgatgaactc acccagggcctaggagattacatcttgagttgccaaacttatgaaggtggcattggaggggaacctqgctcc gaagctcacggtgggtatacctactgtggtttggctgctatgattttaatcaatgaggtcgaccgtttgaat ttggattcattaatgaattgggctgtacatcgacaaggagtagaaatgggatttcaaggtaggacgaacaaa ttggtcgatggttgctacacattttggcaggcagccccttgtgttctactacaaagattatattcaaccaat gatcatgacgttcatggatcatcacatatatcagaagggacaaatgaagaacatcatgctcatgatgaagat gaccttgaagacagtgatgatgatgatgattctgatgaggacaacgatgaagattcagtgaatggtcacaga atccatcatacatccacctacattaacaggagaatgcaactggtttttgatagcctcggcttgcagagatat gtactcttgtgctctaagatccctgacggtggattcagagacaagccgaggaaaccccgtgacttctaccac acatgttactgcctgagcggcttgtctgtggetcagcacgcttggttaaaagacgaggacactcctcctttg actcgcgacattatgggtggctactcgaatctccttgaacctgttcaacttcttcacaacattgtcatggat cagtataatgaagctatcgagttcttctttaaagcagcatgactcgaatttccccgatcgttcaaacatttg gcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatta cgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtccc gcaattatacatttaatacgcgatagaaaacaaaatatagcgcccaaactaggataaattatcgcgcgcggt gtcatctatgttactagatcgggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcg ttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccg atcgcccttcccaacagttgcgcagcctgaatggcgcccgctcctttcgctttcttcccttcctttctcgcc acgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacgg cacctcgaccccaaaaaacttgatttgggtgatggttcacgtaqtgggccatcgccctgatagacggttttt cgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccct atctcgggctattcttttgatttataagggattttgccgatttcggaaccaccatcaaacaggattttcgcc tgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgt tgcccgtctcactggtgaaaagaaaaaccaccccagtacattaaaaacgtccgcaatgtgttattaagttgt ctaagcqtcaatttgtttacaccacaatatatcctgcca (Underline: 35S promoter; Bold: anti-AtFTB) SEQ ID NO:49 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg z30 ca_ttfc-attaatgcagctggcacgacaggtttcccgactggaaagcgggcag.tgagcgcaacgcaattaatgtg =a!gttagctcactcattaggcaccccaggctttacactttatgcttccggctcgt;atgttgt-gtggaattgtg a:gc.ggataacaatttcacacaqgaaacagctatgaccatgattacgccaagct:tgcatgcctgcag a cc a.t,agatgcaattcaatcaaactgaaatttctgcaagaatctcaaacacqgagatctcaaaqtttqaaa aaa at,ttatttcttcgactcaaaacaaacttacgaaatttaggtagaacttatatacattatarttqtaatttttt gtaacaaaatgtttttattattattataqaattttactggttaaattaaaaatgaatagaaaaggtgaatta aqaqgagagaggaqgtaaacattttcttctattttttcatattttcaqqataaattattgtaaaaqtttaca acatttccatttgactagtgtaaatgaggaatattctctaqtaagatcattatttcatctacttcttttatc ttctaccaytagaggaataaacaatatttagctcctttgtaaatacaaattaattttccttcttgacatcat tcaattttaattttacgtataaaataaaagatcatacctattagaacgattaaggagaaatacaattcgaat gagaaggatqtqccqtttgttataataaacaqccacacqacqtaaacgtaaaatqaccacatqatq ccaa tagacatggaccgactactaataatagtaagttacattttaggatqgaataaatatcataccgacatcaqtt ttgaaagaaaagggaaaaaaagaaaaaataaataaaagatatactaccgacatgagttccaaaaagcaaaaa aaaagatcaagccaacacaqacacqcqtagagagcaaaatqactttqacqtcacaccacqaaaaca ac ct tcatacqtgtccctttatctctctcagtctctctataaacttaqtqa accctcctctqttttactcacaaa tatgcaaactagaaaacaatcatcaqgaataaaqggtttgattacttctattqqaaaggactctagaggatc cgtccggaattcccgggtcgacccacgcgtccgggagattcagcgagataagcaattggattatctgatgaa aggcttaaggcagcttggtccgcagttttcttccttagatgctaatcgaccttggctttgttactggattct tcattcaatagctttgcttggggagactgtggatgatgaattagaaagcaatgccattgacttccttggacg ctgccagggctctgaaggtggatacggtggtggtcctggccaacttccacatcttgcaactacttatgctgc agtgaatgcacttgttactttaggaggtgacaaagccctttcttcaattaatagagaaaaaatgtcttgttt tttaagacggatgaaggatacaagtggaggtttcaggatgcatgatatgggagaaatggatgttcgtgcatg ctacactgcaatttcggttgcaagcatcctaaatattatggatgatgaactcacccagggcctaggagatta catcttgagttgccaaacttatgaaggtggcattggaggggaacctggctccgaagctcacggtgggtatac ctactgtggtttggctgctatgattttaatcaatgaggtcgaccgtttgaatttggattcattaatgaattg ggctgtacatcgacaaggagtagaaatgggatttcaaggtaggacgaacaaattggtcgatggttgctacac attttggcaggcagccccttgtgttctactacaaagattatattcaaccaatgatcatgacgttcatggatc atcacatatatcagaagggacaaatgaagaacatcatgctcatgatgaagatgaccttgaagacagtgatga tgatgatgattctgatgaggacaacgatgaagattcagtgaatggtcacagaatccatcatacatccaccta cattaacaggagaatgcaactggtttttgatagcctcggcttgcagagatatgtactcttgtgctctaagat ccctgacggtggattcagagacaagccgaggaaaccccgtgacttctaccacacatgttactgcctgagcgg cttgtctgtggctcagcacgcttggttaaaagacgaggacactcctcctttgactcgcgacattatgggtgg ctactcgaatctccttgaacctgttcaacttcttcacaacattgtcatggatcagtataatgaagctatcga gttcttctttaaagcagcatgactcgaatttccccgatcgttcaaacatttggcaataaagtttcttaagat tgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattacgttaagcatgtaataatta acatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacatttaatacg cgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatc gggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgcctt gcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttg cgcagcctgaatggcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccg tcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaact tgatttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtc cacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattcttttga tttataagggattttgccgatttcggaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtg gaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaa agaaaaaccaccccagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaatttgtttac accacaatatatcctgcca (Underline: RD29A Promoter; Bold: anti-AtFTB) SEQ ID NO:50 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccc~,gtc,ts;t,gtc.capcaggatgatctggacgaa ~0 gagcatcaggggctcgcgccagccgaactqttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaat,ggc,c,gcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctaccggzgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgartcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc :35 tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt 40 ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc 45 tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg 50 attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcagcccaca gatggttagagaggcttacgcagcagqtctcatcaagacgatctacccgagcaataatctccaggaaatcaa ataccttcccaagaaqgttaaagatgcagtcaaaaqattcaggactaactgcatcaagaacacaga aaaga 55 tatatttctcaagatcagaagtactattccagtatggacgattcaaQgcttcLcttcacaaaccaaggcaagt aatagagattqgagtctctaaaaaqgtaqttcccactgaatcaaa9qccatqqaqtcaaaqattcaaata a ggacctaacagaactcgccgtaaagactggcgaacagttcatacagagtctcttacgactcaataacaaqaa gaaaatcttcgtcaacatggtqgagcacgacacacttgtctactccaaaaatatcaaaaatacagtctcaga agaccaaaqggcaattqagacttttcaacaaagg taatatccggaaacctcctcggattccattgcccagc 60 tatctgtcactttattqtgaagataqtggaaaaggaaqgtqqctcctacaaatqccatcattqcqataaaqg aaaggccatcgttgaagatgcctctgccgacagtqgtcccaaaqatggacccccacccacgaggagcatc t ggaaaaagaagacgttccaaccacgtcttcaaagcaa t qattgatgtgatatctccactqacqtaaq ga tcracgcacaatcccactatccttcgcaagacccttcctctatataagqaaqttcatttcatttggaqagaac ac gactctagaggatcctcCTCCTAGGCCCTGGaTGAGTTCATCATCCATAATATTTAGGATGCTTGC
AACCGAAATTGCAGTGTAGCATGCACGAACATCCATTTCTCCCATATCATGCATCCTGAAACCTCCACTTGT
ATCCTTCATCCGTCT TTTTTCTCTATTAAT TTTGTCACCTCCTAA
AGTAACAAGTGCATTCAC'!'GCAGCATAAGTAGTTGCAAGATGTGGAAGTTGGCCAG= CACCACCGTATCC
ACCTTCAGAGCCCTGGCAGCGTCCAAGGAAGTCAATGGCATTGCTTTCTAATTCATCATCCACAGTCTCCCC
AA,GCAAAGCTATTGI~I~,TGMGAATCCAGTAACAAAGCCAAGGTCGATTAGCATCT TGCGG
ACCAAGCTGCCTTAAGCCTTTCATCAGATAATCCAATTGCTTATCTCGCTGAATCTCCCGGACGCGTGGGTC
CiACCCGGGAP-TTCCGGACgagqatccccATCTACCCGCTTCGCGTCGGCATCCGGTCAGTGGCAGTGAAGGG
CGAACAGTTCCTGATTAACCACAAACCGTTCTACTTTACTGGCTTTGGTCGTCATGAAGATGCGGACTTGCG
TGGCAAAGGATTCGATAACGTGCTGATGGTGCACGACCACGCATTAATGGACTGGATTGGGGCCAACTCCTA
CCGTACCTCGCATTACCCTTACGCTGAAGAGATGCTCGACTGGGCAGATGAACATGGCATCGTGGTGATTGA
TGAAACTGCTGCTGTCGGCTTTTCGCTCTCTTTAGGCATTGGTTTCGAAGCGGGCAACAAGCCGAAAGAACT
GTACAGCGAAGAGGCAGTCAACGGGGAAACTCAGCAAGCGCACTTACAGGCGATTAAAGAGCTGATAGCGCG
TGACAAAAACCACCCAAGCGTGGTGATGTGGAGTATTGCCAACGAACCGGATACCCGTCCGCAAGGTGCACG
GGAATATTTCGCGCCACTGGCGGAAGCAACGCGTAAACTCGACCCGACGCGTCCGATCACCTGCGTCAATGT
AATGTTCTGCGACGCTCACACCGATACCATCAGCGATCTCTTTGATGTGCTGTGCCTGAACCGTTATTACGG
ATGGTATGTCCAAAGCGGCGATTTGGAAACGGCAGAGAAGGTACTGGAAAAAGAACTTCTGGCCTGGCAGGA
GAAACTGTACACCGACATGTGGAGTGAAGAGTATCAGTGTGCATGGCTGGATATGTATCACCGCGTCTTTGA
TCGCGTCAGCGCCGTCGTCGGTGAACAGGTATGGAATTTCGCCGATTTTGCGACCTCGCAAGGCATATTGCG
CGTTGGCGGTAACAAGAAAGGGATCTTCACTCGCGACCGCAAACCGAAGTCGGCGGCTTTTCTGCTGCAAAA
ACGCTGGACTGGCATGAACTTCGGTGAAAAACCGCAGCAGGGAGGCAAACAATGAATCAACAACTCTCCTGG
CGCACCATCGTCGGCTACAGCCTCGGGAATTGCTACCGAGCTCgtaaggaattcccaaQtcgacacaagcclt acgqgaqattcagcqagataaqcaattgqattatctgatgaaaggottaaggoagattggtacgaagttttc ttecttaQatgctaatcgaccttggctttgttactgqattcttcattcaatagctttgcttg~Qagactgt ggatgatgaattaqaaaQcaatgccattqacttccttggacqctgccagqgctctqaaqqtacatacqgt9Q
tggtcatggacaacttccacatcttgcaactacttatgctqcacltgaatqcaottqttactttaggaqatga caaacJCCCtttattcaattaata9agaaaaaatqtcttgttttttaa acvcatvaavaatacaacrtggagg tttcaggatgcatgatatgggagaaatqqatgttcgt9catgctacactgcaatttcggttgcaagcatcct aaatattatqgatqatqaactcacccagggcctaqqaqctCgaattncccccgatcgttcaaacatttggcaa taaagtttcttaagattgaatcctgttgccggtcttgcgat,gat.tatcatataatttctgttgaattacgtt aagcatgtaataattaacatgtaatgcatgacgttatt'tatgagab4ggtttttatgattagagtcccgcaa ttatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtca tctatgttactagatcgggaattcactggccgtcgttttacaacgt=cgtgactgggaaaaccctggcqttac ccaacttaatcgccttgcagcacatccccctttcqccaqctggcgtaatagcgaagaggcccgcaccgatcg cccttcccaacagttgcgcagcctgaatggcgcccgctcctttcgctttcttcccttcctttctcgccacgt tcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacc tcgaccccaaaaaacttgatttgggtgatgqttcacgtagtgqgccatcgccctgatagacggtttttcgcc ctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatct cgggctattcttttgatttataagggattttgccgatttcggaaccaccatcaaacaggattttcgcctgct ggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcc cgtctcactggtgaaaagaaaaaccaccccagtacattaaaaacgtccgcaatgtgttattaagttgtctaa gcgtcaatttgtttacaccacaatatatcctgcca (Underline: 35S promoter; Bold uppercase: antisense AtFTB; Lower case Bold:
sense AtFTB) SEQ ID NO:51 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacqttccataaattcccctcqgtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccgqctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatatt.ttcgtggaqttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatqttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcaggagcc atagatgcaattcaatcaaactgaaatttctctcaaqaatctcaaacacg agatctcaaagtttqaaaqaaa atttatttcttcgactcaaaacaaacttacqaaatttaqqtaqaacttatatacattatatt taatttttt gtaacaaaatgtttttattattattatagaattttactgqttaaattaaaaatgaatagaaaaqgtqaatta agaggagaqaggaqgtaaacattttcttctattttttcatattttcaggataaattattgtaaaaqtttaca aqatttccatttgactagtgtaaatgaggaatattctctaqtaagatcattatttcatctacttcttttatc ttctaccagtagaggaataaacaatatttagctcctttgtaaatacaaattaattttccttcttgacatcat tcaattttaattttacgtataaaataaaagatcatacctat-tagaacgattaagg_aaaaatacaattcgaat gagaaggatgtqccQtttgttataataaacagc4.~cfCacgar.Xtaaacqtaaaat accacat atqggccaa taqacatqqaccqactactaataat~aqtaaqtrtaca:ttttaC(qatqgaataaatatcataccqacatcaqtt ttgaaagaaaagggaaaaaaaaaawaaataaataaaa atlatactacc acatgaqttccaaaaagcaaaaa aaaagatcaagccgacacagacacgcqtagagadcaaaatuacttt acatcacaccaccraaaaca ac ct tcatacgtgtccctttatctctctcaqtctctctiitaaacttaqt aqaCCCtcctctgttttactCBCaaa tatqcaaactaqaaaacaatcatcagqaataaaagqtttgattacttctattqqaaaggactctagaggatc ctCCTCCTAGGCCCTGGGTGAGTTCATCATCCATAATATTTAGGATGCTTGCAACCGAAATTGCAGTGTAGC
ATGCACGAACATCCATTTCTCCCATATCATGCATCCTGAAACCTCCACTTGTATCCTTCATCCGTCTTAAAA
AACAAGACATTTTTTCTCTATTAATTGAAGAAAGGGCTTTGTCACCTCCTAAAGTAACAAGTGCATTCACTG
CAGCATAAGTAGTTGCAAGATGTGGAAGTTGGCCAGGACCACCACCGTATCCACCTTCAGAGCCCTGGCAGC
GTCCAAGGAAGTCAATGGCATTGCTTTCTAATTCATCATCCACAGTCTCCCCAAGCAAI-GCTATTGAATGAA
GAATCCAGTAACAAAGCCAAGGTCGATTAGCATCTAAGGAAGAAAACTGCGGACCAAGCTGCCTTAAGCCTT
TCAiTCAGATAATCCAATTGCTTATCTCGCTGAATCTCCCGGACGCGTOGGTCGACCCGGGAATTCCGGACga ggatccccATCTACCCGCTTCGCGTCGGCATCCGGTCAGTGGCAGTGAAGGGCGAACAGTTCCTGATTAACC
ACAAACCGTTCTACTTTACTGGCTTTGGTCGTCATGAAGATGCGGACTTGCGTGGCAAAGGATTCGATAACG
TGCTGATGGTGCACGACCACGCATTAATGGACTGGATTGGGGCCAACTCCTACCGTACCTCGCATTACCCTT
ACGCTGAAGAGATGCTCGACTGGGCAGATGAACATGGCATCGTGGTGATTGATGAAACTGCTGCTGTCGGCT
TTTCGCTCTCTTTAGGCATTGGTTTCGAAGCGGGCAACAAGCCGAAAGAACTGTACAGCGAAGAGGCAGTCA
ACGGGGAAACTCAGCAAGCGCACTTACAGGCGATTAAAGAGCTGATAGCGCGTGACAAAAACCACCCAAGCG
TGGTGATGTGGAGTATTGCCAACGAACCGGATACCCGTCCGCAAGGTGCACGGGAATATTTCGCGCCACTGG
CGGAAGCAACGCGTAAACTCGACCCGACGCGTCCGATCACCTGCGTCAATGTAATGTTCTGCGACGCTCACA
CCGATACCATCAGCGATCTCTTTGATGTGCTGTGCCTGAACCGTTATTACGGATGGTATGTCCAAAGCGGCG
ATTTGGAAACGGCAGAGAAGGTACTGGAAAAAGAACTTCTGGCCTGGCAGGAGAAACTGTACACCGACATGT
GGAGTGAAGAGTATCAGTGTGCATGGCTGGATATGTATCACCGCGTCTTTGATCGCGTCAGCGCCGTCGTCG
GTGAACAGGTATGGAATTTCGCCGATTTTGCGACCTCGCAAGGCATATTGCGCGTTGGCGGTAACAAGAAAG
GGATCTTCACTCGCGACCGCAAACCGAAGTCGGCGGCTTTTCTGCTGCAAAAACGCTGGACTGGCATGAACT
TCGGTGAAAAACCGCAGCAGGGAGGCAAACAATGAATCAACAACTCTCCTGGCGCACCATCGTCGGCTACAG
CCTCGGGAATTGCTACCGAGCTCgtacggaattoccgggtcgacccacgcgtccggaagattcagagavata acLcaattgqattatctgatgaaagg_cttaagv_cagattggtccgaagttttcttoctta ataotaat ac cttggctttqttactggattattcattCaata CtttgCttCC4 a aatctaaatcatgaatta aaacCa atgaoattgacttccttggacgot Cca actat aa ctvaata catv tcatggccaaattacac atcttgaaactaottatgc ca tgaatQCact ttactttaQ acvtaaaaaagcactttcttcaatta atagagaaaaaatgtattgttttttaagacgaatcaaggatacaactgaag tttcaqqatgcatgatatcc gagaaatggatgttagtgcatgctacaatacaatttc ttqeas catactaaatattatggat atgaaa tcacccagggactacaag_ctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaa tcctgttgccggtcttgcgatgattatcatataatttctgttgaattacgttaagcatgtaataattaacat gtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacatttaatacgcgat agaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatcggga attcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcag cacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgca gcctgaatggcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaa gctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgat ttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacg ttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattcttttgattta taagggattttgccgatttcggaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggacc gcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaa aaaccaccccagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaatttgtttacacca caatatatcctgcca (Underline: RD29A promoter; Bold uppercase: antisense AtFTB; Lower case Bold:
sense AtFTB) SEQ ID NO:52 gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatcatg agcggagaattaagggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgtttggaact gacagaaccgcaacgttgaaggagccactcagccgcgggtttctggagtttaatgagctaagcacatacgtc agaaaccattattgcgcgttcaaaagtcgcctaaggtcactatcagctagcaaatatttcttgtcaaaaatg ctccactgacgttccataaattcccctcggtatccaattagagtctcatattcactctcaatccaaataatc tgcaccggatctggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtg gagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtca gcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggca gcgcggctatcgtggctggccacgacgggcgtt,ccttgcgcagctgtgctcgacgttgtcactgaagcggga agggactggctgctattgggcgaagttig:ccgggg;c.aggatctcctgtcatctcaccttgctcctgccgagaaa gtatccatcatggctgaXgcaatgcggpggctgcatacgcttgatccggctacctgcccattcgaccaccaa gcgaaacatcgcatcgagcgagcacgt.gctcgga=tggaagccggtcttgtcgatcaggatgatctggacgaa gagcatcaggggctcgcgccagcpga:aetgtt,cg,gcaggctcaaggcgcgcatgcccgacggcgatgatctc gtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgac tgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctgaagagctt ggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttc tatcgccttcttgacgagttcttctgagcgggactctggggttcgaaatgaccgaccaagcgacgcccaacc tgccatcacgagatttcgattccaccgccgccttctatgaaaggttgggcttcggaatcgttttccgggacg ccggctggatgatcctccagcgcggggatctcatgctggagttcttcgcccacgggatctctgcggaacagg cggtcgaaggtgccgatatcattacgacagcaacggccgacaagcacaacgccacgatcctgagcgacaata tgatcgggcccggcgtccacatcaacggcgtcggcggcgactgcccaggcaagaccgagatgcaccgcgata tcttgctgcgttcggatattttcgtggagttcccgccacagacccggatgatccccgatcgttcaaacattt ggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaatt acgttaagcatgtaataattaacatgtaatqcatgacgttatttatgagatgggtttttatgattagagtcc cgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcgg tgtcatctatgttactagatcgggcctcctgtcaatgctggcggcggctctggtggtggttctggtggcggc tctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggc tctggttccggtgattttgattatgaaaagatggcaaacgctaataagggggctatgaccgaaaatgccgat gaaaacgcgctacagtctgacgctaaaggcaaacttgattctgtcgctactgattacggtgctgctatcgat ggtttcattggtgacgtttccggccttgctaatggtaatggtgctactggtgattttgctggctctaattcc caaatggctcaagtcggtgacggtgataattcacctttaatgaataatttccgtcaatatttaccttccctc cctcaatcggttgaatgtcgcccttttgtctttggcccaatacgcaaaccgcctctccccgcgcgttggccg attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtg agttagctcactcattaggcaccccagqctttacactttatgcttccggctcgtatgttgtgtqgaattgtg agcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcagcccaca gatggttagaqaggcttacgcagcadqtctcatcaaqacQatctacccga caataatctccagc(aaatcaa ataccttcccaaqaaqgttaaaqatgcagtcaaaaaattcaqgactaactqcatcaaaaacacacaaQaaaqa tatatttctcaagatcagaaqtactattccagtatggacQattcaag cttgcttcacaaaccaagpcaaGt aatagagattggagtctctaaaaagcttaqttcccactgaatcaaaggccatggagtcaaa attcaaataga ggacctaacaqaactcaccgtaaaaactgacgaacagttcatacagaqtctcttacpactcaataacaagaa gaaaatcttcgtcaacatgqtggagcacqacacacttOtctactccaaaaatatcaaa atacagtctca a agaccaaaqaqcaattaagacttttcaacaaaagqtaatatccaqaaacctcctc aattccattqcccaac tatctgtcactttattgtgaagataqtggaaaaggaaggtggctcctacaaatgccatcattgcQataaagg aaaggccatcgttgaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggaacatc t qgaaaaagaagacgttccaaccacqtcttcaaagcaagtqqattgatgtqatatctccact acctaaagga tgacgcacaatcccactatccttcgcaagacccttcctctatataaagaagttcatttcatttaaagagaac ac9~9c ,qgactctagaggatccatgccagtagtaacccgcttgattcgtttgaagtgtgtagggatcagactt gaccggagtggavtcaatcggcgaatctgtcacggaggacacqgggaatcaacgcggcggagagtgatggaa gaqatttaaagcctaaccgtgagtcagcgcgagcaatttctggtggagaacgatgtgttcqggatotataat taattcgacgacagcgacgtttctactcaaaaatacatgatggagattcagcgagataaqcaattggattat ctgatgaaaggcttaaqgcagcttggtcagaagttttcttcattagatgataatcgaccttggatttgttaa tggattcttcattcaatagctttgcttggggagactgtggatgatgaattagaaaqcaatqccattgacttc cttggaagctgacagggctatgaaggtggatacqgtggtggtcctggcaaacttcaaaatattgcaactact tatgatgaagtgaatgcacttgttaatttaggaggtgaca.aagccctttattcaattaatagagaaaaaatg tcttgttttttaagaoggatgaaggataaaagtggagqtttcaggatgcatgatatgggagaaatggatgtt cgtgcatgctacactgcaatttcggttgcaagcatcctaaatattatgqatgatgaactcacccagggccta ggagattacatattgagttgacaaaattatgaaggtggoattggaggggaacctggatccgaagatcacggt gggtataactaatgtggtttggatgctatgattttaataaatgaggtcgaacgtttgaatttggattcatta atgaattgggctgtacatcgacaaggagtagaaatgggatttcaaggtaggacgaacaaattggtcgatggt tgatacacattttggcaggcagccccttgtgttctactacaaagattatattcaaccaatgatcatgacgtt catggataataacatatatcagaagggacaaatgaagaacatcatgatc.atqatgaagatgacattgaagaa agtgatgatgatgatgattatgatgaggacaacgatgaagattoagtgaatggtcacagaatcoatcataca tccacctacattaacaggagaatgcaactggtttttgatagcctcggcttgaagagatatgtactcttgtgc tctaagatccctgacgQtgqattcagagacaagacgaggaaaccccgtgacttctaccacacatgttactgc ctgagcggattgtctgtggctcagoacgcttggttaaaagacgaggaaaatcctcctttgactagogacatt atgggtggctactcgaatctacttgaacctgttoaacttcttcacaacattqtcatggatcagtataatgaa gctatcgagttcttatttaaagcagcatgactcgaatttccccgatcgttcaaacatttggcaataaagttt cttaagattgaatcctgttgccqqtcttgcgatgattatcatataatttctgttgaattacgttaagcatgt aataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacat ttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgtt actagatcgggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacecaactta atcgccttgcagcacatccccctt:tcgcc'a=gctggcgtaatagcgaagaggcccgcaccgatcgcccttccc aacagttgcgcagcctgaatggcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggc tttccccgtcaag,ctctaaatcgggggct=ecctttagggttccgatttagtgctttacggcacctcgacccc aaaaaacttgatttgggtgatg,gktca-cgtagtgggccatcgccctgatagacggtttttcgcactttgacg ttggagtccacgttctttaatagtggact=bttgttccaaactggaacaacactcaaccctatctcgggctat tcttttgatttataagggattttgccgatttcggaaccaccatcaaacaggattttcgcctgctggggcaaa ccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcac tggtgaaaagaaaaaccaccccagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaat ttqtttacaccacaatatatcctgcca (Underlined: 35S promoter; Bold: Sense AtFTB) SEQ ID NO:53 GAATTCAAATTTTTCGCCAGTTCTAAATATCCGGAAACCTCTTGGGATGCCATTGCCCATCTATCTGTAATT
TATTGACGAAATAGACGAAAAGGAAGGTGGCTCCTATAAAGCACATCATTGCGATAACAGAAAGGCCATTGT
TGAAGATACCTCTGCTGACATTGGTCCCCAAGTGGAAGCACCACCCCATGAGGAGCACCGTGGAGTAAGAAG
ACGTTCGAGCCACGTCGARAAAGCAAGTGTGTTGATGTAGTATCTCCATTGACGTAAGGGATGACGCACAAT
CCAACTATCCATCGCAAGACCATTGCTCTATATAAGAAAGTTAATATCATTTCGAGTGGCCACGCTGAGCTC
GTGGTGGAGAATCTGGGTGCTTTGACCAACTATACTGGCACAATGAGAGTCCACTTAAACAGTAACATGTGT
GATAATGATCTCTACGTTTACCCGGTTTGTCTCTCAGTCCACCCTCTTGCTCCTGTGCACATAAGAGAATAT
ATTGCTGTAAAGCAATACTGTGARAAAGTGGTTCTTGTGCTCTCCACTCATTAATAAATTTATAGGCAATAT
TTTTAAAATCAGATGAACTGGATTCACTGGTGCCTTCATGCTCACCACGGCATGTTGCATGACTAGAGGTTC
CATCCAAACTTTCTTTTGCTTCAGATACATAAGATACCGCAAAAATCTGTGATGTCTCTTCCATCTGTTTGT
TGATAATAGAAGATAATCTTTGCAATAGAGCAACAGCACCTCCCTGCCAAAAGGAATAGCATCCATCCACCA
GTTTATTTGTTCTCCCCTGGAATCCACATTCCTTACCTTGTCGGAATACCACCCAGTCAACTAATCGAGGCA
GATCCAAGTGATTAACCTCACCAATCAGAATCATTGTAGCTAATCCACAAAAGGTGTACCCACCATGAGCCT
CAGAACCAGGCTCACCAGCAATGCCACCCTCATATGTTTGACAGCTTATAATGTAGTCTCCAACATTCTGGA
TCAGCTCATCATCCAAAATGTTCAAAACACTTGCAACAGAAATGGCAGTGTAGCAAGCTCGAACATCAATTT
CACCTTCATCATGCATCCTGAATCCACCATTTGGTTGCTTCATCCGCCGCAGAAACCCATACAGTTTATCTC
TATTAATTGATGCCAGGGATTTCTCACCACCCAAAGTAATAAGTGAATTAACAGCAGCATAAGTTGTGGCAA
TATGAGGCATCTGGCCTGGTCCCCCGGCATATCCACCATTCGGATCCTGGCAACGGTTAAGAAAATCGATAG
CGTTATCTTCGAGTTCATCATCGACGGATTCTCCCAACAAAGCAATGGAGTGGAAGATCCAGTAGCAGAGCC
AGGGTCGATTAGCGTCCAAAACGGAAAATGCGGAACTGAGATGGCGAAGGCCTTTGGAGACATACTGCATGT
GATTATCGCGTTGAAGCTCCAACATGAGGGTTTGGGCGTTGCGAGGAATGGTGGCgagctagaatttccccg atcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatat aatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggttt ttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggata aattatcgcgcgcggtgtcatctatgttactagatcgggaattc (Upper Case: MuA Promoter; Underlined: Antisense GmFTB; Lower case: NOS
terminater) SEQ ID NO:54 GGAGCCATAGATGCAATTCAATCAAACTGAAATTTCTGCAAGAATCTCAAACACGGAGATCTCAAAGTTTGA
AAGAAAATTTATTTCTTCGACTCAAAACAAACTTACGAAATTTAGGTAGAACTTATATACATTATATTGTAA
TTTTTTGTAACAAAATGTTTTTATTATTATTATAGAATTTTACTGGTTAAATTARAAATGAATAGAAAAGGT
GAATTAAGAGGAGAGAGGAGGTAAACATTTTCTTCTATTTTTTCATATTTTCAGGATAAATTATTGTAAAAG
TTTACAAGATTTCCATTTGACTAGTGTAAATGAGGAATATTCTCTAGTAAGATCATTATTTCATCTACTTCT
TTTATCTTCTACCAGTAGAGGAATAAACAATATTTAGCTCCTTTGTAAATACAAATTAATTTTCCTTCTTGA
CATCATTCAATTTTAATTTTACGTATAAAATAAAAGATCATACCTATTAGAACGATTAAGGAGAAATACAAT
TCGAATGAGAAGGATGTGCCGTTTGTTATAATAAACAGCCACACGACGTAAACGTAAAATGACCACATGATG
GGCCAATAGACATGGACCGACTACTAATAATAGTAAGTTACATTTTAGGATGGAATAAATATCATACCGACA
TCAGTTTTGAAAGAAAAGGGAAAAAAAGAAAAAATAAATAAAAGATATACTACCGACATGAGTTCCAAAAAG
CAAAAAAAAAGATCAAGCCGACACAGACACGCGTAGAGAGCAAAATGACTTTGACGTCACACCACGAAAACA
GACGCTTCATACGTGTCCCTTTATCTCTCTCAGTCTCTCTATAAACTTAGTGAGACCCTCCTCTGTTTTACT
CACAAATATGCAAACTAGAAAACAATCATCAGGAATAAAGGGTTTGATTACTTCTATTGGAAAGGTGGTGGA
GAATCTGGGTGCTTTGACCAACTATACTGGCACAATGAGAGTCCACTTAAACAGTAACATGTGTGATAATGA
TCTCTACGTTTACCCGGTTTGTCTCTCAGTCCACCCTCTTGCTCCTGTGCACATAAGAGAATATATTGCTGT
AAAGCAATACTGTGAAAAAGTGGTTCTTGTGCTCTCCACTCATTAATAAATTTATAGGCAATATTTTTAAAA
TCAGATGAACTGGATTCACTGGTGCCTTCATGCTCACCACGGCATGTTGCATGACTAGAGGTTCCATCCAAA
CTTTCTTTTGCTTCAGATACATAAGATACCGCAAAAATCTGTGATGTCTCTTCCATCTGTTTGTTGATAATA
GAAGATAATCTTTGCAATAGAGCAACAGCACCTCCCTGCCAAAAGGAATAGCATCCATCCACCAGTTTATTT
GTTCTCCCCTGGAATCCACATTCCTTACCTTGTCGGAATACCACCCAGTCAACTAATCGAGGCAGATCCAAG
.TGATTAACCTCACCAAT.CAGAATCATTGTAGCTAATCCACAAAAGGTGTACCCACCATGAGCCTCAGAACCA~s.
=GGCTCACCAGCAATGGChCCGTCATATGTTTGACAGCTTATAATGTAGTCTCCAACATTCTGGATCAGCTCA:--..TCATCCAAAATGTTCAAAACACTTGCAACAGAAATGGCAGTGTAGCAAGCTCGAACATCAATTTCACCTTCA-.TCATGCATCCTGAA~CCACGATTTGGTTGCTTCATCCGCCGCAGAAACCCATACAGTTTATCTCTATTAA-TT
GATGCCAGGGATTTCTCACCACC-CP.AAGTAATAAGTGAATTAACAGCAGCATAAGTTGTGGCAATATGAGGC
ATCTGGCCTGGTCCCCCGGCATATCCACCATTCGGATCCTGGCAACGGTTAAGAAAATCGATAGCGTTATCT
TCGAGTTCATCATCGACGGATTCTCCCAACAAAGCAATGGAGTGGAAGATCCAGTAGCAGAGCCAGGGTCGA
TTAGCGTCCAAAACGGAAAATGCGGAACTGAGATGGCGAAGGCCTTTGGAGACATACTGCATGTGATTATCG
CGTTGAAGCTCCAACATGAGGGTTTGGGCGTTGCGAGGAATGGTGGCgagctogaatttcCccgatcgttca aacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctg ttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgatt agagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcg cgcgcggtgtcatctatgttactagatcgggaattc (Upper Case: RD29A Promoter; Underlined: Antisense GmFTB; Lower case: NOS) terminater SEQ ID NO:55 GAATTCAAATTTTTCGCCAGTTCTAAATATCCGGAAACCTCTTGGGATGCCATTGCCCATCTATCTGTAATT
TATTGACGAAATAGACGAAAAGGAAGGTGGCTCCTATAAAGCACATCATTGCGATAACAGAAAGGCCATTGT
TGAAGATACCTCTGCTGACATTGGTCCCCAAGTGGAAGCACCACCCCATGAGGAGCACCGTGGAGTAAGAAG
ACGTTCGAGCCACGTCGAAAAAGCAAGTGTGTTGATGTAGTATCTCCATTGACGTAAGGGATGACGCACAAT
CCAACTATCCATCGCAAGACCATTGCTCTATATAAGAAAGTTAATATCATTTCGAGTGGCCACGCTGAGCTC
GTGGTGGAGAATCTGGGTGCTTTGACCAACTATACTGGCACAATGAGAGTCCACTTAAACAGTAACATGTGT
GATAATGATCTCTACGTTTACCCGGTTTGTCTCTCAGTCCACCCTCTTGCTCCTGTGCACATAAGAGAATAT
ATTGCTGTAAAGCAATACTGTGAAAAAGTGGTTCTTGTGCTCTCCACTCATTAATAAATTTATAGGCAATAT
TTTTAAAATCAGATGAACTGGATTCACTGGTGCCTTCATGCTCACCACGGCATGTTGCATGACTAGAGGTTC
CATCCAAACTTTCTTTTGCTTCAGATACATAAGATACCGCAAAAATCTGTGATGTCTCTTCCATCTGTTTGT
TGATAATAGAAGATAATCTTTGCAATAGAGCAACAGCACCTCCCTGCCAAAAGGAATAGCATCCATCCACCA
GTTTATTTGTTCTCCCCTGGAATCCACATTCCTTACCTTGTCGGAATACCACCCAGTCAACTAATCGAGGCA
GATCCAAGTGATTAACCTCACCAATCAGAATCATTGTAGCTAATCCACAAAAGGTGTACCCACCATGAGCCT
CAGAACCAGGCTCACCAGCAATGCCACCCTCATATGTTTGACAGCTTATAATGTAGTCTCCAACATTCTGGA
TCAGCTCATCATCCAAAATGTTCAAAACACTTGCAACAGAAATGGCAGTGTAGCAAGCTCGAACATCAATTT
CACCTTCATCATGCATCCTGAATCCACCATTTGGTTGCTTCATCCGCCGCAGAAACCCATACAGTTTATCTC
TATTAATTGATGCCAGGGATTTCTCACCACCCAAAGTAATAAGTGAATTAACAGCAGCATAAGTTGTGGCAA

TATGAGGCATCTGGCCTGGTCCCCCGGCATATCCACCATTCGGATCCTGGCAACGGTTAAGAAAATCGATAG
CGTTATCTTCGAGTTCATCATCGACGGATTCTCCCAACAAAGCAATGGAGTGGAAGATCCAGTAGCAGAGCC
AGGGTCGATTAGCGTCCAAAACGGAAAATGCGGAACTGAGATGGCGAAGGCCTTTGGAGACATACTGCATGT
GATTATCGCGTTGAAGCTCCAACATGAGGGTTTGGGCGTTGCGAGGAATGGTGGCGGTGAGGTTAATCACTT
GGATCTGCCTCGATTAGTTGACTGGGTGGTATTCCGACAAGGTAAGGAATGTGGATTCCAGGGGAGAACAAA
TAAACTGGTGGATGGATGCTATTCCTTTTGGCAGGGAGGTGCTGTTGCTCTATTGCAAAGATTATCTTCTAT
TATCAACAAACAGATGGAAGAGACATCACAGATTTTTGCGGTATCTTATGTATCTGAAGCAAAAGAAAGTTT
GGATGGAACCTCTAGTCATGCAACATGCCGTGGTGAGCATGAAGGCACCAGTGAATCCAGTTCATCTGATTT
TAAAAATATTGCCTATAAATTTATTAATGAGTGGAGAGC',.ACAAGAACCACTTTTTCACAGTATTGCTTTACA
GCAATATATTCTCTTATGTGCACAGGAGCAAGAGC'sGTGGACTGAGAGACAAACCGGGTAAACGTAGAGATCA
TTATCACACATGTTACTGTTTAAGTGGACTCTCATTGTGCCAGTATAGTTGGTCAAAC',CACCCAGATTCTCC
ACCACgagctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgcc ggtcttgcgatgattatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatg acgttatttatgagatgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaa atatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattc (Upper Case: MuA Promoter; Underlined: Antisense GmFTB; Bold: Sense GmFTB;
Lower case: NOS terminater) SEQ ID NO:56 GGAGCCATAGATGCAATTCAATCAAACTGAAATTTCTGCAAGAATCTCAAACACGGAGATCTCAAAGTTTGA
AAGAAAATTTATTTCTTCGACTCAAAACAAACTTACGAAATTTAGGTAGAACTTATATACATTATATTGTAA
TTTTTTGTAACAAAATGTTTTTATTATTATTATAGAATTTTACTGGTTAAATTAAAAATGAATAGAAAAGGT
GAATTAAGAGGAGAGAGGAGGTAAACATTTTCTTCTATTTTTTCATATTTTCAGGATAAATTATTGTAAAAG
TTTACAAGATTTCCATTTGACTAGTGTAAATGAGGAATATTCTCTAGTAAGATCATTATTTCATCTACTTCT
TTTATCTTCTACCAGTAGAGGAATAAACAATATTTAGCTCCTTTGTAAATACAAATTAATTTTCCTTCTTGA
CATCATTCAATTTTAATTTTACGTATAAAATAAAAGATCATACCTATTAGAACGATTAAGGAGAAATACAAT
TCGAATGAGAAGGATGTGCCGTTTGTTATAATAAACAGCCACACGACGTAAACGTAAAATGACCACATGATG:
GGCCAATAGACATGG$CCGACTACTAATAATAGTAAGTTACATTTTAGGATGGAATAAATATCATAGCGACA--;-- TCAGTTTTGPrAAGAAAAGGGAAAAAAAGAAAAAATAAATAAAAGATATACTACCGACATGAGT.TC6AAAAAG-r 'CAAAAAAAA.AGATGAAGCCGACACAGACACGCGTAGAGAGCAAAATGACTTTGACGTCACACCACCl1AAACA.
GACGCTTCATACGTG.TCCCTTTATCTCTCTCAGTCTCTCTATAAACTTAGTGAGACCCTCCTGTGT,T.TTACT;<<
CACAAATATGCAAACTAGAAAACAATCATCAGGAATAAAGGGTTTGATTACTTCTATTGGAAAGGTGGTGGA,+~-e GAATCTGGGTGCTTTT,ACCAACTATACTGGCACAATGAGAGTCCACTTAAACAGTAACATGTGTGATAATGA-~:.
TCTCTACGTTTACCCGGTTTGTCTCTCAGTCCACCCTCTTGCTCCTGTGCACATAAGAGAATATATT.GCTGT._ AAAGCAATACTGTGAAAAAGTGGTTCTTGTGCTCTCCACTCATTAATAAATTTATAGGCAATATTTTTAAAA
TCAGATGAACTGGATTCACTGGTGCCTTCATGCTCACCACGGCATGTTGCATGACTAGAGGTTCCATCCAAA
CTTTCTTTTGCTTCAGATACATAAGATACCGCAAAAATCTGTGATGTCTCTTCCATCTGTTTGTTGATAATA
GAAGATAATCTTTGCAATAGAGCAACAGCACCTCCCTGCCAAAAGGAATAGCATCCATCCACCAGTTTATTT
GTTCTCCCCTGGAATCCACATTCCTTACCTTGTCGGAATACCACCCAGTCAACTAATCGAGGCAGATCCAAG
TGATTAACCTCACCAATCAGAATCATTGTAGCTAATCCACAAAAGGTGTACCCACCATGAGCCTCAGAACCA
GGCTCACCAGCAATGCCACCCTCATATGTTTGACAGCTTATAATGTAGTCTCCAACATTCTGGATCAGCTCA
TCATCCAAAATGTTCAAAACACTTGCAACAGAAATGGCAGTGTAGCAAGCTCGAACATCAATTTCACCTTCA
TCATGCATCCTGAATCCACCATTTGGTTGCTTCATCCGCCGCAGAAACCCATACAGTTTATCTCTATTAATT
GATGCCAGGGATTTCTCACCACCCAAAGTAATAAGTGAATTAACAGCAGCATAAGTTGTGGCAATATGAGGC
ATCTGGCCTGGTCCCCCGGCATATCCACCATTCGGATCCTGGCAACGGTTAAGAAAATCGATAGCGTTATCT
TCGAGTTCATCATCGACGGATTCTCCCAACAAAGCAATGGAGTGGAAGATCCAGTAGCAGAGCCAGGGTCGA
TTAGCGTCCAAAACGGAAAATGCGGAACTGAGATGGCGAAGGCCTTTGGAGACATACTGCATGTGATTATCG
CGTTGAAGCTCCAACATGAGGGTTTGGGCGTTGCGAGGAATGGTGGCGGTGAGGTTAATCACTTGGATCTGC
CTCGATTAGTTGACTGGGTGGTATTCCGACAAGGTAAGGAPaTGTGGATTCCAGGGGAGAACAAATAAACTGG
TGGATGGATGCTATTCCTTTTGGCAGGGAGGTGCTGTTGCTCTATTGCAAAGATTATCTTCTATTATCAACA
AACAGATGGAAGAGACATCACAGATTTTTGCGGTATCTTATGTATCTGP.P,GCAAAAGAAAGTTTGGATGGAA
CCTCTAGTCATGCAACATGCCGTGGTGAGCATGAAGGCACCAGTGAATCCAGTTCATCTGATTTTAAAAATA
TTGCCTATAAATTTATTAATGAGTGGAGAGCACAAGAACCACTTTTTCACAGTATTGCTTTACAGCAATATA
TTCTCTTATGTGCACAGGAGCAAGAGGGTGGACTGAGAGACAAACCGGGTAAACGTAGAGATCATTATCACA
CATGTTACTGTTTAAGTGGACTCTCATTGTGCCAGTATAGTTGGTCAAA.GCACCCAGATTCTCCACCACgag ctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgc gatgattatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatt tatgagatgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcg cgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaattc (Upper Case: RD29A Promoter; Underlined: Antisense GmFTB; Bold: Sense GmFTB;
Lower case: NOS terminater) SEQ ID NO:57 GAATTCAAATTTTTCGCCAGTTCTAAATATCCGGAAACCTCTTGGGATGCCATTGCCCATCTATCTGTAATT
TATTGACGAAATAGACGAAAAGGAAGGTGGCTCCTATAAAGCACATCATTGCGATAACAGAAAGGCCATTGT
TGAAGATACCTCTGCTGACATTGGTCCCCAAGTGGAAGCACCACCCCATGAGGAGCACCGTGGAGTAAGAAG
ACGTTCGAGCCACGTCGAAAAAGCAAGTGTGTTGATGTAGTATCTCCATTGACGTAAGGGATGACGCACAAT
CCAACTATCCATCGCAAGACCATTGCTCTATATAAGAAAGTTAATATCATTTCGAGTGGCCACGCTGAGCTC
GGATGGATTGGCTCCAGCAAATTAGAGTACGGTCCAAGCACATGCTGAGGTAATGGGCACGAACCAGTATCA
GTCATGGCACTGTACTGGCTAACTGCGAGGCCACTGAGGCAGTAGCATGAATGATAGTGATCTCTGTTCTTT
CCAGGCTTATCCCTCAAGCCTCCCTCTAGTACCTGAGAACAAAGTAGGATGTATTGTTGCAGGGCAATGTTA
TGGAAGAGTGGGCCAATTTGGTTGCTCTGTTGTATAAAATCAAATCCAAACTTCGCATAGTCCACAGCAGAG
GAAGACTTATTCGCGGTGCACCCATATGAACTGGTGCTGCAGGCATCCTCTCCTGATGGCCTTTTGCAGGAA
TACGAGGACCTCAATTGCTTATCAACAATCGTAATTAACTTTTGTGTGAAAGCAATGGCAGCTCCCTGCCAA
AAGGAGTAGCAACCATCAACCAATTTATTAGTTCGTCCTTGAAATCCGCATTCCACTCCTTGACGAAAAGCC
ACCCAGCCAATCAAACTAGGCAAGTCAACTTTCTCTGCCTCATTAAGCAGGATCAAAGCAGCCAATCCACAG
AATGTATACCCACCATGTGCTTCAGCATAAGGCTCCCCAGCAATACCACCTTCATAAGTTTGACATCTTGCT
ATGTAGTCGCCTACACCTTTTGCCAGTTTAAAATCAAGAATATTCACAAGGCTGGCAACCGATATAGCGGTG
TAGGAAGCACGGACATCAATTTCGCCACCATCATGCATTCTGAAAGCACCTGATACATCTTTCATCTGCAGC
ATAAAATTGTACAGGTTGCCCCTATTGATTGATGACAATGCTCTTTCGCTCCCTATTGTCACAAGTGTATTT
ACAGCAGCATAAGTCGTAGCTAGGTGAGGCAACTGTCCAGGTCCACCACTATATCCACCATCTTTATCCTGA
CATCGAGCTAAGAAGTCTATGATATCATTCTCAAGATCATCATCAAGTGCTTCATCCAGCAAAGCAAGTGGA
TGAACCATCCAGTAGCATAGCCAAGGGCGATTGGCATCTAGAACATGAAAGGCTGGTCCCATATGCCTCAGC
CCAGGCGTCAGATACTCGATATGCTGATCACGCCACAGCTCTAGCATGATGGATTTCGTGTTGGGCGCGGCC
CCGAAGAGGGAGCGGTAGATGTCGCCAACCCTGGCCTCCACCTTCATCTGCTCCACCTGCGTCACCGTGAGC
CTCGGTAGGTCGGGATCCGCCgagctcgaatttccccgatcgttcaaacatttggcaataaagtttcttaag attgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattacgttaagcatgtaataat taacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacatttaata cgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactaga tc~qgaattc (Upper Case: MuA Promoter; Underlined: Antisense Zea maiie-FTB; Lower case ~;NOS
terrilinater) . c~::a=~ . . L:-~,.
~ = "-. " = SEQ ID NO:58 GAATTCAA~TTTTTCGCCAGTTCTAAATATCCGGAAACCTCTTGGGATGCCATTGCCCATCTATCTGTAATT
TATTGACGAAATAGACGAAAAGGAAGGTGGCTCCTATAAAGCACATCATTGCGATAACAGAAAGGCCATTGT
TGAAGATACCTCTGCTGACATTGGTCCCCAAGTGGAAGCACCACCCCATGAGGAGCACCGTGGAGTAAGAAG
ACGTTCGAGCCACGTCGAAAAAGCAAGTGTGTTGATGTAGTATCTCCATTGACGTAAGGGATGACGCACAAT
CCAACTATCCATCGCAAGACCATTGCTCTATATAAGAAAGTTAATATCATTTCGAGTGGCCACGCTGAGCTC
GGATGGATTGGCTCCAGCAAATTAGAGTACGGTCCAAGCACATGCTGAGGTAATGGGCACGAACCAGTATCA
GTCATGGCACTGTACTGGCTAACTGCGAGGCCACTGAGGCAGTAGCATGAATGATAGTGATCTCTGTTCTTT
CCAGGCTTATCCCTCAAGCCTCCCTCTAGTACCTGAGAACAAAGTAGGATGTATTGTTGCAGGGCAATGTTA
TGGAAGAGTGGGCCAATTTGGTTGCTCTGTTGTATAAAATCAAATCCAAACTTCGCATAGTCCACAGCAGAG
GAAGACTTATTCGCGGTGCACCCATATGAACTGGTGCTGCAGGCATCCTCTCCTGATGGCCTTTTGCAGGAA
TACGAGGACCTCAATTGCTTATCAACAATCGTAATTAACTTTTGTGTGAAAGCAATGGCAGCTCCCTGCCAA
AAGGAGTAGCAACCATCAACCAATTTATTAGTTCGTCCTTGAAATCCGCATTCCACTCCTTGACGAAAAGCC
ACCCAGCCAATCAAACTAGGCAAGTCAACTTTCTCTGCCTCATTAAGCAGGATCAAAGCAGCCAATCCACAG
AATGTATACCCACCATGTGCTTCAGCATAAGGCTCCCCAGCAATACCACCTTCATAAGTTTGACATCTTGCT
ATGTAGTCGCCTACACCTTTTGCCAGTTTAAAATCAAGAATATTCACAAGGCTGGCAACCGATATAGCGGTG
TAGGAAGCACGGACATCAATTTCGCCACCATCATGCATTCTGAAAGCACCTGATACATCTTTCATCTGCAGC
ATAAAATTGTACAGGTTGCCCCTATTGATTGATGACAATGCTCTTTCGCTCCCTATTGTCACAAGTGTATTT
ACAGCAGCATAAGTCGTAGCTAGGTGAGGCAACTGTCCAGGTCCACCACTATATCCACCATCTTTATCCTGA
CATCGAGCTAAGAAGTCTATGATATCATTCTCAAGATCATCATCAAGTGCTTCATCCAGCAAAGCAAGTGGA
TGAACCATCCAGTAGCATAGCCAAGGGCGATTGGCATCTAGAACATGAAAGGCTGGTCCCATATGCCTCAGC
CCAGGCGTCAGATACTCGATATGCTGATCACGCCACAGCTCTAGCATGATGGATTTCGTGTTGGGCGCGGCC
CCGAAGAGGGAGCGGTAGATGTCGCCAACCCTGGCCTCCACCTTCATCTGCTCCACCTGCGTCACCGTGAGC
CTCGGTAGGTCGGGATCCGCCagatcCGCTGGGGAGCCTTATGCTGAAGCACATGGTGGGTATACATTCTGT
GGATTGGCTGCTTTGATCCTGCTTAATGAGGCAGFIGAAAGTTGACTTGCCTAGTTTGATTGGCTGGGTGGCT
TTTCGTCAAGGAGTGGAATGCGGATTTCAAGGACGAACTAATI-AATTGGTTGATGGTTGCTACTCCTTTTGG

TGCAAAAGGCCATCAGGAGAGGATGCCTGCAGCACCAGTTCATATGGGTGCACCGCGAATAAGTCTTCCTCT
GCTGTGGA,CTATGCGAAGTTTGGATTTGATTTTATACAACAGAGCAACCAAATTGGCCCACTCTTCCATAAC

ATTGCCCTGCAACAATACATCCTACTTTGTTCTCAGGTACTAGAGGGAGGCTTGAGGGATAAGCCTGGAAAG
AACAGAGATCACTATCATTCATGCTACTGCCTCAGTGGCCTCGCAGTTAGCCAGTACAGTGCCATGACTGAT
ACTGGTTCGTGCCCATTACCTCAGCATGTGCTTGGACCGTACTCTAATTTGCTGGAGCCAATCCATCCaagc ttgaatttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcg atgattatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttattt atgagatgggtttttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgc gcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatcggaagctt (Upper Case: MuA Promoter; Underlined: Antisense Zea maize-FTB; Bold: Sense Zea maize-FTB; Lower case: NOS terminater) Example 7: PCR Analysis of Putative Transgenic Plants To verify that the putative transgenic plants carried the gene of interest PCR
analysis was performed. Genomic DNA was isolated and PCR run according to standard protocols and conditions which are known to one of skill in the art. A typical reaction was performed in a volume of 25 l and primer pairs used were dependent on the gene and promoter combination of the particular construct (Table 12).
Putative transgenic Brassica napus plants were screened using the primer combinations detailed in the table below. A representative gel showing PCR
analysis results is shown in Figure 15 which represents transgenic plants carrying the pR.D29A-anti-FTA construct. Transformants were confirmed in an analogous manner for each ,=species and construct transformation done.

Table 12.

Construct Name Primer Name Primer Sequence 5'-3' 35S-antiFTA SE ID N0:10 GCCGACAGTGGTCCCAAAGATGG
SEQ ID NO:1 I AAAGGATCCTCAAATTGCTGCCACTGTAAT
rd29A-antiFTA SEQ ID NO: 12 AAACCCGGGATGAATTTCGACGAGAACGTG
SEQ ID NO:13 GCAAGACCGGCAACAGGA
rd29B-antiFTA SEQ ID NO:14 TTTAAGCTTGACAGAAACAGTCAGCGAGAC
SEQ ID NO:1 I AAACCCGGGATGAATTTCGACGAGAACGTG
35S-DA-FTA SEQ ID N0:15 GCTCTTCCTCCATGCCCA
SEQ ID NO:13 GCAAGACCGGCAACAGGA
rd29A-DA-FTA SEQ ID NO:16 TTTAAGCTTGGAGCCATAGATGCAATTCAA
SEQ ID NO:17 CGGGCATTAGGAGGATGGGAA
35S-I3P-FTB SEQ ID NO:10 GCCGACAGTGGTCCCAAAGATGG
SEQ ID NO:18 GTCCGGAATTCCCGGGTC
rd29A-HP-FTB SEQ ID NO: 16 TTTAAGCTTGGAGCCATAGATGCAATTCAA
SE ID N0:18 GTCCGGAATTCCCGGGTC

Example 8: Southern Analysis Genomic Southem analysis of anti-FTA transgenic Arabidopsis thaliana. The numbers indicate the line numbers. Five micrograms of genomic DNA of T1 plants was digested with HindIII (a unique site in the T-DNA plasmid) and separated in a 0.8%

agarose gel. The NPTII coding region was used as the probe for radio-labeling.
Figure 2 shows a typical result from Southem analysis indicating the presence of the transgene.
Example 9: Northern blots of antisense FTA lines RNA was isolated from developing leaf tissue of five 35S-anti-FTA Arabidopsis thaliana lines (T3 plants). The blot was first probed with P32 labeled, single-stranded sense transcript of FTA (Figure 3 panel A) which detects antisense transcript, then stripped and re-probed with the single-stranded anti-sense transcript of FTA (Figure 3 panel B) that detects the sense transcript. Figure 3 panel C shows the ethidium bromide stained gel for the blot. Approximately 5 g of total RNA was loaded into each lane. Figure 3 indicates the accumulation of the transgene anti-sense transcript and a reduction in the sense transcript in transgenic plants.

Example 10: Western blot antisense FTA lines with Anti-FT-ca, antibodies.
The antibodies produced according to the methods of Example 19 were used to analyze protein extracts from transgenic plants on western blots. Lane 1 of Figure 4 is a -, 15 molecular weight standard, lane 2 purified FTA protein, lanes 3-10 are protein extracts from the ERA1 mutant, wild type, and 4 lines of transgenic Arabidopsis thaliana. Figure 4 illustrates the reduction of detectable FTA protein in traiisgenic lihes.

Example 11: ABA sensitivity of transgenic seedlings.
Seeds of wild type Columbia, eral -2 and T3 homozygous seeds of two antisense, drought tolerant lines of 35S-antisense-FTA were plated on minimum medium (1/2 MS) supplemented with no ABA (A), 0.3 M (B), 0.5 M (C) or 1.0 M ABA (D). Plates were chilled for 3 days in 4 C in the dark, and incubated for 11 days at 22 C
with 24 hour continuous light. eral and transgenic lines were more inhibited in germination than wild type plants. Results are shown in Figure 5.
Twelve day old seedling phenotypes of wild type Columbia, era1-2 and two drought tolerant 35S-antisense-FTA lines (9.9 & 21.2) in minimum medium without (A) or with (B) 1 M ABA. Figure 6 shows the reduced root growth and development of eral and transgenic lines relative to wild type plants. The 35S-antisense-FTA lines show reduced root growth, similar to the eral mutant, in response to ABA.
A transgenic Brassica napus line carrying the 35S-antisense-FTA construct was assessed for ABA sensitivity. At about 10 m an effect was observed showing reduced seedling development and vigor at the cotyledon and first leaf stage, thereby indicating an increased sensitivity to ABA
ABA sensitivity is assessed in all transgenic plants engineered to have reduced or increased FTA or FTB expression or activity by the methods above. The ABA
concentration used varies depending upon the species under examination.
Example 12: Drought Experiment To assess the response of plants under water stress or drought one can expose plants to various situations. For example, the plant can be removed from soil or media and placed on paper towel for a period of time, such as 4 hours, then returned to a plate to continue growth and development. Survival and vigour can be assessed.
Alternatively one can impose a water stress in such a way as to more closely resemble a field situation by withholding water for a period of time, such as up to 6 days.
Plants were grown five plants per four inch pot, in a replicated water-stress experiment.
All pots were filled with equal amounts of homogeneous premixed and wetted soil.
Growth conditions were 16 hour daylight (150-200 mol/m2/s) at 22 C and 70%
relative humidity. On the day that the first flower opeqeddrouglit,treatment was initiated first by equalizing the soil water content in each poi bri'a weight' basis and then cessation of watering. At the end of the water stress treatment plants were typically either harvested for biomass data or re-watered to complete the life cycle and determination of biomass and yield data. Physiological parameters have been assessed under stressed and optimal conditions, for example, shoot and root biomass accumulation, soil water content, water loss alone or as a function of parameters such as biomass, seed yield, and leaf number and leaf area. Figure 7 shows photographs of wild type Columbia (A) and four 35S-antisense-FTA transgenic Arabidopsis thaliana lines (B,C,D,E) after 8 days of water stress treatment. The control plant is visibly stressed and less healthy. This experiment has been conducted on transgenic lines containing vectors described by SEQ ID NO: 4, 40-58.
Drought or water stress tolerance is assessed in all transgenic plants engineered to have reduced or increased FTA or FTB expression or activity by the described methods.
Example 13: Analysis of Water Loss in Arabidopsis thaliana pRD29A-DA-FTA lines 3o during drought stress Plants were grown 5 plants per 4 inch pot and 6 pots per line. When the plants had grown to the first flower stage drought treatment was initiated as described in Example 12.
Pots were weighed daily and at the end of the 7 day drought treatment all plants were harvested for shoot fresh weight and dry weight determinations. Figure 10 shows the water loss on a per shoot dry weight basis at 4 days of water stress treatment. Of the 31 lines examined in this experiment 25 showed lower water loss relative to the Columbia wild type, 22 of which were statistically significant. All lines had been assessed for ABA
sensitivity as described in Example 6, increased ABA sensitivity (ABA) also correlated with a decreased water loss during drought treatment. Those lines determined to have wild type ABA sensitivity (ABAWT) were the same 6 lines (lines 2, 36, 69, 29, 24, 21) that did not show a reduced water loss compared to wild type.
The above experiment was repeated using two ABAs lines, one ABAWr line and a Columbia control. Plants were harvested after 2,4 and 6 days of water stress treatment for shoot dry weight determinations. ABAs transgenics had greater leaf and shoot biomass, greater soil water contents and lower water loss per shoot dry weight when compared to the ABA:wT or Columbia controls. Results were consistent at all three harvest stages.
The data shown in this example was obtained using transgenic plants carrying the pRD29A-DA-FTA construct. The experiment has also been conducted on lines carrying variations of this construct such as 35S-DA-,FTA, .pRD29A-antisense-FTA or 35S-antisense-FTA, with similar water stress t6lerant trends observed. Soil water loss is assessed in all transgenic plants engineereti to have'reduced or increased FTA
or FTB
expression or activity by the described methods.

Example 14: Analysis of Shoot Fresh Weight in Arabidopsis thaliana pRD29A-DA-FTA lines during drought stress Plants were grown 5 plants per 4 inch pot and 8 pots per line. When the plants had grown to the first flower stage drought treatment was initiated as described in Example 12.
Plants were re-watered after 6 days drought treatment and allowed to recover for an additional 6 days. Plants were harvested and shoot fresh weights determined.
Figure I 1 shows the shoot fresh weights. This experiment consisted of 25 transgenic lines, 2 of which are ABAwT (line 2 and 69) and a Columbia wild type control. All 23 ABAs transgenic lines had statistically significant greater shoot fresh weights, on average 44%
greater.
The data shown in this example was obtained using transgenic plants carrying the pRD29A-DA-FTA construct. The experiment has been conducted on lines carrying variations of this construct such as 35S-DA-FTA, pRD29A-antisense-FTA or 35S-antisense-FTA, with similar trends observed.

Example 15: Analysis of seed yield in Arabidopsis thalinna pRD29A-DA-FTA lines during drought stress and under optimal conditions Plants were grown 1 plant per 4 inch pot. When the plants had grown to the first flower stage drought treatment was initiated as described in Example 12.
Plants were re-watered after 6 days drought treatment and allowed to grow to maturity. The optimal group was not exposed to the drought treatment.
Yield analysis indicates that although drought treatment results in decreased yields, the transgenics do not suffer as severely as controls and maintain a productivity advantage (Figure 12) as shown previously in Experiment 14. Comparison of the yields produced by the ABAs transgenics versus the control plants show that a 15% greater yield was obtained under optimal conditions and a 20% increase under drought conditions.
In the drought treatment group 8 of 9 transgenic lines showed greater yield than controls.
Expression of yield of each line obtained under drought treatment as a percentage of its performance under optimum conditions indicates that 8 of 9 ABAs lines outperformed the control line while 4 of 9 out performed the ABAwT controls.
The data shown in this example was obtained using transgenic plants carrying the pRD29A-DA-FTA construct. The experiment has been conducted on lines carrying variations of this construct such as 35S=D'A-FTA, pRD29A-antisense-FTA or 35S-., .. ,=: -, antisense-FTA, with similar trends observed.

Example 16: Analysis of vegetative growth in Arabidopsis thaliana pRD29A-DA-FTA lines under optimum growth conditions Plants were grown 1 plant per 3 inch pot and 8 pots per line. Plants were harvested at three stages and fresh weights determined. Vegetative stage was defined as 14 day old seedlings, bolting stage as the appearance of first flower (19-21 day seedlings) and mid-flowering as 6 days from first flower. At each of the above stages respectively 7, 8 and 10 of the 10 ABAS transgenic lines tested showed statistically greater shoot fresh weight biomass than the control plants (Figure 13). One Columbia line and an ABAwT
(line 2) line were used as the control group. Additionally, there was a statistically significant trend for the transgenic lines to have an increased number of rosette leaves.
The data shown in this example was obtained using transgenic plants carrying the pRD29A-DA-FTA construct. The experiment has been conducted on lines carrying variations of this construct such as 35S-DA-FTA, pRD29A-antisense-FTA or 35S-antisense-FTA, with similar trends observed.

Example 17: Analysis of Arabidopsis thaliana pRD29A-DA-FTA lines under drought treatment and biotic stress Plants were grown 1 plant per 4 inch pot and 8 pots. When the plants had grown to the first flower stage drought treatment was initiated as described in Example 12. Plants were re-watered after 7 days drought treatment and allowed to grow to maturity. One Columbian control line (col) and one transgenic line were evaluated. Analysis of seed yield indicated less than normal yields, approximately 12% of expected optimal yield. It was determined that the soil used contained a fungal contaminant that was responsible for the reduced yields as the biotic stress could be negated by sterilization of the soil prior to use. This biotic stress was less severe in the transgenic line compared to the control which had a yield 22% of the transgenic line. In the drought treatment groups of plants the biotic stress was reduced however, transgenics outperformed controls by nearly 4.5 fold (Figure 14).
The data shown in this example was obtained using transgenic plants carrying the pRD29A-DA-FTA construct. The experiment has been conducted on lines carrying variations of this construct such as 35S-DA-FTA, pRD29A-antisense-FTA or 35S-antisense-FTA, with similar trends observed.
- t.
. . ' . ; : y..
Example 18: Analysis of'Arabidopsis thaliana pRD29A-DA-FTA lines-for Stomatal number The number of stomata on both the upper and lower surface of the leaf was assessed on two transgenic lines and a wild type Columbia control. Nail polish imprints were made of both upper and lower leaf surfaces of the fifth leaf, plants were at the early flowering stage. No differences in stoma density were observed.
The data shown in this example was obtained using transgenic plants carrying the pRD29A-DA-FTA construct. The experiment has been conducted on lines carrying variations of this construct such as 35S-DA-FTA, pRD29A-antisense-FTA or 35S-antisense-FTA, with similar trends observed.

Example 19: Production of polyclonal antibodies against FT-A and FT-B
The isolated Arabidopsis thaliana FT sequences were cloned into the E. coli 3o expression vector derived from pET11D. To generate the Histidine tagged FT-B construct the Arabidopsis thaliana FT-B clone and pET vector were digested with BamHI
and ligated together. Restriction digests were performed to verify the orientation of the insert. To produce the FT-A construct the Arabidopsis thaliana FT-A clone and pET vector were digested with BamHI and EcoRI and subsequently ligated together. The resultant plasmids directed the expression of fusion proteins containing 6 consecutive histidine residues at the N-termini of AtFTA and AtFTB. The fusion proteins were expressed in the bacterial host BL21(DE3) and purified using Hi-Trap chelating chromatography as described by the manufacturer (Pharmacia). The soluble fraction of the crude bacterial extract containing the His-FT fusion proteins were loaded to a Hi-Trap column (1.5 cm x 2.0 cm), and the proteins eluted with a 200 ml linear gradient of 0.0 to 0.3 M imidazole in column buffer (25 mM Tris-HCI, pH 7.5, 1 mM DTT). Fractions containing purified His-FT proteins were pooled, desalted and concentrated with a Centriprep-30 concentrator (Amicon).
All purification steps were carried out at 4 C. To generate an antibody, the purified fusion protein was further separated by SDS/PAGE and the Coomassie stained band corresponding to the fusion protein was excised. Protein was eluted from the gel slice by electroelution and then emulsified in Ribi adjuvant (Ribi Immunochem) to a final volume of I ml. His-AtFTA or His-AtFTB (250 g) were injected into a 3 kg New Zealand rabbit on day 1 and booster injections given on day 21 and day 35 with 200 g of the protein.
High-titer antisera were obtained one week after the fmal injection. These antibodies were used in the western analysis of example 10, Figure 4.

Example 20: Screening for related genes The transgenic.plants of the invention can be used to identify genes which interact with the genes of the present invention. One can make use of the transgenic plants,of the invention to screen for related genes, for example, suppressors, enhancers or modulators of gene expression or activity can be identified through genetic screening protocols. By way of example, a mutant library can be generated using the transgenic plants of the invention as the genetic background. Various methods are available and would be known to one of skill in the art. For example, chemical mutagens such as EMS can be used to induce point mutations in the genome, fast neutron irradiation of seeds can result in deletion mutations, T-DNA libraries can be produced that inactivate genes through insertional effects or activation tagging methods can be used to produce libraries with up-regulated genes.
Analysis of these types of libraries can identify genes which rescue or modulate the phenotypes observed in the transgenic plants of the present invention.

Claims (23)

1. An isolated polypeptide comprising a mature form of an amino an amino acid sequence consisting of SEQ ID NO:5 or SEQ ID NO:7.
2. An isolated polypeptide comprising an amino acid sequence of SEQ ID NO:5 or SEQ ID NO:7.
3. An isolated polypeptide comprising an amino acid sequence which is at least 85%
identical to an amino acid sequence consisting SEQ ID NO:5 or SEQ ID NO:7.
4. The polypeptide of claim 3, wherein said polypeptide has farnesyl transferase activity.
5. An isolated polypeptide, wherein the polypeptide comprises an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence consisting of SEQ ID NO:5 or SEQ ID NO:7.
6. The polypeptide of claim 5, wherein said polypeptide is naturally occurring.
7. An isolated nucleic acid molecule comprising a nucleic acid sequence consisting of SEQ ID NO:1 or SEQ ID NO:6.
8. The nucleic acid molecule of claim 7, wherein the nucleic acid molecule is naturally occurring.
9. An isolated nucleic acid molecule encoding the mature form of a polypeptide having an amino acid sequence consisting of SEQ ID NO:5 or SEQ ID NO:7.
10. An isolated nucleic acid molecule, wherein said nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence consisting of SEQ ID
NO:1 or SEQ ID NO:6.
11. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 90% identical to the nucleotide sequence consisting of SEQ ID NO:1 or SEQ
ID NO:6.
12. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO: 2, 3 and 29.
13. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 90% identical to the nucleotide sequence selected from the group consisting of SEQ ID NO:2, 3, and 29.
14. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:4, 40-47.
15. A vector comprising the nucleic acid molecule of any one of claims 7-14.
16. The vector of claim 15, further comprising a promoter operably linked to said nucleic acid molecule.
17. A plant cell comprising the vector of claim 15 or 16.
18. An antibody that immunospecifically binds to the polypeptide of any one of claims 1-6.
19. The antibody of claim 18, wherein the antibody is a monoclonal antibody.
20. The antibody of claim 18, wherein the antibody is a polyclonal antibody.
21. A method of identifying an agent that binds to the polypeptide of any one of claims 1-6, the method comprising:

(a) introducing said polypeptide to said agent; and (b) determining whether said agent binds to said polypeptide.
22. The method of claim 21, wherein the agent is a farnesyl transferase inhibitor.
23. A method for identifying farnesyl transferase modulator, the method comprising:
(a) providing a cell expressing the polypeptide of any one of claims 1-6;

(b) contacting the cell with a candidate substance; and (c) determining whether the substance alters farnesyl transferase activity;
whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition in the absence of the substance, the substance is identified as a farnesyl transferase modulator.
CA002616769A 2001-05-31 2002-05-31 Compositions and methods of increasing stress tolerance in plants Abandoned CA2616769A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29476601P 2001-05-31 2001-05-31
US60/294,766 2001-05-31
US34890901P 2001-10-22 2001-10-22
US60/348,909 2001-10-22
CA002448318A CA2448318C (en) 2001-05-31 2002-05-31 Compositions and methods of increasing stress tolerance in plants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002448318A Division CA2448318C (en) 2001-05-31 2002-05-31 Compositions and methods of increasing stress tolerance in plants

Publications (1)

Publication Number Publication Date
CA2616769A1 true CA2616769A1 (en) 2002-12-05

Family

ID=39277262

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002616769A Abandoned CA2616769A1 (en) 2001-05-31 2002-05-31 Compositions and methods of increasing stress tolerance in plants

Country Status (1)

Country Link
CA (1) CA2616769A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656125A (en) * 2019-09-23 2020-01-07 四川育良生物科技有限公司 Genetic transformation method of drought-resistant corn
CN113046371A (en) * 2021-03-22 2021-06-29 云南中烟工业有限责任公司 Tobacco peroxidase related gene and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656125A (en) * 2019-09-23 2020-01-07 四川育良生物科技有限公司 Genetic transformation method of drought-resistant corn
CN113046371A (en) * 2021-03-22 2021-06-29 云南中烟工业有限责任公司 Tobacco peroxidase related gene and application thereof

Similar Documents

Publication Publication Date Title
US8030470B2 (en) Isolated nucleic acids encoding farnesyltransferase polypeptides
AU2003268216B2 (en) Stress tolerance and delayed senescence in plants
AU2002344201A1 (en) Compositions and methods of increasing stress tolerance in plants
AU2002334300B2 (en) Caax prenyl protease nucleic acids and polypeptides and methods of use thereof
AU2002334300A1 (en) CaaX prenyl protease nucleic acids and polypeptides and methods of use thereof
CA2616769A1 (en) Compositions and methods of increasing stress tolerance in plants
US7951991B2 (en) Polynucleotides encoding plant prenyl proteases
WO2001053501A2 (en) Glutathione-s-transferase nucleic acids and polypeptides and methods of use thereof
US20060143726A1 (en) Hydroxypyruvate reductase promoter elements and methods of use thereof in plants
US20050289669A1 (en) TTG3 deficient plants, nucleic acids, polypeptides and methods of use thereof
AU2012216386A1 (en) Compositions and Methods of Increasing Stress Tolerance in Plants
BRPI0210911B1 (en) METHOD OF PRODUCING A TRANSGENIC PLANT, AND METHOD TO IDENTIFY A FARNESIL TRANSFERASE INTERACTION GENE

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead