CA2594185C - Solid dosage forms comprising a substituted benzimidazole derivative and a buffer - Google Patents
Solid dosage forms comprising a substituted benzimidazole derivative and a buffer Download PDFInfo
- Publication number
- CA2594185C CA2594185C CA2594185A CA2594185A CA2594185C CA 2594185 C CA2594185 C CA 2594185C CA 2594185 A CA2594185 A CA 2594185A CA 2594185 A CA2594185 A CA 2594185A CA 2594185 C CA2594185 C CA 2594185C
- Authority
- CA
- Canada
- Prior art keywords
- omeprazole
- pharmaceutical composition
- patients
- proton pump
- gastric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000872 buffer Chemical class 0.000 title description 12
- 239000007909 solid dosage form Substances 0.000 title description 11
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 title 1
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 31
- 239000006172 buffering agent Substances 0.000 claims abstract description 28
- 210000004211 gastric acid Anatomy 0.000 claims abstract description 12
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 279
- 229960000381 omeprazole Drugs 0.000 claims description 273
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 172
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 87
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 86
- 239000000203 mixture Substances 0.000 claims description 65
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 58
- 229960003174 lansoprazole Drugs 0.000 claims description 55
- 229940126409 proton pump inhibitor Drugs 0.000 claims description 51
- 239000000612 proton pump inhibitor Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 42
- 239000002775 capsule Substances 0.000 claims description 31
- 208000000718 duodenal ulcer Diseases 0.000 claims description 31
- 239000002253 acid Substances 0.000 claims description 30
- 210000001711 oxyntic cell Anatomy 0.000 claims description 29
- 238000011282 treatment Methods 0.000 claims description 28
- 239000012190 activator Substances 0.000 claims description 21
- 208000021302 gastroesophageal reflux disease Diseases 0.000 claims description 21
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 claims description 14
- 229960005019 pantoprazole Drugs 0.000 claims description 14
- 230000015556 catabolic process Effects 0.000 claims description 12
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 claims description 12
- 229920002785 Croscarmellose sodium Polymers 0.000 claims description 11
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 11
- 229960001681 croscarmellose sodium Drugs 0.000 claims description 11
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- -1 dontoprazole Chemical compound 0.000 claims description 11
- 238000006731 degradation reaction Methods 0.000 claims description 10
- 150000001556 benzimidazoles Chemical class 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229960004157 rabeprazole Drugs 0.000 claims description 9
- 239000002552 dosage form Substances 0.000 claims description 8
- 239000007884 disintegrant Substances 0.000 claims description 6
- 159000000011 group IA salts Chemical class 0.000 claims description 5
- 201000010099 disease Diseases 0.000 claims description 4
- 208000035475 disorder Diseases 0.000 claims description 4
- 230000001575 pathological effect Effects 0.000 claims description 4
- 206010063655 Erosive oesophagitis Diseases 0.000 claims description 3
- 208000007107 Stomach Ulcer Diseases 0.000 claims description 3
- 201000008629 Zollinger-Ellison syndrome Diseases 0.000 claims description 3
- KWORUUGOSLYAGD-YPPDDXJESA-N esomeprazole magnesium Chemical group [Mg+2].C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C.C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C KWORUUGOSLYAGD-YPPDDXJESA-N 0.000 claims description 3
- 201000000052 gastrinoma Diseases 0.000 claims description 3
- 229960003117 omeprazole magnesium Drugs 0.000 claims description 3
- 238000007580 dry-mixing Methods 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- 201000005917 gastric ulcer Diseases 0.000 claims 1
- 239000000243 solution Substances 0.000 description 115
- 239000003826 tablet Substances 0.000 description 82
- 230000002496 gastric effect Effects 0.000 description 80
- 239000003814 drug Substances 0.000 description 54
- 238000002560 therapeutic procedure Methods 0.000 description 52
- 229940079593 drug Drugs 0.000 description 49
- 239000000725 suspension Substances 0.000 description 49
- 238000011321 prophylaxis Methods 0.000 description 43
- 230000035882 stress Effects 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 40
- 230000000694 effects Effects 0.000 description 36
- 206010035664 Pneumonia Diseases 0.000 description 35
- 238000009472 formulation Methods 0.000 description 32
- 239000002585 base Substances 0.000 description 29
- 206010042220 Stress ulcer Diseases 0.000 description 28
- 208000032843 Hemorrhage Diseases 0.000 description 27
- 239000000843 powder Substances 0.000 description 26
- 229960004291 sucralfate Drugs 0.000 description 26
- MNQYNQBOVCBZIQ-JQOFMKNESA-A sucralfate Chemical compound O[Al](O)OS(=O)(=O)O[C@@H]1[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](COS(=O)(=O)O[Al](O)O)O[C@H]1O[C@@]1(COS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)O1 MNQYNQBOVCBZIQ-JQOFMKNESA-A 0.000 description 26
- 230000000740 bleeding effect Effects 0.000 description 25
- 238000002360 preparation method Methods 0.000 description 25
- 206010046274 Upper gastrointestinal haemorrhage Diseases 0.000 description 24
- 229940069428 antacid Drugs 0.000 description 23
- 239000003159 antacid agent Substances 0.000 description 23
- AQIXAKUUQRKLND-UHFFFAOYSA-N cimetidine Chemical compound N#C/N=C(/NC)NCCSCC=1N=CNC=1C AQIXAKUUQRKLND-UHFFFAOYSA-N 0.000 description 23
- 229960001380 cimetidine Drugs 0.000 description 22
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 21
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 21
- 238000010992 reflux Methods 0.000 description 21
- 229940122957 Histamine H2 receptor antagonist Drugs 0.000 description 20
- 239000004615 ingredient Substances 0.000 description 20
- 230000002411 adverse Effects 0.000 description 19
- 230000006378 damage Effects 0.000 description 18
- 238000001802 infusion Methods 0.000 description 18
- 244000299461 Theobroma cacao Species 0.000 description 17
- 229920000333 poly(propyleneimine) Polymers 0.000 description 17
- 208000028399 Critical Illness Diseases 0.000 description 16
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000008187 granular material Substances 0.000 description 16
- 229960000620 ranitidine Drugs 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 239000008188 pellet Substances 0.000 description 13
- 150000003839 salts Chemical group 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 238000001990 intravenous administration Methods 0.000 description 12
- 230000000144 pharmacologic effect Effects 0.000 description 12
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 description 12
- 210000002784 stomach Anatomy 0.000 description 12
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 11
- 239000001736 Calcium glycerylphosphate Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229940095618 calcium glycerophosphate Drugs 0.000 description 11
- UHHRFSOMMCWGSO-UHFFFAOYSA-L calcium glycerophosphate Chemical compound [Ca+2].OCC(CO)OP([O-])([O-])=O UHHRFSOMMCWGSO-UHFFFAOYSA-L 0.000 description 11
- 235000019299 calcium glycerylphosphate Nutrition 0.000 description 11
- 239000003085 diluting agent Substances 0.000 description 11
- 229940016286 microcrystalline cellulose Drugs 0.000 description 11
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 11
- 239000008108 microcrystalline cellulose Substances 0.000 description 11
- 206010061298 Mucosal haemorrhage Diseases 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 10
- 239000001527 calcium lactate Substances 0.000 description 10
- 235000011086 calcium lactate Nutrition 0.000 description 10
- 229960002401 calcium lactate Drugs 0.000 description 10
- 235000019219 chocolate Nutrition 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 208000014674 injury Diseases 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 206010040047 Sepsis Diseases 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000001356 surgical procedure Methods 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 206010043554 thrombocytopenia Diseases 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 206010013710 Drug interaction Diseases 0.000 description 8
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 235000015165 citric acid Nutrition 0.000 description 8
- 239000011162 core material Substances 0.000 description 8
- 230000037406 food intake Effects 0.000 description 8
- 238000012552 review Methods 0.000 description 8
- 230000008733 trauma Effects 0.000 description 8
- 206010019196 Head injury Diseases 0.000 description 7
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 7
- 235000009470 Theobroma cacao Nutrition 0.000 description 7
- 101100537665 Trypanosoma cruzi TOR gene Proteins 0.000 description 7
- 230000001458 anti-acid effect Effects 0.000 description 7
- 229960005069 calcium Drugs 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 235000010216 calcium carbonate Nutrition 0.000 description 7
- 229960003563 calcium carbonate Drugs 0.000 description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 7
- 239000000920 calcium hydroxide Substances 0.000 description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 7
- 235000011116 calcium hydroxide Nutrition 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 7
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 229940080133 omeprazole 20 mg Drugs 0.000 description 7
- 229940068196 placebo Drugs 0.000 description 7
- 239000000902 placebo Substances 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 230000003248 secreting effect Effects 0.000 description 7
- 239000007916 tablet composition Substances 0.000 description 7
- 235000002906 tartaric acid Nutrition 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 6
- 108010083204 Proton Pumps Proteins 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 239000007931 coated granule Substances 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000001839 endoscopy Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000011975 tartaric acid Substances 0.000 description 6
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 6
- 208000007882 Gastritis Diseases 0.000 description 5
- 208000008745 Healthcare-Associated Pneumonia Diseases 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 208000025865 Ulcer Diseases 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 5
- 238000001647 drug administration Methods 0.000 description 5
- 239000007911 effervescent powder Substances 0.000 description 5
- 239000007938 effervescent tablet Substances 0.000 description 5
- 239000000796 flavoring agent Substances 0.000 description 5
- 235000013355 food flavoring agent Nutrition 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 230000027119 gastric acid secretion Effects 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000003485 histamine H2 receptor antagonist Substances 0.000 description 5
- 229940077716 histamine h2 receptor antagonists for peptic ulcer and gord Drugs 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 238000005399 mechanical ventilation Methods 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000010197 meta-analysis Methods 0.000 description 5
- 238000001139 pH measurement Methods 0.000 description 5
- 229940089505 prilosec Drugs 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 230000036269 ulceration Effects 0.000 description 5
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000011632 Caseins Human genes 0.000 description 4
- 108010076119 Caseins Proteins 0.000 description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 4
- 229920000881 Modified starch Polymers 0.000 description 4
- 102100021904 Potassium-transporting ATPase alpha chain 1 Human genes 0.000 description 4
- 240000008042 Zea mays Species 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 208000026935 allergic disease Diseases 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 4
- 239000001639 calcium acetate Substances 0.000 description 4
- 235000011092 calcium acetate Nutrition 0.000 description 4
- 229960005147 calcium acetate Drugs 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007891 compressed tablet Substances 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 235000019797 dipotassium phosphate Nutrition 0.000 description 4
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000007908 dry granulation Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 230000007717 exclusion Effects 0.000 description 4
- 230000035611 feeding Effects 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000012669 liquid formulation Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229940080237 sodium caseinate Drugs 0.000 description 4
- ODFAPIRLUPAQCQ-UHFFFAOYSA-M sodium stearoyl lactylate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(=O)OC(C)C(=O)OC(C)C([O-])=O ODFAPIRLUPAQCQ-UHFFFAOYSA-M 0.000 description 4
- 229940080352 sodium stearoyl lactylate Drugs 0.000 description 4
- 239000008347 soybean phospholipid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 4
- 239000006188 syrup Substances 0.000 description 4
- 235000020357 syrup Nutrition 0.000 description 4
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 4
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 229940078499 tricalcium phosphate Drugs 0.000 description 4
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 4
- 235000019731 tricalcium phosphate Nutrition 0.000 description 4
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 3
- 208000020131 Acid-base disease Diseases 0.000 description 3
- 208000009304 Acute Kidney Injury Diseases 0.000 description 3
- 108010011485 Aspartame Proteins 0.000 description 3
- 240000007154 Coffea arabica Species 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 206010015137 Eructation Diseases 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 208000001953 Hypotension Diseases 0.000 description 3
- 229920002774 Maltodextrin Polymers 0.000 description 3
- 239000005913 Maltodextrin Substances 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 244000246386 Mentha pulegium Species 0.000 description 3
- 235000016257 Mentha pulegium Nutrition 0.000 description 3
- 235000004357 Mentha x piperita Nutrition 0.000 description 3
- 208000004221 Multiple Trauma Diseases 0.000 description 3
- 208000033626 Renal failure acute Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 201000011040 acute kidney failure Diseases 0.000 description 3
- 208000012998 acute renal failure Diseases 0.000 description 3
- 230000037328 acute stress Effects 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 239000000605 aspartame Substances 0.000 description 3
- 235000010357 aspartame Nutrition 0.000 description 3
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 3
- 229960003438 aspartame Drugs 0.000 description 3
- 230000003385 bacteriostatic effect Effects 0.000 description 3
- 229940095643 calcium hydroxide Drugs 0.000 description 3
- 229960005132 cisapride Drugs 0.000 description 3
- DCSUBABJRXZOMT-IRLDBZIGSA-N cisapride Chemical compound C([C@@H]([C@@H](CC1)NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)OC)N1CCCOC1=CC=C(F)C=C1 DCSUBABJRXZOMT-IRLDBZIGSA-N 0.000 description 3
- DCSUBABJRXZOMT-UHFFFAOYSA-N cisapride Natural products C1CC(NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)C(OC)CN1CCCOC1=CC=C(F)C=C1 DCSUBABJRXZOMT-UHFFFAOYSA-N 0.000 description 3
- 235000016213 coffee Nutrition 0.000 description 3
- 235000013353 coffee beverage Nutrition 0.000 description 3
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 230000009260 cross reactivity Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000002662 enteric coated tablet Substances 0.000 description 3
- 238000009505 enteric coating Methods 0.000 description 3
- 239000002702 enteric coating Substances 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 235000001050 hortel pimenta Nutrition 0.000 description 3
- 230000009610 hypersensitivity Effects 0.000 description 3
- 230000036543 hypotension Effects 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 229960000816 magnesium hydroxide Drugs 0.000 description 3
- 235000012254 magnesium hydroxide Nutrition 0.000 description 3
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 3
- 239000000391 magnesium silicate Substances 0.000 description 3
- 229910052919 magnesium silicate Inorganic materials 0.000 description 3
- 235000019792 magnesium silicate Nutrition 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 229940035034 maltodextrin Drugs 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 238000013160 medical therapy Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 229940080130 omeprazole 10 mg Drugs 0.000 description 3
- 229940070406 omeprazole 2 mg/ml Drugs 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 230000000079 pharmacotherapeutic effect Effects 0.000 description 3
- 229940032668 prevacid Drugs 0.000 description 3
- 201000009890 sinusitis Diseases 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000010413 sodium alginate Nutrition 0.000 description 3
- 239000000661 sodium alginate Substances 0.000 description 3
- 229940005550 sodium alginate Drugs 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005550 wet granulation Methods 0.000 description 3
- SXZQQUBQEGDZJY-QRPNPIFTSA-N (2s)-2-amino-3-phenylpropanoic acid;calcium Chemical compound [Ca].OC(=O)[C@@H](N)CC1=CC=CC=C1 SXZQQUBQEGDZJY-QRPNPIFTSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- PSIREIZGKQBEEO-UHFFFAOYSA-N 2-(1h-benzimidazol-2-ylsulfinylmethyl)-n-methyl-n-(2-methylpropyl)aniline Chemical compound CC(C)CN(C)C1=CC=CC=C1CS(=O)C1=NC2=CC=CC=C2N1 PSIREIZGKQBEEO-UHFFFAOYSA-N 0.000 description 2
- 208000010543 22q11.2 deletion syndrome Diseases 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 235000016795 Cola Nutrition 0.000 description 2
- 244000228088 Cola acuminata Species 0.000 description 2
- 235000011824 Cola pachycarpa Nutrition 0.000 description 2
- 206010010305 Confusional state Diseases 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 238000001135 Friedman test Methods 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- 206010023126 Jaundice Diseases 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 206010027423 Metabolic alkalosis Diseases 0.000 description 2
- 206010033078 Otitis media Diseases 0.000 description 2
- 208000008469 Peptic Ulcer Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 102000006270 Proton Pumps Human genes 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 206010053615 Thermal burn Diseases 0.000 description 2
- 206010066901 Treatment failure Diseases 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 230000009858 acid secretion Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000000739 antihistaminic agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 208000027687 belching Diseases 0.000 description 2
- 208000015294 blood coagulation disease Diseases 0.000 description 2
- 208000027503 bloody stool Diseases 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 235000001465 calcium Nutrition 0.000 description 2
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 2
- 239000004227 calcium gluconate Substances 0.000 description 2
- 235000013927 calcium gluconate Nutrition 0.000 description 2
- 229960004494 calcium gluconate Drugs 0.000 description 2
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 206010008129 cerebral palsy Diseases 0.000 description 2
- 239000007910 chewable tablet Substances 0.000 description 2
- 230000001055 chewing effect Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 208000035850 clinical syndrome Diseases 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001408 fungistatic effect Effects 0.000 description 2
- 238000013110 gastrectomy Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000035861 hematochezia Diseases 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 229960001340 histamine Drugs 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229950007395 leminoprazole Drugs 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 235000001055 magnesium Nutrition 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 229960001708 magnesium carbonate Drugs 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 229960002366 magnesium silicate Drugs 0.000 description 2
- 229940091250 magnesium supplement Drugs 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 2
- 239000001683 mentha spicata herb oil Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940100688 oral solution Drugs 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 235000019477 peppermint oil Nutrition 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 238000001050 pharmacotherapy Methods 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- 239000011736 potassium bicarbonate Substances 0.000 description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 2
- OQZCJRJRGMMSGK-UHFFFAOYSA-M potassium metaphosphate Chemical compound [K+].[O-]P(=O)=O OQZCJRJRGMMSGK-UHFFFAOYSA-M 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 2
- 229940044551 receptor antagonist Drugs 0.000 description 2
- 239000002464 receptor antagonist Substances 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 201000004193 respiratory failure Diseases 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000009491 slugging Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 229940087379 sodium bicarbonate 500 mg Drugs 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000019721 spearmint oil Nutrition 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- RVEZZJVBDQCTEF-UHFFFAOYSA-N sulfenic acid Chemical compound SO RVEZZJVBDQCTEF-UHFFFAOYSA-N 0.000 description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- 229960004559 theobromine Drugs 0.000 description 2
- 229960000278 theophylline Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000001665 trituration Methods 0.000 description 2
- 201000000866 velocardiofacial syndrome Diseases 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 1
- 244000241235 Citrullus lanatus Species 0.000 description 1
- 235000012828 Citrullus lanatus var citroides Nutrition 0.000 description 1
- 206010009269 Cleft palate Diseases 0.000 description 1
- 208000018652 Closed Head injury Diseases 0.000 description 1
- 208000022540 Consciousness disease Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010014418 Electrolyte imbalance Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100021022 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- 206010017943 Gastrointestinal conditions Diseases 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 241000288140 Gruiformes Species 0.000 description 1
- 108010045198 H-2 Antigens Proteins 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010019663 Hepatic failure Diseases 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010023862 Laryngeal stenosis Diseases 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000034486 Multi-organ failure Diseases 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 208000025157 Oral disease Diseases 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033101 Otorrhoea Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 208000003035 Pierre Robin syndrome Diseases 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010036590 Premature baby Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 206010038687 Respiratory distress Diseases 0.000 description 1
- 206010039101 Rhinorrhoea Diseases 0.000 description 1
- 208000032023 Signs and Symptoms Diseases 0.000 description 1
- 241000219289 Silene Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 206010043087 Tachyphylaxis Diseases 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 206010061577 Ulcer haemorrhage Diseases 0.000 description 1
- 244000290333 Vanilla fragrans Species 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- BWZOPYPOZJBVLQ-UHFFFAOYSA-K aluminium glycinate Chemical compound O[Al+]O.NCC([O-])=O BWZOPYPOZJBVLQ-UHFFFAOYSA-K 0.000 description 1
- RJZNFXWQRHAVBP-UHFFFAOYSA-I aluminum;magnesium;pentahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Al+3] RJZNFXWQRHAVBP-UHFFFAOYSA-I 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000001262 anti-secretory effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003699 antiulcer agent Substances 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 229940127225 asthma medication Drugs 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 238000009640 blood culture Methods 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 229940068682 chewable tablet Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 208000024035 chronic otitis media Diseases 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000007907 direct compression Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000002183 duodenal effect Effects 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 210000001914 gastric parietal cell Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000006207 intravenous dosage form Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940106977 lansoprazole 30 mg Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000007903 liver failure Diseases 0.000 description 1
- 231100000835 liver failure Toxicity 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- OVGXLJDWSLQDRT-UHFFFAOYSA-L magnesium lactate Chemical compound [Mg+2].CC(O)C([O-])=O.CC(O)C([O-])=O OVGXLJDWSLQDRT-UHFFFAOYSA-L 0.000 description 1
- 239000000626 magnesium lactate Substances 0.000 description 1
- 235000015229 magnesium lactate Nutrition 0.000 description 1
- 229960004658 magnesium lactate Drugs 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229960000869 magnesium oxide Drugs 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 230000004682 mucosal barrier function Effects 0.000 description 1
- 230000009854 mucosal lesion Effects 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 229940100466 mylicon Drugs 0.000 description 1
- 208000010753 nasal discharge Diseases 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940071621 omeprazole / sodium bicarbonate Drugs 0.000 description 1
- 229940127249 oral antibiotic Drugs 0.000 description 1
- 229940100691 oral capsule Drugs 0.000 description 1
- 239000008203 oral pharmaceutical composition Substances 0.000 description 1
- 229940100692 oral suspension Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007427 paired t-test Methods 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000008289 pathophysiological mechanism Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 208000011906 peptic ulcer disease Diseases 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229940094025 potassium bicarbonate Drugs 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 229940099402 potassium metaphosphate Drugs 0.000 description 1
- 235000019828 potassium polyphosphate Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000009117 preventive therapy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002325 prokinetic agent Substances 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 206010037833 rales Diseases 0.000 description 1
- GGWBHVILAJZWKJ-KJEVSKRMSA-N ranitidine hydrochloride Chemical compound [H+].[Cl-].[O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 GGWBHVILAJZWKJ-KJEVSKRMSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 235000021572 root beer Nutrition 0.000 description 1
- 238000011300 routine therapy Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229940095456 simethicone 80 mg Drugs 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000022925 sleep disturbance Diseases 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- HELHAJAZNSDZJO-UHFFFAOYSA-L sodium tartrate Chemical compound [Na+].[Na+].[O-]C(=O)C(O)C(O)C([O-])=O HELHAJAZNSDZJO-UHFFFAOYSA-L 0.000 description 1
- UUYQXLQNUVEFGD-UHFFFAOYSA-M sodium;hydrogen carbonate;6-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1h-benzimidazole Chemical compound [Na+].OC([O-])=O.N1C2=CC(OC)=CC=C2N=C1S(=O)CC1=NC=C(C)C(OC)=C1C UUYQXLQNUVEFGD-UHFFFAOYSA-M 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 238000012065 two one-sided test Methods 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Landscapes
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
New pharmaceutical composition comprising a PPI and a buffering agent in treating gastric acid disorders.
Description
SOLID DOSAGE FORMS COMPRISING A SUBSTITUTED
BENZIMIDAZOLE DERIVATIVE AND A BUFFER
The present invention relates to pharmaceutical preparations comprising substituted benzimidazole proton pump inhibitors.
BACKGROUND OF THE INVENTION
Omeprazole is a substituted benzimidazole, 5-methoxy-2-[ (4-methoxy-3,5-dimethyl-2-pyridinyl) methyl]
sulfinyl]-1H-benzimidazole, that inhibits gastric acid secretion. Omeprazole belongs to a class of antisecretory compounds called proton pump inhibitors ("PPIs") that do not exhibit anti-cholinergic or H2 histamine antagonist properties. Drugs of this class suppress gastric acid secretion by the specific inhibition of the H+,K+-ATPase enzyme system (proton pump) at the secretory surface of the gastric parietal cell.
Typically; omeprazole, lansoprazole and other proton pump inhibitors are formulated in an enteric-coated solid dosage form (as either a delayed-release capsule or tablet) or as an intravenous solution (or as a product for reconstitution), and are prescribed for short-term treatment of active duodenal ulcers, gastric ulcers, gastroesophageal reflux disease (GERD), severe erosive esophagitis, poorly responsive systematic GERD, and pathological hypersecretory conditions such as Zollinger Ellison syndrome. These conditions are caused by an imbalance between acid and pepsin production, called aggressive factors, and mucous, bicarbonate, and prostaglandin production, called defensive factors.
These above-listed conditions commonly arise in healthy or critically ill patients, and may be accompanied by significant upper gastrointestinal bleeding.
H2-antagonists, antacids, and sucralfate are commonly administered to minimize the pain and the complications related to these conditions. These drugs have certain disadvantages associated with their use. Some of these drugs are not completely effective in the treatment of the aforementioned conditions and/or produce adverse side effects, such as mental confusion, constipation, diarrhea, and thrombocytopenia. H2-antagonists, such as ranitidine and cimetidine, are relatively costly modes of therapy, particularly in NPO patients, which frequently require the use of automated infusion pumps for continuous intravenous infusion of the drug.
Patients with significant physiologic stress are at risk for stress-related gastric mucosal damage and subsequent upper gastrointestinal bleeding (Marrone and Silen, Pathogenesis, Diagnosis and Treatment of Acute Gastric Mucosa Lesions, CLIN GASTROENTEROL 13: 635-650 (1984)). Risk factors that have been clearly associated with the development of stress-related mucosal damage are mechanical ventilation, coagulopathy, extensive burns, head injury, and organ transplant (Zinner et al., The Prevention of Gastrointestinal Tract Bleeding in Patients in an Intensive Care Unit, SURG. GYNECOL. OBSTET. , 153:
214-220 (1981); Larson et al., Gastric Response to Severe Head Injury, An. J. SURG. 147: 97-105 (1984) ; Czaja et al., Acute Gastroduodenal Disease After Thermal Injury:
An Endoscopic Evaluation of Incidence and Natural History, N ENGL. J. MED, 291: 925-929 (1974) ; Skillman et al., Respiratory Failure, Hypotension, Sepsis and Jaundice: A Clinical Syndrome Associated with Lethal Hemorrhage From Acute Stress Ulceration, An. J. SURG., 117: 523-530 (1969); and Cook et al., Risk Factors for Gastrointestinal Bleeding in Critically Ill Patients, N.
ENGL. J. MED., 330:377-381 (1994)). One or more of these factors are often found in critically ill, intensive care unit patients. A recent cohort study challenges other risk factors previously identified such as acid-base disorders, multiple trauma, significant hypertension, major surgery, multiple operative procedures, acute renal failure, sepsis, and coma (Cook et al., Risk Factors for Gastrointestinal Bleeding in Critically Ill Patients, N.
ENGL. J. MED., 330:377-381 (1994)). Regardless of the risk type, stress-related mucosal damage results in significant morbidity and mortality. Clinically significant bleeding occurs in at least twenty percent of patients with one or more risk factors who are left untreated (Martin et al., Continuous Intravenous cirnetidine Decreases Stress-related Upper Gastro-intestinal Hemorrhage Without Promoting Pneumonia, CRIT.
CARE MED., 21: 19-39 (1993)). Of those who bleed, approximately ten percent require surgery (usually gastrectomy) with a reported mortality of thirty percent to fifty percent (Czaja et al., Acute Gastroduodenal Disease After Thermal Injury: An Endoscopic Evaluation of Incidence and Natural History, N ENGL. J. MED, 291: 925-929 (1974); Peura and Johnson, Cimetidine for Prevention and Treatment of Gastroduodenal Mucosal Lesions in Patients in an Intensive Care Unit, ANN INTERN MED., 103:
173-177 (1985)). Those who do not need surgery often require multiple transfusions and prolonged hospitalization. Prevention of stress-related upper gastrointestinal bleeding is an important clinical goal.
In addition to general supportive care, the use of drugs to prevent stress-related mucosal damage and related complications is considered by many to be the standard of care (AMA Drug Evaluations). However, general consensus is lacking about which drugs to use in this setting (Martin et al., Continuous Intravenous Cimetidine Decreases Stress-related Upper Gastrointestinal Hemorrhage Without Promoting Pneumonia, CRIT. CARE MED., 21: 19-39 (1993) ; Gafter et al . , Thrombocytopenia Associated With Hypersensitivity to Ranitidine: Possible Cross-reactivity with Cimetidine, AN. J. GASTROENTEROL, 64: 560-562 (1989) ; Martin et al . , Stress Ulcers and Organ Failure in Intubated Patients in Surgical Intensive Care Units, ANN SURG., 215: 332-337 (1992)). In two recent meta-analyses (Cook et al., Stress Ulcer Prophylaxis in the Critically Ill: A Meta-analysis, Art. J. MED., 91: 519-527 (1991) ; Tryba, Stress Ulcer Prophylaxis - Quo Vadi s ? INTENS. CARE MED. 20: 311-313 (1994)) Antacids, sucralfate, and H2-antagonists were all found to be superior to placebo and similar to one another in preventing upper gastrointestinal bleeding.
Yet, prophylactic agents are withdrawn in fifteen to twenty percent of patients in which they are employed because of failure to prevent bleeding or control pH
(Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985); Siepler, A Dosage Alternative for H-2 5 Receptor Antagonists, Continuous-Infusion, CLIN. THER., 8(SUPPL A) : 24-33 (1986) ; Ballesteros et al., Bolus or Intravenous Infusion of Ranitidine: Effects on Gastric pH
and Acid Secretion: A Comparison of Relative Cost and Efficacy, ANN. INTERN. MED. , 112:334-339 (1990)), or because of adverse effects (Gafter et al., Thrombocytopenia Associated With Hypersensitivity to Ranitidine: Possible Cross-reactivity With Cimetidine, AM. J. GASTROENTEROL, 64: 560-562 (1989) ; Sax, Clinically Important Adverse Effects and Drug Interactions With H2-Receptor Antagonists: An Update, PHARMACOTHERAPY 7(6 PT 2) :
110S-115S (1987); Vial et al., Side Effects of Ranitidine, DRUG SAF, 6:94-117(1991); Cantu and Korek, Central Nervous System Reactions to Histamine-2 Receptor Blockers, ANN. INTERN MED., 114: 1027-1034 (1991) ; and Spychal and Wickham, Thrombocytopenia Associated With Ranitidine, BR. MED. J., 291: 1687 (1985)). In addition, the characteristics of an ideal agent for the prophylaxis of stress gastritis were analyzed by Smythe and Zarowitz, Changing Perspectives of Stress Gastritis Prophylaxis, ANN
PHARMACOTHER, 28: 1073-1084 (1994) who concluded that none of the agents currently in use fulfill their criteria.
Stress ulcer prophylaxis has become routine therapy in intensive care units in most hospitals (Fabian et al., Pneumonia and Stress Ulceration in Severely Injured Patients, ARCH. SURG. , 128: 185-191 (1993) ; Cook et al . , Stress Ulcer Prophylaxis in the Critically Ill: A Meta-Analysis, Ara. J. MED., 91: 519-527 (1991)). Controversy remains regarding pharmacologic intervention to prevent stress-related bleeding in critical care patients. It has been suggested that the incidence and risk of gastrointestinal bleeding has decreased in the last ten years and drug therapy may no longer be needed (Cook et al., Risk Factors for Gastrointestinal Bleeding in Critically ill Patients, N. ENGL. J. MED., 330:377-381 (1994); Tryba, Stress Ulcer Prophylaxis - Quo Vadis?
INTENS. CARE MED. 20: 311-313 (1994); Schepp, Stress Ulcer Prophylaxis: Still a Valid option in the 1990s?, DIGESTION
54: 189-199 (1993)). This reasoning is not supported by a recent placebo-controlled study. Martin et al.
conducted a prospective, randomized, double-blind, placebo-controlled comparison of continuous-infusion cimetidine and placebo for the prophylaxis of stress-related mucosal damage. The study was terminated early because of excessive bleeding-related mortality in the placebo group. It appears that the natural course of stress-related mucosal damage in a patient at risk who receives no prophylaxis remains significant. In the placebo group, thirty-three percent (33%) of patients developed clinically significant bleeding, nine percent (9%) required transfusion, and six percent (6%) died due to bleeding-related complications. In comparison, fourteen percent (14%) of cimetidine-treated patients developed clinically significant bleeding, six percent (6%) required transfusions, and one and one-half percent (1.5%) died due to bleeding-related complication. The difference in bleeding rates between treatment groups was statistically significant. This study clearly demonstrated that continuous-infusion cimetidine reduced morbidity in critical care patients. Although these data were used to support the approval of continuous-infusion.
cimetidine by the Food and Drug Administration for stress ulcer prophylaxis, H2-antagonists fall short of being the optimal pharmacotherapeutic agents for preventing of stress-related mucosal bleeding.
Another controversy surrounding stress ulcer prophylaxis is which drug to use. In addition to the various H2-antagonists, antacids and sucralfate are other treatment options for the prophylaxis of stress-related mucosal damage. An ideal drug in this setting should possess the following characteristics: prevent stress ulcers and their complications, be devoid of toxicity, lack drug interactions, be selective, have minimal associated costs (such as personnel time and materials), and be easy to administer (Smythe and Zarowitz, Changing Perspectives of Stress Gastritis Orophylaxis, ANN
PHARMACOTHER, 28: 1073-1084 (1994)) . Some have suggested that sucralfate is possibly the ideal agent for stress ulcer prophylaxis (Smythe and Zarowitz, Changing Perspectives of Stress Gastritis Prophylaxis, ANN
PHARMACOTHER, 28: 1073-1084 (1994) ) . Randomized, controlled studies support the use of sucralfate (Borrero et al., Antacids vs. Sucralfate in Preventing Acute Gastrointestinal Tract Bleeding in Abdominal Aortic Aurgery, ARCH. SURG., 121: 810-812 (1986); Tryba, Risk of Acute Stress Bleeding and Nosocomial Pneumonia in Ventilated Intensive Care Patients. Sucralfate vs.
Antacids, AN. J. MED. , 87 (3B) : 117-124 (1987) ; Cioffi et al., Comparison of Acid Neutralizing and Non-acid Neutralizing Stress Ulcer Prophylaxis in Thermally Injured Patients. J. TRAUMA, 36: 541-547 (1994) ; and Driks et al., Nosocomial Pneumonia in Intubated Patients Given Sucralfate as Compared With Antacids or Histamine Type 2 Blockers, N. ENGL. J. MED., 317: 1376-1382 1987)), but data on critical care patients with head injury, trauma, or burns are limited. In addition, a recent study comparing sucralfate and cimetidine plus antacids for stress ulcer prophylaxis reported clinically significant bleeding in three of forty-eight (6%) sucralfate-treated patients, one of whom required a gastrectomy (Cioffi et al., Comparison of Acid Neutralizing and Non-acid Neutralizing Stress Ulcer Prophylaxis in Thermally Injured Patients, J. TRAUMA, 36: 541-547 (1994)) . In the study performed by Driks and coworkers that compared sucralfate to conventional therapy (H2-antagonists, antacids, or H2-antagonists plus antacids), the only patient whose death was attributed to stress-related upper gastrointestinal bleeding was in the sucralfate arm (Driks et al., Nosocomial Pneumonia in Intubated Patients Given Sucralfate as Compared With Antacids or Histamine Type 2 Blockers, N. ENGL. J. MED., 317: 1376-1382(1987)).
H2-antagonists fulfill many of the criteria for an ideal stress ulcer prophylaxis drug. Yet, clinically significant bleeds can occur during H2-antagonist prophylaxis (Martin et al., Continuous Intravenous Cimetidine Decreases Stress-related Upper Gastrointestinal Hemorrhage Without Promoting Pneumonia, CRIT. CARE MED. , 21: 19-39 (1993) ; Cook et al., Stress Ulcer Prophylaxis in the Critically 111: A Meta-analysis, AN. J. MED., 91: 519-527 (1991); Schuman et al., Prophylactic Therapy for Acute Ulcer Bleeding: A
Reappraisal, ANN INTERN. MED, 106: 562-567 (1987)).
Adverse events are not uncommon in the critical care population (Gafter et al., Thrombocytopenia Associated With Hypersensitivity to Ranitidine: Possible Cross-Reactivity With Cimetidine, Ari. J. GASTROENTEROL, 64: 560-562 (1989); Sax, Clinically Important Adverse Effects and Drug Interactions With H2-receptor Antagonists: An Update, PHARMACOTHERAPY 7(6 PT 2) : 11OS-115S (1987) ; Vial et al., Side Effects of Ranitidine, DRUG SAF., 6:94-117(1991); Cantu and Korek, Central Nervous System Reactions to Histamine-2 Receptor Blockers, ANN. INTERN
MED., 114: 1027-1034 (1991); Spychal and Wickham, Thrombocytopenia Associated With Ranitidine, BR. MED. J., 291: 1687 (1985)).
One reason proposed for the therapeutic H2-antagonist failures is lack of pH control throughout the treatment period (Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985)). Although the precise pathophysiologic mechanisms involved in stress ulceration are not clearly established, the high concentration of hydrogen ions in the mucosa (Fiddian-Green et al., 1987) or gastric fluid in contact with mucosal cells appears to be an important factor. A gastric pH > 3.5 has been associated with a lower incidence of stress-related mucosal damage and bleeding (Larson et al., Gastric Response to Severe Head Injury, Art. J. SURG. 147: 97-105 (1984); Skillman et al., Respiratory Failure, Hypotension, Sepsis and Jaundice: A Clinical Syndrome Associated With Lethal Hemorrhage From Acute Stress Ulceration, An. J. SURG., 117: 523-530 (1969) ; Skillman et al., The Gastric Mucosal Barrier: Clinical and Experimental Studies in Critically Ill and Normal Man and in the Rabbit, ANN SURG., 172: 564-584 (1970) ; and Priebe and Skillman, Methods of Prophylaxis in Stress Ulcer Disease, WORLD J. SURG., 5 : 223-233 (1981)) . Several studies have shown that H2-antagonists, even in maximal doses, do not reliably or continuously increase intragastric pH above commonly targeted levels (3.5 to 5 4.5). This is true especially when used in fixed-dose bolus regimens (Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985) ; Siepler, A Dosage Alternative for H-2 Receptor Antagonists, Continuous-10 infusion, CLIN. THER. , 8 (SUPPL A) : 24-33 (1986) ;
Ballesteros et al., Bolus or Intravenous Infusion of Ranitidine: Effects on Gastric pH and Acid Secretion: A
Comparison of Relative Cost and Efficacy, ANN. INTERN.
MED., 112:334-339 (1990)). In addition, gastric pH levels tend to trend downward with time when using a continuous-infusion of H2-antagonists, which may be the result of tachyphylaxis (Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985) ; Wilder-Smith and Merki, Tolerance During Dosing With H2-receptor Antagonists. An Overview, SCAND. J. GASTROENTEROL 27 (SUPPL.
193): 14-19 (1992)).
Because stress ulcer prophylaxis is frequently employed in the intensive care unit, it is essential from both a clinical and economic standpoint to optimize the pharmacotherapeutic approach. In an attempt to identify optimal therapy, cost of care becomes an issue. All treatment costs should be considered, including the costs of treatment failures and drug-related adverse events.
While the actual number of failures resulting in mortality is low, morbidity (e.g., bleeding that requires blood transfusion) can be high, even though its association with the failure of a specific drug is often unrecognized.
Initial reports of increased frequency of pneumonia in patients receiving stress ulcer prophylaxis with agents that raise gastric pH has influenced the pharmacotherapeutic approach to management of critical care patients. However, several recent studies (Simms et al., Role of Gastric Colonization in the Development of Pneumonia in Critically ill Trauma Patients: Results of a Prospective Randomized Trial, J. TRAUMA, 31: 531-536 (1991); Pickworth et al., Occurrence of Nasocomial Pneumonia in Mechanically Ventilated Trauma Patients: A
Comparison of Sucralfate and Ranitidine, CRIT. CARE MED., 12: 1856-1862 (1993); Ryan et al., Nasocomial Pneumonia During Stress Ulcer Prophylaxis With Cimetidine and Sucralfate, ARCH. SURG., 128: 1353-1357 (1993); Fabian et al., Pneumonia and Stress Ulceration in Severely Injured Patients, ARCH. SuRG., 128: 185-191 (1993)), a meta-analysis (Cook et al., Stress Ulcer Prophylaxis in the Critically III : A Meta-analysis, AM. J. MED., 91: 519-527 (1991)), and a closer examination of the studies that initiated the elevated pH-associated pneumonia hypotheses (Schepp, Stress Ulcer Prophylaxis: Still a Valid Option in the 1990s?, DIGESTION 54: 189-199 (1993)) cast doubt on a causal relationship. The relationship between pneumonia and antacid therapy is much stronger than for H2-antagonists. The shared effect of antacids and H2-antagonists on gastric pH seems an irresistible common cause explanation for nosocomial pneumonia observed during stress ulcer prophylaxis. However, there are important differences between these agents that are not often emphasized (Laggner et al., Prevention of Upper Gastrointestinal Bleeding in Long-term Ventilated Patients, AM. J. MED. , 86 (SUPPL 6A) : 81-84 (1989)) . When antacids are exclusively used to control pH in the prophylaxis of stress-related upper gastrointestinal bleeding, large volumes are needed. Volume, with or without subsequent ref lux, may be the underlying mechanism(s) promoting the development of pneumonia in susceptible patient populations rather than the increased gastric pH. The rate of pneumonia (12%) was not unexpected in this critical care population and compares with sucralfate, which does not significantly raise gastric pH (Pickworth et al., Occurrence of Nasocomial Pneumonia in Mechanically Ventilated Trauma Patients: A
Comparison of Sucralfate and Ranitidine, CRIT. CARE MED., 12: 1856-1862 (1993); Ryan et al., Nasocomial Pneumonia During Stress Ulcer Prophylaxis With Cimetidine and Sucralfate, ARCH. SURG. , 128: 1353-1357 (1993) ) .
Omeprazole (Prilosec ), lansoprazole (Prevacid ) and other PPIs reduce gastric acid production by inhibiting HK-ATPase of the parietal cell-the final common pathway for gastric acid secretion (Fellenius et al., Substituted Benzimidazoles Inhibit Gastric Acid Secretion by Blocking H+,K'-ATPase, NATURE, 290: 159-161 (1981) ;
Wallmark et al, The Relationship Between Gastric Acid Secretion and Gastric Hr, K}-ATPase Activity, J. BIOL. CHEM. , 260: 13681-13684 (1985); Fryklund et al., Function and Structure of Parietal Cells After H, K+-ATPase Blockade, AN. J. PHYSIOL. , 254 (3 PT 1) ; G399-407 (1988)) .
PPIs contain a sulfinyl group in a bridge between substituted benzimidazole and pyridine rings, as illustrated below.
BENZIMIDAZOLE DERIVATIVE AND A BUFFER
The present invention relates to pharmaceutical preparations comprising substituted benzimidazole proton pump inhibitors.
BACKGROUND OF THE INVENTION
Omeprazole is a substituted benzimidazole, 5-methoxy-2-[ (4-methoxy-3,5-dimethyl-2-pyridinyl) methyl]
sulfinyl]-1H-benzimidazole, that inhibits gastric acid secretion. Omeprazole belongs to a class of antisecretory compounds called proton pump inhibitors ("PPIs") that do not exhibit anti-cholinergic or H2 histamine antagonist properties. Drugs of this class suppress gastric acid secretion by the specific inhibition of the H+,K+-ATPase enzyme system (proton pump) at the secretory surface of the gastric parietal cell.
Typically; omeprazole, lansoprazole and other proton pump inhibitors are formulated in an enteric-coated solid dosage form (as either a delayed-release capsule or tablet) or as an intravenous solution (or as a product for reconstitution), and are prescribed for short-term treatment of active duodenal ulcers, gastric ulcers, gastroesophageal reflux disease (GERD), severe erosive esophagitis, poorly responsive systematic GERD, and pathological hypersecretory conditions such as Zollinger Ellison syndrome. These conditions are caused by an imbalance between acid and pepsin production, called aggressive factors, and mucous, bicarbonate, and prostaglandin production, called defensive factors.
These above-listed conditions commonly arise in healthy or critically ill patients, and may be accompanied by significant upper gastrointestinal bleeding.
H2-antagonists, antacids, and sucralfate are commonly administered to minimize the pain and the complications related to these conditions. These drugs have certain disadvantages associated with their use. Some of these drugs are not completely effective in the treatment of the aforementioned conditions and/or produce adverse side effects, such as mental confusion, constipation, diarrhea, and thrombocytopenia. H2-antagonists, such as ranitidine and cimetidine, are relatively costly modes of therapy, particularly in NPO patients, which frequently require the use of automated infusion pumps for continuous intravenous infusion of the drug.
Patients with significant physiologic stress are at risk for stress-related gastric mucosal damage and subsequent upper gastrointestinal bleeding (Marrone and Silen, Pathogenesis, Diagnosis and Treatment of Acute Gastric Mucosa Lesions, CLIN GASTROENTEROL 13: 635-650 (1984)). Risk factors that have been clearly associated with the development of stress-related mucosal damage are mechanical ventilation, coagulopathy, extensive burns, head injury, and organ transplant (Zinner et al., The Prevention of Gastrointestinal Tract Bleeding in Patients in an Intensive Care Unit, SURG. GYNECOL. OBSTET. , 153:
214-220 (1981); Larson et al., Gastric Response to Severe Head Injury, An. J. SURG. 147: 97-105 (1984) ; Czaja et al., Acute Gastroduodenal Disease After Thermal Injury:
An Endoscopic Evaluation of Incidence and Natural History, N ENGL. J. MED, 291: 925-929 (1974) ; Skillman et al., Respiratory Failure, Hypotension, Sepsis and Jaundice: A Clinical Syndrome Associated with Lethal Hemorrhage From Acute Stress Ulceration, An. J. SURG., 117: 523-530 (1969); and Cook et al., Risk Factors for Gastrointestinal Bleeding in Critically Ill Patients, N.
ENGL. J. MED., 330:377-381 (1994)). One or more of these factors are often found in critically ill, intensive care unit patients. A recent cohort study challenges other risk factors previously identified such as acid-base disorders, multiple trauma, significant hypertension, major surgery, multiple operative procedures, acute renal failure, sepsis, and coma (Cook et al., Risk Factors for Gastrointestinal Bleeding in Critically Ill Patients, N.
ENGL. J. MED., 330:377-381 (1994)). Regardless of the risk type, stress-related mucosal damage results in significant morbidity and mortality. Clinically significant bleeding occurs in at least twenty percent of patients with one or more risk factors who are left untreated (Martin et al., Continuous Intravenous cirnetidine Decreases Stress-related Upper Gastro-intestinal Hemorrhage Without Promoting Pneumonia, CRIT.
CARE MED., 21: 19-39 (1993)). Of those who bleed, approximately ten percent require surgery (usually gastrectomy) with a reported mortality of thirty percent to fifty percent (Czaja et al., Acute Gastroduodenal Disease After Thermal Injury: An Endoscopic Evaluation of Incidence and Natural History, N ENGL. J. MED, 291: 925-929 (1974); Peura and Johnson, Cimetidine for Prevention and Treatment of Gastroduodenal Mucosal Lesions in Patients in an Intensive Care Unit, ANN INTERN MED., 103:
173-177 (1985)). Those who do not need surgery often require multiple transfusions and prolonged hospitalization. Prevention of stress-related upper gastrointestinal bleeding is an important clinical goal.
In addition to general supportive care, the use of drugs to prevent stress-related mucosal damage and related complications is considered by many to be the standard of care (AMA Drug Evaluations). However, general consensus is lacking about which drugs to use in this setting (Martin et al., Continuous Intravenous Cimetidine Decreases Stress-related Upper Gastrointestinal Hemorrhage Without Promoting Pneumonia, CRIT. CARE MED., 21: 19-39 (1993) ; Gafter et al . , Thrombocytopenia Associated With Hypersensitivity to Ranitidine: Possible Cross-reactivity with Cimetidine, AN. J. GASTROENTEROL, 64: 560-562 (1989) ; Martin et al . , Stress Ulcers and Organ Failure in Intubated Patients in Surgical Intensive Care Units, ANN SURG., 215: 332-337 (1992)). In two recent meta-analyses (Cook et al., Stress Ulcer Prophylaxis in the Critically Ill: A Meta-analysis, Art. J. MED., 91: 519-527 (1991) ; Tryba, Stress Ulcer Prophylaxis - Quo Vadi s ? INTENS. CARE MED. 20: 311-313 (1994)) Antacids, sucralfate, and H2-antagonists were all found to be superior to placebo and similar to one another in preventing upper gastrointestinal bleeding.
Yet, prophylactic agents are withdrawn in fifteen to twenty percent of patients in which they are employed because of failure to prevent bleeding or control pH
(Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985); Siepler, A Dosage Alternative for H-2 5 Receptor Antagonists, Continuous-Infusion, CLIN. THER., 8(SUPPL A) : 24-33 (1986) ; Ballesteros et al., Bolus or Intravenous Infusion of Ranitidine: Effects on Gastric pH
and Acid Secretion: A Comparison of Relative Cost and Efficacy, ANN. INTERN. MED. , 112:334-339 (1990)), or because of adverse effects (Gafter et al., Thrombocytopenia Associated With Hypersensitivity to Ranitidine: Possible Cross-reactivity With Cimetidine, AM. J. GASTROENTEROL, 64: 560-562 (1989) ; Sax, Clinically Important Adverse Effects and Drug Interactions With H2-Receptor Antagonists: An Update, PHARMACOTHERAPY 7(6 PT 2) :
110S-115S (1987); Vial et al., Side Effects of Ranitidine, DRUG SAF, 6:94-117(1991); Cantu and Korek, Central Nervous System Reactions to Histamine-2 Receptor Blockers, ANN. INTERN MED., 114: 1027-1034 (1991) ; and Spychal and Wickham, Thrombocytopenia Associated With Ranitidine, BR. MED. J., 291: 1687 (1985)). In addition, the characteristics of an ideal agent for the prophylaxis of stress gastritis were analyzed by Smythe and Zarowitz, Changing Perspectives of Stress Gastritis Prophylaxis, ANN
PHARMACOTHER, 28: 1073-1084 (1994) who concluded that none of the agents currently in use fulfill their criteria.
Stress ulcer prophylaxis has become routine therapy in intensive care units in most hospitals (Fabian et al., Pneumonia and Stress Ulceration in Severely Injured Patients, ARCH. SURG. , 128: 185-191 (1993) ; Cook et al . , Stress Ulcer Prophylaxis in the Critically Ill: A Meta-Analysis, Ara. J. MED., 91: 519-527 (1991)). Controversy remains regarding pharmacologic intervention to prevent stress-related bleeding in critical care patients. It has been suggested that the incidence and risk of gastrointestinal bleeding has decreased in the last ten years and drug therapy may no longer be needed (Cook et al., Risk Factors for Gastrointestinal Bleeding in Critically ill Patients, N. ENGL. J. MED., 330:377-381 (1994); Tryba, Stress Ulcer Prophylaxis - Quo Vadis?
INTENS. CARE MED. 20: 311-313 (1994); Schepp, Stress Ulcer Prophylaxis: Still a Valid option in the 1990s?, DIGESTION
54: 189-199 (1993)). This reasoning is not supported by a recent placebo-controlled study. Martin et al.
conducted a prospective, randomized, double-blind, placebo-controlled comparison of continuous-infusion cimetidine and placebo for the prophylaxis of stress-related mucosal damage. The study was terminated early because of excessive bleeding-related mortality in the placebo group. It appears that the natural course of stress-related mucosal damage in a patient at risk who receives no prophylaxis remains significant. In the placebo group, thirty-three percent (33%) of patients developed clinically significant bleeding, nine percent (9%) required transfusion, and six percent (6%) died due to bleeding-related complications. In comparison, fourteen percent (14%) of cimetidine-treated patients developed clinically significant bleeding, six percent (6%) required transfusions, and one and one-half percent (1.5%) died due to bleeding-related complication. The difference in bleeding rates between treatment groups was statistically significant. This study clearly demonstrated that continuous-infusion cimetidine reduced morbidity in critical care patients. Although these data were used to support the approval of continuous-infusion.
cimetidine by the Food and Drug Administration for stress ulcer prophylaxis, H2-antagonists fall short of being the optimal pharmacotherapeutic agents for preventing of stress-related mucosal bleeding.
Another controversy surrounding stress ulcer prophylaxis is which drug to use. In addition to the various H2-antagonists, antacids and sucralfate are other treatment options for the prophylaxis of stress-related mucosal damage. An ideal drug in this setting should possess the following characteristics: prevent stress ulcers and their complications, be devoid of toxicity, lack drug interactions, be selective, have minimal associated costs (such as personnel time and materials), and be easy to administer (Smythe and Zarowitz, Changing Perspectives of Stress Gastritis Orophylaxis, ANN
PHARMACOTHER, 28: 1073-1084 (1994)) . Some have suggested that sucralfate is possibly the ideal agent for stress ulcer prophylaxis (Smythe and Zarowitz, Changing Perspectives of Stress Gastritis Prophylaxis, ANN
PHARMACOTHER, 28: 1073-1084 (1994) ) . Randomized, controlled studies support the use of sucralfate (Borrero et al., Antacids vs. Sucralfate in Preventing Acute Gastrointestinal Tract Bleeding in Abdominal Aortic Aurgery, ARCH. SURG., 121: 810-812 (1986); Tryba, Risk of Acute Stress Bleeding and Nosocomial Pneumonia in Ventilated Intensive Care Patients. Sucralfate vs.
Antacids, AN. J. MED. , 87 (3B) : 117-124 (1987) ; Cioffi et al., Comparison of Acid Neutralizing and Non-acid Neutralizing Stress Ulcer Prophylaxis in Thermally Injured Patients. J. TRAUMA, 36: 541-547 (1994) ; and Driks et al., Nosocomial Pneumonia in Intubated Patients Given Sucralfate as Compared With Antacids or Histamine Type 2 Blockers, N. ENGL. J. MED., 317: 1376-1382 1987)), but data on critical care patients with head injury, trauma, or burns are limited. In addition, a recent study comparing sucralfate and cimetidine plus antacids for stress ulcer prophylaxis reported clinically significant bleeding in three of forty-eight (6%) sucralfate-treated patients, one of whom required a gastrectomy (Cioffi et al., Comparison of Acid Neutralizing and Non-acid Neutralizing Stress Ulcer Prophylaxis in Thermally Injured Patients, J. TRAUMA, 36: 541-547 (1994)) . In the study performed by Driks and coworkers that compared sucralfate to conventional therapy (H2-antagonists, antacids, or H2-antagonists plus antacids), the only patient whose death was attributed to stress-related upper gastrointestinal bleeding was in the sucralfate arm (Driks et al., Nosocomial Pneumonia in Intubated Patients Given Sucralfate as Compared With Antacids or Histamine Type 2 Blockers, N. ENGL. J. MED., 317: 1376-1382(1987)).
H2-antagonists fulfill many of the criteria for an ideal stress ulcer prophylaxis drug. Yet, clinically significant bleeds can occur during H2-antagonist prophylaxis (Martin et al., Continuous Intravenous Cimetidine Decreases Stress-related Upper Gastrointestinal Hemorrhage Without Promoting Pneumonia, CRIT. CARE MED. , 21: 19-39 (1993) ; Cook et al., Stress Ulcer Prophylaxis in the Critically 111: A Meta-analysis, AN. J. MED., 91: 519-527 (1991); Schuman et al., Prophylactic Therapy for Acute Ulcer Bleeding: A
Reappraisal, ANN INTERN. MED, 106: 562-567 (1987)).
Adverse events are not uncommon in the critical care population (Gafter et al., Thrombocytopenia Associated With Hypersensitivity to Ranitidine: Possible Cross-Reactivity With Cimetidine, Ari. J. GASTROENTEROL, 64: 560-562 (1989); Sax, Clinically Important Adverse Effects and Drug Interactions With H2-receptor Antagonists: An Update, PHARMACOTHERAPY 7(6 PT 2) : 11OS-115S (1987) ; Vial et al., Side Effects of Ranitidine, DRUG SAF., 6:94-117(1991); Cantu and Korek, Central Nervous System Reactions to Histamine-2 Receptor Blockers, ANN. INTERN
MED., 114: 1027-1034 (1991); Spychal and Wickham, Thrombocytopenia Associated With Ranitidine, BR. MED. J., 291: 1687 (1985)).
One reason proposed for the therapeutic H2-antagonist failures is lack of pH control throughout the treatment period (Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985)). Although the precise pathophysiologic mechanisms involved in stress ulceration are not clearly established, the high concentration of hydrogen ions in the mucosa (Fiddian-Green et al., 1987) or gastric fluid in contact with mucosal cells appears to be an important factor. A gastric pH > 3.5 has been associated with a lower incidence of stress-related mucosal damage and bleeding (Larson et al., Gastric Response to Severe Head Injury, Art. J. SURG. 147: 97-105 (1984); Skillman et al., Respiratory Failure, Hypotension, Sepsis and Jaundice: A Clinical Syndrome Associated With Lethal Hemorrhage From Acute Stress Ulceration, An. J. SURG., 117: 523-530 (1969) ; Skillman et al., The Gastric Mucosal Barrier: Clinical and Experimental Studies in Critically Ill and Normal Man and in the Rabbit, ANN SURG., 172: 564-584 (1970) ; and Priebe and Skillman, Methods of Prophylaxis in Stress Ulcer Disease, WORLD J. SURG., 5 : 223-233 (1981)) . Several studies have shown that H2-antagonists, even in maximal doses, do not reliably or continuously increase intragastric pH above commonly targeted levels (3.5 to 5 4.5). This is true especially when used in fixed-dose bolus regimens (Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985) ; Siepler, A Dosage Alternative for H-2 Receptor Antagonists, Continuous-10 infusion, CLIN. THER. , 8 (SUPPL A) : 24-33 (1986) ;
Ballesteros et al., Bolus or Intravenous Infusion of Ranitidine: Effects on Gastric pH and Acid Secretion: A
Comparison of Relative Cost and Efficacy, ANN. INTERN.
MED., 112:334-339 (1990)). In addition, gastric pH levels tend to trend downward with time when using a continuous-infusion of H2-antagonists, which may be the result of tachyphylaxis (Ostro et al., Control of Gastric pH With Cimetidine Boluses Versus Primed Infusions, GASTROENTEROLOGY, 89: 532-537 (1985) ; Wilder-Smith and Merki, Tolerance During Dosing With H2-receptor Antagonists. An Overview, SCAND. J. GASTROENTEROL 27 (SUPPL.
193): 14-19 (1992)).
Because stress ulcer prophylaxis is frequently employed in the intensive care unit, it is essential from both a clinical and economic standpoint to optimize the pharmacotherapeutic approach. In an attempt to identify optimal therapy, cost of care becomes an issue. All treatment costs should be considered, including the costs of treatment failures and drug-related adverse events.
While the actual number of failures resulting in mortality is low, morbidity (e.g., bleeding that requires blood transfusion) can be high, even though its association with the failure of a specific drug is often unrecognized.
Initial reports of increased frequency of pneumonia in patients receiving stress ulcer prophylaxis with agents that raise gastric pH has influenced the pharmacotherapeutic approach to management of critical care patients. However, several recent studies (Simms et al., Role of Gastric Colonization in the Development of Pneumonia in Critically ill Trauma Patients: Results of a Prospective Randomized Trial, J. TRAUMA, 31: 531-536 (1991); Pickworth et al., Occurrence of Nasocomial Pneumonia in Mechanically Ventilated Trauma Patients: A
Comparison of Sucralfate and Ranitidine, CRIT. CARE MED., 12: 1856-1862 (1993); Ryan et al., Nasocomial Pneumonia During Stress Ulcer Prophylaxis With Cimetidine and Sucralfate, ARCH. SURG., 128: 1353-1357 (1993); Fabian et al., Pneumonia and Stress Ulceration in Severely Injured Patients, ARCH. SuRG., 128: 185-191 (1993)), a meta-analysis (Cook et al., Stress Ulcer Prophylaxis in the Critically III : A Meta-analysis, AM. J. MED., 91: 519-527 (1991)), and a closer examination of the studies that initiated the elevated pH-associated pneumonia hypotheses (Schepp, Stress Ulcer Prophylaxis: Still a Valid Option in the 1990s?, DIGESTION 54: 189-199 (1993)) cast doubt on a causal relationship. The relationship between pneumonia and antacid therapy is much stronger than for H2-antagonists. The shared effect of antacids and H2-antagonists on gastric pH seems an irresistible common cause explanation for nosocomial pneumonia observed during stress ulcer prophylaxis. However, there are important differences between these agents that are not often emphasized (Laggner et al., Prevention of Upper Gastrointestinal Bleeding in Long-term Ventilated Patients, AM. J. MED. , 86 (SUPPL 6A) : 81-84 (1989)) . When antacids are exclusively used to control pH in the prophylaxis of stress-related upper gastrointestinal bleeding, large volumes are needed. Volume, with or without subsequent ref lux, may be the underlying mechanism(s) promoting the development of pneumonia in susceptible patient populations rather than the increased gastric pH. The rate of pneumonia (12%) was not unexpected in this critical care population and compares with sucralfate, which does not significantly raise gastric pH (Pickworth et al., Occurrence of Nasocomial Pneumonia in Mechanically Ventilated Trauma Patients: A
Comparison of Sucralfate and Ranitidine, CRIT. CARE MED., 12: 1856-1862 (1993); Ryan et al., Nasocomial Pneumonia During Stress Ulcer Prophylaxis With Cimetidine and Sucralfate, ARCH. SURG. , 128: 1353-1357 (1993) ) .
Omeprazole (Prilosec ), lansoprazole (Prevacid ) and other PPIs reduce gastric acid production by inhibiting HK-ATPase of the parietal cell-the final common pathway for gastric acid secretion (Fellenius et al., Substituted Benzimidazoles Inhibit Gastric Acid Secretion by Blocking H+,K'-ATPase, NATURE, 290: 159-161 (1981) ;
Wallmark et al, The Relationship Between Gastric Acid Secretion and Gastric Hr, K}-ATPase Activity, J. BIOL. CHEM. , 260: 13681-13684 (1985); Fryklund et al., Function and Structure of Parietal Cells After H, K+-ATPase Blockade, AN. J. PHYSIOL. , 254 (3 PT 1) ; G399-407 (1988)) .
PPIs contain a sulfinyl group in a bridge between substituted benzimidazole and pyridine rings, as illustrated below.
q OCH 2CF3 OCH3 rCH3 CH3 H3 N N~ S 411*O Y"O
NH O NH
OMEPRAZOLE
J`H+
B SULFENAMIDE SULFENIC ACID
N N
S -N'N' N' NH -OH
\\~- Enzyme - SH
1+ I
N
S - S-Enzyme N~ NH
i*OCH3 ENZYME-INHIBITOR COMPLEX
NH O NH
OMEPRAZOLE
J`H+
B SULFENAMIDE SULFENIC ACID
N N
S -N'N' N' NH -OH
\\~- Enzyme - SH
1+ I
N
S - S-Enzyme N~ NH
i*OCH3 ENZYME-INHIBITOR COMPLEX
At neutral pH, omeprazole, lansoprazole and other PPIs are chemically stable, lipid-soluble, weak bases that are devoid of inhibitory activity. These neutral weak bases reach parietal cells from the blood and diffuse into the secretory canaliculi, where the drugs become protonated and thereby trapped. The protonated agent rearranges to form a sulfenic acid and a sulfenamide. The sulfenamide interacts covalently with sulfhydryl groups at critical sites in the extracellular (luminal) domain of the membrane-spanning H+,K+-ATPase (Hardman et al., Goodman & Gilman's The Pharmacological Basis of Therapeutics, p. 907 (9`h ed. 1996)). Omeprazole and lansoprazole, therefore, are prodrugs that must be activated to be effective. The specificity of the effects of PPIs is also dependent upon: (a) the selective distribution of H+,K+-ATPase; (b) the requirement for acidic conditions to catalyze generation of the reactive inhibitor; and (c) the trapping of the protonated drug and the cationic sulfenamide within the acidic canaliculi and adjacent to the target enzyme. (Hardman et al., 1996)).
Omeprazole and lansoprazole are available for oral administration as enteric coated particles in gelatin capsules. Other proton pump inhibitors such as rabeprazole and pantoprazole are supplied as enteric coated tablets. The enteric dosage forms of the prior art have been employed because it is very important that these drugs not be exposed to gastric acid prior to absorption. Although these drugs are stable at alkaline pH, they are destroyed rapidly as pH falls (e.g., by gastric acid). Therefore, if the microencapsulation or the enteric coating is disrupted (e.g., trituration to compound a liquid, or chewing the capsule), the drug will be exposed to degradation by the gastric acid in the stomach.
5 The absence of an intravenous or oral liquid dosage form in the United States has limited the testing and use of omeprazole, lansoprazole and rabeprazole in the critical care patient population. Barie et al., Therapeutic Use of Omeprazole for Refractory Stress-10 induced Gastric Mucosal Hemorrhage, CRIT. CARE MED., 20:
899-901 (1992) have described the use of omeprazole enteric-coated pellets administered through a nasogastric tube to control gastrointestinal hemorrhage in a critical care patient with multi-organ failure. However, such 15 pellets are not ideal as they can aggregate and occlude such tubes, and they are not suitable for patients who cannot swallow the pellets. AM J. HEALTH-SYST PHARM 56:2327-30 (1999).
Proton pump inhibitors such as omeprazole represent an advantageous alternative to the use of H2-antagonists, antacids, and sucralfate as a treatment for complications related to stress-related mucosal damage. However, in their current form (capsules containing enteric-coated granules or enteric-coated tablets), proton pump inhibitors can be difficult or impossible to administer to patients who are either unwilling or unable to swallow tablets or capsules, such as critically ill patients, children, the elderly, and patients suffering from dysphagia. Therefore, it would be desirable to formulate a proton pump inhibitor solution or suspension which can be enterally delivered to a patient thereby providing the benefits of the proton pump inhibitor without. the drawbacks of the current enteric-coated solid dosage forms.
Omeprazole, the first proton pump inhibitor introduced into use, has been formulated in many different embodiments such as in a mixture of polyethylene glycols, adeps solidus and sodium lauryl sulfate in a soluble, basic amino acid to yield a formulation designed for administration in the rectum as taught by United States Patent No. 5,219,870 to Kim.
United States Patent No. 5,395,323 to Berglund ('323) discloses a device for mixing a pharmaceutical from a solid supply into a parenterally acceptable liquid form for parenteral administration to a patient. The '323 patent teaches the use of an omeprazole tablet which is placed in the device and dissolved by=normal saline, and infused parenterally into the patient. This device and method of parenteral infusion of omeprazole does not provide the omeprazole solution as an enteral product, nor is this omeprazole solution directly administered to the diseased or affected areas, namely the stomach and upper gastrointestinal tract, nor does this omeprazole formulation provide the immediate antacid effect of the present formulation.
United States Patent No. 4,786,505 to Lovgren et al.
discloses a pharmaceutical preparation containing omeprazole together with an alkaline reacting compound or an alkaline salt of omeprazole optionally together with an alkaline compound as a core material in a tablet formulation. The use of the alkaline material, which can be chosen from such substances as the sodium salt of carbonic acid, are used to form a "micro-pH" around each omeprazole particle to protect the omeprazole which is highly sensitive to acid pH. The powder mixture is then formulated to small beads, pellets, tablets and may be loaded into capsules by conventional pharmaceutical procedures. This formulation of omeprazole does not provide an omeprazole dosage form which can be enterally administered to a patient who may be unable and/or unwilling to swallow capsules, tablets or pellets, nor does it teach a convenient form which can be used to make an omeprazole or other proton pump inhibitor solution or suspension.
Several buffered omeprazole oral solutions/
suspensions have been disclosed. For example, Pilbrant et al., Development of an Oral Formulation of Omeprazole, SCAND. J. GASTROENT. 20 (Suppl. 108) : 113-120 (1985) teaches the use of micronized omeprazole suspended in water, methylcellulose and sodium bicarbonate in a concentration of approximately 1.2 mg omeprazole/ml suspension.
Andersson et el., Pharmacokinetics of Various Single Intravenous and Oral Doses of Omeprazole, EUR J. CLIN.
PHAZMACOL. 39: 195-197 (1990) discloses 10 mg, 40 mg, and 90 mg of oral omeprazole dissolved in PEG 400, sodium bicarbonate and water. The concentration of omeprazole cannot be determined as volumes of diluent are not disclosed. Nevertheless, it is apparent from this reference that multiple doses of sodium bicarbonate were administered with and after the omeprazole suspension.
Andersson et al., Pharmacokinetics and Bioavailability of Omeprazole After Single and Repeated Oral Administration in Healthy Subjects, BR. J. CLIN.
Omeprazole and lansoprazole are available for oral administration as enteric coated particles in gelatin capsules. Other proton pump inhibitors such as rabeprazole and pantoprazole are supplied as enteric coated tablets. The enteric dosage forms of the prior art have been employed because it is very important that these drugs not be exposed to gastric acid prior to absorption. Although these drugs are stable at alkaline pH, they are destroyed rapidly as pH falls (e.g., by gastric acid). Therefore, if the microencapsulation or the enteric coating is disrupted (e.g., trituration to compound a liquid, or chewing the capsule), the drug will be exposed to degradation by the gastric acid in the stomach.
5 The absence of an intravenous or oral liquid dosage form in the United States has limited the testing and use of omeprazole, lansoprazole and rabeprazole in the critical care patient population. Barie et al., Therapeutic Use of Omeprazole for Refractory Stress-10 induced Gastric Mucosal Hemorrhage, CRIT. CARE MED., 20:
899-901 (1992) have described the use of omeprazole enteric-coated pellets administered through a nasogastric tube to control gastrointestinal hemorrhage in a critical care patient with multi-organ failure. However, such 15 pellets are not ideal as they can aggregate and occlude such tubes, and they are not suitable for patients who cannot swallow the pellets. AM J. HEALTH-SYST PHARM 56:2327-30 (1999).
Proton pump inhibitors such as omeprazole represent an advantageous alternative to the use of H2-antagonists, antacids, and sucralfate as a treatment for complications related to stress-related mucosal damage. However, in their current form (capsules containing enteric-coated granules or enteric-coated tablets), proton pump inhibitors can be difficult or impossible to administer to patients who are either unwilling or unable to swallow tablets or capsules, such as critically ill patients, children, the elderly, and patients suffering from dysphagia. Therefore, it would be desirable to formulate a proton pump inhibitor solution or suspension which can be enterally delivered to a patient thereby providing the benefits of the proton pump inhibitor without. the drawbacks of the current enteric-coated solid dosage forms.
Omeprazole, the first proton pump inhibitor introduced into use, has been formulated in many different embodiments such as in a mixture of polyethylene glycols, adeps solidus and sodium lauryl sulfate in a soluble, basic amino acid to yield a formulation designed for administration in the rectum as taught by United States Patent No. 5,219,870 to Kim.
United States Patent No. 5,395,323 to Berglund ('323) discloses a device for mixing a pharmaceutical from a solid supply into a parenterally acceptable liquid form for parenteral administration to a patient. The '323 patent teaches the use of an omeprazole tablet which is placed in the device and dissolved by=normal saline, and infused parenterally into the patient. This device and method of parenteral infusion of omeprazole does not provide the omeprazole solution as an enteral product, nor is this omeprazole solution directly administered to the diseased or affected areas, namely the stomach and upper gastrointestinal tract, nor does this omeprazole formulation provide the immediate antacid effect of the present formulation.
United States Patent No. 4,786,505 to Lovgren et al.
discloses a pharmaceutical preparation containing omeprazole together with an alkaline reacting compound or an alkaline salt of omeprazole optionally together with an alkaline compound as a core material in a tablet formulation. The use of the alkaline material, which can be chosen from such substances as the sodium salt of carbonic acid, are used to form a "micro-pH" around each omeprazole particle to protect the omeprazole which is highly sensitive to acid pH. The powder mixture is then formulated to small beads, pellets, tablets and may be loaded into capsules by conventional pharmaceutical procedures. This formulation of omeprazole does not provide an omeprazole dosage form which can be enterally administered to a patient who may be unable and/or unwilling to swallow capsules, tablets or pellets, nor does it teach a convenient form which can be used to make an omeprazole or other proton pump inhibitor solution or suspension.
Several buffered omeprazole oral solutions/
suspensions have been disclosed. For example, Pilbrant et al., Development of an Oral Formulation of Omeprazole, SCAND. J. GASTROENT. 20 (Suppl. 108) : 113-120 (1985) teaches the use of micronized omeprazole suspended in water, methylcellulose and sodium bicarbonate in a concentration of approximately 1.2 mg omeprazole/ml suspension.
Andersson et el., Pharmacokinetics of Various Single Intravenous and Oral Doses of Omeprazole, EUR J. CLIN.
PHAZMACOL. 39: 195-197 (1990) discloses 10 mg, 40 mg, and 90 mg of oral omeprazole dissolved in PEG 400, sodium bicarbonate and water. The concentration of omeprazole cannot be determined as volumes of diluent are not disclosed. Nevertheless, it is apparent from this reference that multiple doses of sodium bicarbonate were administered with and after the omeprazole suspension.
Andersson et al., Pharmacokinetics and Bioavailability of Omeprazole After Single and Repeated Oral Administration in Healthy Subjects, BR. J. CLIN.
PHARMAC. 29: 557-63 (1990) teaches the oral use of 20 mg of omeprazole, which was dissolved in 20g of PEG 400 (sp.
gravity=1.14) and diluted with 50 ml of sodium bicarbonate, resulting in a concentration of 0.3 mg/ml.
Regardh et al., The Pharmacokinetics of Omeprazole in Humans-A Study of Single Intravenous and Oral Doses, THER. DRUG MON. 12: 163-72 (1990) discloses an oral dose of omeprazole at a concentration 0.4 mg/ml after the drug was dissolved in PEG 400, water and sodium bicarbonate.
Landahl et al., Pharmacokinetics Study of Omeprazole in Elderly Healthy Volunteers, CLIN.
PHARMACOKINETIcs 23 (6) : 469-476 (1992) teaches the use of an oral dose of 40 mg of omeprazole dissolved in PEG 400, sodium bicarbonate and water. This reference does not disclose the final concentrations utilized. Again, this reference teaches the multiple administration of sodium bicarbonate after the omeprazole solution.
Andersson et al., Pharmacokinetics of (14C]
Omeprazole in Patients with Liver Cirrhosis, CLIN.
PHARMACOKINETICS 24 (1) : 71-78 (1993) discloses the oral administration of 40 mg of omeprazole which was dissolved in PEG 400, water and sodium bicarbonate. This reference does not teach the final concentration of the omeprazole solution administered, although it emphasizes the need for concomitant sodium bicarbonate dosing to prevent acid degradation of the drug.
Nakagawa, et al., Lansoprazole: Phase I Study of lansoprazole (AG-1749) Anti-ulcer Agent, J. CLIN.
THERAPEUTICS & MED. (1991) teaches the oral administration of 30 mg of lansoprazole suspended in 100 ml of sodium bicarbonate (0.3 mg/ml), which was administered to patients through a nasogastric tube.
All of the buffered omeprazole solutions described in these references were administered orally, and were given to healthy subjects who were able to ingest the oral dose. In all of these studies, omeprazole was suspended in a solution including sodium bicarbonate, as a pH buffer, in order to protect the acid sensitive omeprazole during administration. In all of these studies, repeated administration of sodium bicarbonate both prior to, during, and following omeprazole administration were required in order to prevent acid degradation of the omeprazole given via the oral route of administration. In the above-cited studies, as much as 48 mmoles of sodium bicarbonate in 300 ml of water must be ingested for a single dose of omeprazole to be orally administered.
The buffered omeprazole solutions of the above cited prior art require the ingestion of large amounts of sodium bicarbonate and large volumes of water by repeated administration. This has been considered necessary to prevent acid degradation of the omeprazole. In the above-cited studies, basically healthy volunteers, rather than sick patients, were given dilute buffered omeprazole utilizing pre-dosing and post-dosing with large volumes of sodium bicarbonate.
The administration of large amounts of sodium bicarbonate can produce at least six significant adverse effects, which can dramatically reduce the efficacy of the omeprazole in patients and reduce the overall health of the patients. First, the fluid volumes of these dosing protocols would not be suitable for sick or critically ill patients who must receive multiple doses of omeprazole. The large volumes would result in the distention of the stomach and increase the likelihood of 5 complications in critically ill patients such as the aspiration of gastric contents.
Second, because bicarbonate is usually neutralized in the stomach or is absorbed, such that belching results, patients with gastroesophageal reflux may 10 exacerbate or worsen their reflux disease as the belching can cause upward movement of stomach acid (Brunton, Agents for the Control of Gastric Acidity and Treatment of Peptic Ulcers, IN, Goodman AG, et al. The Pharmacologic Basis of Therapeutics (New York, p. 907 15 (1990)).
Third, patients with conditions such as hypertension or heart failure are standardly advised to avoid the intake of excessive sodium as it can cause aggravation or exacerbation of their hypertensive conditions (Brunton, 20 supra). The ingestion of large amounts of sodium bicarbonate is inconsistent with this advice.
Fourth, patients with numerous conditions that typically accompany critical illness should avoid the intake of excessive sodium bicarbonate as it can cause metabolic alkalosis that can result in a serious worsening of the patient's condition.
Fifth, excessive antacid intake (such as sodium bicarbonate) can result in drug interactions that produce serious adverse effects. For example, by altering gastric and urinary pH, antacids can alter rates of drug dissolution and absorption, bioavailability, and renal elimination (Brunton, supra).
Sixth, because the buffered omeprazole solutions of the prior art require prolonged administration of sodium bicarbonate, it makes it difficult for patients to comply with the regimens of the prior art. For example, Pilbrant et al. disclose an oral omeprazole administration protocol calling for the administration to a subject who has been fasting for at least ten hours, a solution of 8 mmoles of sodium bicarbonate in 50 ml of water. Five minutes later, the subject ingests a suspension of 60 mg of omeprazole in 50 ml of water that also contains 8 mmoles of sodium bicarbonate. This is rinsed down with another 50 ml of 8 mmoles sodium bicarbonate solution. Ten minutes after the ingestion of the omeprazole dose, the subject ingests 50 ml of bicarbonate solution (8 mmoles). This is repeated at twenty minutes and thirty minutes post omeprazole dosing to yield a total of 48 mmoles of sodium bicarbonate and 300 ml of water in total which are ingested by the subject for a single omeprazole dose. Not only does this regimen require the ingestion of excessive amounts of bicarbonate and water, which is likely to be dangerous to some patients, it is unlikely that even healthy patients would comply with this regimen.
It is well documented that patients who are required to follow complex schedules for drug administration are non-compliant and, thus, the efficacy of the buffered omeprazole solutions of the prior art would be expected to be reduced due to non-compliance. Compliance has been found to be markedly reduced when patients are required to deviate from a schedule of one or two (usually morning and night) doses of a medication per day. The use of the prior art buffered omeprazole solutions which require administration protocols with numerous steps, different drugs (sodium bicarbonate + omeprazole + PEG 400 versus sodium bicarbonate alone), and specific time allotments between each stage of the total omeprazole regimen in order to achieve efficacious results is clearly in contrast with both current drug compliance theories and human nature.
The prior art (Pilbrant et al., 1985) teaches that the buffered omeprazole suspension can be stored at refrigerator temperatures for a week and deep frozen for a year while still maintaining 99% of its initial potency. It would be desirable to have an omeprazole or other proton pump inhibitor solution or suspension that could be stored at room temperature or in a refrigerator for periods of time which exceed those of the prior art while still maintaining 99% of the initial potency.
Additionally, it would be advantageous to have a form of the omeprazole and bicarbonate which can be utilized to instantly make the omeprazole solution/ suspension of the present invention which is supplied in a solid form which imparts the advantages of improved shelf-life at room temperature, lower cost to produce, less expensive shipping costs, and which is less expensive to store.
It would, therefore, be desirable to have a proton pump inhibitor formulation, which provides a cost-effective means for the treatment of the aforementioned conditions without the adverse effect profile of H2 receptor antagonists, antacids, and sucralfate. Further, it would be desirable to have a proton pump inhibitor formulation which is convenient to prepare and administer to patients unable to ingest solid dosage forms such as tablets or capsules, which is rapidly absorbed, and can be orally or enterally delivered as a liquid form or solid form. It is desirable that the liquid formulation not clog indwelling tubes, such as nasogastric tubes or other similar tubes, and which acts as an antacid immediately upon delivery.
It would further be advantageous to have a potentiator or enhancer of the pharmacological activity of the PPIs. It has been theorized by applicant that the PPIs can only exert their effects on H+,K+-ATPase when the parietal cells are active. Accordingly, applicant has identified, as discussed below, parietal cell activators that are administered to synergistically enhance the activity of the PPIs.
Additionally, the intravenous dosage forms of PPIs of the prior art are often administered in larger doses than the oral forms. For example, the typical adult IV
dose of omeprazole is greater than 100 mg/day whereas the adult oral dose is 20 to 40 mg/day. Large IV doses are necessary to achieve the desired pharmacologic effect because, it is believed, many of the parietal cells are in a resting phase (mostly inactive) during an IV dose given to patients who are not taking oral substances by mouth (npo) and, therefore, there is little active (that which is inserted into the secretory canalicular membrane) H+,K+-ATPase to inhibit. Because of the clear disparity in the amount of drug necessary for IV versus oral doses, it would be very advantageous to have compositions and methods for IV administration where.
significantly less drug is required.
SUMMARY OF THE INVENTION AND ADVANTAGES
The foregoing advantages and objects are accomplished by the present invention. The present invention provides an oral solution/suspension comprising a proton pump inhibitor and at least one buffering agent.
The PPI can be any substituted benzimidazole compound having H+,K+-ATPase inhibiting activity and being unstable to acid. Omeprazole and lansoprazole are the preferred PPIs for use in oral suspensions in concentrations of at least 1.2 mg/ml and 0.3 mg/ml, respectively. The liquid oral compositions can be further comprised of parietal cell activators, anti-foaming agents and/or flavoring agents.
The inventive composition can alternatively be formulated as a powder, tablet, suspension tablet, chewable tablet, capsule, effervescent powder, effervescent tablet, pellets and granules. Such dosage forms are advantageously devoid of any enteric coating or delayed or sustained-release delivery mechanisms, and comprise a PPI and at least one buffering agent to protect the PPI against acid degradation. Similar to the liquid dosage form, the dry forms can further include anti-foaming agents, parietal cell activators and flavoring agents.
Kits utilizing the inventive dry dosage forms are also disclosed herein to provide for the easy preparation of a liquid composition from the dry forms.
In accordance with the present invention, there is further provided a method of treating gastric acid disorders by administering to a patient a pharmaceutical composition comprising a proton pump inhibitor in a 5 pharmaceutically acceptable carrier and at least one buffering agent wherein the administering step comprises providing a patient with a single dose of the composition without requiring further administering of the buffering agent.
10 Additionally, the present invention relates to a method for enhancing the pharmacological activity of an intravenously administered proton pump inhibitor in which at least one parietal cell activator is orally administered to the patient before, during and/or after 15 the intravenous administration of the proton pump inhibitor.
BRIEF DESCRIPTION OF THE DRAWINGS
Other advantages of the present invention will be readily appreciated as the same becomes better understood 20 by reference to the following detailed description when considered in connection with the accompanying drawing wherein:
Figure 1 is a graph showing the effect of the omeprazole solution of the present invention on gastric 25 pH in patients at risk for upper gastrointestinal bleeding from stress-related mucosal damage;
Figure 2 is a flow chart illustrating a patient enrollment scheme;
26a Figure 3 is a bar graph illustrating gastric pH both pre- and post-administration of omeprazole solution according to the present invention; and Figure 4 is a graph illustrating the stomach pH values after the oral administration of both chocolate plus lansoprazole and lansoprazole alone.
Figure 5 is a pie graph illustrating the proportion of patients that had pH probe ref lux confirmation versus those that did not.
Figure 6 is a pie graph illustrating the proportion of patients that had endoscopy ref lux confirmation versus those that did not.
Figure 7 is a pie graph illustrating the proportion of patients that had prior ref lux therapy version those that did not.
Figure 8 is a pie graph illustrating the proportion of patients that showed various results of PPI therapy:
improved, no change, failed or stopped therapy.
DETAILED DESCRIPTION OF THE INVENTION
In general, the present invention relates to a pharmaceutical composition comprising a proton pump inhibitor and a buffering agent with or without one or more parietal cell activators. While the present invention may be embodied in many different forms, several specific embodiments are discussed herein with the understanding that the present disclosure is to be considered only as an exemplification of the principles of the invention, and it is not intended to limit the invention to the embodiments illustrated.
For the purposes of this application, the term "proton pump inhibitor" (PPI) shall mean any substituted 26b benzimidazole possessing pharmacological activity as an inhibitor of H+, K+ -ATPase, including, but not limited to, omeprazole, lansoprazole, pantoprazole, rabeprazole, dontoprazole, perprazole (s-omeprazole magnesium) , habeprazole, ransoprazole, pariprazole, and leminoprazole in neutral form or a salt form, a single enantiomer or isomer or other derivative or an alkaline salt of an enantiomer of the same.
The inventive composition comprises dry formulations, solutions and/or suspensions of the proton pump inhibitors.
As used herein, the terms "suspension"
and "solution" are interchangeable with each other and mean solutions and/or suspensions of the substituted benzimidazoles.
After absorption of the PPI (or administration intravenously) the drug is delivered via the bloodstream to various tissues and cells of the body including the parietal cells. Research suggests that the PPI is in the form of a weak base and is non-ionized and thereby freely passes through physiologic membranes, including the cellular membranes of the parietal cell. It is believed that the non-ionized PPI moves into the acid-secreting portion of the parietal cell, the secretory canaliculus.
Once in the acidic millieu of the secretory canaliculus, the PPI is apparently protonated (ionized) and converted to the active form of the drug. Generally, ionized proton pump inhibitors are membrane impermeable and form disulfide covalent bonds with cysteine residues in the alpha subunit of the proton pump.
The inventive pharmaceutical composition comprising a proton pump inhibitor such as omeprazole, lansoprazole or other proton pump inhibitor and derivatives thereof can be used for the treatment or prevention of gastrointestinal conditions including, but not limited to, active duodenal ulcers, gastric ulcers, gastroesophageal reflux disease (GERD), severe erosive esophagitis, poorly responsive systematic GERD, and pathological hypersecretory conditions such as Zollinger Ellison Syndrome. Treatment of these conditions is accomplished by administering to a patient an effective amount of the pharmaceutical composition according to the present invention.
The proton pump inhibitor is administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, and other factors known to medical practitioners. The term "effective amount" means, consistent with considerations known in the art, the amount of PPI or other agent effective to achieve a pharmacologic effect or therapeutic improvement without undue adverse side effects, including but not limited to, raising of gastric pH, reduced gastrointestinal bleeding, reduction in the need for blood transfusion, improved survival rate, more rapid recovery, parietal cell activation and H+,K+-ATPase inhibition or improvement or elimination of symptoms, and other indicators as are selected as appropriate measures by those skilled in the art.
The dosage range of omeprazole or other proton pump inhibitors such as substituted benzimidazoles and derivatives thereof can range from approximately < 2 mg/day to approximately 300 mg/day. The standard approximate daily oral dosage is typically 20 mg of omeprazole, 30 mg lansoprazole, 40 mg pantoprazole, 20 mg rabeprazole, and the pharmacologically equivalent doses of the following PPIs: habeprazole, pariprazole, dontoprazole, ransoprazole, perprazole (s-omeprazole magnesium), and leminoprazole.
A pharmaceutical formulation of the proton pump inhibitors utilized in the present invention can be administered orally or enterally to the patient. This can be accomplished, for example, by administering the solution via a nasogastric (ng) tube or other indwelling tubes placed in the GI tract. In order to avoid the critical disadvantages associated with administering large amounts of sodium bicarbonate, the PPI solution of the present invention is administered in a single dose which does not require any further administration of bicarbonate, or large amounts of bicarbonate, or other buffer following the administration of the PPI solution, nor does it require a large amount of bicarbonate or buffer in total. That is, unlike the prior art PPI
solutions and administration protocols outlined above, the formulation of the present invention is given in a single dose which does not require administration of bicarbonate either before or after administration of the PPI. The present invention eliminates the need to pre-or post-dose with additional volumes of water and sodium bicarbonate. The amount of bicarbonate administered via the single dose administration of the present invention is less than the amount of bicarbonate administered as taught in the prior art references cited above.
Preparation of Oral Liquids The liquid oral pharmaceutical composition of the present invention is prepared by mixing omeprazole (Prilosec AstraZeneca) or other proton pump inhibitor or derivatives thereof with a solution including at least one buffering agent (with or without a parietal cell activator, as discussed below) Preferably, omeprazole or other proton pump inhibitor, which can be obtained from a capsule or tablet or obtained from the solution for parenteral administration, is mixed with a sodium bicarbonate solution to achieve a desired final omeprazole (or other PPI) concentration. As an example, the concentration of omeprazole in the solution can range from approximately 0.4 mg/ml to approximately 10.0 mg/ml.
The preferred concentration for the omeprazole in the 5 solution ranges from approximately 1.0 mg/ml to approximately 4.0 mg/ml, with 2.0 mg/ml being the standard concentration. For lansoprazole (Prevacid TAP
Pharmaceuticals, Inc.) the concentration can range from about 0.3 mg/ml to 10 mg/ml with the preferred 10 concentration being about 3 mg/ml.
Although sodium bicarbonate is the preferred buffering agent employed in the present invention to protect the PPI against acid degradation, many other weak and strong bases (and mixtures thereof) can be utilized.
15 For the purposes of this application, "buffering agent"
shall mean any pharmaceutically appropriate weak base or strong base (and mixtures thereof) that, when formulated or delivered with (e.g., before, during and/or after) the PPI, functions to substantially prevent or inhibit the 20 acid degradation of the PPI by gastric acid sufficient to preserve the bioavailability of the PPI administered.
The buffering agent is administered in an amount sufficient to substantially achieve the above functionality. Therefore, the buffering agent of the 25 present invention, when in the presence of gastric acid, must only elevate the pH of the stomach sufficiently to achieve adequate bioavailability of the drug to effect therapeutic action.
Accordingly, examples of buffering agents include, 30 but are not limited to, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, magnesium lactate, magnesium glucomate, aluminum hydroxide, aluminum hydroxide/ sodium bicarbonate coprecipitate, a mixture of an amino acid and a buffer, a mixture of aluminum glycinate and a buffer, a mixture of an acid salt of an amino acid and a buffer, and a mixture of an alkali salt of an amino acid and a buffer. Additional buffering agents include sodium citrate, sodium tartarate, sodium acetate, sodium carbonate, sodium polyphosphate, potassium polyphosphate, sodium pyrophosphate, potassium pyrophosphate, disodium hydrogenphosphate, dipotassium hydrogenphosphate, trisodium phosphate, tripotassium phosphate, sodium acetate, potassium metaphosphate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium silicate, calcium acetate, calcium glycerophosphate, calcium cholride, calcium hydroxide, calcium lactate, calcium carbonate, calcium bicarbonate, and other calcium salts.
The pharmaceutically acceptable carrier of the oral liquid preferably comprises a bicarbonate salt of Group IA metal as buffering agent, and can be prepared by mixing the bicarbonate salt of the Group IA metal, preferably sodium bicarbonate, with water. The concentration of the bicarbonate salt of the Group IA
metal in the composition generally ranges from approximately 5.0-percent to approximately 60.0 percent.
Preferably, the concentration of the bicarbonate salt of the Group IA metal ranges from approximately 7.5 percent to approximately 10.0 percent. In a preferred embodiment of the present invention, sodium bicarbonate is the preferred salt and is present in a concentration of approximately 8.4 percent.
More specifically, the amount of sodium bicarbonate 8.4% used in the solution of the present invention is approximately 1 mEq (or mmole) sodium bicarbonate per 2 mg omeprazole, with a range of approximately 0.2 mEq (mmole) to 5 mEq (mmole) per 2 mg of omeprazole.
In a preferred embodiment of the present invention, enterically-coated omeprazole particles are obtained from delayed release capsules (Prilosec AstraZeneca).
Alternatively, omeprazole powder can be used. The enterically coated omeprazole particles are mixed with a sodium bicarbonate (NaHCO3) solution (8.4%), which dissolves the enteric coating and forms an omeprazole solution. The omeprazole solution has pharmacokinetic advantages over standard time-released omeprazole capsules, including: (a) more rapid drug absorbance time (about 10 to 60 minutes) following administration for the omeprazole solution versus about 1 to 3 hours following administration for the enteric-coated pellets; (b) the NaHCO3 solution protects the omeprazole from acid degradation prior to absorption; (c) the NaHC03 acts as an antacid while the omeprazole is being absorbed; and (d) the solution can be administered through an existing indwelling tube without clogging, for example, nasogastric or other feeding tubes (jejunal or duodenal), including small bore needle catheter feeding tubes.
Additionally, various additives can be incorporated into the inventive solution to enhance its stability, sterility and isotonicity. Further, antimicrobial preservatives, antioxidants, chelating agents, and additional buffers can be added, such as ambicin.
However, microbiological evidence shows that this formulation inherently possesses antimicrobial and antifungal activity. Various antibacterial and antifungal agents such as, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like can enhance prevention of the action of microorganisms.
In many cases, it would be desirable to include isotonic agents, for example, sugars, sodium chloride, and the like. Additionally, thickening agents such as methylcellulose are desirable to use in order to reduce the settling of the omeprazole or other PPI or derivatives thereof from the suspension.
The liquid oral solution may further comprise flavoring agents (e.g., chocolate, root beer or watermelon) or other flavorings stable at pH 7 to 9, anti-foaming agents (e.g., simethicone 80 mg, Mylicon") and parietal cell activators (discussed below).
The present invention further includes a pharmaceutical composition comprising omeprazole or other proton pump inhibitor and derivatives thereof and at least one buffering agent in a form convenient for storage, whereby when the composition is placed into an aqueous solution, the composition dissolves yielding a suspension suitable for enteral administration to a subject. The pharmaceutical composition is in a solid form prior to dissolution or suspension in an aqueous solution. The omeprazole or other PPIs and buffering agent can be formed into a tablet, capsule, pellets or granules, by methods well known to those skilled in the art.
The resultant omeprazole solution is stable at room temperature for several weeks and inhibits the growth of bacteria or fungi as shown in Example X below. Indeed, as established in Example XIII, the solution. maintains greater than 90% of its potency for 12 months. By providing a pharmaceutical composition including omeprazole or other PPI with buffer in a solid form, which can be later dissolved or suspended in a prescribed amount of aqueous solution to yield the desired concentration of omeprazole and buffer, the cost of production, shipping, and storage are greatly reduced as no liquids are shipped (reducing weight and cost), and there is no need to refrigerate the solid form of the composition or the solution. Once mixed the resultant solution can then be used to provide dosages for a single patient over a course of time, or for several patients.
Tablets and Other Solid Dosage Forms As mentioned above, the formulations of the present invention can also be manufactured in concentrated forms, such as tablets, suspension tablets and effervescent tablets or powders, such that upon reaction with water or other diluent, the aqueous form of the present invention is produced for oral, enteral or parenteral administration.
The present pharmaceutical tablets or other solid dosage forms disintegrate rapidly in aqueous media and form an aqueous solution of the PPI and buffering agent with minimal shaking or agitation. Such tablets utilize commonly available materials and achieve these and other desirable objectives. The tablets or other solid dosage forms of this invention provide for precise dosing of a PPI that may be of low solubility in water. They are particularly useful for medicating children and the elderly and others in a way that is much more acceptable than swallowing or chewing a tablet. The tablets that are produced have low friability, making - them easily transportable.
5 The term "suspension tablets" as used herein refers to compressed tablets which rapidly disintegrate after they are placed in water, and are readily dispersible to form a suspension containing a precise dosage of the PPI.
The suspension tablets of this invention comprise, in 10 combination, a therapeutic amount of a PPI, a buffering agent, and a disintegrant. More particularly, the suspension tablets comprise about 20 mg omeprazole and about 1-20 mEq of sodium bicarbonate.
Croscarmellose sodium is a known disintegrant for 15 tablet formulations, and is available from FMC
Corporation, Philadelphia, Pa. under the trademark Ac-Di-Sol . It is frequently blended in compressed tableting formulations either alone or in combination with microcrystalline cellulose to achieve rapid 20 disintegration of the tablet.
Microcrystalline cellulose, alone or coprocessed with other ingredients, is also a common additive for compressed tablets and is well known for its ability to improve compressibility of difficult to compress tablet 25 materials. It is commercially available under the Avicel trademark. Two different Avicel products are utilized, Avicel PH which is microcrystalline cellulose, and Avicel AC-815, a coprocessed spray dried residue of microcrystalline cellulose and a calcium, sodium alginate 30 complex in which the calcium to sodium ratio is in the range of about 0.40:1 to about 2.5:1. While AC-815 is comprised of 85% microcrystalline cellulose (MCC) and 15%
of a calcium, sodium alginate complex, for purposes of the present invention this ratio may be varied from about 75% MCC to 25% alginate up to about 95% MCC to 5%
alginate. Depending on the particular formulation and active ingredient, these two components may be present in approximately equal amounts or in unequal amounts, and either may comprise from about 10% to about 50% by weight of the tablet.
The suspension tablet composition may, in addition to the ingredients described above, contain other ingredients often used in pharmaceutical tablets, including flavoring agents, sweetening agents, flow aids, lubricants or other common tablet adjuvants, as will be apparent to those skilled in the art. Other disintegrants, such as crospovidone and sodium starch glycolate may be employed, although croscarmellose sodium is preferred.
In addition to the suspension tablet, the solid formulation of the present invention can be in the form of a powder, a tablet, a capsule, or other suitable solid dosage form (e.g., a pelleted form or an effervescing tablet, troche or powder), which creates the inventive solution in the presence of diluent or upon ingestion.
For example, the water in the stomach secretions or water which is used to swallow the solid dosage form can serve as the aqueous diluent.
Compressed tablets are solid dosage forms prepared by compacting a formulation containing an active ingredient and excipients selected to aid the processing and improve the properties of the product. The term "compressed tablet" generally refers to a plain, uncoated tablet for oral ingestion, prepared by a single compression or by pre-compaction tapping followed by a final compression.
Such solid forms can be manufactured as is well known in the art. Tablet forms can include, for example, one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmaceutically compatible carriers. The manufacturing processes may employ one, or a combination of, four established methods: (1) dry mixing; (2) direct compression; (3) milling; and (4) non-aqueous granulation. Lachman et al., The Theory and Practice of Industrial Pharmacy (1986). Such tablets may also comprise film coatings, which preferably dissolve upon oral ingestion or upon contact with diluent.
Non-limiting examples of buffering agents which could be utilized in such tablets include sodium bicarbonate, alkali earth metal salts such as calcium carbonate, calcium hydroxide, calcium lactate, calcium glycerophosphate, calcium acetate, magnesium carbonate, magnesium hydroxide, magnesium silicate, magnesium aluminate, aluminum hydroxide or aluminum magnesium hydroxide. A particular alkali earth metal salt useful for making an antacid tablet is calcium carbonate.
An example of a low density alkali earth metal salt useful for making the granules according to the present invention is extra light calcium carbonate available from Specialty Minerals Inc., Adams, Me. The density of the extra light calcium carbonate, prior to being processed according to the present invention, is about 0.37 gm/ml.
The granules used to make the tablets according to one embodiment of the present invention are made by either spray drying or pre-compacting the raw materials.
Prior to being processed into granules by either process, the density of the alkali earth metal salts useful in the present invention ranges from about 0.3 gm/ml to about 0.55 gm/ml, preferably about 0.35 gm/ml to about 0.45 gm/ml, even more preferably about 0.37 gm/ml to about 0.42 gm/ml.
Additionally, the present invention can be manufactured by utilizing micronized compounds in place of the granules or powder. Micronization is the process by which solid drug particles are reduced in size. Since the dissolution rate is directly proportional to the surface area of the solid, and reducing the particle size increases the surface area, reducing the particle size increases the dissolution rate. Although micronization results in increased surface area possibly causing particle aggregation, which can negate the benefit of micronization and is an expensive manufacturing step, it does have the significant benefit of increasing the dissolution rate of relatively water insoluble drugs, such as omeprazole and other proton pump inhibitors.
The present invention also relates to administration kits to ease mixing and administration. A month's supply of powder or tablets, for example, can be packaged with a separate month's supply of diluent, and a re-usable plastic dosing cup. More specifically, the package could..
contain thirty (30) suspension tablets containing 20 mg omeprazole each, 1 L sodium bicarbonate 8.4% solution, and a 30 ml dose cup. The user places the tablet in the empty dose cup, fills it to the 30 ml mark with the sodium bicarbonate, waits for it to dissolve (gentle stirring or agitation may be used), and then ingests the suspension. One skilled in the art will appreciate that such kits may contain many different variations of the above components. For example, if the tablets or powder are compounded to contain PPI and buffering agent, the diluent may be water, sodium bicarbonate, or other compatible diluent, and the dose cup can be larger than 30 ml in size. Also, such kits can be packaged in unit dose form, or as weekly, monthly, or yearly kits, etc.
Although the tablets of this invention are primarily intended as a suspension dosage form, the granulations used to form the tablet may also be used to form rapidly disintegrating chewable tablets, lozenges, troches, or swallowable tablets. Therefore, the intermediate formulations as well as the process for preparing them provide additional novel aspects of the present invention.
Effervescent tablets and powders are also prepared in accordance with the present invention. Effervescent salts have been used to disperse medicines in water for oral administration. Effervescent salts are granules or coarse powders containing a medicinal agent in a dry mixture, usually composed of sodium bicarbonate, citric acid and tartaric acid. When the salts are added to water, the acids and the base react to liberate carbon dioxide gas, thereby causing "effervescence."
The choice of ingredients for effervescent granules depends both upon the requirements of the manufacturing 5 process and the necessity of making a preparation which dissolves readily in water. The two required ingredients are at least one acid and at least one base. The base releases carbon dioxide upon reaction with the acid.
Examples of such acids include, but are not limited to, 10 tartaric acid and citric acid. Preferably, the acid is a combination of both tartaric acid and citric acid.
Examples of bases include, but are not limited to, sodium carbonate, potassium bicarbonate and sodium bicarbonate.
Preferably, the base is sodium bicarbonate, and the 15 effervescent combination has a pH of about 6.0 or higher.
Effervescent salts preferably include the following ingredients, which actually produce the effervescence:
sodium bicarbonate, citric acid and tartaric acid. When added to water the acids and base react to liberate 20 carbon dioxide, resulting in effervescence. It should be noted that any acid-base combination which results in the liberation of carbon dioxide could be used in place of the combination of sodium bicarbonate and citric and tartaric acids, as long as the ingredients were suitable 25 for pharmaceutical use, and result in a pH of about 6.0 or higher.
It should be noted that it requires 3 molecules of NaHCO3 (sodium bicarbonate) to neutralize 1 molecule of citric acid and 2 molecules of NaHCO3 to neutralize 1 30 molecule of tartaric acid. It is desired that the approximate ratio of ingredients is as follows Citric Acid:Tartaric Acid:Sodium Bicarbonate = 1:2:3.44 (by weight). This ratio can be varied and continue to produce an effective release of carbon dioxide. For example, ratios of about 1:0:3 or 0:1:2 are also effective.
The method of preparation of the effervescent granules of the present invention employs three basic processes: wet and dry granulation, and fusion. The fusion method is used for the preparation of most commercial effervescent powders. It should be noted that although these methods are intended for the preparation of granules, the formulations of effervescent salts of the present invention could also be prepared as tablets, according to well known prior art technology for tablet preparation.
Wet granulation is the oldest method of granule preparation. The individual steps in the wet granulation process of tablet preparation include milling and sieving of the ingredients; dry powder mixing; wet massing;
granulation; and final grinding.
Dry granulation involves compressing a powder mixture into a rough tablet or "slug" on a heavy-duty rotary tablet press. The slugs are then broken up into granular particles by a grinding operation, usually by passage through an oscillation granulator. The individual steps include mixing of the powders; compressing (slugging); and grinding (slug reduction or granulation).
No wet binder or moisture is involved in any of the steps.
The fusion method is the most preferred method for preparing the granules of the present invention. In this method, the compressing (slugging) step of the dry granulation process is eliminated. Instead, the powders are heated in an oven or other suitable source of heat.
PPIs Administered with Parietal Cell Activators Applicant has unexpectedly discovered that certain compounds, such as chocolate, calcium and sodium bicarbonate and other alkaline substances, stimulate the parietal cells and enhance the pharmacologic activity of the PPI administered. For the purposes of this application, "parietal cell activator" shall mean any compound or mixture of compounds possessing such stimulatory effect including, but not limited to, chocolate, sodium bicarbonate, calcium (e.g., calcium carbonate, calcium gluconate, calcium hydroxide, calcium acetate and calcium glycerophosphate), peppermint oil, spearmint oil, coffee, tea and colas (even if decaffeinated), caffeine, theophylline, theobromine, and amino acids (particularly aromatic amino acids such as phenylalanine and tryptophan) and combinations thereof and the salts thereof.
Such parietal cell activators are administered in an amount sufficient to produce the desired stimulatory effect without causing untoward side effects to patients.
For example, chocolate, as raw cocoa, is administered in an amount of about 5 mg to 2.5 g per 20 mg dose of omeprazole (or equivalent pharmacologic dose of other PPI). The dose of activator administered to a mammal, particularly a human, in the context of the present invention should be sufficient to effect a therapeutic response (i.e., enhanced effect of PPI) over a reasonable time frame. The dose will be determined by the strength of the particular compositions employed and the condition of the person, as well as the body weight of the person to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side effects that might accompany the administration of a particular composition.
The approximate effective ranges for various parietal cell activators per 20 mg dose of omeprazole (or equivalent dose of other PPI) are:
Chocolate (raw cocoa) - 5 mg to 2.5 g Sodium bicarbonate - 7 mEq to 25 mEq Calcium carbonate - 1 mg to 1.5 Gm Calcium gluconate - 1 mg to 1.5 Gm Calcium lactate - 1 mg to 1.5 Gm Calcium hydroxide - 1 mg to 1.5 Gm Calcium acetate - 0.5 mg to 1.5 Gm Calcium glycerophosphate - 0.5 mg to 1.5 Gm Peppermint oil - (powdered form) 1 mg to 1 Gm Spearmint oil - (powdered form) 1 mg to 1 Gm Coffee - 20 ml to 240 ml Tea - 20 ml to 240 ml Cola - 20 ml to 240 ml Caffeine - 0.5 mg to 1.5GM
Theophylline - 0.5 mg to 1.5GM
Theobromine - 0.5 mg to 1.5GM
Phenylalanine - 0.5 mg to 1.5GM
Tryptophan - 0.5 mg to 1.5GM
Pharmaceutically acceptable carriers are well-known to those who are skilled in the art. The choice of carrier will be determined, in part, both by the particular composition and by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical compositions of the present invention.
Example I
A. Fast Disintegrating Suspension Tablets of Omeprazole.
A fast disintegrating tablet is compounded as follows: Croscarmellose sodium 300 g is added to the vortex of a rapidly stirred beaker containing 3.0 kg of deionized water. This slurry is mixed for 10 minutes.
Omeprazole 90 g (powdered) is placed in the bowl of a Hobart mixer. After mixing, the slurry of croscarmellose sodium is added slowly to the omeprazole in the mixer bowl, forming a granulation which is then placed in trays and dried at 70 C for three hours. The dry granulation is then placed in a blender, and to it is added 1, 500 g of Avicel AC-815 (85% microcrystalline cellulose coprocessed with 15% of a calcium, sodium alginate complex) and 1,500 g of Avicel PH-302 (microcrystalline cellulose). After this mixture is thoroughly blended, 35 g of magnesium stearate is added and mixed for 5 minutes.
The resulting mixture is compressed into tablets on a standard tablet press (Hata HS). These tablets have an average weight of about 1.5 g, and contain about 20 mg omeprazole. These tablets have low friability and rapid disintegration time. This formulation may be dissolved in an aqueous solution containing a buffering agent for immediate oral administration.
Alternatively, the suspension tablet may be swallowed whole with a solution of buffering agent. In 5 both cases, the preferred solution is sodium bicarbonate 8.4%. As a further alternative, sodium bicarbonate powder (about 975 mg per 20 mg dose of omeprazole (or an equipotent amount of other PPI) is compounded directly into the tablet. Such tablets are then dissolved in 10 water or sodium bicarbonate 8.4%, or swallowed whole with an aqueous diluent.
B. 10 mg Tablet Formula.
Omeprazole 10 mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) 15 Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 250mg Aspartame calcium (phenylalanine) 0.5mg Colloidal silicon dioxide 12mg 20 Corn starch 15 mg Croscarmellose sodium 12 mg Dextrose 10mg Peppermint 3mg Maltodextrin 3mg 25 Mannitol 3mg Pregelatinized starch 3mg C. 20 mg Tablet Formula.
Omeprazole 20mg (or lansoprazole 30 or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 250mg Aspartame calcium (phenylalanine) 0.5mg Colloidal silicon dioxide 12mg Corn starch 15 mg Croscarmellose sodium 12 mg Dextrose 10mg Calcium hydroxide 10mg Peppermint 3mg Maltodextrin 3mg Mannitol 3mg Pregelatinized starch 3mg D. Tablet for Rapid Dissolution.
Omeprazole 20mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 500mg Calcium hydroxide 50mg Croscarmellose sodium 12 mg E. Powder for Reconstitution for Oral Use (or per ng tube).
Omeprazole 20mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 500mg Calcium hydroxide 50mg Glycerine 200mg F. 10 mg Tablet Formula.
Omeprazole 10mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 250mg Polyethylene glycol 20mg Croscarmellose sodium 12 mg Peppermint 3mg Magnesium silicate 1mg Magnesium stearate 1mg G. 10 mg Tablet Formula.
Omeprazole 10mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 200mg Calcium glycerophosphate 200mg Sodium bicarbonate 400mg Croscarmellose sodium 12 mg Pregelatinized starch 3mg Example II
Standard Tablet of PPI and Buffering Agent.
Ten (10) tablets were prepared using a standard tablet press, each tablet comprising about 20 mg omeprazole and about 975 mg sodium bicarbonate uniformly dispersed throughout the tablet. To test the dissolution rate of the tablets, each was added to 60 ml of water.
Using previously prepared liquid omeprazole/sodium bicarbonate solution as a visual comparator, it was observed that each tablet was completely dispersed in under three (3) minutes.
Another study using the tablets compounded according to this Example evaluated the bioactivity of the tablets in five (5) adult critical care patients. Each subject was administered one tablet via ng with a small amount of water, and the pH of ng aspirate was monitored using paper measure. The pH for each patient was evaluated for 6 hours and remained above 4, thus demonstrating the therapeutic benefit of the tablets in these patients.
Tablets were also prepared by boring out the center of sodium bicarbonate USP 975 mg tablets with a knife.
Most of the removed sodium bicarbonate powder was then triturated with the contents of a 20 mg Prilosec capsule and the resulting mixture was then packed into the hole in the tablet and sealed with glycerin.
Example III
PPI Central Core Tablet Tablets are prepared in a two-step process. First, about 20 mg of omeprazole is formed into a tablet as is known in the art to be used as a central core. Second, about 975 mg sodium bicarbonate USP is used to uniformly surround the central core to form an outer protective cover of sodium bicarbonate. The central core and outer cover are both prepared using standard binders and other excipients to create a finished, pharmaceutically acceptable tablet.
Example IV
Effervescent Tablets and Granules The granules of one 20mg Prilosec capsule were emptied into a mortar and triturated with a pestle to a fine powder. The omeprazole powder was then geometrically diluted with about 958 mg sodium bicarbonate USP, about 832 mg citric acid USP and about 312 mg potassium carbonate USP to form a homogeneous mixture of effervescent omeprazole powder. This powder was then added to about 60 ml of water whereupon the powder reacted with the water to create effervescence. A
bubbling solution resulted of omeprazole and principally the antacids sodium citrate and potassium citrate. The solution was then administered orally to one adult male subject and gastric pH was measured using pHydrion paper.
The results were as follows:
Time Interval pH Measured Immediately prior to dose 2 1 hour post dose 7 2 hours post dose 6 4 hours post dose 6 6 hours post dose 5 8 hours post dose 4 One skilled in the art of pharmaceutical compounding will appreciate that bulk powders can be manufactured using the above ratios of ingredients, and that the powder can be pressed into tablets using standard binders and excipients. Such tablets are then mixed with water to activate the effervescent agents and create the desired solution. In addition, lansoprazole 30 mg (or an equipotent dose of other PPI) can be substituted for omeprazole.
The effervescent powder and tablets can alternatively be formulated by employing the above mixture but adding an additional 200 mg of sodium bicarbonate USP to create a resulting solution with a 5 higher pH. Further, instead of the excess 200 mg of sodium bicarbonate, 100 mg of calcium glycerophosphate or 100 mg of calcium lactate can be employed. Combinations of the same can also added.
Example V
Parietal Cell Activator "Choco-BaseTMFormulations and Efficacy.
Children are affected by gastroesophageal reflux disease (GERD) with atypical manifestations. Many of these atypical symptoms are difficult to control with traditional drugs such as H2-antagonists, cisapride, or sucralfate. PPIs are more effective in controlling gastric pH and the symptoms of GERD than other agents.
However, PPIs are not available in dosage forms that are easy to administer to young children. To address this problem, applicant employed omeprazole or lansoprazole in a buffered chocolate suspension (Choco-Base, in children with manifestations of GERD.
Applicant performed a retrospective evaluation of children with GERD referred to the University of Missouri-Columbia from 1995 to 1998 who received treatment with the experimental omeprazole or lansoprazole Choco-Base suspension formulated in accordance with Formulation 1 stated below. Data were included on all patients with follow up information sufficient to draw conclusions about pre/post treatment (usually > 6 months). There were 25 patients who met the criteria for this evaluation. Age range was several weeks to greater than 5 years. Most patients had a history of numerous unsuccessful attempts at ameliorating the effects of GERD. Medication histories indicated many trials of various drugs.
The primary investigator reviewed all charts for uniformity of data collection. When insufficient data was available in the University charts, attempts were made to review charts in the local primary care physicians' offices for follow-up data. If information was still unavailable to review, attempts were made to contact family for follow-up. If data were still unavailable the patients were considered inevaluable.
Patient charts were reviewed in detail. Data noted were date of commencement of therapy, date of termination of therapy and any reason for termination other than response to treatment. Patient demographics were also recorded, as were any other medical illnesses. Medical illnesses were divided grossly into those that are associated with or exacerbate GERD and those that do not.
Patient charts were examined for evidence of response to therapy. As this was largely a referral population, and a retrospective review, quantification of symptomatology based on scores, office visits and ED
visits was difficult. Therefore, applicant examined charts for evidence of an overall change in patient symptoms. In specific, any data to point towards improvement, decline or lack of change were examined and recorded.
Results.
A total of 33 pediatric patients to date have been treated with the above-described suspension at the University of Missouri - Columbia. Of the 33 patients, 9 were excluded from the study, all based upon insufficient data about commencement, duration or outcome in treatment with PPI therapy. This left 24 patients with enough data to draw conclusions.
Of the 24 remaining patients, 18 were males and 6 females. Ages at implementation of PPI therapy ranged from 2 weeks of age to 9 years old. Median age at start of therapy was 26.5 months [mean of 37 mo.] Early on, reflux was usually documented by endoscopy and confirmed by pH probe. Eventually, pH probe was dropped and endoscopy was the sole method for documenting reflux, usually at the time of another surgery (most often T-tubes or adenoidectomy). Seven patients had pH probe confirmation of GERD, whereas 18 had endoscopic confirmation of reflux including all eight who had pH
probing done(See Figures 5 and 6). Ref lux was diagnosed on endoscopy most commonly by cobblestoning of the tracheal wall, with laryngeal and pharyngeal cobblestoning as findings in a few patients. Six patients had neither pH nor endoscopic documentation of GERD, but were tried on PPI therapy based on symptomatology alone.
Past medical history was identified in each chart.
Ten patients had reflux-associated diagnoses. These were most commonly cerebral palsy, prematurity and Pierre Robin sequence. Other diagnoses were Charcot-Marie-Tooth disease, Velocardiofacial syndrome, Down syndrome and De George's syndrome. Non-reflux medical history was also identified and recorded separately (See Table 2 below).
Patients were, in general, referral patients from local family practice clinics, pediatricians, or other pediatric health care professionals. Most patients were referred to ENT for upper airway problems, sinusitis, or recurrent/chronic otitis media that had been refractory to medical therapy as reported by the primary care physician. Symptoms and signs most commonly found in these patients were recorded and tallied. All signs and symptoms were broken down into six major categories: (1) nasal; (2) otologic; (3) respiratory; (4) gastrointestinal; (5) sleep-related; and (6) other. The most common problems fell into one or all of the first 3 categories (See Table 1 below).
Most patients had been treated in the past with medical therapy in the form of antibiotics, steroids, asthma medications and other diagnosis-appropriate therapies. In addition, nine of the patients had been on reflux therapy in the past, most commonly in the form of conservative therapy such as head of bed elevation 30 , avoidance of evening snacks, avoidance of caffeinated beverages as well as cisapride and ranitidine (See Figure 7).
The proton pump inhibitor suspension used in this group of patients was Choco-Base suspension of either lansoprazole or omeprazole. The dosing was very uniform, with patients receiving doses of either 10 or 20 mg of omeprazole and 23 mg of lansoprazole. Initially, in April of 1996 when therapy was first instituted 10 mg of omeprazole was used. There were 3 patients in this early phase who were treated initially with 10 mg po qd of omeprazole. All three subsequently were increased to either 20 mg po qd of omeprazole or 23 mg po qd of lansoprazole. All remaining patients were given either the 20 mg omeprazole or the 23 mg lansoprazole treatment qd, except in one case, where 30 mg of lansoprazole was used. Patients were instructed to take their doses once per day, preferably at night in most cases. Suspensions were all filled through the University of Missouri Pharmacy at Green Meadows. This allowed for tracking of usage through refill data.
Most patients responded favorably to and tolerated the once daily dosing of Choco-Base proton pump inhibitor 5 suspension. Two patients had documented adverse effects associated with the use of the PPI suspension. In one patient, the mother reported increased burping up and dyspepsia, which was thought to be related to treatment failure. The other patient had small amounts of bloody 10 stools per mother. This patient never had his stool tested, as his bloody stool promptly resolved upon cessation of therapy, with no further sequellae. The other 23 patients had no documented adverse effects.
Patients were categorized based on review of clinic 15 notes and chart review into general categories: (1) improved; (2) unchanged; (3) failed; and (4) inconclusive. Of 24 patients with sufficient data for follow up, 18 showed improvement in symptomatology upon commencement of PPI therapy [72%]. The seven who did not 20 respond were analyzed and grouped. Three showed no change in symptomatology and clinical findings while on therapy, one complained of worsening symptoms while on therapy, one patient had therapy as prophylaxis for surgery, and two stopped therapy just: after its commencement (see 25 Figure 8). Setting aside the cases in which therapy was stopped before conclusions could be drawn and the case in which PPI therapy was for purely prophylactic reasons, leaves (17/21) 81% of patients that responded to Choco-Base suspension. This means that 19% (4/21) of patients 30 received no apparent benefit from PPI therapy. Of all these patients, only 4% complained of worsening symptoms and the side effects were 4% (1/21) and were mild bloody stool that completely resolved upon cessation of therapy.
Discussion.
GERD in the pediatric population is relatively common, affecting almost 50% of newborns. Even though most infants outgrow physiologic reflux, pathologic reflux still affects approximately 5% of all children throughout childhood. Recently considerable data has pointed to reflux as an etiologic factor in extra-esophageal areas. GERD has been attributed to sinusitis, dental caries, otitis media, asthma, apnea, arousal, pneumonia, bronchitis, and cough, among others. Despite the common nature of reflux, there seems to have been little improvement in therapy for reflux, especially in the non-surgical arena.
The standard of therapy for the treatment of GERD in the pediatric population has become a progression from conservative therapy to a combination of a pro-kinetic agent and H-2 blocker therapy. Nonetheless, many patients fail this treatment protocol and become surgical candidates. In adults, PPI therapy is effective in 90% of those treated for gastroesophageal reflux disease. As a medical alternative to the H-2 blockers, the proton pump inhibitors have not been studied extensively in the pediatric population. Part of the reason for this lack of data may be related to the absence of a suitable dosage formulation for this very young population, primarily under 2 years of age, that does not swallow capsules or tablets. It would be desirable to have a true liquid formulation (solution or suspension) with good palatability such as is used for oral antibiotics, decongestants, antihistamines, H-2 blockers, cisapride, metoclopramide, etc. The use of lansoprazole granules (removed from the gelatin capule) and sprinkled on applesauce has been approved by the Food and Drug Administration as an alternative method of drug administration in adults but not in children. Published data are lacking on the efficacy of the lansoprazole sprinkle method in children. Omeprazole has been studied for bioequivalence as a sprinkle in adults and appears to produce comparable serum concentrations when compared to the standard capsule. Again no data are available on the omeprazole sprinkle in children. An additional disadvantage of omeprazole is its taste which is quinine-like. Even when suspended in juice, applesauce or the like, the bitter nature of the medicine is easily tasted even if one granule is chewed. For this reason applicant eventually progressed to use lansoprazole in Choco-Base.
Pantoprazole and rabeprazole are available as enteric-coated tablets only. Currently, none of the proton pump inhibitors available in the United States are approved for pediatric use. There is some controversy as to what the appropriate dosage should be in this group of patients.
A recent review by Israel DM, Hassall E. Omeprazole and other proton pump inhibitors: pharmacology, efficacy, safety, with special reference to use in children. JOURNAL
OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION. 1998;
27:568-579, suggests that effective PPI dosages should be higher than that originally reported, i.e., from 0.7 mg/kg to 2 or 3 mg/kg omeprazole. Since toxicity with the PPI's is not seen even at >50mg/k.g, there appears little risk associated with higher dosages. Based on observations at the University of Missouri consistent with the findings of this review, applicant established a simple fixed dosage regimen of 10ml Choco-Base suspension daily. This 10ml dose provided 20mg omeprazole and 23 mg lansoprazole.
In the ICU setting, the University of Missouri-Columbia has been using an unflavored PPI suspension given once daily per various tubes (nasogastric, g-tube, jejunal feeding tube, duo tube, etc.) for stress ulcer prophylaxis. It seemed only logical that if this therapy could be made into a palatable form, it would have many ideal drug characteristics for the pediatric population.
First, it would be liquid, and therefore could be administered at earlier ages. Second, if made flavorful it could help to reduce noncompliance. Third, it could afford once daily dosing, also helping in reducing noncompliance. In the process, applicant discovered that the dosing could be standardized, which nearly eliminated dosing complexity.
Choco-Base is a product which protects drugs which are acid labile, such as proton pump inhibitors, from acid degradation. The first few pediatric patients with reflux prescribed Choco-Base were sicker patients. They had been on prior-therapy and had been diagnosed both by pH probe and endoscopy. In the first few months, applicant treated patients with 10 mg of omeprazole qd (1 mg/kg) and found this to be somewhat ineffective, and quickly increased the dosing to 20 mg (2 mg/kg) of omeprazole. About halfway through the study, applicant began using lansoprazole 23 mg po qd. Applicant's standard therapy was then either 20 mg of omeprazole or 23 mg of lansoprazole once daily. The extra 3 mg of lansoprazole is related only to the fact that the final concentration was 2.25 mg/ml, and applicant desired to keep dosing simple, so he used a 10 ml suspension.
The patients that were treated represented a tertiary care center population, and they were inherently sicker and refractory to medical therapy in the past.
The overall 72% success rate is slightly lower than the 90% success rates of PPIs in the adult population, but this can be attributed to the refractory nature of their illness, most having failed prior non-PPI treatment. The population in this study is not indicative of general practice populations.
Conclusion.
PPI therapy is a beneficial therapeutic option in the treatment of reflux related symptoms in the pediatric population. Its once daily dosing and standard dosing scheme combined with a palatable formulation makes it an ideal pharmacologic agent.
Symptoms Patient Numbers Nasal: 35 Sinusitis 7 Congestion 8 Nasal discharge 16 Other 4 Otologic: 26 Otitis Media 17 Otorrhea 9 Respiratory: 34 Cough 10 Wheeze 11 Respiratory Distress: 5 Pneumonia 2 Other 6 Gastrointestinal: 10 Abdominal Pain 1 Ref lux Vomitin 4 Other 4 Sleep Disturbances: 11 Other 2 Past Medical Histo Number of Patients Reflux Associated: 12 Premature 5 Pierre-Robin 2 Cerebral Palsy 2 Down Syndrome 1 Charcot-Marie-Tooth 1 Velocardiofacial Syndrome 1 Other Medical History 12 Cleft Palate 3 Asthma 3 Autism 2 Seizure Disorder 1 Diabetes Mellitus 1 Subglottic Stenosis 1 Tracheostomy Dependent- 1 The Choco-Base product is formulated as follows:
PART A INGREDIENTS AMOUNT (mg) Omeprazole 200 Sucrose 26000 Sodium Bicarbonate 9400 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT (ml) Distilled Water 100 COMPOUNDING INSTRUCTIONS
Add Part B to Part A to create a total volume of approximately 130 ml with an omeprazole concentration of about 1.5 mg/ml.
PART A INGREDIENTS (mg) AMOUNT (mg) Sucrose 26000 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT
Distilled Water 100 ml Sodium Bicarbonate 8400 mg Omeprazole 200 mg COMPOUNDING INSTRUCTIONS
Mix the constituents of Part B
together thoroughly and then add to Part A. This results in a total volume of approximately 130 ml with an omeprazole concentration of about 1.5 mg/ml.
PART A INGREDIENTS (mg) AMOUNT (mg) Sucrose 26000 Sodium Bicarbonate 9400 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT
Distilled Water 100 ml Omeprazole 200 mg COMPOUNDING INSTRUCTIONS
This formulation is reconstituted at the time of use by a pharmacist.
Part B is mixed first and is then uniformly mixed with the components of Part A. A final volume of about 130 ml is created having an omeprazole concentration of about 1.5 mg/ml.
PART A INGREDIENTS (mg) AMOUNT (mg) Sucrose 26000 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT
Distilled Water 100 ml Sodium Bicarbonate 8400 mg Omeprazole 200 mg COMPOUNDING INSTRUCTIONS
This formulation is reconstituted at the time of use by a pharmacist.
Part B is mixed first and is then uniformly mixed with the components of Part A. A final volume of about 130 ml is created having an omeprazole concentration of about 1.5 mg/ml.
In all four of the above formulations, lansoprazole or other PPI can be substituted for omeprazole in equipotent amounts. For example, 300 mg of lansoprazole may be substituted for the 200 mg of omeprazole.
Additionally, aspartame can be substituted for sucrose, and the following other ingredients can be employed as carriers, adjuvants and excipients: maltodextrin, vanilla, carragreenan, mono and diglycerides, and lactated monoglycerides. One skilled in the art will appreciate that not all of the ingredients are necessary to create a Choco-Base formulation that is safe and effective.
Omeprazole powder or enteric coated granules can be used in each formulation. If the enteric coated granules 5 are used, the coating is either dissolved by the aqueous diluent or inactivated by trituration in the compounding process.
Applicant additionally analyzed the effects of a lansoprazole Choco-Base formulation on gastric pH using a 10 pH meter (Fisher Scientific) in one adult patient versus lansoprazole alone. The patient was first given a 30 mg oral capsule of Prevacid , and the patient's gastric pH
was measured at 0, 4, 8, 12, and 16 hours post dose. The results are illustrated in Fig. 4.
15 The Choco-Base product was compounded according to Formulation 1 above, except 300 mg of lansoprazole was used instead of omeprazole. A dose of 30 mg lansoprazole Choco-Base was orally administered at hour 18 post lansoprazole alone. Gastric pH was measured using a pH
20 meter at hours 18, 19, 24, 28, 32, 36, 40, 48, 52, and 56 post lansoprazole alone dose.
Figure 4 illustrates the lansoprazole/cocoa combination resulted in higher pH, at hours 19-56 than lansoprazole alone at hours 4-18. Therefore, the 25 combination of the lansoprazole with chocolate enhanced the pharmacologic activity of the lansoprazole. The results establish that the sodium bicarbonate as well as chocolate flavoring and calcium were all able to stimulate the activation of the proton pumps, perhaps due 30 to the release of gastrin. Proton pump inhibitors work by functionally inhibiting the proton pump and effectively block activated proton pumps (primarily those inserted into the secretory canalicular membrane). By further administering the proton pump inhibitor with one of these activators or enhancers, there is a synchronization of activation of the proton pump with the absorption and subsequent parietal cell concentrations of the proton pump inhibitor. As illustrated in Figure 4, this combination produced a much longer pharmacologic effect than when the proton pump inhibitor was administered alone.
Example VI
Combination Tablet Delivering Bolus and Time-released Doses of PPI
Tablets were compounded using known methods by forming an inner core of 10mg omeprazole powder mixed with 750 mg sodium bicarbonate, and an outer core of 10 mg omeprazole enteric-coated granules mixed with known binders and excipients. Upon ingestion of the whole tablet, the tablet dissolves and the inner core is dispersed in the stomach where it is absorbed for immediate therapeutic effect. The enteric-coated granules are later absorbed in the duodenum to provide symptomatic relief later in the dosing cycle. This tablet is particularly useful in patients who experience breakthrough gastritis between conventional doses, such as while sleeping or in the early morning hours.
Example VII
Therapeutic Application Patients were evaluable if they met the following criteria: had two or more risk factors for SRMD
(mechanical ventilation, head injury, severe burn, sepsis, multiple trauma, adult respiratory distress syndrome, major surgery, acute renal failure, multiple operative procedures, coagulotherapy, significant hyportension, acid-base disorder, and hepatic failure), gastric pH of < 4 prior to study entry, and no concomitant prophylaxis for SRMD.
The omeprazole solution was prepared by mixing 10 ml of 8.4% sodium bicarbonate with the contents of a 20 mg capsule of omeprazole (Merck & Co. Inc., West Point, PA) to yield a solution having a final omeprazole concentration of 2 mg/ml.
Nasogastric (ng) tubes were placed in the patients and an omeprazole dosage protocol of buffered 40 mg omeprazole solution (2 mg omeprazole/1 ml NaHCO3 - 8.4%) followed by 40 mg of the same buffered omeprazole solution in eight hours, then 20 mg of the same buffered omeprazole solution per day, for five days. After each buffered omeprazole solution administration, nasogastric suction was turned off for thirty minutes.
Eleven patients were evaluable. All patients were mechanically ventilated. Two hours after the initial 40 mg dose of buffered omeprazole solution, all patients had an increase in gastric pH to greater than eight as shown in Figure 1. Ten of the eleven patients maintained a gastric pH of greater than or equal to four when administered 20 mg omeprazole solution. One patient required 40 mg omeprazole solution per day (closed head injury, five total risk factors for SRMD) Two patients were changed to omeprazole solution after having developed clinically significant upper gastrointestinal bleeding while receiving conventional intravenous H2-antagonists. Bleeding subsided in both cases after twenty-four hours. Clinically significant upper gastrointestinal bleeding did not occur in the other nine patients. Overall mortality was 27%, mortality attributable to upper gastrointestinal bleeding was 0%.
Pneumonia developed in one patient after initiating omeprazole therapy and was present upon the initiation of omeprazole therapy in another patient. The mean length of prophylaxis was five days.
A pharmacoeconomic analysis revealed a difference in the total cost of care for the prophylaxis of SRMD:
ranitidine (Zantac ) continuous infusion intravenously (150 mg/24 hours) x five days $125.50;
cimetidine (Tagamet ) continuous infusion intravenously (900 mg/24 hours) x five days $109.61;
sucralfate one gm slurry four times a day per (ng) tube x five days $73.00; and buffered omeprazole solution regimen per (ng) tube x five days $65.70.
This example illustrates the efficacy of the buffered omeprazole solution of the present invention based on the increase in gastric pH, safety and cost of the buffered omeprazole solution as a method for SRMD
prophylaxis.
Example VIII
Effect on pH
Experiments were carried out in order to determine the effect of the omeprazole solution (2 mg omeprazole/
1 ml NaHCO3 - 8.4%) administration on the accuracy of subsequent pH measurements through a nasogastric tube.
After preparing a total of 40 mg of buffered omeprazole solution, in the manner of Example VII, doses were administered into the stomach, usually, through a nasogastric (ng) tube. Nasogastric tubes from nine different institutions were gathered for an evaluation.
Artificial gastric fluid (gf) was prepared according to the USP. pH recordings were made in triplicate using a Microcomputer Portable pH meter model 6007 (Jenco Electronics Ltd., Taipei, Taiwan).
First, the terminal portion (tp) of the nasogastric tubes was placed into a glass beaker containing the gastric fluid. A 5 ml aliquot of gastric fluid was aspirated through each tube and the pH recorded; this was called the "pre-omeprazole solution/suspension measurement." Second, the terminal portion (tp) of each of the nasogastric tubes was removed from the beaker of gastric fluid and placed into an empty beaker. Twenty (20) mg of omeprazole solution was delivered through each of the nasogastric tubes and flushed with 10 ml of tap water. The terminal portion (tp) of each of the nasogastric tubes was placed back into the gastric fluid.
After a one hour incubation, a 5 ml aliquot of gastric fluid was aspirated through each nasogastric tube and the pH recorded; this was called the "after first dose SOS
[Simplified Omeprazole Solution] measurement." Third, after an additional hour had passed, the second step was repeated; this was called the "after second dose SOS
[Simplified Omeprazole Solution] measurement." In addition to the pre-omeprazole measurement, the pH of the gastric fluid was checked in triplicate after the second and third steps. A change in the pH measurements of +/-0.3 units was considered significant. The Friedman test was used to compare the results. The Friedman test is a 5 two way analysis of variance which is used when more than two related samples are of interest, as in repeated measurements.
The results of these experiments are outlined in Table 1.
ngl ng2 ng3 ng4 ng5 ng6 ng7 ng8 ng9 [1] gf 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 Pre SOS
[2] gf p 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 la` dose 1.3rcheck of fg pH
[3] gf p 1.3 1.3 1.4 1.4 1.4 1.3 1.4 1.3 1.3 2nd Dose 1.3rcheck of gf pH SOS pH = 9.0 Table 1 illustrates the results of the pH
measurements that were taken during the course of the experiment. These results illustrate that there were no 15 statistically significant latent effects of omeprazole solution administration (per nasogastric tube) on the accuracy of subsequent pH measurements obtained through the same nasogastric tube.
Example IX
Efficacy of Buffered Omeprazole Solution in Ventilated Patients Experiments were performed in order to determine the efficacy, safety, and cost of buffered omeprazole solution in mechanically ventilated critically ill patients who have at least one additional risk factor for stress-related mucosal damage.
Patients: Seventy-five adult, mechanically ventilated patients with at least one additional risk factor for stress-related mucosal damage.
Interventions: Patients received 20 ml omeprazole solution (prepared as per Example VII and containing 40 mg of omeprazole) initially, followed by a second 20 ml dose six to eight hours later, then 10 ml (20 mg) daily.
Omeprazole solution according to the present invention was administered through a nasogastric tube, followed by 5-10 ml of tap water. The nasogastric tube was clamped for one to two hours after each administration.
Measurements and Main Results: The primary outcome measure was clinically significant gastrointestinal bleeding determined by endoscopic evaluation, nasogastric aspirate examination, or heme-positive coffee ground material that did not clear with lavage and was associated with a five percent decrease in hematocrit.
Secondary efficacy measures were gastric pH measured four hours after omeprazole was first administered, mean gastric pH after omeprazole was started, and the lowest gastric pH during omeprazole therapy. Safety-related outcomes included the incidence of adverse events and the incidence of pneumonia. No patient experienced clinically significant upper gastrointestinal bleeding after receiving omeprazole suspension. The four-hour post omeprazole gastric pH was 7.1 (mean), the mean gastric pH after starting omeprazole was 6.8 (mean) and the lowest pH after starting omeprazole was 5.6 (mean).
The incidence of pneumonia was twelve percent. No patient in this high-risk population experienced an adverse event or a drug interaction that was attributable to omeprazole.
Conclusions: Omeprazole solution prevented clinically significant upper gastrointestinal bleeding and maintained gastric pH above 5.5 in mechanically ventilated critical care patients without producing toxicity.
Materials and Methods:
The study protocol was approved by the Institutional Review Board for the University of Missouri at Columbia.
Study Population: All adult (>18 years old) patients admitted to the surgical intensive care and burn unit at the University of Missouri Hospital with an intact stomach, a nasogastric tube in place, and an anticipated intensive care unit stay of at least forty-eight hours were considered for inclusion in the study.
To be included patients also had to have a gastric pH of <4, had to be mechanically ventilated and have one of the following additional risk factors for a minimum of twenty-four hours after initiation of omeprazole suspension: head injury with altered level of consciousness, extensive burns (>20% Body Surface Area), acute renal failure, acid-base disorder, multiple trauma, coagulopathy, multiple operative procedures, coma, hypotension for longer than one hour or sepsis (see Table 2). Sepsis was defined as the presence of invasive pathogenic organisms or their toxins in blood or tissues resulting in a systematic response that included two or more of the following: temperature greater than 38 C or less than 36 C, heart rate greater than 90 beats/minute, respiratory rate greater than 20 breaths/minute (or p02 less than 75 mm Hg), and white blood cell count greater than 12, 000 or less than 4, 000 cells/mm3 or more than 10 percent bands (Bone, Let's Agree on Terminology:
Definitions of Sepsis, CRIT. CARE MED., 19: 27 (1991) ) .
Patients in whom H2-antagonist therapy had failed or who experienced an adverse event while receiving H2-antagonist therapy were also included.
Patients were excluded from the study if they were receiving azole antifungal agents through the nasogastric tube; were likely to swallow blood (e.g., facial and/or sinus fractures, oral lacerations); had severe thrombocytopenia (platelet count less than 30,000 cells/mm3); were receiving enteral feedings through the nasogastric tube; or had a history of vagotomy, pyloroplasty, or gastroplasty. In addition, patients with a gastric pH above four for forty-eight hours after ICU admission (without prophylaxis) were not eligible for participation. Patients who developed bleeding within the digestive tract that was not stress-related mucosal damage (e.g., endoscopically verified variceal bleeding or Mallory-Weiss tears, oral lesions, nasal tears due to placement of the nasogastric tube) were excluded from the efficacy evaluation and categorized as having non-stress-related mucosal bleeding. The reason for this exclusion is the confounding effect of non-stress-related mucosal bleeding on efficacy-related outcomes, such as the use of nasogastric aspirate inspection to define clinically significant upper gastrointestinal bleeding.
Study Drug Administration: Omeprazole solution was prepared immediately before administration by the patient's nurse using the following instructions: empty the contents of one or two 20 mg omeprazole capsule(s) into an empty 10 ml syringe (with 20 gauge needle in place) from which the plunger has been removed.
(Omeprazole delayed-release capsules, Merck & Co., Inc., West Point, PA); replace the plunger and uncap the needle; withdraw 10 ml of 8.4% sodium bicarbonate solution or 20 ml if 40 mg given (Abbott Laboratories, North Chicago, IL), to create a concentration of 2 mg omeprazole per ml of 8.4% sodium bicarbonate; and allow the enteric coated pellets of omeprazole to completely breakdown, 30 minutes (agitation is helpful). The omeprazole in the resultant preparation is partially dissolved and partially suspended. The preparation should have a milky white appearance with fine sediment and should be shaken before administration. The solution was not administered with acidic substances. A high pressure liquid chromatography study was performed that demonstrated that this preparation of simplified omeprazole suspension maintains >90% potency for seven days at room temperature. This preparation remained free of bacterial and fungal contamination for thirty days when stored at room temperature (See Table 5).
The initial dose of omeprazole solution was 40 mg, followed by a second 40 mg dose six to eight hours later, then a 20 mg daily dose administered at 8:00 AM. Each dose was administered through the nasogastric tube. The nasogastric tube was then flushed with 5-10 ml of tap water and clamped for at least one hour. Omeprazole 5 therapy was continued until there was no longer a need for stress ulcer prophylaxis (usually after the nasogastric tube was removed and the patient was taking water/food by mouth, or after the patient was removed from mechanical ventilation).
10 Primary Outcome Measures: The primary outcome measure in this study was the rate of clinically significant stress-related mucosal bleeding defined as endoscopic evidence of stress-related mucosal bleeding or bright red blood per nasogastric tube that did not clear 15 after a 5-minute lavage or persistent Gastroccult (SmithKline Diagnostics, Sunnyville, CA) positive coffee ground material for four consecutive hours that did not clear with lavage (at least 100 ml) and produced a 5%
decrease in hematocrit.
20 Secondary Outcome Measures: The secondary efficacy measures were gastric pH measured four hours after omeprazole was administered, mean gastric pH after starting omeprazole and lowest gastric pH during omeprazole administration. Gastric pH was measured 25 immediately after aspirating gastric contents through the nasogastric tube. pH paper (pHydrion improved pH papers, Microessential Laboratory, Brooklyn, NY) was used to measure gastric aspirate pH. The pH range of the test strips was 1 to 11, in increments of one pH unit.
30 Gastric pH was measured before the initiation of omeprazole solution therapy, immediately before each dose, and every four hours between doses.
Other secondary outcome measures were incidence of adverse events (including drug interactions) and pneumonia. Any adverse event that developed during the study was recorded. Pneumonia was defined using indicators adapted from the Centers for Disease Prevention and Control definition of nosocomial pneumonia (Garner et al., 1988). According to these criteria, a patient who has pneumonia is one who has rales or dullness to percussion on physical examination of the chest or has a chest radiograph that shows new or progressive infiltrate(s), consolidation, cavitation, or pleural effusion and has at least two of the following present: new purulent sputum or changes in character of the sputum, an organism isolated from blood culture, fever or leukocytosis, or evidence of infection from a protective specimen brush or bronchoalveolar lavage.
Patients who met the criteria for pneumonia and were receiving antimicrobial agents for the treatment of pneumonia were included in the pneumonia incidence figure. These criteria were also used as an initial screen before the first dose of study drug was administered to determine if pneumonia was present prior to the start of omeprazole suspension.
Cost of Care Analysis: A pharmacoeconomic evaluation of stress ulcer prophylaxis using omeprazole solution was performed. The evaluation included total drug cost (acquisition and administration), actual costs associated with adverse events (e.g., psychiatry consultation for mental confusion), costs associated with clinically significant upper gastrointestinal bleeding. Total drug cost was calculated by adding the average institutional costs of omeprazole 20 mg capsules, 50 ml sodium bicarbonate vials, and 10 ml syringes with needle;
nursing time (drug administration, pH monitoring);
pharmacy time (drug preparation); and disposal costs.
Costs associated with clinically significant upper gastrointestinal bleeding included endoscopy charges and accompanying consultation fees, procedures required to stop the bleeding (e.g., surgery, hemostatic agents, endoscopic procedures), increased hospital length of stay (as assessed by the attending' physician), and cost of drugs used to treat the gastrointestinal bleeding.
Statistical Analysis: The paired t-test (two-tailed) was used to compare gastric pH before and after omeprazole solution administration and to compare gastric pH before omeprazole solution administration with the mean and lowest gastric pH value measured after beginning omeprazole.
Results:
Seventy-seven patients met the inclusion and exclusion criteria and received omeprazole solution (See Figure 2). Two patients were excluded from the efficacy evaluation because the protocol for omeprazole administration was not followed. In one case, the omeprazole enteric-coated pellets had not completely broken down prior to the administration of the first two doses, which produced an erratic effect on gastric pH.
The gastric pH increased to above six as soon as the patient was given a dose of omeprazole solution (in which the enteric coated pellets of omeprazole had been allowed to completely breakdown).
The reason for the second exclusion was that nasogastric suctioning was not turned off after the omeprazole dose was administered. This resulted in a transient effect on gastric pH. The suction was turned off with subsequent omeprazole doses, and control of gastric pH was achieved. Two patients were considered efficacy failures because omeprazole failed to maintain adequate gastric pH control on the standard omeprazole 20 mg/day maintenance dose. When the omeprazole dose was increased to 40 mg/day (40 mg once/day or 20 mg twice/day), gastric pH was maintained above four in both patients. These two patients were included in the safety and efficacy evaluations, including the gastric pH
analysis. After the two patients were declared failures, their pH values were no longer followed.
The ages of the remaining seventy-five patients ranged from eighteen to eighty-seven years; forty-two patients were male and thirty-three were female. All patients were mechanically ventilated during the study.
Table 2 shows the frequency of risk factors for stress-related bleeding that were exhibited by the patients in this study. The most common risk factors in this population were mechanical ventilation and major surgery.
The range of risk factors for any given patient was two to ten, with a mean of 3 ( 1) (standard deviation). Five patients enrolled in the study had developed clinically significant bleeding while receiving continuous infusions of ranitidine (150 mg/24 hr) or cimetidine (900 mg/24 hr). In all five cases, the bleeding subsided and the gastric pH rose to above five within thirty-six hours after initiating omeprazole therapy. Three patients were enrolled after having developed two consecutive gastric pH values below three while receiving an H2-antagonist (in the doses outlined above). In all three cases, gastric pH rose to above five within four hours after omeprazole therapy was initiated. Four other patients were enrolled in this study after experiencing confusion (n=2) or thrombocytopenia (n=2) during H2-antigens therapy. Within thirty-six hours of switching therapy, these adverse events resolved.
Stress-related Mucosal Bleeding and Mortality: None of the sixty-five patients who received buffered omeprazole solution as their initial prophylaxis against stress-related mucosal bleeding developed overt or clinically significant upper gastrointestinal bleeding.
In four of the five patients who had developed upper gastrointestinal bleeding before study entry, bleeding diminished to the presence of occult blood only (Gastroccult-positive) within eighteen hours of starting omeprazole solution; bleeding stopped in all patients within thirty-six hours. The overall mortality rate in this group of critically ill patients was eleven percent.
No death was attributable to upper gastrointestinal bleeding or the use of omeprazole solution.
Gastric pH: The mean ( standard deviation) pre-omeprazole gastric pH was 3.5 1.9. Within four hours of omeprazole administration, the gastric pH rose to 7.1 1.1 (See Figure 3); this difference was significant (p<0.001). The differences between pre-omeprazole gastric pH and the mean and lowest gastric pH
measurements during omeprazole administration (6.8 0.6 and 5.6 1.3, respectively) were also statistically significant (p<0.001).
Safety: Omeprazole solution was well tolerated in 5 this group of critically ill patients. Only one patient with sepsis experienced an adverse event that may have been drug-related thrombocytopenia. However, the platelet count continued to fall after omeprazole was stopped. The platelet count then returned to normal 10 despite reinstitution of omeprazole therapy. Of note, one patient on a jet ventilator continuously expelled all liquids placed in her stomach up and out through her mouth, and thus was unable to continue on omeprazole. No clinically significant drug interactions with omeprazole 15 were noted during the study period. As stated above, metabolic alkalosis is a potential concern in patients receiving sodium bicarbonate. However, the amount of sodium bicarbonate in omeprazole solution was small ( 12 mEq/10 ml) and no electrolyte abnormalities were found.
20 Pneumonia: Pneumonia developed in nine (12%) patients receiving omeprazole solution. Pneumonia was present in an additional five patients before the start of omeprazole therapy.
Pharmacoeconomic evaluation: The average length of 25 treatment was nine days. The cost of care data are listed in Tables 3 and 4. The costs of drug acquisition, preparation, and delivery for some of the traditional agents used in the prophylaxis of stress-related upper gastrointestinal bleeding are listed in Table 3. There 30 were no costs to add from toxicity associated with omeprazole solution. Since two of seventy-five patients required 40 mg of omeprazole solution daily to adequately control gastric pH, the acquisition/preparation cost should reflect this. The additional 20 mg of omeprazole with vehicle adds seven cents per day to the cost of care. Therefore, the daily cost of care for omeprazole solution in the prophylaxis of stress-related mucosal bleeding was $12.60 (See Table 4).
Omeprazole solution is a safe and effective therapy for the prevention of clinically significant stress-related mucosal bleeding in critical care patients. The contribution of many risk factors to stress-related mucosal damage has been challenged recently. All of the patients in this study had at least one risk factor that has clearly been associated with stress-related mucosal damage - mechanical ventilation. Previous trials and data from a recently published study show that stress ulcer prophylaxis is of proven benefit in patients at risk and, therefore, it was thought to be unethical to include a placebo group in this study. No clinically significant upper gastrointestinal bleeding occurred during omeprazole solution therapy. Gastric pH was maintained above 4 on omeprazole 20 mg/day in seventy-three of seventy-five patients. No adverse events or drug interaction associated with omeprazole were encountered.
Mech Major Multi- Head Hypo- Renal Multiple Acid/ Liver Vent Surgery trauma Injury tension Failure Sepsis Operation Base Coma Failure Burn Risk factors present in patients in this study (n - 75) Per day RANITIDINE (dav-9) Rantidine 150 mg/24 hr 6.15 Ancillary Product (1) Piggyback (60%) 0.75 Ancillary Product (2) micro tubing (etc.) 2.00 Ancillary Product (3) filter .40 Sterile Prep required yes R.N. time ($24/hr) 20 minutes/day (includes pH 8.00 monitoring) R.Ph. time, hood maint. 3 minutes ($40/hr) 2.00 Pump cost $29/24 hrs x 50%) 14.50 TOTAL for 9 days ^ 304.20 RANITIDINE Cost per day 0 33.80 CIMETIDINE (day 1-9) Cimetidine 900 mg/24 hr 3.96 Ancillary Product (1) Piggyback 1.25 Ancillary Product (2) micro tubing (etc.) 2.00 Ancillary Product (3) filter .40 Sterile Prep required yes R.N. time ($24/hr) 20 minutes/day (includes pH 8.00 R.Ph. time, hood maint. monitoring) Pump cost 3 minutes ($40/hr) 2.00 TOTAL for 9 days $29/24 hrs x 50%) 14.50 CIMETIDINE Cost per day ^ 288.99 SUCRALFATE (day 1-9) ^ 32.11 Sucralfate 1 Gm x 4 2.40 Ancillary Product (1) syringe .20 Sterile Prep required no R.N. time ($24/hr) 30 minutes/day (includes pH 12.00 monitoring) TOTAL for 9 days ^ 131.40 SUCRALFATE Cost per day ^ 14.60 Note:
Does not include the cost of failure and/or adverse effect.
Acquisition, preparation and delivery costs of traditional agents.
The average length of treatment was 9 days. Cost of care was calculated from these date Per Day Total OMEPRAZOLE (day 1) Product acquisition cost 40 mg load x 2 5.66/dose) 11.32 11.32 Ancillary product materials for solution preparation 0.41 0.41 Ancillary product syringe w/needle 0.20 0.40 Sterile preparation required no SOS preparation time (R.N.) 6 minutes 2.40 4.80 R.N. time ($24/hr) 21 minutes/day (includes pH monitoring) 8.40 8.40 OMEPRAZOLE (days 2-9) Product acqusition cost 20 mg per day 2.80 22.65 Ancillary product materials for solution preparation 0.41 0.82 Ancillary product syringe w/needle 0.20 1.60 Sterile preparation required no SOS preparation time (R.N.) 6 minutes 2.40 4.80 R.N. time ($24/hr) 18 minutes/day (includes pH monitoring) 8.40 57.60 2/75 patient require 40 mg simplified omeparzole solution per day (days 2-9) 0.63 No additional cost for adverse effects or for failure TOTAL ^ 113.43 Simplified Omerprazole Solution cost per day ^ 12.60 Pharmacoeconomic evaluation of omeprazole cost of care Time Control 1 hour 24 hour 2 day 7 day 14 day Conc (mg/ml) 2.01 2.07 1.94 1.96 1.97 1.98 Stabilrzty of Simplified Omeprazole Solution at room temperature (250 C.) Values are the mean of three samples Example X
Bacteriostatic and Fungistatic Effects of Omeprazole Solution The antimicrobial or bacteriostatic effects of the omeprazole solution were analyzed by applicant. An omeprazole solution (2 mg/ml of 8.4% sodium bicarbonate) made according to the present invention was stored at room temperature for four weeks and then was analyzed for fungal and bacterial growth. Following four weeks of storage at room temperature, no bacterial or fungal growth was detected.
An omeprazole solution (2 mg/ml of 8.4% sodium bicarbonate) made in accordance with the present invention was stored at room temperature for twelve weeks and then was analyzed for fungal and bacterial growth.
After twelve weeks of incubation at room temperature, no fungal or bacterial growth was detected.
The results of these experiments illustrate the bacteriostatic and fungistatic characteristics of the omeprazole solution of the present invention.
Example XI
Bioequivalency Study Healthy male and female study participants over the age of 18 will be randomized to receive omeprazole in the following forms:
(a) 20 mg of a liquid formulation of approximately mg omeprazole in 4.8 mEq sodium bicarbonate qs 20 to 10 ml with water;
(b) 20 mg of a liquid formulation of approximately 2 mg omeprazole per 1 ml of 8.4% sodium bicarbonate.
(c) Prilosec (omeprazole) 20 mg capsule;
(d) Capsule prepared by inserting the contents of an omeprazole 20 mg capsule into a #4 empty gelatin capsule (Lilly) uniformly dispersed in 240 mg of sodium bicarbonate powder USP to form an inner capsule. The inner capsule is then inserted into a #00 empty gelatin capsule (Lilly) together with a homogeneous mixture of 600 mg sodium bicarbonate USP and 110 mg pregelatinized starch NF.
5 METHODOLOGY:
After appropriate screening and consent, healthy volunteers will be randomized to receive one of the following four regimens as randomly assigned by Latin Square. Each subject will be crossed to each regimen 10 according to the randomization sequence until all subjects have received all four regimens (with one week separating each regimen).
Regimen A (20mg omeprazole in 4.8 mEq sodium bicarbonate in 10ml volume); Regimen B (20mg omeprazole 15 in l0ml 8.4% sodium bicarbonate in 10ml volume); Regimen C (an intact'20mg omeprazole capsule); Regimen D (Capsule in capsule formulation, see above). For each dose/week, subjects will have an i.v. saline lock placed for blood sampling. For each regimen, blood samples will be taken 20 over 24 hours a total of 16 times (with the last two specimens obtained 12 hours and 24 hours after drug administration).
Patient Eligibility Four healthy females and four healthy males will be 25 consented for the study.
Inclusion Criteria Signed informed consent.
Exclusion Criteria 1. Currently taking Hz-receptor antagonist, antacid, or sucralfate.
2. Recent (within 7 days) therapy with lansoprazole, omeprazole, or other proton pump inhibitor.
3. Recent (within 7 days) therapy with warfarin.
4.'History of variceal bleeding.
5. History of peptic ulcer disease or currently active G.I. bleed.
6. History of vagotomy or pyloroplasty.
7. Patient has received an investigational drug within 30 days.
8. Treatment with ketoconazole or itraconazole.
9. Patient has an allergy to omeprazole.
Pharmocokinetic Evaluation and Statistical Analysis Blood samples will be centrifuged within 2 hours of collection and the plasma will then separated and frozen at -10 C (or lower) until assayed. Pharmacokinetic variables will include: time to peak concentration, mean peak concentration, AUC (0-t) and (0-infinity). Analysis of variance will be used to detect statistical difference. Bioavailability will be assessed by the 90%
confidence interval of the two one-sided tests on the natural logarithm of AUC.
HPLC Analysis Omeprazole and internal standard (H168/24) will be used. Omeprazole and internal standard will be measured by modification of the procedure described by Amantea and Narang. (Amantea MA, Narang PK. Improved Procedure for Quantification of Omeprazole and Metabolites Using Reversed-Phased High Performance Liquid Chromotography.
J. CHROMATOGRAPHY 426; 216-222. 1988). Briefly, 20ul of omeprazole 2mg/ml NaHCO3 or Choco-Base omeprazole suspension and 100ul of the internal standard are vortexed with 150ul of carbonate buffer (pH=9.8), 5 ml of dichloroethane, 5 ml of hexane, and 980 ul of sterile water. After the sample is centrifuged, the organic layer is extracted and dried over a nitrogen stream.
Each pellet is reconstituted with 150 ul of mobile phase (40% methanol, 52% 0.025 phosphate buffer, 8%
acetonitrile, pH=7.4). Of the reconstituted sample, 75u1 is injected onto a C18 5 U column equilibrated with the same mobile phase at l.lml/min. Under these conditions, omeprazole is eluted at approximately 5 minutes, and the internal standard at approximately 7.5 minutes. The standard curve is linear over the concentration range 0-3 mg/ml (in previous work with SOS), and the between-day coefficient of variation has been <8% at all concentrations. The typical mean R2 for the standard curve has been 0.98 in prior work with SOS (omeprazole 2mg/ml NaHCO3 8.4%) .
Applicant expects that the above experiments will demonstrate there is more rapid absorption of formulations (a) , (b) and (d) as compared to the enteric coated granules of formulation (c). Additionally, applicant expects that although there will be a difference in the rates of absorption among forms (a) through (d), the extent of absorption (as measured by the area under the curve (AUC)) should be similar among the formulations (a) through (d).
Example XII
Intraveneous PPI in Combination With Oral Parietal Cell Activator Sixteen (16) normal, healthy male and female study subjects over the age of 18 will be randomized to receive pantoprazole as follows:
(a) 40 mg IV over 15 to 30 minutes in combination with a 20 ml oral dose of sodium bicarbonate 8.4%; and (b) 40 mg IV over 15 to 30 minutes in combination with a 20 ml oral dose of water.
The subjects will receive a single dose of (a) or (b) above, and will be crossed-over to (a) and (b) in random fashion. Serum concentrations of pantoprazole versus time after administration data will be collected, as well as gastric pH control as measured with an indwelling pH probe.
Further, similar studies are contemplated wherein chocolate or other parietal cell activator is substituted for the parietal cell activator sodium bicarbonate, and other PPIs are substituted for pantoprazole. The parietal cell activator can be administered either within about 5 minutes before, during or within about 5 minutes after the IV dose of PPI.
Applicant expects that these studies will demonstrate that significantly less IV PPI is required to achieve therapeutic effect when it is given in combination with an oral parietal cell activator.
Additionally, administration kits of IV PPI and oral parietal cell activator can be packaged in many various forms for ease of administration and to optimize packing and shipping the product. Such kits can be in unit dose or multiple dose form.
Example XIII
Twelve (12) Month Stability of Omeprazole Solution A solution was prepared by mixing 8.4% sodium bicarbonate with omeprazole to produce a final concentration of 2 mg/ml to determine the stability of omeprazole solution after 12 months. The resultant preparation was stored in clear glass at room temperature, refrigerated and frozen. Samples were drawn after thorough agitation from the stored preparations at the prescribed times. The samples were then stored at 70 C. Frozen samples remained frozen until they were analyzed. When the collection process was completed, the samples were shipped to a laboratory overnight on dry ice for analysis. Samples were agitated for 30 seconds and sample aliquots were analyzed by HPLC in triplicate according to well known methods. Omeprazole and the internal standard were measured by a modification of the procedure described by Amantea and Narang. Amantea MA, Narang PK, Improved Procedure For Quantitation Of Omeprazole And Metabolites Using Reverse-Phased High-Performance Liquid Chromatography, J. Chromatography, 426: 216-222 (1988). Twenty (20) ul of the omeprazole 2mg/ml NaHCO3 solution and 100 ul of the internal standard solution were vortexed with 150 ul of carbonate buffer (pH = 9.8), 5 ml dichloroethane, 5 ml hexane, and 980 ul of sterile water. The sample was centrifuged and the organic layer was extracted and dried over a nitrogen stream. Each pellet was reconstituted with 150 ul of mobile phase (40% methanol., 52% 0.025 phosphate buffer, 8% acetonitrile, pH=7.4). Of the reconstituted sample, 75u1 were injected onto a C185u column equilibrated with the same mobile phase at 1.1 ml/min. Omeprazole was 5 eluted at -5 min, and the internal standard at -7.5 min.
The standard curve was linear over the concentrated range 0-3 mg/ml, and between-day coefficient of variation was <
8% at all concentrations. Mean R2 for the standard curve was 0.980.
10 The 12 month sample showed stability at greater than 90% of the original concentration of 2 mg/ml. (i.e., 1.88 mg/ml, 1.94 mg/ml, 1.92 mg/ml).
Throughout this application various publications and patents are referenced by citation and number.
The invention has been described in an illustrative manner, and it is to be understood the terminology used is intended to be in the nature of description rather than of limitation. Obviously, many modifications, equivalents, and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
gravity=1.14) and diluted with 50 ml of sodium bicarbonate, resulting in a concentration of 0.3 mg/ml.
Regardh et al., The Pharmacokinetics of Omeprazole in Humans-A Study of Single Intravenous and Oral Doses, THER. DRUG MON. 12: 163-72 (1990) discloses an oral dose of omeprazole at a concentration 0.4 mg/ml after the drug was dissolved in PEG 400, water and sodium bicarbonate.
Landahl et al., Pharmacokinetics Study of Omeprazole in Elderly Healthy Volunteers, CLIN.
PHARMACOKINETIcs 23 (6) : 469-476 (1992) teaches the use of an oral dose of 40 mg of omeprazole dissolved in PEG 400, sodium bicarbonate and water. This reference does not disclose the final concentrations utilized. Again, this reference teaches the multiple administration of sodium bicarbonate after the omeprazole solution.
Andersson et al., Pharmacokinetics of (14C]
Omeprazole in Patients with Liver Cirrhosis, CLIN.
PHARMACOKINETICS 24 (1) : 71-78 (1993) discloses the oral administration of 40 mg of omeprazole which was dissolved in PEG 400, water and sodium bicarbonate. This reference does not teach the final concentration of the omeprazole solution administered, although it emphasizes the need for concomitant sodium bicarbonate dosing to prevent acid degradation of the drug.
Nakagawa, et al., Lansoprazole: Phase I Study of lansoprazole (AG-1749) Anti-ulcer Agent, J. CLIN.
THERAPEUTICS & MED. (1991) teaches the oral administration of 30 mg of lansoprazole suspended in 100 ml of sodium bicarbonate (0.3 mg/ml), which was administered to patients through a nasogastric tube.
All of the buffered omeprazole solutions described in these references were administered orally, and were given to healthy subjects who were able to ingest the oral dose. In all of these studies, omeprazole was suspended in a solution including sodium bicarbonate, as a pH buffer, in order to protect the acid sensitive omeprazole during administration. In all of these studies, repeated administration of sodium bicarbonate both prior to, during, and following omeprazole administration were required in order to prevent acid degradation of the omeprazole given via the oral route of administration. In the above-cited studies, as much as 48 mmoles of sodium bicarbonate in 300 ml of water must be ingested for a single dose of omeprazole to be orally administered.
The buffered omeprazole solutions of the above cited prior art require the ingestion of large amounts of sodium bicarbonate and large volumes of water by repeated administration. This has been considered necessary to prevent acid degradation of the omeprazole. In the above-cited studies, basically healthy volunteers, rather than sick patients, were given dilute buffered omeprazole utilizing pre-dosing and post-dosing with large volumes of sodium bicarbonate.
The administration of large amounts of sodium bicarbonate can produce at least six significant adverse effects, which can dramatically reduce the efficacy of the omeprazole in patients and reduce the overall health of the patients. First, the fluid volumes of these dosing protocols would not be suitable for sick or critically ill patients who must receive multiple doses of omeprazole. The large volumes would result in the distention of the stomach and increase the likelihood of 5 complications in critically ill patients such as the aspiration of gastric contents.
Second, because bicarbonate is usually neutralized in the stomach or is absorbed, such that belching results, patients with gastroesophageal reflux may 10 exacerbate or worsen their reflux disease as the belching can cause upward movement of stomach acid (Brunton, Agents for the Control of Gastric Acidity and Treatment of Peptic Ulcers, IN, Goodman AG, et al. The Pharmacologic Basis of Therapeutics (New York, p. 907 15 (1990)).
Third, patients with conditions such as hypertension or heart failure are standardly advised to avoid the intake of excessive sodium as it can cause aggravation or exacerbation of their hypertensive conditions (Brunton, 20 supra). The ingestion of large amounts of sodium bicarbonate is inconsistent with this advice.
Fourth, patients with numerous conditions that typically accompany critical illness should avoid the intake of excessive sodium bicarbonate as it can cause metabolic alkalosis that can result in a serious worsening of the patient's condition.
Fifth, excessive antacid intake (such as sodium bicarbonate) can result in drug interactions that produce serious adverse effects. For example, by altering gastric and urinary pH, antacids can alter rates of drug dissolution and absorption, bioavailability, and renal elimination (Brunton, supra).
Sixth, because the buffered omeprazole solutions of the prior art require prolonged administration of sodium bicarbonate, it makes it difficult for patients to comply with the regimens of the prior art. For example, Pilbrant et al. disclose an oral omeprazole administration protocol calling for the administration to a subject who has been fasting for at least ten hours, a solution of 8 mmoles of sodium bicarbonate in 50 ml of water. Five minutes later, the subject ingests a suspension of 60 mg of omeprazole in 50 ml of water that also contains 8 mmoles of sodium bicarbonate. This is rinsed down with another 50 ml of 8 mmoles sodium bicarbonate solution. Ten minutes after the ingestion of the omeprazole dose, the subject ingests 50 ml of bicarbonate solution (8 mmoles). This is repeated at twenty minutes and thirty minutes post omeprazole dosing to yield a total of 48 mmoles of sodium bicarbonate and 300 ml of water in total which are ingested by the subject for a single omeprazole dose. Not only does this regimen require the ingestion of excessive amounts of bicarbonate and water, which is likely to be dangerous to some patients, it is unlikely that even healthy patients would comply with this regimen.
It is well documented that patients who are required to follow complex schedules for drug administration are non-compliant and, thus, the efficacy of the buffered omeprazole solutions of the prior art would be expected to be reduced due to non-compliance. Compliance has been found to be markedly reduced when patients are required to deviate from a schedule of one or two (usually morning and night) doses of a medication per day. The use of the prior art buffered omeprazole solutions which require administration protocols with numerous steps, different drugs (sodium bicarbonate + omeprazole + PEG 400 versus sodium bicarbonate alone), and specific time allotments between each stage of the total omeprazole regimen in order to achieve efficacious results is clearly in contrast with both current drug compliance theories and human nature.
The prior art (Pilbrant et al., 1985) teaches that the buffered omeprazole suspension can be stored at refrigerator temperatures for a week and deep frozen for a year while still maintaining 99% of its initial potency. It would be desirable to have an omeprazole or other proton pump inhibitor solution or suspension that could be stored at room temperature or in a refrigerator for periods of time which exceed those of the prior art while still maintaining 99% of the initial potency.
Additionally, it would be advantageous to have a form of the omeprazole and bicarbonate which can be utilized to instantly make the omeprazole solution/ suspension of the present invention which is supplied in a solid form which imparts the advantages of improved shelf-life at room temperature, lower cost to produce, less expensive shipping costs, and which is less expensive to store.
It would, therefore, be desirable to have a proton pump inhibitor formulation, which provides a cost-effective means for the treatment of the aforementioned conditions without the adverse effect profile of H2 receptor antagonists, antacids, and sucralfate. Further, it would be desirable to have a proton pump inhibitor formulation which is convenient to prepare and administer to patients unable to ingest solid dosage forms such as tablets or capsules, which is rapidly absorbed, and can be orally or enterally delivered as a liquid form or solid form. It is desirable that the liquid formulation not clog indwelling tubes, such as nasogastric tubes or other similar tubes, and which acts as an antacid immediately upon delivery.
It would further be advantageous to have a potentiator or enhancer of the pharmacological activity of the PPIs. It has been theorized by applicant that the PPIs can only exert their effects on H+,K+-ATPase when the parietal cells are active. Accordingly, applicant has identified, as discussed below, parietal cell activators that are administered to synergistically enhance the activity of the PPIs.
Additionally, the intravenous dosage forms of PPIs of the prior art are often administered in larger doses than the oral forms. For example, the typical adult IV
dose of omeprazole is greater than 100 mg/day whereas the adult oral dose is 20 to 40 mg/day. Large IV doses are necessary to achieve the desired pharmacologic effect because, it is believed, many of the parietal cells are in a resting phase (mostly inactive) during an IV dose given to patients who are not taking oral substances by mouth (npo) and, therefore, there is little active (that which is inserted into the secretory canalicular membrane) H+,K+-ATPase to inhibit. Because of the clear disparity in the amount of drug necessary for IV versus oral doses, it would be very advantageous to have compositions and methods for IV administration where.
significantly less drug is required.
SUMMARY OF THE INVENTION AND ADVANTAGES
The foregoing advantages and objects are accomplished by the present invention. The present invention provides an oral solution/suspension comprising a proton pump inhibitor and at least one buffering agent.
The PPI can be any substituted benzimidazole compound having H+,K+-ATPase inhibiting activity and being unstable to acid. Omeprazole and lansoprazole are the preferred PPIs for use in oral suspensions in concentrations of at least 1.2 mg/ml and 0.3 mg/ml, respectively. The liquid oral compositions can be further comprised of parietal cell activators, anti-foaming agents and/or flavoring agents.
The inventive composition can alternatively be formulated as a powder, tablet, suspension tablet, chewable tablet, capsule, effervescent powder, effervescent tablet, pellets and granules. Such dosage forms are advantageously devoid of any enteric coating or delayed or sustained-release delivery mechanisms, and comprise a PPI and at least one buffering agent to protect the PPI against acid degradation. Similar to the liquid dosage form, the dry forms can further include anti-foaming agents, parietal cell activators and flavoring agents.
Kits utilizing the inventive dry dosage forms are also disclosed herein to provide for the easy preparation of a liquid composition from the dry forms.
In accordance with the present invention, there is further provided a method of treating gastric acid disorders by administering to a patient a pharmaceutical composition comprising a proton pump inhibitor in a 5 pharmaceutically acceptable carrier and at least one buffering agent wherein the administering step comprises providing a patient with a single dose of the composition without requiring further administering of the buffering agent.
10 Additionally, the present invention relates to a method for enhancing the pharmacological activity of an intravenously administered proton pump inhibitor in which at least one parietal cell activator is orally administered to the patient before, during and/or after 15 the intravenous administration of the proton pump inhibitor.
BRIEF DESCRIPTION OF THE DRAWINGS
Other advantages of the present invention will be readily appreciated as the same becomes better understood 20 by reference to the following detailed description when considered in connection with the accompanying drawing wherein:
Figure 1 is a graph showing the effect of the omeprazole solution of the present invention on gastric 25 pH in patients at risk for upper gastrointestinal bleeding from stress-related mucosal damage;
Figure 2 is a flow chart illustrating a patient enrollment scheme;
26a Figure 3 is a bar graph illustrating gastric pH both pre- and post-administration of omeprazole solution according to the present invention; and Figure 4 is a graph illustrating the stomach pH values after the oral administration of both chocolate plus lansoprazole and lansoprazole alone.
Figure 5 is a pie graph illustrating the proportion of patients that had pH probe ref lux confirmation versus those that did not.
Figure 6 is a pie graph illustrating the proportion of patients that had endoscopy ref lux confirmation versus those that did not.
Figure 7 is a pie graph illustrating the proportion of patients that had prior ref lux therapy version those that did not.
Figure 8 is a pie graph illustrating the proportion of patients that showed various results of PPI therapy:
improved, no change, failed or stopped therapy.
DETAILED DESCRIPTION OF THE INVENTION
In general, the present invention relates to a pharmaceutical composition comprising a proton pump inhibitor and a buffering agent with or without one or more parietal cell activators. While the present invention may be embodied in many different forms, several specific embodiments are discussed herein with the understanding that the present disclosure is to be considered only as an exemplification of the principles of the invention, and it is not intended to limit the invention to the embodiments illustrated.
For the purposes of this application, the term "proton pump inhibitor" (PPI) shall mean any substituted 26b benzimidazole possessing pharmacological activity as an inhibitor of H+, K+ -ATPase, including, but not limited to, omeprazole, lansoprazole, pantoprazole, rabeprazole, dontoprazole, perprazole (s-omeprazole magnesium) , habeprazole, ransoprazole, pariprazole, and leminoprazole in neutral form or a salt form, a single enantiomer or isomer or other derivative or an alkaline salt of an enantiomer of the same.
The inventive composition comprises dry formulations, solutions and/or suspensions of the proton pump inhibitors.
As used herein, the terms "suspension"
and "solution" are interchangeable with each other and mean solutions and/or suspensions of the substituted benzimidazoles.
After absorption of the PPI (or administration intravenously) the drug is delivered via the bloodstream to various tissues and cells of the body including the parietal cells. Research suggests that the PPI is in the form of a weak base and is non-ionized and thereby freely passes through physiologic membranes, including the cellular membranes of the parietal cell. It is believed that the non-ionized PPI moves into the acid-secreting portion of the parietal cell, the secretory canaliculus.
Once in the acidic millieu of the secretory canaliculus, the PPI is apparently protonated (ionized) and converted to the active form of the drug. Generally, ionized proton pump inhibitors are membrane impermeable and form disulfide covalent bonds with cysteine residues in the alpha subunit of the proton pump.
The inventive pharmaceutical composition comprising a proton pump inhibitor such as omeprazole, lansoprazole or other proton pump inhibitor and derivatives thereof can be used for the treatment or prevention of gastrointestinal conditions including, but not limited to, active duodenal ulcers, gastric ulcers, gastroesophageal reflux disease (GERD), severe erosive esophagitis, poorly responsive systematic GERD, and pathological hypersecretory conditions such as Zollinger Ellison Syndrome. Treatment of these conditions is accomplished by administering to a patient an effective amount of the pharmaceutical composition according to the present invention.
The proton pump inhibitor is administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, and other factors known to medical practitioners. The term "effective amount" means, consistent with considerations known in the art, the amount of PPI or other agent effective to achieve a pharmacologic effect or therapeutic improvement without undue adverse side effects, including but not limited to, raising of gastric pH, reduced gastrointestinal bleeding, reduction in the need for blood transfusion, improved survival rate, more rapid recovery, parietal cell activation and H+,K+-ATPase inhibition or improvement or elimination of symptoms, and other indicators as are selected as appropriate measures by those skilled in the art.
The dosage range of omeprazole or other proton pump inhibitors such as substituted benzimidazoles and derivatives thereof can range from approximately < 2 mg/day to approximately 300 mg/day. The standard approximate daily oral dosage is typically 20 mg of omeprazole, 30 mg lansoprazole, 40 mg pantoprazole, 20 mg rabeprazole, and the pharmacologically equivalent doses of the following PPIs: habeprazole, pariprazole, dontoprazole, ransoprazole, perprazole (s-omeprazole magnesium), and leminoprazole.
A pharmaceutical formulation of the proton pump inhibitors utilized in the present invention can be administered orally or enterally to the patient. This can be accomplished, for example, by administering the solution via a nasogastric (ng) tube or other indwelling tubes placed in the GI tract. In order to avoid the critical disadvantages associated with administering large amounts of sodium bicarbonate, the PPI solution of the present invention is administered in a single dose which does not require any further administration of bicarbonate, or large amounts of bicarbonate, or other buffer following the administration of the PPI solution, nor does it require a large amount of bicarbonate or buffer in total. That is, unlike the prior art PPI
solutions and administration protocols outlined above, the formulation of the present invention is given in a single dose which does not require administration of bicarbonate either before or after administration of the PPI. The present invention eliminates the need to pre-or post-dose with additional volumes of water and sodium bicarbonate. The amount of bicarbonate administered via the single dose administration of the present invention is less than the amount of bicarbonate administered as taught in the prior art references cited above.
Preparation of Oral Liquids The liquid oral pharmaceutical composition of the present invention is prepared by mixing omeprazole (Prilosec AstraZeneca) or other proton pump inhibitor or derivatives thereof with a solution including at least one buffering agent (with or without a parietal cell activator, as discussed below) Preferably, omeprazole or other proton pump inhibitor, which can be obtained from a capsule or tablet or obtained from the solution for parenteral administration, is mixed with a sodium bicarbonate solution to achieve a desired final omeprazole (or other PPI) concentration. As an example, the concentration of omeprazole in the solution can range from approximately 0.4 mg/ml to approximately 10.0 mg/ml.
The preferred concentration for the omeprazole in the 5 solution ranges from approximately 1.0 mg/ml to approximately 4.0 mg/ml, with 2.0 mg/ml being the standard concentration. For lansoprazole (Prevacid TAP
Pharmaceuticals, Inc.) the concentration can range from about 0.3 mg/ml to 10 mg/ml with the preferred 10 concentration being about 3 mg/ml.
Although sodium bicarbonate is the preferred buffering agent employed in the present invention to protect the PPI against acid degradation, many other weak and strong bases (and mixtures thereof) can be utilized.
15 For the purposes of this application, "buffering agent"
shall mean any pharmaceutically appropriate weak base or strong base (and mixtures thereof) that, when formulated or delivered with (e.g., before, during and/or after) the PPI, functions to substantially prevent or inhibit the 20 acid degradation of the PPI by gastric acid sufficient to preserve the bioavailability of the PPI administered.
The buffering agent is administered in an amount sufficient to substantially achieve the above functionality. Therefore, the buffering agent of the 25 present invention, when in the presence of gastric acid, must only elevate the pH of the stomach sufficiently to achieve adequate bioavailability of the drug to effect therapeutic action.
Accordingly, examples of buffering agents include, 30 but are not limited to, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, magnesium lactate, magnesium glucomate, aluminum hydroxide, aluminum hydroxide/ sodium bicarbonate coprecipitate, a mixture of an amino acid and a buffer, a mixture of aluminum glycinate and a buffer, a mixture of an acid salt of an amino acid and a buffer, and a mixture of an alkali salt of an amino acid and a buffer. Additional buffering agents include sodium citrate, sodium tartarate, sodium acetate, sodium carbonate, sodium polyphosphate, potassium polyphosphate, sodium pyrophosphate, potassium pyrophosphate, disodium hydrogenphosphate, dipotassium hydrogenphosphate, trisodium phosphate, tripotassium phosphate, sodium acetate, potassium metaphosphate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium silicate, calcium acetate, calcium glycerophosphate, calcium cholride, calcium hydroxide, calcium lactate, calcium carbonate, calcium bicarbonate, and other calcium salts.
The pharmaceutically acceptable carrier of the oral liquid preferably comprises a bicarbonate salt of Group IA metal as buffering agent, and can be prepared by mixing the bicarbonate salt of the Group IA metal, preferably sodium bicarbonate, with water. The concentration of the bicarbonate salt of the Group IA
metal in the composition generally ranges from approximately 5.0-percent to approximately 60.0 percent.
Preferably, the concentration of the bicarbonate salt of the Group IA metal ranges from approximately 7.5 percent to approximately 10.0 percent. In a preferred embodiment of the present invention, sodium bicarbonate is the preferred salt and is present in a concentration of approximately 8.4 percent.
More specifically, the amount of sodium bicarbonate 8.4% used in the solution of the present invention is approximately 1 mEq (or mmole) sodium bicarbonate per 2 mg omeprazole, with a range of approximately 0.2 mEq (mmole) to 5 mEq (mmole) per 2 mg of omeprazole.
In a preferred embodiment of the present invention, enterically-coated omeprazole particles are obtained from delayed release capsules (Prilosec AstraZeneca).
Alternatively, omeprazole powder can be used. The enterically coated omeprazole particles are mixed with a sodium bicarbonate (NaHCO3) solution (8.4%), which dissolves the enteric coating and forms an omeprazole solution. The omeprazole solution has pharmacokinetic advantages over standard time-released omeprazole capsules, including: (a) more rapid drug absorbance time (about 10 to 60 minutes) following administration for the omeprazole solution versus about 1 to 3 hours following administration for the enteric-coated pellets; (b) the NaHCO3 solution protects the omeprazole from acid degradation prior to absorption; (c) the NaHC03 acts as an antacid while the omeprazole is being absorbed; and (d) the solution can be administered through an existing indwelling tube without clogging, for example, nasogastric or other feeding tubes (jejunal or duodenal), including small bore needle catheter feeding tubes.
Additionally, various additives can be incorporated into the inventive solution to enhance its stability, sterility and isotonicity. Further, antimicrobial preservatives, antioxidants, chelating agents, and additional buffers can be added, such as ambicin.
However, microbiological evidence shows that this formulation inherently possesses antimicrobial and antifungal activity. Various antibacterial and antifungal agents such as, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like can enhance prevention of the action of microorganisms.
In many cases, it would be desirable to include isotonic agents, for example, sugars, sodium chloride, and the like. Additionally, thickening agents such as methylcellulose are desirable to use in order to reduce the settling of the omeprazole or other PPI or derivatives thereof from the suspension.
The liquid oral solution may further comprise flavoring agents (e.g., chocolate, root beer or watermelon) or other flavorings stable at pH 7 to 9, anti-foaming agents (e.g., simethicone 80 mg, Mylicon") and parietal cell activators (discussed below).
The present invention further includes a pharmaceutical composition comprising omeprazole or other proton pump inhibitor and derivatives thereof and at least one buffering agent in a form convenient for storage, whereby when the composition is placed into an aqueous solution, the composition dissolves yielding a suspension suitable for enteral administration to a subject. The pharmaceutical composition is in a solid form prior to dissolution or suspension in an aqueous solution. The omeprazole or other PPIs and buffering agent can be formed into a tablet, capsule, pellets or granules, by methods well known to those skilled in the art.
The resultant omeprazole solution is stable at room temperature for several weeks and inhibits the growth of bacteria or fungi as shown in Example X below. Indeed, as established in Example XIII, the solution. maintains greater than 90% of its potency for 12 months. By providing a pharmaceutical composition including omeprazole or other PPI with buffer in a solid form, which can be later dissolved or suspended in a prescribed amount of aqueous solution to yield the desired concentration of omeprazole and buffer, the cost of production, shipping, and storage are greatly reduced as no liquids are shipped (reducing weight and cost), and there is no need to refrigerate the solid form of the composition or the solution. Once mixed the resultant solution can then be used to provide dosages for a single patient over a course of time, or for several patients.
Tablets and Other Solid Dosage Forms As mentioned above, the formulations of the present invention can also be manufactured in concentrated forms, such as tablets, suspension tablets and effervescent tablets or powders, such that upon reaction with water or other diluent, the aqueous form of the present invention is produced for oral, enteral or parenteral administration.
The present pharmaceutical tablets or other solid dosage forms disintegrate rapidly in aqueous media and form an aqueous solution of the PPI and buffering agent with minimal shaking or agitation. Such tablets utilize commonly available materials and achieve these and other desirable objectives. The tablets or other solid dosage forms of this invention provide for precise dosing of a PPI that may be of low solubility in water. They are particularly useful for medicating children and the elderly and others in a way that is much more acceptable than swallowing or chewing a tablet. The tablets that are produced have low friability, making - them easily transportable.
5 The term "suspension tablets" as used herein refers to compressed tablets which rapidly disintegrate after they are placed in water, and are readily dispersible to form a suspension containing a precise dosage of the PPI.
The suspension tablets of this invention comprise, in 10 combination, a therapeutic amount of a PPI, a buffering agent, and a disintegrant. More particularly, the suspension tablets comprise about 20 mg omeprazole and about 1-20 mEq of sodium bicarbonate.
Croscarmellose sodium is a known disintegrant for 15 tablet formulations, and is available from FMC
Corporation, Philadelphia, Pa. under the trademark Ac-Di-Sol . It is frequently blended in compressed tableting formulations either alone or in combination with microcrystalline cellulose to achieve rapid 20 disintegration of the tablet.
Microcrystalline cellulose, alone or coprocessed with other ingredients, is also a common additive for compressed tablets and is well known for its ability to improve compressibility of difficult to compress tablet 25 materials. It is commercially available under the Avicel trademark. Two different Avicel products are utilized, Avicel PH which is microcrystalline cellulose, and Avicel AC-815, a coprocessed spray dried residue of microcrystalline cellulose and a calcium, sodium alginate 30 complex in which the calcium to sodium ratio is in the range of about 0.40:1 to about 2.5:1. While AC-815 is comprised of 85% microcrystalline cellulose (MCC) and 15%
of a calcium, sodium alginate complex, for purposes of the present invention this ratio may be varied from about 75% MCC to 25% alginate up to about 95% MCC to 5%
alginate. Depending on the particular formulation and active ingredient, these two components may be present in approximately equal amounts or in unequal amounts, and either may comprise from about 10% to about 50% by weight of the tablet.
The suspension tablet composition may, in addition to the ingredients described above, contain other ingredients often used in pharmaceutical tablets, including flavoring agents, sweetening agents, flow aids, lubricants or other common tablet adjuvants, as will be apparent to those skilled in the art. Other disintegrants, such as crospovidone and sodium starch glycolate may be employed, although croscarmellose sodium is preferred.
In addition to the suspension tablet, the solid formulation of the present invention can be in the form of a powder, a tablet, a capsule, or other suitable solid dosage form (e.g., a pelleted form or an effervescing tablet, troche or powder), which creates the inventive solution in the presence of diluent or upon ingestion.
For example, the water in the stomach secretions or water which is used to swallow the solid dosage form can serve as the aqueous diluent.
Compressed tablets are solid dosage forms prepared by compacting a formulation containing an active ingredient and excipients selected to aid the processing and improve the properties of the product. The term "compressed tablet" generally refers to a plain, uncoated tablet for oral ingestion, prepared by a single compression or by pre-compaction tapping followed by a final compression.
Such solid forms can be manufactured as is well known in the art. Tablet forms can include, for example, one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmaceutically compatible carriers. The manufacturing processes may employ one, or a combination of, four established methods: (1) dry mixing; (2) direct compression; (3) milling; and (4) non-aqueous granulation. Lachman et al., The Theory and Practice of Industrial Pharmacy (1986). Such tablets may also comprise film coatings, which preferably dissolve upon oral ingestion or upon contact with diluent.
Non-limiting examples of buffering agents which could be utilized in such tablets include sodium bicarbonate, alkali earth metal salts such as calcium carbonate, calcium hydroxide, calcium lactate, calcium glycerophosphate, calcium acetate, magnesium carbonate, magnesium hydroxide, magnesium silicate, magnesium aluminate, aluminum hydroxide or aluminum magnesium hydroxide. A particular alkali earth metal salt useful for making an antacid tablet is calcium carbonate.
An example of a low density alkali earth metal salt useful for making the granules according to the present invention is extra light calcium carbonate available from Specialty Minerals Inc., Adams, Me. The density of the extra light calcium carbonate, prior to being processed according to the present invention, is about 0.37 gm/ml.
The granules used to make the tablets according to one embodiment of the present invention are made by either spray drying or pre-compacting the raw materials.
Prior to being processed into granules by either process, the density of the alkali earth metal salts useful in the present invention ranges from about 0.3 gm/ml to about 0.55 gm/ml, preferably about 0.35 gm/ml to about 0.45 gm/ml, even more preferably about 0.37 gm/ml to about 0.42 gm/ml.
Additionally, the present invention can be manufactured by utilizing micronized compounds in place of the granules or powder. Micronization is the process by which solid drug particles are reduced in size. Since the dissolution rate is directly proportional to the surface area of the solid, and reducing the particle size increases the surface area, reducing the particle size increases the dissolution rate. Although micronization results in increased surface area possibly causing particle aggregation, which can negate the benefit of micronization and is an expensive manufacturing step, it does have the significant benefit of increasing the dissolution rate of relatively water insoluble drugs, such as omeprazole and other proton pump inhibitors.
The present invention also relates to administration kits to ease mixing and administration. A month's supply of powder or tablets, for example, can be packaged with a separate month's supply of diluent, and a re-usable plastic dosing cup. More specifically, the package could..
contain thirty (30) suspension tablets containing 20 mg omeprazole each, 1 L sodium bicarbonate 8.4% solution, and a 30 ml dose cup. The user places the tablet in the empty dose cup, fills it to the 30 ml mark with the sodium bicarbonate, waits for it to dissolve (gentle stirring or agitation may be used), and then ingests the suspension. One skilled in the art will appreciate that such kits may contain many different variations of the above components. For example, if the tablets or powder are compounded to contain PPI and buffering agent, the diluent may be water, sodium bicarbonate, or other compatible diluent, and the dose cup can be larger than 30 ml in size. Also, such kits can be packaged in unit dose form, or as weekly, monthly, or yearly kits, etc.
Although the tablets of this invention are primarily intended as a suspension dosage form, the granulations used to form the tablet may also be used to form rapidly disintegrating chewable tablets, lozenges, troches, or swallowable tablets. Therefore, the intermediate formulations as well as the process for preparing them provide additional novel aspects of the present invention.
Effervescent tablets and powders are also prepared in accordance with the present invention. Effervescent salts have been used to disperse medicines in water for oral administration. Effervescent salts are granules or coarse powders containing a medicinal agent in a dry mixture, usually composed of sodium bicarbonate, citric acid and tartaric acid. When the salts are added to water, the acids and the base react to liberate carbon dioxide gas, thereby causing "effervescence."
The choice of ingredients for effervescent granules depends both upon the requirements of the manufacturing 5 process and the necessity of making a preparation which dissolves readily in water. The two required ingredients are at least one acid and at least one base. The base releases carbon dioxide upon reaction with the acid.
Examples of such acids include, but are not limited to, 10 tartaric acid and citric acid. Preferably, the acid is a combination of both tartaric acid and citric acid.
Examples of bases include, but are not limited to, sodium carbonate, potassium bicarbonate and sodium bicarbonate.
Preferably, the base is sodium bicarbonate, and the 15 effervescent combination has a pH of about 6.0 or higher.
Effervescent salts preferably include the following ingredients, which actually produce the effervescence:
sodium bicarbonate, citric acid and tartaric acid. When added to water the acids and base react to liberate 20 carbon dioxide, resulting in effervescence. It should be noted that any acid-base combination which results in the liberation of carbon dioxide could be used in place of the combination of sodium bicarbonate and citric and tartaric acids, as long as the ingredients were suitable 25 for pharmaceutical use, and result in a pH of about 6.0 or higher.
It should be noted that it requires 3 molecules of NaHCO3 (sodium bicarbonate) to neutralize 1 molecule of citric acid and 2 molecules of NaHCO3 to neutralize 1 30 molecule of tartaric acid. It is desired that the approximate ratio of ingredients is as follows Citric Acid:Tartaric Acid:Sodium Bicarbonate = 1:2:3.44 (by weight). This ratio can be varied and continue to produce an effective release of carbon dioxide. For example, ratios of about 1:0:3 or 0:1:2 are also effective.
The method of preparation of the effervescent granules of the present invention employs three basic processes: wet and dry granulation, and fusion. The fusion method is used for the preparation of most commercial effervescent powders. It should be noted that although these methods are intended for the preparation of granules, the formulations of effervescent salts of the present invention could also be prepared as tablets, according to well known prior art technology for tablet preparation.
Wet granulation is the oldest method of granule preparation. The individual steps in the wet granulation process of tablet preparation include milling and sieving of the ingredients; dry powder mixing; wet massing;
granulation; and final grinding.
Dry granulation involves compressing a powder mixture into a rough tablet or "slug" on a heavy-duty rotary tablet press. The slugs are then broken up into granular particles by a grinding operation, usually by passage through an oscillation granulator. The individual steps include mixing of the powders; compressing (slugging); and grinding (slug reduction or granulation).
No wet binder or moisture is involved in any of the steps.
The fusion method is the most preferred method for preparing the granules of the present invention. In this method, the compressing (slugging) step of the dry granulation process is eliminated. Instead, the powders are heated in an oven or other suitable source of heat.
PPIs Administered with Parietal Cell Activators Applicant has unexpectedly discovered that certain compounds, such as chocolate, calcium and sodium bicarbonate and other alkaline substances, stimulate the parietal cells and enhance the pharmacologic activity of the PPI administered. For the purposes of this application, "parietal cell activator" shall mean any compound or mixture of compounds possessing such stimulatory effect including, but not limited to, chocolate, sodium bicarbonate, calcium (e.g., calcium carbonate, calcium gluconate, calcium hydroxide, calcium acetate and calcium glycerophosphate), peppermint oil, spearmint oil, coffee, tea and colas (even if decaffeinated), caffeine, theophylline, theobromine, and amino acids (particularly aromatic amino acids such as phenylalanine and tryptophan) and combinations thereof and the salts thereof.
Such parietal cell activators are administered in an amount sufficient to produce the desired stimulatory effect without causing untoward side effects to patients.
For example, chocolate, as raw cocoa, is administered in an amount of about 5 mg to 2.5 g per 20 mg dose of omeprazole (or equivalent pharmacologic dose of other PPI). The dose of activator administered to a mammal, particularly a human, in the context of the present invention should be sufficient to effect a therapeutic response (i.e., enhanced effect of PPI) over a reasonable time frame. The dose will be determined by the strength of the particular compositions employed and the condition of the person, as well as the body weight of the person to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side effects that might accompany the administration of a particular composition.
The approximate effective ranges for various parietal cell activators per 20 mg dose of omeprazole (or equivalent dose of other PPI) are:
Chocolate (raw cocoa) - 5 mg to 2.5 g Sodium bicarbonate - 7 mEq to 25 mEq Calcium carbonate - 1 mg to 1.5 Gm Calcium gluconate - 1 mg to 1.5 Gm Calcium lactate - 1 mg to 1.5 Gm Calcium hydroxide - 1 mg to 1.5 Gm Calcium acetate - 0.5 mg to 1.5 Gm Calcium glycerophosphate - 0.5 mg to 1.5 Gm Peppermint oil - (powdered form) 1 mg to 1 Gm Spearmint oil - (powdered form) 1 mg to 1 Gm Coffee - 20 ml to 240 ml Tea - 20 ml to 240 ml Cola - 20 ml to 240 ml Caffeine - 0.5 mg to 1.5GM
Theophylline - 0.5 mg to 1.5GM
Theobromine - 0.5 mg to 1.5GM
Phenylalanine - 0.5 mg to 1.5GM
Tryptophan - 0.5 mg to 1.5GM
Pharmaceutically acceptable carriers are well-known to those who are skilled in the art. The choice of carrier will be determined, in part, both by the particular composition and by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical compositions of the present invention.
Example I
A. Fast Disintegrating Suspension Tablets of Omeprazole.
A fast disintegrating tablet is compounded as follows: Croscarmellose sodium 300 g is added to the vortex of a rapidly stirred beaker containing 3.0 kg of deionized water. This slurry is mixed for 10 minutes.
Omeprazole 90 g (powdered) is placed in the bowl of a Hobart mixer. After mixing, the slurry of croscarmellose sodium is added slowly to the omeprazole in the mixer bowl, forming a granulation which is then placed in trays and dried at 70 C for three hours. The dry granulation is then placed in a blender, and to it is added 1, 500 g of Avicel AC-815 (85% microcrystalline cellulose coprocessed with 15% of a calcium, sodium alginate complex) and 1,500 g of Avicel PH-302 (microcrystalline cellulose). After this mixture is thoroughly blended, 35 g of magnesium stearate is added and mixed for 5 minutes.
The resulting mixture is compressed into tablets on a standard tablet press (Hata HS). These tablets have an average weight of about 1.5 g, and contain about 20 mg omeprazole. These tablets have low friability and rapid disintegration time. This formulation may be dissolved in an aqueous solution containing a buffering agent for immediate oral administration.
Alternatively, the suspension tablet may be swallowed whole with a solution of buffering agent. In 5 both cases, the preferred solution is sodium bicarbonate 8.4%. As a further alternative, sodium bicarbonate powder (about 975 mg per 20 mg dose of omeprazole (or an equipotent amount of other PPI) is compounded directly into the tablet. Such tablets are then dissolved in 10 water or sodium bicarbonate 8.4%, or swallowed whole with an aqueous diluent.
B. 10 mg Tablet Formula.
Omeprazole 10 mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) 15 Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 250mg Aspartame calcium (phenylalanine) 0.5mg Colloidal silicon dioxide 12mg 20 Corn starch 15 mg Croscarmellose sodium 12 mg Dextrose 10mg Peppermint 3mg Maltodextrin 3mg 25 Mannitol 3mg Pregelatinized starch 3mg C. 20 mg Tablet Formula.
Omeprazole 20mg (or lansoprazole 30 or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 250mg Aspartame calcium (phenylalanine) 0.5mg Colloidal silicon dioxide 12mg Corn starch 15 mg Croscarmellose sodium 12 mg Dextrose 10mg Calcium hydroxide 10mg Peppermint 3mg Maltodextrin 3mg Mannitol 3mg Pregelatinized starch 3mg D. Tablet for Rapid Dissolution.
Omeprazole 20mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 500mg Calcium hydroxide 50mg Croscarmellose sodium 12 mg E. Powder for Reconstitution for Oral Use (or per ng tube).
Omeprazole 20mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 500mg Calcium hydroxide 50mg Glycerine 200mg F. 10 mg Tablet Formula.
Omeprazole 10mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 175mg Calcium glycerophosphate 175mg Sodium bicarbonate 250mg Polyethylene glycol 20mg Croscarmellose sodium 12 mg Peppermint 3mg Magnesium silicate 1mg Magnesium stearate 1mg G. 10 mg Tablet Formula.
Omeprazole 10mg (or lansoprazole or pantoprazole or other PPI in an equipotent amount) Calcium lactate 200mg Calcium glycerophosphate 200mg Sodium bicarbonate 400mg Croscarmellose sodium 12 mg Pregelatinized starch 3mg Example II
Standard Tablet of PPI and Buffering Agent.
Ten (10) tablets were prepared using a standard tablet press, each tablet comprising about 20 mg omeprazole and about 975 mg sodium bicarbonate uniformly dispersed throughout the tablet. To test the dissolution rate of the tablets, each was added to 60 ml of water.
Using previously prepared liquid omeprazole/sodium bicarbonate solution as a visual comparator, it was observed that each tablet was completely dispersed in under three (3) minutes.
Another study using the tablets compounded according to this Example evaluated the bioactivity of the tablets in five (5) adult critical care patients. Each subject was administered one tablet via ng with a small amount of water, and the pH of ng aspirate was monitored using paper measure. The pH for each patient was evaluated for 6 hours and remained above 4, thus demonstrating the therapeutic benefit of the tablets in these patients.
Tablets were also prepared by boring out the center of sodium bicarbonate USP 975 mg tablets with a knife.
Most of the removed sodium bicarbonate powder was then triturated with the contents of a 20 mg Prilosec capsule and the resulting mixture was then packed into the hole in the tablet and sealed with glycerin.
Example III
PPI Central Core Tablet Tablets are prepared in a two-step process. First, about 20 mg of omeprazole is formed into a tablet as is known in the art to be used as a central core. Second, about 975 mg sodium bicarbonate USP is used to uniformly surround the central core to form an outer protective cover of sodium bicarbonate. The central core and outer cover are both prepared using standard binders and other excipients to create a finished, pharmaceutically acceptable tablet.
Example IV
Effervescent Tablets and Granules The granules of one 20mg Prilosec capsule were emptied into a mortar and triturated with a pestle to a fine powder. The omeprazole powder was then geometrically diluted with about 958 mg sodium bicarbonate USP, about 832 mg citric acid USP and about 312 mg potassium carbonate USP to form a homogeneous mixture of effervescent omeprazole powder. This powder was then added to about 60 ml of water whereupon the powder reacted with the water to create effervescence. A
bubbling solution resulted of omeprazole and principally the antacids sodium citrate and potassium citrate. The solution was then administered orally to one adult male subject and gastric pH was measured using pHydrion paper.
The results were as follows:
Time Interval pH Measured Immediately prior to dose 2 1 hour post dose 7 2 hours post dose 6 4 hours post dose 6 6 hours post dose 5 8 hours post dose 4 One skilled in the art of pharmaceutical compounding will appreciate that bulk powders can be manufactured using the above ratios of ingredients, and that the powder can be pressed into tablets using standard binders and excipients. Such tablets are then mixed with water to activate the effervescent agents and create the desired solution. In addition, lansoprazole 30 mg (or an equipotent dose of other PPI) can be substituted for omeprazole.
The effervescent powder and tablets can alternatively be formulated by employing the above mixture but adding an additional 200 mg of sodium bicarbonate USP to create a resulting solution with a 5 higher pH. Further, instead of the excess 200 mg of sodium bicarbonate, 100 mg of calcium glycerophosphate or 100 mg of calcium lactate can be employed. Combinations of the same can also added.
Example V
Parietal Cell Activator "Choco-BaseTMFormulations and Efficacy.
Children are affected by gastroesophageal reflux disease (GERD) with atypical manifestations. Many of these atypical symptoms are difficult to control with traditional drugs such as H2-antagonists, cisapride, or sucralfate. PPIs are more effective in controlling gastric pH and the symptoms of GERD than other agents.
However, PPIs are not available in dosage forms that are easy to administer to young children. To address this problem, applicant employed omeprazole or lansoprazole in a buffered chocolate suspension (Choco-Base, in children with manifestations of GERD.
Applicant performed a retrospective evaluation of children with GERD referred to the University of Missouri-Columbia from 1995 to 1998 who received treatment with the experimental omeprazole or lansoprazole Choco-Base suspension formulated in accordance with Formulation 1 stated below. Data were included on all patients with follow up information sufficient to draw conclusions about pre/post treatment (usually > 6 months). There were 25 patients who met the criteria for this evaluation. Age range was several weeks to greater than 5 years. Most patients had a history of numerous unsuccessful attempts at ameliorating the effects of GERD. Medication histories indicated many trials of various drugs.
The primary investigator reviewed all charts for uniformity of data collection. When insufficient data was available in the University charts, attempts were made to review charts in the local primary care physicians' offices for follow-up data. If information was still unavailable to review, attempts were made to contact family for follow-up. If data were still unavailable the patients were considered inevaluable.
Patient charts were reviewed in detail. Data noted were date of commencement of therapy, date of termination of therapy and any reason for termination other than response to treatment. Patient demographics were also recorded, as were any other medical illnesses. Medical illnesses were divided grossly into those that are associated with or exacerbate GERD and those that do not.
Patient charts were examined for evidence of response to therapy. As this was largely a referral population, and a retrospective review, quantification of symptomatology based on scores, office visits and ED
visits was difficult. Therefore, applicant examined charts for evidence of an overall change in patient symptoms. In specific, any data to point towards improvement, decline or lack of change were examined and recorded.
Results.
A total of 33 pediatric patients to date have been treated with the above-described suspension at the University of Missouri - Columbia. Of the 33 patients, 9 were excluded from the study, all based upon insufficient data about commencement, duration or outcome in treatment with PPI therapy. This left 24 patients with enough data to draw conclusions.
Of the 24 remaining patients, 18 were males and 6 females. Ages at implementation of PPI therapy ranged from 2 weeks of age to 9 years old. Median age at start of therapy was 26.5 months [mean of 37 mo.] Early on, reflux was usually documented by endoscopy and confirmed by pH probe. Eventually, pH probe was dropped and endoscopy was the sole method for documenting reflux, usually at the time of another surgery (most often T-tubes or adenoidectomy). Seven patients had pH probe confirmation of GERD, whereas 18 had endoscopic confirmation of reflux including all eight who had pH
probing done(See Figures 5 and 6). Ref lux was diagnosed on endoscopy most commonly by cobblestoning of the tracheal wall, with laryngeal and pharyngeal cobblestoning as findings in a few patients. Six patients had neither pH nor endoscopic documentation of GERD, but were tried on PPI therapy based on symptomatology alone.
Past medical history was identified in each chart.
Ten patients had reflux-associated diagnoses. These were most commonly cerebral palsy, prematurity and Pierre Robin sequence. Other diagnoses were Charcot-Marie-Tooth disease, Velocardiofacial syndrome, Down syndrome and De George's syndrome. Non-reflux medical history was also identified and recorded separately (See Table 2 below).
Patients were, in general, referral patients from local family practice clinics, pediatricians, or other pediatric health care professionals. Most patients were referred to ENT for upper airway problems, sinusitis, or recurrent/chronic otitis media that had been refractory to medical therapy as reported by the primary care physician. Symptoms and signs most commonly found in these patients were recorded and tallied. All signs and symptoms were broken down into six major categories: (1) nasal; (2) otologic; (3) respiratory; (4) gastrointestinal; (5) sleep-related; and (6) other. The most common problems fell into one or all of the first 3 categories (See Table 1 below).
Most patients had been treated in the past with medical therapy in the form of antibiotics, steroids, asthma medications and other diagnosis-appropriate therapies. In addition, nine of the patients had been on reflux therapy in the past, most commonly in the form of conservative therapy such as head of bed elevation 30 , avoidance of evening snacks, avoidance of caffeinated beverages as well as cisapride and ranitidine (See Figure 7).
The proton pump inhibitor suspension used in this group of patients was Choco-Base suspension of either lansoprazole or omeprazole. The dosing was very uniform, with patients receiving doses of either 10 or 20 mg of omeprazole and 23 mg of lansoprazole. Initially, in April of 1996 when therapy was first instituted 10 mg of omeprazole was used. There were 3 patients in this early phase who were treated initially with 10 mg po qd of omeprazole. All three subsequently were increased to either 20 mg po qd of omeprazole or 23 mg po qd of lansoprazole. All remaining patients were given either the 20 mg omeprazole or the 23 mg lansoprazole treatment qd, except in one case, where 30 mg of lansoprazole was used. Patients were instructed to take their doses once per day, preferably at night in most cases. Suspensions were all filled through the University of Missouri Pharmacy at Green Meadows. This allowed for tracking of usage through refill data.
Most patients responded favorably to and tolerated the once daily dosing of Choco-Base proton pump inhibitor 5 suspension. Two patients had documented adverse effects associated with the use of the PPI suspension. In one patient, the mother reported increased burping up and dyspepsia, which was thought to be related to treatment failure. The other patient had small amounts of bloody 10 stools per mother. This patient never had his stool tested, as his bloody stool promptly resolved upon cessation of therapy, with no further sequellae. The other 23 patients had no documented adverse effects.
Patients were categorized based on review of clinic 15 notes and chart review into general categories: (1) improved; (2) unchanged; (3) failed; and (4) inconclusive. Of 24 patients with sufficient data for follow up, 18 showed improvement in symptomatology upon commencement of PPI therapy [72%]. The seven who did not 20 respond were analyzed and grouped. Three showed no change in symptomatology and clinical findings while on therapy, one complained of worsening symptoms while on therapy, one patient had therapy as prophylaxis for surgery, and two stopped therapy just: after its commencement (see 25 Figure 8). Setting aside the cases in which therapy was stopped before conclusions could be drawn and the case in which PPI therapy was for purely prophylactic reasons, leaves (17/21) 81% of patients that responded to Choco-Base suspension. This means that 19% (4/21) of patients 30 received no apparent benefit from PPI therapy. Of all these patients, only 4% complained of worsening symptoms and the side effects were 4% (1/21) and were mild bloody stool that completely resolved upon cessation of therapy.
Discussion.
GERD in the pediatric population is relatively common, affecting almost 50% of newborns. Even though most infants outgrow physiologic reflux, pathologic reflux still affects approximately 5% of all children throughout childhood. Recently considerable data has pointed to reflux as an etiologic factor in extra-esophageal areas. GERD has been attributed to sinusitis, dental caries, otitis media, asthma, apnea, arousal, pneumonia, bronchitis, and cough, among others. Despite the common nature of reflux, there seems to have been little improvement in therapy for reflux, especially in the non-surgical arena.
The standard of therapy for the treatment of GERD in the pediatric population has become a progression from conservative therapy to a combination of a pro-kinetic agent and H-2 blocker therapy. Nonetheless, many patients fail this treatment protocol and become surgical candidates. In adults, PPI therapy is effective in 90% of those treated for gastroesophageal reflux disease. As a medical alternative to the H-2 blockers, the proton pump inhibitors have not been studied extensively in the pediatric population. Part of the reason for this lack of data may be related to the absence of a suitable dosage formulation for this very young population, primarily under 2 years of age, that does not swallow capsules or tablets. It would be desirable to have a true liquid formulation (solution or suspension) with good palatability such as is used for oral antibiotics, decongestants, antihistamines, H-2 blockers, cisapride, metoclopramide, etc. The use of lansoprazole granules (removed from the gelatin capule) and sprinkled on applesauce has been approved by the Food and Drug Administration as an alternative method of drug administration in adults but not in children. Published data are lacking on the efficacy of the lansoprazole sprinkle method in children. Omeprazole has been studied for bioequivalence as a sprinkle in adults and appears to produce comparable serum concentrations when compared to the standard capsule. Again no data are available on the omeprazole sprinkle in children. An additional disadvantage of omeprazole is its taste which is quinine-like. Even when suspended in juice, applesauce or the like, the bitter nature of the medicine is easily tasted even if one granule is chewed. For this reason applicant eventually progressed to use lansoprazole in Choco-Base.
Pantoprazole and rabeprazole are available as enteric-coated tablets only. Currently, none of the proton pump inhibitors available in the United States are approved for pediatric use. There is some controversy as to what the appropriate dosage should be in this group of patients.
A recent review by Israel DM, Hassall E. Omeprazole and other proton pump inhibitors: pharmacology, efficacy, safety, with special reference to use in children. JOURNAL
OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION. 1998;
27:568-579, suggests that effective PPI dosages should be higher than that originally reported, i.e., from 0.7 mg/kg to 2 or 3 mg/kg omeprazole. Since toxicity with the PPI's is not seen even at >50mg/k.g, there appears little risk associated with higher dosages. Based on observations at the University of Missouri consistent with the findings of this review, applicant established a simple fixed dosage regimen of 10ml Choco-Base suspension daily. This 10ml dose provided 20mg omeprazole and 23 mg lansoprazole.
In the ICU setting, the University of Missouri-Columbia has been using an unflavored PPI suspension given once daily per various tubes (nasogastric, g-tube, jejunal feeding tube, duo tube, etc.) for stress ulcer prophylaxis. It seemed only logical that if this therapy could be made into a palatable form, it would have many ideal drug characteristics for the pediatric population.
First, it would be liquid, and therefore could be administered at earlier ages. Second, if made flavorful it could help to reduce noncompliance. Third, it could afford once daily dosing, also helping in reducing noncompliance. In the process, applicant discovered that the dosing could be standardized, which nearly eliminated dosing complexity.
Choco-Base is a product which protects drugs which are acid labile, such as proton pump inhibitors, from acid degradation. The first few pediatric patients with reflux prescribed Choco-Base were sicker patients. They had been on prior-therapy and had been diagnosed both by pH probe and endoscopy. In the first few months, applicant treated patients with 10 mg of omeprazole qd (1 mg/kg) and found this to be somewhat ineffective, and quickly increased the dosing to 20 mg (2 mg/kg) of omeprazole. About halfway through the study, applicant began using lansoprazole 23 mg po qd. Applicant's standard therapy was then either 20 mg of omeprazole or 23 mg of lansoprazole once daily. The extra 3 mg of lansoprazole is related only to the fact that the final concentration was 2.25 mg/ml, and applicant desired to keep dosing simple, so he used a 10 ml suspension.
The patients that were treated represented a tertiary care center population, and they were inherently sicker and refractory to medical therapy in the past.
The overall 72% success rate is slightly lower than the 90% success rates of PPIs in the adult population, but this can be attributed to the refractory nature of their illness, most having failed prior non-PPI treatment. The population in this study is not indicative of general practice populations.
Conclusion.
PPI therapy is a beneficial therapeutic option in the treatment of reflux related symptoms in the pediatric population. Its once daily dosing and standard dosing scheme combined with a palatable formulation makes it an ideal pharmacologic agent.
Symptoms Patient Numbers Nasal: 35 Sinusitis 7 Congestion 8 Nasal discharge 16 Other 4 Otologic: 26 Otitis Media 17 Otorrhea 9 Respiratory: 34 Cough 10 Wheeze 11 Respiratory Distress: 5 Pneumonia 2 Other 6 Gastrointestinal: 10 Abdominal Pain 1 Ref lux Vomitin 4 Other 4 Sleep Disturbances: 11 Other 2 Past Medical Histo Number of Patients Reflux Associated: 12 Premature 5 Pierre-Robin 2 Cerebral Palsy 2 Down Syndrome 1 Charcot-Marie-Tooth 1 Velocardiofacial Syndrome 1 Other Medical History 12 Cleft Palate 3 Asthma 3 Autism 2 Seizure Disorder 1 Diabetes Mellitus 1 Subglottic Stenosis 1 Tracheostomy Dependent- 1 The Choco-Base product is formulated as follows:
PART A INGREDIENTS AMOUNT (mg) Omeprazole 200 Sucrose 26000 Sodium Bicarbonate 9400 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT (ml) Distilled Water 100 COMPOUNDING INSTRUCTIONS
Add Part B to Part A to create a total volume of approximately 130 ml with an omeprazole concentration of about 1.5 mg/ml.
PART A INGREDIENTS (mg) AMOUNT (mg) Sucrose 26000 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT
Distilled Water 100 ml Sodium Bicarbonate 8400 mg Omeprazole 200 mg COMPOUNDING INSTRUCTIONS
Mix the constituents of Part B
together thoroughly and then add to Part A. This results in a total volume of approximately 130 ml with an omeprazole concentration of about 1.5 mg/ml.
PART A INGREDIENTS (mg) AMOUNT (mg) Sucrose 26000 Sodium Bicarbonate 9400 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT
Distilled Water 100 ml Omeprazole 200 mg COMPOUNDING INSTRUCTIONS
This formulation is reconstituted at the time of use by a pharmacist.
Part B is mixed first and is then uniformly mixed with the components of Part A. A final volume of about 130 ml is created having an omeprazole concentration of about 1.5 mg/ml.
PART A INGREDIENTS (mg) AMOUNT (mg) Sucrose 26000 Cocoa 1800 Corn Syrup Solids 6000 Sodium Caseinate 1000 Soy Lecithin 150 Sodium Chloride 35 Tricalcium Phosphate 20 Dipotassium Phosphate 12 Silicon Dioxide 5 Sodium Stearoyl Lactylate 5 PART B INGREDIENTS AMOUNT
Distilled Water 100 ml Sodium Bicarbonate 8400 mg Omeprazole 200 mg COMPOUNDING INSTRUCTIONS
This formulation is reconstituted at the time of use by a pharmacist.
Part B is mixed first and is then uniformly mixed with the components of Part A. A final volume of about 130 ml is created having an omeprazole concentration of about 1.5 mg/ml.
In all four of the above formulations, lansoprazole or other PPI can be substituted for omeprazole in equipotent amounts. For example, 300 mg of lansoprazole may be substituted for the 200 mg of omeprazole.
Additionally, aspartame can be substituted for sucrose, and the following other ingredients can be employed as carriers, adjuvants and excipients: maltodextrin, vanilla, carragreenan, mono and diglycerides, and lactated monoglycerides. One skilled in the art will appreciate that not all of the ingredients are necessary to create a Choco-Base formulation that is safe and effective.
Omeprazole powder or enteric coated granules can be used in each formulation. If the enteric coated granules 5 are used, the coating is either dissolved by the aqueous diluent or inactivated by trituration in the compounding process.
Applicant additionally analyzed the effects of a lansoprazole Choco-Base formulation on gastric pH using a 10 pH meter (Fisher Scientific) in one adult patient versus lansoprazole alone. The patient was first given a 30 mg oral capsule of Prevacid , and the patient's gastric pH
was measured at 0, 4, 8, 12, and 16 hours post dose. The results are illustrated in Fig. 4.
15 The Choco-Base product was compounded according to Formulation 1 above, except 300 mg of lansoprazole was used instead of omeprazole. A dose of 30 mg lansoprazole Choco-Base was orally administered at hour 18 post lansoprazole alone. Gastric pH was measured using a pH
20 meter at hours 18, 19, 24, 28, 32, 36, 40, 48, 52, and 56 post lansoprazole alone dose.
Figure 4 illustrates the lansoprazole/cocoa combination resulted in higher pH, at hours 19-56 than lansoprazole alone at hours 4-18. Therefore, the 25 combination of the lansoprazole with chocolate enhanced the pharmacologic activity of the lansoprazole. The results establish that the sodium bicarbonate as well as chocolate flavoring and calcium were all able to stimulate the activation of the proton pumps, perhaps due 30 to the release of gastrin. Proton pump inhibitors work by functionally inhibiting the proton pump and effectively block activated proton pumps (primarily those inserted into the secretory canalicular membrane). By further administering the proton pump inhibitor with one of these activators or enhancers, there is a synchronization of activation of the proton pump with the absorption and subsequent parietal cell concentrations of the proton pump inhibitor. As illustrated in Figure 4, this combination produced a much longer pharmacologic effect than when the proton pump inhibitor was administered alone.
Example VI
Combination Tablet Delivering Bolus and Time-released Doses of PPI
Tablets were compounded using known methods by forming an inner core of 10mg omeprazole powder mixed with 750 mg sodium bicarbonate, and an outer core of 10 mg omeprazole enteric-coated granules mixed with known binders and excipients. Upon ingestion of the whole tablet, the tablet dissolves and the inner core is dispersed in the stomach where it is absorbed for immediate therapeutic effect. The enteric-coated granules are later absorbed in the duodenum to provide symptomatic relief later in the dosing cycle. This tablet is particularly useful in patients who experience breakthrough gastritis between conventional doses, such as while sleeping or in the early morning hours.
Example VII
Therapeutic Application Patients were evaluable if they met the following criteria: had two or more risk factors for SRMD
(mechanical ventilation, head injury, severe burn, sepsis, multiple trauma, adult respiratory distress syndrome, major surgery, acute renal failure, multiple operative procedures, coagulotherapy, significant hyportension, acid-base disorder, and hepatic failure), gastric pH of < 4 prior to study entry, and no concomitant prophylaxis for SRMD.
The omeprazole solution was prepared by mixing 10 ml of 8.4% sodium bicarbonate with the contents of a 20 mg capsule of omeprazole (Merck & Co. Inc., West Point, PA) to yield a solution having a final omeprazole concentration of 2 mg/ml.
Nasogastric (ng) tubes were placed in the patients and an omeprazole dosage protocol of buffered 40 mg omeprazole solution (2 mg omeprazole/1 ml NaHCO3 - 8.4%) followed by 40 mg of the same buffered omeprazole solution in eight hours, then 20 mg of the same buffered omeprazole solution per day, for five days. After each buffered omeprazole solution administration, nasogastric suction was turned off for thirty minutes.
Eleven patients were evaluable. All patients were mechanically ventilated. Two hours after the initial 40 mg dose of buffered omeprazole solution, all patients had an increase in gastric pH to greater than eight as shown in Figure 1. Ten of the eleven patients maintained a gastric pH of greater than or equal to four when administered 20 mg omeprazole solution. One patient required 40 mg omeprazole solution per day (closed head injury, five total risk factors for SRMD) Two patients were changed to omeprazole solution after having developed clinically significant upper gastrointestinal bleeding while receiving conventional intravenous H2-antagonists. Bleeding subsided in both cases after twenty-four hours. Clinically significant upper gastrointestinal bleeding did not occur in the other nine patients. Overall mortality was 27%, mortality attributable to upper gastrointestinal bleeding was 0%.
Pneumonia developed in one patient after initiating omeprazole therapy and was present upon the initiation of omeprazole therapy in another patient. The mean length of prophylaxis was five days.
A pharmacoeconomic analysis revealed a difference in the total cost of care for the prophylaxis of SRMD:
ranitidine (Zantac ) continuous infusion intravenously (150 mg/24 hours) x five days $125.50;
cimetidine (Tagamet ) continuous infusion intravenously (900 mg/24 hours) x five days $109.61;
sucralfate one gm slurry four times a day per (ng) tube x five days $73.00; and buffered omeprazole solution regimen per (ng) tube x five days $65.70.
This example illustrates the efficacy of the buffered omeprazole solution of the present invention based on the increase in gastric pH, safety and cost of the buffered omeprazole solution as a method for SRMD
prophylaxis.
Example VIII
Effect on pH
Experiments were carried out in order to determine the effect of the omeprazole solution (2 mg omeprazole/
1 ml NaHCO3 - 8.4%) administration on the accuracy of subsequent pH measurements through a nasogastric tube.
After preparing a total of 40 mg of buffered omeprazole solution, in the manner of Example VII, doses were administered into the stomach, usually, through a nasogastric (ng) tube. Nasogastric tubes from nine different institutions were gathered for an evaluation.
Artificial gastric fluid (gf) was prepared according to the USP. pH recordings were made in triplicate using a Microcomputer Portable pH meter model 6007 (Jenco Electronics Ltd., Taipei, Taiwan).
First, the terminal portion (tp) of the nasogastric tubes was placed into a glass beaker containing the gastric fluid. A 5 ml aliquot of gastric fluid was aspirated through each tube and the pH recorded; this was called the "pre-omeprazole solution/suspension measurement." Second, the terminal portion (tp) of each of the nasogastric tubes was removed from the beaker of gastric fluid and placed into an empty beaker. Twenty (20) mg of omeprazole solution was delivered through each of the nasogastric tubes and flushed with 10 ml of tap water. The terminal portion (tp) of each of the nasogastric tubes was placed back into the gastric fluid.
After a one hour incubation, a 5 ml aliquot of gastric fluid was aspirated through each nasogastric tube and the pH recorded; this was called the "after first dose SOS
[Simplified Omeprazole Solution] measurement." Third, after an additional hour had passed, the second step was repeated; this was called the "after second dose SOS
[Simplified Omeprazole Solution] measurement." In addition to the pre-omeprazole measurement, the pH of the gastric fluid was checked in triplicate after the second and third steps. A change in the pH measurements of +/-0.3 units was considered significant. The Friedman test was used to compare the results. The Friedman test is a 5 two way analysis of variance which is used when more than two related samples are of interest, as in repeated measurements.
The results of these experiments are outlined in Table 1.
ngl ng2 ng3 ng4 ng5 ng6 ng7 ng8 ng9 [1] gf 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 Pre SOS
[2] gf p 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 la` dose 1.3rcheck of fg pH
[3] gf p 1.3 1.3 1.4 1.4 1.4 1.3 1.4 1.3 1.3 2nd Dose 1.3rcheck of gf pH SOS pH = 9.0 Table 1 illustrates the results of the pH
measurements that were taken during the course of the experiment. These results illustrate that there were no 15 statistically significant latent effects of omeprazole solution administration (per nasogastric tube) on the accuracy of subsequent pH measurements obtained through the same nasogastric tube.
Example IX
Efficacy of Buffered Omeprazole Solution in Ventilated Patients Experiments were performed in order to determine the efficacy, safety, and cost of buffered omeprazole solution in mechanically ventilated critically ill patients who have at least one additional risk factor for stress-related mucosal damage.
Patients: Seventy-five adult, mechanically ventilated patients with at least one additional risk factor for stress-related mucosal damage.
Interventions: Patients received 20 ml omeprazole solution (prepared as per Example VII and containing 40 mg of omeprazole) initially, followed by a second 20 ml dose six to eight hours later, then 10 ml (20 mg) daily.
Omeprazole solution according to the present invention was administered through a nasogastric tube, followed by 5-10 ml of tap water. The nasogastric tube was clamped for one to two hours after each administration.
Measurements and Main Results: The primary outcome measure was clinically significant gastrointestinal bleeding determined by endoscopic evaluation, nasogastric aspirate examination, or heme-positive coffee ground material that did not clear with lavage and was associated with a five percent decrease in hematocrit.
Secondary efficacy measures were gastric pH measured four hours after omeprazole was first administered, mean gastric pH after omeprazole was started, and the lowest gastric pH during omeprazole therapy. Safety-related outcomes included the incidence of adverse events and the incidence of pneumonia. No patient experienced clinically significant upper gastrointestinal bleeding after receiving omeprazole suspension. The four-hour post omeprazole gastric pH was 7.1 (mean), the mean gastric pH after starting omeprazole was 6.8 (mean) and the lowest pH after starting omeprazole was 5.6 (mean).
The incidence of pneumonia was twelve percent. No patient in this high-risk population experienced an adverse event or a drug interaction that was attributable to omeprazole.
Conclusions: Omeprazole solution prevented clinically significant upper gastrointestinal bleeding and maintained gastric pH above 5.5 in mechanically ventilated critical care patients without producing toxicity.
Materials and Methods:
The study protocol was approved by the Institutional Review Board for the University of Missouri at Columbia.
Study Population: All adult (>18 years old) patients admitted to the surgical intensive care and burn unit at the University of Missouri Hospital with an intact stomach, a nasogastric tube in place, and an anticipated intensive care unit stay of at least forty-eight hours were considered for inclusion in the study.
To be included patients also had to have a gastric pH of <4, had to be mechanically ventilated and have one of the following additional risk factors for a minimum of twenty-four hours after initiation of omeprazole suspension: head injury with altered level of consciousness, extensive burns (>20% Body Surface Area), acute renal failure, acid-base disorder, multiple trauma, coagulopathy, multiple operative procedures, coma, hypotension for longer than one hour or sepsis (see Table 2). Sepsis was defined as the presence of invasive pathogenic organisms or their toxins in blood or tissues resulting in a systematic response that included two or more of the following: temperature greater than 38 C or less than 36 C, heart rate greater than 90 beats/minute, respiratory rate greater than 20 breaths/minute (or p02 less than 75 mm Hg), and white blood cell count greater than 12, 000 or less than 4, 000 cells/mm3 or more than 10 percent bands (Bone, Let's Agree on Terminology:
Definitions of Sepsis, CRIT. CARE MED., 19: 27 (1991) ) .
Patients in whom H2-antagonist therapy had failed or who experienced an adverse event while receiving H2-antagonist therapy were also included.
Patients were excluded from the study if they were receiving azole antifungal agents through the nasogastric tube; were likely to swallow blood (e.g., facial and/or sinus fractures, oral lacerations); had severe thrombocytopenia (platelet count less than 30,000 cells/mm3); were receiving enteral feedings through the nasogastric tube; or had a history of vagotomy, pyloroplasty, or gastroplasty. In addition, patients with a gastric pH above four for forty-eight hours after ICU admission (without prophylaxis) were not eligible for participation. Patients who developed bleeding within the digestive tract that was not stress-related mucosal damage (e.g., endoscopically verified variceal bleeding or Mallory-Weiss tears, oral lesions, nasal tears due to placement of the nasogastric tube) were excluded from the efficacy evaluation and categorized as having non-stress-related mucosal bleeding. The reason for this exclusion is the confounding effect of non-stress-related mucosal bleeding on efficacy-related outcomes, such as the use of nasogastric aspirate inspection to define clinically significant upper gastrointestinal bleeding.
Study Drug Administration: Omeprazole solution was prepared immediately before administration by the patient's nurse using the following instructions: empty the contents of one or two 20 mg omeprazole capsule(s) into an empty 10 ml syringe (with 20 gauge needle in place) from which the plunger has been removed.
(Omeprazole delayed-release capsules, Merck & Co., Inc., West Point, PA); replace the plunger and uncap the needle; withdraw 10 ml of 8.4% sodium bicarbonate solution or 20 ml if 40 mg given (Abbott Laboratories, North Chicago, IL), to create a concentration of 2 mg omeprazole per ml of 8.4% sodium bicarbonate; and allow the enteric coated pellets of omeprazole to completely breakdown, 30 minutes (agitation is helpful). The omeprazole in the resultant preparation is partially dissolved and partially suspended. The preparation should have a milky white appearance with fine sediment and should be shaken before administration. The solution was not administered with acidic substances. A high pressure liquid chromatography study was performed that demonstrated that this preparation of simplified omeprazole suspension maintains >90% potency for seven days at room temperature. This preparation remained free of bacterial and fungal contamination for thirty days when stored at room temperature (See Table 5).
The initial dose of omeprazole solution was 40 mg, followed by a second 40 mg dose six to eight hours later, then a 20 mg daily dose administered at 8:00 AM. Each dose was administered through the nasogastric tube. The nasogastric tube was then flushed with 5-10 ml of tap water and clamped for at least one hour. Omeprazole 5 therapy was continued until there was no longer a need for stress ulcer prophylaxis (usually after the nasogastric tube was removed and the patient was taking water/food by mouth, or after the patient was removed from mechanical ventilation).
10 Primary Outcome Measures: The primary outcome measure in this study was the rate of clinically significant stress-related mucosal bleeding defined as endoscopic evidence of stress-related mucosal bleeding or bright red blood per nasogastric tube that did not clear 15 after a 5-minute lavage or persistent Gastroccult (SmithKline Diagnostics, Sunnyville, CA) positive coffee ground material for four consecutive hours that did not clear with lavage (at least 100 ml) and produced a 5%
decrease in hematocrit.
20 Secondary Outcome Measures: The secondary efficacy measures were gastric pH measured four hours after omeprazole was administered, mean gastric pH after starting omeprazole and lowest gastric pH during omeprazole administration. Gastric pH was measured 25 immediately after aspirating gastric contents through the nasogastric tube. pH paper (pHydrion improved pH papers, Microessential Laboratory, Brooklyn, NY) was used to measure gastric aspirate pH. The pH range of the test strips was 1 to 11, in increments of one pH unit.
30 Gastric pH was measured before the initiation of omeprazole solution therapy, immediately before each dose, and every four hours between doses.
Other secondary outcome measures were incidence of adverse events (including drug interactions) and pneumonia. Any adverse event that developed during the study was recorded. Pneumonia was defined using indicators adapted from the Centers for Disease Prevention and Control definition of nosocomial pneumonia (Garner et al., 1988). According to these criteria, a patient who has pneumonia is one who has rales or dullness to percussion on physical examination of the chest or has a chest radiograph that shows new or progressive infiltrate(s), consolidation, cavitation, or pleural effusion and has at least two of the following present: new purulent sputum or changes in character of the sputum, an organism isolated from blood culture, fever or leukocytosis, or evidence of infection from a protective specimen brush or bronchoalveolar lavage.
Patients who met the criteria for pneumonia and were receiving antimicrobial agents for the treatment of pneumonia were included in the pneumonia incidence figure. These criteria were also used as an initial screen before the first dose of study drug was administered to determine if pneumonia was present prior to the start of omeprazole suspension.
Cost of Care Analysis: A pharmacoeconomic evaluation of stress ulcer prophylaxis using omeprazole solution was performed. The evaluation included total drug cost (acquisition and administration), actual costs associated with adverse events (e.g., psychiatry consultation for mental confusion), costs associated with clinically significant upper gastrointestinal bleeding. Total drug cost was calculated by adding the average institutional costs of omeprazole 20 mg capsules, 50 ml sodium bicarbonate vials, and 10 ml syringes with needle;
nursing time (drug administration, pH monitoring);
pharmacy time (drug preparation); and disposal costs.
Costs associated with clinically significant upper gastrointestinal bleeding included endoscopy charges and accompanying consultation fees, procedures required to stop the bleeding (e.g., surgery, hemostatic agents, endoscopic procedures), increased hospital length of stay (as assessed by the attending' physician), and cost of drugs used to treat the gastrointestinal bleeding.
Statistical Analysis: The paired t-test (two-tailed) was used to compare gastric pH before and after omeprazole solution administration and to compare gastric pH before omeprazole solution administration with the mean and lowest gastric pH value measured after beginning omeprazole.
Results:
Seventy-seven patients met the inclusion and exclusion criteria and received omeprazole solution (See Figure 2). Two patients were excluded from the efficacy evaluation because the protocol for omeprazole administration was not followed. In one case, the omeprazole enteric-coated pellets had not completely broken down prior to the administration of the first two doses, which produced an erratic effect on gastric pH.
The gastric pH increased to above six as soon as the patient was given a dose of omeprazole solution (in which the enteric coated pellets of omeprazole had been allowed to completely breakdown).
The reason for the second exclusion was that nasogastric suctioning was not turned off after the omeprazole dose was administered. This resulted in a transient effect on gastric pH. The suction was turned off with subsequent omeprazole doses, and control of gastric pH was achieved. Two patients were considered efficacy failures because omeprazole failed to maintain adequate gastric pH control on the standard omeprazole 20 mg/day maintenance dose. When the omeprazole dose was increased to 40 mg/day (40 mg once/day or 20 mg twice/day), gastric pH was maintained above four in both patients. These two patients were included in the safety and efficacy evaluations, including the gastric pH
analysis. After the two patients were declared failures, their pH values were no longer followed.
The ages of the remaining seventy-five patients ranged from eighteen to eighty-seven years; forty-two patients were male and thirty-three were female. All patients were mechanically ventilated during the study.
Table 2 shows the frequency of risk factors for stress-related bleeding that were exhibited by the patients in this study. The most common risk factors in this population were mechanical ventilation and major surgery.
The range of risk factors for any given patient was two to ten, with a mean of 3 ( 1) (standard deviation). Five patients enrolled in the study had developed clinically significant bleeding while receiving continuous infusions of ranitidine (150 mg/24 hr) or cimetidine (900 mg/24 hr). In all five cases, the bleeding subsided and the gastric pH rose to above five within thirty-six hours after initiating omeprazole therapy. Three patients were enrolled after having developed two consecutive gastric pH values below three while receiving an H2-antagonist (in the doses outlined above). In all three cases, gastric pH rose to above five within four hours after omeprazole therapy was initiated. Four other patients were enrolled in this study after experiencing confusion (n=2) or thrombocytopenia (n=2) during H2-antigens therapy. Within thirty-six hours of switching therapy, these adverse events resolved.
Stress-related Mucosal Bleeding and Mortality: None of the sixty-five patients who received buffered omeprazole solution as their initial prophylaxis against stress-related mucosal bleeding developed overt or clinically significant upper gastrointestinal bleeding.
In four of the five patients who had developed upper gastrointestinal bleeding before study entry, bleeding diminished to the presence of occult blood only (Gastroccult-positive) within eighteen hours of starting omeprazole solution; bleeding stopped in all patients within thirty-six hours. The overall mortality rate in this group of critically ill patients was eleven percent.
No death was attributable to upper gastrointestinal bleeding or the use of omeprazole solution.
Gastric pH: The mean ( standard deviation) pre-omeprazole gastric pH was 3.5 1.9. Within four hours of omeprazole administration, the gastric pH rose to 7.1 1.1 (See Figure 3); this difference was significant (p<0.001). The differences between pre-omeprazole gastric pH and the mean and lowest gastric pH
measurements during omeprazole administration (6.8 0.6 and 5.6 1.3, respectively) were also statistically significant (p<0.001).
Safety: Omeprazole solution was well tolerated in 5 this group of critically ill patients. Only one patient with sepsis experienced an adverse event that may have been drug-related thrombocytopenia. However, the platelet count continued to fall after omeprazole was stopped. The platelet count then returned to normal 10 despite reinstitution of omeprazole therapy. Of note, one patient on a jet ventilator continuously expelled all liquids placed in her stomach up and out through her mouth, and thus was unable to continue on omeprazole. No clinically significant drug interactions with omeprazole 15 were noted during the study period. As stated above, metabolic alkalosis is a potential concern in patients receiving sodium bicarbonate. However, the amount of sodium bicarbonate in omeprazole solution was small ( 12 mEq/10 ml) and no electrolyte abnormalities were found.
20 Pneumonia: Pneumonia developed in nine (12%) patients receiving omeprazole solution. Pneumonia was present in an additional five patients before the start of omeprazole therapy.
Pharmacoeconomic evaluation: The average length of 25 treatment was nine days. The cost of care data are listed in Tables 3 and 4. The costs of drug acquisition, preparation, and delivery for some of the traditional agents used in the prophylaxis of stress-related upper gastrointestinal bleeding are listed in Table 3. There 30 were no costs to add from toxicity associated with omeprazole solution. Since two of seventy-five patients required 40 mg of omeprazole solution daily to adequately control gastric pH, the acquisition/preparation cost should reflect this. The additional 20 mg of omeprazole with vehicle adds seven cents per day to the cost of care. Therefore, the daily cost of care for omeprazole solution in the prophylaxis of stress-related mucosal bleeding was $12.60 (See Table 4).
Omeprazole solution is a safe and effective therapy for the prevention of clinically significant stress-related mucosal bleeding in critical care patients. The contribution of many risk factors to stress-related mucosal damage has been challenged recently. All of the patients in this study had at least one risk factor that has clearly been associated with stress-related mucosal damage - mechanical ventilation. Previous trials and data from a recently published study show that stress ulcer prophylaxis is of proven benefit in patients at risk and, therefore, it was thought to be unethical to include a placebo group in this study. No clinically significant upper gastrointestinal bleeding occurred during omeprazole solution therapy. Gastric pH was maintained above 4 on omeprazole 20 mg/day in seventy-three of seventy-five patients. No adverse events or drug interaction associated with omeprazole were encountered.
Mech Major Multi- Head Hypo- Renal Multiple Acid/ Liver Vent Surgery trauma Injury tension Failure Sepsis Operation Base Coma Failure Burn Risk factors present in patients in this study (n - 75) Per day RANITIDINE (dav-9) Rantidine 150 mg/24 hr 6.15 Ancillary Product (1) Piggyback (60%) 0.75 Ancillary Product (2) micro tubing (etc.) 2.00 Ancillary Product (3) filter .40 Sterile Prep required yes R.N. time ($24/hr) 20 minutes/day (includes pH 8.00 monitoring) R.Ph. time, hood maint. 3 minutes ($40/hr) 2.00 Pump cost $29/24 hrs x 50%) 14.50 TOTAL for 9 days ^ 304.20 RANITIDINE Cost per day 0 33.80 CIMETIDINE (day 1-9) Cimetidine 900 mg/24 hr 3.96 Ancillary Product (1) Piggyback 1.25 Ancillary Product (2) micro tubing (etc.) 2.00 Ancillary Product (3) filter .40 Sterile Prep required yes R.N. time ($24/hr) 20 minutes/day (includes pH 8.00 R.Ph. time, hood maint. monitoring) Pump cost 3 minutes ($40/hr) 2.00 TOTAL for 9 days $29/24 hrs x 50%) 14.50 CIMETIDINE Cost per day ^ 288.99 SUCRALFATE (day 1-9) ^ 32.11 Sucralfate 1 Gm x 4 2.40 Ancillary Product (1) syringe .20 Sterile Prep required no R.N. time ($24/hr) 30 minutes/day (includes pH 12.00 monitoring) TOTAL for 9 days ^ 131.40 SUCRALFATE Cost per day ^ 14.60 Note:
Does not include the cost of failure and/or adverse effect.
Acquisition, preparation and delivery costs of traditional agents.
The average length of treatment was 9 days. Cost of care was calculated from these date Per Day Total OMEPRAZOLE (day 1) Product acquisition cost 40 mg load x 2 5.66/dose) 11.32 11.32 Ancillary product materials for solution preparation 0.41 0.41 Ancillary product syringe w/needle 0.20 0.40 Sterile preparation required no SOS preparation time (R.N.) 6 minutes 2.40 4.80 R.N. time ($24/hr) 21 minutes/day (includes pH monitoring) 8.40 8.40 OMEPRAZOLE (days 2-9) Product acqusition cost 20 mg per day 2.80 22.65 Ancillary product materials for solution preparation 0.41 0.82 Ancillary product syringe w/needle 0.20 1.60 Sterile preparation required no SOS preparation time (R.N.) 6 minutes 2.40 4.80 R.N. time ($24/hr) 18 minutes/day (includes pH monitoring) 8.40 57.60 2/75 patient require 40 mg simplified omeparzole solution per day (days 2-9) 0.63 No additional cost for adverse effects or for failure TOTAL ^ 113.43 Simplified Omerprazole Solution cost per day ^ 12.60 Pharmacoeconomic evaluation of omeprazole cost of care Time Control 1 hour 24 hour 2 day 7 day 14 day Conc (mg/ml) 2.01 2.07 1.94 1.96 1.97 1.98 Stabilrzty of Simplified Omeprazole Solution at room temperature (250 C.) Values are the mean of three samples Example X
Bacteriostatic and Fungistatic Effects of Omeprazole Solution The antimicrobial or bacteriostatic effects of the omeprazole solution were analyzed by applicant. An omeprazole solution (2 mg/ml of 8.4% sodium bicarbonate) made according to the present invention was stored at room temperature for four weeks and then was analyzed for fungal and bacterial growth. Following four weeks of storage at room temperature, no bacterial or fungal growth was detected.
An omeprazole solution (2 mg/ml of 8.4% sodium bicarbonate) made in accordance with the present invention was stored at room temperature for twelve weeks and then was analyzed for fungal and bacterial growth.
After twelve weeks of incubation at room temperature, no fungal or bacterial growth was detected.
The results of these experiments illustrate the bacteriostatic and fungistatic characteristics of the omeprazole solution of the present invention.
Example XI
Bioequivalency Study Healthy male and female study participants over the age of 18 will be randomized to receive omeprazole in the following forms:
(a) 20 mg of a liquid formulation of approximately mg omeprazole in 4.8 mEq sodium bicarbonate qs 20 to 10 ml with water;
(b) 20 mg of a liquid formulation of approximately 2 mg omeprazole per 1 ml of 8.4% sodium bicarbonate.
(c) Prilosec (omeprazole) 20 mg capsule;
(d) Capsule prepared by inserting the contents of an omeprazole 20 mg capsule into a #4 empty gelatin capsule (Lilly) uniformly dispersed in 240 mg of sodium bicarbonate powder USP to form an inner capsule. The inner capsule is then inserted into a #00 empty gelatin capsule (Lilly) together with a homogeneous mixture of 600 mg sodium bicarbonate USP and 110 mg pregelatinized starch NF.
5 METHODOLOGY:
After appropriate screening and consent, healthy volunteers will be randomized to receive one of the following four regimens as randomly assigned by Latin Square. Each subject will be crossed to each regimen 10 according to the randomization sequence until all subjects have received all four regimens (with one week separating each regimen).
Regimen A (20mg omeprazole in 4.8 mEq sodium bicarbonate in 10ml volume); Regimen B (20mg omeprazole 15 in l0ml 8.4% sodium bicarbonate in 10ml volume); Regimen C (an intact'20mg omeprazole capsule); Regimen D (Capsule in capsule formulation, see above). For each dose/week, subjects will have an i.v. saline lock placed for blood sampling. For each regimen, blood samples will be taken 20 over 24 hours a total of 16 times (with the last two specimens obtained 12 hours and 24 hours after drug administration).
Patient Eligibility Four healthy females and four healthy males will be 25 consented for the study.
Inclusion Criteria Signed informed consent.
Exclusion Criteria 1. Currently taking Hz-receptor antagonist, antacid, or sucralfate.
2. Recent (within 7 days) therapy with lansoprazole, omeprazole, or other proton pump inhibitor.
3. Recent (within 7 days) therapy with warfarin.
4.'History of variceal bleeding.
5. History of peptic ulcer disease or currently active G.I. bleed.
6. History of vagotomy or pyloroplasty.
7. Patient has received an investigational drug within 30 days.
8. Treatment with ketoconazole or itraconazole.
9. Patient has an allergy to omeprazole.
Pharmocokinetic Evaluation and Statistical Analysis Blood samples will be centrifuged within 2 hours of collection and the plasma will then separated and frozen at -10 C (or lower) until assayed. Pharmacokinetic variables will include: time to peak concentration, mean peak concentration, AUC (0-t) and (0-infinity). Analysis of variance will be used to detect statistical difference. Bioavailability will be assessed by the 90%
confidence interval of the two one-sided tests on the natural logarithm of AUC.
HPLC Analysis Omeprazole and internal standard (H168/24) will be used. Omeprazole and internal standard will be measured by modification of the procedure described by Amantea and Narang. (Amantea MA, Narang PK. Improved Procedure for Quantification of Omeprazole and Metabolites Using Reversed-Phased High Performance Liquid Chromotography.
J. CHROMATOGRAPHY 426; 216-222. 1988). Briefly, 20ul of omeprazole 2mg/ml NaHCO3 or Choco-Base omeprazole suspension and 100ul of the internal standard are vortexed with 150ul of carbonate buffer (pH=9.8), 5 ml of dichloroethane, 5 ml of hexane, and 980 ul of sterile water. After the sample is centrifuged, the organic layer is extracted and dried over a nitrogen stream.
Each pellet is reconstituted with 150 ul of mobile phase (40% methanol, 52% 0.025 phosphate buffer, 8%
acetonitrile, pH=7.4). Of the reconstituted sample, 75u1 is injected onto a C18 5 U column equilibrated with the same mobile phase at l.lml/min. Under these conditions, omeprazole is eluted at approximately 5 minutes, and the internal standard at approximately 7.5 minutes. The standard curve is linear over the concentration range 0-3 mg/ml (in previous work with SOS), and the between-day coefficient of variation has been <8% at all concentrations. The typical mean R2 for the standard curve has been 0.98 in prior work with SOS (omeprazole 2mg/ml NaHCO3 8.4%) .
Applicant expects that the above experiments will demonstrate there is more rapid absorption of formulations (a) , (b) and (d) as compared to the enteric coated granules of formulation (c). Additionally, applicant expects that although there will be a difference in the rates of absorption among forms (a) through (d), the extent of absorption (as measured by the area under the curve (AUC)) should be similar among the formulations (a) through (d).
Example XII
Intraveneous PPI in Combination With Oral Parietal Cell Activator Sixteen (16) normal, healthy male and female study subjects over the age of 18 will be randomized to receive pantoprazole as follows:
(a) 40 mg IV over 15 to 30 minutes in combination with a 20 ml oral dose of sodium bicarbonate 8.4%; and (b) 40 mg IV over 15 to 30 minutes in combination with a 20 ml oral dose of water.
The subjects will receive a single dose of (a) or (b) above, and will be crossed-over to (a) and (b) in random fashion. Serum concentrations of pantoprazole versus time after administration data will be collected, as well as gastric pH control as measured with an indwelling pH probe.
Further, similar studies are contemplated wherein chocolate or other parietal cell activator is substituted for the parietal cell activator sodium bicarbonate, and other PPIs are substituted for pantoprazole. The parietal cell activator can be administered either within about 5 minutes before, during or within about 5 minutes after the IV dose of PPI.
Applicant expects that these studies will demonstrate that significantly less IV PPI is required to achieve therapeutic effect when it is given in combination with an oral parietal cell activator.
Additionally, administration kits of IV PPI and oral parietal cell activator can be packaged in many various forms for ease of administration and to optimize packing and shipping the product. Such kits can be in unit dose or multiple dose form.
Example XIII
Twelve (12) Month Stability of Omeprazole Solution A solution was prepared by mixing 8.4% sodium bicarbonate with omeprazole to produce a final concentration of 2 mg/ml to determine the stability of omeprazole solution after 12 months. The resultant preparation was stored in clear glass at room temperature, refrigerated and frozen. Samples were drawn after thorough agitation from the stored preparations at the prescribed times. The samples were then stored at 70 C. Frozen samples remained frozen until they were analyzed. When the collection process was completed, the samples were shipped to a laboratory overnight on dry ice for analysis. Samples were agitated for 30 seconds and sample aliquots were analyzed by HPLC in triplicate according to well known methods. Omeprazole and the internal standard were measured by a modification of the procedure described by Amantea and Narang. Amantea MA, Narang PK, Improved Procedure For Quantitation Of Omeprazole And Metabolites Using Reverse-Phased High-Performance Liquid Chromatography, J. Chromatography, 426: 216-222 (1988). Twenty (20) ul of the omeprazole 2mg/ml NaHCO3 solution and 100 ul of the internal standard solution were vortexed with 150 ul of carbonate buffer (pH = 9.8), 5 ml dichloroethane, 5 ml hexane, and 980 ul of sterile water. The sample was centrifuged and the organic layer was extracted and dried over a nitrogen stream. Each pellet was reconstituted with 150 ul of mobile phase (40% methanol., 52% 0.025 phosphate buffer, 8% acetonitrile, pH=7.4). Of the reconstituted sample, 75u1 were injected onto a C185u column equilibrated with the same mobile phase at 1.1 ml/min. Omeprazole was 5 eluted at -5 min, and the internal standard at -7.5 min.
The standard curve was linear over the concentrated range 0-3 mg/ml, and between-day coefficient of variation was <
8% at all concentrations. Mean R2 for the standard curve was 0.980.
10 The 12 month sample showed stability at greater than 90% of the original concentration of 2 mg/ml. (i.e., 1.88 mg/ml, 1.94 mg/ml, 1.92 mg/ml).
Throughout this application various publications and patents are referenced by citation and number.
The invention has been described in an illustrative manner, and it is to be understood the terminology used is intended to be in the nature of description rather than of limitation. Obviously, many modifications, equivalents, and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
Claims (18)
1. A pharmaceutical composition for use in the treatment of a gastric acid related disorder, said pharmaceutical composition being formulated as a capsule dosage form for oral administration and comprising:
(a) about 10 mg to about 40 mg of at least one acid labile, substituted benzimidazole H+, K+-ATPase proton pump inhibitor that is non-enteric coated;
(b) at least one buffering agent in an amount of about 1 mEq to about 25 mEq;
and (c) about 1% to about 4% by weight of a disintegrant.
(a) about 10 mg to about 40 mg of at least one acid labile, substituted benzimidazole H+, K+-ATPase proton pump inhibitor that is non-enteric coated;
(b) at least one buffering agent in an amount of about 1 mEq to about 25 mEq;
and (c) about 1% to about 4% by weight of a disintegrant.
2. A pharmaceutical composition as claimed in claim 1, wherein said proton pump inhibitor is selected from the group consisting of: omeprazole, lansoprazole, rabeprazole, dontoprazole, habeprazole, ransoprazole, pantoprazole, pariprazole, an enantiomer of any of the foregoing, and an alkaline salt of an enantiomer of any of the foregoing.
3. A pharmaceutical composition as claimed in claim 2, wherein said proton pump inhibitor is omeprazole, an enantiomer of omeprazole, or an alkaline salt of an enantiomer of omeprazole.
4. A pharmaceutical composition as claimed in claim 3, wherein said omeprazole is present in an amount of about 20 mg.
5. A pharmaceutical composition as claimed in claim 2, wherein said proton pump inhibitor is lansoprazole, an enantiomer of lansoprazole, or an alkaline salt of an enantiomer of lansoprazole.
6. A pharmaceutical composition as claimed in claim 5, wherein the lansoprazole is present in an amount of about 30 mg.
7. A pharmaceutical composition as claimed in claim 2, wherein the proton pump inhibitor is perprazole (S-omeprazole magnesium).
8. A pharmaceutical composition as claimed in any one of claims 1 to 7, wherein the at least one buffering agent comprises sodium bicarbonate.
9. A pharmaceutical composition as claimed in claim 1, wherein the dosage form further comprises a lubricant.
10. A pharmaceutical composition as claimed in claim 1, wherein said pharmaceutical composition comprises 7- 25 mEq of sodium bicarbonate per 20 mg dose of omeprazole.
11. A pharmaceutical composition as claimed in claim 1, wherein said composition is formed from micronized proton pump inhibitor.
12. A pharmaceutical composition as claimed in claim 1, wherein said disintegrant comprises croscarmellose sodium.
13. A pharmaceutical composition as claimed in any one of claims 1 to 12, wherein the dosage range of the proton pump inhibitor is about 20 mg to about 40 mg.
14. A pharmaceutical composition as claimed in any one of claims 1 to 13, wherein said composition further comprises one or more parietal cell activators.
15. A pharmaceutical composition as claimed in any one of claims 1 to 14, wherein said gastric acid related disorder is duodenal ulcer disease, gastric ulcer disease, gastrooesophageal reflux disease, erosive oesophagitis, pathological hypersecretory disease, or Zollinger Ellison Syndrome.
16. A pharmaceutical composition as claimed in any one of claims 1 to 15, wherein said pharmaceutical composition is for administration once or twice a day.
17. A method of manufacturing a non-enteric coated capsule for the treatment of a gastric acid related disorder, said method comprising dry mixing compounds comprising at least one acid labile, substituted benzimidazole H+, K+-ATPase proton pump inhibitor, at least one buffering agent and at least one disintegrant and using said mixture to form a capsule, said proton pump inhibitor is micronized; wherein upon administration, said buffering agent protects at least some of said proton pump inhibitor from acid degradation by gastric acid.
18. A pharmaceutical composition as claimed in claim 1, wherein said pharmaceutical composition comprises 1 - 20 mEq of sodium bicarbonate per 20 mg dose of omeprazole.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/481,207 | 2000-01-11 | ||
US09/481,207 US6489346B1 (en) | 1996-01-04 | 2000-01-11 | Substituted benzimidazole dosage forms and method of using same |
CA002396159A CA2396159C (en) | 2000-01-11 | 2001-01-10 | Novel substituted benzimidazole dosage forms and method of using same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002396159A Division CA2396159C (en) | 2000-01-11 | 2001-01-10 | Novel substituted benzimidazole dosage forms and method of using same |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2594185A1 CA2594185A1 (en) | 2001-07-19 |
CA2594185C true CA2594185C (en) | 2011-08-23 |
Family
ID=38653228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2594185A Expired - Fee Related CA2594185C (en) | 2000-01-11 | 2001-01-10 | Solid dosage forms comprising a substituted benzimidazole derivative and a buffer |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2594185C (en) |
-
2001
- 2001-01-10 CA CA2594185A patent/CA2594185C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2594185A1 (en) | 2001-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2396159C (en) | Novel substituted benzimidazole dosage forms and method of using same | |
AU2002330863B9 (en) | Novel substituted benzimidazole dosage forms and method of using same | |
CA2473669C (en) | Use and preparation of dosage forms containing benzimidazole derivatives and a buffer | |
AU2002330863A1 (en) | Novel substituted benzimidazole dosage forms and method of using same | |
CA2594185C (en) | Solid dosage forms comprising a substituted benzimidazole derivative and a buffer | |
AU2003214858A1 (en) | Novel substituted benzimidazole dosage forms and method of using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20190110 |
|
MKLA | Lapsed |
Effective date: 20190110 |