CA2340842C - Thermal equalizer - Google Patents
Thermal equalizer Download PDFInfo
- Publication number
- CA2340842C CA2340842C CA 2340842 CA2340842A CA2340842C CA 2340842 C CA2340842 C CA 2340842C CA 2340842 CA2340842 CA 2340842 CA 2340842 A CA2340842 A CA 2340842A CA 2340842 C CA2340842 C CA 2340842C
- Authority
- CA
- Canada
- Prior art keywords
- equalizer
- nozzle box
- header
- thermal
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F5/00—Dryer section of machines for making continuous webs of paper
- D21F5/18—Drying webs by hot air
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F5/00—Dryer section of machines for making continuous webs of paper
- D21F5/02—Drying on cylinders
- D21F5/04—Drying on cylinders on two or more drying cylinders
- D21F5/042—Drying on cylinders on two or more drying cylinders in combination with suction or blowing devices
- D21F5/044—Drying on cylinders on two or more drying cylinders in combination with suction or blowing devices using air hoods over the cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B13/00—Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
- F26B13/10—Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/004—Nozzle assemblies; Air knives; Air distributors; Blow boxes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Paper (AREA)
- Drying Of Solid Materials (AREA)
Abstract
A thermal equalizer for use in a paper web drying machine and process is disclosed. The equalizer is located at the junction of a crescent header and the associated nozzle box and its use results in a more uniform temperature and nozzle velocity in the cross-machine direction.
Description
THERMAL EQUALIZER
Field of the Invention This invention relates to paper web drying and in particular to the profiling of air in the drying process.
Background of the Invention Yankee type hoods are among the main elements in paper web drying processes and a Yankee hood is an air distribution and drying system, which operates at high temperatures. Typically, a Yankee hood is shaped to be installed over and spaced from a portion of the circumferential surface of a rotatable cylinder.
The drying air is heated and pressurized in the system is then supplied to the Yankee hood dryer where it passes through nozzles at high velocity and impinges on the moving, drying web. The spent air is then collected in the dryer and returned to a recirculation system. Some of this spent air is exhausted, but the majority of it is recirculated to conserve heat.
The heat which is transferred from the impingement air from the nozzles to the paper is used to increase the temperature of the paper to its equilibrium drying temperature, evaporates the water from the paper, and increases the temperature of the paper above the equilibrium temperature after the surface water has been evaporated.
Increasing production rates called for in the industry today result in the demand for higher and higher evaporation rates. Achieving evaporation rates considerably higher than those currently available must be realized largely through improvements to the Yankee hood system. In a Yankee hood, the evaporation is driven largely by convection heat transfer, brought upon by the effect of impinging jets of hot air and radiation heat transfer. Effectiveness of hood evaporation largely depends on geometry of impingement air, properties of impingement air, and temperature.
Uneven cross-machine direction temperature profiles that are directly related to the heat transfer or drying rate, are a major problem on many paper machines Temperature profile problems can and often originate at the crescent header and nozzle box. This is more pronounced at higher operating temperature.
Temperature profile problems can be caused in the dryer section by uneven condensate removal, uneven cross-machine direction moisture profile and uneven air distribution in the supply or exhaust. It can result in operational and quality problems including reel building, corrugated rolls, converting difficulties, and rejected papers. Many mills overdry the sheet to compensate for moisture profile problems. This results in higher energy consumption and reduced production.
The present invention addresses the problem of thermal non-uniformity in the drying section of the hood by providing a combination of elements that results in a uniform temperature and uniform nozzle velocity in the cross-machine direction. This means that by having a thermal equalizer and a divider plate in the nozzle boxes, uniform thermal profiles at certain distances in cross-machine direction are obtainable.
Summary of the Invention According to a broad aspect, the present invention relates to a thermal equalizer for use in a paper web drying machine of the type including nozzle boxes fed by crescent headers, said equalizer being located substantially in said nozzle box adjacent the junction thereof with said crescent head and comprising a distorted diamond-shaped configuration having in cross-section upper and lower sloped surfaces for applying direction and uniformity to the flow of air into and out of said nozzle box.
The thermal equalizer of the present invention is useful in association with the paper drying element shown in Applicant's U.S. Patents 5,531,033 Control Profile Drying Hood; 5,784,804 Yankee Hood With Integral Air Heating System; 6,079,115 High Temperature Yankee Hood; and 6,094,838 Curl And Profile Correction With High Velocity Hoods.
Description of the Drawings The invention is illustrated by way of example in the accompanying drawings in which:
FIGURE 1 is a schematic cross-section showing air flow into the nozzle box and around the equalizer; and FIGURE 2 is a perspective view of the invention.
Referring to the drawings, Figure 2 provides a perspective view of a nozzle box 10 which would be one of numerous nozzle boxes and a Yankee hood and located above the surface of a paper web 12 being dried and moving in the direction of arrows 14. The nozzle box 10 is provided on its lower surface with a plurality of apertures 16 through which high pressure, heated drying air is passed as shown in Figure 1 to impinge against the surface of the travelling web. The nozzle box 10 forms the lower, terminal end of a crescent header 18 which, in turn, forms part of the air distribution system in a Yankee hood. While only one crescent header conduit and nozzle box is illustrated, it will be appreciated that a thermal equalizer can be utilized in each nozzle box or selected nozzle boxes in the associated Yankee hood.
Field of the Invention This invention relates to paper web drying and in particular to the profiling of air in the drying process.
Background of the Invention Yankee type hoods are among the main elements in paper web drying processes and a Yankee hood is an air distribution and drying system, which operates at high temperatures. Typically, a Yankee hood is shaped to be installed over and spaced from a portion of the circumferential surface of a rotatable cylinder.
The drying air is heated and pressurized in the system is then supplied to the Yankee hood dryer where it passes through nozzles at high velocity and impinges on the moving, drying web. The spent air is then collected in the dryer and returned to a recirculation system. Some of this spent air is exhausted, but the majority of it is recirculated to conserve heat.
The heat which is transferred from the impingement air from the nozzles to the paper is used to increase the temperature of the paper to its equilibrium drying temperature, evaporates the water from the paper, and increases the temperature of the paper above the equilibrium temperature after the surface water has been evaporated.
Increasing production rates called for in the industry today result in the demand for higher and higher evaporation rates. Achieving evaporation rates considerably higher than those currently available must be realized largely through improvements to the Yankee hood system. In a Yankee hood, the evaporation is driven largely by convection heat transfer, brought upon by the effect of impinging jets of hot air and radiation heat transfer. Effectiveness of hood evaporation largely depends on geometry of impingement air, properties of impingement air, and temperature.
Uneven cross-machine direction temperature profiles that are directly related to the heat transfer or drying rate, are a major problem on many paper machines Temperature profile problems can and often originate at the crescent header and nozzle box. This is more pronounced at higher operating temperature.
Temperature profile problems can be caused in the dryer section by uneven condensate removal, uneven cross-machine direction moisture profile and uneven air distribution in the supply or exhaust. It can result in operational and quality problems including reel building, corrugated rolls, converting difficulties, and rejected papers. Many mills overdry the sheet to compensate for moisture profile problems. This results in higher energy consumption and reduced production.
The present invention addresses the problem of thermal non-uniformity in the drying section of the hood by providing a combination of elements that results in a uniform temperature and uniform nozzle velocity in the cross-machine direction. This means that by having a thermal equalizer and a divider plate in the nozzle boxes, uniform thermal profiles at certain distances in cross-machine direction are obtainable.
Summary of the Invention According to a broad aspect, the present invention relates to a thermal equalizer for use in a paper web drying machine of the type including nozzle boxes fed by crescent headers, said equalizer being located substantially in said nozzle box adjacent the junction thereof with said crescent head and comprising a distorted diamond-shaped configuration having in cross-section upper and lower sloped surfaces for applying direction and uniformity to the flow of air into and out of said nozzle box.
The thermal equalizer of the present invention is useful in association with the paper drying element shown in Applicant's U.S. Patents 5,531,033 Control Profile Drying Hood; 5,784,804 Yankee Hood With Integral Air Heating System; 6,079,115 High Temperature Yankee Hood; and 6,094,838 Curl And Profile Correction With High Velocity Hoods.
Description of the Drawings The invention is illustrated by way of example in the accompanying drawings in which:
FIGURE 1 is a schematic cross-section showing air flow into the nozzle box and around the equalizer; and FIGURE 2 is a perspective view of the invention.
Referring to the drawings, Figure 2 provides a perspective view of a nozzle box 10 which would be one of numerous nozzle boxes and a Yankee hood and located above the surface of a paper web 12 being dried and moving in the direction of arrows 14. The nozzle box 10 is provided on its lower surface with a plurality of apertures 16 through which high pressure, heated drying air is passed as shown in Figure 1 to impinge against the surface of the travelling web. The nozzle box 10 forms the lower, terminal end of a crescent header 18 which, in turn, forms part of the air distribution system in a Yankee hood. While only one crescent header conduit and nozzle box is illustrated, it will be appreciated that a thermal equalizer can be utilized in each nozzle box or selected nozzle boxes in the associated Yankee hood.
As illustrated, the thermal equalizer 20 is strategically located in the nozzle box so as to be engaged by the air flow coming into the nozzle box 10 from the crescent header 18.
The thermal equalizer 20 displays, in cross-section, a some what distorted diamond-shape consisting of a pair of upper concave surfaces 22 and generally planar lower surfaces 24 which, depending on the installation, may also display a very shallow concave configuration. The equalizer 20 is positioned by means of clips 26, as shown in Figure 1, the clips being secured for example to the side walls of each nozzle box 10.
The paths of travel of the hot drying air coming into the crescent header 18, travelling around the thermal equalizer 20 and passing through the apertures 16, is well illustrated in Figure 1 by arrows A. The thermal equalizer 20 will work in high temperature operating conditions as well as in low temperature operating conditions.
The upper surfaces 22 are designed to turn the drying air with low loss. The radius R
of the concave portions of the surfaces 22 will vary depending on the fluid dynamic conditions and the geometry of the crescent header and nozzle box being used.
The lower part of the equalizer 20 is sloped to maintain a uniform, jet velocity.
The thermal equalizer 20 of present invention reduces the heat exchange between the supply air and the nozzle box face; it reduces the velocity pressure and increases the static pressure in the nozzle box; and it mixes the supply air with cold boundary air in the nozzle box and gives a uniform temperature even across the nozzle box. The combination of these affects, gives a uniform air jet velocity and a uniform temperature just after the nozzle box.
While the invention has been described in connection with a specific embodiment thereof and in a specific use, various modifications thereof will occur to those skilled in the art without departing from the spirit and scope of the invention as set forth in the appended claims.
The terms and expressions which have been employed in this specification are used as terms of description and not of limitations, and there is no intention in the use of such terms and expressions to exclude any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claims.
The thermal equalizer 20 displays, in cross-section, a some what distorted diamond-shape consisting of a pair of upper concave surfaces 22 and generally planar lower surfaces 24 which, depending on the installation, may also display a very shallow concave configuration. The equalizer 20 is positioned by means of clips 26, as shown in Figure 1, the clips being secured for example to the side walls of each nozzle box 10.
The paths of travel of the hot drying air coming into the crescent header 18, travelling around the thermal equalizer 20 and passing through the apertures 16, is well illustrated in Figure 1 by arrows A. The thermal equalizer 20 will work in high temperature operating conditions as well as in low temperature operating conditions.
The upper surfaces 22 are designed to turn the drying air with low loss. The radius R
of the concave portions of the surfaces 22 will vary depending on the fluid dynamic conditions and the geometry of the crescent header and nozzle box being used.
The lower part of the equalizer 20 is sloped to maintain a uniform, jet velocity.
The thermal equalizer 20 of present invention reduces the heat exchange between the supply air and the nozzle box face; it reduces the velocity pressure and increases the static pressure in the nozzle box; and it mixes the supply air with cold boundary air in the nozzle box and gives a uniform temperature even across the nozzle box. The combination of these affects, gives a uniform air jet velocity and a uniform temperature just after the nozzle box.
While the invention has been described in connection with a specific embodiment thereof and in a specific use, various modifications thereof will occur to those skilled in the art without departing from the spirit and scope of the invention as set forth in the appended claims.
The terms and expressions which have been employed in this specification are used as terms of description and not of limitations, and there is no intention in the use of such terms and expressions to exclude any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claims.
Claims (3)
1. A thermal equalizer for a paper web drying machine of the type that includes nozzle boxes fed by crescent headers, said equalizer being secured in a fixed location substantially centrally in said nozzle box adjacent a junction thereof with said crescent header and being spaced from adjacent surfaces of said nozzle box and header; said equalizer comprising a structure having a distorted diamond-shaped configuration in cross-section with upper and lower longitudinal centre lines and having a pair of equal area, lower surfaces and a pair of equal area, contoured, concave upper surfaces for applying direction and substantive uniformity to air from said header that flows therefrom into said nozzle box, around said equalizer and out of said nozzle box onto said paper web.
2. A thermal equalizer according to claim 1 wherein said lower surfaces of the equalizer are sloped slightly downwardly and inwardly to meet at said lower longitudinal centre line.
3. A thermal equalizer according to claim 1 wherein said lower surfaces of the equalizer are contoured such that they have shallow, concave surfaces that slope slightly inwardly and downwardly towards one another to meet at said lower longitudinal centre line.~
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA 2340842 CA2340842C (en) | 2000-03-17 | 2001-03-15 | Thermal equalizer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002300839A CA2300839A1 (en) | 2000-03-17 | 2000-03-17 | Thermal equalizer |
CA2,300,839 | 2000-03-17 | ||
CA 2340842 CA2340842C (en) | 2000-03-17 | 2001-03-15 | Thermal equalizer |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2340842A1 CA2340842A1 (en) | 2001-09-17 |
CA2340842C true CA2340842C (en) | 2006-05-23 |
Family
ID=25681627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2340842 Expired - Fee Related CA2340842C (en) | 2000-03-17 | 2001-03-15 | Thermal equalizer |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2340842C (en) |
-
2001
- 2001-03-15 CA CA 2340842 patent/CA2340842C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2340842A1 (en) | 2001-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0694648B1 (en) | Method and device in drying or cooling of a paper web or equivalent | |
US5968590A (en) | Method for drying a surface-treated paper web in an after-dryer of a paper machine and after-dryer of a paper machine | |
CA2311358C (en) | Method and apparatus for drying a paper web | |
CA1131011A (en) | Steam distribution apparatus for the nip of two rolls | |
EP0943034B2 (en) | Method for drying of paper and dry end of a paper machine | |
US7975402B2 (en) | Nozzle insert for a Yankee impingement hood | |
US6442864B2 (en) | Thermal equalizer | |
US5569359A (en) | System for reducing blistering of a wet paper web on a yankee dryer | |
JPS6257999A (en) | Direct combustion type cylinder drying apparatus and method and papermaking apparatus | |
EP0531739B1 (en) | Steam box | |
KR19980703814A (en) | Drying concept and drying method of paper / carton web | |
US5771603A (en) | Dryer section | |
EP0808942B1 (en) | Apparatus and method for drying a wet web and modifying the moisture profile thereof | |
JP3660360B2 (en) | Method for adjusting paper curl in the drying section of a paper machine and paper / paperboard machine | |
CA2340842C (en) | Thermal equalizer | |
US3230636A (en) | Heat transfer method and means | |
CA2206382C (en) | Curl and profile correction with high velocity hoods | |
CA2267287A1 (en) | Method for drying a surface-treated paper web or equivalent in an after-dryer of a paper machine and after-dryer carrying out the method in a paper machine | |
US6484418B1 (en) | Yankee drying hood and method comprising angled impingement nozzles | |
US6418639B1 (en) | Method and device in the dryer section of a paper/board machine | |
JP2882943B2 (en) | Printing paper drying and cooling equipment | |
SU1731885A1 (en) | Drying cylinder | |
CA1131012A (en) | Material treatment apparatus | |
PL239325B1 (en) | Method for equalization of a lateral paper tape humidity profile in the paper-making machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |