CA2233451A1 - Liquid laundry detergents containing selected quaternary ammonium compounds - Google Patents
Liquid laundry detergents containing selected quaternary ammonium compounds Download PDFInfo
- Publication number
- CA2233451A1 CA2233451A1 CA002233451A CA2233451A CA2233451A1 CA 2233451 A1 CA2233451 A1 CA 2233451A1 CA 002233451 A CA002233451 A CA 002233451A CA 2233451 A CA2233451 A CA 2233451A CA 2233451 A1 CA2233451 A1 CA 2233451A1
- Authority
- CA
- Canada
- Prior art keywords
- alkyl
- detergent composition
- composition according
- liquid detergent
- quaternary ammonium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 69
- 239000007788 liquid Substances 0.000 title claims abstract description 30
- 150000003856 quaternary ammonium compounds Chemical class 0.000 title claims description 4
- 239000000203 mixture Substances 0.000 claims abstract description 77
- 239000004094 surface-active agent Substances 0.000 claims abstract description 52
- -1 alkyl alkoxy sulfates Chemical class 0.000 claims abstract description 45
- 125000001453 quaternary ammonium group Chemical group 0.000 claims abstract description 13
- 150000008051 alkyl sulfates Chemical class 0.000 claims abstract description 12
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 47
- 150000001412 amines Chemical class 0.000 claims description 27
- 102000004190 Enzymes Human genes 0.000 claims description 22
- 108090000790 Enzymes Proteins 0.000 claims description 22
- 239000002736 nonionic surfactant Substances 0.000 claims description 9
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 7
- 239000000194 fatty acid Substances 0.000 claims description 7
- 229930195729 fatty acid Natural products 0.000 claims description 7
- 102220644676 Galectin-related protein_D96L_mutation Human genes 0.000 claims description 6
- 150000004665 fatty acids Chemical class 0.000 claims description 6
- 230000002366 lipolytic effect Effects 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 claims description 2
- 150000004996 alkyl benzenes Chemical class 0.000 abstract description 3
- 229940077388 benzenesulfonate Drugs 0.000 abstract description 3
- 108090001060 Lipase Proteins 0.000 description 18
- 102000004882 Lipase Human genes 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 239000004367 Lipase Substances 0.000 description 17
- 235000019421 lipase Nutrition 0.000 description 17
- 108010084185 Cellulases Proteins 0.000 description 13
- 102000005575 Cellulases Human genes 0.000 description 13
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- 108091005804 Peptidases Proteins 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical group CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 5
- 239000003093 cationic surfactant Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 108010005400 cutinase Proteins 0.000 description 5
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 4
- 102000013142 Amylases Human genes 0.000 description 4
- 108010065511 Amylases Proteins 0.000 description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 102000003992 Peroxidases Human genes 0.000 description 4
- 125000005907 alkyl ester group Chemical group 0.000 description 4
- 235000019418 amylase Nutrition 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 108010059892 Cellulase Proteins 0.000 description 3
- 241001480714 Humicola insolens Species 0.000 description 3
- 102000004157 Hydrolases Human genes 0.000 description 3
- 108090000604 Hydrolases Proteins 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 3
- 241000223258 Thermomyces lanuginosus Species 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229940106157 cellulase Drugs 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920005646 polycarboxylate Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- PUAQLLVFLMYYJJ-UHFFFAOYSA-N 2-aminopropiophenone Chemical compound CC(N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101100448208 Human herpesvirus 6B (strain Z29) U69 gene Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 108010056079 Subtilisins Proteins 0.000 description 2
- 102000005158 Subtilisins Human genes 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 229940025131 amylases Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 150000004683 dihydrates Chemical class 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 108010062085 ligninase Proteins 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 2
- AHEDZCJSAQSOFM-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine oxide;dihydrate Chemical compound O.O.CCCCCCCCCCCC[N+](C)(C)[O-] AHEDZCJSAQSOFM-UHFFFAOYSA-N 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- VBCJJAZGEJSVTL-UHFFFAOYSA-N (Z)-18-methylnonadec-9-en-1-amine Chemical compound CC(CCCCCCCC=C/CCCCCCCCN)C VBCJJAZGEJSVTL-UHFFFAOYSA-N 0.000 description 1
- GHPCICSQWQDZLM-UHFFFAOYSA-N 1-(4-chlorophenyl)sulfonyl-1-methyl-3-propylurea Chemical compound CCCNC(=O)N(C)S(=O)(=O)C1=CC=C(Cl)C=C1 GHPCICSQWQDZLM-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 1
- BITAPBDLHJQAID-MDZDMXLPSA-N 2-[2-hydroxyethyl-[(e)-octadec-9-enyl]amino]ethanol Chemical compound CCCCCCCC\C=C\CCCCCCCCN(CCO)CCO BITAPBDLHJQAID-MDZDMXLPSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DVFGEIYOLIFSRX-UHFFFAOYSA-N 3-(2-ethylhexoxy)propan-1-amine Chemical compound CCCCC(CC)COCCCN DVFGEIYOLIFSRX-UHFFFAOYSA-N 0.000 description 1
- PWGVOCGNHYMDLS-UHFFFAOYSA-N 3-(2-methoxyethoxy)propan-1-amine Chemical compound COCCOCCCN PWGVOCGNHYMDLS-UHFFFAOYSA-N 0.000 description 1
- VHYUNSUGCNKWSO-UHFFFAOYSA-N 3-propan-2-yloxypropan-1-amine Chemical compound CC(C)OCCCN VHYUNSUGCNKWSO-UHFFFAOYSA-N 0.000 description 1
- LWYAUHJRUCQFCX-UHFFFAOYSA-N 4-dodecoxy-4-oxobutanoic acid Chemical compound CCCCCCCCCCCCOC(=O)CCC(O)=O LWYAUHJRUCQFCX-UHFFFAOYSA-N 0.000 description 1
- XDJAHNALPHLVAX-UHFFFAOYSA-N 4-oxo-4-tetradec-2-enoxybutanoic acid Chemical compound CCCCCCCCCCCC=CCOC(=O)CCC(O)=O XDJAHNALPHLVAX-UHFFFAOYSA-N 0.000 description 1
- LSWKXNPXIJXDHU-UHFFFAOYSA-N 4-oxo-4-tetradecoxybutanoic acid Chemical compound CCCCCCCCCCCCCCOC(=O)CCC(O)=O LSWKXNPXIJXDHU-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 1
- 108010073997 Bromide peroxidase Proteins 0.000 description 1
- RGGZDOBBQJYSRB-UHFFFAOYSA-N CCCCCCCCCCC=CC(C(O)=O)CC(O)=O.CCCCCCCCCCCCCCCCOC(=O)CCC(O)=O Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O.CCCCCCCCCCCCCCCCOC(=O)CCC(O)=O RGGZDOBBQJYSRB-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229940120146 EDTMP Drugs 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108050008938 Glucoamylases Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241000223200 Humicola grisea var. thermoidea Species 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101001069700 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharolysin Proteins 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 108010084650 alpha-N-arabinofuranosidase Proteins 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- CMFFZBGFNICZIS-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O CMFFZBGFNICZIS-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000004064 cosurfactant Substances 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940090960 diethylenetriamine pentamethylene phosphonic acid Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical compound CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- BZDOEVMUXJTHPS-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)hexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+]([O-])(CCO)CCO BZDOEVMUXJTHPS-UHFFFAOYSA-N 0.000 description 1
- CBLJNXZOFGRDAC-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)octadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCCCC[N+]([O-])(CCO)CCO CBLJNXZOFGRDAC-UHFFFAOYSA-N 0.000 description 1
- XGZOMURMPLSSKQ-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)N(CCO)CCO XGZOMURMPLSSKQ-UHFFFAOYSA-N 0.000 description 1
- IBOBFGGLRNWLIL-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)[O-] IBOBFGGLRNWLIL-UHFFFAOYSA-N 0.000 description 1
- GXLVEFZBVQPTFG-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine oxide;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCC[N+](C)(C)[O-] GXLVEFZBVQPTFG-UHFFFAOYSA-N 0.000 description 1
- DIKJPMZHWIMKJK-UHFFFAOYSA-N n,n-dimethyloctadecan-1-amine oxide;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCCCC[N+](C)(C)[O-] DIKJPMZHWIMKJK-UHFFFAOYSA-N 0.000 description 1
- VUTDNNGELGZRNP-UHFFFAOYSA-N n,n-dimethyltetradecan-1-amine oxide;dihydrate Chemical compound O.O.CCCCCCCCCCCCCC[N+](C)(C)[O-] VUTDNNGELGZRNP-UHFFFAOYSA-N 0.000 description 1
- LUKYOQYFJSIYNC-UHFFFAOYSA-N n-octoxypropan-1-amine Chemical compound CCCCCCCCONCCC LUKYOQYFJSIYNC-UHFFFAOYSA-N 0.000 description 1
- ZBJVLWIYKOAYQH-UHFFFAOYSA-N naphthalen-2-yl 2-hydroxybenzoate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=C(C=CC=C2)C2=C1 ZBJVLWIYKOAYQH-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229940048842 sodium xylenesulfonate Drugs 0.000 description 1
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical class NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/75—Amino oxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/86—Mixtures of anionic, cationic, and non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/94—Mixtures with anionic, cationic or non-ionic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
This invention relates to a liquid laundry detergent composition comprising a surfactant system which is free of linear alkyl benzene sulfonate comprising:
i) anionic surfactants selected from the group of alkyl alkoxy sulfates and alkyl sulfates; ii) a selected quaternary ammonium surfactant.
i) anionic surfactants selected from the group of alkyl alkoxy sulfates and alkyl sulfates; ii) a selected quaternary ammonium surfactant.
Description
CA 022334~1 1998-03-27 W~ 97~2~8 PCT~US9~12470 LIQUID LAUNDRY DETERGENTS
CONTAINING
SELECTED QUATERNARY AMMONI~M COMPOUNDS
Field of the Invention -The present invention relates to detergent compositions containing surfactants selected from quaternary ammonium surfactants.
More particularly, the invention is directed to detergent compositions containing a nil-LAS surfactant system comprising anionic surfactants selected from the group consisting of alkyl alkoxylated sulfates and alkyl sulfates, said composition further cont~in;ng specific quaternary ammonium surfactants.
8ackground of the Invention The present invention relates to liquid detergents containing a surfactant system which is free of Linear alkyl benzene sulfonate surfactants (LAS), said liquid detergent having optimum greasy stain removal performance.
The recent trend towards partial or total replacement of Linear alkyl benzene sulfonate surfactants (LAS) has CA 022334~1 1998-03-27 WO 97/12018 PCT~US95/12470 urged the detergent formulators to rebalance their formulations with different surfactants.
There is thus a standing desire for performance and flexibility reasons to make available a surfactant system capable of providing optimum detergency performance which is equivalent to that of LAS-containing detergents.
The above objective has been met by a surfactant system comprising anionic surfactants selected from the group consisting of alkyl alkoxylated sulfates and alkyl sulfates, said surfactant system further comprising a cosurfactant selected from the group of quaternary ammonium surfactants.
It has been surprisingly found that detergent compositions containing said surfactant system exhibit detergency performance equivalent to that of LAS-containing detergents.
~ In addition, it was found that the liquid detergent compositions containing the selected quaternary ammonium surfactants of the present invention, provide excellent greasy stain removal performance without detriment to the suds characteristics of the compositions. This finding allows to reduce the level of suds suppressing agents, thereby facilitating the formulation of concentrated liquid detergents.
Quaternary ammonium surfactants are described in the art. The properties of these surfactants are very strongly influenced by the type of substituent. Chain length, degree of saturation, branching or the presence and number of hydroxylic or ethoxy groups mainly determine the properties of the surfactant. Whereas typical textile-conditioning actions are performed by cationic surfactants with two long alkyl ch~'ns, cationic surfactants with only one long alkyl chain have been reported to improve the detergency performance in laundry detergents. EP-A-224 describes liquid built laundry detergent compositions comprising a general class of quaternary ammonium surfactants. Decyltrimethyl CA 022334~1 1998-03-27 WO 97/12018 PCTAUS9~12470 ammonium chloride is described. EP 8142 describes a liquid builder-free heavy duty detergent comprising a quaternary ammonium compound of a general formula.
Octyldihydroxyethylmethyl ammonium halides are described.
For optimum grease detergency performance, however, these compositions of the prior art require high level of cationic surfactant. These high levels of cationic surfactants in turn, generate excessive foaming, thereby raising problems of automatic washing machine compatibility.
If, on the other hand, the cationic surfactant is reduced at a level at which foam regulation is no longer a problem, the beneficial grease detergency characteristics of quaternary compounds are ~; m i n ished~
In contrast, the surfactant system of the present invention provides optimum grease and oil removal performance, thereby not adversely affecting the suds characteristic of the detergent compositions formulated therewith.
In addition, it has been found that liquid detergent compositions formulated with said surfactant system are extremely useful when the liquid detergent compositions are in direct contact with the fabrics such as during pretreatment.
Summary of the Invention The present invention relates to liquid detergent compositions comprising a Nil-LAS surfactant system said surfactant system comprising anionic surfactants selected from the group of alkyl alkoxy sulfates and alkyl sulfates and selected quaternary ammonium surfactants present in specific weight ratio.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 The detergent compositions pre~erably comprise at least 5~, more preferably from 10~ to 65% and most preferably from 15% to 40% by weight of the surfactant system as described hereinabove.
Detailed description of the Invention The surfactant system of the detergent compositions according to the present invention comprise anionic surfactants selected from the group of alkylalkoxy sulfates and alkyl sulfates.
Alkyl alkoxylated sulfates and/or alkyl sulfates The alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)mS03M
wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C1o-C24 alkyl component, preferably a C12-C1g alkyl or hydroxyalkyl, more preferably C12-C1s alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include ethanol-, triethanol-, methyl-, dimethyl, trimethyl-ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are C12-Cls alkyl polyethoxylate (1.0) sulfate (C12-C1sE(l.O)M), C12-Cls alkyl polyethoxylate (2.25) sulfate (C12-C1sE(2.25)M), C12-CA 022334~1 1998-03-27 W O 97~12018 PCTAUS95/12470 C1s alkyl polyethoxylate (3.0) sulfate (C12-C1sE(3.0)M), and C12-C1s alkyl polyethoxylate (4.0) sulfate (C12-C1sE(4.0)M), wherein M is conveniently selected from sodium and potassium.
The alkyl sulfate surfactants hereof are water soluble salts or acids of the formula ROSO3M wherein R preferably is a C1o-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C1o-C1g alkyl component, more preferably a C12-C1s alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g. methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, ~riethylamine, and mixtures thereof, and the like).
The quaternary ammonium compound The quaternary ammonium surfactant according to the present invention has the formula (I):
o ~ ~3 ~ X-Formula I
whereby R1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyl of the formula (II) :
Formula II
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 y is 2-4, preferably 3.
whereby R2 is H or a C1-C3 alkyl, whereby x is 0-4, preferably 0-2, most preferably 0, whereby R3, R4 and R5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of the formula III, whereby X~ is a counterion, preferably a halide, e.g.
chloride or methylsulfate.
~Z
Formula III
R6 is C1-C4 and z is 1 or 2.
Preferred quat ammonium surfactants are those as defined in formula I whereby Rl is Cg, C10 or mixtures thereof, x=o, R3, R4 = CH3 and Rs = CH2CH2OH.
Preferred quaternary ammonium surfactants have the general formula I, whereby the weight ratio of the quaternary ammonium surfactant to the alkyl alkoxy sulfates and alkyl sulfates is from 1:3 to 1:30, preferably from 1:3 to 1:15, most preferred from 1:5 to 1:10.
Detergent ingredients In another embodiment of the present invention, a liquid detergent composition is provided comprising the surfactant system of the present invention mixed with detergent ingredients. A wide range of surfactants can be used in the detergent composition of the present invention.
The detergent compositions according to the present invention comprise a surfactant system which is CA 022334~1 1998-03-27 W o 97/~20~8 PCT~US9~1247n substantially free of linear alkylbenzene sulfonate surfactant.
A typical listing of anionic, nonionic, ampholytic and zwitterionic classes, and species of these surfactants, is given in US Patent 3,664,961 issued to Norris on May 23, 1972.
Other suitable anionic surfactants that can be used are alkyl ester sulfonate surfactants including linear esters of Cg-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329.
Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula:
R3 - CH(SO3M) -- C(O) - oR4 wherein R3 is a Cg-C20 hydrocarbyl, preferably an alkyl, or combination thereof, R4 is a C1-C6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine. Preferably, R3 is C1o-C16 alkyl, and R4 is methyl, ethyl or isopropyl. Especially preferred are the methyl ester sulfonates wherein R3 is C1o-C16 alkyl.
Other anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and CA 022334~1 1998-03-27 triethanolamine salts) of soap, Cg-C22 primary of secondary alkanesulfonates, Cg-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1, 082,179, C8-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C1 8 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C6-C12 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), and alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)k-CH2COO-M+ wherein R is a Cg-C22 alkyl, k is an integer from O to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A
variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
When included therein, the laundry detergent compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 5% to about 25% by weight of such anionic surfactants.
CA 022334~1 1998-03-27 2~18 PCT~US95/12470 One class of nonionic surfactants useful in the present r invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance ~HLB) in the range from 8 to 17, preferably from 9.5 to 14, more preferably from 12 to 14. The hydrophobic (lipophiliG) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
Especially preferred nonionic surfactants of this type are the Cg-Cls primary alcohol ethoxylates containing 3-12 moles of ethylene oxide per mole of alcohol, particularly the C12-C1s primary alcohols containing 5-8 moles of ethylene oxide Fer mole of alcohol, Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (cnH2no)tzx wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
Very suitable as nonionic surfactants are poly hydroxy fatty acid amide surfactants of the formula R2 - C(O) - N(R1) ~ Z, CA 022334~1 1998-03-27 WO 97/12018 PCT~US9S/12470 wherein R1 is H, or R1 is C1_4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R2 is Cs_ hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R1 is methyl, R2 is a straight C~ s alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
Highly preferred nonionics are amine oxide surfactants.
The compositions of the present invention may comprise amine oxide in accordance with the general formula I:
R tEO) (PO) (BO) N(O)(CH2R')2.qH2O (I) In general, it can be seen lthat the structure (I) provides one long-chain moiety R (EO) (PO) (BO) and two short chain moieties, CH2R'. R' is preferably selected from hydrogen, methyl and -CH2OH. In general Rl is a primary or branched hydrocarbyl moilety which can be saturated or unsaturated, preferably, R is a primary alkyl moiety. When x+y+z = 0, R is a hydrocarbyl moiety having chainlength of flrom about 8 to about 18. When x+y+z is different from 0, R may be somewhat longer, having a chainlength in the range C12-C24. The general formula also encompasses amine oxides wherein x+y+z = 0, R1 = Cg-Clg, R' = H and q = 0-2, preferably 2. These amine oxides are illustrated by C12-14 alkyldimethyl amine oxide,hexadecyl dimethylamine oxide, octadecylamine oxide and their hydrates, especially the dihydrates as disclosed in U.S. Patents 5,075,501 and 5,071,594, incorporated herein by reference.
The invention also encompasses amine oxides wherein x+y+z is different from zero, specifically x+y+z is from CA 022334~1 1998-03-27 W O 97/12018 PCT~US9~12470 about 1 to about 10, R is a primary alkyl group containing 8 to about 24 carbons, preferably from about 12 to about 16 carbon atoms; in these embodiments y + z is preferably 0 and x is preferably from about l to about 6, more preferably from about 2 to about 4i EO represents ethyleneoxy; PO
represents propyleneoxy; and BO represents butyleneoxy. Such amine oxides can be prepared by conventional synthetic methods, e.g., by the reaction of alkylethoxysulfates with dimethylamine followed by oxidation of the ethoxylated amine with hydrogen peroxide.
Highly preferred amine oxides herein are solids at ambient temperature, more preferably they have melting-points in the range 30~C to 90~C. Amine oxides suitable for use herein are made commercially by a number of suppliers, including Akzo Chemie, Ethyl Corp., and Procter & Gamble.
See McCutcheon's compilation and Kirk-Othmer review article for alternate amine oxide manufacturers. Preferred commercially available amine oxides are the solid, dihydrate ADMOX 16 and ADMOX 18, ADMOX 12 and especially ADMOX 14 from Ethyl Corp.
Preferred embodiments include hexadecyldimethylamine oxide dihydrate, dodecyldimethylamine oxide dihydrate, octadecyldimethylamine oxide dihydrate, hexadecyltris (ethyleneoxy)dimethyl-amine oxide, and tetradecyldimethyl-amine oxide dihydrate.
Whereas in certain of the preferred embodiments R' = H, there is some latitude with respect to having R' slightly larger than H. Specifically, the invention further encompasses embodiments wherein R' = CH20H, such as hexadecylbis(2- hydroxyethyl)amine oxide, tallowbis(2-hydroxyethyl)amine oxide, stearylbis(2-hydroxyethyl)amine oxide and oleylbis(2- hydroxyethyl)amine oxide, dodecyldimethylamine oxide dihydrate.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 Suitable nonionic sur~actants include primary amines according to the formula R1R2R3N wherein R1 and R2 are both H, R3 is a C4-C1g, preferably C6-C12 alkyl chain, R3 alkyl t-h~in.s may be straight or branched and may be interrupted with up to 12 ethylene oxide moieties, most preferably interrupted with up to 5 ethylene oxide moieties. Preferred amines according to the formula herein above are n-alkyl amines. Suitable amines for use herein may be selected from 1-hexylamine, 1-octylamine, laurylamine, palmitylamine, stearylamine, oleylamine, coconutalkylamine, tallowalkyl-amine.
Other suitable primary amines include amines according to the formula R1R2R3N wherein R1 and R2 are both H ; R3 is R4X(CH2)n, X is -O-,-C(O)NH- or -NH-, R4 is a C4-C18, preferably C6-C12 alkyl chain and R4 may be branched or straight, n is between 1 to 5. Preferred amines according to the formula herein above 3-isopropoxypropylamine, 3-(2-methoxyethoxy)-propylamine and 2-(2-aminoethoxy)-ethanol, Cg-C10 octyl oxy propylamine, 2-ethylhexyloxypropylamine, lauryl amido propylamine and coco amido propylamine.
Suitable tertiary amines for use herein include amines tertiary amines having the formula RlR2R3N wherein neither R1 nor R2 is H, R1 and R2 are C1-C8 alkylchains or Rls - (CH2-CH O)xH
whereby n is between 2 to 4 and x is between 1 to 6;
R3 is either a C4-C1g, preferably C6-C12 alkyl chain, or R3 is R4X(CH2)n, whereby X is -O-, -C(O)NH- or -NH-,R4 is a C4-C1g, n is between 1 to 5, and Rs is H or C1-C2 alkyl.
R3, R4 are preferably C6-C12 alkyl ch~ins and may be straight or branched ; R3 alkyl chains may be interrupted with up to 12 ethylene oxide moieties, most preferably interrupted with up to 5 ethylene oxide moieties.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95J1247 Suitable tertiary amines for use herein include coconutalkyldimethylamine, dimethyloleylamine, hexa-decyltris (ethyleneoxy)dimethylamine,tallowalkylbis(2-hydroxyethyl)amine, stearoylbis(2-hydroxyethyl)amine and oleoylbis(2-hydroxyethyl)amine.
Of all of the foregoing amines the preferred materials are the trialkyl amines marketed under the tradename ADOGEN, the long chain alkyldimethyl amines marketed under the tradename ARMEEN and the ethoxylated amines marketed under the tradename ETHOMEEN. The most preferred amines for use in the compositions herein are 1-hexylamine, 1-octylamine, 1-decylamine, 1-dodecylamine. Especially desirable for odor characteristics are n-dodecyl-dimethylamine (ARMEEN DM12D) and bishydroxyethyl-coconutalkylamine (ETHOMEEN C/12, BEROL
307)and oleylamine 7 times ethoxylated(BEROL 28), lauryl amido propylamine and coco amido propylamine.
Other suitable amines include tertiary amines having the formula Rl--C--NH--(CH2~--N--(R2)2 wherein R1 is C4-C10, preferably Cg-Clo alkyl; n is 2-4, preferably n is 3; R2 is C1-C4 or I
(CH2-CH-O)xH, whereby x is 1-5, R3 is H or C1-C2 alkyl.
When included therein, the laundry detergent compositions of the present invention typically comprise nonionic surfactants in the weight ratio of anionic surfactant to nonionic surfactant from 6:1 to 1:3, preferably from 5:1 to 2:1.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 When included therein, the laundry detergent compositions of the present invention typically comprise nonionic surfactants in the weight ratio of anionic surfactant to nonionic surfactant from 6:1 to 1:3, preferably from 5:1 to 2:1.
The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetra-acetate, metal ion sequestrants such as aminopoly-phosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylene phosphonic acid. Though ~ess preferred for obvious environmental reasons, phosphate builders can also be used herein.
Suitable polycarboxylates builders for use herein include citric acid, preferably in the form of a water-soluble salt, derivatives of succinic acid of the formula R-CH(COOH)CH2(COOH) wherein R is C10-20 alkyl or alkenyl, preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents. Specific examples include lauryl succinate , myristyl succinate, palmityl succinate 2-dodecenylsuccinate, 2-tetradecenyl succinate. Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.
Other suitable polycarboxylates are oxodisuccinates and mixtures of tartrate monosuccinic and tartrate disuccinic acid such as described in US g,663,071.
Es,pecially for the liquid execution herein, suitable fatty acid builders for use herein are saturated or unsaturated C10-18 fatty acids, as well as the corresponding soaps.
Preferred saturated species have from 12 to 16 carbon atoms CA 022334~1 1998-03-27 WO 97~12018 PCT~US95/12470 in the alkyl chain. The preferred unsaturated fatty acid is oleic acid. Other preferred builder system for liquid compositions is based on dodecenyl succinic acid and citric acid.
Detergency builders are normally included in amounts of from 3% to 50~ by weight of the composition preferably from 5% to 30% and most usually from 5% to 25% by weight.
Optional detergent ingredients :
Preferred detergent compositions of the present invention may further comprise one or more enzymes which provide cleaning performance and/or fabric care benefits. Said enzymes include enzymes selected from cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, àmylases, lipases, cutinases, pectinases, xylanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ~-glucanases, arabinosidases or mixtures thereof.
A preferred combination is a detergent composition having a cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or cellulase in conjunction with the lipolytic enzyme variant D96L at a level of from 50 LU to 8500 LU per liter wash solution.
The cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var.
thermoidea), particularly the Humicola strain DSM 1800.
CA 022334~1 1998-03-27 Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids.
Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No.
91202879.2, filed November 6, 1991 (Novo).
Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e.
to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
-Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991.
Said cellulases and/or peroxidases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Nordisk A/S
(Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Also proteases described in our co-pending application USSN 08/136,797 can be included in the detergent composition of the invention. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
CA 022334~l l998-03-27 W O 97/12018 PC~US9~J1247 A preferred protease herein referred to as "Protease D"
is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in the concurrently filed patent application of A. Baeck et al. entitled "Protease-Containing Cleaning Compositions" having U.S. Serial No. 08/322,676, filed October 13, 1994, which is incorporated herein by reference in its entirety.
Highly preferred enzymes that can be included in the detergent compositions of the present invention include lipases. It has been found that the cleaning performance on greasy soils is synergistically improved by using lipases.
Suitable lipase enzymes include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescens IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P".
Further suitable lipases are lipases such as M1 LipaseR and LipomaxR (Gist-Brocades). Highly preferred lipases are the D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa as described in US Serial No.
08/341,826. Preferably the Humicola lanuginosa strain DSM
CA 022334~1 1998-03-27 4106 is used. This enzyme is incorporated into the composition in accordance with the invention at a level of from 50 LU to 8500 LU per liter wash solution. Preferably the variant D96L is present at a level of from 100 LU to 7500 LU per liter of wash solution. More preferably at a level of from 150 LU to 5000 LU per liter of wash solution.
By D96L lipolytic enzyme variant is meant the lipase variant as described in patent application WO 92/05249 viz.
wherein the native lipase ex Humicola lanuginosa aspartic acid (D) residue at position 96 is changed to Leucine ~L).
According to this nomenclature said substitution of aspartic acid to Leucine in position 96 is shown as : D96L.
Also suitable are cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which -do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor).
The lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Amylases (& and/or ~) can be included for removal of carbohydrate-based stains. Suitable amylases are TermamylR
(Novo Nordisk), FungamylR and BANR (Novo Nordisk).
The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
CA 022334~l l998-03-27 W O 97/12018 PCT~US9SI12470 Other components used in detergent compositions may be employed, such as soil-suspending agents, soil-release polymers, abrasives, bactericides, tarnish inhibitors, coloring agents, foam control agents, corrosion inhibitors and perfumes.
Preferably, the liquid compositions according to the present invention are in "concentrated form"i in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents. The level of water is less than 50%, preferably less than 30~ by weight of the detergent compositons.
Said concentrated products provide advantages to the consumer, who has a product which can be used in lower amounts and to the producer, who has lower shipping costs.
The liquid compositions are especially effective when applied directly to soils and stains in a pretreatment step.
The detergent compositions of the present invention can also be used as detergent additive products. Such additive products are intended to supplement or boost the performance of conventional detergent compositions.
The detergent compositions according to the present invention include compositions which are to be used for cleaning of substrates, such as fabrics,fibers, hard surfaces, skin etc., for example hard surface cleaning compositions(with or without abrasives), laundry detergent compositions, automatic and non-automatic dishwashing compositions.
The following examples are meant to exemplify compositions of the present inventions, but are not necessarily meant to limit the scope of the invention.
CA 022334~1 1998-03-27 EXAMPLE I
The following liquid detergent compositions are made :
% by weight of the detergent compositions A B C D
C12-C15 alkyl ethoxylated 2 8 11 5 sulfate Cg-C10 hydroxyethyl dimethyl 2 2 2 quat C12-C14 alkyldimethyl amine - - - 2 oxide C12-C1s alkyl sulfate 17 12 7 8 C12-C14 N-methyl glucamide 5 4 4 3 C12-C14 fatty alcohol ethoxylate 6 C12-C1g fatty acid 11 4 4 3 Citric acid anhydrous 1 3 3 2 Diethylene triamine penta 1 1 1 0.5 methylene phosponic acid Monoethanolamine 8 5 5 2 Sodium hydroxide 1 2.5 1 1.5 Propanediol 14.5 13.1 10.0 8 Ethanol 1.8 4.7 5. 4 Amylase (300KNU/g) O.1 0.1 0.1 0.1 Lipase D96/L (lOOKNlJ/g) O.15 0 .15 0.15 0.15 Protease (35g/l) 0.5 0.5 0.5 0.5) Endo-A (5000 CEW/g) O. 05 0.05 0.05 0.5 Carezyme (5000 CEVU/g) O.09 0.09 0.09 0.9 Terephthalate-based polymer 0. 5 - 0. 3 0.3 Boric acid 2.4 2. 8 2. 8 2.4 Sodium xylene sulfonate - 3 DC 3225C 0.04 0.04 0.03 0.03 ~-2-butyl-octanol Branched silicone 0.3 0.3 0.3 0.3 Water & minors Up to 100%
The above liquid detergent compositions (A-D) are found to be very efficient in the removal of greasy/oily soils under various usage conditions while having a controlled suds profile.
CONTAINING
SELECTED QUATERNARY AMMONI~M COMPOUNDS
Field of the Invention -The present invention relates to detergent compositions containing surfactants selected from quaternary ammonium surfactants.
More particularly, the invention is directed to detergent compositions containing a nil-LAS surfactant system comprising anionic surfactants selected from the group consisting of alkyl alkoxylated sulfates and alkyl sulfates, said composition further cont~in;ng specific quaternary ammonium surfactants.
8ackground of the Invention The present invention relates to liquid detergents containing a surfactant system which is free of Linear alkyl benzene sulfonate surfactants (LAS), said liquid detergent having optimum greasy stain removal performance.
The recent trend towards partial or total replacement of Linear alkyl benzene sulfonate surfactants (LAS) has CA 022334~1 1998-03-27 WO 97/12018 PCT~US95/12470 urged the detergent formulators to rebalance their formulations with different surfactants.
There is thus a standing desire for performance and flexibility reasons to make available a surfactant system capable of providing optimum detergency performance which is equivalent to that of LAS-containing detergents.
The above objective has been met by a surfactant system comprising anionic surfactants selected from the group consisting of alkyl alkoxylated sulfates and alkyl sulfates, said surfactant system further comprising a cosurfactant selected from the group of quaternary ammonium surfactants.
It has been surprisingly found that detergent compositions containing said surfactant system exhibit detergency performance equivalent to that of LAS-containing detergents.
~ In addition, it was found that the liquid detergent compositions containing the selected quaternary ammonium surfactants of the present invention, provide excellent greasy stain removal performance without detriment to the suds characteristics of the compositions. This finding allows to reduce the level of suds suppressing agents, thereby facilitating the formulation of concentrated liquid detergents.
Quaternary ammonium surfactants are described in the art. The properties of these surfactants are very strongly influenced by the type of substituent. Chain length, degree of saturation, branching or the presence and number of hydroxylic or ethoxy groups mainly determine the properties of the surfactant. Whereas typical textile-conditioning actions are performed by cationic surfactants with two long alkyl ch~'ns, cationic surfactants with only one long alkyl chain have been reported to improve the detergency performance in laundry detergents. EP-A-224 describes liquid built laundry detergent compositions comprising a general class of quaternary ammonium surfactants. Decyltrimethyl CA 022334~1 1998-03-27 WO 97/12018 PCTAUS9~12470 ammonium chloride is described. EP 8142 describes a liquid builder-free heavy duty detergent comprising a quaternary ammonium compound of a general formula.
Octyldihydroxyethylmethyl ammonium halides are described.
For optimum grease detergency performance, however, these compositions of the prior art require high level of cationic surfactant. These high levels of cationic surfactants in turn, generate excessive foaming, thereby raising problems of automatic washing machine compatibility.
If, on the other hand, the cationic surfactant is reduced at a level at which foam regulation is no longer a problem, the beneficial grease detergency characteristics of quaternary compounds are ~; m i n ished~
In contrast, the surfactant system of the present invention provides optimum grease and oil removal performance, thereby not adversely affecting the suds characteristic of the detergent compositions formulated therewith.
In addition, it has been found that liquid detergent compositions formulated with said surfactant system are extremely useful when the liquid detergent compositions are in direct contact with the fabrics such as during pretreatment.
Summary of the Invention The present invention relates to liquid detergent compositions comprising a Nil-LAS surfactant system said surfactant system comprising anionic surfactants selected from the group of alkyl alkoxy sulfates and alkyl sulfates and selected quaternary ammonium surfactants present in specific weight ratio.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 The detergent compositions pre~erably comprise at least 5~, more preferably from 10~ to 65% and most preferably from 15% to 40% by weight of the surfactant system as described hereinabove.
Detailed description of the Invention The surfactant system of the detergent compositions according to the present invention comprise anionic surfactants selected from the group of alkylalkoxy sulfates and alkyl sulfates.
Alkyl alkoxylated sulfates and/or alkyl sulfates The alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)mS03M
wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C1o-C24 alkyl component, preferably a C12-C1g alkyl or hydroxyalkyl, more preferably C12-C1s alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include ethanol-, triethanol-, methyl-, dimethyl, trimethyl-ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are C12-Cls alkyl polyethoxylate (1.0) sulfate (C12-C1sE(l.O)M), C12-Cls alkyl polyethoxylate (2.25) sulfate (C12-C1sE(2.25)M), C12-CA 022334~1 1998-03-27 W O 97~12018 PCTAUS95/12470 C1s alkyl polyethoxylate (3.0) sulfate (C12-C1sE(3.0)M), and C12-C1s alkyl polyethoxylate (4.0) sulfate (C12-C1sE(4.0)M), wherein M is conveniently selected from sodium and potassium.
The alkyl sulfate surfactants hereof are water soluble salts or acids of the formula ROSO3M wherein R preferably is a C1o-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C1o-C1g alkyl component, more preferably a C12-C1s alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g. methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, ~riethylamine, and mixtures thereof, and the like).
The quaternary ammonium compound The quaternary ammonium surfactant according to the present invention has the formula (I):
o ~ ~3 ~ X-Formula I
whereby R1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyl of the formula (II) :
Formula II
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 y is 2-4, preferably 3.
whereby R2 is H or a C1-C3 alkyl, whereby x is 0-4, preferably 0-2, most preferably 0, whereby R3, R4 and R5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of the formula III, whereby X~ is a counterion, preferably a halide, e.g.
chloride or methylsulfate.
~Z
Formula III
R6 is C1-C4 and z is 1 or 2.
Preferred quat ammonium surfactants are those as defined in formula I whereby Rl is Cg, C10 or mixtures thereof, x=o, R3, R4 = CH3 and Rs = CH2CH2OH.
Preferred quaternary ammonium surfactants have the general formula I, whereby the weight ratio of the quaternary ammonium surfactant to the alkyl alkoxy sulfates and alkyl sulfates is from 1:3 to 1:30, preferably from 1:3 to 1:15, most preferred from 1:5 to 1:10.
Detergent ingredients In another embodiment of the present invention, a liquid detergent composition is provided comprising the surfactant system of the present invention mixed with detergent ingredients. A wide range of surfactants can be used in the detergent composition of the present invention.
The detergent compositions according to the present invention comprise a surfactant system which is CA 022334~1 1998-03-27 W o 97/~20~8 PCT~US9~1247n substantially free of linear alkylbenzene sulfonate surfactant.
A typical listing of anionic, nonionic, ampholytic and zwitterionic classes, and species of these surfactants, is given in US Patent 3,664,961 issued to Norris on May 23, 1972.
Other suitable anionic surfactants that can be used are alkyl ester sulfonate surfactants including linear esters of Cg-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329.
Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula:
R3 - CH(SO3M) -- C(O) - oR4 wherein R3 is a Cg-C20 hydrocarbyl, preferably an alkyl, or combination thereof, R4 is a C1-C6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine. Preferably, R3 is C1o-C16 alkyl, and R4 is methyl, ethyl or isopropyl. Especially preferred are the methyl ester sulfonates wherein R3 is C1o-C16 alkyl.
Other anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and CA 022334~1 1998-03-27 triethanolamine salts) of soap, Cg-C22 primary of secondary alkanesulfonates, Cg-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1, 082,179, C8-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C1 8 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C6-C12 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), and alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)k-CH2COO-M+ wherein R is a Cg-C22 alkyl, k is an integer from O to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A
variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
When included therein, the laundry detergent compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 5% to about 25% by weight of such anionic surfactants.
CA 022334~1 1998-03-27 2~18 PCT~US95/12470 One class of nonionic surfactants useful in the present r invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance ~HLB) in the range from 8 to 17, preferably from 9.5 to 14, more preferably from 12 to 14. The hydrophobic (lipophiliG) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
Especially preferred nonionic surfactants of this type are the Cg-Cls primary alcohol ethoxylates containing 3-12 moles of ethylene oxide per mole of alcohol, particularly the C12-C1s primary alcohols containing 5-8 moles of ethylene oxide Fer mole of alcohol, Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (cnH2no)tzx wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
Very suitable as nonionic surfactants are poly hydroxy fatty acid amide surfactants of the formula R2 - C(O) - N(R1) ~ Z, CA 022334~1 1998-03-27 WO 97/12018 PCT~US9S/12470 wherein R1 is H, or R1 is C1_4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R2 is Cs_ hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R1 is methyl, R2 is a straight C~ s alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
Highly preferred nonionics are amine oxide surfactants.
The compositions of the present invention may comprise amine oxide in accordance with the general formula I:
R tEO) (PO) (BO) N(O)(CH2R')2.qH2O (I) In general, it can be seen lthat the structure (I) provides one long-chain moiety R (EO) (PO) (BO) and two short chain moieties, CH2R'. R' is preferably selected from hydrogen, methyl and -CH2OH. In general Rl is a primary or branched hydrocarbyl moilety which can be saturated or unsaturated, preferably, R is a primary alkyl moiety. When x+y+z = 0, R is a hydrocarbyl moiety having chainlength of flrom about 8 to about 18. When x+y+z is different from 0, R may be somewhat longer, having a chainlength in the range C12-C24. The general formula also encompasses amine oxides wherein x+y+z = 0, R1 = Cg-Clg, R' = H and q = 0-2, preferably 2. These amine oxides are illustrated by C12-14 alkyldimethyl amine oxide,hexadecyl dimethylamine oxide, octadecylamine oxide and their hydrates, especially the dihydrates as disclosed in U.S. Patents 5,075,501 and 5,071,594, incorporated herein by reference.
The invention also encompasses amine oxides wherein x+y+z is different from zero, specifically x+y+z is from CA 022334~1 1998-03-27 W O 97/12018 PCT~US9~12470 about 1 to about 10, R is a primary alkyl group containing 8 to about 24 carbons, preferably from about 12 to about 16 carbon atoms; in these embodiments y + z is preferably 0 and x is preferably from about l to about 6, more preferably from about 2 to about 4i EO represents ethyleneoxy; PO
represents propyleneoxy; and BO represents butyleneoxy. Such amine oxides can be prepared by conventional synthetic methods, e.g., by the reaction of alkylethoxysulfates with dimethylamine followed by oxidation of the ethoxylated amine with hydrogen peroxide.
Highly preferred amine oxides herein are solids at ambient temperature, more preferably they have melting-points in the range 30~C to 90~C. Amine oxides suitable for use herein are made commercially by a number of suppliers, including Akzo Chemie, Ethyl Corp., and Procter & Gamble.
See McCutcheon's compilation and Kirk-Othmer review article for alternate amine oxide manufacturers. Preferred commercially available amine oxides are the solid, dihydrate ADMOX 16 and ADMOX 18, ADMOX 12 and especially ADMOX 14 from Ethyl Corp.
Preferred embodiments include hexadecyldimethylamine oxide dihydrate, dodecyldimethylamine oxide dihydrate, octadecyldimethylamine oxide dihydrate, hexadecyltris (ethyleneoxy)dimethyl-amine oxide, and tetradecyldimethyl-amine oxide dihydrate.
Whereas in certain of the preferred embodiments R' = H, there is some latitude with respect to having R' slightly larger than H. Specifically, the invention further encompasses embodiments wherein R' = CH20H, such as hexadecylbis(2- hydroxyethyl)amine oxide, tallowbis(2-hydroxyethyl)amine oxide, stearylbis(2-hydroxyethyl)amine oxide and oleylbis(2- hydroxyethyl)amine oxide, dodecyldimethylamine oxide dihydrate.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 Suitable nonionic sur~actants include primary amines according to the formula R1R2R3N wherein R1 and R2 are both H, R3 is a C4-C1g, preferably C6-C12 alkyl chain, R3 alkyl t-h~in.s may be straight or branched and may be interrupted with up to 12 ethylene oxide moieties, most preferably interrupted with up to 5 ethylene oxide moieties. Preferred amines according to the formula herein above are n-alkyl amines. Suitable amines for use herein may be selected from 1-hexylamine, 1-octylamine, laurylamine, palmitylamine, stearylamine, oleylamine, coconutalkylamine, tallowalkyl-amine.
Other suitable primary amines include amines according to the formula R1R2R3N wherein R1 and R2 are both H ; R3 is R4X(CH2)n, X is -O-,-C(O)NH- or -NH-, R4 is a C4-C18, preferably C6-C12 alkyl chain and R4 may be branched or straight, n is between 1 to 5. Preferred amines according to the formula herein above 3-isopropoxypropylamine, 3-(2-methoxyethoxy)-propylamine and 2-(2-aminoethoxy)-ethanol, Cg-C10 octyl oxy propylamine, 2-ethylhexyloxypropylamine, lauryl amido propylamine and coco amido propylamine.
Suitable tertiary amines for use herein include amines tertiary amines having the formula RlR2R3N wherein neither R1 nor R2 is H, R1 and R2 are C1-C8 alkylchains or Rls - (CH2-CH O)xH
whereby n is between 2 to 4 and x is between 1 to 6;
R3 is either a C4-C1g, preferably C6-C12 alkyl chain, or R3 is R4X(CH2)n, whereby X is -O-, -C(O)NH- or -NH-,R4 is a C4-C1g, n is between 1 to 5, and Rs is H or C1-C2 alkyl.
R3, R4 are preferably C6-C12 alkyl ch~ins and may be straight or branched ; R3 alkyl chains may be interrupted with up to 12 ethylene oxide moieties, most preferably interrupted with up to 5 ethylene oxide moieties.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95J1247 Suitable tertiary amines for use herein include coconutalkyldimethylamine, dimethyloleylamine, hexa-decyltris (ethyleneoxy)dimethylamine,tallowalkylbis(2-hydroxyethyl)amine, stearoylbis(2-hydroxyethyl)amine and oleoylbis(2-hydroxyethyl)amine.
Of all of the foregoing amines the preferred materials are the trialkyl amines marketed under the tradename ADOGEN, the long chain alkyldimethyl amines marketed under the tradename ARMEEN and the ethoxylated amines marketed under the tradename ETHOMEEN. The most preferred amines for use in the compositions herein are 1-hexylamine, 1-octylamine, 1-decylamine, 1-dodecylamine. Especially desirable for odor characteristics are n-dodecyl-dimethylamine (ARMEEN DM12D) and bishydroxyethyl-coconutalkylamine (ETHOMEEN C/12, BEROL
307)and oleylamine 7 times ethoxylated(BEROL 28), lauryl amido propylamine and coco amido propylamine.
Other suitable amines include tertiary amines having the formula Rl--C--NH--(CH2~--N--(R2)2 wherein R1 is C4-C10, preferably Cg-Clo alkyl; n is 2-4, preferably n is 3; R2 is C1-C4 or I
(CH2-CH-O)xH, whereby x is 1-5, R3 is H or C1-C2 alkyl.
When included therein, the laundry detergent compositions of the present invention typically comprise nonionic surfactants in the weight ratio of anionic surfactant to nonionic surfactant from 6:1 to 1:3, preferably from 5:1 to 2:1.
CA 022334~1 1998-03-27 W O 97/12018 PCT~US95/12470 When included therein, the laundry detergent compositions of the present invention typically comprise nonionic surfactants in the weight ratio of anionic surfactant to nonionic surfactant from 6:1 to 1:3, preferably from 5:1 to 2:1.
The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetra-acetate, metal ion sequestrants such as aminopoly-phosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylene phosphonic acid. Though ~ess preferred for obvious environmental reasons, phosphate builders can also be used herein.
Suitable polycarboxylates builders for use herein include citric acid, preferably in the form of a water-soluble salt, derivatives of succinic acid of the formula R-CH(COOH)CH2(COOH) wherein R is C10-20 alkyl or alkenyl, preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents. Specific examples include lauryl succinate , myristyl succinate, palmityl succinate 2-dodecenylsuccinate, 2-tetradecenyl succinate. Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.
Other suitable polycarboxylates are oxodisuccinates and mixtures of tartrate monosuccinic and tartrate disuccinic acid such as described in US g,663,071.
Es,pecially for the liquid execution herein, suitable fatty acid builders for use herein are saturated or unsaturated C10-18 fatty acids, as well as the corresponding soaps.
Preferred saturated species have from 12 to 16 carbon atoms CA 022334~1 1998-03-27 WO 97~12018 PCT~US95/12470 in the alkyl chain. The preferred unsaturated fatty acid is oleic acid. Other preferred builder system for liquid compositions is based on dodecenyl succinic acid and citric acid.
Detergency builders are normally included in amounts of from 3% to 50~ by weight of the composition preferably from 5% to 30% and most usually from 5% to 25% by weight.
Optional detergent ingredients :
Preferred detergent compositions of the present invention may further comprise one or more enzymes which provide cleaning performance and/or fabric care benefits. Said enzymes include enzymes selected from cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, àmylases, lipases, cutinases, pectinases, xylanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ~-glucanases, arabinosidases or mixtures thereof.
A preferred combination is a detergent composition having a cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or cellulase in conjunction with the lipolytic enzyme variant D96L at a level of from 50 LU to 8500 LU per liter wash solution.
The cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var.
thermoidea), particularly the Humicola strain DSM 1800.
CA 022334~1 1998-03-27 Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids.
Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No.
91202879.2, filed November 6, 1991 (Novo).
Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e.
to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
-Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991.
Said cellulases and/or peroxidases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Nordisk A/S
(Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Also proteases described in our co-pending application USSN 08/136,797 can be included in the detergent composition of the invention. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
CA 022334~l l998-03-27 W O 97/12018 PC~US9~J1247 A preferred protease herein referred to as "Protease D"
is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in the concurrently filed patent application of A. Baeck et al. entitled "Protease-Containing Cleaning Compositions" having U.S. Serial No. 08/322,676, filed October 13, 1994, which is incorporated herein by reference in its entirety.
Highly preferred enzymes that can be included in the detergent compositions of the present invention include lipases. It has been found that the cleaning performance on greasy soils is synergistically improved by using lipases.
Suitable lipase enzymes include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescens IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P".
Further suitable lipases are lipases such as M1 LipaseR and LipomaxR (Gist-Brocades). Highly preferred lipases are the D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa as described in US Serial No.
08/341,826. Preferably the Humicola lanuginosa strain DSM
CA 022334~1 1998-03-27 4106 is used. This enzyme is incorporated into the composition in accordance with the invention at a level of from 50 LU to 8500 LU per liter wash solution. Preferably the variant D96L is present at a level of from 100 LU to 7500 LU per liter of wash solution. More preferably at a level of from 150 LU to 5000 LU per liter of wash solution.
By D96L lipolytic enzyme variant is meant the lipase variant as described in patent application WO 92/05249 viz.
wherein the native lipase ex Humicola lanuginosa aspartic acid (D) residue at position 96 is changed to Leucine ~L).
According to this nomenclature said substitution of aspartic acid to Leucine in position 96 is shown as : D96L.
Also suitable are cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which -do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor).
The lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Amylases (& and/or ~) can be included for removal of carbohydrate-based stains. Suitable amylases are TermamylR
(Novo Nordisk), FungamylR and BANR (Novo Nordisk).
The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
CA 022334~l l998-03-27 W O 97/12018 PCT~US9SI12470 Other components used in detergent compositions may be employed, such as soil-suspending agents, soil-release polymers, abrasives, bactericides, tarnish inhibitors, coloring agents, foam control agents, corrosion inhibitors and perfumes.
Preferably, the liquid compositions according to the present invention are in "concentrated form"i in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents. The level of water is less than 50%, preferably less than 30~ by weight of the detergent compositons.
Said concentrated products provide advantages to the consumer, who has a product which can be used in lower amounts and to the producer, who has lower shipping costs.
The liquid compositions are especially effective when applied directly to soils and stains in a pretreatment step.
The detergent compositions of the present invention can also be used as detergent additive products. Such additive products are intended to supplement or boost the performance of conventional detergent compositions.
The detergent compositions according to the present invention include compositions which are to be used for cleaning of substrates, such as fabrics,fibers, hard surfaces, skin etc., for example hard surface cleaning compositions(with or without abrasives), laundry detergent compositions, automatic and non-automatic dishwashing compositions.
The following examples are meant to exemplify compositions of the present inventions, but are not necessarily meant to limit the scope of the invention.
CA 022334~1 1998-03-27 EXAMPLE I
The following liquid detergent compositions are made :
% by weight of the detergent compositions A B C D
C12-C15 alkyl ethoxylated 2 8 11 5 sulfate Cg-C10 hydroxyethyl dimethyl 2 2 2 quat C12-C14 alkyldimethyl amine - - - 2 oxide C12-C1s alkyl sulfate 17 12 7 8 C12-C14 N-methyl glucamide 5 4 4 3 C12-C14 fatty alcohol ethoxylate 6 C12-C1g fatty acid 11 4 4 3 Citric acid anhydrous 1 3 3 2 Diethylene triamine penta 1 1 1 0.5 methylene phosponic acid Monoethanolamine 8 5 5 2 Sodium hydroxide 1 2.5 1 1.5 Propanediol 14.5 13.1 10.0 8 Ethanol 1.8 4.7 5. 4 Amylase (300KNU/g) O.1 0.1 0.1 0.1 Lipase D96/L (lOOKNlJ/g) O.15 0 .15 0.15 0.15 Protease (35g/l) 0.5 0.5 0.5 0.5) Endo-A (5000 CEW/g) O. 05 0.05 0.05 0.5 Carezyme (5000 CEVU/g) O.09 0.09 0.09 0.9 Terephthalate-based polymer 0. 5 - 0. 3 0.3 Boric acid 2.4 2. 8 2. 8 2.4 Sodium xylene sulfonate - 3 DC 3225C 0.04 0.04 0.03 0.03 ~-2-butyl-octanol Branched silicone 0.3 0.3 0.3 0.3 Water & minors Up to 100%
The above liquid detergent compositions (A-D) are found to be very efficient in the removal of greasy/oily soils under various usage conditions while having a controlled suds profile.
Claims (9)
1. A liquid laundry detergent composition comprising a Nil-Las surfactant system said surfactant system comprising i) anionic surfactants selected from the group of alkyl alkoxy sulfates and alkyl sulfates, ii)a quaternary ammonium surfactant having the formula whereby R1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyl of the formula (II) :
y is 2-4, preferably 3.
whereby R2 is H or a C1-C3 alkyl, whereby x is 0-4, preferably 0-2, most preferably 0, whereby R3, R4 and R5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of the formula III, whereby X~ is a counterion, preferably a halide, e.g.
chloride or methylsulfate.
R6 is C1-C4 and z is 1 or 2, characterized in that the weight ratio of the quaternary ammonium compound to the alkyl alkoxy sulfates and alkyl sulfates is from 1:3 to 1:30, preferably from 1:3 to 1:15, most preferred from 1:5 to 1:10.
y is 2-4, preferably 3.
whereby R2 is H or a C1-C3 alkyl, whereby x is 0-4, preferably 0-2, most preferably 0, whereby R3, R4 and R5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of the formula III, whereby X~ is a counterion, preferably a halide, e.g.
chloride or methylsulfate.
R6 is C1-C4 and z is 1 or 2, characterized in that the weight ratio of the quaternary ammonium compound to the alkyl alkoxy sulfates and alkyl sulfates is from 1:3 to 1:30, preferably from 1:3 to 1:15, most preferred from 1:5 to 1:10.
2. A liquid detergent composition according to claim 1 having a quaternary ammonium surfactant as defined in claim 1 wherein R1 is C8, C10 or mixtures thereof, x=o, R3, R4 = CH3 and R5 = CH2CH20H.
3. A liquid detergent composition according to Claim 1-2 wherein the anionic surfactants are selected from the alkyl ethoxylated sulfate and C12-C15 alkyl sulfate.
4. A liquid detergent composition according to claims 1-3 further comprising a lipolytic enzyme.
5. A liquid detergent composition according to claim 4 wherein said lipolytic enzyme is D96L lipolytic enzyme.
6. A liquid detergent composition according to Claims 1-5 further comprising a nonionic surfactant selected from the polyhydroxy fatty acid amides and/or amine oxides.
7. A liquid detergent composition according to claim 6 wherein said amine oxide is C12-C14 alkyl dimethyl amine oxide.
8. A liquid detergent composition according to Claims 1-7 further comprising other surfactants, builders, enzymes and other conventional detergent ingredients.
9. Use of a liquid detergent composition according to Claims 1-8 for pretreatment of fabrics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002233451A CA2233451A1 (en) | 1995-09-29 | 1995-09-29 | Liquid laundry detergents containing selected quaternary ammonium compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002233451A CA2233451A1 (en) | 1995-09-29 | 1995-09-29 | Liquid laundry detergents containing selected quaternary ammonium compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2233451A1 true CA2233451A1 (en) | 1997-04-03 |
Family
ID=4162261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002233451A Abandoned CA2233451A1 (en) | 1995-09-29 | 1995-09-29 | Liquid laundry detergents containing selected quaternary ammonium compounds |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2233451A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114075236A (en) * | 2021-11-18 | 2022-02-22 | 江南大学 | A kind of non-foaming silicon branched fatty acid ionic liquid surfactant and preparation method thereof |
-
1995
- 1995-09-29 CA CA002233451A patent/CA2233451A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114075236A (en) * | 2021-11-18 | 2022-02-22 | 江南大学 | A kind of non-foaming silicon branched fatty acid ionic liquid surfactant and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5916862A (en) | Detergent compositions containing amines and anionic surfactants | |
US5929022A (en) | Detergent compositions containing amine and specially selected perfumes | |
EP0833884A1 (en) | Detergent compositions containing amines and anionic surfactants | |
EP0785981B1 (en) | Laundry detergent compositions containing lipolytic enzyme and amines | |
NZ240025A (en) | Detergent comprising polyhydroxy fatty acid amide and alkyl ester sulphonate surfactant in a weight ratio of 1:10 to 10:1 | |
NZ240042A (en) | Detergents containing a polyhydroxy fatty acid amide and at least one other nonionic surfactant | |
NZ240032A (en) | Detergent containing a polyhydroxy fatty acid amide and alkyl ethoxylated sulphate surfactant in a weight ratio of 1:10 to 10:1 | |
NZ229079A (en) | Heavy duty liquid laundry detergent containing a specific proteolytic enzyme | |
US5981466A (en) | Detergent compositions containing amines and anionic surfactants | |
US5935271A (en) | Laundry detergent compositions containing lipolytic enzyme and amines | |
US6087321A (en) | Detergent compositions containing amines, alkyl sulfates, and other anionic surfactants | |
CA2228966C (en) | Detergent compositions containing amine and specially selected perfumes | |
EP0873387A1 (en) | Liquid laundry detergents containing selected quaternary ammonium compounds | |
CA2146636A1 (en) | Detergent composition with suds suppressing system | |
CA2233332C (en) | Liquid laundry detergents containing selected alkyl amidoalkoyl quaternary ammonium compounds | |
CA2096256C (en) | Liquid detergent composition containing lipase and protease | |
US6017874A (en) | Liquid laundry detergents containing selected quaternary ammonium compounds | |
WO1997019155A1 (en) | Laundry detergent compositions containing lipolytic enzyme and selected quaternary ammonium compounds | |
MX2014005747A (en) | Concentrated alkyl ether sulfate amine salt compositions. | |
WO1995033041A1 (en) | Liquid laundry detergent compositions containing lipolytic enzyme and specially selected soaps | |
CA2233451A1 (en) | Liquid laundry detergents containing selected quaternary ammonium compounds | |
CA2225458A1 (en) | Detergent compositions containing amines and anionic surfactants | |
JPH11508293A (en) | Detergent composition containing amine and anionic surfactant | |
CA2092562C (en) | Nonionic surfactant systems containing polyhydroxy fatty acid amides and one or more additional nonionic surfactants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |