CA2379317A1 - Amine-modified pseudomycin compounds - Google Patents
Amine-modified pseudomycin compounds Download PDFInfo
- Publication number
- CA2379317A1 CA2379317A1 CA002379317A CA2379317A CA2379317A1 CA 2379317 A1 CA2379317 A1 CA 2379317A1 CA 002379317 A CA002379317 A CA 002379317A CA 2379317 A CA2379317 A CA 2379317A CA 2379317 A1 CA2379317 A1 CA 2379317A1
- Authority
- CA
- Canada
- Prior art keywords
- alkyl
- pseudomycin
- co2ch3
- alkoxy
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 68
- 229940121375 antifungal agent Drugs 0.000 claims abstract description 8
- -1 .alpha.-acetoacetate Chemical group 0.000 claims description 50
- 125000000217 alkyl group Chemical group 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 30
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- 125000003118 aryl group Chemical group 0.000 claims description 21
- 241001465754 Metazoa Species 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 18
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 18
- 150000002431 hydrogen Chemical class 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 230000000843 anti-fungal effect Effects 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 12
- 235000001014 amino acid Nutrition 0.000 claims description 11
- 125000003282 alkyl amino group Chemical group 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 239000012453 solvate Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 208000015181 infectious disease Diseases 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 3
- 206010017533 Fungal infection Diseases 0.000 claims description 3
- 208000031888 Mycoses Diseases 0.000 claims description 3
- 125000005354 acylalkyl group Chemical group 0.000 claims description 3
- 125000005599 alkyl carboxylate group Chemical group 0.000 claims description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 3
- 125000001072 heteroaryl group Chemical group 0.000 claims description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Substances C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 3
- 125000006732 (C1-C15) alkyl group Chemical group 0.000 claims description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 2
- 125000006314 C5-C8 alkoxy group Chemical group 0.000 claims description 2
- 206010017543 Fungal skin infection Diseases 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 2
- 230000009885 systemic effect Effects 0.000 claims description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims 9
- 125000006725 C1-C10 alkenyl group Chemical group 0.000 claims 1
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 claims 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims 1
- 125000004055 thiomethyl group Chemical group [H]SC([H])([H])* 0.000 claims 1
- 239000003429 antifungal agent Substances 0.000 abstract description 6
- 125000002252 acyl group Chemical group 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 241000589615 Pseudomonas syringae Species 0.000 description 29
- NYRWZRIVFVWNTD-SGRJACMKSA-N (2s)-2-[(3s,6s,9z,12s,15s,18s,21s,24r,27s)-18-(4-aminobutyl)-15,24-bis(2-aminoethyl)-21-(carboxymethyl)-3-[(1s)-2-chloro-1-hydroxyethyl]-9-ethylidene-12-[(1s)-1-hydroxyethyl]-27-[[(3r)-3-hydroxytetradecanoyl]amino]-2,5,8,11,14,17,20,23,26-nonaoxo-1-oxa-4, Chemical compound CCCCCCCCCCC[C@@H](O)CC(=O)N[C@H]1COC(=O)[C@H]([C@H](O)CCl)NC(=O)[C@H]([C@H](O)C(O)=O)NC(=O)\C(=C\C)NC(=O)[C@H]([C@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](CCN)NC1=O NYRWZRIVFVWNTD-SGRJACMKSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 108010033821 pseudomycin B Proteins 0.000 description 14
- 239000002253 acid Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 150000001408 amides Chemical class 0.000 description 10
- 125000003277 amino group Chemical group 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 9
- 229940024606 amino acid Drugs 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 125000006239 protecting group Chemical group 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 241000222122 Candida albicans Species 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- XDPWWEOIDYYUDN-HCEIJDMSSA-N 2-[(9z)-18-(4-aminobutyl)-15,24-bis(2-aminoethyl)-21-(carboxymethyl)-3-(2-chloro-1-hydroxyethyl)-27-(3,4-dihydroxytetradecanoylamino)-9-ethylidene-12-(1-hydroxyethyl)-2,5,8,11,14,17,20,23,26-nonaoxo-1-oxa-4,7,10,13,16,19,22,25-octazacyclooctacos-6-yl]-2-h Chemical compound CCCCCCCCCCC(O)C(O)CC(=O)NC1COC(=O)C(C(O)CCl)NC(=O)C(C(O)C(O)=O)NC(=O)\C(=C\C)NC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCCCN)NC(=O)C(CC(O)=O)NC(=O)C(CCN)NC1=O XDPWWEOIDYYUDN-HCEIJDMSSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 241000233866 Fungi Species 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 108010033876 pseudomycin A Proteins 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- KZSKIDBMTSZKLE-NDWYDANWSA-N (2s)-2-[(3s,6s,9e,12s,15r,18s,21s,24r,27s)-18-(4-aminobutyl)-15,24-bis(2-aminoethyl)-21-(carboxymethyl)-3-[(1s)-2-chloro-1-hydroxyethyl]-9-ethylidene-12-[(1s)-1-hydroxyethyl]-27-[[(3r)-3-hydroxyhexadecanoyl]amino]-2,5,8,11,14,17,20,23,26-nonaoxo-1-oxa-4,7 Chemical compound CCCCCCCCCCCCC[C@@H](O)CC(=O)N[C@H]1COC(=O)[C@H]([C@H](O)CCl)NC(=O)[C@H]([C@H](O)C(O)=O)NC(=O)\C(=C/C)NC(=O)[C@H]([C@H](C)O)NC(=O)[C@@H](CCN)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](CCN)NC1=O KZSKIDBMTSZKLE-NDWYDANWSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 230000020176 deacylation Effects 0.000 description 4
- 238000005947 deacylation reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000002538 fungal effect Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N lysine Chemical compound NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical group NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241001225321 Aspergillus fumigatus Species 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229940095731 candida albicans Drugs 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 239000003471 mutagenic agent Substances 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- YDBVAWZTOAZPTJ-REOHCLBHSA-N (2s)-2-(hydroxyamino)butanedioic acid Chemical compound ON[C@H](C(O)=O)CC(O)=O YDBVAWZTOAZPTJ-REOHCLBHSA-N 0.000 description 2
- LKIUUVZMMOKAMF-UHFFFAOYSA-N 2-(2,6-difluorophenyl)-2-methylpropanoic acid Chemical compound OC(=O)C(C)(C)C1=C(F)C=CC=C1F LKIUUVZMMOKAMF-UHFFFAOYSA-N 0.000 description 2
- CETUIFTXYGHITB-GBXIJSLDSA-N 4-chloro-L-threonine Chemical compound OC(=O)[C@@H](N)[C@H](O)CCl CETUIFTXYGHITB-GBXIJSLDSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000001857 anti-mycotic effect Effects 0.000 description 2
- 239000002543 antimycotic Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000005544 phthalimido group Chemical group 0.000 description 2
- 108010004147 polymyxin acylase Proteins 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 235000013573 potato product Nutrition 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 108010040704 pseudomycin C' Proteins 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical class CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- IEXRKQFZXJSHOB-UHFFFAOYSA-N (4-nitrophenyl) formate Chemical compound [O-][N+](=O)C1=CC=C(OC=O)C=C1 IEXRKQFZXJSHOB-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- XXJGBENTLXFVFI-UHFFFAOYSA-N 1-amino-methylene Chemical compound N[CH2] XXJGBENTLXFVFI-UHFFFAOYSA-N 0.000 description 1
- BLCJBICVQSYOIF-UHFFFAOYSA-N 2,2-diaminobutanoic acid Chemical compound CCC(N)(N)C(O)=O BLCJBICVQSYOIF-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- HEGWNIMGIDYRAU-UHFFFAOYSA-N 3-hexyl-2,4-dioxabicyclo[1.1.0]butane Chemical compound O1C2OC21CCCCCC HEGWNIMGIDYRAU-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 208000036641 Aspergillus infections Diseases 0.000 description 1
- 241000335423 Blastomyces Species 0.000 description 1
- 241000228405 Blastomyces dermatitidis Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WSNMPAVSZJSIMT-UHFFFAOYSA-N COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 Chemical compound COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 WSNMPAVSZJSIMT-UHFFFAOYSA-N 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 206010007134 Candida infections Diseases 0.000 description 1
- 241000222173 Candida parapsilosis Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 241000223203 Coccidioides Species 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 241000228402 Histoplasma Species 0.000 description 1
- 241000228404 Histoplasma capsulatum Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- 238000002768 Kirby-Bauer method Methods 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 241000235645 Pichia kudriavzevii Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000223598 Scedosporium boydii Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241001149963 Sporothrix schenckii Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 244000297179 Syringa vulgaris Species 0.000 description 1
- ZQVJBRJGDVZANE-UHFFFAOYSA-N Syringomycin Natural products N1C(=O)C(CCCN=C(N)N)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CO)NC(=O)C(NC(=O)CC(O)CCCCCCCCC)COC(=O)C(C(O)CCl)NC(=O)C(C(O)C(O)=O)NC(=O)C(=CC)NC(=O)C1CC1=CC=CC=C1 ZQVJBRJGDVZANE-UHFFFAOYSA-N 0.000 description 1
- 241000223238 Trichophyton Species 0.000 description 1
- 241001286670 Ulmus x hollandica Species 0.000 description 1
- ZEEBGORNQSEQBE-UHFFFAOYSA-N [2-(3-phenylphenoxy)-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound C1(=CC(=CC=C1)OC1=NC(=CC(=C1)CN)C(F)(F)F)C1=CC=CC=C1 ZEEBGORNQSEQBE-UHFFFAOYSA-N 0.000 description 1
- ABRVLXLNVJHDRQ-UHFFFAOYSA-N [2-pyridin-3-yl-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound FC(C1=CC(=CC(=N1)C=1C=NC=CC=1)CN)(F)F ABRVLXLNVJHDRQ-UHFFFAOYSA-N 0.000 description 1
- DGYIJVNZSDYBOE-UHFFFAOYSA-N [CH2]C1=CC=NC=C1 Chemical group [CH2]C1=CC=NC=C1 DGYIJVNZSDYBOE-UHFFFAOYSA-N 0.000 description 1
- 241000222126 [Candida] glabrata Species 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000002814 agar dilution Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 125000002431 aminoalkoxy group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 159000000032 aromatic acids Chemical group 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical class N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- WGNZRLMOMHJUSP-UHFFFAOYSA-N benzotriazol-1-yloxy(tripyrrolidin-1-yl)phosphanium Chemical compound C1CCCN1[P+](N1CCCC1)(N1CCCC1)ON1C2=CC=CC=C2N=N1 WGNZRLMOMHJUSP-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical class C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002962 chemical mutagen Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000008355 dextrose injection Substances 0.000 description 1
- FXORZKOZOQWVMQ-UHFFFAOYSA-L dichloropalladium;triphenylphosphane Chemical compound Cl[Pd]Cl.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 FXORZKOZOQWVMQ-UHFFFAOYSA-L 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000002315 glycerophosphates Chemical class 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000007366 host health Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000005191 hydroxyalkylamino group Chemical group 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000008263 liquid aerosol Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- HAMGRBXTJNITHG-UHFFFAOYSA-N methyl isocyanate Chemical compound CN=C=O HAMGRBXTJNITHG-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XWERQNZSJAIOTN-UHFFFAOYSA-N n-methyl-n-(1-nitroso-6-oxo-7h-purin-2-yl)nitramide Chemical compound O=C1N(N=O)C(N(C)[N+]([O-])=O)=NC2=C1NC=N2 XWERQNZSJAIOTN-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000002814 niacins Chemical class 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000008063 pharmaceutical solvent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- AHWALFGBDFAJAI-UHFFFAOYSA-N phenyl carbonochloridate Chemical compound ClC(=O)OC1=CC=CC=C1 AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 1
- 231100000208 phytotoxic Toxicity 0.000 description 1
- 230000000885 phytotoxic effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical class OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000005547 pivalate group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- XVSSGIXTKVRGAR-UHFFFAOYSA-N prop-2-enoxycarbonyl prop-2-enyl carbonate Chemical compound C=CCOC(=O)OC(=O)OCC=C XVSSGIXTKVRGAR-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- OGNAOIGAPPSUMG-UHFFFAOYSA-N spiro[2.2]pentane Chemical compound C1CC11CC1 OGNAOIGAPPSUMG-UHFFFAOYSA-N 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229930185586 syringostatin Natural products 0.000 description 1
- 229930194835 syringotoxin Natural products 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- DBGVGMSCBYYSLD-UHFFFAOYSA-N tributylstannane Chemical compound CCCC[SnH](CCCC)CCCC DBGVGMSCBYYSLD-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dermatology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
An amine-modified pseudomycin compound represented by structure (I), where R1 is an acyl linkage is described. The amine-modified pseudomycin derivatives are useful as antifungal agents or in the design of antifungal agents.
Description
AMINE-MODIFIED PSEUDOMYCIN 'COMPOUNDS
FIELD OF THE INVENTION
The present invention relates to pseudomycin compounds, in particular, amine-modified, pseudomycin compounds.
BACKGROUND OF THE INVENTION
Pseudomycins are natural products isolated from liquid cultures of Pseudomonas syringae (plant-associated bacterium) and have been shown to have antifungal activities. (see i.e., Harrison, L., et al., "Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity," J.
Gen. Microbiology, 137(12), 2857-65 (1991) and US Patent Nos. 5,576,298 and 5,837,685) Unlike the previously described antimycotics from P. syringae (e. g., syringomycins, syringotoxins and syringostatins), pseudomycins A-C contain hydroxyaspartic acid, aspartic acid, serine, dehydroaminobutyric acid, lysine and diaminobutyric acid.
The peptide moiety for pseudomycins A, A', B, B', C, C' corresponds to L-Ser-D-Dab-L-Asp-L-Lys-L-Dab-L-aThr-Z-Dhb-L-Asp(3-OH)-L-Thr(4-Cl) with the terminal carboxyl group closing a macrocyclic ring on the OH group of the N-terminal Ser. The analogs are distinguished by the N-acyl side chain, i.e., pseudomycin A is N-acylated by 3,4-dihydroxytetradeconoyl, pseudomycin A' by 3,4-dihydroxypentadecanoyl, pseudomycin B by 3-hydroxytetradecanoyl, pseudomycin B' by 3-hydroxydodecanoyl, pseudomycin C by 3,4-dihydroxyhexadecanoyl and pseudomycin C' by 3-hydroxyhexadecanoyl. (see i.e., Ballio, A., et al., "Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins," FEBS Letters, 355(1), 96-100, (1994) and Coiro, V.M., et al., "Solution conformation of the Pseudomonas syringae MSU 16H phytotoxic lipodepsipeptide Pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data," Eur. J. Biochem., 257(2), 449-456 (1998).) Pseudomycins are known to have certain adverse biological effects. For example, destruction of the endothelium of the vein, destruction of tissue, inflammation, and local toxicity to host tissues have been observed when pseudomycin is administered intraveneously.
Since the pseudomycins have proven antifungal activity and relatively unexplored chemistry, there is a need to explore this class of compounds for other potential compounds that may be useful as antifungal agents having less adverse side affects.
BRIEF SUMMARY OF THE INVENTION
The present invention provides amine-modified pseudomycin compounds represented by the following structure which are useful as antifungal agents or in the design of antifungal agents.
O
O
OH
O~N H
NH H N OH
HO O
NH SCI
O
O O
R'HN O
NH
O O O H R
N NH
O
R2 NHR' R' HN O
wherein R is Rb~ Rd Rf Ra Ra~ ~c ~a R R
where Ra and Ra~ are independently hydrogen or methyl, or either Ra or Ra~ is alkyl amino, taken together with Rb or Rb~ forms a six-membered cycloalkyl'ring, a six-membered aromatic ring or a double bond, or taken together with R~ forms a six-membered aromatic ring;
Rb and Rb~ are independently hydrogen, halogen, or methyl, or either Rb or Rb~ is amino, alkylamino, oc-acetoacetate, methoxy, or hydroxy;
R° is hydrogen, hydroxy, C1-C4 alkoxy, hydroxy (C1-C4)alkoxy, or taken together with Re forms a 6-membered aromatic ring or CS-C6 cycloalkyl ring;
Re is hydrogen, or taken together with Rf is a six-membered aromatic ring, CS-C14 alkoxy substituted six-membered aromatic ring, or C5-C14 alkyl substituted six-membered aromatic ring, and Rf is C$-C18 alkyl , C5-C11 alkoxy, or biphenyl ;
R is Rg Rn O
where Rg is hydrogen, or C1-C13 alkyl, and Rh is C1-C15 alkyl, C4-C15 alkoxy, (C1-Clo alkyl ) phenyl , - ( CHZ ) n-aryl , or - ( CH2 ) n- ( CS-Cs cycloalkyl), where n = 1 or 2; or R is R~
m where Ri is a hydrogen, halogen, or C5-C8 alkoxy, and m is 1, 2 or 3;
R is OH
a R' where R' is C5-C14 alkoxy or CS-C14 alkyl , and p = 0 , 1 or 2;
R is -N
Rk where Rk is CS-C14 alkoxy; or R is - (CH2) -NRm- (C13-C18 alkyl) , where Rm is H, -CH3 or -C (O) CH3;
R1 is independently hydrogen, formyl, an acylalkyl (e.g., -C ( 0 ) CH3 , -C ( 0 ) CH2CH3 , -C ( O ) CH ( CH3 ) 2 , and -C ( O ) C ( CH3 ) 3 ) , an acylalkylamine (e. g., -C(0)CH(NH2)CH3), an acylazaalkyl (e. g., -C(O)NHCH3 and -C(O)NHCH(CH3)2), an acyloxyalkene ( a . g . , -C ( 0 ) OCH2CH=CH2 ) , an acyloxyaryl ( a . g . , -C ( O ) OC6H5 ) , or an acylmethylenecarbamate (e. g., compounds 1(a) depicted below) O
N O
~R~a R' b O
1 (a) Rla i s C1-Clo alkyl , C1-C1o alkenyl , benzyl , or aryl and R1b is hydrogen or methyl, provided that at least one R1 is not hydrogen;
RZ and R3 are independently -OR2a, or -N(RZb) (R2°) , where RZa and R2b are independently hydrogen, C1-Clo alkyl (e.g., methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, etc.), C3_C6 cycloalkyl (e. g., cyclopropyl, cyclobutyl, cyclopentyl, cyclopentylmethylene, methylcyclopentyl, cyclohexyl, etc . ) hydroxy ( C1-Clo ) alkyl , alkoxy ( C1-Clo ) alkyl ( a . g, methoxyethyl ) , or C2-Clo alkenyl , amino ( C1-Clo ) alkyl , mono- or di-alkylamino ( C1-Clo ) alkyl , aryl ( C1-Clo ) alkyl (e.g., benzyl), heteroaryl(C1-Clo)alkyl (e.g., 3-pyridylmethyl, 4-pyridylmethyl), or cycloheteroalkyl(C1-Clo)alkyl (e. g., N-tetrahydro-1,4-oxazinylethyl and N-piperazinylethyl), or RZb is an alkyl carboxylate residue of an aminoacid alkyl ester (e.g. , -CHzCO2CH3, -CH ( COzCH3 ) CH ( CH3 ) 2 , -CH ( COZCH3 ) CH ( phenyl ) , -CH ( COZCH3 ) CH20H, -CH ( C02CH3 ) CH2 (p-hydroxyphenyl ) , -CH ( COZCH3 ) CHzSH, -CH ( C02CH3 ) CHz ( CHZ ) 3NH2 , -CH ( COZCH3 ) CHZ ( 4- or 5-imidazole ) , -CH ( COZCH3 ) CHzCOzCH3, -CH ( COZCH3 ) CHZC02NH2 , and the 1 i ke ) , and R2~ is hydrogen or C1-C6 alkyl; and pharmaceutically acceptable salts and solvates thereof.
In another embodiment of the present invention, a pharmaceutical formulation is provided which includes the pseudomycin compound described above and a pharmaceutically acceptable carrier.
In yet another embodiment of the present invention, a method is provided for treating an antifungal infection in an animal in need thereof, which comprises administering to the animal the pseudomycin compound described above.
Definitions As used herein, the term "alkyl" refers to a hydrocarbon radical of the general formula CnH2n+1 containing from 1 to 30 carbon atoms unless otherwise indicated. The alkane radical may be straight (e. g. methyl, ethyl, propyl, butyl, etc.), branched (e. g., isopropyl, isobutyl, tertiary butyl, neopentyl, etc.), cyclic (e. g., cyclopropyl, cyclobutyl, cyclopentyl, methylcyclopentyl, cyclohexyl, etc.), or multi-cyclic (e. g., bicyclo[2.2.1]heptane, spiro[2.2]pentane, etc.). The alkane radical may be substituted or unsubstituted. Similarly, the alkyl portion of an alkoxy group, alkanoyl, or alkanoate have the same definition as above.
The term "alkenyl" refers to an acyclic hydrocarbon containing at least one carbon carbon double bond. The alkene radical may be straight, branched, cyclic, or multi-cyclic. The alkene radical may be substituted or unsubstituted. The alkenyl portion of an alkenoxy, alkenoyl or alkenoate group has the same definition as above.
The term "aryl" refers to aromatic moieties having single (e. g., phenyl) or fused ring systems (e. g., naphthalene, anthracene, phenanthrene, etc.). The aryl groups may be substituted or unsubstituted.
Within the field of organic chemistry and particularly within the field of organic biochemistry, it is widely understood that significant substitution of compounds is tolerated or even useful. In the present invention, for example, the term alkyl group allows for substitutents which is a classic alkyl, such as methyl, ethyl, propyl, hexyl, isooctyl, dodecyl, stearyl, etc. The term "group"
specifically envisions and allows for substitutions on alkyls which are common in the art, such as hydroxy, halogen, alkoxy, carbonyl, keto, ester, carbamato, etc., as well as including the unsubstituted alkyl moiety. However, it is generally understood by those skilled in the art that the substituents should be selected so as to not adversely affect the pharmacological characteristics of the compound or adversely interfere with the use of the medicament.
Suitable substituents for any of the groups defined above include alkyl, alkenyl, alkynyl, aryl, halo, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, mono- and di-alkyl amino, quaternary ammonium salts, aminoalkoxy, hydroxyalkylamino, aminoalkylthio, carbamyl, carbonyl, carboxy, glycolyl, glycyl, hydrazino, guanyl, and combinations thereof.
The term "animal" refers to humans, companion animals (e. g., dogs, cats and horses), food-source animals (e. g., cows, pigs, sheep and poultry), zoo animals, marine animals, birds and other similar animal species.
DETAILED DESCRIPTION OF THE INVENTION
Applicants have discovered that modification of the pendant amino groups attached to the lysine or 2,4-diaminobutyric acid peptide units in the pseudomycin natural product or semi-synthetic derivative provides compounds having in vitro indications which suggest that the new compounds may be active against C. albican, C, neoformans, and/or A. fumigatus. The amino groups are modified using an acylating agent containing a suitable leaving group such that an amide, carbamate, urea or imide linkage with the pendant amino group on the pseudomycin structure can be formed. Suitable leaving groups are well known to those skilled in the art and include groups such as p-nitrophenoxy and N-oxysuccinimide.
Amide linkages are synthesized using conventional chemistry well-known to those skilled in the art. Suitable acylating agents include derivatives of the desired carboxylic acid to produce a pseudomycin compound where R1 -acylalkyl or amino acid to produce a pseudomycin compound where R1 - acylalkylamine. Typically, the acylating agent is formed by replacing the -OH of the carboxylic acid group with a leaving group (e.g., N-oxysuccinimde). When an amino acid acylating agent is used, the amino group is protected prior to condensation using any conventional amino-protecting group known to those skilled in the art (e.g., benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, p-methoxybenxyloxycarbonyl, p-methoxyphenylazobenzyloxycarbonyl, p-phenylazobenzyloxycarbonyl, t-butyloxycarbonyl or cyclopentyloxycarbonyl). After the amide linkage is formed, then the amino-protecting group is removed using standard hydrogenation chemistry (e.g., Pd/C under a hydrogen atmosphere). See the Examples below for a more detailed description for forming pseudomycin amide derivatives from amino acids.
As discussed earlier, pseudomycins are natural products isolated from the bacterium Pseudomonas syringae that have been characterized as lipodepsinonapetpides containing a cyclic peptide portion closed by a lactone bond and including the unusual amino acids 4-chlorothreonine (ClThr), 3-hydroxyaspartic acid (HOAsp), 2,3-dehydro-2-aminobutyric acid (Dhb), and 2,4-diaminobutyric acid (Dab). Methods for growth of various strains of P. syringae to produce the different pseudomycin analogs (A, A', B, B', C, and C') are described in PCT
Patent Application Serial No. PCT/US00/08728 filed by Hilton, et al. on April 14, 2000 entitled "Pseudomycin Production by Pseudomonas Syringae," incorporated herein by reference, PCT Patent Application Serial No. PCT/US00/08727 filed by Kulanthaivel, et al. on April 14, 2000 entitled "Pseudomycin Natural Products," incorporated herein by reference, and U.S. Patent Nos. 5,576,298 and 5,837,685, each of which are incorporated herein by reference.
Isolated strains of P. syringae that produce one or more pseudomycins are known in the art. Wild type strain MSU 174 and a mutant of this strain generated by transposon mutagenesis, MSU 16H are described in U.S. Patent Nos.
FIELD OF THE INVENTION
The present invention relates to pseudomycin compounds, in particular, amine-modified, pseudomycin compounds.
BACKGROUND OF THE INVENTION
Pseudomycins are natural products isolated from liquid cultures of Pseudomonas syringae (plant-associated bacterium) and have been shown to have antifungal activities. (see i.e., Harrison, L., et al., "Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity," J.
Gen. Microbiology, 137(12), 2857-65 (1991) and US Patent Nos. 5,576,298 and 5,837,685) Unlike the previously described antimycotics from P. syringae (e. g., syringomycins, syringotoxins and syringostatins), pseudomycins A-C contain hydroxyaspartic acid, aspartic acid, serine, dehydroaminobutyric acid, lysine and diaminobutyric acid.
The peptide moiety for pseudomycins A, A', B, B', C, C' corresponds to L-Ser-D-Dab-L-Asp-L-Lys-L-Dab-L-aThr-Z-Dhb-L-Asp(3-OH)-L-Thr(4-Cl) with the terminal carboxyl group closing a macrocyclic ring on the OH group of the N-terminal Ser. The analogs are distinguished by the N-acyl side chain, i.e., pseudomycin A is N-acylated by 3,4-dihydroxytetradeconoyl, pseudomycin A' by 3,4-dihydroxypentadecanoyl, pseudomycin B by 3-hydroxytetradecanoyl, pseudomycin B' by 3-hydroxydodecanoyl, pseudomycin C by 3,4-dihydroxyhexadecanoyl and pseudomycin C' by 3-hydroxyhexadecanoyl. (see i.e., Ballio, A., et al., "Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins," FEBS Letters, 355(1), 96-100, (1994) and Coiro, V.M., et al., "Solution conformation of the Pseudomonas syringae MSU 16H phytotoxic lipodepsipeptide Pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data," Eur. J. Biochem., 257(2), 449-456 (1998).) Pseudomycins are known to have certain adverse biological effects. For example, destruction of the endothelium of the vein, destruction of tissue, inflammation, and local toxicity to host tissues have been observed when pseudomycin is administered intraveneously.
Since the pseudomycins have proven antifungal activity and relatively unexplored chemistry, there is a need to explore this class of compounds for other potential compounds that may be useful as antifungal agents having less adverse side affects.
BRIEF SUMMARY OF THE INVENTION
The present invention provides amine-modified pseudomycin compounds represented by the following structure which are useful as antifungal agents or in the design of antifungal agents.
O
O
OH
O~N H
NH H N OH
HO O
NH SCI
O
O O
R'HN O
NH
O O O H R
N NH
O
R2 NHR' R' HN O
wherein R is Rb~ Rd Rf Ra Ra~ ~c ~a R R
where Ra and Ra~ are independently hydrogen or methyl, or either Ra or Ra~ is alkyl amino, taken together with Rb or Rb~ forms a six-membered cycloalkyl'ring, a six-membered aromatic ring or a double bond, or taken together with R~ forms a six-membered aromatic ring;
Rb and Rb~ are independently hydrogen, halogen, or methyl, or either Rb or Rb~ is amino, alkylamino, oc-acetoacetate, methoxy, or hydroxy;
R° is hydrogen, hydroxy, C1-C4 alkoxy, hydroxy (C1-C4)alkoxy, or taken together with Re forms a 6-membered aromatic ring or CS-C6 cycloalkyl ring;
Re is hydrogen, or taken together with Rf is a six-membered aromatic ring, CS-C14 alkoxy substituted six-membered aromatic ring, or C5-C14 alkyl substituted six-membered aromatic ring, and Rf is C$-C18 alkyl , C5-C11 alkoxy, or biphenyl ;
R is Rg Rn O
where Rg is hydrogen, or C1-C13 alkyl, and Rh is C1-C15 alkyl, C4-C15 alkoxy, (C1-Clo alkyl ) phenyl , - ( CHZ ) n-aryl , or - ( CH2 ) n- ( CS-Cs cycloalkyl), where n = 1 or 2; or R is R~
m where Ri is a hydrogen, halogen, or C5-C8 alkoxy, and m is 1, 2 or 3;
R is OH
a R' where R' is C5-C14 alkoxy or CS-C14 alkyl , and p = 0 , 1 or 2;
R is -N
Rk where Rk is CS-C14 alkoxy; or R is - (CH2) -NRm- (C13-C18 alkyl) , where Rm is H, -CH3 or -C (O) CH3;
R1 is independently hydrogen, formyl, an acylalkyl (e.g., -C ( 0 ) CH3 , -C ( 0 ) CH2CH3 , -C ( O ) CH ( CH3 ) 2 , and -C ( O ) C ( CH3 ) 3 ) , an acylalkylamine (e. g., -C(0)CH(NH2)CH3), an acylazaalkyl (e. g., -C(O)NHCH3 and -C(O)NHCH(CH3)2), an acyloxyalkene ( a . g . , -C ( 0 ) OCH2CH=CH2 ) , an acyloxyaryl ( a . g . , -C ( O ) OC6H5 ) , or an acylmethylenecarbamate (e. g., compounds 1(a) depicted below) O
N O
~R~a R' b O
1 (a) Rla i s C1-Clo alkyl , C1-C1o alkenyl , benzyl , or aryl and R1b is hydrogen or methyl, provided that at least one R1 is not hydrogen;
RZ and R3 are independently -OR2a, or -N(RZb) (R2°) , where RZa and R2b are independently hydrogen, C1-Clo alkyl (e.g., methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, etc.), C3_C6 cycloalkyl (e. g., cyclopropyl, cyclobutyl, cyclopentyl, cyclopentylmethylene, methylcyclopentyl, cyclohexyl, etc . ) hydroxy ( C1-Clo ) alkyl , alkoxy ( C1-Clo ) alkyl ( a . g, methoxyethyl ) , or C2-Clo alkenyl , amino ( C1-Clo ) alkyl , mono- or di-alkylamino ( C1-Clo ) alkyl , aryl ( C1-Clo ) alkyl (e.g., benzyl), heteroaryl(C1-Clo)alkyl (e.g., 3-pyridylmethyl, 4-pyridylmethyl), or cycloheteroalkyl(C1-Clo)alkyl (e. g., N-tetrahydro-1,4-oxazinylethyl and N-piperazinylethyl), or RZb is an alkyl carboxylate residue of an aminoacid alkyl ester (e.g. , -CHzCO2CH3, -CH ( COzCH3 ) CH ( CH3 ) 2 , -CH ( COZCH3 ) CH ( phenyl ) , -CH ( COZCH3 ) CH20H, -CH ( C02CH3 ) CH2 (p-hydroxyphenyl ) , -CH ( COZCH3 ) CHzSH, -CH ( C02CH3 ) CHz ( CHZ ) 3NH2 , -CH ( COZCH3 ) CHZ ( 4- or 5-imidazole ) , -CH ( COZCH3 ) CHzCOzCH3, -CH ( COZCH3 ) CHZC02NH2 , and the 1 i ke ) , and R2~ is hydrogen or C1-C6 alkyl; and pharmaceutically acceptable salts and solvates thereof.
In another embodiment of the present invention, a pharmaceutical formulation is provided which includes the pseudomycin compound described above and a pharmaceutically acceptable carrier.
In yet another embodiment of the present invention, a method is provided for treating an antifungal infection in an animal in need thereof, which comprises administering to the animal the pseudomycin compound described above.
Definitions As used herein, the term "alkyl" refers to a hydrocarbon radical of the general formula CnH2n+1 containing from 1 to 30 carbon atoms unless otherwise indicated. The alkane radical may be straight (e. g. methyl, ethyl, propyl, butyl, etc.), branched (e. g., isopropyl, isobutyl, tertiary butyl, neopentyl, etc.), cyclic (e. g., cyclopropyl, cyclobutyl, cyclopentyl, methylcyclopentyl, cyclohexyl, etc.), or multi-cyclic (e. g., bicyclo[2.2.1]heptane, spiro[2.2]pentane, etc.). The alkane radical may be substituted or unsubstituted. Similarly, the alkyl portion of an alkoxy group, alkanoyl, or alkanoate have the same definition as above.
The term "alkenyl" refers to an acyclic hydrocarbon containing at least one carbon carbon double bond. The alkene radical may be straight, branched, cyclic, or multi-cyclic. The alkene radical may be substituted or unsubstituted. The alkenyl portion of an alkenoxy, alkenoyl or alkenoate group has the same definition as above.
The term "aryl" refers to aromatic moieties having single (e. g., phenyl) or fused ring systems (e. g., naphthalene, anthracene, phenanthrene, etc.). The aryl groups may be substituted or unsubstituted.
Within the field of organic chemistry and particularly within the field of organic biochemistry, it is widely understood that significant substitution of compounds is tolerated or even useful. In the present invention, for example, the term alkyl group allows for substitutents which is a classic alkyl, such as methyl, ethyl, propyl, hexyl, isooctyl, dodecyl, stearyl, etc. The term "group"
specifically envisions and allows for substitutions on alkyls which are common in the art, such as hydroxy, halogen, alkoxy, carbonyl, keto, ester, carbamato, etc., as well as including the unsubstituted alkyl moiety. However, it is generally understood by those skilled in the art that the substituents should be selected so as to not adversely affect the pharmacological characteristics of the compound or adversely interfere with the use of the medicament.
Suitable substituents for any of the groups defined above include alkyl, alkenyl, alkynyl, aryl, halo, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, mono- and di-alkyl amino, quaternary ammonium salts, aminoalkoxy, hydroxyalkylamino, aminoalkylthio, carbamyl, carbonyl, carboxy, glycolyl, glycyl, hydrazino, guanyl, and combinations thereof.
The term "animal" refers to humans, companion animals (e. g., dogs, cats and horses), food-source animals (e. g., cows, pigs, sheep and poultry), zoo animals, marine animals, birds and other similar animal species.
DETAILED DESCRIPTION OF THE INVENTION
Applicants have discovered that modification of the pendant amino groups attached to the lysine or 2,4-diaminobutyric acid peptide units in the pseudomycin natural product or semi-synthetic derivative provides compounds having in vitro indications which suggest that the new compounds may be active against C. albican, C, neoformans, and/or A. fumigatus. The amino groups are modified using an acylating agent containing a suitable leaving group such that an amide, carbamate, urea or imide linkage with the pendant amino group on the pseudomycin structure can be formed. Suitable leaving groups are well known to those skilled in the art and include groups such as p-nitrophenoxy and N-oxysuccinimide.
Amide linkages are synthesized using conventional chemistry well-known to those skilled in the art. Suitable acylating agents include derivatives of the desired carboxylic acid to produce a pseudomycin compound where R1 -acylalkyl or amino acid to produce a pseudomycin compound where R1 - acylalkylamine. Typically, the acylating agent is formed by replacing the -OH of the carboxylic acid group with a leaving group (e.g., N-oxysuccinimde). When an amino acid acylating agent is used, the amino group is protected prior to condensation using any conventional amino-protecting group known to those skilled in the art (e.g., benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, p-methoxybenxyloxycarbonyl, p-methoxyphenylazobenzyloxycarbonyl, p-phenylazobenzyloxycarbonyl, t-butyloxycarbonyl or cyclopentyloxycarbonyl). After the amide linkage is formed, then the amino-protecting group is removed using standard hydrogenation chemistry (e.g., Pd/C under a hydrogen atmosphere). See the Examples below for a more detailed description for forming pseudomycin amide derivatives from amino acids.
As discussed earlier, pseudomycins are natural products isolated from the bacterium Pseudomonas syringae that have been characterized as lipodepsinonapetpides containing a cyclic peptide portion closed by a lactone bond and including the unusual amino acids 4-chlorothreonine (ClThr), 3-hydroxyaspartic acid (HOAsp), 2,3-dehydro-2-aminobutyric acid (Dhb), and 2,4-diaminobutyric acid (Dab). Methods for growth of various strains of P. syringae to produce the different pseudomycin analogs (A, A', B, B', C, and C') are described in PCT
Patent Application Serial No. PCT/US00/08728 filed by Hilton, et al. on April 14, 2000 entitled "Pseudomycin Production by Pseudomonas Syringae," incorporated herein by reference, PCT Patent Application Serial No. PCT/US00/08727 filed by Kulanthaivel, et al. on April 14, 2000 entitled "Pseudomycin Natural Products," incorporated herein by reference, and U.S. Patent Nos. 5,576,298 and 5,837,685, each of which are incorporated herein by reference.
Isolated strains of P. syringae that produce one or more pseudomycins are known in the art. Wild type strain MSU 174 and a mutant of this strain generated by transposon mutagenesis, MSU 16H are described in U.S. Patent Nos.
5,576,298 and 5,837,685; Harrison, et al., "Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity," J. Gen.
Microbiology, 137, 2857-2865 (1991); and Lamb et al., "Transposon mutagenesis and tagging of fluorescent pseudomonas: Antimycotic production is necessary for control of Dutch elm disease," Proc. Natl. Acad. Sci. USA, 84, 6447-6451 (1987).
A strain of P. syringae that is suitable for production of one or more pseudomycins can be isolated from environmental sources including plants (e. g., barley plants, citrus plants, and lilac plants) as well as, sources such as soil, water, air, and dust. A preferred stain is isolated from plants. Strains of P. syringae that are isolated from environmental sources can be referred to as wild type. As used herein, "wild type" refers to a dominant genotype which naturally occurs in the normal population of P. syringae (e.g., strains or isolates of P.
syringae that are found in nature and not produced by laboratory manipulation). Like most organisms, the characteristics of the pseudomycin- producing cultures employed (P. syringae strains such as MSU 174, MSU 16H, MSU
206, 25-B1, 7H9-1) are subject to variation. Hence, progeny of these strains (e.g., recombinants, mutants and variants) may be obtained by methods known in the art.
P. syringae MSU 16H is publicly available from the American Type Culture Collection, Parklawn Drive, Rockville, MD, USA as Accession No. ATCC 67028. P.
syringae strains 25-B1, 7H9-1, and 67 H1 were deposited with the American Type Culture Collection on March 23, 2000 and were assigned the following Accession Nos.:
25-B1 Accession No. PTA-1622 7H9-1 Accession No. PTA-1623 67 H1 Accession No. PTA-1621 Mutant strains of P. syringae are also suitable for production of one or more pseudomycins. As used herein, "mutant" refers to a sudden heritable change in the phenotype of a strain, which can be spontaneous or induced by known mutagenic agents, such as radiation (e. g., ultraviolet radiation or x-rays), chemical mutagens (e. g., ethyl methanesulfonate (EMS), diepoxyoctane, N-methyl-N-nitro-N'-nitrosoguanine (NTG), and nitrous acid), site-specific mutagenesis, and transposon mediated mutagenesis.
Pseudomycin-producing mutants of P. syringae can be produced by treating the bacteria with an amount of a mutagenic agent effective to produce mutants that overproduce one or more pseudomycins, that produce one pseudomycin (e. g., pseudomycin B) in excess over other pseudomycins, or that produce one or more pseudomycins under advantageous growth conditions. While the type and amount of mutagenic agent to be used can vary, a preferred method is to serially dilute NTG to levels ranging from 1 to 100 ~g/ml. Preferred mutants are those that overproduce pseudomycin B and grow in minimal defined media.
Environmental isolates, mutant strains, and other desirable strains of P. syringae can be subjected to selection for desirable traits of growth habit, growth medium nutrient source, carbon source, growth conditions, amino acid requirements, and the like. Preferably, a pseudomycin producing strain of P. syringae is selected for growth on minimal defined medium such as N21 medium and/or for production of one or more pseudomycins at levels greater than about 10 ~,g/ml. Preferred strains exhibit the characteristic of producing one or more pseudomycins when grown on a medium including three or fewer amino acids and optionally, either a lipid, a potato product or combination thereof.
Recombinant strains can be developed by transforming the P. syringae strains, using procedures known in the art.
Through the use of recombinant DNA technology, the P.
syringae strains can be transformed to express a variety of gene products in addition to the antibiotics these strains produce. For example, one can modify the strains to introduce multiple copies of the endogenous pseudomycin-biosynthesis genes to achieve greater pseudomycin yield.
To produce one or more pseudomycins from a wild type or mutant strain of P. syringae, the organism is cultured with agitation in an aqueous nutrient medium including an effective amount of three or fewer amino acids, preferably glutamic acid, glycine, histidine, or a combination thereof. Alternatively, glycine is combined with one or more of a potato product and a lipid. Culturing is conducted under conditions effective for growth of P.
syringae and production of the desired pseudomycin or pseudomycins. Effective conditions include temperatures from about 22°-C to about 27°-C, and a duration of about 36 hours to about 96 hours. Controlling the concentration of oxygen in the medium during culturing of P. syringae is advantageous for production of a pseudomycin. Preferably, oxygen levels are maintained at about 5 to 50o saturation, more preferably about 30o saturation. Sparging with air, pure oxygen, or gas mixtures including oxygen can regulate the concentration of oxygen in the medium.
Controlling the pH of the medium during culturing of P. syringae is also advantageous. Pseudomycins are labile at basic pH, and significant degradation can occur if the pH of the culture medium is above about 6 for more than about 12 hours. Preferably, the pH of the culture medium is maintained between 6 and 4. P. syringae can produce one or more pseudomycins when grown in batch culture. However, fed-bath or semi-continuous feed of glucose and optionally, an acid or base (e.g., ammonium hydroxide) to control pH, enhances production. Pseudomycin production can be further enhanced by using continuous culture methods in which glucose and ammonium hydroxide are fed automatically.
Choice of P. syringae strain can affect the amount and distribution of pseudomycin or pseudomycins produced. For example, strains MSU 16H and 67 H1 each produce predominantly pseudomycin A, but also produce pseudomycin B
and C, typically in ratios of 4:2:1. Strain 67 H1 typically produces levels of pseudomycins about three to five fold larger than are produced by strain MSU 16H.
Compared to strains MSU 16H and 67 H1, strain 25-B1 produces more pseudomycin B and less pseudomycin C. Strain 7H9-1 are distinctive in producing predominantly pseudomycin B and larger amount of pseudomycin B than other strains. For example, this strain can produce pseudomycin B in at least a ten fold excess over either pseudomycin A
or C.
Alternatively, the amine-modified pseudomycin compounds of the present invention can be formed from an N-acyl semi-synthetic compound. Semi-synthetic pseudomycin compounds may be synthesized by exchanging the N-acyl group on the L-serine unit. Examples of various N-acyl derivatives are described in PCT Patent Application Serial No. , Belvo, et al., filed evendate herewith entitled "Pseudomycin N-Acyl Side-Chain Analogs" and incorporated herein by reference. In general, four synthetic steps are used to produce the semi-synthetic compounds from naturally occurring pseudomycin compounds:
(1) selective amino protection; (2) chemical or enzymatic deacylation of the N-acyl side-chain; (3) reacylation with a different side-chain; and (4) deprotection of the amino groups.
The pendant amino groups at positions 2, 4 and 5 may be protected using any standard means known to those skilled in the art for amino protection. The exact genus and species of amino protecting group employed is not critical so long as the derivatized amino group is stable to the condition of subsequent reactions) on other positions of the intermediate molecule and the protecting group can be selectively removed at the appropriate point without disrupting the remainder of the molecule including any other amino protecting group(s). Suitable amino-protecting groups include benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, p-methoxybenxyloxycarbonyl, p-methoxyphenylazobenzyloxycarbonyl, p-phenylazobenzyloxycarbonyl, t-butyloxycarbonyl, cyclopentyloxycarbonyl, and phthalimido. Preferred amino protecting groups are t-butoxycarbonyl (t-Boc), allyloxycarbonyl (Alloc), phthalimido, and benzyloxycarbonyl (CbZ or CBZ). Further examples of suitable protecting groups are described in T.W. Greene, "Protective Groups in Organic Synthesis," John Wiley and Sons, New York, N.Y., (2nd ed., 1991), at chapter 7.
The deacylation of an N-acyl group having a gamma or delta hydroxylated side chain (e. g., 3,4-dihydroxytetra-deconoate) may be accomplished by treating the amino-protected pseudomycin compound with acid in an aqueous solvent. Suitable acids include acetic acid and trifluoroacetic acid. A preferred acid is trifluoroacetic acid. If trifluoroacetic acid is used, the reaction may be accomplished at or near room temperature. However, when acetic acid is used the reaction is generally ran at about 40°C. Suitable aqueous solvent systems include acetonitrile, water, and mixtures thereof. Organic solvents accelerate the reaction; however, the addition of an organic solvent may lead to other by-products.
Pseudomycin compounds lacking a delta or gamma hydroxy group on the side chain (e.g., Pseudomycin B and C') may be deacylated enzymatically. Suitable deacylase enzymes include Polymyxin Acylase (164-16081 Fatty Acylase (crude) or 161-16091 Fatty Acylase (pure) available from Wako Pure Chemical Industries, Ltd.), or ECB deacylase. The enzymatic deacylation may be accomplished using standard deacylation procedures well known to those skilled in the art. For example, general procedures for using polymyxin acylase may be found in Yasuda, N., et al, Agric. Biol.
Chem., 53, 3245 (1989) and Kimura, Y., et al., Agric. Biol.
Chem., 53, 497 (1989).
The deacylated product (also known as the pseudomycin nucleus) is reacylated using the corresponding acid of the desired acyl group in the presence of a carbonyl activating agent. "Carbonyl activating group" refers to a substituent of a carbonyl that promotes nucleophilic addition reactions at that carbonyl. Suitable activating substituents are those which have a net electron withdrawing effect on the carbonyl. Such groups include, but are not limited to, alkoxy, aryloxy, nitrogen containing aromatic heterocycles, or amino groups (e. g., oxybenzotriazole, imidazolyl, nitrophenoxy, pentachlorophenoxy, N-oxysuccinimide, N,N'-dicyclohexylisoure-O-yl, and N-hydroxy-N-methoxyamino);
acetates; formates; sulfonates (e. g., methanesulfonate, ethanesulfonate, benzenesulfonate, and p-tolylsulfonate);
and halides (e. g., chloride, bromide, and iodide).
A variety of acids may be used in the acylation process. Suitable acids include aliphatic acids containing one or more pendant aryl, alkyl, amino(including primary, secondary and tertiary amines), hydroxy, alkoxy, and amido groups; aliphatic acids containing nitrogen or oxygen within the aliphatic chain; aromatic acids substituted with alkyl, hydroxy, alkoxy and/or alkyl amino groups; and heteroaromatic acids substituted with alkyl, hydroxy, alkoxy and/or alkyl amino groups.
Alternatively, a solid phase synthesis may be used where a hydroxybenzotriazole-resin (HOBt-resin) serves as the coupling agent for the acylation reaction.
Once the amino group is deacylated and reacylated (described above), then the amino protecting groups (at positions 2, 4 and 5) can be removed by hydrogenation in the presence of a hydrogenation catalyst (e. g., 10o Pd/C).
Tn~hen the amino protecting group is allyloxycarbonyl, then the protecting group can be removed using tributyltinhydride and triphenylphosphine palladium dichloride. This particular protection/deprotection scheme has the advantage of reducing the potential for hydrogenating the vinyl group of the Z-Dhb unit of the pseudomycin structure.
The amine-modification of the N-acyl semi-synthetic compound is then accomplished by acylating at least one of the pendant amino groups attached to the lysine or 2,4-diaminobutyric acid peptide units of the N-acyl modified semi-synthetic pseudomycin compound to form the desired amide, urea, carbamate or imide linkage.
The amine-modified pseudomycin compounds may be further modified by amidation or esterification of the pendant carboxylic acid group of the aspartic acid and/or hydroxyaspartic acid units of the pseudomycin ring.
Examples of various acid-modified derivatives are described in PCT Patent Application Serial No. , Chen, et al., filed evendate herewith entitled "Pseudomycin Amide & Ester Analogs" and incorporated herein by reference. The acid-modified derivatives may be formed by condensing any of the previously described amine-modified pseudomycin compounds with the appropriate alcohol or amine to produce the respective ester or amide.
Formation of the ester groups may be accomplished using standard esterification procedures well-known to those skilled in the art. Esterification under acidic conditions typically includes dissolving or suspending the pseudomycin compound in the appropriate alcohol in the presence of a protic acid (e. g., HCl, TFA, etc.). Under basic conditions, the pseudomycin compound is generally reacted with the appropriate alkyl halide in the presence of a weak base (e. g., sodium bicarbonate and potassium carbonate).
Formation of the amide groups may be accomplished using standard amidation procedures well-known to those skilled in the art. However, the choice of coupling agents provides selective modification of the acid groups. For example, the use of benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate(PyBOP) as the coupling agent allows one to isolate pure mono-amides at residue 8 and (in some cases) pure bis amides simultaneously. Whereas, the use of o-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU) as the coupling agent favors formation of monoamides at residue 3.
The pseudomycin amide derivatives may be isolated and used per se or in the form of its pharmaceutically acceptable salt or solvate. The term "pharmaceutically acceptable salt" refers to non-toxic acid addition salts derived from inorganic and organic acids. Suitable salt derivatives include halides, thiocyanates, sulfates, bisulfates, sulfites, bisulfites, arylsulfonates, alkylsulfates, phosphonates, monohydrogen-phosphates, dihydrogenphosphates, metaphosphates, pyrophosphonates, alkanoates, cycloalkylalkanoates, arylalkonates, adipates, alginates, aspartates, benzoates, fumarates, glucoheptanoates, glycerophosphates, lactates, maleates, nicotinates, oxalates, palmitates, pectinates, picrates, pivalates, succinates, tartarates, citrates, camphorates, camphorsulfonates, digluconates, trifluoroacetates, and the like.
The term "solvate" refers to an aggregate that comprises one or more molecules of the solute (i.e., amine-modified pseudomycin compound) with one or more molecules of a pharmaceutical solvent, such as water, ethanol, and the like. When the solvent is water, then the aggregate is referred to as a hydrate. Solvates are generally formed by dissolving the pseudomycin derivative in the appropriate solvent with heat and slowing cooling to generate an amorphous or crystalline solvate form.
Each pseudomycin compound, semi-synthetic pseudomycin derivatives, and mixtures can be detected, determined, isolated, and/or purified by any variety of methods known to those skilled in the art. For example, the level of pseudomycin or amine-modified pseudomycin activity in a broth or in an isolate or purified composition can be determined by antifungal action against a fungus such as Candida and can be isolated and purified by high performance liquid chromatography.
The active ingredient (i.e., pseudomycin compound of the present invention) is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to give the patient, physician, or veterinarian an elegant and easy to handle product. Formulations may comprise from 0.1o to 99.90 by weight of active ingredient, more generally from about 100 to about 30o by weight.
As used herein, the term "unit dose" or "unit dosage"
refers to physically discrete units that contain a predetermined quantity of active ingredient calculated to produce a desired therapeutic effect. When a unit dose is administered orally or parenterally, it is typically provided in the form of a tablet, capsule, pill, powder packet, topical composition, suppository, wafer, measured units in ampoules or in multidose containers, etc.
Alternatively, a unit dose may be administered in the form of a dry or liquid aerosol which may be inhaled or sprayed.
The dosage to be administered may vary depending upon the physical characteristics of the animal, the severity of the animal's symptoms, the means used to administer the drug and the animal species. The specific dose for a given animal is usually set by the judgment of the attending physician or veterinarian.
Suitable carriers, diluents and excipients are well known to those skilled in the art and include materials such as carbohydrates, waxes, water soluble and/or swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water, and the like. The particular carrier, diluent or excipient used will depend upon the means and purpose for which the active ingredient is being applied. The formulations may also include wetting agents, lubricating agents, surfactants, buffers, tonicity agents, bulking agents, stabilizers, emulsifiers, suspending agents, preservatives, sweeteners, perfuming agents, flavoring agents and combinations thereof.
A pharmaceutical composition may be administered using a variety of methods. Suitable methods include topical (e.g., ointments or sprays), oral, injection and inhalation. The particular treatment method used will depend upon the type of infection being addressed.
In parenteral iv applications, the formulations are typically diluted or reconstituted (if freeze-dried) and further diluted if necessary, prior to administration. An example of reconstitution instructions for the freeze-dried product are to add ten ml of water for injection (WFI) to the vial and gently agitate to dissolve. Typical reconstitution times are less than one minute. The resulting solution is then further diluted in an infusion solution such as dextrose 5o in water (D5W), prior to administration.
Pseudomycin compounds have been shown to exhibit antifungal activity such as growth inhibition of various infectious fungi including Candida spp. (i.e., C. albicans, C. parapsilosis, C. krusei, C. glabrata, C. tropicalis, or C. lusitaniaw); Torulopus spp.(i.e., T. glabrata);
Aspergillus spp. (i.e., A. fumigatus); Histoplasma spp.
(i.e., H. capsulatum); Cryptococcus spp. (i.e., C.
neoformans); Blastomyces spp. (i.e., B. dermatitidis);
Fusarium spp.; Trichophyton spp., Pseudallescheria boydii, Coccidioides immits, Sporothrix schenckii, etc.
Consequently, the compounds and formulations of the present invention are useful in the preparation of medicaments for use in combating either systemic fungal infections or fungal skin infections. Accordingly, a method is provided for inhibiting fungal activity comprising contacting the amine-modified pseudomycin compound of the present invention with a fungus. A
preferred method includes inhibiting Candida albicans or Aspergillus fumigatus activity. The term "contacting"
includes a union or junction, or apparent touching or mutual tangency of a compound of the invention with a fungus. The term does not imply any further limitations to the process, such as by mechanism of inhibition. The methods are defined to encompass the inhibition of fungal activity by the action of the compounds and their inherent antifungal properties.
A method for treating a fungal infection which comprises administering an effective amount of a pharmaceutical formulation of the present invention to a host in need of such treatment is also provided. A
preferred method includes treating a Candida albicans or Aspergillus fumigatus infection. The term "effective amount" refers to an amount of active compound which is capable of inhibiting fungal activity. The dose administered will vary depending on such factors as the nature and severity of the infection, the age and general health of the host, the tolerance of the host to the antifungal agent and the species of the host. The particular dose regimen likewise may vary according to these factors. The medicament may be given in a single daily dose or in multiple doses during the day. The regimen may last from about 2-3 days to about 2-3 weeks or longer. A typical daily dose (administered in single or divided doses) contains a dosage level between about 0.01 mg/kg to 100 mg/kg of body weight of an active compound.
Preferred daily doses are generally between about 0.1 mg/kg to 60 mg/kg and more preferably between about 2.5 mg/kg to 40 mg/kg. The host is generally an animal including humans, companion animals (e. g., dogs, cats and horses), food-source animals (e. g., cows, pigs, sheep and poultry), zoo animals, marine animals, birds and other similar animal species.
EXAMPLES
The following abbreviations are used through out the examples to represent the respective listed materials:
ACN - acetonitrile TFA - trifluoroacetic acid DMF - dimethylformamide EDCI - 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride BOC = t-butoxycarbonyl, (CH3)3C-O-C(O)-CBZ = benzyloxycarbonyl , C6HSCH2-O-C ( 0 ) -PyBOP = benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate TBTU = o-Benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate DIEA = N,N-diisopropylethylamine The following structure II will be used to describe the products observed in Examples 1 through 7.
R'.~.HN
N
O O O ,,.N n N N N
O ' Rz NHR' R'~~HN O
II
Detection and Quantification of An ti fungal Activity:
Antifungal activity was determined in vitro by obtaining the minimum inhibitory concentration (MIC) of the compound using a standard agar dilution test or a disc-diffusion test. A typical fungus employed in testing antifungal activity is Candida albicans. Antifungal activity is considered significant when the test sample (50 ~,l) causes 10-12 mm diameter zones of inhibition on C.
albicans x657 seeded agar plates.
Tail Vein Toxi ci ty:
Mice were treated intravenously (IV) through the lateral tail vein with 0.1 ml of testing compound (20 mg/kg) at 0, 24, 48 and 72 hours. Two mice were included in each group. Compounds were formulated in 5.0o dextrose and sterile water for injection. The mice were monitored for 7 days following the first treatment and observed closely for signs of irritation including erythema, swelling, discoloration, necrosis, tail loss and any other signs of adverse effects indicating toxicity.
The mice used in the study were outbred, male ICR mice having an average weight between 18-20 g (available from Harlan Sprangue Dawley, Indianapolis, IN).
Preparations Compound 1a-2:
O O
/ O N
O-N
O
O
1a-1 Compound 1a-1 is commercially available from Novabiochem (San Diego, CA).
Preparation of Compound 2a-1:
O
N~N~O
N-N
2a-1 Compound 2a-1 is prepared using the procedures described in Admiak, R.W., et al., Tetrahedron Lett., No.
22, 1935-1936 (1997).
In each of the following Examples a specific pseudomycin compound is used as the starting material;
however, those skilled in art in the art will recognize that other N-acyl derivatives may be synthesized using the same procedures except starting with a pseudomycin compound having a different N-acyl group.
Example 1 Example 1 illustrates the formation of acylalkylamine derivatives of pseudomycin B (n = 10, Rz and R3 - -OH).
Synthesis of Compound 1-2:
R1. ~ Ri , , and R1 . , , _ _ C ( O ) CH2NH2 A 50 ml round bottom flask was charged with 10 ml of anhydrous DMF, pseudomycin B (250.6 mg, 0.181 mmol) and the acylating agent la-1 (343.0 mg, 1.12 mmol). The reaction was allowed to stir at room temperature for 24 hours. The solvent was then removed in vacuo and the residue was taken up in ACN and purified via preparatory HPLC to yield 172.5 mg of the tri-substituted protected amine after lyophilization. 134.4 mg of tri-substituted protected amine was dissolved in a solution of 10 ml MeOH/1.5 ml glacial AcOH. Standard hydrogenolysis using 129.6 mg of 10o Pd/C for 20 minutes, removal of the catalyst via filtration and purification via preparatory HPLC yielded 74.8 mg of Compound 1-1 after lyophilization. MS
(Ionspray) calcd for C57H97C1N15O22 (M+H)+ 1378.65, found 1378.9.
The following pseudomycin amide derivatives (1-2 and 1-3) may be synthesized using the same procedures as described above and the appropriate amino acid to form the acylating agent.
O
Rl . ~ Rl , . ~ and Ri , . , O
Rl , ~ Rl , . ~ and Rl , , .
Exempla 2 Example 2 illustrates the synthesis of acyloxyaryl derivatives of pseudomycin B(n = 10, RZ and R3 - -OH).
Synthesis of Compound 2-1:
O
R1, ~ R1. . ~ and Ri . , . - ~O
Compound 2-1 is synthesized using the same procedures as described in Example 1 except Compound 2a-1 is used as the acylating agent.
Compound 2-1 may be alternatively synthesized by adding phenyl chloroformate (389 mg, 2.48 mmol) to a solution of HOBT (37.5 mg, 2.48 mmol) and DIEA (322.8 mg, 399 ml, 2.48 mmol) at 0-4°C. The mixture is diluted with 100 ml DMF and pseudomycin B (1.0 g, 0.83 mmol) is added.
The mixture is allowed to stir overnight. The solvent is then removed in vacuo and the residue purified by HPLC to yield 430 mg (33% yield) of Compound 2-1.
Example 3 Example 3 illustrates the synthesis of acylalkyl derivatives of pseudomycin B(n = 10, Rz and R3 - -OH).
Synthesis of Compound 3-2:
O
R1, ~ R1, , ~ and Ri , . . -_CH
Compound 3-1 is synthesized using the same procedures as described in Example 1 except acetic anhydride is used as the acylating agent.
Synthesis of Compound 3-2:
O
R1. ~ Rl . . ~ and Rl . , , - ~
_C ( CH ) Compound 3-2 is synthesized using the same procedures as described in Example 1 except trimethylacetic anydride is used as the acylating agent.
Example 4 Example 4 illustrates the synthesis of acylazaalkyl (i.e., urea linkage) derivatives of pseudomycin B(n = 10, RZ
and R3 - -OH ) .
Synthesis of Compound 4-2:
O
R1, ~ R1, . ~ and R1, , . - ~
" _NHCH
Compound 4-1 is synthesized using the same procedures as described in Example 1 except methyl isocyanate is used as the acylating agent.
example 5 Example 5 illustrates the synthesis of a formyl derivative of pseudomycin B(n = 10, Rz and R3 - -OH).
O
R1, ~ R1, . ~ and R1, , . -H
Compound 5-1 is synthesized using the same procedures as described in Example 1 except 4-nitrophenylformate is used as the acylating agent.
Example 6 Example 6 illustrates the synthesis of an acyloxyalkenyl derivative of pseudomycin B(n = 10, Rz and R3 - -OH ) .
O
Rl ' , Rl ' ' , and R1, .
O
Compound 6-1 is synthesized using the same procedures as described in Example 1 except diallylpyrocarbonate is used as the acylating agent. Yield 770
Microbiology, 137, 2857-2865 (1991); and Lamb et al., "Transposon mutagenesis and tagging of fluorescent pseudomonas: Antimycotic production is necessary for control of Dutch elm disease," Proc. Natl. Acad. Sci. USA, 84, 6447-6451 (1987).
A strain of P. syringae that is suitable for production of one or more pseudomycins can be isolated from environmental sources including plants (e. g., barley plants, citrus plants, and lilac plants) as well as, sources such as soil, water, air, and dust. A preferred stain is isolated from plants. Strains of P. syringae that are isolated from environmental sources can be referred to as wild type. As used herein, "wild type" refers to a dominant genotype which naturally occurs in the normal population of P. syringae (e.g., strains or isolates of P.
syringae that are found in nature and not produced by laboratory manipulation). Like most organisms, the characteristics of the pseudomycin- producing cultures employed (P. syringae strains such as MSU 174, MSU 16H, MSU
206, 25-B1, 7H9-1) are subject to variation. Hence, progeny of these strains (e.g., recombinants, mutants and variants) may be obtained by methods known in the art.
P. syringae MSU 16H is publicly available from the American Type Culture Collection, Parklawn Drive, Rockville, MD, USA as Accession No. ATCC 67028. P.
syringae strains 25-B1, 7H9-1, and 67 H1 were deposited with the American Type Culture Collection on March 23, 2000 and were assigned the following Accession Nos.:
25-B1 Accession No. PTA-1622 7H9-1 Accession No. PTA-1623 67 H1 Accession No. PTA-1621 Mutant strains of P. syringae are also suitable for production of one or more pseudomycins. As used herein, "mutant" refers to a sudden heritable change in the phenotype of a strain, which can be spontaneous or induced by known mutagenic agents, such as radiation (e. g., ultraviolet radiation or x-rays), chemical mutagens (e. g., ethyl methanesulfonate (EMS), diepoxyoctane, N-methyl-N-nitro-N'-nitrosoguanine (NTG), and nitrous acid), site-specific mutagenesis, and transposon mediated mutagenesis.
Pseudomycin-producing mutants of P. syringae can be produced by treating the bacteria with an amount of a mutagenic agent effective to produce mutants that overproduce one or more pseudomycins, that produce one pseudomycin (e. g., pseudomycin B) in excess over other pseudomycins, or that produce one or more pseudomycins under advantageous growth conditions. While the type and amount of mutagenic agent to be used can vary, a preferred method is to serially dilute NTG to levels ranging from 1 to 100 ~g/ml. Preferred mutants are those that overproduce pseudomycin B and grow in minimal defined media.
Environmental isolates, mutant strains, and other desirable strains of P. syringae can be subjected to selection for desirable traits of growth habit, growth medium nutrient source, carbon source, growth conditions, amino acid requirements, and the like. Preferably, a pseudomycin producing strain of P. syringae is selected for growth on minimal defined medium such as N21 medium and/or for production of one or more pseudomycins at levels greater than about 10 ~,g/ml. Preferred strains exhibit the characteristic of producing one or more pseudomycins when grown on a medium including three or fewer amino acids and optionally, either a lipid, a potato product or combination thereof.
Recombinant strains can be developed by transforming the P. syringae strains, using procedures known in the art.
Through the use of recombinant DNA technology, the P.
syringae strains can be transformed to express a variety of gene products in addition to the antibiotics these strains produce. For example, one can modify the strains to introduce multiple copies of the endogenous pseudomycin-biosynthesis genes to achieve greater pseudomycin yield.
To produce one or more pseudomycins from a wild type or mutant strain of P. syringae, the organism is cultured with agitation in an aqueous nutrient medium including an effective amount of three or fewer amino acids, preferably glutamic acid, glycine, histidine, or a combination thereof. Alternatively, glycine is combined with one or more of a potato product and a lipid. Culturing is conducted under conditions effective for growth of P.
syringae and production of the desired pseudomycin or pseudomycins. Effective conditions include temperatures from about 22°-C to about 27°-C, and a duration of about 36 hours to about 96 hours. Controlling the concentration of oxygen in the medium during culturing of P. syringae is advantageous for production of a pseudomycin. Preferably, oxygen levels are maintained at about 5 to 50o saturation, more preferably about 30o saturation. Sparging with air, pure oxygen, or gas mixtures including oxygen can regulate the concentration of oxygen in the medium.
Controlling the pH of the medium during culturing of P. syringae is also advantageous. Pseudomycins are labile at basic pH, and significant degradation can occur if the pH of the culture medium is above about 6 for more than about 12 hours. Preferably, the pH of the culture medium is maintained between 6 and 4. P. syringae can produce one or more pseudomycins when grown in batch culture. However, fed-bath or semi-continuous feed of glucose and optionally, an acid or base (e.g., ammonium hydroxide) to control pH, enhances production. Pseudomycin production can be further enhanced by using continuous culture methods in which glucose and ammonium hydroxide are fed automatically.
Choice of P. syringae strain can affect the amount and distribution of pseudomycin or pseudomycins produced. For example, strains MSU 16H and 67 H1 each produce predominantly pseudomycin A, but also produce pseudomycin B
and C, typically in ratios of 4:2:1. Strain 67 H1 typically produces levels of pseudomycins about three to five fold larger than are produced by strain MSU 16H.
Compared to strains MSU 16H and 67 H1, strain 25-B1 produces more pseudomycin B and less pseudomycin C. Strain 7H9-1 are distinctive in producing predominantly pseudomycin B and larger amount of pseudomycin B than other strains. For example, this strain can produce pseudomycin B in at least a ten fold excess over either pseudomycin A
or C.
Alternatively, the amine-modified pseudomycin compounds of the present invention can be formed from an N-acyl semi-synthetic compound. Semi-synthetic pseudomycin compounds may be synthesized by exchanging the N-acyl group on the L-serine unit. Examples of various N-acyl derivatives are described in PCT Patent Application Serial No. , Belvo, et al., filed evendate herewith entitled "Pseudomycin N-Acyl Side-Chain Analogs" and incorporated herein by reference. In general, four synthetic steps are used to produce the semi-synthetic compounds from naturally occurring pseudomycin compounds:
(1) selective amino protection; (2) chemical or enzymatic deacylation of the N-acyl side-chain; (3) reacylation with a different side-chain; and (4) deprotection of the amino groups.
The pendant amino groups at positions 2, 4 and 5 may be protected using any standard means known to those skilled in the art for amino protection. The exact genus and species of amino protecting group employed is not critical so long as the derivatized amino group is stable to the condition of subsequent reactions) on other positions of the intermediate molecule and the protecting group can be selectively removed at the appropriate point without disrupting the remainder of the molecule including any other amino protecting group(s). Suitable amino-protecting groups include benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl, p-methoxybenxyloxycarbonyl, p-methoxyphenylazobenzyloxycarbonyl, p-phenylazobenzyloxycarbonyl, t-butyloxycarbonyl, cyclopentyloxycarbonyl, and phthalimido. Preferred amino protecting groups are t-butoxycarbonyl (t-Boc), allyloxycarbonyl (Alloc), phthalimido, and benzyloxycarbonyl (CbZ or CBZ). Further examples of suitable protecting groups are described in T.W. Greene, "Protective Groups in Organic Synthesis," John Wiley and Sons, New York, N.Y., (2nd ed., 1991), at chapter 7.
The deacylation of an N-acyl group having a gamma or delta hydroxylated side chain (e. g., 3,4-dihydroxytetra-deconoate) may be accomplished by treating the amino-protected pseudomycin compound with acid in an aqueous solvent. Suitable acids include acetic acid and trifluoroacetic acid. A preferred acid is trifluoroacetic acid. If trifluoroacetic acid is used, the reaction may be accomplished at or near room temperature. However, when acetic acid is used the reaction is generally ran at about 40°C. Suitable aqueous solvent systems include acetonitrile, water, and mixtures thereof. Organic solvents accelerate the reaction; however, the addition of an organic solvent may lead to other by-products.
Pseudomycin compounds lacking a delta or gamma hydroxy group on the side chain (e.g., Pseudomycin B and C') may be deacylated enzymatically. Suitable deacylase enzymes include Polymyxin Acylase (164-16081 Fatty Acylase (crude) or 161-16091 Fatty Acylase (pure) available from Wako Pure Chemical Industries, Ltd.), or ECB deacylase. The enzymatic deacylation may be accomplished using standard deacylation procedures well known to those skilled in the art. For example, general procedures for using polymyxin acylase may be found in Yasuda, N., et al, Agric. Biol.
Chem., 53, 3245 (1989) and Kimura, Y., et al., Agric. Biol.
Chem., 53, 497 (1989).
The deacylated product (also known as the pseudomycin nucleus) is reacylated using the corresponding acid of the desired acyl group in the presence of a carbonyl activating agent. "Carbonyl activating group" refers to a substituent of a carbonyl that promotes nucleophilic addition reactions at that carbonyl. Suitable activating substituents are those which have a net electron withdrawing effect on the carbonyl. Such groups include, but are not limited to, alkoxy, aryloxy, nitrogen containing aromatic heterocycles, or amino groups (e. g., oxybenzotriazole, imidazolyl, nitrophenoxy, pentachlorophenoxy, N-oxysuccinimide, N,N'-dicyclohexylisoure-O-yl, and N-hydroxy-N-methoxyamino);
acetates; formates; sulfonates (e. g., methanesulfonate, ethanesulfonate, benzenesulfonate, and p-tolylsulfonate);
and halides (e. g., chloride, bromide, and iodide).
A variety of acids may be used in the acylation process. Suitable acids include aliphatic acids containing one or more pendant aryl, alkyl, amino(including primary, secondary and tertiary amines), hydroxy, alkoxy, and amido groups; aliphatic acids containing nitrogen or oxygen within the aliphatic chain; aromatic acids substituted with alkyl, hydroxy, alkoxy and/or alkyl amino groups; and heteroaromatic acids substituted with alkyl, hydroxy, alkoxy and/or alkyl amino groups.
Alternatively, a solid phase synthesis may be used where a hydroxybenzotriazole-resin (HOBt-resin) serves as the coupling agent for the acylation reaction.
Once the amino group is deacylated and reacylated (described above), then the amino protecting groups (at positions 2, 4 and 5) can be removed by hydrogenation in the presence of a hydrogenation catalyst (e. g., 10o Pd/C).
Tn~hen the amino protecting group is allyloxycarbonyl, then the protecting group can be removed using tributyltinhydride and triphenylphosphine palladium dichloride. This particular protection/deprotection scheme has the advantage of reducing the potential for hydrogenating the vinyl group of the Z-Dhb unit of the pseudomycin structure.
The amine-modification of the N-acyl semi-synthetic compound is then accomplished by acylating at least one of the pendant amino groups attached to the lysine or 2,4-diaminobutyric acid peptide units of the N-acyl modified semi-synthetic pseudomycin compound to form the desired amide, urea, carbamate or imide linkage.
The amine-modified pseudomycin compounds may be further modified by amidation or esterification of the pendant carboxylic acid group of the aspartic acid and/or hydroxyaspartic acid units of the pseudomycin ring.
Examples of various acid-modified derivatives are described in PCT Patent Application Serial No. , Chen, et al., filed evendate herewith entitled "Pseudomycin Amide & Ester Analogs" and incorporated herein by reference. The acid-modified derivatives may be formed by condensing any of the previously described amine-modified pseudomycin compounds with the appropriate alcohol or amine to produce the respective ester or amide.
Formation of the ester groups may be accomplished using standard esterification procedures well-known to those skilled in the art. Esterification under acidic conditions typically includes dissolving or suspending the pseudomycin compound in the appropriate alcohol in the presence of a protic acid (e. g., HCl, TFA, etc.). Under basic conditions, the pseudomycin compound is generally reacted with the appropriate alkyl halide in the presence of a weak base (e. g., sodium bicarbonate and potassium carbonate).
Formation of the amide groups may be accomplished using standard amidation procedures well-known to those skilled in the art. However, the choice of coupling agents provides selective modification of the acid groups. For example, the use of benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate(PyBOP) as the coupling agent allows one to isolate pure mono-amides at residue 8 and (in some cases) pure bis amides simultaneously. Whereas, the use of o-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU) as the coupling agent favors formation of monoamides at residue 3.
The pseudomycin amide derivatives may be isolated and used per se or in the form of its pharmaceutically acceptable salt or solvate. The term "pharmaceutically acceptable salt" refers to non-toxic acid addition salts derived from inorganic and organic acids. Suitable salt derivatives include halides, thiocyanates, sulfates, bisulfates, sulfites, bisulfites, arylsulfonates, alkylsulfates, phosphonates, monohydrogen-phosphates, dihydrogenphosphates, metaphosphates, pyrophosphonates, alkanoates, cycloalkylalkanoates, arylalkonates, adipates, alginates, aspartates, benzoates, fumarates, glucoheptanoates, glycerophosphates, lactates, maleates, nicotinates, oxalates, palmitates, pectinates, picrates, pivalates, succinates, tartarates, citrates, camphorates, camphorsulfonates, digluconates, trifluoroacetates, and the like.
The term "solvate" refers to an aggregate that comprises one or more molecules of the solute (i.e., amine-modified pseudomycin compound) with one or more molecules of a pharmaceutical solvent, such as water, ethanol, and the like. When the solvent is water, then the aggregate is referred to as a hydrate. Solvates are generally formed by dissolving the pseudomycin derivative in the appropriate solvent with heat and slowing cooling to generate an amorphous or crystalline solvate form.
Each pseudomycin compound, semi-synthetic pseudomycin derivatives, and mixtures can be detected, determined, isolated, and/or purified by any variety of methods known to those skilled in the art. For example, the level of pseudomycin or amine-modified pseudomycin activity in a broth or in an isolate or purified composition can be determined by antifungal action against a fungus such as Candida and can be isolated and purified by high performance liquid chromatography.
The active ingredient (i.e., pseudomycin compound of the present invention) is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to give the patient, physician, or veterinarian an elegant and easy to handle product. Formulations may comprise from 0.1o to 99.90 by weight of active ingredient, more generally from about 100 to about 30o by weight.
As used herein, the term "unit dose" or "unit dosage"
refers to physically discrete units that contain a predetermined quantity of active ingredient calculated to produce a desired therapeutic effect. When a unit dose is administered orally or parenterally, it is typically provided in the form of a tablet, capsule, pill, powder packet, topical composition, suppository, wafer, measured units in ampoules or in multidose containers, etc.
Alternatively, a unit dose may be administered in the form of a dry or liquid aerosol which may be inhaled or sprayed.
The dosage to be administered may vary depending upon the physical characteristics of the animal, the severity of the animal's symptoms, the means used to administer the drug and the animal species. The specific dose for a given animal is usually set by the judgment of the attending physician or veterinarian.
Suitable carriers, diluents and excipients are well known to those skilled in the art and include materials such as carbohydrates, waxes, water soluble and/or swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water, and the like. The particular carrier, diluent or excipient used will depend upon the means and purpose for which the active ingredient is being applied. The formulations may also include wetting agents, lubricating agents, surfactants, buffers, tonicity agents, bulking agents, stabilizers, emulsifiers, suspending agents, preservatives, sweeteners, perfuming agents, flavoring agents and combinations thereof.
A pharmaceutical composition may be administered using a variety of methods. Suitable methods include topical (e.g., ointments or sprays), oral, injection and inhalation. The particular treatment method used will depend upon the type of infection being addressed.
In parenteral iv applications, the formulations are typically diluted or reconstituted (if freeze-dried) and further diluted if necessary, prior to administration. An example of reconstitution instructions for the freeze-dried product are to add ten ml of water for injection (WFI) to the vial and gently agitate to dissolve. Typical reconstitution times are less than one minute. The resulting solution is then further diluted in an infusion solution such as dextrose 5o in water (D5W), prior to administration.
Pseudomycin compounds have been shown to exhibit antifungal activity such as growth inhibition of various infectious fungi including Candida spp. (i.e., C. albicans, C. parapsilosis, C. krusei, C. glabrata, C. tropicalis, or C. lusitaniaw); Torulopus spp.(i.e., T. glabrata);
Aspergillus spp. (i.e., A. fumigatus); Histoplasma spp.
(i.e., H. capsulatum); Cryptococcus spp. (i.e., C.
neoformans); Blastomyces spp. (i.e., B. dermatitidis);
Fusarium spp.; Trichophyton spp., Pseudallescheria boydii, Coccidioides immits, Sporothrix schenckii, etc.
Consequently, the compounds and formulations of the present invention are useful in the preparation of medicaments for use in combating either systemic fungal infections or fungal skin infections. Accordingly, a method is provided for inhibiting fungal activity comprising contacting the amine-modified pseudomycin compound of the present invention with a fungus. A
preferred method includes inhibiting Candida albicans or Aspergillus fumigatus activity. The term "contacting"
includes a union or junction, or apparent touching or mutual tangency of a compound of the invention with a fungus. The term does not imply any further limitations to the process, such as by mechanism of inhibition. The methods are defined to encompass the inhibition of fungal activity by the action of the compounds and their inherent antifungal properties.
A method for treating a fungal infection which comprises administering an effective amount of a pharmaceutical formulation of the present invention to a host in need of such treatment is also provided. A
preferred method includes treating a Candida albicans or Aspergillus fumigatus infection. The term "effective amount" refers to an amount of active compound which is capable of inhibiting fungal activity. The dose administered will vary depending on such factors as the nature and severity of the infection, the age and general health of the host, the tolerance of the host to the antifungal agent and the species of the host. The particular dose regimen likewise may vary according to these factors. The medicament may be given in a single daily dose or in multiple doses during the day. The regimen may last from about 2-3 days to about 2-3 weeks or longer. A typical daily dose (administered in single or divided doses) contains a dosage level between about 0.01 mg/kg to 100 mg/kg of body weight of an active compound.
Preferred daily doses are generally between about 0.1 mg/kg to 60 mg/kg and more preferably between about 2.5 mg/kg to 40 mg/kg. The host is generally an animal including humans, companion animals (e. g., dogs, cats and horses), food-source animals (e. g., cows, pigs, sheep and poultry), zoo animals, marine animals, birds and other similar animal species.
EXAMPLES
The following abbreviations are used through out the examples to represent the respective listed materials:
ACN - acetonitrile TFA - trifluoroacetic acid DMF - dimethylformamide EDCI - 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride BOC = t-butoxycarbonyl, (CH3)3C-O-C(O)-CBZ = benzyloxycarbonyl , C6HSCH2-O-C ( 0 ) -PyBOP = benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate TBTU = o-Benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate DIEA = N,N-diisopropylethylamine The following structure II will be used to describe the products observed in Examples 1 through 7.
R'.~.HN
N
O O O ,,.N n N N N
O ' Rz NHR' R'~~HN O
II
Detection and Quantification of An ti fungal Activity:
Antifungal activity was determined in vitro by obtaining the minimum inhibitory concentration (MIC) of the compound using a standard agar dilution test or a disc-diffusion test. A typical fungus employed in testing antifungal activity is Candida albicans. Antifungal activity is considered significant when the test sample (50 ~,l) causes 10-12 mm diameter zones of inhibition on C.
albicans x657 seeded agar plates.
Tail Vein Toxi ci ty:
Mice were treated intravenously (IV) through the lateral tail vein with 0.1 ml of testing compound (20 mg/kg) at 0, 24, 48 and 72 hours. Two mice were included in each group. Compounds were formulated in 5.0o dextrose and sterile water for injection. The mice were monitored for 7 days following the first treatment and observed closely for signs of irritation including erythema, swelling, discoloration, necrosis, tail loss and any other signs of adverse effects indicating toxicity.
The mice used in the study were outbred, male ICR mice having an average weight between 18-20 g (available from Harlan Sprangue Dawley, Indianapolis, IN).
Preparations Compound 1a-2:
O O
/ O N
O-N
O
O
1a-1 Compound 1a-1 is commercially available from Novabiochem (San Diego, CA).
Preparation of Compound 2a-1:
O
N~N~O
N-N
2a-1 Compound 2a-1 is prepared using the procedures described in Admiak, R.W., et al., Tetrahedron Lett., No.
22, 1935-1936 (1997).
In each of the following Examples a specific pseudomycin compound is used as the starting material;
however, those skilled in art in the art will recognize that other N-acyl derivatives may be synthesized using the same procedures except starting with a pseudomycin compound having a different N-acyl group.
Example 1 Example 1 illustrates the formation of acylalkylamine derivatives of pseudomycin B (n = 10, Rz and R3 - -OH).
Synthesis of Compound 1-2:
R1. ~ Ri , , and R1 . , , _ _ C ( O ) CH2NH2 A 50 ml round bottom flask was charged with 10 ml of anhydrous DMF, pseudomycin B (250.6 mg, 0.181 mmol) and the acylating agent la-1 (343.0 mg, 1.12 mmol). The reaction was allowed to stir at room temperature for 24 hours. The solvent was then removed in vacuo and the residue was taken up in ACN and purified via preparatory HPLC to yield 172.5 mg of the tri-substituted protected amine after lyophilization. 134.4 mg of tri-substituted protected amine was dissolved in a solution of 10 ml MeOH/1.5 ml glacial AcOH. Standard hydrogenolysis using 129.6 mg of 10o Pd/C for 20 minutes, removal of the catalyst via filtration and purification via preparatory HPLC yielded 74.8 mg of Compound 1-1 after lyophilization. MS
(Ionspray) calcd for C57H97C1N15O22 (M+H)+ 1378.65, found 1378.9.
The following pseudomycin amide derivatives (1-2 and 1-3) may be synthesized using the same procedures as described above and the appropriate amino acid to form the acylating agent.
O
Rl . ~ Rl , . ~ and Ri , . , O
Rl , ~ Rl , . ~ and Rl , , .
Exempla 2 Example 2 illustrates the synthesis of acyloxyaryl derivatives of pseudomycin B(n = 10, RZ and R3 - -OH).
Synthesis of Compound 2-1:
O
R1, ~ R1. . ~ and Ri . , . - ~O
Compound 2-1 is synthesized using the same procedures as described in Example 1 except Compound 2a-1 is used as the acylating agent.
Compound 2-1 may be alternatively synthesized by adding phenyl chloroformate (389 mg, 2.48 mmol) to a solution of HOBT (37.5 mg, 2.48 mmol) and DIEA (322.8 mg, 399 ml, 2.48 mmol) at 0-4°C. The mixture is diluted with 100 ml DMF and pseudomycin B (1.0 g, 0.83 mmol) is added.
The mixture is allowed to stir overnight. The solvent is then removed in vacuo and the residue purified by HPLC to yield 430 mg (33% yield) of Compound 2-1.
Example 3 Example 3 illustrates the synthesis of acylalkyl derivatives of pseudomycin B(n = 10, Rz and R3 - -OH).
Synthesis of Compound 3-2:
O
R1, ~ R1, , ~ and Ri , . . -_CH
Compound 3-1 is synthesized using the same procedures as described in Example 1 except acetic anhydride is used as the acylating agent.
Synthesis of Compound 3-2:
O
R1. ~ Rl . . ~ and Rl . , , - ~
_C ( CH ) Compound 3-2 is synthesized using the same procedures as described in Example 1 except trimethylacetic anydride is used as the acylating agent.
Example 4 Example 4 illustrates the synthesis of acylazaalkyl (i.e., urea linkage) derivatives of pseudomycin B(n = 10, RZ
and R3 - -OH ) .
Synthesis of Compound 4-2:
O
R1, ~ R1, . ~ and R1, , . - ~
" _NHCH
Compound 4-1 is synthesized using the same procedures as described in Example 1 except methyl isocyanate is used as the acylating agent.
example 5 Example 5 illustrates the synthesis of a formyl derivative of pseudomycin B(n = 10, Rz and R3 - -OH).
O
R1, ~ R1, . ~ and R1, , . -H
Compound 5-1 is synthesized using the same procedures as described in Example 1 except 4-nitrophenylformate is used as the acylating agent.
Example 6 Example 6 illustrates the synthesis of an acyloxyalkenyl derivative of pseudomycin B(n = 10, Rz and R3 - -OH ) .
O
Rl ' , Rl ' ' , and R1, .
O
Compound 6-1 is synthesized using the same procedures as described in Example 1 except diallylpyrocarbonate is used as the acylating agent. Yield 770
Claims (6)
1. An amine-modified pseudomycin compound having the following structure:
wherein R is where R a and R a' are independently hydrogen or methyl, or either R a or R a' is alkyl amino, taken together with R b or R b' forms a six-membered cycloalkyl ring, a six-membered aromatic ring or a double bond, or taken together with R c forms a six-membered aromatic ring;
R b and R b' are independently hydrogen, halogen, or methyl, or either R b or R b' is amino, alkylamino, .alpha.-acetoacetate, methoxy, or hydroxy;
R c is hydrogen, hydroxy, C1-C4 alkoxy, hydroxy(C1-C4)alkoxy, or taken together with R e forms a 6-membered aromatic ring or C5-C6 cycloalkyl ring;
R e is hydrogen, or taken together with R f is a six-membered aromatic ring, C5-C14 alkoxy substituted six-membered aromatic ring, or C5-C14 alkyl substituted six-membered aromatic ring, and R f is C8-C18 alkyl, or C5-C11 alkoxy;
R is where R g is hydrogen, or C1-C13 alkyl, and R h is C1-C15 alkyl, C4-C15 alkoxy, (C1-C10 alkyl)phenyl, -(CH2)n -aryl, or -(CH2)n-(C5-C6 cycloalkyl), where n = 1 or 2; or R is where R1 is a hydrogen, halogen, or C5-C8 alkoxy, and m is 1, 2 or 3;
R is where R j is C5-C14 alkoxy or C5-C14 alkyl, and p = 0, 1 or 2;
R is where R k is C5-C14 alkoxy; or R is - (CH2)-NR m-(C13-C18 alkyl), where R m is H, -CH3 or -C(O)CH3;
R1 is independently hydrogen, formyl, an acylalkyl, an acylalkylamine, an acylazaalkyl, an acyloxyalkene, an acyloxyaryl, or an acylmethylenecarbamate, provided that at least one R1 is not hydrogen;
R2 and R3 are independently -OR2a or -N(R2b)(R2c), where R2a and R2b are independently hydrogen, C1-C10 alkyl, C3-C6 cycloalkyl, hydroxy(C1-C10)alkyl, alkoxyalkyl, or C2-C10 alkenyl, amino(C1-C10)alkyl, mono- or di-alkylamino(C1-C10)alkyl, aryl(C1-C10)alkyl, heteroaryl(C1-C10)alkyl, cycloheteroalkyl(C1-C10)alkyl, or R2b is an alkyl carboxylate residue of an aminoacid alkyl ester and R2c is hydrogen or C1-C6 alkyl; and pharmaceutically acceptable salts and solvates thereof.
wherein R is where R a and R a' are independently hydrogen or methyl, or either R a or R a' is alkyl amino, taken together with R b or R b' forms a six-membered cycloalkyl ring, a six-membered aromatic ring or a double bond, or taken together with R c forms a six-membered aromatic ring;
R b and R b' are independently hydrogen, halogen, or methyl, or either R b or R b' is amino, alkylamino, .alpha.-acetoacetate, methoxy, or hydroxy;
R c is hydrogen, hydroxy, C1-C4 alkoxy, hydroxy(C1-C4)alkoxy, or taken together with R e forms a 6-membered aromatic ring or C5-C6 cycloalkyl ring;
R e is hydrogen, or taken together with R f is a six-membered aromatic ring, C5-C14 alkoxy substituted six-membered aromatic ring, or C5-C14 alkyl substituted six-membered aromatic ring, and R f is C8-C18 alkyl, or C5-C11 alkoxy;
R is where R g is hydrogen, or C1-C13 alkyl, and R h is C1-C15 alkyl, C4-C15 alkoxy, (C1-C10 alkyl)phenyl, -(CH2)n -aryl, or -(CH2)n-(C5-C6 cycloalkyl), where n = 1 or 2; or R is where R1 is a hydrogen, halogen, or C5-C8 alkoxy, and m is 1, 2 or 3;
R is where R j is C5-C14 alkoxy or C5-C14 alkyl, and p = 0, 1 or 2;
R is where R k is C5-C14 alkoxy; or R is - (CH2)-NR m-(C13-C18 alkyl), where R m is H, -CH3 or -C(O)CH3;
R1 is independently hydrogen, formyl, an acylalkyl, an acylalkylamine, an acylazaalkyl, an acyloxyalkene, an acyloxyaryl, or an acylmethylenecarbamate, provided that at least one R1 is not hydrogen;
R2 and R3 are independently -OR2a or -N(R2b)(R2c), where R2a and R2b are independently hydrogen, C1-C10 alkyl, C3-C6 cycloalkyl, hydroxy(C1-C10)alkyl, alkoxyalkyl, or C2-C10 alkenyl, amino(C1-C10)alkyl, mono- or di-alkylamino(C1-C10)alkyl, aryl(C1-C10)alkyl, heteroaryl(C1-C10)alkyl, cycloheteroalkyl(C1-C10)alkyl, or R2b is an alkyl carboxylate residue of an aminoacid alkyl ester and R2c is hydrogen or C1-C6 alkyl; and pharmaceutically acceptable salts and solvates thereof.
2. The amine-modified pseudomycin compound of Claim 1 wherein said acylmethylenecarbamate is represented by the structure 1(a) where R1a is C1-C10 alkyl, C1-C10 alkenyl, benzyl, or aryl and R1b is hydrogen or methyl.
3. The amine-modified pseudomycin compound of Claim 1 wherein said alkyl carboxylate residue of an aminoacid alkyl ester is represented by -CH2CO2CH3, -CH(CO2CH3)CH(CH3)2, -CH(CO2CH3)CH(phenyl), -CH(CO2CH3)CH2OH, -CH(CO2CH3)CH2(p-hydroxyphenyl), -CH(CO2CH3)CH2SH, -CH(CO2CH3)CH2(CH2)3NH2, -CH(CO2CH3)CH2(4-imidazole), -CH(CO2CH3)CH2(5-imidazole), -CH(CO2CH3)CH2CO2CH3, or -CH(CO2CH3)CH2CO2NH2.
4. The use of a compound as claimed in any one of the preceding claims in the preparation of a medicament for use in combating either systemic fungal infections or fungal skin infections.
5. A pharmaceutical formulation comprising an amine-modified pseudomycin compound of Claim 1 and a pharmaceutically acceptable carrier.
6. A method for treating an antifungal infection in an animal in need thereof, comprising administering to said animal an amine-modified pseudomycin compound of Claim 1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14383999P | 1999-07-15 | 1999-07-15 | |
US60/143,839 | 1999-07-15 | ||
PCT/US2000/015019 WO2001005816A1 (en) | 1999-07-15 | 2000-06-08 | Amine-modified pseudomycin compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2379317A1 true CA2379317A1 (en) | 2001-01-25 |
Family
ID=22505899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002379317A Abandoned CA2379317A1 (en) | 1999-07-15 | 2000-06-08 | Amine-modified pseudomycin compounds |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1198472A1 (en) |
JP (1) | JP2003505398A (en) |
CN (1) | CN1361790A (en) |
AU (1) | AU5453100A (en) |
BR (1) | BR0013168A (en) |
CA (1) | CA2379317A1 (en) |
EA (1) | EA200200163A1 (en) |
HU (1) | HUP0202237A3 (en) |
MX (1) | MXPA02000320A (en) |
NO (1) | NO20020194L (en) |
WO (1) | WO2001005816A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5576298A (en) * | 1992-11-30 | 1996-11-19 | Research And Development Institute, Inc. At Montana State University | Peptides from pseudomonas syringae possessing broad-spectrum antibiotic activity |
-
2000
- 2000-06-08 BR BR0013168-7A patent/BR0013168A/en not_active Application Discontinuation
- 2000-06-08 CN CN00810326A patent/CN1361790A/en active Pending
- 2000-06-08 MX MXPA02000320A patent/MXPA02000320A/en not_active Application Discontinuation
- 2000-06-08 HU HU0202237A patent/HUP0202237A3/en unknown
- 2000-06-08 EP EP00939447A patent/EP1198472A1/en not_active Withdrawn
- 2000-06-08 JP JP2001511473A patent/JP2003505398A/en not_active Withdrawn
- 2000-06-08 CA CA002379317A patent/CA2379317A1/en not_active Abandoned
- 2000-06-08 AU AU54531/00A patent/AU5453100A/en not_active Abandoned
- 2000-06-08 WO PCT/US2000/015019 patent/WO2001005816A1/en not_active Application Discontinuation
- 2000-06-08 EA EA200200163A patent/EA200200163A1/en unknown
-
2002
- 2002-01-14 NO NO20020194A patent/NO20020194L/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
NO20020194D0 (en) | 2002-01-14 |
JP2003505398A (en) | 2003-02-12 |
HUP0202237A2 (en) | 2002-11-28 |
NO20020194L (en) | 2002-03-14 |
BR0013168A (en) | 2002-04-02 |
HUP0202237A3 (en) | 2002-12-28 |
EP1198472A1 (en) | 2002-04-24 |
EA200200163A1 (en) | 2002-06-27 |
WO2001005816A1 (en) | 2001-01-25 |
AU5453100A (en) | 2001-02-05 |
MXPA02000320A (en) | 2002-06-21 |
CN1361790A (en) | 2002-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6185920B2 (en) | Polymyxin derivatives | |
EA010294B1 (en) | Compositions of lipopeptide antibiotic derivatives and methods of use thereof | |
JPH09500103A (en) | Cyclohexapeptidyl aminoalkyl ether | |
US6653281B1 (en) | Ring modified cyclic peptide analogs | |
CA2379058A1 (en) | Pseudomycin prodrugs | |
CA2379851A1 (en) | Pseudomycin n-acyl side-chain analogs | |
JP4402463B2 (en) | Dab9 derivatives of lipopeptide antibiotics and methods of making and using the same | |
JPH08509728A (en) | Cyclohexapeptidyl propanolamine compound | |
JPH0570495A (en) | Cyclic hexapeptide compound | |
CA2396513A1 (en) | Pseudomycin phosphate prodrugs | |
JP2004524318A (en) | Echinocandin derivatives and their pharmaceutical compositions and uses as pharmaceuticals | |
CA2379317A1 (en) | Amine-modified pseudomycin compounds | |
CA2378868A1 (en) | Process for deacylation of lipodepsipeptides | |
US20030008814A1 (en) | Pseudomycin phosphate prodrugs | |
US6331521B1 (en) | Echinocandine derivatives with antimicrobial activity | |
CA2379321A1 (en) | Pseudomycin amide and ester analogs | |
US6399567B1 (en) | Cyclic hexapeptides having antibiotic activity | |
ES2304954T3 (en) | PSEUDOMYCIN ANALOGS | |
WO2021129579A1 (en) | Heme derivative and preparation method and use thereof | |
EP0132441A1 (en) | Antibacterial peptides | |
WO2003076460A1 (en) | A process for the production of ramoplanin-like amide derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |