CA2406087A1 - New lipid binding protein 2 - Google Patents
New lipid binding protein 2 Download PDFInfo
- Publication number
- CA2406087A1 CA2406087A1 CA002406087A CA2406087A CA2406087A1 CA 2406087 A1 CA2406087 A1 CA 2406087A1 CA 002406087 A CA002406087 A CA 002406087A CA 2406087 A CA2406087 A CA 2406087A CA 2406087 A1 CA2406087 A1 CA 2406087A1
- Authority
- CA
- Canada
- Prior art keywords
- polypeptide
- polynucleotide
- sequence
- seq
- leu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
New Lipid Binding Protein 2 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing New Lipid Binding Protein 2 polypeptides and polynucleotides in diagnostic assays.
Description
New Lipid Binding Protein 2 Field of the Invention This invention relates to newly identified polypeptides and s polynucleotides encoding such polypeptides sometimes hereinafter referred to as "New Lipid Binding Protein 2 (NLIBP2)", to their use in diagnosis and in identifying compounds that may be agonists, antagonists that are potentially useful in therapy, and to production of such polypeptides and polynucleotides.
Background of the Invention The drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics", that is, high throughput genome- or gene-based biology. This approach as a means to identify ~s genes and gene products as therapeutic targets is rapidly superceding earlier approaches based on "positional cloning". A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.
2o Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug 2s discovery.
Summary of the Invention The present invention relates to New Lipid Binding Protein 2, in particular New Lipid Binding Protein 2 polypeptides and New Lipid Binding Protein 2 3o polynucleotides, recombinant materials and methods for their production.
Such polypeptides and polynucleotides are of interest in relation to methods of treatment of certain diseases, including, but not limited to, cancer, bacteremia, endotoximia, meningococcemia, hemorrhagic trauma, partial hepatectomy, severe peritoneal infections, cystic fibrosis, coronary heart disease, artheriosclerosis hereinafter referred to as " diseases of the s invention". In a further aspect, the invention relates to methods for identifying agonists and antagonists (e.g., inhibitors) using the materials provided by the invention, and treating conditions associated with New Lipid Binding Protein 2 imbalance with the identified compounds. In a still further aspect, the invention relates to diagnostic assays for detecting to diseases associated with inappropriate New Lipid Binding Protein 2 activity or levels.
Description of the Invention In a first aspect, the present invention relates to New Lipid Binding is Protein 2 polypeptides. Such polypeptides include:
(a) a polypeptide encoded by a polynucleotide comprising the sequence of SEQ ID N0:1;
(b) a polypeptide comprising a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence of SEQ ID N0:2;
(c) a polypeptide comprising the polypeptide sequence of SEQ ID N0:2;
(d) a polypeptide having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence of SEQ ID N0:2;
(e) the polypeptide sequence of SEQ ID N0:2; and ~s (f) a polypeptide having or comprising a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polypeptide sequence of SEQ ID N0:2;
(g) fragments and variants of such polypeptides in (a) to (f).
Polypeptides of the present invention are believed to be members of the ;o Lipid Binding Proteins, such as lipopolysaccharide-binding protein (LBP) or bactericidiallpermeability-increasing protein (BPI). They are therefore of interest because lipid binding proteins show high-affinity binding to lipopolysaccharide (LPS), a glycolipid found in the outer membrane of gram negative bacteria. Accordingly, lipid binding proteins play a decisive role in the host defense against bacterial infections.
s Further, all of the known members of the protein family of lipid binding proteins are able to bind phospholipids. LBP, cholesteryl ester transfer protein (CETP) and phospholipid-transfer protein (PLTP) can also bind cholesterol and high-density lipoproteins (HDL). HDL plasma levels are inversely correlated with coronary heart disease and artherosclerosis. Lipid to binding and transfer proteins, such as CETP and PLTP, facilitate the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into HDL. Accordingly, members of the family of lipid binding proteins are thought to play a role in the prevention of these disease.
Further, LBP is an acute phase serum protein secreted by the liver that is catalyses the transfer of LPS monomers to CD14 thereby facilitating a broad spectrum of cellular and tissue responses leading to antibacterial and proinflammatory activities. BPI is a 456-residue cationic protein produced by polymorphonuclear leukocytes (PMN) and is stored in the primary granules of these cells. The biological effects of isolated BPI are linked to 2o complex formation with LPS. Binding of BPI to live bacteria via LPS
causes immediate growth arrest. Complex formation of BPI with cell-associated or cell-free LPS inhibits all LPS-induced host cell responses.
BPI-blocking antibodies abolish the potent activity of whole PMN lysates and inflammatory fluids against BPI-sensitive bacteria. The antibacterial 2s and the anti-endotoxin activities of BPI are fully expressed by the amino terminal half of the molecule. These properties of BPI have prompted preclinical and subsequent clinical testing of recombinant amino-terminal fragments of BPI. In animals, human BPI protein products protect against lethal injections of isolated LPS. Phase I trials in healthy human ~o volunteers and multiple Phase I/II clinical trials have been completed or are in progress (severe pediatric meningococcemia, hemorrhagic trauma, partial hepatectomy, severe peritoneal infections, and cystic fibrosis) and phase III trials (meningococcemia and hemorrhagic trauma) have been initiated. In none of >900 normal and severely ill individuals have issues ~s of safety or immunogenicity been encountered. Preliminary evidence points to overall benefit in BPI-treated patients. These results suggest that BPI, but also other lipid binding protein such as the present invention, may have a place in the treatment of life-threatening infections and conditions associated with bacteremia and endotoxemia.
The amino acid sequence of NLIBP2 shows significant homology to other members of the protein family of lipid binding proteins such as LBP, BPI , CETP and NLiBP1. NLIBP2 contains several amino acids which are conserved betwen the other members of the protein family of lipid binding proteins such as Prolin-20, Cystein-138, Cystein-175, Prolin-212, Prolin-322, Prolin-428 which corresponds e.g. to the amino acids Prolin-28.
Cystein-159, Cystein-198, Prolin-236, Prolin-347, Prolin-451 in LBP, to respectively.. Further, NLIBP2 shows a similar exon/intron organisation to LBP, BPI, NLIBP1 and CETP, suggesting that (i) NLIBP2 like other members of the protein family of lipid binding proteins, has evolved from a common primordial gene and (ii) that these proteins share similar functional properties.
A further aspect relates to the finding that NLIBP1 is down regulated in tumor tissues, e.g. in larynx carcinomas. This finding indicates a role of lipid binding proteins such as New Lipid Binding Protein 2 in mechanisms of immune escape of the tumor and as such gives a rationale for therapeutic interventions.
The biological properties of the New Lipid Binding Protein 2 are hereinafter referred to as "biological activity of New Lipid Binding Protein 2" or "New Lipid Binding Protein 2 activity". Preferably, a polypeptide of the present invention exhibits at least one biological activity of New Lipid Binding Protein 2.
Polypeptides of the present invention also includes variants of the aforementioned polypeptides, including all allelic forms and splice variants.
Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred variants are those in ;o which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acids are inserted, substituted, or deleted, in any combination.
Preferred fragments of polypeptides of the present invention include a polypeptide comprising an amino acid sequence having at least 30, 50 or ;; 100 contiguous amino acids from the amino acid sequence of SEQ ID
Background of the Invention The drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics", that is, high throughput genome- or gene-based biology. This approach as a means to identify ~s genes and gene products as therapeutic targets is rapidly superceding earlier approaches based on "positional cloning". A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.
2o Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug 2s discovery.
Summary of the Invention The present invention relates to New Lipid Binding Protein 2, in particular New Lipid Binding Protein 2 polypeptides and New Lipid Binding Protein 2 3o polynucleotides, recombinant materials and methods for their production.
Such polypeptides and polynucleotides are of interest in relation to methods of treatment of certain diseases, including, but not limited to, cancer, bacteremia, endotoximia, meningococcemia, hemorrhagic trauma, partial hepatectomy, severe peritoneal infections, cystic fibrosis, coronary heart disease, artheriosclerosis hereinafter referred to as " diseases of the s invention". In a further aspect, the invention relates to methods for identifying agonists and antagonists (e.g., inhibitors) using the materials provided by the invention, and treating conditions associated with New Lipid Binding Protein 2 imbalance with the identified compounds. In a still further aspect, the invention relates to diagnostic assays for detecting to diseases associated with inappropriate New Lipid Binding Protein 2 activity or levels.
Description of the Invention In a first aspect, the present invention relates to New Lipid Binding is Protein 2 polypeptides. Such polypeptides include:
(a) a polypeptide encoded by a polynucleotide comprising the sequence of SEQ ID N0:1;
(b) a polypeptide comprising a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence of SEQ ID N0:2;
(c) a polypeptide comprising the polypeptide sequence of SEQ ID N0:2;
(d) a polypeptide having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence of SEQ ID N0:2;
(e) the polypeptide sequence of SEQ ID N0:2; and ~s (f) a polypeptide having or comprising a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polypeptide sequence of SEQ ID N0:2;
(g) fragments and variants of such polypeptides in (a) to (f).
Polypeptides of the present invention are believed to be members of the ;o Lipid Binding Proteins, such as lipopolysaccharide-binding protein (LBP) or bactericidiallpermeability-increasing protein (BPI). They are therefore of interest because lipid binding proteins show high-affinity binding to lipopolysaccharide (LPS), a glycolipid found in the outer membrane of gram negative bacteria. Accordingly, lipid binding proteins play a decisive role in the host defense against bacterial infections.
s Further, all of the known members of the protein family of lipid binding proteins are able to bind phospholipids. LBP, cholesteryl ester transfer protein (CETP) and phospholipid-transfer protein (PLTP) can also bind cholesterol and high-density lipoproteins (HDL). HDL plasma levels are inversely correlated with coronary heart disease and artherosclerosis. Lipid to binding and transfer proteins, such as CETP and PLTP, facilitate the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into HDL. Accordingly, members of the family of lipid binding proteins are thought to play a role in the prevention of these disease.
Further, LBP is an acute phase serum protein secreted by the liver that is catalyses the transfer of LPS monomers to CD14 thereby facilitating a broad spectrum of cellular and tissue responses leading to antibacterial and proinflammatory activities. BPI is a 456-residue cationic protein produced by polymorphonuclear leukocytes (PMN) and is stored in the primary granules of these cells. The biological effects of isolated BPI are linked to 2o complex formation with LPS. Binding of BPI to live bacteria via LPS
causes immediate growth arrest. Complex formation of BPI with cell-associated or cell-free LPS inhibits all LPS-induced host cell responses.
BPI-blocking antibodies abolish the potent activity of whole PMN lysates and inflammatory fluids against BPI-sensitive bacteria. The antibacterial 2s and the anti-endotoxin activities of BPI are fully expressed by the amino terminal half of the molecule. These properties of BPI have prompted preclinical and subsequent clinical testing of recombinant amino-terminal fragments of BPI. In animals, human BPI protein products protect against lethal injections of isolated LPS. Phase I trials in healthy human ~o volunteers and multiple Phase I/II clinical trials have been completed or are in progress (severe pediatric meningococcemia, hemorrhagic trauma, partial hepatectomy, severe peritoneal infections, and cystic fibrosis) and phase III trials (meningococcemia and hemorrhagic trauma) have been initiated. In none of >900 normal and severely ill individuals have issues ~s of safety or immunogenicity been encountered. Preliminary evidence points to overall benefit in BPI-treated patients. These results suggest that BPI, but also other lipid binding protein such as the present invention, may have a place in the treatment of life-threatening infections and conditions associated with bacteremia and endotoxemia.
The amino acid sequence of NLIBP2 shows significant homology to other members of the protein family of lipid binding proteins such as LBP, BPI , CETP and NLiBP1. NLIBP2 contains several amino acids which are conserved betwen the other members of the protein family of lipid binding proteins such as Prolin-20, Cystein-138, Cystein-175, Prolin-212, Prolin-322, Prolin-428 which corresponds e.g. to the amino acids Prolin-28.
Cystein-159, Cystein-198, Prolin-236, Prolin-347, Prolin-451 in LBP, to respectively.. Further, NLIBP2 shows a similar exon/intron organisation to LBP, BPI, NLIBP1 and CETP, suggesting that (i) NLIBP2 like other members of the protein family of lipid binding proteins, has evolved from a common primordial gene and (ii) that these proteins share similar functional properties.
A further aspect relates to the finding that NLIBP1 is down regulated in tumor tissues, e.g. in larynx carcinomas. This finding indicates a role of lipid binding proteins such as New Lipid Binding Protein 2 in mechanisms of immune escape of the tumor and as such gives a rationale for therapeutic interventions.
The biological properties of the New Lipid Binding Protein 2 are hereinafter referred to as "biological activity of New Lipid Binding Protein 2" or "New Lipid Binding Protein 2 activity". Preferably, a polypeptide of the present invention exhibits at least one biological activity of New Lipid Binding Protein 2.
Polypeptides of the present invention also includes variants of the aforementioned polypeptides, including all allelic forms and splice variants.
Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred variants are those in ;o which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acids are inserted, substituted, or deleted, in any combination.
Preferred fragments of polypeptides of the present invention include a polypeptide comprising an amino acid sequence having at least 30, 50 or ;; 100 contiguous amino acids from the amino acid sequence of SEQ ID
NO: 2, or a polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids truncated or deleted from the amino acid sequence of SEQ ID NO: 2. Preferred fragments are biologically active fragments that mediate the biological activity of New Lipid Binding Protein 2, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also preferred are those fragments that are antigenic or immunogenic in an animal, especially in a human.
Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis;
therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.The polypeptides of the present invention may be in the form of the "mature" protein or may be a part of a larger protein such as a precursor or a fusion protein. It is 15 often advantageous to include an additional amino acid sequence that contains secretory or leader sequences, pro-sequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.
Polypeptides of the present invention can be prepared in any suitable o manner, for instance by isolation form naturally occuring sources, from genetically engineered host cells comprising expression systems (vide infra) or by chemical synthesis, using for instance automated peptide synthesisers, or a combination of such methods. Means for preparing such polypeptides are well understood in the art.
2~
In a further aspect, the present invention relates to New Lipid Binding Protein 2 polynucleotides. Such polynucleotides include:
(a) a polynucleotide comprising a polynucleotide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polynucleotide 3o squence of SEQ ID N0:1;
(b) a polynucleotide comprising the polynucleotide of SEQ ID N0:1;
(c) a polynucleotide having at least 95%, 96%, 97%, 98%, or 99% identity to the polynucleotide of SEQ ID N0:1;
Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis;
therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.The polypeptides of the present invention may be in the form of the "mature" protein or may be a part of a larger protein such as a precursor or a fusion protein. It is 15 often advantageous to include an additional amino acid sequence that contains secretory or leader sequences, pro-sequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.
Polypeptides of the present invention can be prepared in any suitable o manner, for instance by isolation form naturally occuring sources, from genetically engineered host cells comprising expression systems (vide infra) or by chemical synthesis, using for instance automated peptide synthesisers, or a combination of such methods. Means for preparing such polypeptides are well understood in the art.
2~
In a further aspect, the present invention relates to New Lipid Binding Protein 2 polynucleotides. Such polynucleotides include:
(a) a polynucleotide comprising a polynucleotide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polynucleotide 3o squence of SEQ ID N0:1;
(b) a polynucleotide comprising the polynucleotide of SEQ ID N0:1;
(c) a polynucleotide having at least 95%, 96%, 97%, 98%, or 99% identity to the polynucleotide of SEQ ID N0:1;
(d) the polynucleotide of SEQ ID N0:1;
(e) a polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99%
identity to the polypeptide sequence of SEQ ID N0:2;
s (f) a polynucleotide comprising a polynucleotide sequence encoding the polypeptide of SEQ ID N0:2;
(g) a polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99%
identity to the polypeptide sequence of SEQ ID N0:2;
to (h) a polynucleotide encoding the polypeptide of SEQ ID N0:2;
(i) a polynucleotide having or comprising a polynucleotide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polynucleotide sequence of SEQ ID N0:1;
(j) a polynucleotide having or comprising a polynucleotide sequence is encoding a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polypeptide sequence of SEQ ID
N0:2; and polynucleotides that are fragments and variants of the above mentioned polynucleotides or that are complementary to above mentioned o polynucleotides, over the entire length thereof.
Preferred fragments of polynucleotides of the present invention include a polynucleotide comprising an nucleotide sequence having at least 15, 30, 50 or 100 contiguous nucleotides from the sequence of SEQ ID NO: 1, or a pofynucleotide comprising an sequence having at least 30, 50 or 100 25 contiguous nucleotides truncated or deleted from the sequence of SEQ
ID NO: 1.
Preferred variants of polynucleotides of the present invention include splice variants, allelic variants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms ;o (SNPs).
Polynucleotides of the present invention also include polynucleotides encoding polypeptide variants that comprise the amino acid sequence of SEQ ID N0:2 and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 s amino acid residues are substituted, deleted or added, in any combination.
In a further aspect, the present invention provides polynucleotides that are RNA transcripts of the DNA sequences of the present invention.
Accordingly, there is provided an RNA polynucleotide that:
(a) comprises an RNA transcript of the DNA sequence encoding to the polypeptide of SEQ ID N0:2;
(b) is the RNA transcript of the DNA sequence encoding the polypeptide of SEQ ID N0:2;
(c) comprises an RNA transcript of the DNA sequence of SEQ ID
N0:1; or is (d) is the RNA transcript of the DNA sequence of SEQ ID N0:1;
and RNA polynucleotides that are complementary thereto.
The polynucleotide sequence of SEQ ID N0:1 shows homology with bactericidal/permeability-increasing protein (Acc.: NM 001725);
lipopolysaccharide-binding protein (Acc.: AF105067); cholesteryl ester transfer protein (Acc.:NM 000078); phospholipid transfer protein (Acc.:
NM_006227) . The polynucleotide sequence of SEQ ID N0:1 is a cDNA
sequence that encodes the polypeptide of SEQ ID N0:2. The polynucleotide sequence encoding the polypeptide of SEQ ID N0:2 may 2s be identical to the polypeptide encoding sequence of SEQ ID N0:1 or it may be a sequence other than SEQ ID N0:1, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of SEQ ID N0:2. The polypeptide of the SEQ ID N0:2 is related to other proteins of the Lipid Binding Proteins family, having ;o homology and/or structural similarity with bactericidal/permeability-increasing protein (Acc.: NP 001716); lipopolysaccharide-binding protein (Acc.: -P18428); cholesteryl ester transfer protein (Acc.: NP 000069);
phospholipid _transfer protein (Acc.: NP 006218).
_ g _ Preferred polypeptides and polynucleotides of the present invention are expected to have, inter alia, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one New Lipid Binding Protein 2 activity.
Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA
in cells of human trachea, larynx, larynx carcinoma, palate, pharynx, endometrium, olfactory epithelium, (see for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.
When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in ?o reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that ;o stabilize mRNA.
Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequence of SEQ ID N0:1, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification reaction (for instance, PCR). Such probes and primers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from species other than human) that have a high sequence similarity to SEQ ID N0:1, typically at least 95%
identity. Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.
to A polynucleotide encoding a polypeptide of the present invention, including homologs from species other than human, may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-Is length cDNA and genomic clones containing said polynucleotide sequence.
Such hybridization techniques are well known to the skilled artisan.
Preferred stringent hybridization conditions include overnight incubation at 42oC in a solution comprising: 50% formamide, 5xSSC (150mM NaCI, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's 2o solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 0.1 x SSC at about 65oC. Thus the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled 2s probe having the sequence of SEQ ID N0:1 or a fragment thereof, preferably of at least 15 nucleotides.
The skilled artisan will appreciate that, in many cases, an isolated cDNA
sequence will be incomplete, in that the region coding for the polypeptide does not extend all the way through to the 5' terminus. This is a 3o consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the polymerisation reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.
There are several methods available and well known to those skilled in ;s the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., Proc Nat Acad Sci USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon (trade mark) technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon (trade mark) technology, cDNAs have been prepared from rnRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction to is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analysed by DNA sequencing and a Is full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.
2o Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells ?5 which are genetically engineered with such expression sytems and to the production of polypeptides of the invention by recombinant techniques.
Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
;o For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al.(ibicn.
;5 Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.
Representative examples of appropriate hosts include bacterial cells, such s as Streptococci, Staphylococci, E. coli, Streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells;
and plant cells.
to A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, is vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any ?o system or vector that is able to maintain, propagate or express a polynucleotide to produce a polypeptide in a host may be used. The appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., (ibid). Appropriate secretion 2s signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.
If a polypeptide of the present invention is to be expressed for use in ;o screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells ;s must first be lysed before the polypeptide is recovered.
Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular to synthesis, isolation and/or purification.
Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene. Detection of a mutated form of the gene characterised by the polynucleotide of SEQ ID
N0:1 in the cDNA or genomic sequence and which is associated with a dysfunction will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques well known in the art.
?o Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and 2s insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled New Lipid Binding Protein 2 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting ~o temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (see, for instance, Myers et al., Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as ;s RNase and S1 protection or the chemical cleavage method (see Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401).
An array of oligonucleotides probes comprising New Lipid Binding Protein 2 polynucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Such arrays are preferably high density arrays or grids. Array technology methods are well s known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M.Chee et al., Science, 274, 610-613 (1996) and other references cited therein.
Detection of abnormally decreased or increased levels of polypeptide or to mRNA expression may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-ts PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot ?o analysis and ELISA assays.
Thus in another aspect, the present invention relates to a diagonostic kit comprising:
(a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NO: 1, or a fragment or an RNA transcript thereof;
2s (b) a nucleotide sequence complementary to that of (a);
(c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID N0:2 or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ ID N0:2.
3o It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.
The polynucleotide sequences of the present invention are valuable for chromosome localisation studies. The sequence is specifically targeted to, and can hybridize with, a particular location on an individual human s chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data.
to Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (co-inheritance of physically adjacent genes). Precise Is human chromosomal localisations for a genomic sequence (gene fragment etc.) can be determined using Radiation Hybrid (RH) Mapping (Walter, M. Spillett, D., Thomas, P., Weissenbach, J., and Goodfellow, P., (1994) A method for constructing radiation hybrid maps of whole genomes, Nature Genetics 7, 22-28). A number of RH panels are 2o available from Research Genetics (Huntsville, AL, USA) e.g. the GeneBridge4 RH panel (Hum Mol Genet 1996 Mar;S(3):339-46 A
radiation hybrid map of the human genome. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C, Morissette J, Weissenbach J, Goodfellow PN). To 2s determine the chromosomal location of a gene using this panel, 93 PCRs are performed using primers designed from the gene of interest on RH
DNAs. Each of these DNAs contains random human genomic fragments maintained in a hamster background (human / hamster hybrid cell lines).
These PCRs result in 93 scores indicating the presence or absence of ;o the PCR product of the gene of interest. These scores are compared with scores created using PCR products from genomic sequences of known location. This comparison is conducted at http://www.genome.wi.mit.edu/. The gene of the present invention maps to human chromosome 20.
The polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded s polypeptides in tissues, by detecting the mRNAs that encode them. The techniques used are well known in the art and include in situ hydridisation techniques to clones arrayed on a grid, such as cDNA microarray hybridisation (Schena et al, Science, 270, 467-470, 1995 and Shalon et al, Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques to such as PCR. A preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an indication of the normal function of the polypeptide in the organism. In addition, comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of is the same gene (for example, one having an alteration in polypeptide coding potential or a regulatory mutation) can provide valuable insights into the role of the polypeptides of the present invention, or that of inappropriate expression thereof in disease. Such inappropriate expression may be of a temporal, spatial or simply quantitative nature.
2o The polypeptides of the present invention are expressed in trachea, larynx, larynx carcinoma, palate, pharynx, endometrium, olfactory epithelium.
A further aspect of the present invention relates to antibodies. The polypeptides of the invention or their fragments, or cells expressing them, 2s can be used as immunogens to produce antibodies that are immunospecific for polypeptides of the present invention. The term "immunospecific"
means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.
;o Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, or cells to an animal, preferably a non-human animal, using routine protocols.
For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used.
;s Examples include the hybridoma technique (Kohler, G. and Milstein, C., Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).
s Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.
to The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography. Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.
Is Polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, 2o including, for example, cytokine-producing T cells or cytotoxic T cells, to protect said animal from disease, whether that disease is already established within the individual or not. An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of 2s the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention. One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a ;o modified nucleic acid, or a DNA/RNA hybrid. For use a vaccine, a polypeptide or a nucleic acid vector will be normally provided as a vaccine formulation (composition). The formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, ;~ subcutaneous, intramuscular, intravenous, or intradermal injection).
Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile s suspensions that may include suspending agents or thickening agents.
The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include to adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.
is Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, in particular the diseases of the invention hereinbefore mentioned. It is therefore useful to to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, in a further aspect, the present invention ?o provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a variety of sources, for 2s example, cells, cell-free preparations, chemical libraries, collections of chemical compounds, and natural product mixtures. Such agonists or antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Coligan et al., Current ~o Protocols in Immunology 1 (2):Chapter 5 (1991 )) or a small molecule.
The screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bearing the polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound. Alternatively, the ~s screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e.g. agonist or antagonist).
Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the s polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present to invention, to form a mixture, measuring a New Lipid Binding Protein 2 activity in the mixture, and comparing the New Lipid Binding Protein 2 activity of the mixture to a control mixture which contains no candidate compound.
Polypeptides of the present invention may be employed in conventional is low capacity screening methods and also in high-throughput screening (HTS) formats. Such HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).
2o Fusion proteins, such as those made from Fc portion and New Lipid Binding Protein 2 polypeptide, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al., J Biol Chem, 2s 270(16):9459-9471 (1995)).
Screening techniques The polynucleotides, polypeptides and antibodies to the polypeptide of the ~o present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
A polypeptide of the present invention may be used to identify membrane s bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, X251), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or to purification, and incubated with a source of the receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete is with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.
Examples of antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case ?o may be, of the polypeptide, e.g., a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.
Screening methods may also involve the use of transgenic technology 2s and New Lipid Binding Protein 2 gene. The art of constructing transgenic animals is well established. For example, the New Lipid Binding Protein 2 gene may be introduced through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by ~o electroporation, embryonic stem cells into host blastocysts. Particularly useful transgenic animals are so-called "knock-in" animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the ;5 human target. Other useful transgenic animals are so-called "knock-out"
animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled. The gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may s occur in all, or substantially all, cells in the animal. Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention Screening kits for use in the above described methods form a further to aspect of the present invention. Such screening kits comprise:
(a) a polypeptide of the present invention;
(b) a recombinant cell expressing a polypeptide of the present invention;
(c) a cell membrane expressing a polypeptide of the present invention; or (d) an antibody to a polypeptide of the present invention;
Is which polypeptide is preferably that of SEQ ID N0:2.
It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.
Glossary 2o The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.
"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an 2s Fab or other immunoglobulin expression library.
"Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method s is "isolated" even if it is still present in said organism, which organism may be living or non-living.
"Polynucleotide" generally refers to any polyribonucleotide (RNA) or polydeoxribonucleotide (DNA), which may be unmodified or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and to double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In Is addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons.
"Modified" bases include, for example, tritylated bases and unusual bases 2o such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short ?s polynucleotides, often referred to as oligonucleotides.
"Polypeptide" refers to any polypeptide comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to ~o longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids.
"Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such ~s modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature.
Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
It will be appreciated that the same type of modification may be present to the same or varying degrees at several sites in a given polypeptide.
Also, a given polypeptide may contain many types of modifications.
s Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment to of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative. covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, ~s gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, 2o Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, 1-12, in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein 2s modifications and nonprotein cofactors", Meth Enzymol, 182, 626-646, 1990, and Rattan et al., "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci, 663, 48-62, 1992).
"Fragment" of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the 3o same biological function or activity as the reference polypeptide.
"Fragment" of a polynucleotide sequence refers to a polynucloetide sequence that is shorter than the reference sequence of SEQ ID N0:1.
"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential 3s properties thereof. A typical variant of a polynucleotide differs in nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide.
Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a s polypeptide differs in amino acid sequence from the reference polypeptide. Generally, alterations are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, to deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln;
Ser, Thr; Lys, Arg; and Phe and Tyr. A variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a is variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation 2o and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.
"Allele" refers to one of two or more alternative forms of a gene occuring at a given locus in the genome.
2s "Polymorphism" refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.
"Single Nucleotide Polymorphism" (SNP) refers to the occurence of nucleotide variability at a single nucleotide position in the genome, within ~o a population. An SNP may occur within a gene or within intergenic regions of the genome. SNPs can be assayed using Allele Specific Amplification (ASA). For the process at least 3 primers are required. A
common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps ;s from the polymorphic base. The other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism. Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.
"Splice Variant" as used herein refers to cDNA molecules produced from s RNA molecules initially transcribed from the same genomic DNA
sequence but which have undergone alternative RNA splicing.
Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may to encode different amino acid sequences. The term splice variant also refers to the proteins encoded by the above cDNA molecules.
"Identity" reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact is nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.
"% Identity" - For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two 2o sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for 2s sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.
"Similarity" is a further, more sophisticated measure of the relationship between two polypeptide sequences. In general, "similarity" means a ~o comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between a between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is not an exact correspondence, whether, on an evolutionary basis, one ;s residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.
Methods for comparing the identity and similarity of two or more sequences are well known in the art. Thus for instance, programs s available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, available from Genetics Computer Group, Madison, Wisconsin, USA), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and the % identity and the % similarity io between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981 ) and finds the best single region of similarity between two sequences. BESTFIT is more suited to comparing two polynucleotide or two polypeptide is sequences that are dissimilar in length, the program assuming that the shorter sequence represents a portion of the longer. In comparison, GAP
aligns two sequences, finding a "maximum similarity", according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970).
GAP is more suited to comparing sequences that are approximately the 2o same length and an alignment is expected over the entire length.
Preferably, the parameters "Gap Weight" and "Length Weight" used in each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively. Preferably, % identities and similarities are determined when the two sequences being compared are 2s optimally aligned.
Other programs for determining identity and/or similarity between sequences are also known in the art, for instance the BLAST family of programs (Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F
et al, Nucleic Acids Res., 25:389-3402, 1997, available from the National ~o Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA
and accessible through the home page of the NCBI at www.ncbi.nlm.nih.gov) and FASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin ~s Sequence Analysis Package).
Preferably, the BLOSUM62 amino acid substitution matrix (Henikoff S
and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992) is used in polypeptide sequence comparisons including where nucleotide sequences are first translated into amino acid sequences before s comparison.
Preferably, the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the to program set at the default value, as hereinbefore described.
"Identity Index" is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence. Thus, for instance, a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 is compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including 2o transition and transversion, or insertion. These differences may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between these terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, ?s to obtain a polynucleotide sequence having an Identity Index of 0.95 compared to a reference polynucleotide sequence, an average of up to 5 in every 100 of the nucleotides of the in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies mutatis mutandis for other ~o values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.
Similarly, for a polypeptide, a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences ;s per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion. These differences may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either s individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polypeptide sequence having an Identity Index of 0.95 compared to a reference polypeptide sequence, an average of up to 5 in every 100 of the amino acids in the reference sequence may be deleted, to substituted or inserted, or any combination thereof, as hereinbefore described. The same applies mutatis mutandis for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.
The relationship between the number of nucleotide or amino acid differences and the Identity Index may be expressed in the following is equation:
na ~ xa - ~xa ' I), in which:
na is the number of nucleotide or amino acid differences, xa is the total number of nucleotides or amino acids in SEQ ID N0:1 or 2o SEQ ID N0:2, respectively, I is the Identity Index , ~ is the symbol for the multiplication operator, and in which any non-integer product of xa and I is rounded down to the nearest integer prior to subtracting it from xa.
2s "Homolog" is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be auantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are 3o the terms "ortholog", and "paralog". "Ortholog" refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or polypeptide in another species. "Paralog" refers to a polynucleotideor polypeptide that within the same species which is functionally similar.
"Fusion protein" refers to a protein encoded by two, unrelated, fused genes or fragments thereof. Examples have been disclosed in US
s 5541087, 5726044. In the case of Fc-NLIBP2, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for performing the functional expression of Fc-NLIBP2 or fragments of NLIBP2, to improve pharmacokinetic properties of such a fusion protein when used for therapy and to generate a dimeric NLIBP2. The Fc-to NLIBP2 DNA construct comprises in 5' to 3' direction, a secretion cassette, i.e. a signal sequence that triggers export from a mammalian cell, DNA encoding an immunoglobulin Fc region fragment, as a fusion partner, and a DNA encoding NLIBP2 or fragments thereof. In some uses it would be desirable to be able to alter the intrinsic functional properties Is (complement binding, Fc-Receptor binding) by mutating the functional Fc sides while leaving the rest of the fusion protein untouched or delete the Fc part completely after expression.
All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by 2o reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety in the manner described above for publications and 2s references.
SEQUENCE LISTING
<110> Merck Patent GmbH
<120> New lipid binding protein 2 <130> NLI3P2MGWS
<140>
<141>
<160> 2 <170> Patentln Ver. 2.1 <210> 1 <211> 1365 <212> DNA
<213> Homo sa~_iens <220>
<221> CDS
<222> (1)..;1365) <400> 1 atg ctg cgg atc ctg tgc ctg gca ctc tgc agc ctg ctg act ggc acg 48 Met Leu Arg I1e Leu Cys Leu Ala Leu Cys Ser Leu Leu Thr Gly Thr cga get gac cct ggg gca ctg ctg cgg ttg ggc atg gac atc atg aac 96 Arg Ala Asp Pro Gly Ala Leu Leu Arg Leu Gly Met Asp Ile Met Asn cgt gag gtc cag agc gcc atg gat gag agt cat atc ctg gag aag atg 144 Arg Giu Val Gln Ser Ala Met Asp Glu Ser His Ile Leu Glu Lys Met gca gcc gag gca ggc aag aaa cag cca gig atg aaa cct atc aag ggc 192 Ala Aia Glu Ala Gly Lys Lys Gln Pro Gly Met Lys Pro Ile Lys Gly atc acc aat ttg aag gtg aag gat gtc cag ctg ccc gtc atc aca ctg 240 Ile Thr Asn Leu Lys Val Lys Asp Val Gln Leu Pro Val Ile Thr Leu aac ttt gta cct gga gtg ggc atc ttc caa tgt gtg tcc aca ggc atg 288 Asn Phe Val Pro Giy Vai Gly Ile Phe Gln Cys Val Ser Thr Giy Met acc gtc act ggc aag agc ttc atg gga ggg aac atg gag atc atc gtg 336 Thr Val Thr Gly Lys Ser Phe Met Gly Gly Asn Met Glu Ile Ile Val gcc ctg aac atc aca gcc acc aac cgg ctt ctg cgg gat gag gag aca 384 Ala Leu Asn Ile Thr Ala Thr Asn Arg Leu Leu Arg Asp Glu Glu Thr ggc ctc cccgtgttc aagagtgag ggctg_gag gtcatcctg g~caat 432 Gly Leu ProValPhe LysSerGlu GlyCysGlu ValIleLeu VaiAsn gtg aag actaacctg cctagcaac atgctcccc aagatggtc aacaag 480 Val Lys ThrAsnLeu ProSerAsr._~!etLeuPro LysMetVal AsnLys ttc ctg gacagcacc ctgcacaaa gtcctccct gggctgatg tgtccc 528 Leu AspSerThr LeuHisLys ValLeuPro GlyLeuMet CysPro Phe gcc atc gatgcagtc ctggtgtat gtgaacagg aagtggacc aacctc 576 Ala Ile AspAlaVal LeuValTyr -iaiAsnArg LysTrpThr AsnLeu 180 '~85 190 agt gac cccatgcct gtgggccag atgggcacc gncaaatat gttctg 624 Ser Asp ProMetPro ValGlyGln MetGlyThr ValLysTyr 'JaiLeu atg tcc gca cca gcc acc aca gcc agc tac atc caa ctg gac ttc agt '072 Met Ser Ala Pro Ala Thr Thr Ala Ser Tyr Ile Gln Leu Asp Phe Ser eet gtg gtg cag cag caa aag ggc aaa ace atc aag ett get gat gcc 720 Pro Val Val Gln Gln G1n Lys Gly Lys Thr I1e Lys Leu Ala Asp Ala ggg gag gcc ctc acg ttc cct gag ggt tat gcc aaa ggc tcg tcg cag 768 Gly Glu Ala Leu Thr Phe Pro Glu Gly Tyr Ala Lys Gly Ser Ser Gln ctg ctg ctc cca gcc acc ttc ctc rct gca gag ctt gcc ctt ctg cag 816 Leu Leu Leu Pro Ala Thr Phe Leu Ser Ala Glu Leu Ala Leu Leu Gln aag tcc ttt cat gtg aat atc cag gat aca atg att ggt gag ctg ccc 864 Lys Ser Phe His Val Asn Ile Gln Asp Thr Met Ile Gly Glu Leu Pro cca caa acc acc aag acc ctg get cgc ttc att cct gaa gtg get gta 912 Pro Gln Thr Thr Lys Thr Leu Ala Arg Phe Ile Pro Glu Val Ala Val get tat ccc aag tca aag ccc ttg acg acc cag atc aag ata aag aag 960 Ala Tyr Pro Lys Ser Lys Pro Leu Thr Thr Gln Ile Lys Ile Lys Lys cct ccc aag gtc act atg aag aca ggc aag agc ctg ctg cac ctc cac 1008 Pro Pro Lys Val Thr Met Lys Thr Gly Lys Ser Leu Leu His Leu His age ace etg gag atg ttc gca get cgg tgg egg age aag get cca atg 1056 Ser Thr Leu G1u Met Phe Ala Ala Arg Trp Arg Ser Lys Ala Pro Met tcc ctc ttt ctc cta gaa gtg cac ttc aat ctg aag gtc cag tac tca 1104 Ser Leu Phe Leu Leu Glu Vai His Phe Asn Leu Lys Val Gln Tyr Ser gtg cat gag aac cag ctg cag atg gcc act tct ttg gac aga tta ctg 1152 Val His Glu Asn G1n Leu Gln Met Ala Thr Ser Leu Asp Arg Lei Leu agc ttg tcc cgg aag tcc tca tcg att ggc aac ttc aat gag agg gaa 1200 Ser Leu Ser Arg Lys Ser Ser Ser Ile Gly Asn Phe Asn Glu Arg Glu tta act ggc ttc atc acc agc tat ctc gaa gaa gcc tac atc cca gtt 'x.248 Leu Thr Gly Phe Ile Thr Ser Tyr Leu Glu Glu Ala Tyr Iie ~_~ Val 405 410 4i5 gtc aat gat gtg ctt caa gtg ggg ctc cca ctc ccg gac ttt ctg gcc 1296 Val Asn Asp Val Leu Gln Val G1y Leu Pro Leu Pro Asp Phe Leu Aia atg aat tac aac etg get gag ctg gac ata gta gag ett ggg ggc ate 1344 Met Asn Tyr Asn Leu Ala Glu Leu Asp I1e Val Giu Leu Giy G~~y Ile atg gaa cct gcc gac ata tga 1365 Met Glu Pro Ala Asp_ Ile <210> 2 <211> 454 <212> PRT
<213> Homo sapiens <400> 2 Met Leu Arg I1e Leu Cys Leu Ala Leu Cys Ser Leu Leu Thr Gly Thr Arg Ala Asp Pro Gly Ala Leu Leu Arg Leu G1y Met Asp Ile Met Asn Arg Glu Val G1n Ser Ala Met Asp Glu Ser His Ile Leu Glu Lys Met Ala Ala Glu Ala Gly Lys Lys Gln Pro Gly Met Lys Pro Ile L, Gly Ile Thr Asn Leu Lys Val Lys Asp Val Gln Leu Pro Val Ile T::r Leu Asn Phe Val Pro Gly Val Gly Ile Phe G1n Cys Val Ser Thr G~yr Met Thr Val Thr Gly Lys Ser Phe Met Gly Gly Asn Met Glu Ile Ile Val Ala Leu Asn Ile Thr Ala Thr Asn Arg Leu Leu Arg Asp Glu ~~'~u Thr Gly Leu Pro Val Phe Lys Ser Glu Gly Cys Glu Val Ile Leu Vai Asn Val Lys Thr Asn Leu Pro Ser Asn Met Leu Pro Lys Met Val Asn Ly 145 150 155 16~
Phe Leu Asp Ser Thr Leu His Lys Val Leu Pro Gly Leu Met Cys Pro Ala Ile Asp Ala Va1 Leu Val Tyr Val Asn Arg Lys Trp Thr Asn Leu Ser Asp Pro Met Pro Val Gly Gln Met Gly Thr Val Lys Tyr Val Leu Met Ser Ala Pro Ala Thr Thr Ala Ser Tyr Ile Gln Leu Asp Phe Ser Pro Val Val Gln Gln Gln Lys G1y Lys Thr I1e Lys Leu Ala Asp Ala Gly Glu Ala Leu Thr Phe Pro G1u Gly Tyr Ala Lys Gly Ser Ser Gln WO 01/79493 PCT/EPOi/04298 Leu Leu Leu Pro Ala ~_.~ Phe Leu Ser Ala Glu Leu Ala Leu Leu Gln Lys Ser Phe His 'al Asn Ile Gln Asp Thr Met Ile Gly Glu Leu Pro Pro Gln Thr Thr ~ys Thr Leu Ala Arg Phe Ile Pro Glu Val Ala Va1 Ala Tyr Pro Lys Ser Ls Pro Leu Thr Thr Gln Ile Lys Ile Lys Lys 305 .=0 315 320 Pro Pro Lys Va'~ '.'hr Met Lys Thr Gly Lys Ser Leu Leu His Leu His Ser Thr Leu Glva _vet =:~:e Ala Ala Arg Trp Arg Ser Lys Ala Pro Met Ser Leu Phe Lea I:eu 3-a 'Jal His Phe Asn Leu Lys Val Gln Tyr Ser 1~ 355 360 365 Val His Glu Asn Gin Leu Gln Met Ala Thr Ser Leu Asp Arg Leu Leu Ser Leu Ser Arg Lys S2r Ser Ser Ile Gly Asn Phe Asn G1u Arg Glu ?0 Leu Thr Gly Phe ~le '='~:r Ser Tyr Leu Glu Glu A1a Tyr Ile Pro Val -'_05 410 415 Val Asn Asp Val Leu ,~_n Val Gly Leu Pro Leu Pro Asp Phe Leu Ala Met Asn Tyr Asn Leu A=a Glu Leu Asp Ile Val Glu Leu Gly Gly Ile Met Glu Pro Ala Asp I-'~e
(e) a polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99%
identity to the polypeptide sequence of SEQ ID N0:2;
s (f) a polynucleotide comprising a polynucleotide sequence encoding the polypeptide of SEQ ID N0:2;
(g) a polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99%
identity to the polypeptide sequence of SEQ ID N0:2;
to (h) a polynucleotide encoding the polypeptide of SEQ ID N0:2;
(i) a polynucleotide having or comprising a polynucleotide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polynucleotide sequence of SEQ ID N0:1;
(j) a polynucleotide having or comprising a polynucleotide sequence is encoding a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polypeptide sequence of SEQ ID
N0:2; and polynucleotides that are fragments and variants of the above mentioned polynucleotides or that are complementary to above mentioned o polynucleotides, over the entire length thereof.
Preferred fragments of polynucleotides of the present invention include a polynucleotide comprising an nucleotide sequence having at least 15, 30, 50 or 100 contiguous nucleotides from the sequence of SEQ ID NO: 1, or a pofynucleotide comprising an sequence having at least 30, 50 or 100 25 contiguous nucleotides truncated or deleted from the sequence of SEQ
ID NO: 1.
Preferred variants of polynucleotides of the present invention include splice variants, allelic variants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms ;o (SNPs).
Polynucleotides of the present invention also include polynucleotides encoding polypeptide variants that comprise the amino acid sequence of SEQ ID N0:2 and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 s amino acid residues are substituted, deleted or added, in any combination.
In a further aspect, the present invention provides polynucleotides that are RNA transcripts of the DNA sequences of the present invention.
Accordingly, there is provided an RNA polynucleotide that:
(a) comprises an RNA transcript of the DNA sequence encoding to the polypeptide of SEQ ID N0:2;
(b) is the RNA transcript of the DNA sequence encoding the polypeptide of SEQ ID N0:2;
(c) comprises an RNA transcript of the DNA sequence of SEQ ID
N0:1; or is (d) is the RNA transcript of the DNA sequence of SEQ ID N0:1;
and RNA polynucleotides that are complementary thereto.
The polynucleotide sequence of SEQ ID N0:1 shows homology with bactericidal/permeability-increasing protein (Acc.: NM 001725);
lipopolysaccharide-binding protein (Acc.: AF105067); cholesteryl ester transfer protein (Acc.:NM 000078); phospholipid transfer protein (Acc.:
NM_006227) . The polynucleotide sequence of SEQ ID N0:1 is a cDNA
sequence that encodes the polypeptide of SEQ ID N0:2. The polynucleotide sequence encoding the polypeptide of SEQ ID N0:2 may 2s be identical to the polypeptide encoding sequence of SEQ ID N0:1 or it may be a sequence other than SEQ ID N0:1, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of SEQ ID N0:2. The polypeptide of the SEQ ID N0:2 is related to other proteins of the Lipid Binding Proteins family, having ;o homology and/or structural similarity with bactericidal/permeability-increasing protein (Acc.: NP 001716); lipopolysaccharide-binding protein (Acc.: -P18428); cholesteryl ester transfer protein (Acc.: NP 000069);
phospholipid _transfer protein (Acc.: NP 006218).
_ g _ Preferred polypeptides and polynucleotides of the present invention are expected to have, inter alia, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one New Lipid Binding Protein 2 activity.
Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA
in cells of human trachea, larynx, larynx carcinoma, palate, pharynx, endometrium, olfactory epithelium, (see for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.
When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in ?o reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that ;o stabilize mRNA.
Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequence of SEQ ID N0:1, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification reaction (for instance, PCR). Such probes and primers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from species other than human) that have a high sequence similarity to SEQ ID N0:1, typically at least 95%
identity. Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.
to A polynucleotide encoding a polypeptide of the present invention, including homologs from species other than human, may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-Is length cDNA and genomic clones containing said polynucleotide sequence.
Such hybridization techniques are well known to the skilled artisan.
Preferred stringent hybridization conditions include overnight incubation at 42oC in a solution comprising: 50% formamide, 5xSSC (150mM NaCI, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's 2o solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 0.1 x SSC at about 65oC. Thus the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled 2s probe having the sequence of SEQ ID N0:1 or a fragment thereof, preferably of at least 15 nucleotides.
The skilled artisan will appreciate that, in many cases, an isolated cDNA
sequence will be incomplete, in that the region coding for the polypeptide does not extend all the way through to the 5' terminus. This is a 3o consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the polymerisation reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.
There are several methods available and well known to those skilled in ;s the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., Proc Nat Acad Sci USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon (trade mark) technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon (trade mark) technology, cDNAs have been prepared from rnRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction to is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analysed by DNA sequencing and a Is full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.
2o Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells ?5 which are genetically engineered with such expression sytems and to the production of polypeptides of the invention by recombinant techniques.
Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
;o For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al.(ibicn.
;5 Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.
Representative examples of appropriate hosts include bacterial cells, such s as Streptococci, Staphylococci, E. coli, Streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells;
and plant cells.
to A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, is vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any ?o system or vector that is able to maintain, propagate or express a polynucleotide to produce a polypeptide in a host may be used. The appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., (ibid). Appropriate secretion 2s signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.
If a polypeptide of the present invention is to be expressed for use in ;o screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells ;s must first be lysed before the polypeptide is recovered.
Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular to synthesis, isolation and/or purification.
Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene. Detection of a mutated form of the gene characterised by the polynucleotide of SEQ ID
N0:1 in the cDNA or genomic sequence and which is associated with a dysfunction will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques well known in the art.
?o Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and 2s insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled New Lipid Binding Protein 2 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting ~o temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (see, for instance, Myers et al., Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as ;s RNase and S1 protection or the chemical cleavage method (see Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401).
An array of oligonucleotides probes comprising New Lipid Binding Protein 2 polynucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Such arrays are preferably high density arrays or grids. Array technology methods are well s known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M.Chee et al., Science, 274, 610-613 (1996) and other references cited therein.
Detection of abnormally decreased or increased levels of polypeptide or to mRNA expression may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-ts PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot ?o analysis and ELISA assays.
Thus in another aspect, the present invention relates to a diagonostic kit comprising:
(a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NO: 1, or a fragment or an RNA transcript thereof;
2s (b) a nucleotide sequence complementary to that of (a);
(c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID N0:2 or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ ID N0:2.
3o It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.
The polynucleotide sequences of the present invention are valuable for chromosome localisation studies. The sequence is specifically targeted to, and can hybridize with, a particular location on an individual human s chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data.
to Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (co-inheritance of physically adjacent genes). Precise Is human chromosomal localisations for a genomic sequence (gene fragment etc.) can be determined using Radiation Hybrid (RH) Mapping (Walter, M. Spillett, D., Thomas, P., Weissenbach, J., and Goodfellow, P., (1994) A method for constructing radiation hybrid maps of whole genomes, Nature Genetics 7, 22-28). A number of RH panels are 2o available from Research Genetics (Huntsville, AL, USA) e.g. the GeneBridge4 RH panel (Hum Mol Genet 1996 Mar;S(3):339-46 A
radiation hybrid map of the human genome. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C, Morissette J, Weissenbach J, Goodfellow PN). To 2s determine the chromosomal location of a gene using this panel, 93 PCRs are performed using primers designed from the gene of interest on RH
DNAs. Each of these DNAs contains random human genomic fragments maintained in a hamster background (human / hamster hybrid cell lines).
These PCRs result in 93 scores indicating the presence or absence of ;o the PCR product of the gene of interest. These scores are compared with scores created using PCR products from genomic sequences of known location. This comparison is conducted at http://www.genome.wi.mit.edu/. The gene of the present invention maps to human chromosome 20.
The polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded s polypeptides in tissues, by detecting the mRNAs that encode them. The techniques used are well known in the art and include in situ hydridisation techniques to clones arrayed on a grid, such as cDNA microarray hybridisation (Schena et al, Science, 270, 467-470, 1995 and Shalon et al, Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques to such as PCR. A preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an indication of the normal function of the polypeptide in the organism. In addition, comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of is the same gene (for example, one having an alteration in polypeptide coding potential or a regulatory mutation) can provide valuable insights into the role of the polypeptides of the present invention, or that of inappropriate expression thereof in disease. Such inappropriate expression may be of a temporal, spatial or simply quantitative nature.
2o The polypeptides of the present invention are expressed in trachea, larynx, larynx carcinoma, palate, pharynx, endometrium, olfactory epithelium.
A further aspect of the present invention relates to antibodies. The polypeptides of the invention or their fragments, or cells expressing them, 2s can be used as immunogens to produce antibodies that are immunospecific for polypeptides of the present invention. The term "immunospecific"
means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.
;o Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, or cells to an animal, preferably a non-human animal, using routine protocols.
For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used.
;s Examples include the hybridoma technique (Kohler, G. and Milstein, C., Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).
s Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.
to The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography. Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.
Is Polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, 2o including, for example, cytokine-producing T cells or cytotoxic T cells, to protect said animal from disease, whether that disease is already established within the individual or not. An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of 2s the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention. One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a ;o modified nucleic acid, or a DNA/RNA hybrid. For use a vaccine, a polypeptide or a nucleic acid vector will be normally provided as a vaccine formulation (composition). The formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, ;~ subcutaneous, intramuscular, intravenous, or intradermal injection).
Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile s suspensions that may include suspending agents or thickening agents.
The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include to adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.
is Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, in particular the diseases of the invention hereinbefore mentioned. It is therefore useful to to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, in a further aspect, the present invention ?o provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a variety of sources, for 2s example, cells, cell-free preparations, chemical libraries, collections of chemical compounds, and natural product mixtures. Such agonists or antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Coligan et al., Current ~o Protocols in Immunology 1 (2):Chapter 5 (1991 )) or a small molecule.
The screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bearing the polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound. Alternatively, the ~s screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e.g. agonist or antagonist).
Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the s polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present to invention, to form a mixture, measuring a New Lipid Binding Protein 2 activity in the mixture, and comparing the New Lipid Binding Protein 2 activity of the mixture to a control mixture which contains no candidate compound.
Polypeptides of the present invention may be employed in conventional is low capacity screening methods and also in high-throughput screening (HTS) formats. Such HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).
2o Fusion proteins, such as those made from Fc portion and New Lipid Binding Protein 2 polypeptide, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al., J Biol Chem, 2s 270(16):9459-9471 (1995)).
Screening techniques The polynucleotides, polypeptides and antibodies to the polypeptide of the ~o present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
A polypeptide of the present invention may be used to identify membrane s bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, X251), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or to purification, and incubated with a source of the receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete is with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.
Examples of antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case ?o may be, of the polypeptide, e.g., a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.
Screening methods may also involve the use of transgenic technology 2s and New Lipid Binding Protein 2 gene. The art of constructing transgenic animals is well established. For example, the New Lipid Binding Protein 2 gene may be introduced through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by ~o electroporation, embryonic stem cells into host blastocysts. Particularly useful transgenic animals are so-called "knock-in" animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the ;5 human target. Other useful transgenic animals are so-called "knock-out"
animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled. The gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may s occur in all, or substantially all, cells in the animal. Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention Screening kits for use in the above described methods form a further to aspect of the present invention. Such screening kits comprise:
(a) a polypeptide of the present invention;
(b) a recombinant cell expressing a polypeptide of the present invention;
(c) a cell membrane expressing a polypeptide of the present invention; or (d) an antibody to a polypeptide of the present invention;
Is which polypeptide is preferably that of SEQ ID N0:2.
It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.
Glossary 2o The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.
"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an 2s Fab or other immunoglobulin expression library.
"Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method s is "isolated" even if it is still present in said organism, which organism may be living or non-living.
"Polynucleotide" generally refers to any polyribonucleotide (RNA) or polydeoxribonucleotide (DNA), which may be unmodified or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and to double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In Is addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons.
"Modified" bases include, for example, tritylated bases and unusual bases 2o such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short ?s polynucleotides, often referred to as oligonucleotides.
"Polypeptide" refers to any polypeptide comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to ~o longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids.
"Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such ~s modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature.
Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
It will be appreciated that the same type of modification may be present to the same or varying degrees at several sites in a given polypeptide.
Also, a given polypeptide may contain many types of modifications.
s Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment to of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative. covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, ~s gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, 2o Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, 1-12, in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein 2s modifications and nonprotein cofactors", Meth Enzymol, 182, 626-646, 1990, and Rattan et al., "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci, 663, 48-62, 1992).
"Fragment" of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the 3o same biological function or activity as the reference polypeptide.
"Fragment" of a polynucleotide sequence refers to a polynucloetide sequence that is shorter than the reference sequence of SEQ ID N0:1.
"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential 3s properties thereof. A typical variant of a polynucleotide differs in nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide.
Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a s polypeptide differs in amino acid sequence from the reference polypeptide. Generally, alterations are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, to deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln;
Ser, Thr; Lys, Arg; and Phe and Tyr. A variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a is variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation 2o and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.
"Allele" refers to one of two or more alternative forms of a gene occuring at a given locus in the genome.
2s "Polymorphism" refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.
"Single Nucleotide Polymorphism" (SNP) refers to the occurence of nucleotide variability at a single nucleotide position in the genome, within ~o a population. An SNP may occur within a gene or within intergenic regions of the genome. SNPs can be assayed using Allele Specific Amplification (ASA). For the process at least 3 primers are required. A
common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps ;s from the polymorphic base. The other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism. Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.
"Splice Variant" as used herein refers to cDNA molecules produced from s RNA molecules initially transcribed from the same genomic DNA
sequence but which have undergone alternative RNA splicing.
Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may to encode different amino acid sequences. The term splice variant also refers to the proteins encoded by the above cDNA molecules.
"Identity" reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact is nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.
"% Identity" - For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two 2o sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for 2s sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.
"Similarity" is a further, more sophisticated measure of the relationship between two polypeptide sequences. In general, "similarity" means a ~o comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between a between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is not an exact correspondence, whether, on an evolutionary basis, one ;s residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.
Methods for comparing the identity and similarity of two or more sequences are well known in the art. Thus for instance, programs s available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, available from Genetics Computer Group, Madison, Wisconsin, USA), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and the % identity and the % similarity io between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981 ) and finds the best single region of similarity between two sequences. BESTFIT is more suited to comparing two polynucleotide or two polypeptide is sequences that are dissimilar in length, the program assuming that the shorter sequence represents a portion of the longer. In comparison, GAP
aligns two sequences, finding a "maximum similarity", according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970).
GAP is more suited to comparing sequences that are approximately the 2o same length and an alignment is expected over the entire length.
Preferably, the parameters "Gap Weight" and "Length Weight" used in each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively. Preferably, % identities and similarities are determined when the two sequences being compared are 2s optimally aligned.
Other programs for determining identity and/or similarity between sequences are also known in the art, for instance the BLAST family of programs (Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F
et al, Nucleic Acids Res., 25:389-3402, 1997, available from the National ~o Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA
and accessible through the home page of the NCBI at www.ncbi.nlm.nih.gov) and FASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin ~s Sequence Analysis Package).
Preferably, the BLOSUM62 amino acid substitution matrix (Henikoff S
and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992) is used in polypeptide sequence comparisons including where nucleotide sequences are first translated into amino acid sequences before s comparison.
Preferably, the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the to program set at the default value, as hereinbefore described.
"Identity Index" is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence. Thus, for instance, a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 is compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including 2o transition and transversion, or insertion. These differences may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between these terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, ?s to obtain a polynucleotide sequence having an Identity Index of 0.95 compared to a reference polynucleotide sequence, an average of up to 5 in every 100 of the nucleotides of the in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies mutatis mutandis for other ~o values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.
Similarly, for a polypeptide, a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences ;s per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion. These differences may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either s individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polypeptide sequence having an Identity Index of 0.95 compared to a reference polypeptide sequence, an average of up to 5 in every 100 of the amino acids in the reference sequence may be deleted, to substituted or inserted, or any combination thereof, as hereinbefore described. The same applies mutatis mutandis for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.
The relationship between the number of nucleotide or amino acid differences and the Identity Index may be expressed in the following is equation:
na ~ xa - ~xa ' I), in which:
na is the number of nucleotide or amino acid differences, xa is the total number of nucleotides or amino acids in SEQ ID N0:1 or 2o SEQ ID N0:2, respectively, I is the Identity Index , ~ is the symbol for the multiplication operator, and in which any non-integer product of xa and I is rounded down to the nearest integer prior to subtracting it from xa.
2s "Homolog" is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be auantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are 3o the terms "ortholog", and "paralog". "Ortholog" refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or polypeptide in another species. "Paralog" refers to a polynucleotideor polypeptide that within the same species which is functionally similar.
"Fusion protein" refers to a protein encoded by two, unrelated, fused genes or fragments thereof. Examples have been disclosed in US
s 5541087, 5726044. In the case of Fc-NLIBP2, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for performing the functional expression of Fc-NLIBP2 or fragments of NLIBP2, to improve pharmacokinetic properties of such a fusion protein when used for therapy and to generate a dimeric NLIBP2. The Fc-to NLIBP2 DNA construct comprises in 5' to 3' direction, a secretion cassette, i.e. a signal sequence that triggers export from a mammalian cell, DNA encoding an immunoglobulin Fc region fragment, as a fusion partner, and a DNA encoding NLIBP2 or fragments thereof. In some uses it would be desirable to be able to alter the intrinsic functional properties Is (complement binding, Fc-Receptor binding) by mutating the functional Fc sides while leaving the rest of the fusion protein untouched or delete the Fc part completely after expression.
All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by 2o reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety in the manner described above for publications and 2s references.
SEQUENCE LISTING
<110> Merck Patent GmbH
<120> New lipid binding protein 2 <130> NLI3P2MGWS
<140>
<141>
<160> 2 <170> Patentln Ver. 2.1 <210> 1 <211> 1365 <212> DNA
<213> Homo sa~_iens <220>
<221> CDS
<222> (1)..;1365) <400> 1 atg ctg cgg atc ctg tgc ctg gca ctc tgc agc ctg ctg act ggc acg 48 Met Leu Arg I1e Leu Cys Leu Ala Leu Cys Ser Leu Leu Thr Gly Thr cga get gac cct ggg gca ctg ctg cgg ttg ggc atg gac atc atg aac 96 Arg Ala Asp Pro Gly Ala Leu Leu Arg Leu Gly Met Asp Ile Met Asn cgt gag gtc cag agc gcc atg gat gag agt cat atc ctg gag aag atg 144 Arg Giu Val Gln Ser Ala Met Asp Glu Ser His Ile Leu Glu Lys Met gca gcc gag gca ggc aag aaa cag cca gig atg aaa cct atc aag ggc 192 Ala Aia Glu Ala Gly Lys Lys Gln Pro Gly Met Lys Pro Ile Lys Gly atc acc aat ttg aag gtg aag gat gtc cag ctg ccc gtc atc aca ctg 240 Ile Thr Asn Leu Lys Val Lys Asp Val Gln Leu Pro Val Ile Thr Leu aac ttt gta cct gga gtg ggc atc ttc caa tgt gtg tcc aca ggc atg 288 Asn Phe Val Pro Giy Vai Gly Ile Phe Gln Cys Val Ser Thr Giy Met acc gtc act ggc aag agc ttc atg gga ggg aac atg gag atc atc gtg 336 Thr Val Thr Gly Lys Ser Phe Met Gly Gly Asn Met Glu Ile Ile Val gcc ctg aac atc aca gcc acc aac cgg ctt ctg cgg gat gag gag aca 384 Ala Leu Asn Ile Thr Ala Thr Asn Arg Leu Leu Arg Asp Glu Glu Thr ggc ctc cccgtgttc aagagtgag ggctg_gag gtcatcctg g~caat 432 Gly Leu ProValPhe LysSerGlu GlyCysGlu ValIleLeu VaiAsn gtg aag actaacctg cctagcaac atgctcccc aagatggtc aacaag 480 Val Lys ThrAsnLeu ProSerAsr._~!etLeuPro LysMetVal AsnLys ttc ctg gacagcacc ctgcacaaa gtcctccct gggctgatg tgtccc 528 Leu AspSerThr LeuHisLys ValLeuPro GlyLeuMet CysPro Phe gcc atc gatgcagtc ctggtgtat gtgaacagg aagtggacc aacctc 576 Ala Ile AspAlaVal LeuValTyr -iaiAsnArg LysTrpThr AsnLeu 180 '~85 190 agt gac cccatgcct gtgggccag atgggcacc gncaaatat gttctg 624 Ser Asp ProMetPro ValGlyGln MetGlyThr ValLysTyr 'JaiLeu atg tcc gca cca gcc acc aca gcc agc tac atc caa ctg gac ttc agt '072 Met Ser Ala Pro Ala Thr Thr Ala Ser Tyr Ile Gln Leu Asp Phe Ser eet gtg gtg cag cag caa aag ggc aaa ace atc aag ett get gat gcc 720 Pro Val Val Gln Gln G1n Lys Gly Lys Thr I1e Lys Leu Ala Asp Ala ggg gag gcc ctc acg ttc cct gag ggt tat gcc aaa ggc tcg tcg cag 768 Gly Glu Ala Leu Thr Phe Pro Glu Gly Tyr Ala Lys Gly Ser Ser Gln ctg ctg ctc cca gcc acc ttc ctc rct gca gag ctt gcc ctt ctg cag 816 Leu Leu Leu Pro Ala Thr Phe Leu Ser Ala Glu Leu Ala Leu Leu Gln aag tcc ttt cat gtg aat atc cag gat aca atg att ggt gag ctg ccc 864 Lys Ser Phe His Val Asn Ile Gln Asp Thr Met Ile Gly Glu Leu Pro cca caa acc acc aag acc ctg get cgc ttc att cct gaa gtg get gta 912 Pro Gln Thr Thr Lys Thr Leu Ala Arg Phe Ile Pro Glu Val Ala Val get tat ccc aag tca aag ccc ttg acg acc cag atc aag ata aag aag 960 Ala Tyr Pro Lys Ser Lys Pro Leu Thr Thr Gln Ile Lys Ile Lys Lys cct ccc aag gtc act atg aag aca ggc aag agc ctg ctg cac ctc cac 1008 Pro Pro Lys Val Thr Met Lys Thr Gly Lys Ser Leu Leu His Leu His age ace etg gag atg ttc gca get cgg tgg egg age aag get cca atg 1056 Ser Thr Leu G1u Met Phe Ala Ala Arg Trp Arg Ser Lys Ala Pro Met tcc ctc ttt ctc cta gaa gtg cac ttc aat ctg aag gtc cag tac tca 1104 Ser Leu Phe Leu Leu Glu Vai His Phe Asn Leu Lys Val Gln Tyr Ser gtg cat gag aac cag ctg cag atg gcc act tct ttg gac aga tta ctg 1152 Val His Glu Asn G1n Leu Gln Met Ala Thr Ser Leu Asp Arg Lei Leu agc ttg tcc cgg aag tcc tca tcg att ggc aac ttc aat gag agg gaa 1200 Ser Leu Ser Arg Lys Ser Ser Ser Ile Gly Asn Phe Asn Glu Arg Glu tta act ggc ttc atc acc agc tat ctc gaa gaa gcc tac atc cca gtt 'x.248 Leu Thr Gly Phe Ile Thr Ser Tyr Leu Glu Glu Ala Tyr Iie ~_~ Val 405 410 4i5 gtc aat gat gtg ctt caa gtg ggg ctc cca ctc ccg gac ttt ctg gcc 1296 Val Asn Asp Val Leu Gln Val G1y Leu Pro Leu Pro Asp Phe Leu Aia atg aat tac aac etg get gag ctg gac ata gta gag ett ggg ggc ate 1344 Met Asn Tyr Asn Leu Ala Glu Leu Asp I1e Val Giu Leu Giy G~~y Ile atg gaa cct gcc gac ata tga 1365 Met Glu Pro Ala Asp_ Ile <210> 2 <211> 454 <212> PRT
<213> Homo sapiens <400> 2 Met Leu Arg I1e Leu Cys Leu Ala Leu Cys Ser Leu Leu Thr Gly Thr Arg Ala Asp Pro Gly Ala Leu Leu Arg Leu G1y Met Asp Ile Met Asn Arg Glu Val G1n Ser Ala Met Asp Glu Ser His Ile Leu Glu Lys Met Ala Ala Glu Ala Gly Lys Lys Gln Pro Gly Met Lys Pro Ile L, Gly Ile Thr Asn Leu Lys Val Lys Asp Val Gln Leu Pro Val Ile T::r Leu Asn Phe Val Pro Gly Val Gly Ile Phe G1n Cys Val Ser Thr G~yr Met Thr Val Thr Gly Lys Ser Phe Met Gly Gly Asn Met Glu Ile Ile Val Ala Leu Asn Ile Thr Ala Thr Asn Arg Leu Leu Arg Asp Glu ~~'~u Thr Gly Leu Pro Val Phe Lys Ser Glu Gly Cys Glu Val Ile Leu Vai Asn Val Lys Thr Asn Leu Pro Ser Asn Met Leu Pro Lys Met Val Asn Ly 145 150 155 16~
Phe Leu Asp Ser Thr Leu His Lys Val Leu Pro Gly Leu Met Cys Pro Ala Ile Asp Ala Va1 Leu Val Tyr Val Asn Arg Lys Trp Thr Asn Leu Ser Asp Pro Met Pro Val Gly Gln Met Gly Thr Val Lys Tyr Val Leu Met Ser Ala Pro Ala Thr Thr Ala Ser Tyr Ile Gln Leu Asp Phe Ser Pro Val Val Gln Gln Gln Lys G1y Lys Thr I1e Lys Leu Ala Asp Ala Gly Glu Ala Leu Thr Phe Pro G1u Gly Tyr Ala Lys Gly Ser Ser Gln WO 01/79493 PCT/EPOi/04298 Leu Leu Leu Pro Ala ~_.~ Phe Leu Ser Ala Glu Leu Ala Leu Leu Gln Lys Ser Phe His 'al Asn Ile Gln Asp Thr Met Ile Gly Glu Leu Pro Pro Gln Thr Thr ~ys Thr Leu Ala Arg Phe Ile Pro Glu Val Ala Va1 Ala Tyr Pro Lys Ser Ls Pro Leu Thr Thr Gln Ile Lys Ile Lys Lys 305 .=0 315 320 Pro Pro Lys Va'~ '.'hr Met Lys Thr Gly Lys Ser Leu Leu His Leu His Ser Thr Leu Glva _vet =:~:e Ala Ala Arg Trp Arg Ser Lys Ala Pro Met Ser Leu Phe Lea I:eu 3-a 'Jal His Phe Asn Leu Lys Val Gln Tyr Ser 1~ 355 360 365 Val His Glu Asn Gin Leu Gln Met Ala Thr Ser Leu Asp Arg Leu Leu Ser Leu Ser Arg Lys S2r Ser Ser Ile Gly Asn Phe Asn G1u Arg Glu ?0 Leu Thr Gly Phe ~le '='~:r Ser Tyr Leu Glu Glu A1a Tyr Ile Pro Val -'_05 410 415 Val Asn Asp Val Leu ,~_n Val Gly Leu Pro Leu Pro Asp Phe Leu Ala Met Asn Tyr Asn Leu A=a Glu Leu Asp Ile Val Glu Leu Gly Gly Ile Met Glu Pro Ala Asp I-'~e
Claims (11)
1. A polypeptide selected from the group consisting of:
(a) a polypeptide encoded by a polynucleotide comprising the sequence of SEQ
ID NO:1;
(b) a polypeptide comprising a polypeptide sequence having at least 95%
identity to the polypeptide sequence of SEQ ID NO:2;
c) a polypeptide having at least 95% identity to the polypeptide sequence of SEQ ID NO:2;
d) the polypeptide sequence of SEQ ID NO:2 and (e) fragments and variants of such polypeptides in (a) to (d).
(a) a polypeptide encoded by a polynucleotide comprising the sequence of SEQ
ID NO:1;
(b) a polypeptide comprising a polypeptide sequence having at least 95%
identity to the polypeptide sequence of SEQ ID NO:2;
c) a polypeptide having at least 95% identity to the polypeptide sequence of SEQ ID NO:2;
d) the polypeptide sequence of SEQ ID NO:2 and (e) fragments and variants of such polypeptides in (a) to (d).
2. The polypeptide of claim 1 comprising the polypeptide sequence of SEQ ID
NO:2.
NO:2.
3. The polypeptide of claim 1 which is the polypeptide sequence of SEQ ID
NO:2.
NO:2.
4. A polynucleotide selected from the group consisting of:
(a) a polynucleotide comprising a polynucleotide sequence having at least 95%
identity to the polynucleotide sequence of SEQ ID NO:1;
(b) a polynucleotide having at least 95% identity to the polynucleotide of SEQ
ID
NO:1;
(c) a polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID
NO:2;
(d) a polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID
NO:2;
(e) a polynucleotide with a nucleotide sequence of at least 100 nucleotides obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof having at least 15 nucleotides;
(f) a polynucleotide which is the RNA equivalent of a polynucleotide of (a) to (e);
(g) a polynucleotide sequence complementary to said polynucleotide of any one of (a) to (f), and (h) polynucleotides that are variants or fragments of the polynucleotides of any one of (a) to (g) or that are complementary to above mentioned polynucleotides, over the entire length thereof.
(a) a polynucleotide comprising a polynucleotide sequence having at least 95%
identity to the polynucleotide sequence of SEQ ID NO:1;
(b) a polynucleotide having at least 95% identity to the polynucleotide of SEQ
ID
NO:1;
(c) a polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID
NO:2;
(d) a polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID
NO:2;
(e) a polynucleotide with a nucleotide sequence of at least 100 nucleotides obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof having at least 15 nucleotides;
(f) a polynucleotide which is the RNA equivalent of a polynucleotide of (a) to (e);
(g) a polynucleotide sequence complementary to said polynucleotide of any one of (a) to (f), and (h) polynucleotides that are variants or fragments of the polynucleotides of any one of (a) to (g) or that are complementary to above mentioned polynucleotides, over the entire length thereof.
5. A polynucleotide of claim 4 selected from the group consisting of:
(a) a polynucleotide comprising the polynucleotide of SEQ ID NO:1;
(b) the polynucleotide of SEQ ID NO:1;
(c) a polynucleotide comprising a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2; and (d) a polynucleotide encoding the polypeptide of SEQ ID NO:2.
(a) a polynucleotide comprising the polynucleotide of SEQ ID NO:1;
(b) the polynucleotide of SEQ ID NO:1;
(c) a polynucleotide comprising a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2; and (d) a polynucleotide encoding the polypeptide of SEQ ID NO:2.
6. An expression system comprising a polynucleotide capable of producing a polypeptide of any one of claim 1-3 when said expression vector is present in a compatible host cell.
7. A recombinant host cell comprising the expression vector of claim 6 or a membrane thereof expressing the polypeptide of any one of claim 1-3.
8. A process for producing a polypeptide of any one of claim 1-3 comprising the step of culturing a host cell as defined in claim 7 under conditions sufficient for the production of said polypeptide and recovering the polypeptide from the culture medium.
9. A fusion protein consisting of the Immunoglobulin Fc-region and a polypeptide any one one of claims 1-3.
10. An antibody immunospecific for the polypeptide of any one of claims 1 to 3.
11. A method for screening to identify compounds that stimulate or inhibit the function or level of the polypeptide of any one of claim 1-3 comprising a method selected from the group consisting of:
(a) measuring or, detecting, quantitatively or qualitatively, the binding of a candidate compound to the polypeptide (or to the cells or membranes expressing the polypeptide) or a fusion protein thereof by means of a label directly or indirectly associated with the candidate compound;
(b) measuring the competition of binding of a candidate compound to the polypeptide (or to the cells or membranes expressing the polypeptide) or a fusion protein thereof in the presence of a labeled competitior;
(c) testing whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells or cell membranes expressing the polypeptide;
(d) mixing a candidate compound with a solution containing a polypeptide of any one of claims 1-3, to form a mixture, measuring activity of the polypeptide in the mixture, and comparing the activity of the mixture to a control mixture which contains no candidate compound; or (e) detecting the effect of a candidate compound on the production of mRNA
encoding said polypeptide or said polypeptide in cells, using for instance, an ELISA assay, and (f) producing said compound according to biotechnological or chemical standard techniques.
(a) measuring or, detecting, quantitatively or qualitatively, the binding of a candidate compound to the polypeptide (or to the cells or membranes expressing the polypeptide) or a fusion protein thereof by means of a label directly or indirectly associated with the candidate compound;
(b) measuring the competition of binding of a candidate compound to the polypeptide (or to the cells or membranes expressing the polypeptide) or a fusion protein thereof in the presence of a labeled competitior;
(c) testing whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells or cell membranes expressing the polypeptide;
(d) mixing a candidate compound with a solution containing a polypeptide of any one of claims 1-3, to form a mixture, measuring activity of the polypeptide in the mixture, and comparing the activity of the mixture to a control mixture which contains no candidate compound; or (e) detecting the effect of a candidate compound on the production of mRNA
encoding said polypeptide or said polypeptide in cells, using for instance, an ELISA assay, and (f) producing said compound according to biotechnological or chemical standard techniques.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00107996.1 | 2000-04-18 | ||
EP00107996 | 2000-04-18 | ||
PCT/EP2001/004298 WO2001079493A1 (en) | 2000-04-18 | 2001-04-17 | New lipid binding protein 2 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2406087A1 true CA2406087A1 (en) | 2001-10-25 |
Family
ID=8168456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002406087A Abandoned CA2406087A1 (en) | 2000-04-18 | 2001-04-17 | New lipid binding protein 2 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1274843A1 (en) |
JP (1) | JP2004500834A (en) |
CA (1) | CA2406087A1 (en) |
WO (1) | WO2001079493A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005047313A1 (en) * | 2003-11-14 | 2007-11-29 | 株式会社ペプタイドドア | Peptide or protein having binding ability to LipidA and LPS, DNA encoding the peptide or protein, LPS adsorbent or LPS toxicity neutralizing agent using the peptide or protein |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6093573A (en) * | 1997-06-20 | 2000-07-25 | Xoma | Three-dimensional structure of bactericidal/permeability-increasing protein (BPI) |
AU1782601A (en) * | 1999-11-19 | 2001-05-30 | Hyseq, Inc. | Methods and compositions relating to bactericidal/permeability increasing factor-like polypeptides and polynucleotides |
US20020137202A1 (en) * | 1999-12-21 | 2002-09-26 | Catherine Burgess | Novel proteins and nucleic acids encoding same |
-
2001
- 2001-04-17 EP EP01929563A patent/EP1274843A1/en not_active Withdrawn
- 2001-04-17 WO PCT/EP2001/004298 patent/WO2001079493A1/en active Search and Examination
- 2001-04-17 CA CA002406087A patent/CA2406087A1/en not_active Abandoned
- 2001-04-17 JP JP2001577476A patent/JP2004500834A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP1274843A1 (en) | 2003-01-15 |
JP2004500834A (en) | 2004-01-15 |
WO2001079493A1 (en) | 2001-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2404160A1 (en) | Identification of new human gaba transporter | |
US6924357B2 (en) | Lipid binding protein 4 | |
EP1078056A1 (en) | Rhotekin, a putative target for rho | |
US6914125B2 (en) | Scramblase 2 | |
US20030139573A1 (en) | Lipid binding protein 3 | |
WO2001083745A1 (en) | New gtpase-activating protein 1 | |
US20060216750A1 (en) | New lipid binding protein 1 | |
CA2406087A1 (en) | New lipid binding protein 2 | |
US20060036074A1 (en) | Bromodomain protein | |
CA2408468A1 (en) | Serine-threonine kinase-3 | |
AU2001278495A1 (en) | Novel protein inhibitor of apoptosis proteins | |
CA2406448A1 (en) | Identification of a human gaba transporter | |
WO2001070771A2 (en) | Acute neuronal induced calcium binding protein type 1 ligand | |
CA2418834A1 (en) | Iapl-3 a protein inhibitor of apoptosis proteins | |
WO2001096561A1 (en) | Hunc-2, human member of unc-protein family | |
WO2001085936A1 (en) | F-box containing protein | |
CA2421187A1 (en) | Family member of inhibitor of apoptosis proteins | |
CA2404495A1 (en) | Human tap-like protein (transporter associated in antigen processing/presentation) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |