CA2439315A1 - Compositions useful in gene therapy - Google Patents
Compositions useful in gene therapy Download PDFInfo
- Publication number
- CA2439315A1 CA2439315A1 CA002439315A CA2439315A CA2439315A1 CA 2439315 A1 CA2439315 A1 CA 2439315A1 CA 002439315 A CA002439315 A CA 002439315A CA 2439315 A CA2439315 A CA 2439315A CA 2439315 A1 CA2439315 A1 CA 2439315A1
- Authority
- CA
- Canada
- Prior art keywords
- leu
- ala
- peptide
- lys
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/001—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Dermatology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to the use of non-complexing peptides for the preparation of compositions useful for improving transfer of substances of interest into cells. Such compositions are specially useful in gene therapy, vaccination, and any therapeutic or prophylactic situation in which a substance of interest, particularly a nucleic acid is administered to cells in vivo.
Description
USE OF NON-COMPLEXING PEPTIDES FOR THE PREPARATION OF A COMPOSITION FOR
TRANSFECTION
The present invention relates to the use of non complexing peptides for the preparation of compositions useful for improving transfer of substances of interest into cells. Such compositions axe specially useful in gene therapy, vaccination, and any therapeutic or prophylactic situation in which a substance of interest, particularly a nucleic acid is administered to cells in vivo.
Gene therapy can be defined as the transfer of genetic material into a cell or an organism. The possibility of treating human disorders by gene therapy has changed in a few years from the stage of theoretical considerations to that of clinical applications. The first protocol applied to man was initiated in'the USA in September 1990 on a patient suffering from adenine deaminase (ADA) deficiency.
This first encouraging experiment has been followed by numerous new applications and promising clinical trials based on gene therapy which are currently ongoing (see for example clinical trials listed at http://cnetdb.nci.nih.gov/trialsrch.shtml or http:l/www.wiley.co.uldgenetherapy/clinicaln.
Successful gene therapy depends principally on the e~cient delivery of a therapeutic gene of interest to make its expression possible in cells of a living organism. Therapeutic genes can be transferred into cells using a wide variety of vectors resulting in either transient expression or permanent transformation of the host genome.
During the past decade, a large number of viral, as well as non-viral, vectors has been developed for gene transfer (see for example Robbins et al., 1998, Tibtech 16, 35-40 and Rolland, 1998, Therapeutic Drug Carrier Systems 15, 143-198 for reviews).
Most of the intracellular gene delivery mechanisms used to date are viral vectors, especially adeno-, ?5 pox- and retroviral vectors (see Robbins et al., 1998, Tibtech, 16, 35-40 for a review). Nevertheless, said use of viruses suffers from a number of disadvantages: retroviral vectors cannot accommodate large-sized nucleotide sequences (e.g. the dystrophin gene which is around 13 lcb), the retroviral genome is integrated into host cell DNA and may thus cause genetic changes in the recipient cell and infectious viral particles can disseminate within the organism or into the environment; adenoviral vectors can induce a strong immune response in treated patients (Mc Coy et al, 1995, Human Gene Therapy, 6, 1553-1560; Yang et al., 1996, Immunity, l, 433-442).
Accordingly, non-viral systems presenting special advantages with respect to large-scale production, safety, low immunogenicity, and capacity to deliver large fragments of DNA
have been proposed. For example, alternative non-viral vectors have been proposed (see Rolland, 1998, Therapeutic Drug Carrier Systems, 15, 143-198 for a review) based on complexation of the nucleic acid with cationic lipids or cationic polymers. These cationic compounds are capable of forming complexes with anionic molecules, thus tending to neutralize their negative charges and allowing to compact them in complexed form which favors their introduction into the cell.
These non-viral delivery systems are, for example, based on receptor-mediated mechanisms (Perales et al., 1994, Eur. J. Biochem. 226, 255-266; Wagner et al., ' 1994, Advanced Drug Delivery Reviews, 14, 113-135), on polymer-mediated transfection such as polyamidoamine (Haensler et Szoka, 1993, Bioconjugate Chem., 4, 372-379), dendritic polymer (WO 95/24221), polyethylene imine or polypropylene imine (WO 96/02655), polylysine (US-A- 5 595 897 or FR 2 719 316) or on lipid-mediated transfection (Felgner et al., 1989, Nature, 337, 387 388) such as DOTMA (Felgner et al., 1987, PNAS, 84, 7413-7417), DOGS or TransfectamTM (Behr et a1.,1989, PNAS; 86, 6982-6986), DMRIE or DORIE (Felgner et al., 1993, Methods 5, 67-75), DC-CHOL (Gao et Huang, 1991, BBRC, 179, 280-285), DOTAPTM (McLachlan et al., 1995, Gene Therapy, 2,674-622), LipofectamineTM
or glycerolipid compounds (see for example EP 901 463 and W098/37916).
Another alternative was proposed in 1990 by Wolff et al. (Science 247 (1990), 1465-1468) who have shown that injection of naked RNA or DNA, i.e. without a special delivery system, directly into mouse skeletal muscle results in expression of reporter genes within the muscle cells. This technique for transfecting cells offers the advantage of simplicity and experiments have been conducted that support the usefulness of this system for the delivery to the lung (Tsar et al., Am. J. Physiol. 268 (1995), L1052-L1056; Meyer et al., Gene Therapy 2 (1995), 450-4.60), brain (Schwartz et al., Gene Therapy 3 (1996), 405-411), joints (Evans and Roddins, Gene therapy for arthritis; In Wolff (ed) Gene therapeutics: Methods and Applications of direct Gene Transfer.
Birkhaiser. Boston (1990), 320-343), thyroid (Sikes et al., Human Gen. Ther. 5 (1994), 837-844), skin (Raz et al., Proc. Natl. Acad. Sci. USA 91 (1994), 9519-9523) and liver (Hickman et al., Hum. Gene Ther. 5 (1994), 1477-1483).
Nevertheless, Davis et al. (Human Gene Therapy 4 (1993), 151-159 and Human Mol. Genet. 4 (1993), 733-740) observed a large variability of expression of naked DNA injected into skeletal muscle in vivo which would be insufficient for the treatment of primary myopathies, fox example.
The authors propose solutions in order to obtain an improvement of the efficiency of gene transfer by preinjecting muscles with a relatively large volume of hypertonic sucrose or with toxins, for example cardiotoxin isolated from snake, in order to stimulate regeneration of muscles. Nevertheless, these methods, although promising, would not be applicable fox human treatment.
Besides, analyses have shown that a major pathway for intracellular delivery of these non-viral systems is internalization into vesicles by endocytosis. Endocytosis is the natural process by which. eukaryotic cells ingest segments of the plasma membrane in the form of small endocytosis vesicles, i.e. endosomes, entrapping extracellular fluid and molecular material, e.g. nucleic acid molecules. In cells, these endosomes fuse with lysosomes which are specialized sites of intracellular deyadation. The lysosomes are acidic and contain a wide variety of degradative enzymes to digest the molecular contents of the endosomal vesicles. After endocytosis the internalized material is thus still separated from the cytoplasm by a membrane and therefore is not available for perfouning its desired function. Actually, said desired function, i.e. the desired therapeutic effect, depends in most of the nucleic acids transfer approaches on their delivery at least into the cytoplasm (e.g. for RNA) or rather into the nucleus of the cell (e.g. for DNA encoding a polypeptide or antisense oligonucleotides) where their functional effect can occur. Consequently, the internalized nucleic acid accumulation into endosomal vesicles strongly reduces the efficiency of nucleic acid functional transfer to the cell, and therefore the e~ciency of gene therapy (Zabner et a1.,1995, J. Biol. Chem., 270, 18997-19007).
Accordingly, the efficient delivery to and expression of genetic information within the cells of a living organism depend both on the capability of the delivery system to transfer the nucleic acid molecule into the cell and on its capability to promote nucleic acid escape from endosomal retention and degradation.
Once the delivery system has been taken up by cells via endocytosis, it must escape from the endosomal compariinent for being localized in the cytoplasm or to migrate to the nucleus. The general strategy is to promote endosomolysis, e.g. by using fusogenic or membranolytic/endosomolytic peptides (see Mahato et al., l0 1999,Current Opinion in Mol. Therapeutics, l, 226-243).
Some microorganisms (e.g. viruses) are naturally internalized via receptor-mediated endocytosis and have developed systems for escaping from the above-mentioned endosomal degradation. Based on this natural aptitude, gene transfer systems have been proposed including the endosome-destabilizing activity of replication-defective adenovirus particles or rhinovirus particles which were either added to the transfection medium (Gotten et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 6094-6098) or directly linked to the delivery complex (Wu et al., 1994, J. Biol. Chem., 269, 11542-11546 ; US 5,928,944). Expression levels resulting from in vivo gene transfer with these systems, while promising, are still relatively low and further optimization is required. Additionally, synthetic systems have been generated. The best characterized synthetic peptides with fusogenic activity are derived from the first 23 amino acids of the N-terminal peptide of the HA2 subunit of influenza hemaglutinin (e.g. the INF peptide). At pH 7, this peptide preferentially assumes a random coil structure. At pH 5, an amphipathic alpha-helical conformation is favoured and the peptide becomes endosomolytic. Similarly, the synthetic peptide JTS-1 developped by Gottschalk et a1.(1996, Gene Therapy, 3, 448-457) starts with the INF
sequence GLFEA followed by an optimized peptide sequence. This JTS-1 peptide was shown to be capable of lysing calcein containing phosphatidylcholine liposomes at pH 5, more efficiently than at a pH 7.
However, the intracellular delivery of nucleic acids requires that said peptides combine their fusogenic activity with a nucleic acid complexing activity to form delivery complexes capable of transferring said nucleic acid into cells.
Some systems developed so far combine two distinct elements presenting said features (for example, WO 96/40958, WO 98/50078 or Gottschall: et al., 1996, Gene Therapy, 3, 448-457, Haensler & Szoka, 1993, Bioconjugate Chem., 4, 372 X79). These two-components systems actually include peptides which have specificity for endosomal pH due to acidic residues (glutamic and aspartic amino acids). At neutral pH, the negatively charged carboxylic groups destabilize the structure of these peptides ; acidification of the carboxylic groups promotes multimerization of the peptides and /or membrane interaction leading to membrane destabilization and leakage. Wagner et al. (1999, Advanced Drug Delivery Reviews, 38, 279-289) have analyzed this pH specificity and have indicated that introduction of additional glutamic acids into peptides can enhance their pH specificity, and therefore their endosome disrupting property.
However, said combined systems which retain the endosome disruptive properties of viral particles and are capable of associating with the nucleic acid molecule to form a complex must display a delicate balance between each distinct moieties (i.e. the nucleic acid-binding ligand and the synthetic membrane-destabilizing peptide) in order to promote intracellular nucleic acid transfer and to function under in vih~o as well as in vivo conditions.
With the aim to propose a -simplified system, Wyman et al. (1997, Biochemistry, 36, 3008-3017) developed a single-component system using a designed synthetic peptide, KALA, which can promote in vit~°o transfection of nucleic acid molecules and can cause membrane disruption.
While positively charged hydrophilic lysine amino acid residues have been chosen to bind the nucleic acid molecule, glutamic amino acid residues are still maintained to provide the KALA peptide with pH specificity and thereby to guarantee its endosome disrupting property.
The available nucleic acid delivery systems are not yet satisfactory in terms of safety or efficiency for their utilization in i~ vivo gene therapy and require further optimization.
The technical problem underlying the present invention is the provision of improved methods and means for the delivery into cells of substances of interest, preferably of nucleic acid molecules, which are useful for therapy, preferably for gene therapy. This problem is solved by the provision of the embodiments as characterized in the claims.
Accordingly, the present invention relates to the use of a peptide for the preparation of a composition for transferring at least one substance of interest into a cell, and more specifically for the preparation of a composition for improving the transfer of at least one substance of interest into a cell, wherein said peptide is selected from the group consisting of (t) a peptide comprising or consisting of the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1), wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y) ; and (ii) a peptide comprising or consisting of the amino acid sequence (SEQ ID NO
:7) Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala, wherein said peptide is at a pH preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably about 8 in said composition.
Applicants have previously (see following Examples 1-12) identified cationic peptides which are capable to cause cell membrane disruption, to bind an anionic substance, in particular a nucleic acid molecule, in order to form complexes and thereby to enhance transfer of said complexed anionic substance into a cell. More specifically, these cationic peptides do not comprise acidic amino acids, and more particularly do not comprise glutamic amino acid (Glu or E). Examples for such cationic peptides are peptides which comprise or consist of the amino acid se9uence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of lysine (Lys or K), histidine (His or H) and arginine (Arg or R) amino acid.
It could now surprisingly be shown that one tested peptide, ppTG2l; SEQ ID NO
:7, although it was not 5 capable to bind to plasmid DNA at pH8 nevertheless leads to a dramatic , improvement of the nucleic acid transfer efficiency into vertebrate cells when used at a pH over 6 added to nucleic acid composition, and in particular when said composition is administered to tumoral tissue (see Example 13). The fact that ppTG21 cannot bind to DNA at pH8 can be explained with the protonation status of the histidine residues (pK 6) of ppTG21 that prevents binding between plasmid DNA and ppTG21 peptide. Due to the lack of DNA binding at pHB, ppTG21 was previously excluded from preparation of complexes with nucleic acid useful for transferring said nucleic acid into cells.
However, the results provided in the present application demonstrate that it is possible to use non-charged peptides, which do not allow complex formation with nucleic acids, for the preparation of a pharmaceutical composition for an improved transfer of a nucleic acid into a cell.
IS The term "substance of interest" designates preferably a charged molecule without limitation of the number of charges. Preferably, said molecule is an anionic substance of interest, and more preferably it is selected from the group consisting of proteins and nucleic acid molecules.
According to a preferred embodiment, said anionic substance of interest is a nucleic acid.
The term "nucleic acid" or "nucleic acid molecule" as used in the scope of the present invention means a DNA or RNA or a fragment or combination thereof, which is single- or double-stranded, linear or circular, natural or synthetic, modified or not (see US 5525711, US 4711955, US 5792608 or EP 302 175 for modification examples) without size limitation. It may, inter alia, be a genomic DNA, a cDNA, an mRNA, an antisense RNA, a ribozyme, or a DNA encoding such RNAs. The terms "polynucleotide", "oligonucleotide", "nucleic acid molecule" and "nucleic acids" are synonyms with regard to the present invention. The nucleic acid may be in the form of a linear or circular polynucleotide, and preferably in the form of a plasmid. The nucleic acid can also be an oligonucleotide which is to be delivered to the cell, e.g., for antisense or ribozyme functions.
According to the invention, the nucleic acid is preferably a naked polynucleotide (Wolff et al., Science 247 (1990), 1465-1468) or is formulated with at least one compound such as a polypeptide, preferably a viral polypeptide, or a cationic lipid, or a cationic polymer, or combination thereof, which can participate in the uptake of the polynucleotide into the cells (see Ledley, Human Gene Therapy 6 (1995), 1129-1144 for a review) or a protic polar compound (examples are provided below in the present application or in EP 890362).
Alternatively, nucleic acid further designate a viral vector (adenoviral vector, retroviral vector, poxviral vector, etc.,.). The term « viral vector » as used in the present invention encompasses the vector genome, the viral particles (i.e. the viral capsid including the viral genome) as well as empty viral capsids.
"Plasmid" refers to an extrachromosomic circular DNA. The choice of the plasmids is very large.
Plasmids can be purchased from a variety of manufacturers. Suitable plasmids include but are not limited to those derived from pBR322 (Gibco BRL), pUG (Gibco BRL), pBluescript (Stratagene), pREP4, pCEP4 (Invitrogene), pCI (Promega) and p Poly (Lathe et al., Gene 57 (1987), 193-201). It is also possible to engineer such a plasmid by molecular biology techniques (Sambrook et al., Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), NY). A plasmid may also comprise a selection gene in order to select or identify the transfected cells (e.g. by complementation of a cell auxotrophy, antibiotic resistance), stabilizing elements (e.g. cer sequence; Summers and Sherrat, Cell 36 (1984), 1097-1103) or integrative elements (e.g. LTR viral sequences).
Preferably, said nucleic acid molecule includes at least one encoding gene sequence of interest (i.e. a trauscriptional unit) that can be transcribed and translated'to generate a polypeptide of interest and the elements enabling its expression (i.e. an expression cassette). if the nucleic acid contains this proper genetic information when it is placed in an environment suitable for gene expression, its transcriptional unit will thus express the encoded gene product. The level and cell specificity of expression will depend to a significant extent on the strength and origin of the associated promoter and the presence and activation of an associated enhancer element.
Thus in a preferred embodiment, the transcriptional control element includes the promoter/enhancer sequences such as the CMV promoter/enhancer. However, those skilled in the art will recognize that a variety of other promoter and/or enhancer sequences are known which may be obtained from any viral, prokaryotic, e.g.
bacterial, or eulcaryotic organism, which are constitutive or regulable, which are suitable for expression in eukaryotic cells, and particularly in target cells or tissues. More precisely, this genetic information necessary for expression by a target cell or tissue comprises all the elements required foi' transcription of said gene sequence (if this gene sequence is DNA) into RNA, preferably into mRNA, and, if necessary, for translation of the mRNA
into a polypeptide. Promoters suitable for use in various vertebrate systems are widely described in literature.
Suitable promoters include but are not limited to the adenoviral Ela, MLP, PGK
(Phospho Glycero Kinase ;
Adra et al. Gene 60 (1987) 65-74 ; Hitzman et al. Science 219 (1983) 620-625), RSV, MPSV, SV40, CMV or 7.5k, the vaccinia promoter, inducible promoters, MT (metallothioneine; Mc Ivor et al., Mol. Cell Biol. 7 (1987), 838-848), alpha-1 antitrypsin, CFTR, immunoglobulin, alpha-actin (Tabin et al., Mol. Cell Biol. 2 (1982), 426-436), SR (Takebe et al., Mol. Cell. Biol. 8 (1988), 466-472), early SV40 (Simian Virus), RSV (Rous Sarcoma Virus) LTR, TK-HSV-1, SM22 (WO 97138974), Desmin (WO 96/26284) and early CMV
(Cytomegalovirus ;
Boshart et al. Cell 41 (1985) 521), etc. Alternatively, one may use a synthetic promoter such as those described in Chakrabarti et al. (1997, BiotechniGues 23, 1094-1097), Hammond et al.
(1997, J. Virological Methods 66, 135-138) or Kumar and Boyle (1990, Virology 179, 151-158) as well as chimeric promoters between early and late poxviral promoters. Alternatively, promoters can be used which are active in tumor cells. Suitable examples include but are not limited to the promoters isolated from the gene encoding a protein selected from the group consisting of MUC-1 (overexpressed in breast and prostate cancers ; Chen et al., J. Clin. Invest. 96 (1995), 2775-2782), CEA (Carcinoma Embryonic Antigen ; overexpressed in colon cancers ;
Schrewe et al., Mol. Cell. Biol.
10 (1990), 2738-2748), tyrosinase (overexpressed in melanomas ; Vile et al., Cancer Res. 53 (1993), 3860-3864), ErbB-2 (overexpressed in breast and pancreas cancers ; Harris et al., Gene Therapy 1 (1994), 170-175) and alpha-foetoprotein (overexpressed in liver cancers ; Kanai et al., Cancer Res. 57 (1997), 461-465) or combinations thereof. The early CMV promoter is preferred in the context of the invention.
The nucleic acid can also include intron sequences, targeting sequences, transport sequences, sequences involved in replication or integration. Said sequences have been reported in the literature and can readily be obtained by those skilled in the art. The nucleic acid can also be modified in order to be stabilized with specific components, for example spermine. It can also be substituted, for example by chemical modification, in order to facilitate its binding with specific polypeptides such as, for example the peptides of the present invention.
According to the invention, the nucleic acid can be homologous or heterologous to the target cells into which it is introduced.
In a preferred embodiment, the nucleic acid contains at least one gene sequence of interest encoding a gene product which is a therapeutic molecule (i.e. a therapeutic gene). A
"therapeutic molecule" is one which has ' a pharmacological or protective activity when administered, or expressed, appropriately to a patient, especially patient suffering from a disease or illness condition or who should be protected against this disease or condition.
Such a pharmacological or protective activity is one which is expected to be related to a beneficial effect on the course or a symptom of said disease or said condition. When the skilled man selects in the course of applying the present invention a gene encoding a therapeutic molecule, he generally relates his choice to results previously obtained and can reasonably expect, without undue experiment other than practicing the invention as claimed, to obtain such pharmacological property. According to the invention, the sequence of interest can be homologous or heterologous to the target cells into which it is introduced.
Advantageously said sequence of interest encodes all or part of a polypeptide, especially a therapeutic or prophylactic polypeptide giving a therapeutic or prophylactic effect. A polypeptide is understood to be any translational product of a polynucleotide regardless of size, and whether glycosylated or not, and includes peptides and proteins.
Therapeutic polypeptides include as a primary example those polypeptides that can compensate for defective or deficient proteins in an animal or human organism, or those that act through toxic effects to limit or remove harmful cells from the body. They can also be immunity confernng polypeptides which act as an endogenous antigen to provoke a humoral or cellular response, or both.
The- following encoding gene sequences are of particular interest. For example genes coding for a cytokine (d,~ or (-interferon, interleulcine (IL), in particular IL-2, IL-6, IL-10 or IL-12, a tumor necrosis factor (TNF), a colony stimulating factor (such as GM-CSF, C-CSF, M-CSF), an irmnunostimulatory polypeptide (such as B7.1, B7.2, CD40, CD4, CDB, ICAM and the like), a cell or nuclear receptor, a receptor ligand (such as fas ligand), a coagulation factor (such as FVIII, FIX), a b ~owth factor (such as Transforming Growth Factor TGF, Fibroblast Growth Factor FGF and the like), an enzyme (such as urease, renin, thrombin, metalloproteinase, nitric oxide synthase NOS,~ SOD, catalase), an enzyme inhibitor (such as b'1-antitrypsine, antithrornbine lII, viral protease inhibitor, plasminogen activator inhibitor PAI-1), the CFTR protein, insulin, dystrophin, a MHC antigen (Major Histocompatibility Complex) of class I or 1I
or a polypeptide that can modulate/regulate the expression of one or more cellular genes, a polypeptide capable of inhibiting a bacterial, parasitic or viral infection or its development (such as antigenic polypeptides, antigenic epitopes, transdominant variants inhibiting the action of a native protein by competition), an apoptosis inducer or inhibitor (such as Bax, Bcl2, BcIX), a cytostatic agent (such as p21, p16, Rb), an apolipoprotein (such as ApoAI, ApoAIV, ApoE), an inhibitor of angiogenesis (such as angiostatin, endostatin), an angiogenic polypeptide (such as family of Vascular Endothelial Growth Factors VEGF, FGF family, CCN family including CTGF, Cyr61 and Nov), an oxygen radical scavenger, a polypeptide having an anti-tumor effect, an antibody, a toxin, an immunotoxin and a marker (such as beta-galactosidase, luciferase) or any other gene of interest that is recognized in, the art as being useful for the treatment or prevention of a clinical condition. In view of treating a~hereditary dysfunction, one may use a functional allele of a defective gene, for example a gene encoding factor VIII
or IX in the context of haemophilia A or B, dystrophin (or minidystrophin) in the°context-of myopathies, insulin in the context of diabetes, CFTR
(Cystic Fibrosis Transmembrane Conductance Regulator) in the context of cystic fibrosis. Suitable anti-tumor genes include but are not limited to those encoding an antisense RNA, a ribozyme, a cytotoxic product such as thymidine kinase of herpes-1 simplex virus (TK-HSV-1), ricin, a bacterial toxin, the expression product of yeast genes FCYI and/or FURL having UPRTase (Uracile Phosphoribosyltransferase) and CDase (Cytosine Deaminase) activity respectively, an antibody, a polypeptide inhibiting cellular division or transduction signals, a tumor suppressor gene (p53, Rb, p73), a polypeptide activating host immune system, a tumor-associated antigen (MUC-1, BRCA-1, an HPV early or late antigen (E6, E7, Ll, L2), optionally in combination with a cytokine gene. The polynucleotide can also encode an antibody. In this regard, the term "antibody" encompasses whole immunoglobulins of any class, chimeric antibodies and hybrid antibodies with dual or multiple antigen or epitope specificities, and fragments, such as F(ab)'2, Fab', Fab including hybrid fragments and anti-idiotypes (US 4,699,880). Advantageously said nucleic acid encodes all or part of a polypeptide which is an immunity conferring polypeptide and acts as endogenous immunogen to provoke a humoral or cellular response, or both, against infectious agents, including intracellular viruses, or against tumor cells. An "immunity-conferring polypeptide" means that said polypeptide when it is produced in the transfected cells will participate in an immune response in the treated patient. More specifically, said polypeptide produced in or taken up by macropinocyte cells such as APGs will be processed and the resulting fragments will be presented on the surface of these cells by MHC class I and/or II molecules in order to elicit a specific immune response.
The nucleic acid may comprise one or more genes) of interest. In this regard, the combination of genes encoding a suicide gene product and a cytokine gene (e.g. a, ~ or y interferons, interleulcins, preferably selected among IL-2; IL-4, IL-6, IL-10 or IL-12, TNF factors, GM-CSF, C-CSF, M-CSF and the lilee), an immunostimulatory gene (e.g. B7.1, B7 ?, ICAM) or a chimiolcine gene (e.g. MIP
, RANTES, MCP 1) is advantageous. The different gene expression may be controlled by a unique promoter (polycistronic cassette) or by independent promoters. Moreover, they may be inserted in a unique site or in various sites along the nucleic acid either in the same or opposite directions.
The encoding gene sequence of interest may be isolated from any organism or cell by conventional techniques of molecular biology (PCR, cloning with appropriate probes, chemical synthesis) and if needed its sequence may be modified by mutagenesis, PGR or any other protocol.
Alternatively, the "substance of interest" is a peptide (polypeptide, protein and peptide are synonyms) including variant or modified peptides, peptide-Iilce molecules, antibodies or fragments thereof, chimeric antibody or peptide, ....
TRANSFECTION
The present invention relates to the use of non complexing peptides for the preparation of compositions useful for improving transfer of substances of interest into cells. Such compositions axe specially useful in gene therapy, vaccination, and any therapeutic or prophylactic situation in which a substance of interest, particularly a nucleic acid is administered to cells in vivo.
Gene therapy can be defined as the transfer of genetic material into a cell or an organism. The possibility of treating human disorders by gene therapy has changed in a few years from the stage of theoretical considerations to that of clinical applications. The first protocol applied to man was initiated in'the USA in September 1990 on a patient suffering from adenine deaminase (ADA) deficiency.
This first encouraging experiment has been followed by numerous new applications and promising clinical trials based on gene therapy which are currently ongoing (see for example clinical trials listed at http://cnetdb.nci.nih.gov/trialsrch.shtml or http:l/www.wiley.co.uldgenetherapy/clinicaln.
Successful gene therapy depends principally on the e~cient delivery of a therapeutic gene of interest to make its expression possible in cells of a living organism. Therapeutic genes can be transferred into cells using a wide variety of vectors resulting in either transient expression or permanent transformation of the host genome.
During the past decade, a large number of viral, as well as non-viral, vectors has been developed for gene transfer (see for example Robbins et al., 1998, Tibtech 16, 35-40 and Rolland, 1998, Therapeutic Drug Carrier Systems 15, 143-198 for reviews).
Most of the intracellular gene delivery mechanisms used to date are viral vectors, especially adeno-, ?5 pox- and retroviral vectors (see Robbins et al., 1998, Tibtech, 16, 35-40 for a review). Nevertheless, said use of viruses suffers from a number of disadvantages: retroviral vectors cannot accommodate large-sized nucleotide sequences (e.g. the dystrophin gene which is around 13 lcb), the retroviral genome is integrated into host cell DNA and may thus cause genetic changes in the recipient cell and infectious viral particles can disseminate within the organism or into the environment; adenoviral vectors can induce a strong immune response in treated patients (Mc Coy et al, 1995, Human Gene Therapy, 6, 1553-1560; Yang et al., 1996, Immunity, l, 433-442).
Accordingly, non-viral systems presenting special advantages with respect to large-scale production, safety, low immunogenicity, and capacity to deliver large fragments of DNA
have been proposed. For example, alternative non-viral vectors have been proposed (see Rolland, 1998, Therapeutic Drug Carrier Systems, 15, 143-198 for a review) based on complexation of the nucleic acid with cationic lipids or cationic polymers. These cationic compounds are capable of forming complexes with anionic molecules, thus tending to neutralize their negative charges and allowing to compact them in complexed form which favors their introduction into the cell.
These non-viral delivery systems are, for example, based on receptor-mediated mechanisms (Perales et al., 1994, Eur. J. Biochem. 226, 255-266; Wagner et al., ' 1994, Advanced Drug Delivery Reviews, 14, 113-135), on polymer-mediated transfection such as polyamidoamine (Haensler et Szoka, 1993, Bioconjugate Chem., 4, 372-379), dendritic polymer (WO 95/24221), polyethylene imine or polypropylene imine (WO 96/02655), polylysine (US-A- 5 595 897 or FR 2 719 316) or on lipid-mediated transfection (Felgner et al., 1989, Nature, 337, 387 388) such as DOTMA (Felgner et al., 1987, PNAS, 84, 7413-7417), DOGS or TransfectamTM (Behr et a1.,1989, PNAS; 86, 6982-6986), DMRIE or DORIE (Felgner et al., 1993, Methods 5, 67-75), DC-CHOL (Gao et Huang, 1991, BBRC, 179, 280-285), DOTAPTM (McLachlan et al., 1995, Gene Therapy, 2,674-622), LipofectamineTM
or glycerolipid compounds (see for example EP 901 463 and W098/37916).
Another alternative was proposed in 1990 by Wolff et al. (Science 247 (1990), 1465-1468) who have shown that injection of naked RNA or DNA, i.e. without a special delivery system, directly into mouse skeletal muscle results in expression of reporter genes within the muscle cells. This technique for transfecting cells offers the advantage of simplicity and experiments have been conducted that support the usefulness of this system for the delivery to the lung (Tsar et al., Am. J. Physiol. 268 (1995), L1052-L1056; Meyer et al., Gene Therapy 2 (1995), 450-4.60), brain (Schwartz et al., Gene Therapy 3 (1996), 405-411), joints (Evans and Roddins, Gene therapy for arthritis; In Wolff (ed) Gene therapeutics: Methods and Applications of direct Gene Transfer.
Birkhaiser. Boston (1990), 320-343), thyroid (Sikes et al., Human Gen. Ther. 5 (1994), 837-844), skin (Raz et al., Proc. Natl. Acad. Sci. USA 91 (1994), 9519-9523) and liver (Hickman et al., Hum. Gene Ther. 5 (1994), 1477-1483).
Nevertheless, Davis et al. (Human Gene Therapy 4 (1993), 151-159 and Human Mol. Genet. 4 (1993), 733-740) observed a large variability of expression of naked DNA injected into skeletal muscle in vivo which would be insufficient for the treatment of primary myopathies, fox example.
The authors propose solutions in order to obtain an improvement of the efficiency of gene transfer by preinjecting muscles with a relatively large volume of hypertonic sucrose or with toxins, for example cardiotoxin isolated from snake, in order to stimulate regeneration of muscles. Nevertheless, these methods, although promising, would not be applicable fox human treatment.
Besides, analyses have shown that a major pathway for intracellular delivery of these non-viral systems is internalization into vesicles by endocytosis. Endocytosis is the natural process by which. eukaryotic cells ingest segments of the plasma membrane in the form of small endocytosis vesicles, i.e. endosomes, entrapping extracellular fluid and molecular material, e.g. nucleic acid molecules. In cells, these endosomes fuse with lysosomes which are specialized sites of intracellular deyadation. The lysosomes are acidic and contain a wide variety of degradative enzymes to digest the molecular contents of the endosomal vesicles. After endocytosis the internalized material is thus still separated from the cytoplasm by a membrane and therefore is not available for perfouning its desired function. Actually, said desired function, i.e. the desired therapeutic effect, depends in most of the nucleic acids transfer approaches on their delivery at least into the cytoplasm (e.g. for RNA) or rather into the nucleus of the cell (e.g. for DNA encoding a polypeptide or antisense oligonucleotides) where their functional effect can occur. Consequently, the internalized nucleic acid accumulation into endosomal vesicles strongly reduces the efficiency of nucleic acid functional transfer to the cell, and therefore the e~ciency of gene therapy (Zabner et a1.,1995, J. Biol. Chem., 270, 18997-19007).
Accordingly, the efficient delivery to and expression of genetic information within the cells of a living organism depend both on the capability of the delivery system to transfer the nucleic acid molecule into the cell and on its capability to promote nucleic acid escape from endosomal retention and degradation.
Once the delivery system has been taken up by cells via endocytosis, it must escape from the endosomal compariinent for being localized in the cytoplasm or to migrate to the nucleus. The general strategy is to promote endosomolysis, e.g. by using fusogenic or membranolytic/endosomolytic peptides (see Mahato et al., l0 1999,Current Opinion in Mol. Therapeutics, l, 226-243).
Some microorganisms (e.g. viruses) are naturally internalized via receptor-mediated endocytosis and have developed systems for escaping from the above-mentioned endosomal degradation. Based on this natural aptitude, gene transfer systems have been proposed including the endosome-destabilizing activity of replication-defective adenovirus particles or rhinovirus particles which were either added to the transfection medium (Gotten et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 6094-6098) or directly linked to the delivery complex (Wu et al., 1994, J. Biol. Chem., 269, 11542-11546 ; US 5,928,944). Expression levels resulting from in vivo gene transfer with these systems, while promising, are still relatively low and further optimization is required. Additionally, synthetic systems have been generated. The best characterized synthetic peptides with fusogenic activity are derived from the first 23 amino acids of the N-terminal peptide of the HA2 subunit of influenza hemaglutinin (e.g. the INF peptide). At pH 7, this peptide preferentially assumes a random coil structure. At pH 5, an amphipathic alpha-helical conformation is favoured and the peptide becomes endosomolytic. Similarly, the synthetic peptide JTS-1 developped by Gottschalk et a1.(1996, Gene Therapy, 3, 448-457) starts with the INF
sequence GLFEA followed by an optimized peptide sequence. This JTS-1 peptide was shown to be capable of lysing calcein containing phosphatidylcholine liposomes at pH 5, more efficiently than at a pH 7.
However, the intracellular delivery of nucleic acids requires that said peptides combine their fusogenic activity with a nucleic acid complexing activity to form delivery complexes capable of transferring said nucleic acid into cells.
Some systems developed so far combine two distinct elements presenting said features (for example, WO 96/40958, WO 98/50078 or Gottschall: et al., 1996, Gene Therapy, 3, 448-457, Haensler & Szoka, 1993, Bioconjugate Chem., 4, 372 X79). These two-components systems actually include peptides which have specificity for endosomal pH due to acidic residues (glutamic and aspartic amino acids). At neutral pH, the negatively charged carboxylic groups destabilize the structure of these peptides ; acidification of the carboxylic groups promotes multimerization of the peptides and /or membrane interaction leading to membrane destabilization and leakage. Wagner et al. (1999, Advanced Drug Delivery Reviews, 38, 279-289) have analyzed this pH specificity and have indicated that introduction of additional glutamic acids into peptides can enhance their pH specificity, and therefore their endosome disrupting property.
However, said combined systems which retain the endosome disruptive properties of viral particles and are capable of associating with the nucleic acid molecule to form a complex must display a delicate balance between each distinct moieties (i.e. the nucleic acid-binding ligand and the synthetic membrane-destabilizing peptide) in order to promote intracellular nucleic acid transfer and to function under in vih~o as well as in vivo conditions.
With the aim to propose a -simplified system, Wyman et al. (1997, Biochemistry, 36, 3008-3017) developed a single-component system using a designed synthetic peptide, KALA, which can promote in vit~°o transfection of nucleic acid molecules and can cause membrane disruption.
While positively charged hydrophilic lysine amino acid residues have been chosen to bind the nucleic acid molecule, glutamic amino acid residues are still maintained to provide the KALA peptide with pH specificity and thereby to guarantee its endosome disrupting property.
The available nucleic acid delivery systems are not yet satisfactory in terms of safety or efficiency for their utilization in i~ vivo gene therapy and require further optimization.
The technical problem underlying the present invention is the provision of improved methods and means for the delivery into cells of substances of interest, preferably of nucleic acid molecules, which are useful for therapy, preferably for gene therapy. This problem is solved by the provision of the embodiments as characterized in the claims.
Accordingly, the present invention relates to the use of a peptide for the preparation of a composition for transferring at least one substance of interest into a cell, and more specifically for the preparation of a composition for improving the transfer of at least one substance of interest into a cell, wherein said peptide is selected from the group consisting of (t) a peptide comprising or consisting of the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1), wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y) ; and (ii) a peptide comprising or consisting of the amino acid sequence (SEQ ID NO
:7) Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala, wherein said peptide is at a pH preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably about 8 in said composition.
Applicants have previously (see following Examples 1-12) identified cationic peptides which are capable to cause cell membrane disruption, to bind an anionic substance, in particular a nucleic acid molecule, in order to form complexes and thereby to enhance transfer of said complexed anionic substance into a cell. More specifically, these cationic peptides do not comprise acidic amino acids, and more particularly do not comprise glutamic amino acid (Glu or E). Examples for such cationic peptides are peptides which comprise or consist of the amino acid se9uence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of lysine (Lys or K), histidine (His or H) and arginine (Arg or R) amino acid.
It could now surprisingly be shown that one tested peptide, ppTG2l; SEQ ID NO
:7, although it was not 5 capable to bind to plasmid DNA at pH8 nevertheless leads to a dramatic , improvement of the nucleic acid transfer efficiency into vertebrate cells when used at a pH over 6 added to nucleic acid composition, and in particular when said composition is administered to tumoral tissue (see Example 13). The fact that ppTG21 cannot bind to DNA at pH8 can be explained with the protonation status of the histidine residues (pK 6) of ppTG21 that prevents binding between plasmid DNA and ppTG21 peptide. Due to the lack of DNA binding at pHB, ppTG21 was previously excluded from preparation of complexes with nucleic acid useful for transferring said nucleic acid into cells.
However, the results provided in the present application demonstrate that it is possible to use non-charged peptides, which do not allow complex formation with nucleic acids, for the preparation of a pharmaceutical composition for an improved transfer of a nucleic acid into a cell.
IS The term "substance of interest" designates preferably a charged molecule without limitation of the number of charges. Preferably, said molecule is an anionic substance of interest, and more preferably it is selected from the group consisting of proteins and nucleic acid molecules.
According to a preferred embodiment, said anionic substance of interest is a nucleic acid.
The term "nucleic acid" or "nucleic acid molecule" as used in the scope of the present invention means a DNA or RNA or a fragment or combination thereof, which is single- or double-stranded, linear or circular, natural or synthetic, modified or not (see US 5525711, US 4711955, US 5792608 or EP 302 175 for modification examples) without size limitation. It may, inter alia, be a genomic DNA, a cDNA, an mRNA, an antisense RNA, a ribozyme, or a DNA encoding such RNAs. The terms "polynucleotide", "oligonucleotide", "nucleic acid molecule" and "nucleic acids" are synonyms with regard to the present invention. The nucleic acid may be in the form of a linear or circular polynucleotide, and preferably in the form of a plasmid. The nucleic acid can also be an oligonucleotide which is to be delivered to the cell, e.g., for antisense or ribozyme functions.
According to the invention, the nucleic acid is preferably a naked polynucleotide (Wolff et al., Science 247 (1990), 1465-1468) or is formulated with at least one compound such as a polypeptide, preferably a viral polypeptide, or a cationic lipid, or a cationic polymer, or combination thereof, which can participate in the uptake of the polynucleotide into the cells (see Ledley, Human Gene Therapy 6 (1995), 1129-1144 for a review) or a protic polar compound (examples are provided below in the present application or in EP 890362).
Alternatively, nucleic acid further designate a viral vector (adenoviral vector, retroviral vector, poxviral vector, etc.,.). The term « viral vector » as used in the present invention encompasses the vector genome, the viral particles (i.e. the viral capsid including the viral genome) as well as empty viral capsids.
"Plasmid" refers to an extrachromosomic circular DNA. The choice of the plasmids is very large.
Plasmids can be purchased from a variety of manufacturers. Suitable plasmids include but are not limited to those derived from pBR322 (Gibco BRL), pUG (Gibco BRL), pBluescript (Stratagene), pREP4, pCEP4 (Invitrogene), pCI (Promega) and p Poly (Lathe et al., Gene 57 (1987), 193-201). It is also possible to engineer such a plasmid by molecular biology techniques (Sambrook et al., Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), NY). A plasmid may also comprise a selection gene in order to select or identify the transfected cells (e.g. by complementation of a cell auxotrophy, antibiotic resistance), stabilizing elements (e.g. cer sequence; Summers and Sherrat, Cell 36 (1984), 1097-1103) or integrative elements (e.g. LTR viral sequences).
Preferably, said nucleic acid molecule includes at least one encoding gene sequence of interest (i.e. a trauscriptional unit) that can be transcribed and translated'to generate a polypeptide of interest and the elements enabling its expression (i.e. an expression cassette). if the nucleic acid contains this proper genetic information when it is placed in an environment suitable for gene expression, its transcriptional unit will thus express the encoded gene product. The level and cell specificity of expression will depend to a significant extent on the strength and origin of the associated promoter and the presence and activation of an associated enhancer element.
Thus in a preferred embodiment, the transcriptional control element includes the promoter/enhancer sequences such as the CMV promoter/enhancer. However, those skilled in the art will recognize that a variety of other promoter and/or enhancer sequences are known which may be obtained from any viral, prokaryotic, e.g.
bacterial, or eulcaryotic organism, which are constitutive or regulable, which are suitable for expression in eukaryotic cells, and particularly in target cells or tissues. More precisely, this genetic information necessary for expression by a target cell or tissue comprises all the elements required foi' transcription of said gene sequence (if this gene sequence is DNA) into RNA, preferably into mRNA, and, if necessary, for translation of the mRNA
into a polypeptide. Promoters suitable for use in various vertebrate systems are widely described in literature.
Suitable promoters include but are not limited to the adenoviral Ela, MLP, PGK
(Phospho Glycero Kinase ;
Adra et al. Gene 60 (1987) 65-74 ; Hitzman et al. Science 219 (1983) 620-625), RSV, MPSV, SV40, CMV or 7.5k, the vaccinia promoter, inducible promoters, MT (metallothioneine; Mc Ivor et al., Mol. Cell Biol. 7 (1987), 838-848), alpha-1 antitrypsin, CFTR, immunoglobulin, alpha-actin (Tabin et al., Mol. Cell Biol. 2 (1982), 426-436), SR (Takebe et al., Mol. Cell. Biol. 8 (1988), 466-472), early SV40 (Simian Virus), RSV (Rous Sarcoma Virus) LTR, TK-HSV-1, SM22 (WO 97138974), Desmin (WO 96/26284) and early CMV
(Cytomegalovirus ;
Boshart et al. Cell 41 (1985) 521), etc. Alternatively, one may use a synthetic promoter such as those described in Chakrabarti et al. (1997, BiotechniGues 23, 1094-1097), Hammond et al.
(1997, J. Virological Methods 66, 135-138) or Kumar and Boyle (1990, Virology 179, 151-158) as well as chimeric promoters between early and late poxviral promoters. Alternatively, promoters can be used which are active in tumor cells. Suitable examples include but are not limited to the promoters isolated from the gene encoding a protein selected from the group consisting of MUC-1 (overexpressed in breast and prostate cancers ; Chen et al., J. Clin. Invest. 96 (1995), 2775-2782), CEA (Carcinoma Embryonic Antigen ; overexpressed in colon cancers ;
Schrewe et al., Mol. Cell. Biol.
10 (1990), 2738-2748), tyrosinase (overexpressed in melanomas ; Vile et al., Cancer Res. 53 (1993), 3860-3864), ErbB-2 (overexpressed in breast and pancreas cancers ; Harris et al., Gene Therapy 1 (1994), 170-175) and alpha-foetoprotein (overexpressed in liver cancers ; Kanai et al., Cancer Res. 57 (1997), 461-465) or combinations thereof. The early CMV promoter is preferred in the context of the invention.
The nucleic acid can also include intron sequences, targeting sequences, transport sequences, sequences involved in replication or integration. Said sequences have been reported in the literature and can readily be obtained by those skilled in the art. The nucleic acid can also be modified in order to be stabilized with specific components, for example spermine. It can also be substituted, for example by chemical modification, in order to facilitate its binding with specific polypeptides such as, for example the peptides of the present invention.
According to the invention, the nucleic acid can be homologous or heterologous to the target cells into which it is introduced.
In a preferred embodiment, the nucleic acid contains at least one gene sequence of interest encoding a gene product which is a therapeutic molecule (i.e. a therapeutic gene). A
"therapeutic molecule" is one which has ' a pharmacological or protective activity when administered, or expressed, appropriately to a patient, especially patient suffering from a disease or illness condition or who should be protected against this disease or condition.
Such a pharmacological or protective activity is one which is expected to be related to a beneficial effect on the course or a symptom of said disease or said condition. When the skilled man selects in the course of applying the present invention a gene encoding a therapeutic molecule, he generally relates his choice to results previously obtained and can reasonably expect, without undue experiment other than practicing the invention as claimed, to obtain such pharmacological property. According to the invention, the sequence of interest can be homologous or heterologous to the target cells into which it is introduced.
Advantageously said sequence of interest encodes all or part of a polypeptide, especially a therapeutic or prophylactic polypeptide giving a therapeutic or prophylactic effect. A polypeptide is understood to be any translational product of a polynucleotide regardless of size, and whether glycosylated or not, and includes peptides and proteins.
Therapeutic polypeptides include as a primary example those polypeptides that can compensate for defective or deficient proteins in an animal or human organism, or those that act through toxic effects to limit or remove harmful cells from the body. They can also be immunity confernng polypeptides which act as an endogenous antigen to provoke a humoral or cellular response, or both.
The- following encoding gene sequences are of particular interest. For example genes coding for a cytokine (d,~ or (-interferon, interleulcine (IL), in particular IL-2, IL-6, IL-10 or IL-12, a tumor necrosis factor (TNF), a colony stimulating factor (such as GM-CSF, C-CSF, M-CSF), an irmnunostimulatory polypeptide (such as B7.1, B7.2, CD40, CD4, CDB, ICAM and the like), a cell or nuclear receptor, a receptor ligand (such as fas ligand), a coagulation factor (such as FVIII, FIX), a b ~owth factor (such as Transforming Growth Factor TGF, Fibroblast Growth Factor FGF and the like), an enzyme (such as urease, renin, thrombin, metalloproteinase, nitric oxide synthase NOS,~ SOD, catalase), an enzyme inhibitor (such as b'1-antitrypsine, antithrornbine lII, viral protease inhibitor, plasminogen activator inhibitor PAI-1), the CFTR protein, insulin, dystrophin, a MHC antigen (Major Histocompatibility Complex) of class I or 1I
or a polypeptide that can modulate/regulate the expression of one or more cellular genes, a polypeptide capable of inhibiting a bacterial, parasitic or viral infection or its development (such as antigenic polypeptides, antigenic epitopes, transdominant variants inhibiting the action of a native protein by competition), an apoptosis inducer or inhibitor (such as Bax, Bcl2, BcIX), a cytostatic agent (such as p21, p16, Rb), an apolipoprotein (such as ApoAI, ApoAIV, ApoE), an inhibitor of angiogenesis (such as angiostatin, endostatin), an angiogenic polypeptide (such as family of Vascular Endothelial Growth Factors VEGF, FGF family, CCN family including CTGF, Cyr61 and Nov), an oxygen radical scavenger, a polypeptide having an anti-tumor effect, an antibody, a toxin, an immunotoxin and a marker (such as beta-galactosidase, luciferase) or any other gene of interest that is recognized in, the art as being useful for the treatment or prevention of a clinical condition. In view of treating a~hereditary dysfunction, one may use a functional allele of a defective gene, for example a gene encoding factor VIII
or IX in the context of haemophilia A or B, dystrophin (or minidystrophin) in the°context-of myopathies, insulin in the context of diabetes, CFTR
(Cystic Fibrosis Transmembrane Conductance Regulator) in the context of cystic fibrosis. Suitable anti-tumor genes include but are not limited to those encoding an antisense RNA, a ribozyme, a cytotoxic product such as thymidine kinase of herpes-1 simplex virus (TK-HSV-1), ricin, a bacterial toxin, the expression product of yeast genes FCYI and/or FURL having UPRTase (Uracile Phosphoribosyltransferase) and CDase (Cytosine Deaminase) activity respectively, an antibody, a polypeptide inhibiting cellular division or transduction signals, a tumor suppressor gene (p53, Rb, p73), a polypeptide activating host immune system, a tumor-associated antigen (MUC-1, BRCA-1, an HPV early or late antigen (E6, E7, Ll, L2), optionally in combination with a cytokine gene. The polynucleotide can also encode an antibody. In this regard, the term "antibody" encompasses whole immunoglobulins of any class, chimeric antibodies and hybrid antibodies with dual or multiple antigen or epitope specificities, and fragments, such as F(ab)'2, Fab', Fab including hybrid fragments and anti-idiotypes (US 4,699,880). Advantageously said nucleic acid encodes all or part of a polypeptide which is an immunity conferring polypeptide and acts as endogenous immunogen to provoke a humoral or cellular response, or both, against infectious agents, including intracellular viruses, or against tumor cells. An "immunity-conferring polypeptide" means that said polypeptide when it is produced in the transfected cells will participate in an immune response in the treated patient. More specifically, said polypeptide produced in or taken up by macropinocyte cells such as APGs will be processed and the resulting fragments will be presented on the surface of these cells by MHC class I and/or II molecules in order to elicit a specific immune response.
The nucleic acid may comprise one or more genes) of interest. In this regard, the combination of genes encoding a suicide gene product and a cytokine gene (e.g. a, ~ or y interferons, interleulcins, preferably selected among IL-2; IL-4, IL-6, IL-10 or IL-12, TNF factors, GM-CSF, C-CSF, M-CSF and the lilee), an immunostimulatory gene (e.g. B7.1, B7 ?, ICAM) or a chimiolcine gene (e.g. MIP
, RANTES, MCP 1) is advantageous. The different gene expression may be controlled by a unique promoter (polycistronic cassette) or by independent promoters. Moreover, they may be inserted in a unique site or in various sites along the nucleic acid either in the same or opposite directions.
The encoding gene sequence of interest may be isolated from any organism or cell by conventional techniques of molecular biology (PCR, cloning with appropriate probes, chemical synthesis) and if needed its sequence may be modified by mutagenesis, PGR or any other protocol.
Alternatively, the "substance of interest" is a peptide (polypeptide, protein and peptide are synonyms) including variant or modified peptides, peptide-Iilce molecules, antibodies or fragments thereof, chimeric antibody or peptide, ....
The introduction or transfer process of an substance of interest into a cell is by itself well known.
"Introduction or transfer" means that the substance is transferred into the cell and is located, at the end of the process, inside said cell or within or on its membrane. If the substance is a nucleic acid, "introduction or transfer" is also referred to as "iransfection". Transfection can be verified by any appropriate method, for example by measuring the expression of a gene encoded by said nucleic acid or by measuring the concentration of the expressed protein or its mRNA, or by measuring its biological effect.
The term "improved transfer" in the scope of the present invention means, in this regard, a more e~cient transfer of a substance of interest by cells when the peptide according to the invention is present compared to an introduction perfornzed in absence of said peptide. This can be determined by comparing the t 0 amount of the substance taken up without the use of the peptide as disclosed in the present invention and comparing this amount with the amount taken up by the cells when using said peptide under the same experimental conditions. Preferably, the improved transfer can be determined by a higher amount of expression of the gene present in the nucleic acid transferred into the cells when using compositions comprising the peptide of the present invention, and/or compositions having pH over 6, and preferably having pH 8 in comparison to a situation where no peptide is used.
In one preferred embodiment, the peptide of the invention is capable of causing membrane disruption.
The term "peptide capable of causing membrane disruption" as used herein refers to a peptide which is capable of interacting with a membrane, particularly with a cellular membrane, and more particularly with an endosomal and/or lysosomal membrane, in such a manner that said interaction results in destabilizing and/or leaking of the membrane, and particularly in freeing the contents of the endosornes.
Preferably, said interaction results in freeing the endosome and/or lysosome contents into the cytoplasm of the cell.
The membrane disrupting properly of the peptide can be easily measured for example by the method described in the appended Examples or in Olson et al.( 1979, Biochim. Biophys. Acta, 557, 19-23). The term "membrane" as used herein is intended to have the same meaning as commonly understood by one of ordinary skill in the art. Generally, it designates a mono or bi-layer consisting mainly of lipids, and eventually contains proteins. Included are natural (e.g.
membrane of the cells) and synthetic (e.g. liposomal) membranes. Preferred membranes are natural membranes such as for example cellular membranes, endosomal or lysosomal membranes, trans-Golgi network membranes, virus membranes, nuclear membranes. Said property can be evaluated as done in the Experimental section.
The term "peptide", "amino acid residues" and "acidic amino acid residues" as used herein are intended to have the same meaning as commonly understood by one of ordinary skill in the art. Preferably, "peptide"
refers to a polymer of amino acids residues that is less than 50 residues in length, more preferably less than 30 residues in length and most preferably less than 20 residues in length. In a preferred embodiment, the peptide implemented in the present invention has a molecular weight of less than 5 1D
and most preferably of less than 3 1:D. Peptides of the invention may be produced de ~aovo by synthetic methods or by expression of the appropriate DNA fragment by recombinant DNA techniques in eukaryotic or prokaryotic cells.
In a special embodiment, said peptide contains one or more non-hydrolyzable chemical moieties in place of those which exist in naturally occurring peptides, such as carboxyl moieties. In that special case, the naturally hydrolyzable moities are replaced by non-hydrolizable ones such as for example methylene moities. The present invention also encompasses analogs of the above described peptide, wherein at least one amino acid is replaced by another amino acid having similar properties, including retro or inverso peptides (W095/24916). Additionally, the ligand moiety in use in the invention may include modifications of its original structure by way of substitution or 5 addition of chemical moieties (e.g. glycosylation, alkylation, acetylation, amidation, phosphorylation, addition of sulfllydryl groups and the like). The present invention also contemplates modifications that render the peptides of the invention detectable. For this purpose, the peptides of the invention can be modified with a detectable moiety (i.e. a scintigraphic, radioactive, a fluorescent moiety, an enzyme, a dye label and the like). Suitable radioactive labels include but are not limited to TC99m, I'~.and In"'. Such labels can be attached to the peptide of 10 the invention in a known manner, for example via a cysteine residue. Other techniques are described elsewhere.
The labeled peptides of the invention may be used for diagnostic purposes (e.g. imaging of tumoral cells, of transformed cells, and the like).
In a special embodiment, the peptide of the invention is modified by addition of at least one cysteine residue at its N- and/or C-terminal extremities. This modification allows for example the formation of di-, tri- or multimeric association of peptides of the present invention. Said association of modified peptides can be linear or cyclized.
In another embodiment of the invention, the peptide of the invention is further modified with a ligand capable of cell-specific targeting or with a ligand capable of nuclear targeting. The term "ligand capable of cell-specific targeting" refers to a ligand moiety which binds to a surface receptor of a cellular membrane (i.e. anti-Iigand). Said cell membrane surface receptor is a molecule or structure which can bind said ligand with high amity and preferably with high specificity. Said cell membrane surface receptor is preferably specific for a particular cell, i.e. it is found predominantly in one type of cells rather than in another type of cells (e.g.
galactosyl residues to target the asialoglycoprotein receptor on the surface of hepatocytes). The cell membrane surface receptor facilitates cell targeting and internalization into the target cell of the Iigand (i.e. the peptide involved in cell-specific targeting) and attached molecules (i.e. the peptide of the invention).
A large number of ligand moieties /anti-ligands that may be used in the context of the present invention are widely described in the literature. Such a ligand moiety is capable of conferring to the peptide of the invention, the ability to bind to a given anti-ligand molecule or a class of anti-ligand molecules localized at the surface of at least one target cell. Suitable anti-ligand molecules include without limitation polypeptides selected ~0 from the group consisting of cell-specific markers, tissue-specific markers, cellular receptors, viral antigens, antigenic epitopes and tumor-associated markers. Anti-ligand molecules may moreover consist of or comprise one or more sugar, lipid, glycolipid or antibody molecules. According to the invention, a ligand moiety may be for example a lipid, a glycolipid, a hormone, a sugar, a polymer (e.g. PEG, polylysine, PEI), an oligonucleotide, a vitamin, an antigen, all or part of a lectin, all or part of a polypeptide such as for example JTSI (WO
94!40958), an antibody or a fray vent thereof, or a combination thereof.
Preferably, the ligand moiety used in the present invention is a peptide or polypeptide having a minimal length of 7 amino acids. It is either a native polypeptide or a polypeptide derived from a native polypeptide.
"Introduction or transfer" means that the substance is transferred into the cell and is located, at the end of the process, inside said cell or within or on its membrane. If the substance is a nucleic acid, "introduction or transfer" is also referred to as "iransfection". Transfection can be verified by any appropriate method, for example by measuring the expression of a gene encoded by said nucleic acid or by measuring the concentration of the expressed protein or its mRNA, or by measuring its biological effect.
The term "improved transfer" in the scope of the present invention means, in this regard, a more e~cient transfer of a substance of interest by cells when the peptide according to the invention is present compared to an introduction perfornzed in absence of said peptide. This can be determined by comparing the t 0 amount of the substance taken up without the use of the peptide as disclosed in the present invention and comparing this amount with the amount taken up by the cells when using said peptide under the same experimental conditions. Preferably, the improved transfer can be determined by a higher amount of expression of the gene present in the nucleic acid transferred into the cells when using compositions comprising the peptide of the present invention, and/or compositions having pH over 6, and preferably having pH 8 in comparison to a situation where no peptide is used.
In one preferred embodiment, the peptide of the invention is capable of causing membrane disruption.
The term "peptide capable of causing membrane disruption" as used herein refers to a peptide which is capable of interacting with a membrane, particularly with a cellular membrane, and more particularly with an endosomal and/or lysosomal membrane, in such a manner that said interaction results in destabilizing and/or leaking of the membrane, and particularly in freeing the contents of the endosornes.
Preferably, said interaction results in freeing the endosome and/or lysosome contents into the cytoplasm of the cell.
The membrane disrupting properly of the peptide can be easily measured for example by the method described in the appended Examples or in Olson et al.( 1979, Biochim. Biophys. Acta, 557, 19-23). The term "membrane" as used herein is intended to have the same meaning as commonly understood by one of ordinary skill in the art. Generally, it designates a mono or bi-layer consisting mainly of lipids, and eventually contains proteins. Included are natural (e.g.
membrane of the cells) and synthetic (e.g. liposomal) membranes. Preferred membranes are natural membranes such as for example cellular membranes, endosomal or lysosomal membranes, trans-Golgi network membranes, virus membranes, nuclear membranes. Said property can be evaluated as done in the Experimental section.
The term "peptide", "amino acid residues" and "acidic amino acid residues" as used herein are intended to have the same meaning as commonly understood by one of ordinary skill in the art. Preferably, "peptide"
refers to a polymer of amino acids residues that is less than 50 residues in length, more preferably less than 30 residues in length and most preferably less than 20 residues in length. In a preferred embodiment, the peptide implemented in the present invention has a molecular weight of less than 5 1D
and most preferably of less than 3 1:D. Peptides of the invention may be produced de ~aovo by synthetic methods or by expression of the appropriate DNA fragment by recombinant DNA techniques in eukaryotic or prokaryotic cells.
In a special embodiment, said peptide contains one or more non-hydrolyzable chemical moieties in place of those which exist in naturally occurring peptides, such as carboxyl moieties. In that special case, the naturally hydrolyzable moities are replaced by non-hydrolizable ones such as for example methylene moities. The present invention also encompasses analogs of the above described peptide, wherein at least one amino acid is replaced by another amino acid having similar properties, including retro or inverso peptides (W095/24916). Additionally, the ligand moiety in use in the invention may include modifications of its original structure by way of substitution or 5 addition of chemical moieties (e.g. glycosylation, alkylation, acetylation, amidation, phosphorylation, addition of sulfllydryl groups and the like). The present invention also contemplates modifications that render the peptides of the invention detectable. For this purpose, the peptides of the invention can be modified with a detectable moiety (i.e. a scintigraphic, radioactive, a fluorescent moiety, an enzyme, a dye label and the like). Suitable radioactive labels include but are not limited to TC99m, I'~.and In"'. Such labels can be attached to the peptide of 10 the invention in a known manner, for example via a cysteine residue. Other techniques are described elsewhere.
The labeled peptides of the invention may be used for diagnostic purposes (e.g. imaging of tumoral cells, of transformed cells, and the like).
In a special embodiment, the peptide of the invention is modified by addition of at least one cysteine residue at its N- and/or C-terminal extremities. This modification allows for example the formation of di-, tri- or multimeric association of peptides of the present invention. Said association of modified peptides can be linear or cyclized.
In another embodiment of the invention, the peptide of the invention is further modified with a ligand capable of cell-specific targeting or with a ligand capable of nuclear targeting. The term "ligand capable of cell-specific targeting" refers to a ligand moiety which binds to a surface receptor of a cellular membrane (i.e. anti-Iigand). Said cell membrane surface receptor is a molecule or structure which can bind said ligand with high amity and preferably with high specificity. Said cell membrane surface receptor is preferably specific for a particular cell, i.e. it is found predominantly in one type of cells rather than in another type of cells (e.g.
galactosyl residues to target the asialoglycoprotein receptor on the surface of hepatocytes). The cell membrane surface receptor facilitates cell targeting and internalization into the target cell of the Iigand (i.e. the peptide involved in cell-specific targeting) and attached molecules (i.e. the peptide of the invention).
A large number of ligand moieties /anti-ligands that may be used in the context of the present invention are widely described in the literature. Such a ligand moiety is capable of conferring to the peptide of the invention, the ability to bind to a given anti-ligand molecule or a class of anti-ligand molecules localized at the surface of at least one target cell. Suitable anti-ligand molecules include without limitation polypeptides selected ~0 from the group consisting of cell-specific markers, tissue-specific markers, cellular receptors, viral antigens, antigenic epitopes and tumor-associated markers. Anti-ligand molecules may moreover consist of or comprise one or more sugar, lipid, glycolipid or antibody molecules. According to the invention, a ligand moiety may be for example a lipid, a glycolipid, a hormone, a sugar, a polymer (e.g. PEG, polylysine, PEI), an oligonucleotide, a vitamin, an antigen, all or part of a lectin, all or part of a polypeptide such as for example JTSI (WO
94!40958), an antibody or a fray vent thereof, or a combination thereof.
Preferably, the ligand moiety used in the present invention is a peptide or polypeptide having a minimal length of 7 amino acids. It is either a native polypeptide or a polypeptide derived from a native polypeptide.
"Derived" means containing (a) one or more modifications with respect to the native sequence (e.g. addition, deletion and/or substitution of one or more residues), (b) amino acid analogs, including not naturally occurring amino acids or (c) substituted linkages or (d) other modifications known in the art. The polypeptides serving as ligand moiety encompass variant and chimeric polypeptides obtained by fusing sequences of various origins, such as for example a humanized antibody which combines the variable region of a mouse antibody and the constant region of a human immunoglobulin. In addition, such polypeptides may have a linear or cyclized ' structure (e.g. by flanking at both extremities a polypeptide Iigand by cysteine residues). Additionally, the polypeptide in use as Iigand moiety may include modifications of its original structure by way of substitution or addition of chemical moieties (e.g. glycosylation, alkylation, acetylation, amidation, phosphorylation, addition of sulfllydryl groups and the like). The invention further contemplates modifications that render the ligand moiety detectable. For this purpose, modifications with a detectable moiety can be envisaged (i.e. a scintigraphic, radioactive, or fluorescent moiety, or a dye label and the like). Suitable radioactive labels include but are not limited to Tc99"',11'-3 and In'1~. Such detectable labels may be attached to the ligand moiety by any conventional techniques and may be used for diagnostic purposes (e.g. imaging of tumoral cells).
In one special embodiment, the anti-ligand molecule is an antigen (e.g. a target cell-specific antigen, a disease-specific antigen, an antigen specifically expressed on the surface of engineered target cells) and the ligand moiety is an antibody, a fragment or a minimal recognition unit thereof ( i.e. a fragment still presenting an antigenic specificity) such as those described in detail in immunology manuals (see for example Immunology, third edition 1993, Roitt, Brostoff and Male, ed Gambli, Mosby). The ligand moiety may be a monoclonal antibody. Monoclonal antibodies which will bind to many of these antigens we already known but in any case, with today's techniques in relation to monoclonal antibody technology, antibodies may be prepared to most antigens. The ligand moiety may be a part of an antibody (for example a Fab fragment) or a synthetic antibody fragment (for example, ScFv).
Suitable monoclonal antibodies to selected antigens may be prepared by known techniques, fox example those disclosed in "Monoclonal Antibodies: A manual of techniques", H. Zola (CRC Press, 1988) and in "Monoclonal Hybridoma Antibodies: Techniques and Applications", J. G. R.
Hurrell (CRC Press, 1982).
Suitably prepared non-human antibodies may be "humanized" in known ways, for example by inserting the CDR
regions of mouse antibodies into the framework of human antibodies.
Additionally, as the variable heavy (VH) and variable light (VL) domains of the antibody are involved in antigen recognition, variable domains of rodent origin may be fused to constant domains of human origin such that the resultant antibody retains the antigenic specificity of the rodent parental antibody (Morrison et al (1984) Proc. Natl.
Acad. Sci. USA 81, 6851-6855).
Antigenic specificity of antibodies is conferred by variable domains including Fab-like molecules (Better et al (1988) Science 240, 1041); Fv molecules (Skerra et al (1988) Science 240, 1038); ScFv molecules where the VH and VL partner domains are linked via a flexible oligopeptide (Bird et al (1988) Science 242, 423;
Huston et al (1988) Proc. Natl. Acad. Sci. USA 85, 5879) and dAbs comprising isolated V domains (Ward et al (1989) Nature 341, 544). A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) Nature 349, 293-299.
In one special embodiment, the anti-ligand molecule is an antigen (e.g. a target cell-specific antigen, a disease-specific antigen, an antigen specifically expressed on the surface of engineered target cells) and the ligand moiety is an antibody, a fragment or a minimal recognition unit thereof ( i.e. a fragment still presenting an antigenic specificity) such as those described in detail in immunology manuals (see for example Immunology, third edition 1993, Roitt, Brostoff and Male, ed Gambli, Mosby). The ligand moiety may be a monoclonal antibody. Monoclonal antibodies which will bind to many of these antigens we already known but in any case, with today's techniques in relation to monoclonal antibody technology, antibodies may be prepared to most antigens. The ligand moiety may be a part of an antibody (for example a Fab fragment) or a synthetic antibody fragment (for example, ScFv).
Suitable monoclonal antibodies to selected antigens may be prepared by known techniques, fox example those disclosed in "Monoclonal Antibodies: A manual of techniques", H. Zola (CRC Press, 1988) and in "Monoclonal Hybridoma Antibodies: Techniques and Applications", J. G. R.
Hurrell (CRC Press, 1982).
Suitably prepared non-human antibodies may be "humanized" in known ways, for example by inserting the CDR
regions of mouse antibodies into the framework of human antibodies.
Additionally, as the variable heavy (VH) and variable light (VL) domains of the antibody are involved in antigen recognition, variable domains of rodent origin may be fused to constant domains of human origin such that the resultant antibody retains the antigenic specificity of the rodent parental antibody (Morrison et al (1984) Proc. Natl.
Acad. Sci. USA 81, 6851-6855).
Antigenic specificity of antibodies is conferred by variable domains including Fab-like molecules (Better et al (1988) Science 240, 1041); Fv molecules (Skerra et al (1988) Science 240, 1038); ScFv molecules where the VH and VL partner domains are linked via a flexible oligopeptide (Bird et al (1988) Science 242, 423;
Huston et al (1988) Proc. Natl. Acad. Sci. USA 85, 5879) and dAbs comprising isolated V domains (Ward et al (1989) Nature 341, 544). A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) Nature 349, 293-299.
According to an advantageous embodiment, the ligand moiety is selected among antibody fragments, rather than whole antibodies. Effective functions of whole antibodies, such as complement binding, are removed.
ScFv and dAb antibody fragments may be expressed as a fusion with one or more other polypeptides. Minimal recognition units may be derived from the sequence of one or more of the complementary-determining regions (CDR) of the Fv fragment. Whole antibodies, and F(ab')2 fragments are "bivalent". By "bivalent" we mean that said antibodies and F(ab') 2 fragments have two antigen binding sites. In contrast, Fab, Fv, ScFv, dAb fragments and minimal recognition units are monovalent, having only one antigen binding sites:
In a further embodiment the ligand moiety is at least part of a specific moiety implicated in natural cell-surface receptor binding. Of course, said natural receptors (e.g. hormone receptors) may also be target oell-specific antigens and may be recognized by Iigand moieties which have the property of a monoclonal antibody, a ScFv, a dAb or a minimal recognition unit.
In a preferred embodiment, the ligand moiety allows to target a virally infected cell and is capable of recognizing and binding to a viral component (e.g. envelope glycoprotein) or capable of interfering with the virus biology (e.g. entry or replication). For example, the targeting of an HIV (Human Immunodeficiency Virus) infected cell can be performed with a ligand moiety specific for an epitope of the HIV envelope, such as a Iigand moiety derived from the 2F5 antibody (Buchacher et al., 1992, Vaccines 92, 191-195) recognizing a highly conserved epitope of the transmembrane glycoprotein gp41 or with a ligand moiety interfering with HIV
attachment to its cellular receptor CD4 (e.g. the extraceIIuIar domain of the CD4 molecule).
In another preferred embodiment, the ligand moiety allows to target a tumor cell and is capable of recognizing and binding to a molecule related to the tumor status, such as a tumor-specific antigen, a cellular proteiil differentially or over-expressed in tumor cells or a gene product of a cancer-associated virus.
Examples of tumor-specific antigens include but are not limited to MUC-1 related to breast cancer (Hareuveni et al., 1990, Eur. J, Biochem 189, 475-486), the products encoded by the mutated BRCA1 and BRCA2 genes related to breast and ovarian cancers (Miki et al., 1994, Science 226, 66-71 ; Futreal et al., 1994, Science 226, 120-122 ; Wooster et al., 1995, Nature 378, 789-792), APC related to colon cancer (Polakis, 1995, Curr. Opin. Genet. Dev. S, 66-71 ), prostate specific antigen (PSA) related to prostate cancer, (Stamey et al., 1987, New England J. Med. 317, 909), carcinoma embryonic antigen (CEA) related to colon cancers (Schrewe et al., 1990, Mol: Cell. Biol. 10, 2738-2748), tyrosinase related to melanomas (Vile et al., 1993, Cancer Res. 53, 3860 X864), receptor for melanocyte-stimulating hormone (MSH) which is expressed in high number in melanoma cells, ErbB-2 related to breast and pancreas cancers (Harris et al., 1994, Gene Therapy 1, 170-175), and alpha-foetoprotein related to liver cancers (Lanai et al., 1997, Caneer Res. 57, 461-465).
A special Iigand moiety in use in the present invention is a fragment of an antibody capable of recognizing and binding to the MUC-1 antigen and thus targeting the MUC-I
positive tumor cells. A more prefen-ed ligand moiety is the scFv fragment of the SM3 monoclonal antibody which recognizes the tandem repeat region of the MUC-1 antigen (Burshell et al., 1987, Cancer Res. 47, 5476-5482 ; Girling et al., 1989, Int J.
Cancer 43, 1072-1076 ; Dol:urno et al., 1998, J. Mol. Biol. 284, 713-728).
ScFv and dAb antibody fragments may be expressed as a fusion with one or more other polypeptides. Minimal recognition units may be derived from the sequence of one or more of the complementary-determining regions (CDR) of the Fv fragment. Whole antibodies, and F(ab')2 fragments are "bivalent". By "bivalent" we mean that said antibodies and F(ab') 2 fragments have two antigen binding sites. In contrast, Fab, Fv, ScFv, dAb fragments and minimal recognition units are monovalent, having only one antigen binding sites:
In a further embodiment the ligand moiety is at least part of a specific moiety implicated in natural cell-surface receptor binding. Of course, said natural receptors (e.g. hormone receptors) may also be target oell-specific antigens and may be recognized by Iigand moieties which have the property of a monoclonal antibody, a ScFv, a dAb or a minimal recognition unit.
In a preferred embodiment, the ligand moiety allows to target a virally infected cell and is capable of recognizing and binding to a viral component (e.g. envelope glycoprotein) or capable of interfering with the virus biology (e.g. entry or replication). For example, the targeting of an HIV (Human Immunodeficiency Virus) infected cell can be performed with a ligand moiety specific for an epitope of the HIV envelope, such as a Iigand moiety derived from the 2F5 antibody (Buchacher et al., 1992, Vaccines 92, 191-195) recognizing a highly conserved epitope of the transmembrane glycoprotein gp41 or with a ligand moiety interfering with HIV
attachment to its cellular receptor CD4 (e.g. the extraceIIuIar domain of the CD4 molecule).
In another preferred embodiment, the ligand moiety allows to target a tumor cell and is capable of recognizing and binding to a molecule related to the tumor status, such as a tumor-specific antigen, a cellular proteiil differentially or over-expressed in tumor cells or a gene product of a cancer-associated virus.
Examples of tumor-specific antigens include but are not limited to MUC-1 related to breast cancer (Hareuveni et al., 1990, Eur. J, Biochem 189, 475-486), the products encoded by the mutated BRCA1 and BRCA2 genes related to breast and ovarian cancers (Miki et al., 1994, Science 226, 66-71 ; Futreal et al., 1994, Science 226, 120-122 ; Wooster et al., 1995, Nature 378, 789-792), APC related to colon cancer (Polakis, 1995, Curr. Opin. Genet. Dev. S, 66-71 ), prostate specific antigen (PSA) related to prostate cancer, (Stamey et al., 1987, New England J. Med. 317, 909), carcinoma embryonic antigen (CEA) related to colon cancers (Schrewe et al., 1990, Mol: Cell. Biol. 10, 2738-2748), tyrosinase related to melanomas (Vile et al., 1993, Cancer Res. 53, 3860 X864), receptor for melanocyte-stimulating hormone (MSH) which is expressed in high number in melanoma cells, ErbB-2 related to breast and pancreas cancers (Harris et al., 1994, Gene Therapy 1, 170-175), and alpha-foetoprotein related to liver cancers (Lanai et al., 1997, Caneer Res. 57, 461-465).
A special Iigand moiety in use in the present invention is a fragment of an antibody capable of recognizing and binding to the MUC-1 antigen and thus targeting the MUC-I
positive tumor cells. A more prefen-ed ligand moiety is the scFv fragment of the SM3 monoclonal antibody which recognizes the tandem repeat region of the MUC-1 antigen (Burshell et al., 1987, Cancer Res. 47, 5476-5482 ; Girling et al., 1989, Int J.
Cancer 43, 1072-1076 ; Dol:urno et al., 1998, J. Mol. Biol. 284, 713-728).
Examples of cellular proteins differentially or overexpressed in tumor cells include but are not limited to the receptor for interleukin 2 (IL-2) overexpressed in some lymphoid tumors, GRP (Gastrin Release Peptide) overexpressed in lung carcinoma cells, pancreas, prostate and stomach tumors (Michael et al., 1995, Gene Therapy 2, 660-668), TNF (Ttunor Necrosis Factor) receptor, epidermal growth factor receptors, Fas receptor, CD40 receptor, CD30 receptor, CD27 receptor, OX-40, dv integrins (Brooks et al., 1994, Science 264, 569) and receptors for certain angiogenic growth factors (Hanahan, 1997, Science 277, 48). Based on these indications, it is within the scope of those skilled in the art to define an appropriate ligand moiety capable of recognizing and binding to such proteins. To illustrate, IL-2. is a suitable ligand moiety to bind to IL-2 receptor.
Suitable gene products of cancer-associated viruses include but are not limited to human papilloma IO virus (HPV) E6 and E7 early polypeptides as well as L1 and L2 late polypeptides (EP 0 462 187, US 5,744,133 and WO98/04705) that are expressed in cervical cancer and EBNA-1 antigen of Epstein-Barr virus (EBV) associated with Burkitt's lymphomas (Evens et al., 1997, Gene Therapy 4, 264-267).
In still another embodiment, the ligand moiety allows to target tissue-specific molecules. For example, Iigand moieties suitable for targeting Liver cells include but are not limited to those derived from ApoB
(apolipoprotein) capable of binding to the LDL receptor, alpha-2-macroglobulin capable of binding to the LPR
receptor, alpha-I acid glycoprotein capable of binding to the asialoglycoprotein receptor and transferrin capable of binding to the transferrin receptor. A l.igand moiety for targeting activated endothelial cells may be derived from the sialyl-Lewis-X antigen (capable of binding to ELAM-1), from VLA-4 (capable of binding to the VCAM-1 receptor) or from LFA-1 (capable of binding to the ICAM-1 receptor). A
ligand moiety derived from CD34 is useful to target hematopo3etic progenitor cells through binding to the CD34 receptor. A ligand moiety derived from ICAM-1 is more intended to target lymphocytes through binding to the LFA-1 receptor. Finally, the targeting of T-helper cells may use a ligand moiety derived from HIV gp-120 or a class II MHC antigen capable of binding to the CD4 receptor.
By "target cells" , we refer to the cells that the peptide of the invention can selectively target or the type of cell where transfer of the substance of interest is desirable. Depending on the nature of the ligand moiety and/or of the anti-ligand molecule, "target cells" may designate a unique type of cell or a group of different types of cells having as a common feature on their surface an anti-Iigand molecules) recognized by ligand moiety(s) present in the complex of the invention. For the purpose of the invention, a target cell is any mammalian cell (preferably human cell) which can be targeted with a complex according to the present invention having a suitable ligand moiety. The term "to target" refers to addressing a certain type of cells or a group of types of cells for gene transfer in favour of the remaining part of the totality of cells being contacted with the composition of the present invention. The target cell may be a primary cell, a transformed cell or a tumor cell. Suitable target cells include but are not limited to hematopoietic cells (totipotent, stem cells, leutcocytes, lymphocytes, monocytes, macrophages, APC, dendritic cells , non-human cells and the like), muscle cells (satellite, myocytes, myoblasts, skeletal or smooth muscle cells, heart cells), pulmonary cells , tracheal cells, hepatic cells, epithelial cells, endothelial cells or fibroblasts.
Suitable gene products of cancer-associated viruses include but are not limited to human papilloma IO virus (HPV) E6 and E7 early polypeptides as well as L1 and L2 late polypeptides (EP 0 462 187, US 5,744,133 and WO98/04705) that are expressed in cervical cancer and EBNA-1 antigen of Epstein-Barr virus (EBV) associated with Burkitt's lymphomas (Evens et al., 1997, Gene Therapy 4, 264-267).
In still another embodiment, the ligand moiety allows to target tissue-specific molecules. For example, Iigand moieties suitable for targeting Liver cells include but are not limited to those derived from ApoB
(apolipoprotein) capable of binding to the LDL receptor, alpha-2-macroglobulin capable of binding to the LPR
receptor, alpha-I acid glycoprotein capable of binding to the asialoglycoprotein receptor and transferrin capable of binding to the transferrin receptor. A l.igand moiety for targeting activated endothelial cells may be derived from the sialyl-Lewis-X antigen (capable of binding to ELAM-1), from VLA-4 (capable of binding to the VCAM-1 receptor) or from LFA-1 (capable of binding to the ICAM-1 receptor). A
ligand moiety derived from CD34 is useful to target hematopo3etic progenitor cells through binding to the CD34 receptor. A ligand moiety derived from ICAM-1 is more intended to target lymphocytes through binding to the LFA-1 receptor. Finally, the targeting of T-helper cells may use a ligand moiety derived from HIV gp-120 or a class II MHC antigen capable of binding to the CD4 receptor.
By "target cells" , we refer to the cells that the peptide of the invention can selectively target or the type of cell where transfer of the substance of interest is desirable. Depending on the nature of the ligand moiety and/or of the anti-ligand molecule, "target cells" may designate a unique type of cell or a group of different types of cells having as a common feature on their surface an anti-Iigand molecules) recognized by ligand moiety(s) present in the complex of the invention. For the purpose of the invention, a target cell is any mammalian cell (preferably human cell) which can be targeted with a complex according to the present invention having a suitable ligand moiety. The term "to target" refers to addressing a certain type of cells or a group of types of cells for gene transfer in favour of the remaining part of the totality of cells being contacted with the composition of the present invention. The target cell may be a primary cell, a transformed cell or a tumor cell. Suitable target cells include but are not limited to hematopoietic cells (totipotent, stem cells, leutcocytes, lymphocytes, monocytes, macrophages, APC, dendritic cells , non-human cells and the like), muscle cells (satellite, myocytes, myoblasts, skeletal or smooth muscle cells, heart cells), pulmonary cells , tracheal cells, hepatic cells, epithelial cells, endothelial cells or fibroblasts.
The term "ligand capable of nuclear targeting" refers to a particular ligand which is capable of binding to a nuclear receptor (nuclear anti-ligand). Said nuclear receptor is a molecule or structure localized in or/and on the nuclear membrane which can bind to said Iigand, thereby facilitating intracellular transport of the peptide of the present invention towards the nucleus and its internalization into the nucleus. Examples of such a ligand involved in nuclear targeting are the nuclear signal sequences derived from the T-antigen of the SV40 virus (Lanford and Butel, 1984, Cell 37, 801-813) and from the EBNA-1 protein of the Epstein Barr virus (Ambinder et al., 1991, J. Virol. 65, 1466-1478).
The invention also encompasses a composition, preferably for transferring a substance of interest into a cell, wherein. said composition comprises at least one peptide as defined herein above and at least one substance of interest. When said peptide is ppTG2l, then the composition has a pH value preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably of about 8. Preferably said substance of interest is nucleic acids and said composition is particularly useful for the delivery of nucleic acids to cells or tissues of a subject in connection with gene therapy methods but are not limited to such uses. The term "gene therapy method" is preferably understood as a method for the introduction of a nucleic acids into cells either ifT vivo or by introduction into cells in vitro followed by re-implantation into a subject. "Gene therapy" in particular concerns the case where the gene product is expressed in a tissue as well as the case where the gene product is excreted, especially into the blood stream. In a preferred embodiment the amount of peptide in the compositions prepared according to the use of the present invention ranges between about 0.05 micrograms to about 100 micrograms, preferably between about 0.1 micrograms to about 50 micrograms, and more preferably between about 0.5 micrograms and about 15 micrograms. These concentration and pH conditions may also be adapted by those skilled in the art. In general, the concentration of the nucleic acid in the composition is from about 0.01 mM to about 1 M, and in a preferred embodiment is from about 0.1 mM to 10 mM.
This composition can be formulated in various forms, e.g. in solid, liquid, powder, aqueous, lyophilized form. In a preferred embodiment, this composition further comprises a pharmaceutically acceptable carrier, allowing its use in a method for the therapeutic treatment of humans or animals. In this particular case, the carrier is preferably a pharmaceutically suitable injectable carrier or diluent (for examples, see Remington's Pharmaceutical Sciences, 1611' ed. 1980, Maclc Publishing Co). Such a carrier or diluent is pharmaceutically acceptable, i.e. is non-toxic to a recipient at the dosage and concentration employed. It is preferably isotonic, hypotonic or wealdy hypertonic and has a relatively low ionic strength, such as provided by a sucrose solution.
Furthermore, it may contain any relevant solvents, aqueous or partly aqueous liquid carriers comprising sterile, pyrogen-free water, dispersion media, coatings, and equivalents, or diluents (e.g. Tris-HCI, acetate, phosphate), emulsifiers, solubilizers or adjuvants. The pH of the pharmaceutical preparation is suitably adjusted and buffered in order to be useful in in vivo applications. In the special embodiment where the composition is comprising the peptide ppTG2l of the invention, the pH of the composition is adjusted and buffered in order to be over pH 6, and preferably to be pH 8. It may be prepared either as a liquid solution or in a solid form (e.g. lyophilized) which can be suspended in a solution prior to administration. Representative examples of carriers or diluents for an injectable composition include water, isotonic saline solutions which are bufFered at desirable pH (such as phosphate buffered saline or Tris buffered saline), mannitol, dextrose, glycerol and ethanol, as well . as polypeptides or proteins such as human serum albumin. For example, such composition comprise 10 mg/ml mannitol, 1 mg/ml HSA, 20 mM Tris pH 7.2 and 150 mM NaCl.
The invention more particularly relates to a composition as described above which further comprises at 5 least one adjuvant capable of improving the transfection capacity of said substane of interest. Adjuvants may be selected from the group consisting of a chloroquine, profit polar compounds, such as propylene glycol, polyethylene glycol, glycerol, EtOH, 1-methyl L -2-pyrrolidone or their derivatives, or aprotic polar compounds such as dimethylsulfoxide (DMSO), diethylsulfoxide, di-n-propylsulfoxide, dimethylsulfone, sulfolane, dimethylformamide, dunethylacetamide, tetramethylurea, acetonitrile or their derivatives. These compounds are 10 added in conditions respecting pH limitations mentioned above. , The composition of the present invention can be administered into a vertebrate tissue. This administration may be carried out by an intradermal, subderrnal, intravenous, intramuscular, intranasal, intracerebral, intratracheal, intraarterial, intraperitoneal, intravesical, intrapleural, intracoronary or intratumoral injection, by means of a syringe or other devices. Transdermal administration is also contemplated, such as 15 inhalation, aerosol routes, instillation or topical application.
Intratumoral administration is preferred. When composition prepared according to the invention is for the transfer into muscle cells, more preferably, by intramuscular injection routes or intravascular route, the administration method can be advantageously improved by combining injection in a afferent and/or efferent vessel with increases of permeability of said vessel. In a special embodiment, said increases is obtained by increasing hydrostatic pressure ,(i.e. by obstructing outflow and/or inflow), osmotic pressure (with hypertonic solution) and/or introducing a biologically-active molecule (e.g. histamine into administered composition) (see WO 98/58542).
"Vertebrate" as used herein is intended to have the same meaning as commonly understood by one of ordinary skill in the art. Particularly, "vertebrate" encompasses mammals, and more particularly humans.
Applied to in vivo gene therapy, this invention allows repeated administration to the patient without any risk of the administered preparation to induce a significant immune reaction.
Administration may be by single or repeated dose, once or several times after a certain period of time. Repeated administration allows a reduction of the dose of active substance, in particular DNA, administered at a single time. The route of administration and the appropriate dose varies depending on several parameters, for example the individual patient, the disease being treated, or the nucleic acid being transfen-ed. According to the present invention, the peptide of the present invention can be administered independently from a second administration consisting in administration of a composition containing at least one nucleic acid into the same target tissue.
According to the present invention, the first administration can be done prior to, concurrently with or subsequent to the second administration, and vice-versa. The composition administration and second administration can be performed by different or identical delivery routes (systemic delivery and targeted delivery, or targeted deliveries for example). In a preferred embodiment, each should be done into the same target tissue and most preferably by injection.
The present invention also relates to a process for transferring a substance of interest into cells wherein said process comprises contacting said cells with at least one composition according to the invention. This process may be applied by direct administration of said composition to cells of the animal in vivo, or by i~ vitro treatment of cells which were recovered from the animal and then re-introduced into the animal body (ex vivo process). In in vitz-o applications, cells cultivated on an appropriate medium are placed in contact ,with a suspension containing a composition of the invention. After an incubation time, the cells are washed and recovered. Introduction of the active substance can be verified (eventually after lysis of the cells) by any appropriate method.
In the case of in vivo treatment according to the invention, in order to improve the transfection rate, the patient may undergo a macrophage depletion treatment prior to administration of the composition as described above. Such a technique is described in the literature (refer particularly to Van Rooijen et al., 1997, TibTech, 15, .
178-184).
The invention further concerns a process for transferring a substance of interest into cells wherein said process comprises contacting said cells with a composition comprising at least one peptide, as defined herein above, before, simultaneously or subsequently to contacting it with the nucleic acid and wherein said.peptide. is at a pH
preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably about 8, in said composition, when a peptide is used which comprises or consists of the amino acid sequence shown in SEQ ID N0:7.
In another preferred embodiment, the invention provides the use of a peptide as defined herein above for improving the transfer of a substance of interest into a cell, wherein said peptide is at a pH preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably about 8, in said composition, when a peptide is used which comprises or consists of the amino acid sequence shown in SEQ ID N0:7. Advantageously, said substance of interest is nucleic acid.
Said improvement of transfer of substances of interest into cells can be implemented either izz vitro (or ee~ vivo, see above) or in vivo.
" Treatment" as used herein refers to prophylaxis and therapy. It concerns both the treatment of humans and animals. A " therapeutically effective amount of a peptide or a composition " is a dose sufficient for the alleviation of one or more symptoms noiznally associated with the disease desired to be treated. A method according to the invention is preferentially intended for the treatment of the diseases listed above.
The invention further concerns the use of a peptide as defined above for the preparation of a composition for curative, preventive or vaccine treatment of man or animals, preferably mammals, and more specifically for gene therapy use.
In another aspect the present invention also relates to a process for transfer -ing a substance of interest into cells wherein said process comprises contacting said cells with a composition prepared according to the use of the invention before, simultaneously or after contacting them with the substance. This process may be applied by direct administration of said composition to cells of the animal izz vivo.
According to the practice of the invention, targeted "cells" and "i~z vivo administration route" are defined as above described. "Targeted cells"
are those where polynucleotide uptalce and expression occur ; they are not necessarily located into the injected tissue (site of administration). In a special embodiment, administration is done into vessel and polynucleotide transfection or infection occurs at a proximal or distal site, for example in organ or tissue, such as lung, muscle, liver, kidney, heart,....
According to another preferred embodiment, tumoral tissues are used as sites for the delivery and expression of a substance of interest, especially nucleic acid.
These and other embodiments are disclosed or are obvious from and encompassed by the description and examples of the present invention. Further literature concerning any one of the methods, uses and compounds to be employed in accordance with the present invention may be retrieved from public libraries, using for example electronic devices. For example the public database "Medline" may be utilized which is available on Internet, e.g. under hitp://www.ncbi.nlm.nih.gov/PubMed/medline.html. Further databases and addresses, such as http://www.ncbi.nlm.nih.gov, http://www.infobiogen.fr, http://www.fmi.ch/biology/research tools.html, http://www.tigr.org, are known to the person ,skilled in the art and can also be obtained using, e.g., http://www.lycos.com. An overviewof patent information in biotechnology and a survey of relevant sources of patent information useful for retrospective searching and for current awareness is given in Berks, TIBTECH 12 (1994), 352-364.
The methods, compositions and uses of the invention can be applied in the treatment of all kinds of diseases the treatment and/or diagnostic of which is related to or dependent on the transfer of nucleic acids in cells. The compositions, and uses of the present invention may be desirably employed in humans, although animal treatment is also encompassed by the uses described herein.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced different from what is specifically described herein.
The disclosure of all patents, publications published patent applications, and database entries cited in the present application are hereby incorporated by reference in their entirety to the same extend as if each such individual patent, publication and database entry were specifically and individually indicated to be incorporated by reference and were set forth in its entirety herein.
LEGENDS
Figure 1: Liposome leakage assay. Increasing amounts of the peptides JTS1, ppTGl, JTS1-K13, lfALA
and ppTG20 are indicated. Figure 1A shows the results of the liposome leakage assay carried out at pHS. Figure 1 B summarizes the results obtained at pH7.
Figure 2: Transfection study in vitro - comparison of ppTGl, PEI and Lipofectin.293-EBNA cells were transfected with 0.5 ~.g, 0.1 ~.g, 0.05 pg or 0.01 p.g of the plasmid pTG11056 formulated with Lipofectin, PEI or ppTGl at the indicated charge ratio (+/-). Mock represents transfection with buffer.
The invention also encompasses a composition, preferably for transferring a substance of interest into a cell, wherein. said composition comprises at least one peptide as defined herein above and at least one substance of interest. When said peptide is ppTG2l, then the composition has a pH value preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably of about 8. Preferably said substance of interest is nucleic acids and said composition is particularly useful for the delivery of nucleic acids to cells or tissues of a subject in connection with gene therapy methods but are not limited to such uses. The term "gene therapy method" is preferably understood as a method for the introduction of a nucleic acids into cells either ifT vivo or by introduction into cells in vitro followed by re-implantation into a subject. "Gene therapy" in particular concerns the case where the gene product is expressed in a tissue as well as the case where the gene product is excreted, especially into the blood stream. In a preferred embodiment the amount of peptide in the compositions prepared according to the use of the present invention ranges between about 0.05 micrograms to about 100 micrograms, preferably between about 0.1 micrograms to about 50 micrograms, and more preferably between about 0.5 micrograms and about 15 micrograms. These concentration and pH conditions may also be adapted by those skilled in the art. In general, the concentration of the nucleic acid in the composition is from about 0.01 mM to about 1 M, and in a preferred embodiment is from about 0.1 mM to 10 mM.
This composition can be formulated in various forms, e.g. in solid, liquid, powder, aqueous, lyophilized form. In a preferred embodiment, this composition further comprises a pharmaceutically acceptable carrier, allowing its use in a method for the therapeutic treatment of humans or animals. In this particular case, the carrier is preferably a pharmaceutically suitable injectable carrier or diluent (for examples, see Remington's Pharmaceutical Sciences, 1611' ed. 1980, Maclc Publishing Co). Such a carrier or diluent is pharmaceutically acceptable, i.e. is non-toxic to a recipient at the dosage and concentration employed. It is preferably isotonic, hypotonic or wealdy hypertonic and has a relatively low ionic strength, such as provided by a sucrose solution.
Furthermore, it may contain any relevant solvents, aqueous or partly aqueous liquid carriers comprising sterile, pyrogen-free water, dispersion media, coatings, and equivalents, or diluents (e.g. Tris-HCI, acetate, phosphate), emulsifiers, solubilizers or adjuvants. The pH of the pharmaceutical preparation is suitably adjusted and buffered in order to be useful in in vivo applications. In the special embodiment where the composition is comprising the peptide ppTG2l of the invention, the pH of the composition is adjusted and buffered in order to be over pH 6, and preferably to be pH 8. It may be prepared either as a liquid solution or in a solid form (e.g. lyophilized) which can be suspended in a solution prior to administration. Representative examples of carriers or diluents for an injectable composition include water, isotonic saline solutions which are bufFered at desirable pH (such as phosphate buffered saline or Tris buffered saline), mannitol, dextrose, glycerol and ethanol, as well . as polypeptides or proteins such as human serum albumin. For example, such composition comprise 10 mg/ml mannitol, 1 mg/ml HSA, 20 mM Tris pH 7.2 and 150 mM NaCl.
The invention more particularly relates to a composition as described above which further comprises at 5 least one adjuvant capable of improving the transfection capacity of said substane of interest. Adjuvants may be selected from the group consisting of a chloroquine, profit polar compounds, such as propylene glycol, polyethylene glycol, glycerol, EtOH, 1-methyl L -2-pyrrolidone or their derivatives, or aprotic polar compounds such as dimethylsulfoxide (DMSO), diethylsulfoxide, di-n-propylsulfoxide, dimethylsulfone, sulfolane, dimethylformamide, dunethylacetamide, tetramethylurea, acetonitrile or their derivatives. These compounds are 10 added in conditions respecting pH limitations mentioned above. , The composition of the present invention can be administered into a vertebrate tissue. This administration may be carried out by an intradermal, subderrnal, intravenous, intramuscular, intranasal, intracerebral, intratracheal, intraarterial, intraperitoneal, intravesical, intrapleural, intracoronary or intratumoral injection, by means of a syringe or other devices. Transdermal administration is also contemplated, such as 15 inhalation, aerosol routes, instillation or topical application.
Intratumoral administration is preferred. When composition prepared according to the invention is for the transfer into muscle cells, more preferably, by intramuscular injection routes or intravascular route, the administration method can be advantageously improved by combining injection in a afferent and/or efferent vessel with increases of permeability of said vessel. In a special embodiment, said increases is obtained by increasing hydrostatic pressure ,(i.e. by obstructing outflow and/or inflow), osmotic pressure (with hypertonic solution) and/or introducing a biologically-active molecule (e.g. histamine into administered composition) (see WO 98/58542).
"Vertebrate" as used herein is intended to have the same meaning as commonly understood by one of ordinary skill in the art. Particularly, "vertebrate" encompasses mammals, and more particularly humans.
Applied to in vivo gene therapy, this invention allows repeated administration to the patient without any risk of the administered preparation to induce a significant immune reaction.
Administration may be by single or repeated dose, once or several times after a certain period of time. Repeated administration allows a reduction of the dose of active substance, in particular DNA, administered at a single time. The route of administration and the appropriate dose varies depending on several parameters, for example the individual patient, the disease being treated, or the nucleic acid being transfen-ed. According to the present invention, the peptide of the present invention can be administered independently from a second administration consisting in administration of a composition containing at least one nucleic acid into the same target tissue.
According to the present invention, the first administration can be done prior to, concurrently with or subsequent to the second administration, and vice-versa. The composition administration and second administration can be performed by different or identical delivery routes (systemic delivery and targeted delivery, or targeted deliveries for example). In a preferred embodiment, each should be done into the same target tissue and most preferably by injection.
The present invention also relates to a process for transferring a substance of interest into cells wherein said process comprises contacting said cells with at least one composition according to the invention. This process may be applied by direct administration of said composition to cells of the animal in vivo, or by i~ vitro treatment of cells which were recovered from the animal and then re-introduced into the animal body (ex vivo process). In in vitz-o applications, cells cultivated on an appropriate medium are placed in contact ,with a suspension containing a composition of the invention. After an incubation time, the cells are washed and recovered. Introduction of the active substance can be verified (eventually after lysis of the cells) by any appropriate method.
In the case of in vivo treatment according to the invention, in order to improve the transfection rate, the patient may undergo a macrophage depletion treatment prior to administration of the composition as described above. Such a technique is described in the literature (refer particularly to Van Rooijen et al., 1997, TibTech, 15, .
178-184).
The invention further concerns a process for transferring a substance of interest into cells wherein said process comprises contacting said cells with a composition comprising at least one peptide, as defined herein above, before, simultaneously or subsequently to contacting it with the nucleic acid and wherein said.peptide. is at a pH
preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably about 8, in said composition, when a peptide is used which comprises or consists of the amino acid sequence shown in SEQ ID N0:7.
In another preferred embodiment, the invention provides the use of a peptide as defined herein above for improving the transfer of a substance of interest into a cell, wherein said peptide is at a pH preferably higher than 6, more preferably higher than 6.5, still preferably higher than 7, even more preferably higher than 7.5 and most preferably about 8, in said composition, when a peptide is used which comprises or consists of the amino acid sequence shown in SEQ ID N0:7. Advantageously, said substance of interest is nucleic acid.
Said improvement of transfer of substances of interest into cells can be implemented either izz vitro (or ee~ vivo, see above) or in vivo.
" Treatment" as used herein refers to prophylaxis and therapy. It concerns both the treatment of humans and animals. A " therapeutically effective amount of a peptide or a composition " is a dose sufficient for the alleviation of one or more symptoms noiznally associated with the disease desired to be treated. A method according to the invention is preferentially intended for the treatment of the diseases listed above.
The invention further concerns the use of a peptide as defined above for the preparation of a composition for curative, preventive or vaccine treatment of man or animals, preferably mammals, and more specifically for gene therapy use.
In another aspect the present invention also relates to a process for transfer -ing a substance of interest into cells wherein said process comprises contacting said cells with a composition prepared according to the use of the invention before, simultaneously or after contacting them with the substance. This process may be applied by direct administration of said composition to cells of the animal izz vivo.
According to the practice of the invention, targeted "cells" and "i~z vivo administration route" are defined as above described. "Targeted cells"
are those where polynucleotide uptalce and expression occur ; they are not necessarily located into the injected tissue (site of administration). In a special embodiment, administration is done into vessel and polynucleotide transfection or infection occurs at a proximal or distal site, for example in organ or tissue, such as lung, muscle, liver, kidney, heart,....
According to another preferred embodiment, tumoral tissues are used as sites for the delivery and expression of a substance of interest, especially nucleic acid.
These and other embodiments are disclosed or are obvious from and encompassed by the description and examples of the present invention. Further literature concerning any one of the methods, uses and compounds to be employed in accordance with the present invention may be retrieved from public libraries, using for example electronic devices. For example the public database "Medline" may be utilized which is available on Internet, e.g. under hitp://www.ncbi.nlm.nih.gov/PubMed/medline.html. Further databases and addresses, such as http://www.ncbi.nlm.nih.gov, http://www.infobiogen.fr, http://www.fmi.ch/biology/research tools.html, http://www.tigr.org, are known to the person ,skilled in the art and can also be obtained using, e.g., http://www.lycos.com. An overviewof patent information in biotechnology and a survey of relevant sources of patent information useful for retrospective searching and for current awareness is given in Berks, TIBTECH 12 (1994), 352-364.
The methods, compositions and uses of the invention can be applied in the treatment of all kinds of diseases the treatment and/or diagnostic of which is related to or dependent on the transfer of nucleic acids in cells. The compositions, and uses of the present invention may be desirably employed in humans, although animal treatment is also encompassed by the uses described herein.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced different from what is specifically described herein.
The disclosure of all patents, publications published patent applications, and database entries cited in the present application are hereby incorporated by reference in their entirety to the same extend as if each such individual patent, publication and database entry were specifically and individually indicated to be incorporated by reference and were set forth in its entirety herein.
LEGENDS
Figure 1: Liposome leakage assay. Increasing amounts of the peptides JTS1, ppTGl, JTS1-K13, lfALA
and ppTG20 are indicated. Figure 1A shows the results of the liposome leakage assay carried out at pHS. Figure 1 B summarizes the results obtained at pH7.
Figure 2: Transfection study in vitro - comparison of ppTGl, PEI and Lipofectin.293-EBNA cells were transfected with 0.5 ~.g, 0.1 ~.g, 0.05 pg or 0.01 p.g of the plasmid pTG11056 formulated with Lipofectin, PEI or ppTGl at the indicated charge ratio (+/-). Mock represents transfection with buffer.
Figure 3: Transfection study in vitro - comparison of ppTGl and Lipofectin;
effect of charge ratios. 7 x 104 HeLa cells were plated on 24 well plates. The ne~.rt day cells were transfected with 0.5 p.g-or 0.05 p.g pTG11236 formulated with Lipofectin or ppTGl at the indicated charge ratio.
Figure 4: Transfection study in vitro - comparison of ppTGl and JTS1-K13. 5 x 104 HeLa cells were transfected with 0.5 pg or 0.05 pg pTGl 1236 formulated with ppTGl or JTS1-K13 at the indicated charge ratio.
The calculations for JTS1-Kl3 are based on a net positive charge of+5 per molecule.
Figure 5: Transfection study in vitro - comparison of ppTGl and KALA. 5 x 104 HeLa or CHO
cells were transfected with 50 or 500 ng pTG11236 (= p) formulated with ppTGl or KALA at the indicated charge ratio. The Iuciferase activities determined 20h after transfection are indicated in Figure 5A (HeLa cells) and in Figure 5B (CHO cells).
Figure 6 : Transfection study in vitro -comparison of ppTGl with and without pcTG90/DOPE. HeLa or CHO cells were transfected with 500ng and 50ng of pTG11236, complexed with ppTGl or KALA. The charge ratio +/- varied from 1, 2, 3, 4, 7 to 10.
Figure 7: 1n vivo experiment. Five B6SJL mice per group were intravenously injected with 60 p.g or 30 pg pTG11236 (=p) formulated with ppTGl alone or with pcTG90 / DOPE 1:2 in the absence or the presence of 42 p.g ppTGl. The final charge ratio of each formulation is indicated.
Figure 8: Transfection efficiency-EfFect of JTS-1.
Figure 9: Liposome lealeage assay. Increasing amounts of the indicated peptides were incubated with POPC/Cholesterol (3:2 mol/mol) Iiposomes for 30 min ~at RT. Emitted fluorescence was plotted against peptide concentration. A) Comparison of ppTGl, JTS-1-K13, KALA and JTS-1 at pH5 and pH7. B) Liposome leakage activity with complexes of ppTGl and the plasmid pTG11236 at pH7. C) Comparison of ppTGl, ppTG20 and ppTG21 at pH7. D) Comparison of ppTGl, ppTG20-D, ppTG22, .ppTG23 and ppTG24 at pH7. E) Comparison of ppTGl with ppTG25, ppTG26 and ppTG27 at pH7. F) Comparison of ppTGl with the series of peptides ppTG28 to ppTG33 at pH7. G) Comparison of ppTGl and ppTG20 with PEG-ppTGl and PEG-ppTG20 at pH7.
Figure 10: Transfection studies in vitro. A) The human tumor cell lines WiDr, MDA-MB-4355, SW480 and LoVo were transfected with 500ng or 50ng of the luciferase expression plasmid pTG11236 using ppTG 1 at different charge ratios, PEI, Lipofectin and pcTG90/DOPE. The results of the luciferase assay at day I after transfection are indicated. B) to G) HeLa cells were transfected with 50 ng pTG11236 using the indicated peptides at increasing charge ratios [PIN]. B) ppTGl, ppTG20 and ppTG2l. C) ppTG25, ppTG26 and ppTG27.
D) ppTGl and the series ppTG28 to ppTG33. E) ppTGl, PEG-ppTGl and PEG-ppTG20.
F) ppTGl, ppTG22, ppTG23 and ppTG24. G) ppTGl and. ppTG20-D.
Figure 1 I : In vivo experiments. Numbers with an asterisk indicate the number of dead mice per group of five. A) Five B6SJL mice per group were intravenously injected with 60 p.g or 50 ~.g of pTG11236 complexed with pcTG90/DOPE 1:2 [PIN] 10, or with the indicated amounts of ppTGl, ppTG20 and ppTG32.
Mice were sacrificed day 1 after injection and Iuciferase activities in the lungs were analyzed. B) Five B6SJL
mice per group were intravenously injected with 60 p.g or 50 pg of pTGI 1236 complexed with ppTGl, JTS-I-K13 and ppTG20. Mice were sacrificed day 1 after injection and luciferase activities in the lungs were analyzed.
C) All groups of five B6SJL mice were intravenously injected with 60 ~.g pTG11236 complexed with I50 ~g ppTGI at day 0, 3 and 14 after pre-injection of 60 ~.g pTG11236 or pTG11022 ("empty vector") complexed with ppTGl at day 0. Mice were sacrificed the next day. Luciferase activities in the lung/mg protein are shown. D) Five B6SJL mice per group were intravenously injected with 60 ~g pTG11236 complexed with 180 ~,g ppTGl, ppTG20 or ppTG20-D. Mice were sacrificed day 1 after injection and luciferase activities in the lungs are indicated.
Figure 12 : Luciferase activity in RENCA tumors one day after intratumoral administration of 10 micrograms of pTG 11236 plasmid (noted p) in the presence or absence of HPC or ppTG21 at pH8.
EXAMPLES
In accordance with the present invention, a new low molecular weight cationic peptide has been synthesized, ppTGl (SEQ ID N0:2). This peptide does not contain glutamic acid residues and is capable of binding and compacting DNA, and fizrther of causing membrane disruption.
Materials and Methods Cetls : HeLa cells (ATCC) and 293-EBNA cells (Invitrogen) were cultivated in DMEM medium supplemented with IO% fetal calf serum, 1% gentamycine, 1% glutamine and 3 g/1 glucose, in an incubator at 37°C and 5% C02.
WiDr (ATCC CCL 218), MDA-MB-435S (ATCC HTB-129), SW480 (ATCG CCL-228) and LoVo cell (CCL-229) were cultivated in the appropriate medimn with 10% fetal calf serum, 1% gentamycine, 1%
glutamine and 3 g/1 glucose, in an incubator at 37°C and 5% COZ.
Plasmids : The plasmid pTG11056 (13787 bp; Langle-Rouault et al., 1998, J.
Virol., 72, 6181-6185) is employed which carries besides the EBV oriP sequences a luciferase gene under the control of the CMV
promoter, intron 1 of the HMG gene and the SV40 polyA signal. Additionally, the plasmid pTG11236 (5738 bp) with a luciferase expression cassette comprising the CMV promoter, the short SV40 16S/I9S intron and the SV40 polyA signal, is also used in the experiments.
The plasmid pTG11022 (7998 bp) represents a plasmid with an "empty" CMV IE
promoter-driven expression cassette, containing the intron I of the HMG gene and the SV40 polyA signal.
Polypeptides : The chemical synthesis of the following peptides was tamed out by Neosystem (France).
ppTGl (20-mer, MW 2297) (SEQ ID N0:2) Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala JTS-1 (20-mer, MW 2301) (SEQ ID N0:3) Gly-Leu-Phe-Glu-Ala-Leu-Leu-Glu-Leu-Leu-Glu-Ser-Leu-Trp-Glu-Leu-Leu-Leu-Glu-Ala JTS-1-I{13 (40-mer, MW 4826) (SEQ ID N0:4) Gly-Leu-Phe-Glu-Ala-Leu-Leu-Glu-Leu-Leu-Gl u-Ser-Leu-Trp-Glu-Leu-Leu-Leu-Glu-Ala-Cys-Cys-Tyr-Lys-Ala-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Trp-Lys-Lys-Lys-Lys-Gln-Ser I~ALA (30-mer, MW 3131) (SEQ ID N0:5) Trp-Glu-Ala-Lys-Leu-Ala-Lys-Ala-Leu-Ala-Lys-Ala-Leu-Ala-Lys-His-Leu-Ala-Lys-Ala-Leu-Ala-Lys-5 Ala-Leu-Lys-Ala-Cys-Glu-Ala ppTG20 (20-mer) (SEQ ID N0:6) Gly-Leu-Phe-Arg-Ala-Leu-Leu-Ark Leu-Leu-Arg-Ser-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Alaw ppTG21 (20-mer) (SEQ ID NO :7) Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala 10 ppTG22 (21-mer) (SEQ ID NO :8) Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Cys ppTG23 (21-mer) (SEQ ID NO :9) Cys-Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala ppTG24 (22-mer) (SEQ ID NO :10) 15 Cys-Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Cys ppTG25 (20-mer) (SEQ ID NO :11) ppTGl-linker-SV40NLS
GIy-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Pro-Lys-Lys-Lys-Arb Lys-Val-Glu-Asp ppTG26 (20-mer) (SEQ ID NO :12)ppTGl-linker-SV40NLSm (mutated) 20 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Pro-Lys-Thr-Lys-Ark Lys-Val-Glu-Asp ppTG27 (20-mer) (SEQ ID NO :13) ppTGl-linker-SV40NLSrev (reversed) Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Asp-Glu-Val-Lys-Arg Lys-Lys-Lys-Pro ppTG28 (20-mer) (SEQ ID NO :14) Gly-Leu-Phe-Lys-Lys-Leu-T.eu-Lys-Leu-Leu-Lys-Lys-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala ppTG29 (20-mer) (SEQ ID NO :15) Gly-Leu-Phe-Ark Ark Leu-Leu-Arg-Leu-Leu-Arg-Arb Leu-Trp-Arb Leu-Leu-Leu-Art Ala ppTG30 (20-mer) (SEQ ID NO :16) Gly-Ile-Phe-Lys-Ala-Ile-Ile-Lys-Ile-Ile-Lys-Ser-Ile-Trp-Lys-Ile-Ile-Ile-Lys-Ala ppTG31 (20-mer) (SEQ ID NO :17) Gly-Ile-Phe-Arb Ala-Ile-Ile-Arb Ile-Ile-Ark Ser-Ile-Trp-Ark Ile-Ile-Ile-Arg-Ala ppTG32 (20-mer) (SEQ ID NO :18) Gly-Val-Phe-Lys-Ala-Val-Val-Lys-Val-Val-Lys-Ser-Val-Trp-Lys-Val-Val-Val-Lys-Ala ppTG33 (20-mer) (SEQ ID NO :19) Gly-Val-Phe-Arg-Ala-Val-Val-Ark Val-Val-Arg-Ser-Val-Trp-Arb Val-Val-Val-Arg-AIa ppTG20-D-configuration (20-mer) (SEQ ID NO :20) Gly-Leu-Phe-Arb Ala-Leu-Leu-Arg-Leu-Leu-Arg-Ser-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Ala The peptides were received as lyophilized powder at a purity of 80 - 97% with acetate as counter-ion in case of the cationic peptides. The peptide JTS-1-K13 was synthesized in two steps. First: synthesis of JTS-1-Cystein. and Cystein-K13, then formation of disulfide bridge. All peptides are diluted in milliQ water to a final concentration of at Ieast 1 pg/p,I.
When necessary, the N-termini of the peptides ppTGl and ppTG20 were covalently linked to polyethyleneglycol (PEG) MW 2000 resulting in PEG-ppTGl and PEG-ppTG20. These products were not HPLC-purified. All peptides were dissolved in miIIiQ water if not indicated differently at a concentration between 3.3 pg/pl and 0.5 p.g/p.l.
Lipid and colipid The lipid pcTG90 is as disclosed in EP 901463 the content of which is incorporated herein in its entirety (see also the formula provided above).
Gel retardation assay 3p.g of the plasmid pTG11236 were incubated with increasing amounts of the respective peptide in a final volume of 30p.1 with 0.9 % NaCl. After 20 min of incubation .at room temperature, 6p.1 5x loading buffer (glycerol and bromphenol blue in TAE buffer) were added and l0 p1 of these solutions were analyzed on a 1%
agarose gel in the presence of ethidium bromide.
Liposome leakage assay I-Palmitoyl-2-Oleoyl-phosphatidylcholine (POPC) liposomes were prepared by the repeated freeze-thaw method followed by extrusion (Olson et al., 1979, Biochim. Biophys. Acta 557, 19-23). Ten p,-moles of POPC in chloroform were placed in a glass tube and solvent was evaporated under reduced pressure using a Labconco Rapidvap vortex evaporator (Uniequip, Germany). The resulting lipid film was hydrated with 0.5 ml of an aqueous solution of calcein (100mM calcein, 3.75 eq. NaOH, 50mM NaCl).
The lipid suspension was sonicated until the solution became clear using a sonic water bath (Bransonic 221, Branson Ultrasonics Corp., USA). Five cycles of freeze-thaw were performed before Iiposomes were extruded by 4 passages tlwough 200nm pore diameter polycarbonate membranes (Nuclepore, Costar, MA, USA). Free calcein was removed from calcein encapsulated into liposomes by gel exclusion chromatography using a Sephadex G-50 column (3cm x 14 cm) and a 200mM NaCl, 25mM HEPES, pH 7.3 solution as the elution buffer. The final lipid concentration was determined by a phosphorus assay (Bartlett, 1959, J. Biol. Chem. 234, 466-469). Liposomes' diameter was determined by dynamic laser light scattering using a Coulter N4 Plus submicron particle sizer (Coultronics France S.A, France). Measurements were performed within a 3nm -10 OOOnm size window with a fixed 90°
scattered light angle.
The liposome leakage assay was carried out as described in Planck et al.
(1994, J. Biol. Chem. 269, 12918-12924). The Iiposome stock solution was diluted to a lipid concentration of 45 ~M in 1.8 x assay buffer (360mM NaCI, 36 mM sodium citrate, pH 5' and pH 7). A 1:5 serial dilution of the tested peptide was carried out in a 96-well microtiter plate by transferring 20 p.1 of the peptide solution from one well to the next well and diluting with 80 ~.1 HZO. 100 p1 of the liposome solution was added in each well (final lipid concentration: 25 ~.M) and , after 30 min at room temperature, was assayed for fluorescence at 535nm (excitation: 485nm) on a microtiter plate fluorescence spectrometer (WALLAC, 1420 multilabel counter Victor). These conditions are appropriate to analyze fluorescein and as close as possible to the appropriate excitation / emission profile of IS calcein (495nm /SISnm). The value for I00 % leakage was obtained by addition of 1 g1 of a 10% Triton X-100 solution. Lealeage activity was plotted against peptide concentration.
Transfection assays with fusogenic peptides Cells were plated on 24 well plates at a density of 4 x 104 (293-EBNA ) or 7 x1.04 (HeLa, Renca) cells /
well in DMEM supplemented with 10% FCS. The next day, the medium was replaced by 200 p.1 serum-free DMEM and plasmid (pTG11056 or pTG11236) / peptide complexes or plasmid /
peptide /lipid complexes were prepared in 30.1 0.9 % NaCI or 5% glucose. After 20 min at room temperature these complexes were added to the cells which were then. incubated for 2-3 h at 37°C and 5% COZ
before I ml serum-containing DMEM was added. Approximately 20 hours later, cells were lysed by addition of 100 ~,1 lx Promega lysis buffer, 20 p1 of the lysates were analysed for luciferase activity. Proteins were quantified with the bicinchonic acid (BCA) colorimetric method (Smith, Anal. Biochem. 150 (1985), 76-85).
hz vivo experiments Indicated amounts of the luciferase expression plasmid pTG11236 were mixed with ppTGl and /or pcTG90/DOPE. The resulting formulations were injected intramuscularly(30~I), intravenously(250u1) into mice or intratumorally (Renca tumors, 1001). Muscles, tumors or organs were recovered at the indicated points of time, macerated and tested for luciferase activity with the luciferase assay kit from Promega.
Cell culture Transfection in the presence of Bafilomycin A: 6x10a HeLa cells were plated on 24 well plates. Cells were treated with 175 nM Bafilomycin A 30 min before and throughout the transfection (1h incubation of cells with transfection mix in the absence of serum).
Example 1: DNA-binding activity The ability of ppTGl peptide to complex DNA was analyzed by gel retardation assays. 3 p.g pTG11236 ' were mixed with increasing amounts of ppTG 1 (0.01 p,g to 27 pg) adding 0.9%
NaCl to a final volume of 30 p.1.
After 20 minutes incubation at room temperature; loading buffer was added and 10 p.1 of the resulting solution were analyzed on a 1% agarose gel. Similar studies were carried out with JTS-1, JTS-1-K13 and KALA
peptides.
The results have shown that it is possible to obtain the retardation of plasmid pTG11236 when complexed with ppTGl at a plasmid/peptide ratio of 3 pg plasrnid DNA (0,8 pmol) to 4 p.g peptide (1~4 nmol).
50 % of the DNA is complexed when adding 1 p.g peptide (0,35 nmol).
Retardation of plasmid DNA in the presence of the anionic JTS-1 was not observed (3pg pTG11236 and O.lpg to 10~.g JTS-1), while 3~g (0,6 nmol) JTS-1-K13 led to >95% retardation of 3ltg pTGl 1236. These results show that the peptide ppTGl of the invention is able to form complexes with DNA plasmid.
Example 2: Liposome leakage activity The peptide ppTGl was tested for its capacity to cause membrane disruption in a liposome leakage assay with POPC liposomes containing the fluorescent product calcein. The Iiposome leakage assay was carried out as described in Planck et al. (1994- supf~a): Release of calcein by Triton X-100 treatment was taken as positive control reaction, incubation with water served as negative control.
The membranolytic activity of peptide ppTGl (20 p.g as starting point) was compared with those of equal quantities (20 ~.g) of JTS-l, JTS-1-I~13 and KALA.
The results are presented in Figures lA/1B.
Figures lA/1B show that ppTGl is capable of causing membrane disruption both at pH5 (Figure lA)and pH7 (Figure 1B), at least as efficiently as JTS-1 and JTS-1-K13 did.
Example 3: Transfection efficiency in vitro - comparison of ppTGl, Lipofectin and PEI.
Complexes of ppTGl and plasmid DNA were analyzed for their ability to transfect 293-EBNAI and Hela cells in vitf°o.
4x104 293-EBNA cells, plated on 24 well plates the day before, were transfected with 0.5 pg, 0.1 pg, O.OSpg and 0.01 ~g of the plasmid pTGI 1056. The plasmid was either mixed with completely or uncompletely DNA-complexing amounts of ppTG I in 30 ~1 5% glucose and after 20 min at room temperature the mixture was added to the cells which were incubated in 200 ~.1 serum-flee medium. Further, pTG11056 was formulated with the established transfection reagents Lipofectin and PEI. Lipofectin (Gibco BRL) and PEI were used as recommended by the manufacturer. Briefly, Lipofectin was added to plasmid DNA
in a fourfold weight excess in 200 p1 serum free medium, which was then (after 20 min at room temperature) added to the cells. PEI was diluted to a lOmM solution, e.g. 751 were added, to 0.5~g DNA in 301 5%
glucose, after 30 min at room temperature transfer on cells incubated in 200.1 serum-free medium. Three hours later, 1 ml of serum-containing DMEM was added to the cells. After twenty hours,.cells were washed and luciferase activity was determined in 1/5 of the lysed cells.
The luciferase activities are shown in Figure 2.
Figure 2 shows that transfection of 293-EBNAl cells with 0.5 ~.g pTG11056 complexed with 0.65 ug ppTGl (charge ratio around 1) led toMuciferase activities higher than those observed with complexes formed with Lipofectin or PEI. Transfection with 0.05 ~.g pTG11056 mixed with 0.065 ~.g ppTGl (same charge ratio) still showed high transfection efficiency, while PEI and even Lipofectin formulations were at least 10-times less efficient.
This experiment shows that transfection with the complex of the invention comprising the peptide ppTGl is at least as efficient, in most of the measurements even pronouncedly more efficient as with the complex of the prior art comprising Lipofectin or PEI especially at lower concentrations. ppTGl alone is sufficient to efficiently transfect the cells with plasmid DNA.
In another experiment, 7x10 HeLa cells, seeded on 24-well plates the day before transfection, were transfected with 0.5 ~g or 0.05 ~g pTGI1236, complexed with Lipofectin or ppTGl. The plasmid / pepride complexes were prepared in 30111 of 5°!° glucose or 0.9°l° NaCl and added to the cells (200 p.1 serum-free medium) after 20 min at room temperature. Serum-containing medium was added after 3 h, the cells were harvested the next day.
The luciferase activities in the total protein lysate are presented in Figure 3.
Figure 3 shows that the formulation of 0.5 ~g or 0.05 ~.g of pTG11236 with 1.17~g or 0.117~.g of ppTGl (totally DNA-complexing amount of peptide; charge ratio 1.8) resulted in comparable Iuciferase activities as observed for DNA formulated with Lipofectin. Comparing transfection efficiencies of 0.05 pg pTG11236, it appeared that plasmid DNA mixed with ppTGl in 0.9% NaCI resulted in higher luciferase activities than observed for Lipofectin formulations.
Figure 2 and figure 3 demonstrate, that the peptide ppTGl alone is su~cient to efficiently transfer plasmid DNA into cells. At law DNA dose this efficiency is superior to established transfection reagents such as for example Lipofectin or PEI reagents. .
Example 4: Transfection efficiency : comparison of ppTGl and JTS-L-K13 in Hela cells A comparison of the effect on transfection efficiency of ppTGl and .ITS-1-K13 was carried out in I=IeLa cells. Complexes of 0.5 ~.g or 0.05 ~.g pTG 11236 were formed with increasing amounts the respective peptide.
The results of the luciferase analysis are shown in Figure 4.
Figure 4 shows that while a high level of luciferase expression was obtained with O.Sp.g pTG11236 complexed with 1.S~,g JTS-1-K13, transfection with O.OS~.g plasmid DNA
complexed with JTS-1-K13 remains low in contrast to transfection with ppTGl. These results indicate that ppTGI
is a better transfection reagent than JTS-1-KI3.
5 Example 5: Transfection efficiency in vitro-comparison of ppTGl and KALA in HeLa and CHO
cells A comparison of ppTGl and KALA was carried out in HeLa and CHO cells. 5x104 cells were seeded on 24 well plates. The neh~t day, cells were transfected with 500ng and SOng of pTG11236, complexed with ppTGl or KALA in 30p,1 0.9% NaCl. The charge ratio +/- varied from 1, 2, 3, 4, 7 to 10. Cells were harvested 10 20h after transfection and lysis was obtained in 100 ~1 Promega lysis buffer. Luciferase activity and total protein concentrations in 20 ~tl were determined.
The results are presented in Figures 5 a/b.
Figures 5 a/b show that transfection with complexes comprising ppTGl was more e~cient than with those formed with the peptide KALA. For the peptide ppTGl, the best charge ratio condition in HeLa cells was 15 ~ either 1 or 2. KALA showed optimal gene transfer at a charge ratio of 7 which was 200-fold (50 ng pTG11236) to 4-fold (SOOng) lower than for ppTGl. In the best case, the complex comprising ppTGl was 3000-fold more e~cient than the complex comprising KALA.
In CHO cells, the optimum of transfection was observed at charge ratios of 2 and 3, respectively, for complexes comprising ppTGl and at charge ratios of 10 and 7, respectively, for complexes comprising KALA, 20 with ppTGl being more efficient in gene transfer (68-fold at Song pTG11236 and 9-fold at SOOng pTG11236).
In the best case, the complex comprising ppTGl was 2500-fold more efficient than the complex comprising KALA.
Example 6: Transfection efficiency in vitro of complexes comprising peptide ppTGl and pcTG90 /
DOPE
effect of charge ratios. 7 x 104 HeLa cells were plated on 24 well plates. The ne~.rt day cells were transfected with 0.5 p.g-or 0.05 p.g pTG11236 formulated with Lipofectin or ppTGl at the indicated charge ratio.
Figure 4: Transfection study in vitro - comparison of ppTGl and JTS1-K13. 5 x 104 HeLa cells were transfected with 0.5 pg or 0.05 pg pTGl 1236 formulated with ppTGl or JTS1-K13 at the indicated charge ratio.
The calculations for JTS1-Kl3 are based on a net positive charge of+5 per molecule.
Figure 5: Transfection study in vitro - comparison of ppTGl and KALA. 5 x 104 HeLa or CHO
cells were transfected with 50 or 500 ng pTG11236 (= p) formulated with ppTGl or KALA at the indicated charge ratio. The Iuciferase activities determined 20h after transfection are indicated in Figure 5A (HeLa cells) and in Figure 5B (CHO cells).
Figure 6 : Transfection study in vitro -comparison of ppTGl with and without pcTG90/DOPE. HeLa or CHO cells were transfected with 500ng and 50ng of pTG11236, complexed with ppTGl or KALA. The charge ratio +/- varied from 1, 2, 3, 4, 7 to 10.
Figure 7: 1n vivo experiment. Five B6SJL mice per group were intravenously injected with 60 p.g or 30 pg pTG11236 (=p) formulated with ppTGl alone or with pcTG90 / DOPE 1:2 in the absence or the presence of 42 p.g ppTGl. The final charge ratio of each formulation is indicated.
Figure 8: Transfection efficiency-EfFect of JTS-1.
Figure 9: Liposome lealeage assay. Increasing amounts of the indicated peptides were incubated with POPC/Cholesterol (3:2 mol/mol) Iiposomes for 30 min ~at RT. Emitted fluorescence was plotted against peptide concentration. A) Comparison of ppTGl, JTS-1-K13, KALA and JTS-1 at pH5 and pH7. B) Liposome leakage activity with complexes of ppTGl and the plasmid pTG11236 at pH7. C) Comparison of ppTGl, ppTG20 and ppTG21 at pH7. D) Comparison of ppTGl, ppTG20-D, ppTG22, .ppTG23 and ppTG24 at pH7. E) Comparison of ppTGl with ppTG25, ppTG26 and ppTG27 at pH7. F) Comparison of ppTGl with the series of peptides ppTG28 to ppTG33 at pH7. G) Comparison of ppTGl and ppTG20 with PEG-ppTGl and PEG-ppTG20 at pH7.
Figure 10: Transfection studies in vitro. A) The human tumor cell lines WiDr, MDA-MB-4355, SW480 and LoVo were transfected with 500ng or 50ng of the luciferase expression plasmid pTG11236 using ppTG 1 at different charge ratios, PEI, Lipofectin and pcTG90/DOPE. The results of the luciferase assay at day I after transfection are indicated. B) to G) HeLa cells were transfected with 50 ng pTG11236 using the indicated peptides at increasing charge ratios [PIN]. B) ppTGl, ppTG20 and ppTG2l. C) ppTG25, ppTG26 and ppTG27.
D) ppTGl and the series ppTG28 to ppTG33. E) ppTGl, PEG-ppTGl and PEG-ppTG20.
F) ppTGl, ppTG22, ppTG23 and ppTG24. G) ppTGl and. ppTG20-D.
Figure 1 I : In vivo experiments. Numbers with an asterisk indicate the number of dead mice per group of five. A) Five B6SJL mice per group were intravenously injected with 60 p.g or 50 ~.g of pTG11236 complexed with pcTG90/DOPE 1:2 [PIN] 10, or with the indicated amounts of ppTGl, ppTG20 and ppTG32.
Mice were sacrificed day 1 after injection and Iuciferase activities in the lungs were analyzed. B) Five B6SJL
mice per group were intravenously injected with 60 p.g or 50 pg of pTGI 1236 complexed with ppTGl, JTS-I-K13 and ppTG20. Mice were sacrificed day 1 after injection and luciferase activities in the lungs were analyzed.
C) All groups of five B6SJL mice were intravenously injected with 60 ~.g pTG11236 complexed with I50 ~g ppTGI at day 0, 3 and 14 after pre-injection of 60 ~.g pTG11236 or pTG11022 ("empty vector") complexed with ppTGl at day 0. Mice were sacrificed the next day. Luciferase activities in the lung/mg protein are shown. D) Five B6SJL mice per group were intravenously injected with 60 ~g pTG11236 complexed with 180 ~,g ppTGl, ppTG20 or ppTG20-D. Mice were sacrificed day 1 after injection and luciferase activities in the lungs are indicated.
Figure 12 : Luciferase activity in RENCA tumors one day after intratumoral administration of 10 micrograms of pTG 11236 plasmid (noted p) in the presence or absence of HPC or ppTG21 at pH8.
EXAMPLES
In accordance with the present invention, a new low molecular weight cationic peptide has been synthesized, ppTGl (SEQ ID N0:2). This peptide does not contain glutamic acid residues and is capable of binding and compacting DNA, and fizrther of causing membrane disruption.
Materials and Methods Cetls : HeLa cells (ATCC) and 293-EBNA cells (Invitrogen) were cultivated in DMEM medium supplemented with IO% fetal calf serum, 1% gentamycine, 1% glutamine and 3 g/1 glucose, in an incubator at 37°C and 5% C02.
WiDr (ATCC CCL 218), MDA-MB-435S (ATCC HTB-129), SW480 (ATCG CCL-228) and LoVo cell (CCL-229) were cultivated in the appropriate medimn with 10% fetal calf serum, 1% gentamycine, 1%
glutamine and 3 g/1 glucose, in an incubator at 37°C and 5% COZ.
Plasmids : The plasmid pTG11056 (13787 bp; Langle-Rouault et al., 1998, J.
Virol., 72, 6181-6185) is employed which carries besides the EBV oriP sequences a luciferase gene under the control of the CMV
promoter, intron 1 of the HMG gene and the SV40 polyA signal. Additionally, the plasmid pTG11236 (5738 bp) with a luciferase expression cassette comprising the CMV promoter, the short SV40 16S/I9S intron and the SV40 polyA signal, is also used in the experiments.
The plasmid pTG11022 (7998 bp) represents a plasmid with an "empty" CMV IE
promoter-driven expression cassette, containing the intron I of the HMG gene and the SV40 polyA signal.
Polypeptides : The chemical synthesis of the following peptides was tamed out by Neosystem (France).
ppTGl (20-mer, MW 2297) (SEQ ID N0:2) Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala JTS-1 (20-mer, MW 2301) (SEQ ID N0:3) Gly-Leu-Phe-Glu-Ala-Leu-Leu-Glu-Leu-Leu-Glu-Ser-Leu-Trp-Glu-Leu-Leu-Leu-Glu-Ala JTS-1-I{13 (40-mer, MW 4826) (SEQ ID N0:4) Gly-Leu-Phe-Glu-Ala-Leu-Leu-Glu-Leu-Leu-Gl u-Ser-Leu-Trp-Glu-Leu-Leu-Leu-Glu-Ala-Cys-Cys-Tyr-Lys-Ala-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Lys-Trp-Lys-Lys-Lys-Lys-Gln-Ser I~ALA (30-mer, MW 3131) (SEQ ID N0:5) Trp-Glu-Ala-Lys-Leu-Ala-Lys-Ala-Leu-Ala-Lys-Ala-Leu-Ala-Lys-His-Leu-Ala-Lys-Ala-Leu-Ala-Lys-5 Ala-Leu-Lys-Ala-Cys-Glu-Ala ppTG20 (20-mer) (SEQ ID N0:6) Gly-Leu-Phe-Arg-Ala-Leu-Leu-Ark Leu-Leu-Arg-Ser-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Alaw ppTG21 (20-mer) (SEQ ID NO :7) Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala 10 ppTG22 (21-mer) (SEQ ID NO :8) Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Cys ppTG23 (21-mer) (SEQ ID NO :9) Cys-Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala ppTG24 (22-mer) (SEQ ID NO :10) 15 Cys-Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Cys ppTG25 (20-mer) (SEQ ID NO :11) ppTGl-linker-SV40NLS
GIy-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Pro-Lys-Lys-Lys-Arb Lys-Val-Glu-Asp ppTG26 (20-mer) (SEQ ID NO :12)ppTGl-linker-SV40NLSm (mutated) 20 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Pro-Lys-Thr-Lys-Ark Lys-Val-Glu-Asp ppTG27 (20-mer) (SEQ ID NO :13) ppTGl-linker-SV40NLSrev (reversed) Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Asp-Glu-Val-Lys-Arg Lys-Lys-Lys-Pro ppTG28 (20-mer) (SEQ ID NO :14) Gly-Leu-Phe-Lys-Lys-Leu-T.eu-Lys-Leu-Leu-Lys-Lys-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala ppTG29 (20-mer) (SEQ ID NO :15) Gly-Leu-Phe-Ark Ark Leu-Leu-Arg-Leu-Leu-Arg-Arb Leu-Trp-Arb Leu-Leu-Leu-Art Ala ppTG30 (20-mer) (SEQ ID NO :16) Gly-Ile-Phe-Lys-Ala-Ile-Ile-Lys-Ile-Ile-Lys-Ser-Ile-Trp-Lys-Ile-Ile-Ile-Lys-Ala ppTG31 (20-mer) (SEQ ID NO :17) Gly-Ile-Phe-Arb Ala-Ile-Ile-Arb Ile-Ile-Ark Ser-Ile-Trp-Ark Ile-Ile-Ile-Arg-Ala ppTG32 (20-mer) (SEQ ID NO :18) Gly-Val-Phe-Lys-Ala-Val-Val-Lys-Val-Val-Lys-Ser-Val-Trp-Lys-Val-Val-Val-Lys-Ala ppTG33 (20-mer) (SEQ ID NO :19) Gly-Val-Phe-Arg-Ala-Val-Val-Ark Val-Val-Arg-Ser-Val-Trp-Arb Val-Val-Val-Arg-AIa ppTG20-D-configuration (20-mer) (SEQ ID NO :20) Gly-Leu-Phe-Arb Ala-Leu-Leu-Arg-Leu-Leu-Arg-Ser-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Ala The peptides were received as lyophilized powder at a purity of 80 - 97% with acetate as counter-ion in case of the cationic peptides. The peptide JTS-1-K13 was synthesized in two steps. First: synthesis of JTS-1-Cystein. and Cystein-K13, then formation of disulfide bridge. All peptides are diluted in milliQ water to a final concentration of at Ieast 1 pg/p,I.
When necessary, the N-termini of the peptides ppTGl and ppTG20 were covalently linked to polyethyleneglycol (PEG) MW 2000 resulting in PEG-ppTGl and PEG-ppTG20. These products were not HPLC-purified. All peptides were dissolved in miIIiQ water if not indicated differently at a concentration between 3.3 pg/pl and 0.5 p.g/p.l.
Lipid and colipid The lipid pcTG90 is as disclosed in EP 901463 the content of which is incorporated herein in its entirety (see also the formula provided above).
Gel retardation assay 3p.g of the plasmid pTG11236 were incubated with increasing amounts of the respective peptide in a final volume of 30p.1 with 0.9 % NaCl. After 20 min of incubation .at room temperature, 6p.1 5x loading buffer (glycerol and bromphenol blue in TAE buffer) were added and l0 p1 of these solutions were analyzed on a 1%
agarose gel in the presence of ethidium bromide.
Liposome leakage assay I-Palmitoyl-2-Oleoyl-phosphatidylcholine (POPC) liposomes were prepared by the repeated freeze-thaw method followed by extrusion (Olson et al., 1979, Biochim. Biophys. Acta 557, 19-23). Ten p,-moles of POPC in chloroform were placed in a glass tube and solvent was evaporated under reduced pressure using a Labconco Rapidvap vortex evaporator (Uniequip, Germany). The resulting lipid film was hydrated with 0.5 ml of an aqueous solution of calcein (100mM calcein, 3.75 eq. NaOH, 50mM NaCl).
The lipid suspension was sonicated until the solution became clear using a sonic water bath (Bransonic 221, Branson Ultrasonics Corp., USA). Five cycles of freeze-thaw were performed before Iiposomes were extruded by 4 passages tlwough 200nm pore diameter polycarbonate membranes (Nuclepore, Costar, MA, USA). Free calcein was removed from calcein encapsulated into liposomes by gel exclusion chromatography using a Sephadex G-50 column (3cm x 14 cm) and a 200mM NaCl, 25mM HEPES, pH 7.3 solution as the elution buffer. The final lipid concentration was determined by a phosphorus assay (Bartlett, 1959, J. Biol. Chem. 234, 466-469). Liposomes' diameter was determined by dynamic laser light scattering using a Coulter N4 Plus submicron particle sizer (Coultronics France S.A, France). Measurements were performed within a 3nm -10 OOOnm size window with a fixed 90°
scattered light angle.
The liposome leakage assay was carried out as described in Planck et al.
(1994, J. Biol. Chem. 269, 12918-12924). The Iiposome stock solution was diluted to a lipid concentration of 45 ~M in 1.8 x assay buffer (360mM NaCI, 36 mM sodium citrate, pH 5' and pH 7). A 1:5 serial dilution of the tested peptide was carried out in a 96-well microtiter plate by transferring 20 p.1 of the peptide solution from one well to the next well and diluting with 80 ~.1 HZO. 100 p1 of the liposome solution was added in each well (final lipid concentration: 25 ~.M) and , after 30 min at room temperature, was assayed for fluorescence at 535nm (excitation: 485nm) on a microtiter plate fluorescence spectrometer (WALLAC, 1420 multilabel counter Victor). These conditions are appropriate to analyze fluorescein and as close as possible to the appropriate excitation / emission profile of IS calcein (495nm /SISnm). The value for I00 % leakage was obtained by addition of 1 g1 of a 10% Triton X-100 solution. Lealeage activity was plotted against peptide concentration.
Transfection assays with fusogenic peptides Cells were plated on 24 well plates at a density of 4 x 104 (293-EBNA ) or 7 x1.04 (HeLa, Renca) cells /
well in DMEM supplemented with 10% FCS. The next day, the medium was replaced by 200 p.1 serum-free DMEM and plasmid (pTG11056 or pTG11236) / peptide complexes or plasmid /
peptide /lipid complexes were prepared in 30.1 0.9 % NaCI or 5% glucose. After 20 min at room temperature these complexes were added to the cells which were then. incubated for 2-3 h at 37°C and 5% COZ
before I ml serum-containing DMEM was added. Approximately 20 hours later, cells were lysed by addition of 100 ~,1 lx Promega lysis buffer, 20 p1 of the lysates were analysed for luciferase activity. Proteins were quantified with the bicinchonic acid (BCA) colorimetric method (Smith, Anal. Biochem. 150 (1985), 76-85).
hz vivo experiments Indicated amounts of the luciferase expression plasmid pTG11236 were mixed with ppTGl and /or pcTG90/DOPE. The resulting formulations were injected intramuscularly(30~I), intravenously(250u1) into mice or intratumorally (Renca tumors, 1001). Muscles, tumors or organs were recovered at the indicated points of time, macerated and tested for luciferase activity with the luciferase assay kit from Promega.
Cell culture Transfection in the presence of Bafilomycin A: 6x10a HeLa cells were plated on 24 well plates. Cells were treated with 175 nM Bafilomycin A 30 min before and throughout the transfection (1h incubation of cells with transfection mix in the absence of serum).
Example 1: DNA-binding activity The ability of ppTGl peptide to complex DNA was analyzed by gel retardation assays. 3 p.g pTG11236 ' were mixed with increasing amounts of ppTG 1 (0.01 p,g to 27 pg) adding 0.9%
NaCl to a final volume of 30 p.1.
After 20 minutes incubation at room temperature; loading buffer was added and 10 p.1 of the resulting solution were analyzed on a 1% agarose gel. Similar studies were carried out with JTS-1, JTS-1-K13 and KALA
peptides.
The results have shown that it is possible to obtain the retardation of plasmid pTG11236 when complexed with ppTGl at a plasmid/peptide ratio of 3 pg plasrnid DNA (0,8 pmol) to 4 p.g peptide (1~4 nmol).
50 % of the DNA is complexed when adding 1 p.g peptide (0,35 nmol).
Retardation of plasmid DNA in the presence of the anionic JTS-1 was not observed (3pg pTG11236 and O.lpg to 10~.g JTS-1), while 3~g (0,6 nmol) JTS-1-K13 led to >95% retardation of 3ltg pTGl 1236. These results show that the peptide ppTGl of the invention is able to form complexes with DNA plasmid.
Example 2: Liposome leakage activity The peptide ppTGl was tested for its capacity to cause membrane disruption in a liposome leakage assay with POPC liposomes containing the fluorescent product calcein. The Iiposome leakage assay was carried out as described in Planck et al. (1994- supf~a): Release of calcein by Triton X-100 treatment was taken as positive control reaction, incubation with water served as negative control.
The membranolytic activity of peptide ppTGl (20 p.g as starting point) was compared with those of equal quantities (20 ~.g) of JTS-l, JTS-1-I~13 and KALA.
The results are presented in Figures lA/1B.
Figures lA/1B show that ppTGl is capable of causing membrane disruption both at pH5 (Figure lA)and pH7 (Figure 1B), at least as efficiently as JTS-1 and JTS-1-K13 did.
Example 3: Transfection efficiency in vitro - comparison of ppTGl, Lipofectin and PEI.
Complexes of ppTGl and plasmid DNA were analyzed for their ability to transfect 293-EBNAI and Hela cells in vitf°o.
4x104 293-EBNA cells, plated on 24 well plates the day before, were transfected with 0.5 pg, 0.1 pg, O.OSpg and 0.01 ~g of the plasmid pTGI 1056. The plasmid was either mixed with completely or uncompletely DNA-complexing amounts of ppTG I in 30 ~1 5% glucose and after 20 min at room temperature the mixture was added to the cells which were incubated in 200 ~.1 serum-flee medium. Further, pTG11056 was formulated with the established transfection reagents Lipofectin and PEI. Lipofectin (Gibco BRL) and PEI were used as recommended by the manufacturer. Briefly, Lipofectin was added to plasmid DNA
in a fourfold weight excess in 200 p1 serum free medium, which was then (after 20 min at room temperature) added to the cells. PEI was diluted to a lOmM solution, e.g. 751 were added, to 0.5~g DNA in 301 5%
glucose, after 30 min at room temperature transfer on cells incubated in 200.1 serum-free medium. Three hours later, 1 ml of serum-containing DMEM was added to the cells. After twenty hours,.cells were washed and luciferase activity was determined in 1/5 of the lysed cells.
The luciferase activities are shown in Figure 2.
Figure 2 shows that transfection of 293-EBNAl cells with 0.5 ~.g pTG11056 complexed with 0.65 ug ppTGl (charge ratio around 1) led toMuciferase activities higher than those observed with complexes formed with Lipofectin or PEI. Transfection with 0.05 ~.g pTG11056 mixed with 0.065 ~.g ppTGl (same charge ratio) still showed high transfection efficiency, while PEI and even Lipofectin formulations were at least 10-times less efficient.
This experiment shows that transfection with the complex of the invention comprising the peptide ppTGl is at least as efficient, in most of the measurements even pronouncedly more efficient as with the complex of the prior art comprising Lipofectin or PEI especially at lower concentrations. ppTGl alone is sufficient to efficiently transfect the cells with plasmid DNA.
In another experiment, 7x10 HeLa cells, seeded on 24-well plates the day before transfection, were transfected with 0.5 ~g or 0.05 ~g pTGI1236, complexed with Lipofectin or ppTGl. The plasmid / pepride complexes were prepared in 30111 of 5°!° glucose or 0.9°l° NaCl and added to the cells (200 p.1 serum-free medium) after 20 min at room temperature. Serum-containing medium was added after 3 h, the cells were harvested the next day.
The luciferase activities in the total protein lysate are presented in Figure 3.
Figure 3 shows that the formulation of 0.5 ~g or 0.05 ~.g of pTG11236 with 1.17~g or 0.117~.g of ppTGl (totally DNA-complexing amount of peptide; charge ratio 1.8) resulted in comparable Iuciferase activities as observed for DNA formulated with Lipofectin. Comparing transfection efficiencies of 0.05 pg pTG11236, it appeared that plasmid DNA mixed with ppTGl in 0.9% NaCI resulted in higher luciferase activities than observed for Lipofectin formulations.
Figure 2 and figure 3 demonstrate, that the peptide ppTGl alone is su~cient to efficiently transfer plasmid DNA into cells. At law DNA dose this efficiency is superior to established transfection reagents such as for example Lipofectin or PEI reagents. .
Example 4: Transfection efficiency : comparison of ppTGl and JTS-L-K13 in Hela cells A comparison of the effect on transfection efficiency of ppTGl and .ITS-1-K13 was carried out in I=IeLa cells. Complexes of 0.5 ~.g or 0.05 ~.g pTG 11236 were formed with increasing amounts the respective peptide.
The results of the luciferase analysis are shown in Figure 4.
Figure 4 shows that while a high level of luciferase expression was obtained with O.Sp.g pTG11236 complexed with 1.S~,g JTS-1-K13, transfection with O.OS~.g plasmid DNA
complexed with JTS-1-K13 remains low in contrast to transfection with ppTGl. These results indicate that ppTGI
is a better transfection reagent than JTS-1-KI3.
5 Example 5: Transfection efficiency in vitro-comparison of ppTGl and KALA in HeLa and CHO
cells A comparison of ppTGl and KALA was carried out in HeLa and CHO cells. 5x104 cells were seeded on 24 well plates. The neh~t day, cells were transfected with 500ng and SOng of pTG11236, complexed with ppTGl or KALA in 30p,1 0.9% NaCl. The charge ratio +/- varied from 1, 2, 3, 4, 7 to 10. Cells were harvested 10 20h after transfection and lysis was obtained in 100 ~1 Promega lysis buffer. Luciferase activity and total protein concentrations in 20 ~tl were determined.
The results are presented in Figures 5 a/b.
Figures 5 a/b show that transfection with complexes comprising ppTGl was more e~cient than with those formed with the peptide KALA. For the peptide ppTGl, the best charge ratio condition in HeLa cells was 15 ~ either 1 or 2. KALA showed optimal gene transfer at a charge ratio of 7 which was 200-fold (50 ng pTG11236) to 4-fold (SOOng) lower than for ppTGl. In the best case, the complex comprising ppTGl was 3000-fold more e~cient than the complex comprising KALA.
In CHO cells, the optimum of transfection was observed at charge ratios of 2 and 3, respectively, for complexes comprising ppTGl and at charge ratios of 10 and 7, respectively, for complexes comprising KALA, 20 with ppTGl being more efficient in gene transfer (68-fold at Song pTG11236 and 9-fold at SOOng pTG11236).
In the best case, the complex comprising ppTGl was 2500-fold more efficient than the complex comprising KALA.
Example 6: Transfection efficiency in vitro of complexes comprising peptide ppTGl and pcTG90 /
DOPE
25 A mixture of pcTG90 and DOPE (1:1) was prepared in 350p1 of chloroform. The solution was evaporated using the vortex evaporator. The lipid film obtained was resuspended in lml of 5% glucose to a concentration of about O.Smg/ml. ppTGl was dissolved to 3mg/ml in water and added to the lipide suspension.
The mixture was then added to the DNA (pTG 11236) diluted in 5% glucose, and vortexed.
HeLa cells were seeded at a density of 6 x 104 cells on 24 well plates. The next day, cells were incubated with 200.1 serum-free medium, 30,1 of plasmid (SOng) /peptide /
lipid mixtures were added and incubated for 3h at 37°C in 5% CO~. lml of DMEM+IO% FCS was then added.
The next day, the medium was removed and cells were washed with 500.1 of PBS and subsequently treated with 1001 of Promega lysis buffer.
Plates were stored at -80°C until luciferase activity was measured of 201 of the cell lysate. The protein assay was performed using the Pierce BCA lcit.
Figure 6 presents the results of this experiment.
The mixture was then added to the DNA (pTG 11236) diluted in 5% glucose, and vortexed.
HeLa cells were seeded at a density of 6 x 104 cells on 24 well plates. The next day, cells were incubated with 200.1 serum-free medium, 30,1 of plasmid (SOng) /peptide /
lipid mixtures were added and incubated for 3h at 37°C in 5% CO~. lml of DMEM+IO% FCS was then added.
The next day, the medium was removed and cells were washed with 500.1 of PBS and subsequently treated with 1001 of Promega lysis buffer.
Plates were stored at -80°C until luciferase activity was measured of 201 of the cell lysate. The protein assay was performed using the Pierce BCA lcit.
Figure 6 presents the results of this experiment.
Figure 6 shows that at SOng of plasmid and a final charge ratio of 3, 5 and 10, the addition of small amounts of ppTGl (contributing 1/3, 1/5 and I/I0, respectively, of the positive charge of the complex) improved by at least 1 log the transfection efficiency of pcTG90/DOPE. This improvement was even better (2 log) when the quantity of ppTGl was increased (contributing 2/3 and 7/10, respectively, of the positive charge of the complex) at a final charge ratio of 5 and 10. At a final charge ratio of 3, ppTGl alone gave better results than pcTG90/DOPE alone.
Example 7: In vivo experiments 60 ~.g or 30~,g of the plasmid pTG11236 were mixed with peptide ppTGl and/or with a pcTG90 l DOPE 1:2 mixture in 2501 5% glucose. A .fter 20 min incubation at room temperature, the complexes were intravenously injected into B6SJL mice. Mice were sacrificed at day 1. The lungs were recovered, total protein was extracted and luciferase activity was analysed.
The results are shown in Figure 7.
Figure 7 shows that gene expression into the lung can be achieved with complexes comprising pTGI 1236 and ppTG1 (in 5 out of 5 mice). The presence of ppTGl in complexes further comprising cationic lipids improved gene expression by a factor of 10.
Example 8: Transfection efficiency- Effect of JTS-1 JTSl was dissolved to lmg/ml in 1mM NaOH and mixed with DNA diluted in 5%
glucose. ppTGl was then added to this solution. The pcTG90/DOPE ppTG1 mixtures were prepared as described in Example 6.
Transfection assays were performed on HeLa cells with SOng of plasmid as described in Example 6.
The results are shown on Figure 8.
Figure 8 shows that pTG11236 cornplexed with 0.9~.g of ppTGl and O.l~.g of JTS1 (final charge ratio 5) increased luciferase activity by a factor of about 10 in comparison with the best formulation of ppTGl/pcTG90/DOPE (final charge ratio 5, ppTGl contributing a charge ratio of 2 (+/-), and by a factor of about 1000 in comparison with pcTG90/DOPE alone at a final charge ratio of 5.
ppTGll plasmid DNA complexes with a final charge ratio of 1-2 mediate e~cient transfection of a variety of cell lines. The e~ciency is comparable to, or superior to, transfection levels observed with complexes comprising Lipofectin, PEI, or multicomponent peptide complexes according to Gottschallc et a1.,1996.
Examples Summary In vitro The peptide ppTGl, alone or complexed with plasmid DNA, destabilizes e~ciently POPC/Chol (3:2, mol:mol) liposomes, while ICALA shows no activity on this type of Iiposomes.
The analysis of gene transfer efficiencies was expanded to the human tumor cell lines WiDr, MDA-MB-435S, SW480 and LoVo. All these cell lines were successfully t<-ansfected with ppTGl/DNA complexes.
Transfection efficiency with ppTGl/plasmid complexes was not diminished in the presence of Bafilomycin A.
This indicates that gene transfer does not depend on the acidification of the endosomes.
Various derivatives of ppTGl were designed. All these peptides (see Materials and Methods) were capable to retard the migration of plasmid DNA in an agarose gel at pHB, except ppTG21 (Lys~His) which binds plasmid DNA at pHS. ppTG20 (Lys~Arg) and ppTG21 were comparable to ppTGl with respect to their liposome leakage activity on POPC/Chol liposomes. Transfection efficiency with ppTG20 was comparable to that of ppTGl, while transfection efficiency with ppTG21 was strongly reduced. The peptides ppTG28 and ppTG29, with two additional basic amino acid residues were comparable to ppTGl and ppTG20 in liposome leakage and gene transfer assays. Replacement of Leu by Ile or Val diminished liposome leakage activity (ppTG32 and ppTG33), and diminished gene transfer efficiency in vitro (ppTG30, ppTG3l, ppTG32 and ppTG33). ppTGl derivatives with wild type or mutated basic nuclear localisation signal (SV40 large T antigen) at the C-terniinus retained liposome leakage and gene transfer efficiency. The addition of Cys residues N- and/or C-terminal of ppTGl did not abolish liposome leakage activity, gene transfer efficiencies were reduced. ppTGl and ppTG20 derivatives with polyethylenglycol (PEG)2000 covalently linked to the N-terminus of the peptides retained the liposome leakage activity, gene transfer efficiencies, however, were strongly reduced. Further tested was a ppTG20 derivative with all amino acids in D-configuration (ppTG20-D).
Liposome leakage and gene transfer activities with this peptide were retained.
In vivo:
Complexes of plasmid DNA with the peptides ppTG20 and ppTG20-D, intravenously injected into mice, led to gene transfer efficiencies in the lung even higher than with ppTGl. Gene transfer, however, was low with JTS1-K13, and was even undetectable with KALA. The use of ppTG32 drastically reduced gene transfer efficiency, indicating that besides DNA-binding activity, liposome leakage activity was crucial for successful gene transfer in vivo. Gene transfer with ppTGl and ppTG20 was at least comparable to gene transfer with the optimized lipoplexes formed with pcTG90/DOPE 1:2 [+/-] 10.
Reporter gene activity was highest at day 1 after injection followed by a reduction over time.
Re-administration at day 14 led to a renewal of reporter gene activity.
Example 9 : DNA binding activity ppTGl derivatives as they are indicated in Materials and Methods, were tested for their capacity to bind plasmid DNA by gel retardation assays.
The results are summarized in the following Table l DNA binding Liposome Transfection Gene transfer activity leakage if?
assay in vita~o vivo - + +
ppTG 1 + , -+ ++
ppTG20 + at pHS; - + +/- - at pH5 at pH8 ppTG21 + + +/- +/-ppTG22 + +/- . +/- .:
ppTG23 + +/
ppTG24 + +!- + +/_ ppTG25 + +/- + +/-ppTG26 + +/- + +/-ppTG27 + +/- + _ ppTG28 + + + nd ppTG29 + + +/- _ ppTG30 + +/- +/- nd ppTG31 + _ _ ppTG32 + - - nd ppTG33 + + + nd ppTGl non-purified PEG-ppTG + + _ I non-purified PEG-ppTG20 + + _ -non-purified ppTG20-D + + + -H-~
The results presented in Table 1 indicate that all peptides were capable to bind to plasmid DNA at pHB, except for ppTG21 (Lys~His). It has been, however, shown that ppTG21 can bind DNA at pHS. This result can be explained with the protonation status of the histidine residues (pK 6) and suggests that binding between plasmid DNA and ppTGl-derived peptides is mainly due to electrostatic interaction.
Example 10: Liposome leakage activity Liposome leakage activities were analyzed on liposomes consisting of POPG and cholesterol at a molar ratio of 3:2 (mol/mol). Cholesterol is an important ubiquitous component of natural membranes determining their fluidity. Tests with such liposomes are thus closer to in vivo conditions than tests with pure POPC liposomes. The peptides ppTGl, JTS-1-K13, KALA and JTS-1 were compared at pH5 and pH7.
The results are presented iii Figure 9A.
Figure 9A clearly shows that KALA could not liberate ~ calcein from cholesterol(chol)-containing liposomes. JTS-1-K13 was also impeded in calcein release at pH7, while low level release occurred at pHS. The pH-sensitive peptide JTS-1 showed high lysis activity at pHS, at pH7 this activity was reduced. ppTGl could efficiently liberate calcein from POPC/chol liposomes at pH5 and pH7.
Complexes of ppTGl with plasmid DNA pTG11236 were tested for liposome lealcage activity on POPC/chol 3:2 liposomes.
The results are shown in Figure 9B.
Figure 9B clearly shows that at an excess of peptide over plasmid DNA (P/N 5 or 10), liposome leakage was comparable to free ppTGl. At charge ratios (P/N) of 1 or 0.8, conditions under which theoretically all peptides are engaged in binding to plasmid DNA, leakage activity was slightly reduced. This observation could be explained such that DNA-binding and membrane destructive activities require different structural properties.
The series of ppTGl derivatives as they are listed in Materials and Methods was tested for liposome leakage activity on PO.PC/chol 3:2 liposomes at pH7. The results are shown in Figure 9C (ppTG20 and ppTG21), Figure 9D (ppTG22-ppTG24 and ppTG20-D), Figure 9 E (ppTG25-ppTG27,), Figure 9F (ppTG28 -ppTG33), and Figure 9 G (PEG-ppTGl and PEG-ppTG20) are summarized in Table 1 The Figures 9C, 9D and 9G clearly show that the replacement of Lys in ppTG 1 by Arg or His, ppTG20 in D-configuration or the addition of PEG2000 N-terminally to ppTGl or ppTG20 did not reduce the membrane destructive activities of the resulting peptides. Figure 9F demonstrates that the addition of two basic amino acids (ppTG28 and ppTG29), or the replacement of Leu by Ile (ppTG3I) slightly reduced Iiposome Leakage activity.
Replacement of Leu by Val significantly reduced liposome leakage activity (ppTG32 and ppTG33). Figure 9D
indicates that additional Cys residues did not affect liposome leakage activity when added to the C-terminus, and slightly reduced membrane destruction, when added to the N-terminus (ppTG23 and ppTG24). Figure 9E clearly demonstrates that leakage activities with ppTGl linked to wild type (wt), reversed or mutated NLS were significant, but below the maximal value obtained with ppTGl.
5 Example 11: Transfection efficiency in vitro The transfection efficiencies with plasmid / ppTGl complexes were tested in the human tumor cells WiDr, MDA-MB-4355, SW480 and LoVo (ATCC) in comparison to lipofectin, PEI and pcTG90/DOPE (1:l) [+/-) 5. Luciferase activities at day 1 after transfection are shown in Figure 10A.
As Figure 10A clearly shows, ppTGl / plasmid complexes can efficiently transfect human tumor cell 10 , lines, especially SW480 cells.
The series of ppTGl derivatives listed in Material and Methods were tested for their gene transfer efficiencies in Hela cells. 6x104 cells were transfected with 50 ng pTG11236 complexed with increasing amounts of peptide. Luciferase activity was analyzed day 1 after transfection.
The results are shown in Figure lOB (ppTG20, ppTG21), Figure lOC(ppTG25, ppTG26, ppTG27), Figure lOD (ppTG28 to ppTG33), Figure 1S IOE (PEG-ppTGl and PEG-ppTG20), Figure lOF (ppTG22 to ppTG24) and Figure lOG (ppTG20-D). All results are also summarized in Table 1.
Figure lOB clearly shows that the replacement of Lys by Arg residues did not change the transfection efficiency, while replacing Lys by His resulted in significant reduction.
Figure lOC demonstrates that the C-terminal addition of SV40 large T antigen-derived NLS peptide did not influence the efficiency of gene transfer.
20 Figure lOD shows that the addition of two basic amino acid residues (ppTG28 and ppTG29) did not change iransfection efficiencies. The replacement of Leu by Ile (ppTG30 and ppTG31), however, reduced the efficiency of gene transfer, and the replacement of Leu by Val reduced this activity even further. N-terminal, covalent addition of PEG-2000 reduced transfection efficiencies (Figure 10E), as well as Cys residues linked to the N
and/or C-terminus of ppTGl (Figure IOF). ppTG20-D, however, was as e~cient as ppTGl in gene transfer 25 studies (Figure 10G).
Example 11: Studies on the mechanism of gene transfer with ppTGl Bafilomycin A is a specific inhibitor of the vacuolar proton pump. Treatment with Bafilomycin inhibits the acidification of late endosomes. HeLa cells were i~~eated with Bafilomycin A (175 nM) 30 min before and throughout the transfection (I h incubation with transfection complexes in the absence of serum). 6xI04 cells 30 were transfected with 150 ng pTG11236 using PEl or ppTGl: The luciferase assay was performed I day after transfection.
The presence of Bafilomycin A did not influence the transfection efficiency with ppTGl, while transfection with PEI was 400-fold diminished (data not shown). This indicates that, if ppTGl / plasmid complexes are taken up by endosomes they are released via a pH-independent mechanism.
Example 12: In vivo studies The potential of gene transfer with mono-component peptide vectors was investigated in vivo. Fifty or sixty p.g of the luciferase expression plasmid pTG11236 were complexed with pcTG90 / DOPE (1:2) [+/-] 10 in 250 p1 5% glucose (Meyer et al. 2000). The resulting lipoplex vector served as reference for gene transfer studies with pTG11236 complexed with ppTGl, ppTG20 and ppTG32 in 250 p1 5%
glucose. Five mice per group were intravenously injected, the animals were sacrificed at day 1 after injection. Lungs were tested for luciferase activity. The results are shown in FIGURE l 1.
Figure 11A clearly demonstrates that gene transfer with ppTGl complexes (at charge ratios [+/-]
between 2 and 3) led to luciferase activities in the lung which were comparable to those obtained with the lipoplexes. Gene transfer with ppTG20 showed a general tendency to be more efficient and less toxic than ppTGl, while complexes with the peptide ppTG32 did not lead to detectable reporter gene expression. This implies that membrane-destructive activity is necessary for successful gene delivery with ppTGl-derived peptides.
Complexes with ppTGl were compared to those formed with JTS-1-K13, KALA, K8-NLSmIJTS-1 and ppTG20. KALA and K8-NLSm/JTS-1 were inefficient (data not shown). Luciferase activities observed in the lung at day 1 after intravenous injection of 50 p,g pTGl 1236 complexed with ppTGl, JTS-1-KI3 and ppTG20 are shown in Figure 11B. It appears that gene transfer with ppTGl is better than with JTS-1-K13. Gene transfer with ppTG20 shows the reproducible tendency to give rise to higher gene expression and to be less toxic, than ppTG 1.
Gene expression obtained with ppTGl / plasmid complexes dropped 3 days after injection to background levels (data not shown). Re-administration of ppTGl/plasmid complexes at day 14 after the first injection led to re-appearance of reporter gene expression. At day 3 the system was still refractory (F ~aure I 1 C).
Figure 11D confirms that ppTG20 gives rise to more efficient gene transfer than ppTGl, while ppTG20-D seems to be even more efficient than ppTG20.
These data show for the first time mono-component peptide vectors which enable significant gene transfer in vivo.
Example 13: In vivo studies : ppTG21 as non-condensing transfection enhancer after intratumoral injection Materials and Methods 4x105 RENCA cells (murine kidney tumor cells, ATCC) were injected subcutaneously into B6D2 mice to provoke tumor growth. When tumors reached a size of approximatively 30 mm', 30 ~1 of a 5% glucose solution, containing the luciferase expression plasmid DNA pTGl 1236 in presence or absence of peptide of the present invention were injected into the tumors. Mice were sacrificed at day 1 after injection, tumors were recovered and homogeinized. Luciferase activity was analyzed and expressed as RLU/g tumor.
32' Results The peptide ppTG21 was tested for its capacity to enhance plasmid transfer after intratumoral injection in RENCA tumor-bearing mice. Ten ~.g of the luciferase expression plasmid pTGI1236 were mixed with increasing amounts (i.e.. 0.1, 0.6, 3 or IS micrograms) of ppTG21 at pH 8 (10 mM Tris pH8). Under these conditions ppTG21 is not capable to bind to plasmid DNA (see above). In paralell, experiments have been ' conducted in identical conditions by administering the same plasmid DNA
in~the presence of increasing amounts (i.e. 0.1°/, 0.2%, 0.4% and 0.6 %) of HPC (Hexadecyl-phospho-choline).
Plasmid DNA alone, or plasmid DNA
in the presence of HPC or ppTG21 were intratumorally injected in similar conditions. Next day, luciferase activities in the tumors was determined (RLU/g tumour). The results are shown in Figure 12.
Figure 12 clearly indicates that co-injection of 10 ~.g of pTG11236 with 0.6 ~,g ppTG21 leads to an increase ~of apparent gene expression. This improvement is comparable to results obtained with the non-condensing lipid HPC.
Cited references Bartlett, G.R. 1959, J. Biol. Chem. 234, 466-469.
Gottschalk, S. et al., 1996, Gene Therapy 3 : 448-457.
Langle-Rouault et al. 1998. J. Virol. 72:6181-6185.
Mahato, R.I et al. 1999 Cur~r~e>zt Opinions in Molecular Therapeutics 1, 226-243.
Meyer, O. et aI. (2000) Gene Therapy 7:1606-1611.
Olson, F et al., 1979 BiochirrZ. BioplZys. Acta 557, 19-23.
Planck, C et al., 1994, J. Biol. Chenz 269, 12918-12924.
Wyman, T.B et al., 1997, Biochemistry 36 : 3008-3017 SEQUENCE LISTING
<110> Transgene S.A.
<120> Complex for transferring an anionic substance of interest into a cell.
<130>
<140>
<141>
<160> 6 <170> PatentIn Ver. 2.1 <210> 1 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: mutPep <400> 1 Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa 5er Leu Trp Xaa Leu Leu Leu Xaa Ala <210> 2 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: PPTG1 <400> 2 Gly Leu Phe Lys Ala Leu Leu Lys Leu Leu Lys Ser Leu Trp Lys Leu Leu Leu Lys Ala <210> 3 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: JTS-1 <400> 3 IO G1y Leu Phe Glu Ala Leu Leu Glu Leu Leu Glu Ser Leu Trp Glu Leu Leu Leu Glu A1a 15 <210> 4 <211> 40 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: JTS-1-K13 <400> 4 Gly Leu Phe Glu Ala Leu Leu Glu Leu Leu Glu Ser Leu Trp Glu Leu Leu Leu Glu Ala Cys Cys Tyr Lys Ala Lys Lys Lys Lys Lys Lys Lys Lys Trp Lys Lys Lys Lys Gln 5er <210> 5 <211> 30 <212> PRT
<213> Artificial Sequence 5 <220>
<223> Description of Artificial Sequence: KALA
<400> 5 Trp Glu A1a Lys Leu Ala Lys Ala Leu Ala Lys Ala Leu Ala Lys His Leu Ala Lys Ala Leu Ala Lys Ala Leu Lys IS Ala Cys Glu Ala <210> 6 <211> 20 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial 5equence:'ppTG20 <400> 2 2$ Gly Leu Phe Arg Ala Leu Leu Arg Leu Leu Arg Ser Leu Trp Arg Leu Leu Leu Arg Ala 30 <210> 7 <21l> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG21 G1y-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala <210> 8 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG22 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Cys <210> 9 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG23 Cys-Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala <210> 10 <211> 22 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG24 Cys-G1y-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-A1a-Cys <210> 11 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG25 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Pro-Lys-Lys-Lys-Arg-Lys-Val-Glu-Asp <210> 12 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG26 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-G2y-Gly-Gly-Pro-Lys-Thr-Lys-Arg-Lys-Val-Glu-Asp <210> l3 <211> 20 .
<212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG27 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-,Leu-Leu-Lys-Ala-Gly-Gly-Gly-Asp-Glu-Val-Lys-Arg-Lys-Lys-Lys-Pro <210> 14 ' <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG28 Gly-Leu-Phe-Lys-Lys-Leu-Leu-Lys-Leu-Leu-Lys-Lys-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala <210> 15 <221> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description.of Artificial Sequence:ppTG29 Gly-Leu-Phe-Arg-Arg-Leu-Leu-Arg-Leu-Leu-Arg-Arg-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Ala <210> 16 -<211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG30 Gly-Ile-Phe-Lys-Ala-Ile-Ile-Lys-Ile-Ile-Lys-Ser-Ile-Trp-Lys-Ile-Ile-Ile-Lys-Ala <210> 17 <211> 20 <212> PRT -<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG31 ..
G1y-Ile-Phe-Arg-Ala-Ile-Ile-Arg-Ile-Ile-Arg-Ser-Ile-Trp-Arg-I12-I1e-Ile-Arg-Ala <210> 18 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG32 Gly-Val-Phe-Lys-Ala-Val-Val-Lys-Val-Val-Lys-Ser-Val-Trp-Lys-Val-Val-Val-Lys-Ala <210> 19 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG33 Gly-Val-Phe-Arg-Ala-Val-Val-Arg-Val-Val-Arg-Ser-Val-Trp-Arg-Val-Val-Val-Arg-Ala <210> 20 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG20-D-configuration Gly-Leu-Phe-Arg-Ala-Leu-Leu-Arg-Leu-Leu-Arg-Ser-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Ala IS
Example 7: In vivo experiments 60 ~.g or 30~,g of the plasmid pTG11236 were mixed with peptide ppTGl and/or with a pcTG90 l DOPE 1:2 mixture in 2501 5% glucose. A .fter 20 min incubation at room temperature, the complexes were intravenously injected into B6SJL mice. Mice were sacrificed at day 1. The lungs were recovered, total protein was extracted and luciferase activity was analysed.
The results are shown in Figure 7.
Figure 7 shows that gene expression into the lung can be achieved with complexes comprising pTGI 1236 and ppTG1 (in 5 out of 5 mice). The presence of ppTGl in complexes further comprising cationic lipids improved gene expression by a factor of 10.
Example 8: Transfection efficiency- Effect of JTS-1 JTSl was dissolved to lmg/ml in 1mM NaOH and mixed with DNA diluted in 5%
glucose. ppTGl was then added to this solution. The pcTG90/DOPE ppTG1 mixtures were prepared as described in Example 6.
Transfection assays were performed on HeLa cells with SOng of plasmid as described in Example 6.
The results are shown on Figure 8.
Figure 8 shows that pTG11236 cornplexed with 0.9~.g of ppTGl and O.l~.g of JTS1 (final charge ratio 5) increased luciferase activity by a factor of about 10 in comparison with the best formulation of ppTGl/pcTG90/DOPE (final charge ratio 5, ppTGl contributing a charge ratio of 2 (+/-), and by a factor of about 1000 in comparison with pcTG90/DOPE alone at a final charge ratio of 5.
ppTGll plasmid DNA complexes with a final charge ratio of 1-2 mediate e~cient transfection of a variety of cell lines. The e~ciency is comparable to, or superior to, transfection levels observed with complexes comprising Lipofectin, PEI, or multicomponent peptide complexes according to Gottschallc et a1.,1996.
Examples Summary In vitro The peptide ppTGl, alone or complexed with plasmid DNA, destabilizes e~ciently POPC/Chol (3:2, mol:mol) liposomes, while ICALA shows no activity on this type of Iiposomes.
The analysis of gene transfer efficiencies was expanded to the human tumor cell lines WiDr, MDA-MB-435S, SW480 and LoVo. All these cell lines were successfully t<-ansfected with ppTGl/DNA complexes.
Transfection efficiency with ppTGl/plasmid complexes was not diminished in the presence of Bafilomycin A.
This indicates that gene transfer does not depend on the acidification of the endosomes.
Various derivatives of ppTGl were designed. All these peptides (see Materials and Methods) were capable to retard the migration of plasmid DNA in an agarose gel at pHB, except ppTG21 (Lys~His) which binds plasmid DNA at pHS. ppTG20 (Lys~Arg) and ppTG21 were comparable to ppTGl with respect to their liposome leakage activity on POPC/Chol liposomes. Transfection efficiency with ppTG20 was comparable to that of ppTGl, while transfection efficiency with ppTG21 was strongly reduced. The peptides ppTG28 and ppTG29, with two additional basic amino acid residues were comparable to ppTGl and ppTG20 in liposome leakage and gene transfer assays. Replacement of Leu by Ile or Val diminished liposome leakage activity (ppTG32 and ppTG33), and diminished gene transfer efficiency in vitro (ppTG30, ppTG3l, ppTG32 and ppTG33). ppTGl derivatives with wild type or mutated basic nuclear localisation signal (SV40 large T antigen) at the C-terniinus retained liposome leakage and gene transfer efficiency. The addition of Cys residues N- and/or C-terminal of ppTGl did not abolish liposome leakage activity, gene transfer efficiencies were reduced. ppTGl and ppTG20 derivatives with polyethylenglycol (PEG)2000 covalently linked to the N-terminus of the peptides retained the liposome leakage activity, gene transfer efficiencies, however, were strongly reduced. Further tested was a ppTG20 derivative with all amino acids in D-configuration (ppTG20-D).
Liposome leakage and gene transfer activities with this peptide were retained.
In vivo:
Complexes of plasmid DNA with the peptides ppTG20 and ppTG20-D, intravenously injected into mice, led to gene transfer efficiencies in the lung even higher than with ppTGl. Gene transfer, however, was low with JTS1-K13, and was even undetectable with KALA. The use of ppTG32 drastically reduced gene transfer efficiency, indicating that besides DNA-binding activity, liposome leakage activity was crucial for successful gene transfer in vivo. Gene transfer with ppTGl and ppTG20 was at least comparable to gene transfer with the optimized lipoplexes formed with pcTG90/DOPE 1:2 [+/-] 10.
Reporter gene activity was highest at day 1 after injection followed by a reduction over time.
Re-administration at day 14 led to a renewal of reporter gene activity.
Example 9 : DNA binding activity ppTGl derivatives as they are indicated in Materials and Methods, were tested for their capacity to bind plasmid DNA by gel retardation assays.
The results are summarized in the following Table l DNA binding Liposome Transfection Gene transfer activity leakage if?
assay in vita~o vivo - + +
ppTG 1 + , -+ ++
ppTG20 + at pHS; - + +/- - at pH5 at pH8 ppTG21 + + +/- +/-ppTG22 + +/- . +/- .:
ppTG23 + +/
ppTG24 + +!- + +/_ ppTG25 + +/- + +/-ppTG26 + +/- + +/-ppTG27 + +/- + _ ppTG28 + + + nd ppTG29 + + +/- _ ppTG30 + +/- +/- nd ppTG31 + _ _ ppTG32 + - - nd ppTG33 + + + nd ppTGl non-purified PEG-ppTG + + _ I non-purified PEG-ppTG20 + + _ -non-purified ppTG20-D + + + -H-~
The results presented in Table 1 indicate that all peptides were capable to bind to plasmid DNA at pHB, except for ppTG21 (Lys~His). It has been, however, shown that ppTG21 can bind DNA at pHS. This result can be explained with the protonation status of the histidine residues (pK 6) and suggests that binding between plasmid DNA and ppTGl-derived peptides is mainly due to electrostatic interaction.
Example 10: Liposome leakage activity Liposome leakage activities were analyzed on liposomes consisting of POPG and cholesterol at a molar ratio of 3:2 (mol/mol). Cholesterol is an important ubiquitous component of natural membranes determining their fluidity. Tests with such liposomes are thus closer to in vivo conditions than tests with pure POPC liposomes. The peptides ppTGl, JTS-1-K13, KALA and JTS-1 were compared at pH5 and pH7.
The results are presented iii Figure 9A.
Figure 9A clearly shows that KALA could not liberate ~ calcein from cholesterol(chol)-containing liposomes. JTS-1-K13 was also impeded in calcein release at pH7, while low level release occurred at pHS. The pH-sensitive peptide JTS-1 showed high lysis activity at pHS, at pH7 this activity was reduced. ppTGl could efficiently liberate calcein from POPC/chol liposomes at pH5 and pH7.
Complexes of ppTGl with plasmid DNA pTG11236 were tested for liposome lealcage activity on POPC/chol 3:2 liposomes.
The results are shown in Figure 9B.
Figure 9B clearly shows that at an excess of peptide over plasmid DNA (P/N 5 or 10), liposome leakage was comparable to free ppTGl. At charge ratios (P/N) of 1 or 0.8, conditions under which theoretically all peptides are engaged in binding to plasmid DNA, leakage activity was slightly reduced. This observation could be explained such that DNA-binding and membrane destructive activities require different structural properties.
The series of ppTGl derivatives as they are listed in Materials and Methods was tested for liposome leakage activity on PO.PC/chol 3:2 liposomes at pH7. The results are shown in Figure 9C (ppTG20 and ppTG21), Figure 9D (ppTG22-ppTG24 and ppTG20-D), Figure 9 E (ppTG25-ppTG27,), Figure 9F (ppTG28 -ppTG33), and Figure 9 G (PEG-ppTGl and PEG-ppTG20) are summarized in Table 1 The Figures 9C, 9D and 9G clearly show that the replacement of Lys in ppTG 1 by Arg or His, ppTG20 in D-configuration or the addition of PEG2000 N-terminally to ppTGl or ppTG20 did not reduce the membrane destructive activities of the resulting peptides. Figure 9F demonstrates that the addition of two basic amino acids (ppTG28 and ppTG29), or the replacement of Leu by Ile (ppTG3I) slightly reduced Iiposome Leakage activity.
Replacement of Leu by Val significantly reduced liposome leakage activity (ppTG32 and ppTG33). Figure 9D
indicates that additional Cys residues did not affect liposome leakage activity when added to the C-terminus, and slightly reduced membrane destruction, when added to the N-terminus (ppTG23 and ppTG24). Figure 9E clearly demonstrates that leakage activities with ppTGl linked to wild type (wt), reversed or mutated NLS were significant, but below the maximal value obtained with ppTGl.
5 Example 11: Transfection efficiency in vitro The transfection efficiencies with plasmid / ppTGl complexes were tested in the human tumor cells WiDr, MDA-MB-4355, SW480 and LoVo (ATCC) in comparison to lipofectin, PEI and pcTG90/DOPE (1:l) [+/-) 5. Luciferase activities at day 1 after transfection are shown in Figure 10A.
As Figure 10A clearly shows, ppTGl / plasmid complexes can efficiently transfect human tumor cell 10 , lines, especially SW480 cells.
The series of ppTGl derivatives listed in Material and Methods were tested for their gene transfer efficiencies in Hela cells. 6x104 cells were transfected with 50 ng pTG11236 complexed with increasing amounts of peptide. Luciferase activity was analyzed day 1 after transfection.
The results are shown in Figure lOB (ppTG20, ppTG21), Figure lOC(ppTG25, ppTG26, ppTG27), Figure lOD (ppTG28 to ppTG33), Figure 1S IOE (PEG-ppTGl and PEG-ppTG20), Figure lOF (ppTG22 to ppTG24) and Figure lOG (ppTG20-D). All results are also summarized in Table 1.
Figure lOB clearly shows that the replacement of Lys by Arg residues did not change the transfection efficiency, while replacing Lys by His resulted in significant reduction.
Figure lOC demonstrates that the C-terminal addition of SV40 large T antigen-derived NLS peptide did not influence the efficiency of gene transfer.
20 Figure lOD shows that the addition of two basic amino acid residues (ppTG28 and ppTG29) did not change iransfection efficiencies. The replacement of Leu by Ile (ppTG30 and ppTG31), however, reduced the efficiency of gene transfer, and the replacement of Leu by Val reduced this activity even further. N-terminal, covalent addition of PEG-2000 reduced transfection efficiencies (Figure 10E), as well as Cys residues linked to the N
and/or C-terminus of ppTGl (Figure IOF). ppTG20-D, however, was as e~cient as ppTGl in gene transfer 25 studies (Figure 10G).
Example 11: Studies on the mechanism of gene transfer with ppTGl Bafilomycin A is a specific inhibitor of the vacuolar proton pump. Treatment with Bafilomycin inhibits the acidification of late endosomes. HeLa cells were i~~eated with Bafilomycin A (175 nM) 30 min before and throughout the transfection (I h incubation with transfection complexes in the absence of serum). 6xI04 cells 30 were transfected with 150 ng pTG11236 using PEl or ppTGl: The luciferase assay was performed I day after transfection.
The presence of Bafilomycin A did not influence the transfection efficiency with ppTGl, while transfection with PEI was 400-fold diminished (data not shown). This indicates that, if ppTGl / plasmid complexes are taken up by endosomes they are released via a pH-independent mechanism.
Example 12: In vivo studies The potential of gene transfer with mono-component peptide vectors was investigated in vivo. Fifty or sixty p.g of the luciferase expression plasmid pTG11236 were complexed with pcTG90 / DOPE (1:2) [+/-] 10 in 250 p1 5% glucose (Meyer et al. 2000). The resulting lipoplex vector served as reference for gene transfer studies with pTG11236 complexed with ppTGl, ppTG20 and ppTG32 in 250 p1 5%
glucose. Five mice per group were intravenously injected, the animals were sacrificed at day 1 after injection. Lungs were tested for luciferase activity. The results are shown in FIGURE l 1.
Figure 11A clearly demonstrates that gene transfer with ppTGl complexes (at charge ratios [+/-]
between 2 and 3) led to luciferase activities in the lung which were comparable to those obtained with the lipoplexes. Gene transfer with ppTG20 showed a general tendency to be more efficient and less toxic than ppTGl, while complexes with the peptide ppTG32 did not lead to detectable reporter gene expression. This implies that membrane-destructive activity is necessary for successful gene delivery with ppTGl-derived peptides.
Complexes with ppTGl were compared to those formed with JTS-1-K13, KALA, K8-NLSmIJTS-1 and ppTG20. KALA and K8-NLSm/JTS-1 were inefficient (data not shown). Luciferase activities observed in the lung at day 1 after intravenous injection of 50 p,g pTGl 1236 complexed with ppTGl, JTS-1-KI3 and ppTG20 are shown in Figure 11B. It appears that gene transfer with ppTGl is better than with JTS-1-K13. Gene transfer with ppTG20 shows the reproducible tendency to give rise to higher gene expression and to be less toxic, than ppTG 1.
Gene expression obtained with ppTGl / plasmid complexes dropped 3 days after injection to background levels (data not shown). Re-administration of ppTGl/plasmid complexes at day 14 after the first injection led to re-appearance of reporter gene expression. At day 3 the system was still refractory (F ~aure I 1 C).
Figure 11D confirms that ppTG20 gives rise to more efficient gene transfer than ppTGl, while ppTG20-D seems to be even more efficient than ppTG20.
These data show for the first time mono-component peptide vectors which enable significant gene transfer in vivo.
Example 13: In vivo studies : ppTG21 as non-condensing transfection enhancer after intratumoral injection Materials and Methods 4x105 RENCA cells (murine kidney tumor cells, ATCC) were injected subcutaneously into B6D2 mice to provoke tumor growth. When tumors reached a size of approximatively 30 mm', 30 ~1 of a 5% glucose solution, containing the luciferase expression plasmid DNA pTGl 1236 in presence or absence of peptide of the present invention were injected into the tumors. Mice were sacrificed at day 1 after injection, tumors were recovered and homogeinized. Luciferase activity was analyzed and expressed as RLU/g tumor.
32' Results The peptide ppTG21 was tested for its capacity to enhance plasmid transfer after intratumoral injection in RENCA tumor-bearing mice. Ten ~.g of the luciferase expression plasmid pTGI1236 were mixed with increasing amounts (i.e.. 0.1, 0.6, 3 or IS micrograms) of ppTG21 at pH 8 (10 mM Tris pH8). Under these conditions ppTG21 is not capable to bind to plasmid DNA (see above). In paralell, experiments have been ' conducted in identical conditions by administering the same plasmid DNA
in~the presence of increasing amounts (i.e. 0.1°/, 0.2%, 0.4% and 0.6 %) of HPC (Hexadecyl-phospho-choline).
Plasmid DNA alone, or plasmid DNA
in the presence of HPC or ppTG21 were intratumorally injected in similar conditions. Next day, luciferase activities in the tumors was determined (RLU/g tumour). The results are shown in Figure 12.
Figure 12 clearly indicates that co-injection of 10 ~.g of pTG11236 with 0.6 ~,g ppTG21 leads to an increase ~of apparent gene expression. This improvement is comparable to results obtained with the non-condensing lipid HPC.
Cited references Bartlett, G.R. 1959, J. Biol. Chem. 234, 466-469.
Gottschalk, S. et al., 1996, Gene Therapy 3 : 448-457.
Langle-Rouault et al. 1998. J. Virol. 72:6181-6185.
Mahato, R.I et al. 1999 Cur~r~e>zt Opinions in Molecular Therapeutics 1, 226-243.
Meyer, O. et aI. (2000) Gene Therapy 7:1606-1611.
Olson, F et al., 1979 BiochirrZ. BioplZys. Acta 557, 19-23.
Planck, C et al., 1994, J. Biol. Chenz 269, 12918-12924.
Wyman, T.B et al., 1997, Biochemistry 36 : 3008-3017 SEQUENCE LISTING
<110> Transgene S.A.
<120> Complex for transferring an anionic substance of interest into a cell.
<130>
<140>
<141>
<160> 6 <170> PatentIn Ver. 2.1 <210> 1 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: mutPep <400> 1 Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa 5er Leu Trp Xaa Leu Leu Leu Xaa Ala <210> 2 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: PPTG1 <400> 2 Gly Leu Phe Lys Ala Leu Leu Lys Leu Leu Lys Ser Leu Trp Lys Leu Leu Leu Lys Ala <210> 3 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: JTS-1 <400> 3 IO G1y Leu Phe Glu Ala Leu Leu Glu Leu Leu Glu Ser Leu Trp Glu Leu Leu Leu Glu A1a 15 <210> 4 <211> 40 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence: JTS-1-K13 <400> 4 Gly Leu Phe Glu Ala Leu Leu Glu Leu Leu Glu Ser Leu Trp Glu Leu Leu Leu Glu Ala Cys Cys Tyr Lys Ala Lys Lys Lys Lys Lys Lys Lys Lys Trp Lys Lys Lys Lys Gln 5er <210> 5 <211> 30 <212> PRT
<213> Artificial Sequence 5 <220>
<223> Description of Artificial Sequence: KALA
<400> 5 Trp Glu A1a Lys Leu Ala Lys Ala Leu Ala Lys Ala Leu Ala Lys His Leu Ala Lys Ala Leu Ala Lys Ala Leu Lys IS Ala Cys Glu Ala <210> 6 <211> 20 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial 5equence:'ppTG20 <400> 2 2$ Gly Leu Phe Arg Ala Leu Leu Arg Leu Leu Arg Ser Leu Trp Arg Leu Leu Leu Arg Ala 30 <210> 7 <21l> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG21 G1y-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala <210> 8 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG22 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Cys <210> 9 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG23 Cys-Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala <210> 10 <211> 22 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG24 Cys-G1y-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-A1a-Cys <210> 11 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG25 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-Gly-Gly-Gly-Pro-Lys-Lys-Lys-Arg-Lys-Val-Glu-Asp <210> 12 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG26 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala-G2y-Gly-Gly-Pro-Lys-Thr-Lys-Arg-Lys-Val-Glu-Asp <210> l3 <211> 20 .
<212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG27 Gly-Leu-Phe-Lys-Ala-Leu-Leu-Lys-Leu-Leu-Lys-Ser-Leu-Trp-Lys-Leu-,Leu-Leu-Lys-Ala-Gly-Gly-Gly-Asp-Glu-Val-Lys-Arg-Lys-Lys-Lys-Pro <210> 14 ' <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG28 Gly-Leu-Phe-Lys-Lys-Leu-Leu-Lys-Leu-Leu-Lys-Lys-Leu-Trp-Lys-Leu-Leu-Leu-Lys-Ala <210> 15 <221> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description.of Artificial Sequence:ppTG29 Gly-Leu-Phe-Arg-Arg-Leu-Leu-Arg-Leu-Leu-Arg-Arg-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Ala <210> 16 -<211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG30 Gly-Ile-Phe-Lys-Ala-Ile-Ile-Lys-Ile-Ile-Lys-Ser-Ile-Trp-Lys-Ile-Ile-Ile-Lys-Ala <210> 17 <211> 20 <212> PRT -<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG31 ..
G1y-Ile-Phe-Arg-Ala-Ile-Ile-Arg-Ile-Ile-Arg-Ser-Ile-Trp-Arg-I12-I1e-Ile-Arg-Ala <210> 18 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG32 Gly-Val-Phe-Lys-Ala-Val-Val-Lys-Val-Val-Lys-Ser-Val-Trp-Lys-Val-Val-Val-Lys-Ala <210> 19 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG33 Gly-Val-Phe-Arg-Ala-Val-Val-Arg-Val-Val-Arg-Ser-Val-Trp-Arg-Val-Val-Val-Arg-Ala <210> 20 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Description of Artificial Sequence:ppTG20-D-configuration Gly-Leu-Phe-Arg-Ala-Leu-Leu-Arg-Leu-Leu-Arg-Ser-Leu-Trp-Arg-Leu-Leu-Leu-Arg-Ala IS
Claims (11)
1 . A composition comprising a) at least one peptide selected from the group consisting of:
(i) a peptide comprising or consisting the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y), and (ii) a peptide comprising or consisting of the amino acid sequence Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala (SEQ ID NO :7) wherein said peptide is at a ph over 6 in said composition, and, b) at least one substance of interest.
(i) a peptide comprising or consisting the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y), and (ii) a peptide comprising or consisting of the amino acid sequence Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala (SEQ ID NO :7) wherein said peptide is at a ph over 6 in said composition, and, b) at least one substance of interest.
2. The composition of claim 1 wherein said substance of interest is to be transferred into a cell.
3 . The composition of claims 1 to 2 wherein said substance of interest is nucleic acid.
4 . The composition of claims 1 to 3 wherein said composition when administered into tissue of a vertebrate is able to improve the transfer of said nucleic acid into a cell.
5. The composition of claim 3, wherein said nucleic acid is a naked nucleic acid.
6. The composition of claims 1 to 5, wherein the substance of interest concentration ranges from about 0.01 mM to about 1 mM.
7. The composition of claims 1 to 6, wherein it further comprises a pharmaceutically acceptable injectable carrier.
8. Use of peptide for the preparation of a composition for transferring at least one substance of interest into a cell wherein said peptide is selected from the group consisting of:
(i) a peptide comprising or consisting of the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y); and (ii) a peptide comprising or consisting of the amino acid sequence Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala (SEQ ID NO :7) wherein said peptide is at pH over 6 in said composition.
(i) a peptide comprising or consisting of the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y); and (ii) a peptide comprising or consisting of the amino acid sequence Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala (SEQ ID NO :7) wherein said peptide is at pH over 6 in said composition.
9. The use of claim 8 wherein said substance of interest is nucleic acid.
10. A process for transferring a substance of interest into cells wherein said process comprises contacting said cells with a composition of claim 1- 7.
11. Use of peptide for improving the transfer of a substance of interest into a cell wherein said peptide is selected from the group consisting of :
(i) a peptide comprising or consisting of the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y); and (ii) a peptide comprising or consisting of the amino acid sequence Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala (SEQ ID N0:7) wherein said peptide is at pH over 6 in said composition.
(i) a peptide comprising or consisting of the amino acid sequence Gly Leu Phe Xaa Ala Leu Leu Xaa Leu Leu Xaa Ser Leu Trp Xaa Leu Leu Leu Xaa Ala (SEQ ID NO:1) wherein Xaa is selected independently of one another from the group consisting of Alanine (Ala or A), Isoleucine (Ile or I), Leucine (Leu or L), Phenylalanine (Phe or F), Proline (Pro or P), Tryptophane (Trp or W), Valine (Val or V), Asparagine (Asn or N), Cysteine (Cys or C), Glutamine (Glu or Q), Glycine (Gly or G), Serine (Ser or S), Threonine (Thr or T) and Tyrosine (Tyr or Y); and (ii) a peptide comprising or consisting of the amino acid sequence Gly-Leu-Phe-His-Ala-Leu-Leu-His-Leu-Leu-His-Ser-Leu-Trp-His-Leu-Leu-Leu-His-Ala (SEQ ID N0:7) wherein said peptide is at pH over 6 in said composition.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01440049 | 2001-02-27 | ||
EP01440049.3 | 2001-02-27 | ||
US27798201P | 2001-03-23 | 2001-03-23 | |
US60/277,982 | 2001-03-23 | ||
EP01440133.5 | 2001-05-15 | ||
EP01440133 | 2001-05-15 | ||
US29318701P | 2001-05-25 | 2001-05-25 | |
US60/293,187 | 2001-05-25 | ||
PCT/EP2002/001646 WO2002074794A2 (en) | 2001-02-27 | 2002-02-15 | Compositions useful in gene therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2439315A1 true CA2439315A1 (en) | 2002-09-26 |
Family
ID=27440161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002439315A Abandoned CA2439315A1 (en) | 2001-02-27 | 2002-02-15 | Compositions useful in gene therapy |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1363675A2 (en) |
JP (1) | JP2004534004A (en) |
CA (1) | CA2439315A1 (en) |
WO (1) | WO2002074794A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8242081B2 (en) | 2005-12-06 | 2012-08-14 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
DE602005025141D1 (en) * | 2005-12-06 | 2011-01-13 | Centre Nat Rech Scient | Cell-penetrating peptides as carriers for molecules |
CA2805403A1 (en) * | 2009-07-10 | 2011-01-13 | Trustees Of Tufts College | Bioengineered silk protein-based nucleic acid delivery systems |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2222550A1 (en) * | 1995-06-07 | 1996-12-19 | Baylor College Of Medicine | Nucleic acid transporters for delivery of nucleic acids into a cell |
EP1161957A1 (en) * | 2000-05-26 | 2001-12-12 | Transgene S.A. | Complex for transferring an anionic substance of interest into a cell |
-
2002
- 2002-02-15 EP EP02716783A patent/EP1363675A2/en not_active Withdrawn
- 2002-02-15 JP JP2002573802A patent/JP2004534004A/en active Pending
- 2002-02-15 CA CA002439315A patent/CA2439315A1/en not_active Abandoned
- 2002-02-15 WO PCT/EP2002/001646 patent/WO2002074794A2/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2002074794A2 (en) | 2002-09-26 |
JP2004534004A (en) | 2004-11-11 |
EP1363675A2 (en) | 2003-11-26 |
WO2002074794A3 (en) | 2003-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906484B2 (en) | Complex for transferring an anionic substance into a cell | |
US20020055174A1 (en) | Complex for transferring an anionic substance of interest into a cell | |
AU781356B2 (en) | Viral core protein-cationic lipid-nucleic acid-delivery complexes | |
JP3525393B2 (en) | Lipids and their use eg in liposomes | |
Zhang et al. | Hybrids of nonviral vectors for gene delivery | |
US20070098702A1 (en) | Recombinant protein polymer vectors for systemic gene delivery | |
Gjetting et al. | Effective Nanoparticle‐based Gene Delivery by a Protease Triggered Charge Switch | |
EP1161957A1 (en) | Complex for transferring an anionic substance of interest into a cell | |
WO2002088370A2 (en) | Autogene nucleic acids encoding a secretable rna polymerase | |
CA2439315A1 (en) | Compositions useful in gene therapy | |
US20040132188A1 (en) | Use of non-complexing peptides for the preparation of a composition for transfection of a polynucleotide into a cell and compositions useful in gene therapy | |
AU2002247723A1 (en) | Compositions useful in gene therapy | |
EP2968598A2 (en) | Treatment for exposure to nerve agent | |
US20050261214A1 (en) | Complexes for transferring substances of interest into a cell | |
AU770607B2 (en) | Complex for transferring an anionic substance of interest into a cell | |
EP0987029B1 (en) | Use of a catonic polymer for the preparation of a complex with nucleic acid and related compositions | |
Hwang et al. | Recombinant mussel adhesive protein as a gene delivery material | |
EP1052288A1 (en) | Complex for transferring an anionic substance of interest into a cell | |
WO2000037664A1 (en) | Method for preparing suspension of stable posiplexes | |
EP1006197A1 (en) | Use of an immuno complex for the preparation of a therapeutic composition useful for transfecting a polynucleotide into macropinocyte cells | |
Christoph Uherek et al. | Modular Fusion Proteins for Receptor-mediated Gene Delivery | |
Cationic | 479. KLN-47, a Safe Lipophosphoramide Reagent, Efficiently Transfects (> 100 kb) Large Plasmids into Epithelial Cells | |
AU2002342319A1 (en) | Complexes for transferring substances if interest into a cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |