CA2554193A1 - Channel estimation for time division duplex communication systems - Google Patents
Channel estimation for time division duplex communication systems Download PDFInfo
- Publication number
- CA2554193A1 CA2554193A1 CA002554193A CA2554193A CA2554193A1 CA 2554193 A1 CA2554193 A1 CA 2554193A1 CA 002554193 A CA002554193 A CA 002554193A CA 2554193 A CA2554193 A CA 2554193A CA 2554193 A1 CA2554193 A1 CA 2554193A1
- Authority
- CA
- Canada
- Prior art keywords
- receiver
- midamble
- bursts
- matrix
- wireless channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004891 communication Methods 0.000 title claims abstract description 73
- 239000011159 matrix material Substances 0.000 claims abstract description 44
- 239000013598 vector Substances 0.000 claims abstract description 27
- 238000001228 spectrum Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 9
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 238000013459 approach Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000012549 training Methods 0.000 description 4
- 238000003775 Density Functional Theory Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 102220047090 rs6152 Human genes 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/692—Hybrid techniques using combinations of two or more spread spectrum techniques
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A single transmitter transmits K communication bursts in a shared spectrum in a time slot of a time division duplex communication system. The system associated with N midamble sequences. Each burst has an associated midamble sequence. A receiver receives a vector corresponding to the transmitted midamble sequences of the K communication bursts. A matrix having N identical right circulant matrix blocks is constructed based in part on the known N midamble sequences. The wireless channel between the transmitter and receiver is estimated based on in part one of the N blocks and the received vector.
Description
CHANNEL ESTIMATION FOR TIME DIVISION
DUPLEX COMMUNICATION SYSTEMS
This application is a division of Canadian patent application Serial No. 2,396,571 filed internationally on January 5, 2001 and entered nationally on July 5, 2002.
BACKGROUND
The invention generally relates to wireless communication systems. In particular, the invention relates to channel estimation in a wireless communication system.
Figure 1 is an illustration of a wireless communication system 10. The communication system 10 has base stations 12, to 125 which communicate with user equipments (UEs) 14, to 143. Each base station 12, has an associated operational area where it communicates with UEs 14, to 143 in its operational area.
In some communication systems, such as code division multiple access (CDMA) and time division duplex using code division multiple access (TDD/CDMA), multiple communications are sent over the same frequency spectrum. These communications are typically differentiated by their chip code sequences. To more efficiently use the frequency spectrum, TDD/CDMA
communication systems use repeating frames divided into time slots for communication. A communication sent in such a system will have one or multiple associated chip codes and time slots assigned to it based on the communication's bandwidth.
Since multiple communications may be sent in the same frequency spectrum and at the same time, a receiver in such a system must distinguish between the multiple communications. One approach to detecting such signals is single user detection. In single user detection, a receiver detects only the communications from a desired transmitter using a code associated with the desired transmitter, and treats signals of other transmitters as interference. Another approach is referred to
DUPLEX COMMUNICATION SYSTEMS
This application is a division of Canadian patent application Serial No. 2,396,571 filed internationally on January 5, 2001 and entered nationally on July 5, 2002.
BACKGROUND
The invention generally relates to wireless communication systems. In particular, the invention relates to channel estimation in a wireless communication system.
Figure 1 is an illustration of a wireless communication system 10. The communication system 10 has base stations 12, to 125 which communicate with user equipments (UEs) 14, to 143. Each base station 12, has an associated operational area where it communicates with UEs 14, to 143 in its operational area.
In some communication systems, such as code division multiple access (CDMA) and time division duplex using code division multiple access (TDD/CDMA), multiple communications are sent over the same frequency spectrum. These communications are typically differentiated by their chip code sequences. To more efficiently use the frequency spectrum, TDD/CDMA
communication systems use repeating frames divided into time slots for communication. A communication sent in such a system will have one or multiple associated chip codes and time slots assigned to it based on the communication's bandwidth.
Since multiple communications may be sent in the same frequency spectrum and at the same time, a receiver in such a system must distinguish between the multiple communications. One approach to detecting such signals is single user detection. In single user detection, a receiver detects only the communications from a desired transmitter using a code associated with the desired transmitter, and treats signals of other transmitters as interference. Another approach is referred to
-2-as joint detection. In joint detection, multiple communications are detected simultaneously.
To utilize these detection techniques, it is desirable to have an estimation of the wireless channel in which each communication travels. In a typical TDD
system, the channel estimation is performed using midamble sequences in communication bursts.
A typical communication burst 16 has a midamble 20, a guard period 18 and two data bursts 22, 24, as shown in Figure 2. The midamble 20 separates the two data bursts 22, 24 and the guard period 18 separates the communication bursts 16 to allow for the difference in arrival times of bursts 16 transmitted from different transmitters. The two data bursts 22, 24 contain the communication burst's data. The midamble 20 contains a training sequence for use in channel estimation.
After a receiver receives a communication burst 16, it estimates the channel using the received midamble sequence. When a receiver receives multiple bursts in a time slot, it typically estimates the channel for each burst 16. One approach for such channel estimation for communication bursts 16 sent through multiple channels is a Steiner Channel Estimator. Steiner Channel Estimation is typically used for uplink communications from multiple UEs, 14, to 143, where the channel estimator needs to estimate multiple channels.
"Optimum and Suboptimum Channel Estimation for the Uplink of CDMA
Mobile Radio Systems with Joint and Detection," by Steiner and Jung in European Transactions on Telecommunications and Related Technologies (1994), IT, AEI, Milano, Vol. 5, No. 1, 39-50, discloses an approach for channel estimation.
One approach uses a single cyclic correlator. Using the known transmitted midamble sequences, a matrix M is constructed. The received midamble vector a is multiplied by the first column of M. The multiplication is performed by the cyclic correlator over P values and by shifting the values 2P-1 times. P is a period of the midamble codes.
In some situations, multiple bursts 16 experience the same wireless channel.
One case is a high data rate service, such as a 2 megabits per second (Mbps) service.
To utilize these detection techniques, it is desirable to have an estimation of the wireless channel in which each communication travels. In a typical TDD
system, the channel estimation is performed using midamble sequences in communication bursts.
A typical communication burst 16 has a midamble 20, a guard period 18 and two data bursts 22, 24, as shown in Figure 2. The midamble 20 separates the two data bursts 22, 24 and the guard period 18 separates the communication bursts 16 to allow for the difference in arrival times of bursts 16 transmitted from different transmitters. The two data bursts 22, 24 contain the communication burst's data. The midamble 20 contains a training sequence for use in channel estimation.
After a receiver receives a communication burst 16, it estimates the channel using the received midamble sequence. When a receiver receives multiple bursts in a time slot, it typically estimates the channel for each burst 16. One approach for such channel estimation for communication bursts 16 sent through multiple channels is a Steiner Channel Estimator. Steiner Channel Estimation is typically used for uplink communications from multiple UEs, 14, to 143, where the channel estimator needs to estimate multiple channels.
"Optimum and Suboptimum Channel Estimation for the Uplink of CDMA
Mobile Radio Systems with Joint and Detection," by Steiner and Jung in European Transactions on Telecommunications and Related Technologies (1994), IT, AEI, Milano, Vol. 5, No. 1, 39-50, discloses an approach for channel estimation.
One approach uses a single cyclic correlator. Using the known transmitted midamble sequences, a matrix M is constructed. The received midamble vector a is multiplied by the first column of M. The multiplication is performed by the cyclic correlator over P values and by shifting the values 2P-1 times. P is a period of the midamble codes.
In some situations, multiple bursts 16 experience the same wireless channel.
One case is a high data rate service, such as a 2 megabits per second (Mbps) service.
-3-In such a system, a transmitter may transmit multiple bursts in a single time slot.
Steiner estimation can be applied in such a case by averaging the estimated channel responses from all the bursts 16. However, this approach has a high complexity.
Accordingly, it is desirable to have alternate approaches to channel estimation.
SUMMARY
A single transmitter transmits K communication bursts in a shared spectrum in a time slot of a time division duplex communication system. The system associated with N mid -amble sequences. Each burst has an associated midamble sequence. A
receiver receives a vector corresponding to the transmitted midamble sequences of the K communication bursts. A matrix having N identical right circulant matrix blocks is constructed based in part on the known N midamble sequences. The wireless channel between the transmitter and receiver is estimated based on in part one of the N blocks and the received vector.
The invention thus provides according to a first aspect, for a method for estimating a wireless channel in a time division duplex communication system using code division multiple access. The system is associated with N midamble sequences, the wireless channel existing between a single transmitter and a single receiver, the single transmitter transmitting K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence of the N sequences, the receiver knowing the N midamble sequences and receiving a vector corresponding to the transmitted midamble sequences of the K communication bursts at the single receiver. The method is characterized by constructing a matrix having N
identical right circulant matrix blocks based in part on the known N midamble sequences, and estimating the wireless channel based on in part one of the N blocks and the received vector.
The invention provides according to a second aspect, for a receiver for use in a wireless time division duplex communication system using code division multiple access. The system is associated with N midamble sequences. A single transmitter in the system transmits K communication bursts in a shared spectrum in a time slot, each
Steiner estimation can be applied in such a case by averaging the estimated channel responses from all the bursts 16. However, this approach has a high complexity.
Accordingly, it is desirable to have alternate approaches to channel estimation.
SUMMARY
A single transmitter transmits K communication bursts in a shared spectrum in a time slot of a time division duplex communication system. The system associated with N mid -amble sequences. Each burst has an associated midamble sequence. A
receiver receives a vector corresponding to the transmitted midamble sequences of the K communication bursts. A matrix having N identical right circulant matrix blocks is constructed based in part on the known N midamble sequences. The wireless channel between the transmitter and receiver is estimated based on in part one of the N blocks and the received vector.
The invention thus provides according to a first aspect, for a method for estimating a wireless channel in a time division duplex communication system using code division multiple access. The system is associated with N midamble sequences, the wireless channel existing between a single transmitter and a single receiver, the single transmitter transmitting K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence of the N sequences, the receiver knowing the N midamble sequences and receiving a vector corresponding to the transmitted midamble sequences of the K communication bursts at the single receiver. The method is characterized by constructing a matrix having N
identical right circulant matrix blocks based in part on the known N midamble sequences, and estimating the wireless channel based on in part one of the N blocks and the received vector.
The invention provides according to a second aspect, for a receiver for use in a wireless time division duplex communication system using code division multiple access. The system is associated with N midamble sequences. A single transmitter in the system transmits K communication bursts in a shared spectrum in a time slot, each
-4-burst having an associated midamble sequence of the N sequences, the receiver knowing the N midamble sequences, the receiver comprising an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts. The receiver is characterized by a channel estimator for constructing a matrix having N identical right circulant-matrix blocks based in part on the known N midamble sequences and estimates the wireless channel between the receiver and the single transmitter based on in part one of the N blocks and the received vector, and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
According to a third aspect, the invention provides for a wireless spread spectrum communication system using code division multiple access associated with N midamble sequences. The system communicates using communication bursts, each burst having an associated midamble sequence, a base station comprising: a data generator for generating data; a plurality of modulation/spreading devices for formatting the generated data into K communication bursts time multiplexed to be in a same time slot and is a shared spectrum; and an antenna for radiating the K
communication bursts, and a user equipment which comprises an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts. The system is characterized by the user equipment comprising a channel estimator for constructing a matrix having N identical right circulant matrix blocks based in part on the N midamble sequences and estimating the wireless channel between the base station and the user equipment based on in part one of the N blocks and the received vector, and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
According to a fourth aspect, the invention provides for a method for estimating a wireless channel in a time division duplex communication system using code division multiple access, the wireless channel existing between a single transmitter and a single receiver, the single transmitter transmitting K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence, and the receiver knowing the midamble sequences of the K bursts. The method comprises:
According to a third aspect, the invention provides for a wireless spread spectrum communication system using code division multiple access associated with N midamble sequences. The system communicates using communication bursts, each burst having an associated midamble sequence, a base station comprising: a data generator for generating data; a plurality of modulation/spreading devices for formatting the generated data into K communication bursts time multiplexed to be in a same time slot and is a shared spectrum; and an antenna for radiating the K
communication bursts, and a user equipment which comprises an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts. The system is characterized by the user equipment comprising a channel estimator for constructing a matrix having N identical right circulant matrix blocks based in part on the N midamble sequences and estimating the wireless channel between the base station and the user equipment based on in part one of the N blocks and the received vector, and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
According to a fourth aspect, the invention provides for a method for estimating a wireless channel in a time division duplex communication system using code division multiple access, the wireless channel existing between a single transmitter and a single receiver, the single transmitter transmitting K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence, and the receiver knowing the midamble sequences of the K bursts. The method comprises:
-5-receiving a vector corresponding to the transmitted midamble sequences of the K
communication bursts at the single receiver; constructing a matrix having K
right circulant matrix blocks based in part on the known K midamble sequences; and estimating the wireless channel based on in part the K block matrix and the received vector.
According to a fifth aspect, the invention provides for a receiver for use in a wireless time division duplex communication system using code division multiple access. A single transmitter in the system transmits K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence, and the receiver knowing the midamble sequences of the K bursts. The receiver comprises:
an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts; a channel estimator for constructing a matrix having K right circulant-matrix blocks based in part on the known K midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part the K block matrix and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
According to a sixth aspect, the invention provides for a user equipment communicating in a code division multiple access format associated with N
midamble sequences and the user equipment receiving K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence of the N
sequences, the user equipment knowing the N midamble sequences and comprising an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts. The user equipment is characterized by: a channel estimator for constructing a matrix having N identical right circulant-matrix blocks based in part on the known N midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part one of the N blocks and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
communication bursts at the single receiver; constructing a matrix having K
right circulant matrix blocks based in part on the known K midamble sequences; and estimating the wireless channel based on in part the K block matrix and the received vector.
According to a fifth aspect, the invention provides for a receiver for use in a wireless time division duplex communication system using code division multiple access. A single transmitter in the system transmits K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence, and the receiver knowing the midamble sequences of the K bursts. The receiver comprises:
an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts; a channel estimator for constructing a matrix having K right circulant-matrix blocks based in part on the known K midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part the K block matrix and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
According to a sixth aspect, the invention provides for a user equipment communicating in a code division multiple access format associated with N
midamble sequences and the user equipment receiving K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence of the N
sequences, the user equipment knowing the N midamble sequences and comprising an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts. The user equipment is characterized by: a channel estimator for constructing a matrix having N identical right circulant-matrix blocks based in part on the known N midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part one of the N blocks and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
-6-BRIEF DESCRIPTION OF THE DRAWINGS) Figure 1 is a wireless communication system.
Figure 2 is an illustration of a communication burst.
Figure 3 is a simplified multiburst transmitter and receiver.
Figure 4 is a flow chart of multiburst channel estimation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS) Figure 3 illustrates a simplified multicode transmitter 26 and receiver 28 in a TDD/CDMA communication system. In a preferred application, such as a 2 Mbs downlink service, the receiver 28 is in a UE 14, and the transmitter 26 is in a base station 12,, although the receiver 28 and transmitter 26 may be used in other applications.
The transmitter 26 sends data over a wireless radio channel 30. The data is sent in K communication bursts. Data generators 32, to 32K in the transmitter generate data to be communicated to the receiver 28. Modulation/spreading and training sequence insertion devices 34, to 34K spread the data and make the spread reference data time-multiplexed with a midamble training sequence in the appropriate assigned time slot and codes for spreading the data, producing the K
communication bursts. Typical values of K for a base station 12, transmitting downlink bursts are from 1 to 16. The communication bursts are combined by a combiner 48 and modulated by a modulator 36 to radio frequency (RF). An antenna 38 radiates the RF signal through the wireless radio channel 30 to an antenna 40 of the receiver 28. The type of modulation used for the transmitted communication can be any of those known to those skilled in the art, such as binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK).
2S The antenna 40 of the receiver 28 receives various radio frequency signals.
The received signals are demodulated by a demodulator 42 to produce a baseband signal. The baseband signal is processed, such as by a channel estimation device 44 and a data detection device 46, in the time slot and with the appropriate codes assigned to the transmitted communication bursts. The data detection device 46 _7-may be a multiuser detector or a single user detector. The channel estimation device 44 uses the midamble training sequence component in the baseband signal to provide channel information, such as channel impulse responses. The channel information is used by the data detection device 46 to estimate the transmitted data of the received communication bursts as hard symbols.
To illustrate one implementation of multiburst channel estimation, the following midamble type is used, although multiburst channel estimation is applicable to other midamble types. The K midamble codes, m~k~ , where k =
1...K, are derived as time shifted versions of a periodic single basic midamble code, m,~ , of period P chips. The length of each midamble code is Lm = P + W -1. W is the length of the user channel impulse response. Typical values for L"' are 256 and 512 chips. W is the length of the user channel impulse response. Although the following discussion is based on each burst having a different midamble code, some midambles may have the same code. As, a result, the analysis is based on N
midamble codes, N < K. Additionally, the system may have a maximum number of acceptable midamble codes N. The receiver 28 in such a system may estimate the channel for the N maximum number of codes, even if less than N codes are transmitted.
The elements of m~ take values from the integer set { 1, -1 ~. The sequence m,, is first converted to a complex sequence mp~i~ = j' ~ mp~i~ , where i = 1~
~ ~ P .
The m~k~ are obtained by picking K sub-sequences of length Lm from a 2P long sequence formed by concatenating two periods of mp . The i'h element of m~k~
is _g_ related to mP by Equation 1.
m; k) =mp~~K-k~W+i], for 1Si < P-~K-k~W
=mP~i-P+~K-k~W], fore-~K-k~W<-i__<P+W-1 Equation 1 Thus, the starting point of m(k~,k = 1...K shifts to the right by W chips as k increases from 1 to K.
The combined received midamble sequences are a superposition of the K
convolutions. The 7~" convolution represents the convolution of m~k) with h(k) .
h(k) is the channel response of the k'" user. The preceding data field in the burst corrupts the first ~W-1~ chips of the received midamble. Hence, for the purpose of channel estimation, only the last P of L", chips are used to estimate the channel.
Multiburst channel estimation will be explained in conjunction with the flow chart of Figure 4. To solve for the individual channel responses h(k) , Equation 2 is used.
(I) mP '.. n1(K-pw+I i rrt(K_,)w "' m(x-z)w+~ i i mw "' m~ _h rw I I I
rnl "' n1(K-pw+z i m(K-I)w+I "' m(K-z)w+z i i mw+I "' m2 h(2) rw+I
I I I
rw+z 1n2 ~ ~ ~ YIZ(K-1)W+3 j ri1(K-1)W+2 ' ~- YI1(K-2)GV+3 j ~ ~ ~ j mW+2 "- )n3 I I I
I I I , I . . . I I . . . , I I I
rrlKw-I ~ rn(K-1)W ~ m(K_I)W-I ~.. m(K-2)W i i mw-I mP h(K) rL.n Equation 2 rw~ ~ ~rL,u are the received combined chips of the midamble sequences. The m values are the elements of mP
Equation 2 may also be rewritten in shorthand as Equation 3.
K
M~k~ h~k~ = r Equation 3 k-1 Each M~k~ is a KW-by-W matrix. r is the received midamble chip responses.
When all the bursts travel through the same channel, h~l~- ~ ~h~k~ can be replaced by h as in Equation 4, 50.
K _ Mtk~ h = r Equation 4 k=1 G is defined as per Equation S.
G = [M~'~,..., M~k~,..., M~K~] Equation 5 As a result, G is a KW-by-KW matrix. Since G is a right circulant matrix, Equation 4 can be rewritten using K identical right circulant matrix blocks B, as per Equation 6, 52.
B
K B
M~k~ : = D Equation 6 k=l ' B
B is a W-by-W right circulant matrix. The number of B-blocks is K. Using Equation 6, Equation 4 can be rewritten as Equation 7.
Dh = r Equation 7 Equation 7 describes an over-determined system with dimensions KW-by-W. One approach to solve Equation 7 is a least squares solution, 54. The least squares solution of Equation 7 is given by Equation 8.
h = (DHD) I DHY Equation 8 DH is the hermitian of D.
Applying Equation 6 to Equation 8 results in Equation 9.
~DHD~ 1 - K ~BHB~ 1 Equation 9 The received vector ~ of dimension KW can be decomposed as per Equation 10.
Y~
Y~
Y = Equation 10 rk The dimension of ~k is W. Substituting Equations 9 and 10 into Equation 8, the least-squares solution for the channel coefficients per Equation 11 results.
K
h = ~BHB~ ~ BH K ~ ~k = ~BHB~ IBHt~k Equation 11 k-1 i~k represents the average of the segments of r . Since B is a square matrix, Equation 11 becomes Equation 12.
h = B-~~k Equation 12 Since B is a right circulant matrix and the inverse of a right circulant matrix is also right circulant, the channel estimator can be implemented by a single cyclic correlator of dimension 57, or by a discrete fourier transform (DFT) solution.
A W point DFT method is as follows. Since B is right circulant, Equation 13 can be used.
B = DW' ~ A~ ~ Dw Equation 13 DW is the W point DFT matrix as per Equation 14.
~o .ro ~o ~o ~.o W W W W "' W
w w' WZ W3 ... ~,(W-1) 0 2 4 6 2(W-1) .'.
Dw W W 3 W 6 W9 ~3(w-~) Equation 14 = W W W "' W
W
W(w-1)WZ(W-') W3(W-')... ~(W-1)(w-1) A ~ is a diagonal matrix whose main diagonal is the DFT of the first column of B, as per Equation 15.
A~ = diag(Dw(B(:,1))) Equation 15 _2 ~r W = e-' w . Thus, DW is the DFT operator so that DWx represents the W point DFT
of the vector x . By substituting Equation 13 into Equation 12 and using DW' - W , results in Equation 16.
h = CDw* ~ ~ ~ A~ ~ DwJ r Equation 16 Dw is the element-by-element complex conjugate of DW.
Alternately, an equivalent form that expresses ~ in terms of AR instead of A~, can be derived. AR is a diagonal matrix whose main diagonal is the DFT of the first row of B per Equation 17.
AR = diag(DW~B~I,:~)) Equation 17 S Since the transpose of B, BT, is also right circulant and that its first column is the first row of B, BT can be expressed by Equation 18.
BT = DW' ~ AR ~ DW Equation 18 Using Equation 18 and that DW = DW,AR = AR and that for any invertible matrix A, (AT ) ~ _ (A-')T , B can be expressed as per Equation 19.
I0 B = DW ~ AR ~ Dw' Equation 19 Substituting Equation 19 into Equation I2 and that DW' = D~ results in Equation W
20.
h = ~ DW ~ A R ~ ~ DwJ r Equation 20 Equations 16 or 20 can be used to solve for h . Since all DFTs are of length W, the 15 complexity in solving the equations is dramatically reduced.
An approach using a single cycle correlator is as follows. Since B-' is the inverse of a right circulant matrix, it can be written as Equation 21.
T~ TP w T3 Tz Tz T, w T4 T3 B-1 = : : ~ ~ : : Equation 21 T = ~
T w-, T w-z T, T
"' w Tw Tw-, '-' Tz T, The first row of the matrix T is equal to the inverse DFT of the main diagonal of A R . Thus, the matrix T is completely determined by A R .
The taps of the channel response h are obtained successively by an inner product of successive rows of T with the average of W-length segments of the received vector r . The successive rows of T are circularly right shifted versions of the previous row. Using registers to generate the inner product, the first register holds the averaged segments of r , and the second register is a shift register that holds the first row of the matrix T. The second register is circularly shifted at a certain clock rate. At each cycle of the clock, a new element of h is determined by the inner product of the vectors stored in the two registers. It is advantageous to shift the first row of the matrix T rather than the received midambles. As a result, no extra storage is required for the midambles. The midambles continue to reside in the received buffer that holds the entire burst. Since the correlator length is only W, a significant reduction in complexity of estimating the channel is achieved.
Figure 2 is an illustration of a communication burst.
Figure 3 is a simplified multiburst transmitter and receiver.
Figure 4 is a flow chart of multiburst channel estimation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS) Figure 3 illustrates a simplified multicode transmitter 26 and receiver 28 in a TDD/CDMA communication system. In a preferred application, such as a 2 Mbs downlink service, the receiver 28 is in a UE 14, and the transmitter 26 is in a base station 12,, although the receiver 28 and transmitter 26 may be used in other applications.
The transmitter 26 sends data over a wireless radio channel 30. The data is sent in K communication bursts. Data generators 32, to 32K in the transmitter generate data to be communicated to the receiver 28. Modulation/spreading and training sequence insertion devices 34, to 34K spread the data and make the spread reference data time-multiplexed with a midamble training sequence in the appropriate assigned time slot and codes for spreading the data, producing the K
communication bursts. Typical values of K for a base station 12, transmitting downlink bursts are from 1 to 16. The communication bursts are combined by a combiner 48 and modulated by a modulator 36 to radio frequency (RF). An antenna 38 radiates the RF signal through the wireless radio channel 30 to an antenna 40 of the receiver 28. The type of modulation used for the transmitted communication can be any of those known to those skilled in the art, such as binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK).
2S The antenna 40 of the receiver 28 receives various radio frequency signals.
The received signals are demodulated by a demodulator 42 to produce a baseband signal. The baseband signal is processed, such as by a channel estimation device 44 and a data detection device 46, in the time slot and with the appropriate codes assigned to the transmitted communication bursts. The data detection device 46 _7-may be a multiuser detector or a single user detector. The channel estimation device 44 uses the midamble training sequence component in the baseband signal to provide channel information, such as channel impulse responses. The channel information is used by the data detection device 46 to estimate the transmitted data of the received communication bursts as hard symbols.
To illustrate one implementation of multiburst channel estimation, the following midamble type is used, although multiburst channel estimation is applicable to other midamble types. The K midamble codes, m~k~ , where k =
1...K, are derived as time shifted versions of a periodic single basic midamble code, m,~ , of period P chips. The length of each midamble code is Lm = P + W -1. W is the length of the user channel impulse response. Typical values for L"' are 256 and 512 chips. W is the length of the user channel impulse response. Although the following discussion is based on each burst having a different midamble code, some midambles may have the same code. As, a result, the analysis is based on N
midamble codes, N < K. Additionally, the system may have a maximum number of acceptable midamble codes N. The receiver 28 in such a system may estimate the channel for the N maximum number of codes, even if less than N codes are transmitted.
The elements of m~ take values from the integer set { 1, -1 ~. The sequence m,, is first converted to a complex sequence mp~i~ = j' ~ mp~i~ , where i = 1~
~ ~ P .
The m~k~ are obtained by picking K sub-sequences of length Lm from a 2P long sequence formed by concatenating two periods of mp . The i'h element of m~k~
is _g_ related to mP by Equation 1.
m; k) =mp~~K-k~W+i], for 1Si < P-~K-k~W
=mP~i-P+~K-k~W], fore-~K-k~W<-i__<P+W-1 Equation 1 Thus, the starting point of m(k~,k = 1...K shifts to the right by W chips as k increases from 1 to K.
The combined received midamble sequences are a superposition of the K
convolutions. The 7~" convolution represents the convolution of m~k) with h(k) .
h(k) is the channel response of the k'" user. The preceding data field in the burst corrupts the first ~W-1~ chips of the received midamble. Hence, for the purpose of channel estimation, only the last P of L", chips are used to estimate the channel.
Multiburst channel estimation will be explained in conjunction with the flow chart of Figure 4. To solve for the individual channel responses h(k) , Equation 2 is used.
(I) mP '.. n1(K-pw+I i rrt(K_,)w "' m(x-z)w+~ i i mw "' m~ _h rw I I I
rnl "' n1(K-pw+z i m(K-I)w+I "' m(K-z)w+z i i mw+I "' m2 h(2) rw+I
I I I
rw+z 1n2 ~ ~ ~ YIZ(K-1)W+3 j ri1(K-1)W+2 ' ~- YI1(K-2)GV+3 j ~ ~ ~ j mW+2 "- )n3 I I I
I I I , I . . . I I . . . , I I I
rrlKw-I ~ rn(K-1)W ~ m(K_I)W-I ~.. m(K-2)W i i mw-I mP h(K) rL.n Equation 2 rw~ ~ ~rL,u are the received combined chips of the midamble sequences. The m values are the elements of mP
Equation 2 may also be rewritten in shorthand as Equation 3.
K
M~k~ h~k~ = r Equation 3 k-1 Each M~k~ is a KW-by-W matrix. r is the received midamble chip responses.
When all the bursts travel through the same channel, h~l~- ~ ~h~k~ can be replaced by h as in Equation 4, 50.
K _ Mtk~ h = r Equation 4 k=1 G is defined as per Equation S.
G = [M~'~,..., M~k~,..., M~K~] Equation 5 As a result, G is a KW-by-KW matrix. Since G is a right circulant matrix, Equation 4 can be rewritten using K identical right circulant matrix blocks B, as per Equation 6, 52.
B
K B
M~k~ : = D Equation 6 k=l ' B
B is a W-by-W right circulant matrix. The number of B-blocks is K. Using Equation 6, Equation 4 can be rewritten as Equation 7.
Dh = r Equation 7 Equation 7 describes an over-determined system with dimensions KW-by-W. One approach to solve Equation 7 is a least squares solution, 54. The least squares solution of Equation 7 is given by Equation 8.
h = (DHD) I DHY Equation 8 DH is the hermitian of D.
Applying Equation 6 to Equation 8 results in Equation 9.
~DHD~ 1 - K ~BHB~ 1 Equation 9 The received vector ~ of dimension KW can be decomposed as per Equation 10.
Y~
Y~
Y = Equation 10 rk The dimension of ~k is W. Substituting Equations 9 and 10 into Equation 8, the least-squares solution for the channel coefficients per Equation 11 results.
K
h = ~BHB~ ~ BH K ~ ~k = ~BHB~ IBHt~k Equation 11 k-1 i~k represents the average of the segments of r . Since B is a square matrix, Equation 11 becomes Equation 12.
h = B-~~k Equation 12 Since B is a right circulant matrix and the inverse of a right circulant matrix is also right circulant, the channel estimator can be implemented by a single cyclic correlator of dimension 57, or by a discrete fourier transform (DFT) solution.
A W point DFT method is as follows. Since B is right circulant, Equation 13 can be used.
B = DW' ~ A~ ~ Dw Equation 13 DW is the W point DFT matrix as per Equation 14.
~o .ro ~o ~o ~.o W W W W "' W
w w' WZ W3 ... ~,(W-1) 0 2 4 6 2(W-1) .'.
Dw W W 3 W 6 W9 ~3(w-~) Equation 14 = W W W "' W
W
W(w-1)WZ(W-') W3(W-')... ~(W-1)(w-1) A ~ is a diagonal matrix whose main diagonal is the DFT of the first column of B, as per Equation 15.
A~ = diag(Dw(B(:,1))) Equation 15 _2 ~r W = e-' w . Thus, DW is the DFT operator so that DWx represents the W point DFT
of the vector x . By substituting Equation 13 into Equation 12 and using DW' - W , results in Equation 16.
h = CDw* ~ ~ ~ A~ ~ DwJ r Equation 16 Dw is the element-by-element complex conjugate of DW.
Alternately, an equivalent form that expresses ~ in terms of AR instead of A~, can be derived. AR is a diagonal matrix whose main diagonal is the DFT of the first row of B per Equation 17.
AR = diag(DW~B~I,:~)) Equation 17 S Since the transpose of B, BT, is also right circulant and that its first column is the first row of B, BT can be expressed by Equation 18.
BT = DW' ~ AR ~ DW Equation 18 Using Equation 18 and that DW = DW,AR = AR and that for any invertible matrix A, (AT ) ~ _ (A-')T , B can be expressed as per Equation 19.
I0 B = DW ~ AR ~ Dw' Equation 19 Substituting Equation 19 into Equation I2 and that DW' = D~ results in Equation W
20.
h = ~ DW ~ A R ~ ~ DwJ r Equation 20 Equations 16 or 20 can be used to solve for h . Since all DFTs are of length W, the 15 complexity in solving the equations is dramatically reduced.
An approach using a single cycle correlator is as follows. Since B-' is the inverse of a right circulant matrix, it can be written as Equation 21.
T~ TP w T3 Tz Tz T, w T4 T3 B-1 = : : ~ ~ : : Equation 21 T = ~
T w-, T w-z T, T
"' w Tw Tw-, '-' Tz T, The first row of the matrix T is equal to the inverse DFT of the main diagonal of A R . Thus, the matrix T is completely determined by A R .
The taps of the channel response h are obtained successively by an inner product of successive rows of T with the average of W-length segments of the received vector r . The successive rows of T are circularly right shifted versions of the previous row. Using registers to generate the inner product, the first register holds the averaged segments of r , and the second register is a shift register that holds the first row of the matrix T. The second register is circularly shifted at a certain clock rate. At each cycle of the clock, a new element of h is determined by the inner product of the vectors stored in the two registers. It is advantageous to shift the first row of the matrix T rather than the received midambles. As a result, no extra storage is required for the midambles. The midambles continue to reside in the received buffer that holds the entire burst. Since the correlator length is only W, a significant reduction in complexity of estimating the channel is achieved.
Claims (14)
1. A method for estimating a wireless channel in a time division duplex communication system using code division multiple access, the wireless channel existing between a single transmitter and a single receiver, the single transmitter transmitting K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence, the receiver knowing the midamble sequences of the K bursts, the method comprising:
receiving a vector corresponding to the transmitted midamble sequences of the K communication bursts at the single receiver;
constructing a matrix having K right circulant matrix blocks based in part on the known K midamble sequences; and estimating the wireless channel based on in part the K block matrix and the received vector.
receiving a vector corresponding to the transmitted midamble sequences of the K communication bursts at the single receiver;
constructing a matrix having K right circulant matrix blocks based in part on the known K midamble sequences; and estimating the wireless channel based on in part the K block matrix and the received vector.
2. The method of claim 1 wherein the wireless channel estimating is performed using a least squares solution.
3. The method of claim 2 wherein the least squares solution is implemented using a single cyclic correlator.
4. The method of claim 2 wherein the least squares solution is implemented using a discrete Fourier transform solution.
5. A receiver for use in a wireless time division duplex communication system using code division multiple access, a single transmitter in the system transmits K communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence, the receiver knowing the midamble sequences of the K bursts, the receiver comprising:
an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts;
a channel estimator for constructing a matrix having K right circulant-matrix blocks based in part on the known K midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part the K block matrix and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
an antenna for receiving the K communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts;
a channel estimator for constructing a matrix having K right circulant-matrix blocks based in part on the known K midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part the K block matrix and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
6. The receiver of claim 5 wherein the data detector is a multiuser detector.
7. The receiver of claim 5 wherein the wireless channel estimating is performed using a least squares solution.
8. The receiver of claim 7 wherein the least squares solution is implemented using a discrete Fourier transform solution.
9. The receiver of claim 7 wherein the least squares solution is implemented using a single cyclic correlator.
10. A user equipment communicating in a code division multiple access format associated with N midamble sequences and the user equipment receiving K
communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence of the N sequences, the user equipment knowing the N midamble sequences and comprising an antenna for receiving the K
communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts, the user equipment characterized by:
a channel estimator for constructing a matrix having N identical right circulant-matrix blocks based in part on the known N midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part one of the N blocks and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
communication bursts in a shared spectrum in a time slot, each burst having an associated midamble sequence of the N sequences, the user equipment knowing the N midamble sequences and comprising an antenna for receiving the K
communication bursts including a vector corresponding to the transmitted midamble sequences of the bursts, the user equipment characterized by:
a channel estimator for constructing a matrix having N identical right circulant-matrix blocks based in part on the known N midamble sequences and estimating the wireless channel between the receiver and the single transmitter based on in part one of the N blocks and the received vector; and a data detector for recovering data from the received communication bursts using the estimated wireless channel.
11. The user equipment of claim 10 further characterized by the data detector is a multiuser detector.
12. The user equipment of claim 10 further characterized by the data detector is a single user detector.
13. The user equipment of claim 10 further characterized by the wireless channel estimating is performed using a least squares solution.
14. The user equipment of claim 13 further characterized by the least squares solution is implemented using a discrete Fourier transform solution.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17516700P | 2000-01-07 | 2000-01-07 | |
US60/175,167 | 2000-01-07 | ||
CA002396571A CA2396571C (en) | 2000-01-07 | 2001-01-05 | Channel estimation for time division duplex communication systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002396571A Division CA2396571C (en) | 2000-01-07 | 2001-01-05 | Channel estimation for time division duplex communication systems |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2554193A1 true CA2554193A1 (en) | 2001-07-19 |
Family
ID=37080977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002554193A Abandoned CA2554193A1 (en) | 2000-01-07 | 2001-01-05 | Channel estimation for time division duplex communication systems |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2554193A1 (en) |
-
2001
- 2001-01-05 CA CA002554193A patent/CA2554193A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2396571C (en) | Channel estimation for time division duplex communication systems | |
EP0717505A2 (en) | CDMA multiuser receiver and method | |
CN101385248B (en) | Reduced complexity interference suppression for wireless communications | |
JP2004523957A (en) | Low-complexity data detection using fast Fourier transform of channel correlation matrix | |
US6574269B1 (en) | Asymmetric orthogonal codes for wireless system receivers with multiplication-free correlators | |
US20050276314A1 (en) | Interference eliminating apparatus and method | |
JP4105157B2 (en) | Data estimation based on segmental channel equalization | |
JP2004533157A (en) | Iterative fast Fourier transform error correction | |
CA2554193A1 (en) | Channel estimation for time division duplex communication systems | |
EP1635525B1 (en) | Channel estimation for time division duplex communication systems | |
EP1437869B1 (en) | Channel estimation for time division duplex communication systems | |
EP1830530A2 (en) | Channel estimation for time division duplex communication systems | |
US20050265496A1 (en) | Wireless system | |
WO1999052249A1 (en) | A receiver for spread spectrum communications signals | |
KR100605890B1 (en) | Method and apparatus for accuracy enhancement of channel estimation in low chip rate time division duplexing wcdma system | |
CN101119148A (en) | Associated transmission method and apparatus, receiving method and apparatus and transmitting-receiving system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Dead |