CA2209483A1 - Compositions of polytetramethylene ether glycols and polyoxyalkylene polyether polyols having a low degree of unsaturation - Google Patents
Compositions of polytetramethylene ether glycols and polyoxyalkylene polyether polyols having a low degree of unsaturationInfo
- Publication number
- CA2209483A1 CA2209483A1 CA002209483A CA2209483A CA2209483A1 CA 2209483 A1 CA2209483 A1 CA 2209483A1 CA 002209483 A CA002209483 A CA 002209483A CA 2209483 A CA2209483 A CA 2209483A CA 2209483 A1 CA2209483 A1 CA 2209483A1
- Authority
- CA
- Canada
- Prior art keywords
- polyol
- polyol composition
- composition according
- prepolymer
- polyether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000003077 polyols Chemical class 0.000 title claims abstract description 132
- 229920005862 polyol Polymers 0.000 title claims abstract description 131
- 239000000203 mixture Substances 0.000 title claims abstract description 77
- 229920000570 polyether Polymers 0.000 title claims abstract description 67
- 239000004721 Polyphenylene oxide Substances 0.000 title claims abstract description 56
- 229920000909 polytetrahydrofuran Polymers 0.000 title abstract description 32
- -1 hydrogen compound Chemical class 0.000 claims abstract description 29
- 239000001257 hydrogen Substances 0.000 claims abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 11
- 239000003054 catalyst Substances 0.000 claims description 29
- 229920001971 elastomer Polymers 0.000 claims description 26
- 239000000806 elastomer Substances 0.000 claims description 26
- 239000004970 Chain extender Substances 0.000 claims description 24
- 239000012948 isocyanate Substances 0.000 claims description 20
- 150000002513 isocyanates Chemical group 0.000 claims description 20
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 229920001228 polyisocyanate Polymers 0.000 claims description 13
- 239000005056 polyisocyanate Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 12
- 229920002334 Spandex Polymers 0.000 claims description 11
- 239000004759 spandex Substances 0.000 claims description 11
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 10
- 239000007795 chemical reaction product Substances 0.000 claims description 10
- 229910052792 caesium Inorganic materials 0.000 claims description 7
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 6
- 125000005702 oxyalkylene group Chemical group 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 5
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical group NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 claims description 3
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 5
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims 1
- 239000008240 homogeneous mixture Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 33
- 238000000034 method Methods 0.000 description 33
- 239000003999 initiator Substances 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 24
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- 150000004292 cyclic ethers Chemical class 0.000 description 15
- 125000002947 alkylene group Chemical group 0.000 description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 229920003225 polyurethane elastomer Polymers 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920002635 polyurethane Polymers 0.000 description 7
- 239000004814 polyurethane Substances 0.000 description 7
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000013877 carbamide Nutrition 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 150000002334 glycols Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- AGIBHMPYXXPGAX-UHFFFAOYSA-N 2-(iodomethyl)oxirane Chemical compound ICC1CO1 AGIBHMPYXXPGAX-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000003868 ammonium compounds Chemical class 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 150000004984 aromatic diamines Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920005906 polyester polyol Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 150000003335 secondary amines Chemical group 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052712 strontium Chemical class 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical class [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- KUQIWULJSBTNPX-HWKANZROSA-N (e)-octadec-2-ene Chemical compound CCCCCCCCCCCCCCC\C=C\C KUQIWULJSBTNPX-HWKANZROSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- FCQPNTOQFPJCMF-UHFFFAOYSA-N 1,3-bis[3-(dimethylamino)propyl]urea Chemical compound CN(C)CCCNC(=O)NCCCN(C)C FCQPNTOQFPJCMF-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- GEEGPFGTMRWCID-UHFFFAOYSA-N 1-n,1-n,1-n',1-n'-tetramethylbutane-1,1-diamine Chemical compound CCCC(N(C)C)N(C)C GEEGPFGTMRWCID-UHFFFAOYSA-N 0.000 description 1
- XSRDLXDFHJOWGW-UHFFFAOYSA-N 1-n,1-n,2-n-trimethyl-2-n-propan-2-ylpropane-1,2-diamine Chemical compound CC(C)N(C)C(C)CN(C)C XSRDLXDFHJOWGW-UHFFFAOYSA-N 0.000 description 1
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical compound CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- PRLJMHVNHLTQJJ-UHFFFAOYSA-N 2,2-diphenyloxirane Chemical compound C1OC1(C=1C=CC=CC=1)C1=CC=CC=C1 PRLJMHVNHLTQJJ-UHFFFAOYSA-N 0.000 description 1
- CVFRFSNPBJUQMG-UHFFFAOYSA-N 2,3-bis(2-hydroxyethyl)benzene-1,4-diol Chemical compound OCCC1=C(O)C=CC(O)=C1CCO CVFRFSNPBJUQMG-UHFFFAOYSA-N 0.000 description 1
- WCVOGSZTONGSQY-UHFFFAOYSA-N 2,4,6-trichloroanisole Chemical compound COC1=C(Cl)C=C(Cl)C=C1Cl WCVOGSZTONGSQY-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- YCRIFATXXXUQRB-UHFFFAOYSA-N 2-(2-methylpropyl)oxolane Chemical compound CC(C)CC1CCCO1 YCRIFATXXXUQRB-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 1
- NPRYHWFMGPYJIY-UHFFFAOYSA-N 2-cyclohexyloxirane Chemical compound C1OC1C1CCCCC1 NPRYHWFMGPYJIY-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- ILPBINAXDRFYPL-UHFFFAOYSA-N 2-octene Chemical compound CCCCCC=CC ILPBINAXDRFYPL-UHFFFAOYSA-N 0.000 description 1
- AAMHBRRZYSORSH-UHFFFAOYSA-N 2-octyloxirane Chemical compound CCCCCCCCC1CO1 AAMHBRRZYSORSH-UHFFFAOYSA-N 0.000 description 1
- QOPMHMFIIMJWET-UHFFFAOYSA-N 3,3-bis(bromomethyl)oxetane Chemical compound BrCC1(CBr)COC1 QOPMHMFIIMJWET-UHFFFAOYSA-N 0.000 description 1
- CXURGFRDGROIKG-UHFFFAOYSA-N 3,3-bis(chloromethyl)oxetane Chemical compound ClCC1(CCl)COC1 CXURGFRDGROIKG-UHFFFAOYSA-N 0.000 description 1
- MSXYVRFANVULOQ-UHFFFAOYSA-N 3,3-bis(fluoromethyl)oxetane Chemical compound FCC1(CF)COC1 MSXYVRFANVULOQ-UHFFFAOYSA-N 0.000 description 1
- JRMFTYIUHNPQQY-UHFFFAOYSA-N 3,3-bis(iodomethyl)oxetane Chemical compound ICC1(CI)COC1 JRMFTYIUHNPQQY-UHFFFAOYSA-N 0.000 description 1
- VFYHHERJNPKXIX-UHFFFAOYSA-N 3,3-diethyloxetane Chemical compound CCC1(CC)COC1 VFYHHERJNPKXIX-UHFFFAOYSA-N 0.000 description 1
- RVGLUKRYMXEQAH-UHFFFAOYSA-N 3,3-dimethyloxetane Chemical compound CC1(C)COC1 RVGLUKRYMXEQAH-UHFFFAOYSA-N 0.000 description 1
- IKJZFVUEXRVHGI-UHFFFAOYSA-N 3-(chloromethyl)-2-methyloxolane Chemical compound CC1OCCC1CCl IKJZFVUEXRVHGI-UHFFFAOYSA-N 0.000 description 1
- AIUUAKHKOQFCKF-UHFFFAOYSA-N 3-ethyloxolane Chemical compound CCC1CCOC1 AIUUAKHKOQFCKF-UHFFFAOYSA-N 0.000 description 1
- VJQHJNIGWOABDZ-UHFFFAOYSA-N 3-methyloxetane Chemical compound CC1COC1 VJQHJNIGWOABDZ-UHFFFAOYSA-N 0.000 description 1
- LJPCNSSTRWGCMZ-UHFFFAOYSA-N 3-methyloxolane Chemical compound CC1CCOC1 LJPCNSSTRWGCMZ-UHFFFAOYSA-N 0.000 description 1
- BJNJKOKPKYNBHD-UHFFFAOYSA-N 3-propan-2-yloxolane Chemical compound CC(C)C1CCOC1 BJNJKOKPKYNBHD-UHFFFAOYSA-N 0.000 description 1
- BRKHZWFIIVVNTA-UHFFFAOYSA-N 4-cyclohexylmorpholine Chemical compound C1CCCCC1N1CCOCC1 BRKHZWFIIVVNTA-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical group CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- GJEZBVHHZQAEDB-UHFFFAOYSA-N 6-oxabicyclo[3.1.0]hexane Chemical compound C1CCC2OC21 GJEZBVHHZQAEDB-UHFFFAOYSA-N 0.000 description 1
- YPWFNLSXQIGJCK-UHFFFAOYSA-N 7-oxabicyclo[2.2.1]heptane Chemical compound C1CC2CCC1O2 YPWFNLSXQIGJCK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical group CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- AKNUHUCEWALCOI-UHFFFAOYSA-N N-ethyldiethanolamine Chemical compound OCCN(CC)CCO AKNUHUCEWALCOI-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KIBKSNLNGHPFTB-UHFFFAOYSA-L [acetyloxy(diethyl)stannyl] acetate Chemical compound CC([O-])=O.CC([O-])=O.CC[Sn+2]CC KIBKSNLNGHPFTB-UHFFFAOYSA-L 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical class FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- RGCPMRIOBZXXBR-UHFFFAOYSA-N butan-1-olate;dibutyltin(2+) Chemical compound CCCCO[Sn](CCCC)(CCCC)OCCCC RGCPMRIOBZXXBR-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- YMLFYGFCXGNERH-UHFFFAOYSA-K butyltin trichloride Chemical compound CCCC[Sn](Cl)(Cl)Cl YMLFYGFCXGNERH-UHFFFAOYSA-K 0.000 description 1
- ZOAIGCHJWKDIPJ-UHFFFAOYSA-M caesium acetate Chemical compound [Cs+].CC([O-])=O ZOAIGCHJWKDIPJ-UHFFFAOYSA-M 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011951 cationic catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- FSDSKERRNURGGO-UHFFFAOYSA-N cyclohexane-1,3,5-triol Chemical compound OC1CC(O)CC(O)C1 FSDSKERRNURGGO-UHFFFAOYSA-N 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohexene oxide Natural products O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- HRFMZHBXTDWTJD-UHFFFAOYSA-N dihexyltin Chemical compound CCCCCC[Sn]CCCCCC HRFMZHBXTDWTJD-UHFFFAOYSA-N 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- 239000012971 dimethylpiperazine Substances 0.000 description 1
- LQRUPWUPINJLMU-UHFFFAOYSA-N dioctyl(oxo)tin Chemical group CCCCCCCC[Sn](=O)CCCCCCCC LQRUPWUPINJLMU-UHFFFAOYSA-N 0.000 description 1
- HGQSXVKHVMGQRG-UHFFFAOYSA-N dioctyltin Chemical compound CCCCCCCC[Sn]CCCCCCCC HGQSXVKHVMGQRG-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002118 epoxides Chemical group 0.000 description 1
- PLONEVHFXDFSLA-UHFFFAOYSA-N ethyl hexanoate;tin(2+) Chemical compound [Sn+2].CCCCCC(=O)OCC PLONEVHFXDFSLA-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- PGFXOWRDDHCDTE-UHFFFAOYSA-N hexafluoropropylene oxide Chemical compound FC(F)(F)C1(F)OC1(F)F PGFXOWRDDHCDTE-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical group OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 1
- HVOCIKWRESPGDV-UHFFFAOYSA-N n-butan-2-yl-4-[4-(butan-2-ylamino)phenyl]aniline Chemical compound C1=CC(NC(C)CC)=CC=C1C1=CC=C(NC(C)CC)C=C1 HVOCIKWRESPGDV-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- UHHKSVZZTYJVEG-UHFFFAOYSA-N oxepane Chemical compound C1CCCOCC1 UHHKSVZZTYJVEG-UHFFFAOYSA-N 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- VPPWQRIBARKZNY-UHFFFAOYSA-N oxo(diphenyl)tin Chemical compound C=1C=CC=CC=1[Sn](=O)C1=CC=CC=C1 VPPWQRIBARKZNY-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 1
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005903 polyol mixture Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- CMXPERZAMAQXSF-UHFFFAOYSA-M sodium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate;1,8-dihydroxyanthracene-9,10-dione Chemical compound [Na+].O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=CC=C2O.CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC CMXPERZAMAQXSF-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical class [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
- C08G65/2606—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
- C08G65/2609—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4866—Polyethers having a low unsaturation value
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2650/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G2650/28—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
- C08G2650/58—Ethylene oxide or propylene oxide copolymers, e.g. pluronics
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Polyethers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Thus, there is provided according to the present invention polyol compositions comprising (A) a polytetramethylene ether glycol, and (B) a trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyol having a degree of unsaturation of not greater than 0.04 milliequivalents per gram of said polyether polyol.
Description
-~ COMPOSITIONS OF POLYTEI$U~ nYLENE ETHER GLYCOLS
AND POLYOXYALKYLENE POLYh~ POLYOLS HAVING
A LOW DEGREE OF UNSATURATION
Field of the Invention This invention relates to blends of poly-tetramethylene polyether glycols and polyoxyalkylene polyether polyols having a low degree of unsaturation of 0.04 or less, and to the cast elastomers, spandex fibers, and thermoplastic polyurethanes made therefrom.
Backqround of the Invention Polyurethane elastomers often utilize one or more polytetramethylene ether glycols (PTMEG's) as a polyol component to react with one or more polyisocyanates such as MDI because they can impart to the elastomer the high level of mechanical properties required for specific applications. PTMEG's are are often used for such applications where high tensile strength, low compression set, high resilience, and/or a high modulus of elasticity are required. PTMEG's, however, can be difficult and expensive to make due to the availability of starting materials and the formation of undesired side-reaction products during synthesis.
It would therefore be desirable to provide polyol 2S compositions that can be used to manufacture high-quality polyurethane elastomers while reducing the amount of PTMEG
required.
SummarY of the Invention Thus, there is provided according to the present invention polyol compositions comprising - (A) a polytetramethylene ether glycol, and (B) a trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyol having a degree of unsaturation of not greater than 0.04 milliequivalents per gram of said polyether polyol.
The polyol compositions according to the present invention can be used for the manufacture of polyurethane elastomers via a one-shot technique or a prepolymer technique.
Elastomers based on the polyol compositions of the invention exhibit a good comblnation of properties such as tensile strength, compression set, resilience, and/or a modulus of elastiaity, which often previously required the use pure PTMEG.
Other properties, such as elongation and resilience, can often be improved by utilizing the blend compositions of the invention.
Thus, in one embodiment of the invention, there is provided a prepolymer obtained by reacting a polyol composition comprising at least the above-described PTMEG and a polyoxyalkylene polyether polyol having a degree of unsaturation of 0.04 or less, with an organic polyisocyanate. The prepolymer may be isocyanate terminated by adding a sub-stoichiometric amount of the polyol composition to the isocyanate, or hydroxyl terminated by adding to the isocyanate a molar excess of the polyol composition.
In another embodiment of the invention, there is provided an elastomer made by reacting an organic di- or polyisocyanate with the polyol compo~ition, optionally in the presence of a hydroxyl and/or amine functional chain extender at an equivalent NCO:OH ratio of at least 1.5:1, where the polyol composition is made up of at least PTMEG and a polyoxyalkylene polyether polyol having a degree of unsaturation of 0.04 or less.
The polyol composition of the invention may be a principal polyol component of the urethane elastomer-fojrming reaction mixture (i.e., one-shot method) or it may first be incorporated into a prepolymer prior to lncorporation into the urethane elastomer-forming reaction (i.e., prepolymer methods).
DescriPtion of the Preferred Embodiments PTMEG's useful in the practice of the invention generally have a number average molecular weight ranging from 500 to 5000, preferably 800 to 3000, more preferably from 1000 to 2600. Techniques for the manufacture of PTMEG are well-known in the art, such as described in , the disclosure of which is incorporated herein by reference Examples of useful PTMEG's include POLYTHF'9 650, POLYTT~F0 1000, POLYTHFaD 2000, and POLYTHF~ID 2 9 0 0 .
PTMEG ~ S are generally synthesized by a ring-opening chain extension reaction of the monomeric tetrahydrofuran (THF).
In one well-known method, the ring-opening reaction is catalyzed by fluorosulfonic acid, followed by hydrolysis of sulfate ester groups and water extraction of the acid, followed by neutralization and drying. In many cases, the PTMEG will be solid at room temperature because of its high degree of crystalllnity. In the event one desires to employ a room temperature liquid PTMEG, the THF can be copolymerized with alkylene oxides (also known as cyclic ethers or monoepoxides) as suggested in U.S. Patent 4,211,854, incorporated herein by reference. Such copolymers have an A-~3-A block-heteric structure, wherein the A blocks are random copolymers of tetrahydrofuran and alkylene oxides, and the B block is made up of polytetramethylene oxides.
The cyclic ethers copolymerizable with tetrahydrofuran are not particularly limited, provided that they are cyclic ethers capable of ring-opening polymerization, and may lnclude, for example, 3-membered cyclic ethers, 4-membered cyclic ethers, cyclic ethers such as tetrahydrofuran derivatives, and cyclic ethers such as l,3-dioxolan, trioxane, etc. Examples of cyclic ethers include ethylene oxide, 1,2-butene oxide, 1,2-hexene oxide, 1,2-tert-butyl ethylene oxide, cyclohexene oxide, 1,2-octene oxide, cyclohexylethylene oxide, styrene oxide, phenyl glycidyl ether, allyl glycidyl ether, 1,2-decene oxide, 1,2-octadecene oxide, epichlorohydrin, epibromohydrin, epiiodohydrin, perfluoropropylene oxide, cyclopentene oxide, 1,2-pentene oxide, propylene oxide, isobutylene oxide, trimethyleneethylene oxide, tetramethyleneethylene oxide, ~tyrene oxide, 1,1-diphenylethylene oxide, epifluorohydrinr epichlorohydrin, epibromohydrin, epiiodohydrin, l,l,1-trifluoro-2-propylene oxide, 1,1,1-trifluoro-2-methyl-2-propylene oxide, 1,1,1-trichloro-2-methyl-3-bromo-2-propylene oxide, 1rlrl-tribromo-2-~utyleneoxider 1,1,1-trifluoro-2-butyleneoxide, 1,1,1-trichloro 2-butylene oxide, oxetane, 3-methyloxetane, 3,3-dimethyloxetane, 3,3-diethyloxetane, 3,3-bis(chloromethyl)oxetane, 3,3-bis(bromomethyl)oxetane, 3,3-bis(iodomethyl)oxetane, 3,3-bis(fluoromethyl)oxetane, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2-methyl-3-chloromethYltetrahydrofuran, 3-ethyltetrahydrofuran, 3-isopropyltetrahydrofuran, 2-isobutyltetrahydrofuran, 7-oxabicyclo(2,2,1)heptane, and the like.
The content of the copolymerized cyclic ether, if present, in a PTMEG may be within the range of from 5 to 95~ by weight, but when obtaining a copolymerized polyetherglycol containing oxytetramethylene qroups as a main component wllich is effective as the soft segment in a polyurethane elastomer such as spandex, the amount of the cyclic ether in the A block copolymerizable with THF is generally from 30 to 70 wt~. In the event one chooses to randomly copolymerize cyclic ethers with THF
across the whole copolymer, the amount of cyclic ether may ran~e from 5 to 60 weight % of the copolymer.
Additionally, in the synthesizing reaction of PTMEG, a part of the starting THF may be replaced with an oligomer of PTMEG as the starting material. Further, in the synthesizing reaction of a copolymerized polyetherglycol, an oligomer of P~MEG
or an oligomer of the polyetherglycol to be synthesized may also be added as a part of the starting material to carry out the reaction. In such a case, the oligomSr generally has a molecular weight lower than the polymer to be synthesized. More specifically, one may use an oligomer having a number-average molecular weight within the range of from lOo to 800 when synthesizinq a polymer with a number-average molecular weight of loO0 or more, and an oligomer with a number-average molecular weight of lOo to 2000 when synthesizing a polymer with a number-average molecular weight of 3000 or more. ~lso, an oligomer separated by fractional extraction or vacuum distillation from the PTMEG or the copolymerized polyetherglycol synthesized may be employed. Such an oligomer may be added in an amount of up to 10~ by weight into the starting monomer.
.
The degree of polymerization tends to decrease as the reaction temperature is increased and therefore, and also in view of the polymerization yield, the polymerization temperature should preferably be -10~ to 120~C., more preferably 30~ to 80~c.
If the temperature exceeds 120~ C., the yield decreases. The time required for the reaction is generally 0.5 to 20 hours, although it may vary depending upon the catalyst amount and the reaction temperature. The reaction may be carried out in any system generally employed such as tank type or tower type vessel.
It is also feasible by either batch or continuous system.
Catalysts used in the preparation of PTMEG are well known, and include any cationic catalyst, such as strongly acidic cationic exchange resins, fuming sulfuric acids, and boron trifluorides.
The polyol blends of the present invention comprise a trifunctional active hydrogen compound-lnitiated polyoxyalkylene polyether polyol. Trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyols useful in the practice of the invention should have number average molecular weights suitable for the particular application, and generally from 400 to 7000, preferably from 1000 to 6500, more preferably from 1500 to 3500, and most preferably from 2000 to 3000.
The hydroxyl numbers of the polyoxyalkylene polyether polyols used in the invention correspond to the desired number average molecular weight by the formula:
OH = (f) 56,100/equivalent weight For most applications, 6uitable hydroxyl numbers for the polyoxyalkylene polyether polyol ranges from 15 to 250, and most often from 25 to 120.
The polyoxyalkylene polyether polyols used in the invention have a degree of unsaturation of 0.04 meq KO~/g of polyol or less, preferably 0.03 or less, more preferably 0.02 or less .
The structure of the polyoxyalkylene polyether polyol contains a nucleus of a trifunctional active hydrogen compound initiator compound containlng at least three hydrogen atoms reactive to alkylene oxides. Specifically, the reactive hydrogen atoms on the initiator compound should be sufficiently labile to open up the epoxide ring of ethylene oxide. The initiator compound has a relatively low molecular weight, generally under 400, more preferably under 150.
Examples of initiator compounds useful in the practice of this invention include, but are not limited to glycerin, trimethylol propane, and the like. Another class of reactive lo hydrogen c~ poul.ds that can be used are the alkyl amines and alkylene polyamines havlng three reactive hydrogen atoms, such as ammonia, ethanolamine, diethanolamine, triethanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, and the like. It may be necessary to select catalysts or ad~ust reaction conditions that would allow both primary and secondary amine hydrogens to ring-open the alkylene oxides in order to render diamines trifunctional. conversely, it may be necessary to select catalysts or adjust reaction conditions to favor only primary amine hydrogens in order to render triamines trifunctional. Cyclic amines or amides may also be used as initiators. A still further class of such reactive hydrogen compounds are the polycarboxylic acids having the requisite number of functional groups. The initiator can also be one containing different functional groups having reactive hydrogen atoms, also, such as diethanolamine and the like.
In one preferred embodiment, the polyoxyalkylene polyether polyols used in the invention contain at least one hydrophobic block made from propylene oxide or a mixture of propylene oxide and other cyclic ethers. Such other cyclic ethers are either of the type that are hydrophobic relative to polyoxyethylene groups; or if of a hydrophilic character, are admixed with propylene oxide only in those relative amounts that will not render the polyol ineffective for its ultimate application. The hydrophobic block may consist of a homoblock of oxypropylene groups or a block of randomly distributed oxypropylene groups and other oxyalkylene groups. As an alternative to or in combination with propylene oxide, butylene oxide may also be used, as it also exhibits hydrophobic properties and yields polyols having a low degree of unsaturation.
The polyether of the ~nvention may also be prepared by the addition reaction between a suitable initiator compound directly or indirectly with a defined amount of propylene oxide to form an internal block of oxypropylene groups, followed by further direct or indlrect addition of one or more other oxides.
The polyoxyalkylene polyether polyol may contain only ethylene oxide groups, especially if the molecular weight 1s below 600. However, it preferably contains from 50 to lO0 wt.
of oxypropylene groups, preferably from 70 to 96 wt.~ of oxypropylene groups, based on the weight of all of the cyclic ether groups added.
In one preferred embodiment of the invention, propylene oxide is added to and reacted directly with the initiator compounds through the reactive hydrogen atom sites to form an internal block of polyoxypropylene groups. The structure of such an intermediate compound can be represented according to the following formula:
R[(c3H6o)w]3 wherein R is the nucleus of the initiator; w is an i~teger representing the number of oxypropylene groups in the block such that the weight of the oxypropylene groups is from S0 to less than lO0 weight percent, (or lO0 weight % if one desires to make a polyol based solely on oxypropylene groups and the initiator), based on the weight of all alkylene oxides added and 3 represents the number of reactive sites on the initiator molecule onto which are bonded the chains of oxypropylene groups.
The polyether polyol may also comprise more than one internal block of oxypropylene groups. By an internal block is meant that the block of oxypropylene groups should be structurally located between the nucleus of the initiator compound and a different block of one or more different kinds of oxyalkylene groups. It is within the scope of the invention to interpose a block of different oxyalkylene groups between the initiator nucleus and the block of oxypropylene group5, especially if the different oxyalkylene groups are also hydrophobic. In one prefered embodiment, however, the internal block of oxypropylene groups i8 directly attached to the nucleus of the initiator compound through its reactive hydrogen sitQ~.
The polyoxyalkylene polyether polyols used in the invention are terminated with isocyanate reactive hydrogens. The ~eactive hydrogens may be ~n the form of primary or secondary hydroxyl groups, or primary or secondary amine groups. In the manufacture of elastomers, it is often desirable to introduce isocyanate reactive yL U~yS which are more reactive than secondary hydroxyl groups. Primary hydroxyl groups can be introduced onto the polyether polyol by reacting the growing polyether polymer with ethylene oxide. Therefore, in one preferred embodiment of the invention, the polyoxypropylene polyether polyol i5 terminated with a terminal block of oxyethylene groups. ~lternatively, in another embodiment, the polyether polymer of the invention may be terminated with of a mixture of primary and secondary terminal hydroxyl groups when a mixture of ethylene oxide and, for example, propylene oxide is employed in the manufacture of a terminal cap.
Primary and secondary amine groups can be introduced onto the polyether polymer by a reductive amination process as described in U.S. Patent No. 3,654,370, incorporated herein by reference.
The weight of the terminal block of oxyethylene groups when employed, is at least 4 welght ~ to 30 weight ~, preferably from 10 weight ~ to 25 weight %, based upon the weight of all compounds added to the lnitiator.
The method of polymerizing the polyether po]ymers of the invention is not limited and can occur hy anionic, cationic, or coordinate mechanisms.
Methods of anionic polymerization are generally known in the art. Typically, an initiator molecule is reacted with an alkylene oxide in the presence of a basic catalyst, such as an alkoxide or an alkali metal hydroxide. The reaction can be carried out under super atmospheric pressure and an aprotic solvent such as dimethylsulfoxide or tetrahydrofuran, or in bulk.
The type of catalyst used to manufacture the polyoxyalkylene polyether polyol is al60 not limited so long as the catalyst i5 of the type that will produce polyoxyalkylene polyether polyols having a degree of unsaturation of 0.04 or less at the desired number average molecular weight. Suitable catalysts include the alkali metal compounds, alkali earth comounds, ammonium, and double metal cyanide catalysts as described in U.S. Patent No. 3,829,505, incorporated herein by reference, as well as the hydroxides and alkoxides of lithium and rubidium.
other useful catalysts include the oxides, hydroxides, hydrated hydroxides, and the monohydroxide salts of barium or strontium.
Suitable alXali metal compounds include compounds that contain sodium, potassium, lithium, rubidium, and cesium. These compounds may be ln the form of alkali metal, oxides, hydroxides, carbonates, salts of organic acids, alkoxides, bicarbonates, natural minerals, silicates, hydrates, etc. and mixtures thereof.
Suitable alkali earth metal compounds and mixtures thereof include compounds which contain calcium, strontium, magnesium, beryllium, copper, zinc, titanium, zirconium, lead, arsenic, antimony, bismuth, molybdenum, tungsten, manganese, iron, nickel, cobalt, and barium. Suitable ammonium compounds include, but are not limited to, compounds which contain ammonium radical, such as ammonia, amino compounds, e.g., urea, alkyl ureas, dicyanodiamide, melamine, guanidine, aminoguanidine; amines, e.g., aliphatic amines, aromatic amines; organic ammonium salts, e.g., ammonium carbonate, quaternary ammonium hydroxide, ammonium silicate, and mixtures thereof. The ammonium compounds may be mixed with the aforementioned basic salt-forming compounds. Other typical anions may include the halide ions of fluorine, chlorine, bromine; iodine, or nitrates, benzoates, acetates, sulfonates, and the like.
of the alkali metals, cesium is the most preferred.
Lithium, sodium, and potassium are often not effective at reducing the degree of unsaturation of polyoxyalkylene polyether polyols at the higher equivalent weights. In a preferred emobiment, the polyoxyalkylene polyether polyols are made with a cesium containing catalyst. Examples of ceslum-containing catalysts include cesium oxide, cesium acetate, cesium carbonate, cesium alkoxides of the Cl-C~ lower alkanols, and cesium hydroxide. These catalysts are effective at reducing the unsaturation of high equivalent weight polyols having a large amount of oxypropylene groups. Unlike double metal cyanide catalysts, which can also be effective at lowering the degree of unsaturation of polyoxyalkylene polyether polyols, the ce~ium-based catalysts do not have to be removed from the reaction chamber prior to addlng an ethylene oxide cap onto a polyether polyol. Thus, the manufacture of a polyoxypropylene polyether polyol having an ethylene oxide cap can proceed throughout the whole reaction with a cesium based catalyst.
The degree of unsaturation can be determined by reacting the polyether polymer with mercuric acetate and methanol in a methanolic solution to release the acetoxymercuric methoxy compounds and acetic acids. ~ny left over mercuric acetate is treated with sodium bromide to convert the mercuric acetate to the bromide. Acetic acid in the solution can then be titrated with potassium hydroxide, and the degree of unsaturation can be calculated for a number of moles of acetic acid titrated. More specifically, 30 grams of the polyether polymer sample are weighed into a sample flask, and 50 ml of reagent grade mercurlc acetate is added to a sample flask and to a blank,flask. The sample is 6tirred until the contents are di~solved. The sample and blank flasks are left ~tanding for thirty (30) minutes with occasional swirling. Subsequently, 8 to 10 grams of sodium bromide are added to each and stirred for two (2) minutes, after which one (1) ml of phenolphthalein indicates i9 added to each and titrated with standard 1.0 N methanolic KOH to a pink endpoint. The degree of unsaturation is calculated and expressed as milliequivalents per gram:
(ml KOH sample - ml KOH blank) X NKOH . .
-Actdlty(A)asmeq/g weight of sample CA 02209483 1997-07-og The acidity correction is made only if the acid number of the sample is greater than 0.04, in which case lt is divided by 56.1 to give meq/g.
The reaction conditions can be set to those typically employed in the manufacture of polyoxyalkylene polyether polyols.
Generally, from 0.005 percent to about 5 percent, preferably from 0.005 to 2.0 percent, and most preferably from 0.005 to 0.5 percent by weight of the catalyst relative to the polyether polymer is utilized.
Any catalyst left in the polyether polymers produced according to the invention can be neutrali~ed by any of the well-known processes described in the art, such as by an acid, adsorption, water washing, or ion exchange. Examples of acids used in the neutralization technique include solid and liquid orqanic acids, such as 2-ethylhexanoic acid and acetic acid. For ion exchange, phosphoric acid or sulfuric acid may be used. Extraction or adsorption techniques employ activated clay or synthetic magnesium silicates. It is desirable to remove metal cationic contents down to less than 500 ppm, preferably less than lOO ppm, most preferably from O.l to 5 ppm.
As for other processing conditions, the temperature at which polymerization of the polyether polymers occurs generally ranges from 80~C to 160~C, preferably from 95~C to 115~C. The reaction can be carried out in a columnar reactor, a tube reactor, or batchwise in an autoclave. In the b/atch process, the reaction is carried out in a closed vessel under pressure which can be regulated by a pad of inert gas and the feed of alkylene oxides into the reaction chamber. Generally, the operating pressures produced by the addition of alkylene oxide range from lO to 50 psig. Generating a pressure over lOO psig increases the risk of a runaway reaction. The alkylene oxides can be fed into the reaction vessel as either a gas or a liquid. The contents of the reaction vessel are vigorously agitated to maintain a good dispersion of the catalyst and uniform reaction rates throughout the mass. The cotlrse of polymerization can be controlled by consecutively metering in each alkylene oxide until a desired amount has been added. Where a block of a random or a statistical distribution of alkylene oxides are desired in the polyether polymer, the alkylene oxides may be metered into the reaction vessel as mixtures.
Agitation of the aontents in the reactor at the reaction temperature i8 continued until the pressure falls to a low value.
The final reaction product may then be cooled, neutralized as decired, and removed.
The polyol composition of the invention may include additional polyols in addition to the PTMEG and the above-described polyether polyol. For example, polyols of other functionalities, i.e., functionalities of 2 or of greater than 3, may be included.
Such polyols may be prepared as described above, except that an initiator having a functionality 2 or greater than three is used, including polyols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2,3-butylene glycol, 1,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, pentaerythritol, sorbitol, sucrose and the like, and amines such as ethylenediamine, toluenediamine, and the like. Polyols of different functionalities may be incorporated either by physical blending of the finislled polyols or by including other functionality initiator(s) in a mixture with the above-described difunctional initiator prior to reaction with alkylene oxide(s). Thus, a mlxture of initiator compounds may be used to ad~ust the functionality of the initiator to a number between whole numbers. If one desires to manufacture 2S an elastomer having only a slight degree, of crosslinking, a high proportion of an initiator having a functionality of 2, to which is added relatively small amounts of tri- or higher functional initiator compounds, may be mixed together to arrive at an initiator having an average functionality close to Z and up to 2.3.
On the other hand, a larger p~Vp~L ~ion of tri- or higher functional initiator compounds can be mixed with a di-functional initiator compound when a higher degree of crosslinking is desired.
Other types of polyol may also be included in the the polyol c~ ,Gsition of the invention. For example, polyester polyols may be added to improve certain mechanical properties of an elastomer such as tensile strength and modulus of the urethane polymer. For some elastomeric applications, however, it is preferred to use only polyether polyols because they can be more hydrolytically stable than polyester polyols, and they process well due to their lower viscosities. other polyols that can be employed in addition to the polyoxyalkylene polyether polymers of the invention are hydroxyl terminated hydrocarbons, such as polybutadiene polyols, where a high degree of hydrophobicity is desired. Castor oils and other natural oils may also be employed.
In addition, polycaprolactones can be used to increase the tensile strengths of elastomers. Other polyether polyols may be added, and it is preferred that these polyether polyols have a low degree of unsaturation to optimize the mechanical properties of the product.
other ingredients in the polyol composition, besides the PTMEG and the polyoxyalkylene polyether polyol, may include other polyols, chain extenders or curing agents, catalysts, fillers, pigments, uv stabilizers, and the like.
The above-described components of the polyol composition can be blended together with standard mixing techniques, preferably in a PTMEG:polyether polyol weight ratio of from 20:80 to 95:5, although ratios of greater than 95:5 may also be useful. If either of the components (A) or (B) are solid, they should be li~uified, preferably by melting, prior to mixing. Preferably, the polyol composition of the lnvention should form a homogeneous blend without vi~ual phase separation. It may be necessary to adjust the relative molecular weights of either or both of the components (~) and (B) in order to achieve a homogeneous blend.
Depending upon the application of the elastomer, the average actual functionality of the blend should be from 2.1 to 2.8, preferably from 2.2 to 2.6. In these embodiments, polyols having functionalities outside of these ranges can be used so long as the average functionality falls within the range. In one embodiment that is preferred for certain applications, the functionality of the blend should be maintained at 3.0 or less to avoid losing too much elongation, a desirable feature for certain elastomeric applications. In applicatlons where high hardness, high tensile strenqth, and low elongations are desired, it may be CA 02209483 l997-07-09 ' 14 desirable for the actual average functionality of the blend to exceed 3Ø For most elastomer applications, the mean number average molecular weight for the polyol composition of the invention can range from 500 to 5000, preferably ~rom looo to 4500, and more preferably from 1000 to 2000.
one-c~ ,ullent elastomers can be cured by molsture from the air. Two-component elastomers can be cured along with chain extenders with compounds containing isocyanate reactive hydrogen.
The~e chain extenders may be contalned in the polyol composition.
Elastomers may be prepared using the one-shot technique or the prepolymer technique. If the prepolymer technique is used, the polyol composition will usually be free of a chain extender during the manufacture of the prepolymer. The prepolymer is then reacted with any remaining polyol composition which at that point contains a chain extender. In the one-shot process, the polyisocyanate is reacted at the outset with a polyol composition containing the chain extender.
Chain extenders may be, and are typically, employed in the preparation of polyurethane elastomers. The term "chain extender" i8 used to mean a relatively low equivalent weight compound, usually less than about 250 equivalent weight, preferably less than 100 equivalent weight, having a plurality of isocyanate-reactive hydrogen atoms. Chain-extending agents can include water, hydrazine, primary and secondary aliphatic or aromatic diamineg, amino alcohols, amino acids, hydroxy acids, glycols, or mixtures thereof. A preferred group of alcohol chain-extending agent~
includes water, ethylene glycol, 1,3-propanediol, 1,4-butanediol, l,10-decanediol, o,-m,-p-dihydroxycyclohexane, diethylene glycol, 1,6-hexanediol, glycerine, trimethylol propane, 1,2,4-, 1,3,5-trihydroxycyclohexane, and bis(2-hydroxyethyl) hydroquinone. A
preferred group of amine chain extenders includes 1,3-diaminocyclohexane, piperazine, ethylenediamine, propylenediamine, and mixtures thereof.
Examples of secondary aromatic diamines include N,N'-dialkyl-substituted aromatic diamines, which may be unsubstituted or substituted on the aromatic radical by alkyl radicals; having 1 CA 02209483 l997-07-09 to 20, preferably 1 to 4, carbon atoms in the N-alkyl radical, e.g., N,N'-diethyl-, N,N~-di-sec-pentyl-, N,~'-di-sec-hexyl-, N,N'-di-sec-decyl-, and N,N~-dicyclohexyl-p- and m-phenylenediamine, N,N'-dimethyl-, N,N'-diethyl-, N,N'-diisopropyl-, N,N,'-disec-butyl- and N,N'-dicyclohexyl-4,4'-diaminodiphenylmethane and N,N'-di-sec-butylbenzidine.
The amount of chain extender used may vary depending on the desired physical properties of the elastomer. A higher proportion of chain extender and isocyanate provide~ the elastomer with a larger number of hard segments, resulting in an elastomer having greater stlffness and heat distortion temperature. Lower amounts of chain extender and isocyanate result in a more flexible elastomer. Generally, about 2 to 70, preferably about 10 to 40, parts of the chain extender may be used per 100 parts of polyether polymer and PTMEG and any other higher molecular weight isocyanate reactive cu ~ollents.
Catalysts may be employed to accelerate the reaction of the compounds containing hydroxyl groups with polyisocyanates.
Examples of suitable compounds are cure catalysts which also function to shorten tack time, promote green strength, and prevent shrinkage. Suitable cure catalysts include organometalllc catalysts, preferably organotin cata]ysts, although it is possible to employ metals such as lead, titanium, copper, mercury, cobalt, nickel, iron, vanadium, antimony, and manganese. Suitable organometallic catalysts, exemplified hejre by tin as the metal, are represented by the formula: RnSntX-R1-Y]2, wherein R is a Cl-C~
alkyl or aryl group, Rl is a C0-Cl8 methylene group optionally substituted or branched with a C1-C4 alkyl group, Y is hydrogen or an hydroxyl group, preferably hydrogen, X is methylene, an -S-, an -SR2Coo-, -SOOC-, an -03S-, or an -OOc- group wherein R2 is a C1-C4 alkyl, n is 0 or 2, provided that Rl is C0 only when X is a methylene group. Specific examples are tin (II) acetate, tin (II) octanoate, tin (II) ethylhexanoate and tin (II) laurate and dialkyl (1-8C) tin (IV) salts of organic carboxylic acid3 having 1-32 carbon atoms, preferably 1-20 carbon atoms, e.g., diethyltin diacetate, dibutyltin diacetate, dibutyltin diacetate, dibutyltin CA 02209483 l997-07-09 dilaurate, dibutyltin maleate, dihexyltin diacetate, and dioctyltin diacetate. Other suitable organotin catalysts are organotin alkoxides and mono or polyalkyl (Cl-C~) tin (IV) salt~ of inorganic compounds such as butyltin trichloride, dimethyl- and diethyl- and dibutyl- and dioctyl- and diphenyl- tin oxide, dibutyltin dibutoxide, di(2-ethylhexyl) tln oxide, and dibutyltin dichloride.
Preferred, however, are tln catalyst5 with tin-sulfur bonds which are resistant to hydrolysls, such as dialkyl (C1-C20) tin dimercaptides, including dimethyl-, dibutyl-, and dioctyl-tin dimercaptides.
Tertiary amines also promote urethane linkage formation, and include triethylamine, 3-methoxypropyldimethylamlne, triethylenediamine, tributylamine, dimethylbenzylamine, N-methyl-, N-ethyl- and N-cyclohexylmorpholine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethylbutanediamine or N,N,N',N'-tetramethylhexanediamine, N,N,N'-trimethyl isopropyl propylenediamine, pentamethyldiethylenetriamine, tetramethyldiaminoethyl ether, bis(dimethylaminopropyl)urea, dimethylpiperazine, l-methyl-4-dimethylaminoethylpiperazine, 1,2-dimethylimidazole, 1-a~abicylot3.3.0]octane and preferably 1,4-diazabicylot2.2.2]octane, and alkanolamine compounds, such as triethanolamine, triisopropanolamine, N-methyl- and N-ethyldiethanolamine and dimethylethanolamine.
To prevent the entrainment of air bubbles in the sealants or elastomers, a batch mixturç may be subjected to degassing at a reduced pressure once the ingredients are mixed together. In the degassing method, the mixed polyurethane formed ingredients can be heated under vacuum to an elevated temperature to react out or volatilize residual water. By heating to an elevated temperature, residual water reacts with the isocyanate to liberate carbon dioxide, which is drawn from the mixture by the reduced pressure.
Alternatively, or in addition to the degassing procedure, the polyurethane formlng ~ngredients may be diluted with solvents to reduce the viscosity of the polyurethane forming mixture. Such solvents should be nonreactive and include .
tetrahydrofura", acetone, dimethylformamide, dimethylacetamide, normal methylpyrrolidone, methyl ethyl ketone, etc. The reduction in viscosity of poly~rethane forming ingredients aid their extrudabllity. For sealant applications, however, the amount of solvent should be kept as low as possible to avoid deteriorating their adhesion to substrates. other solvents include xylene, ethyl acetate, toluene, and cellosolve acetate.
Plasticizers may also be included in the A- or B-side components to soften the elastomer and decrease its brittleness temperature. Examples of plasticizers include the dialkyl phthalates, dibutyl benzyl phthalate, tricresyl phosphate, dialkyl adipates, and trioctylphosphate.
In addition to solvents or plasticizers, other ingredients such as adhesion promoters, fillers, and pigments, such as clay, silica, fume silica, carbon black, talc, phthalocyanine blue or green, titanium oxide, magnesium carbonate, calcium carbonate, W -absorbers, antioxidants, and ~ALS may be added in amounts ranqing from o to 75 weight percent, based upon the weight of the polyurethane. Other fillers include dissolved gels, plasticells, graded and coated calcium carbonate, urea solids, the reaction product of hydrogenated castor oils with amines, and fibers.
The polyurethane elastomers of tlle invention can be prepared by the prepolymer technique or in a one-shot process. The elastomers of the invention can be prep~red by a reaction injection molding technique, or in a cast process wherein the polyurethane forming ingredients are mixed together and poured into a heated mold into pressure. Other techniques include conventional hand-mixed techni~ues and low pressure or high pressure impingement machine mixing technique6 followed by pouring polyurethane forming ingredients into molds.
In a one-shot process, the PTMEG and the polyoxyalkylene polyether polyol of the invention, catalysts, and other isocyanate reactive ~u ,onents forming the polyol composition (also known as 35 "B-side" CG ,unents) are simultaneously reacted with an organic isocyanate ("A-side" components). Once the B-side components are mixed together, the urethane reaction commences; and the ingredients are poured or in~ected into molds to make cast elastomers, or may ba extruded or spun to make thermoplastic polyurethane or spandex fiber.
In a prepolymer technique, all or a portion of the PTMEG
and the polyoxyalkylene polyether polyol having an end group degree of unsaturation of 0.04 or less, and any other isocyanate reactive polyols in the polyol c~ ~osition, and usually without any chain extender, are reacted with a stoichiometric excess of the organic isocyanate to form an isocyanate-terminated prepolymer.
Such prepolymers usually have free NCO contents of 0.5 to 30 weight ~, and for many elastomeriC applications, have free NCO
contents of from 1 to 15 weight ~. The isocyanate-terminated prepolymer is then reacted as an A-side component with any remaining B-side components to form a polyurethane elastomer. In some cases, all of the B-side components are in the form of an active hydrogen-terminated prepolymer. In other cases, only a portion of the polyol c~ position i~ reacted with the stoichiometric excess of organic isocyanate to form an isocyanate terminated prepolymer, which is subsequently reacted with the remainder of the polyol ~v ~osition, as a two-component elastomer.
An isocyanate-terminated prepolymer is usually reacted with the isocyanate reactive functionalities in the polyol compo~ition at an NCO to OH equivalent ratio of at least 1.5:1.
Alternatively, an active hyd~ogen-terminated prepolymer can be prepared if all or a portion of the PTMEG and the polyoxyalkylene polyether polyol having an end group degree of unsaturation of 0.04 or less, and any other isocyanate reactive polyols in the polyol ~ ,osition, and usually without any chain extender, are reacted with a stoichiometric deficiency of the organic isocyanate to form an active hydrogen-terminated prepolymer. The prepolymer is then reacted as a B-side component with A-side ~u ~nents to form a polyurethane elastomer.
In one embodiment of the invention, there is manufacture of a spandex fiber using the blends of the lnvention. Spandex is, by definition, a hard-segment/soft-segment-containing, urethane-' 19 containing polymer composed of at least ~5~ by weight of a se~ ed polyurethane(or urea). The term "segmented" refers to alternating soft and hard regions within the polymer structure.
Spandex is typlcally produced using one of four different processe~: melt extrusion, reaction spinning, solution dry spinning, and solution wet spinning. All processes involve differing practical applications of basically similar chemlstry.
In general, a block copolymer iB prepared by reacting a diisocyanate with the polyol c~-position of the invention in a lo molar ratio of about 1-2 and then chain extending the prepolymer with a low molecular weight diol or diamine near stoichiometry equivalence. If the chain extenslon is carried out in a solven~, the resulting solution may be wet- or dry-spun into fiber. The prepolymer may be reaction-spun by extrusion into an aqueous or non-aqueous diamine bath to begin polymerization to form a fiber or the prepolymer may be chain extended with a diol in bulk and thè
resulting block copolymer melt-extruded in fiber form. Melt spinning is conducted in a manner similar to the melt extrusion of polyolefins. Reaction spinning i8 typically carried out after reacting the polyol composition with a diisocyanate to form a prepolymer. The prepolymer is then extruded into a dlamine bath where filament and polymer formation occur slmultaneously, as described in more detail in U.S. Pat. No. 4,002,711.
In another embodiment of the invention, there i8 provided a thermoplastic polyurethane,(TPU) elastomer made with the blends of the invention. TPU is made by reacting a plyol composition comprising PTMEG and a polyoxyalkylene polyether diol having a low degree of unsaturation with and organic diisocyanate to form a linear polymer structure. While other polyols with higher functionalities than 2 can be combined with the diol, these should be used in minor amounts if at all. It is preferable that the functionality of the initiators used to make the polyoxyalkylene polyether polyols is 2, and that no initiators having functionalities of over or under 2 are used, in order to make the polymer chain linear. The same type of chain .' . 20 extenders as described above can be used, with the preferable chain extenders being the difunctional glycols.
$he reaction may be carried out in a one shot process or by the prepolymer technlque. In the one shot process, the raw ingredient~ are fed into the reaction zone of an extruder, heated at a temperature effective for polymerization to occur, extruded onto a conveyor belt, and pelletized. The prepolymer technique i8 similar except that the prepolymer and chain extender are the materials fed into the reaction zone of the extruder. The type of extruder empolyed is not limited. For example, either twin or ~ingle screw extruders can be used.
The following examples further describe the inventi~n.
ExamPle A polyol was prepared as an ethylene oxide(10%)/propylene oxide heteric adduct of glycerine having a 5 weight ~ terminal ethylene oxide cap, a molecular weight of 2854, and a hydroxyl number of 57.0, manufactured uslng cesium hydroxide as a polymerization catalyst, with a degree of unsaturation of 0.012. Thi~ polyol was blended at various levels with 2000 molecular weight PTMEG for use in the preparation of urethane elastomers ExamDle 2 A weight of 200 g of a 3000 molecular weight glycerine-initiated polyoxypropylene polyether polyol having an ~H number of 57.0 was mixed with 5 g of antioxi~ants and 600 g of polytetramethylene ether glycol having a molecular weight of 2000. The mixture was stirred at 60~C for 2 hours in a nitrogen-blanketed vessel, and then allowed to cool to 400c. A capped prepolymer was prepared by adding 175 g of methylene bis(4-phenylisocyanate) (MDI) to the polyol mixture and then heatingthe resulting mixture under vacuum to sooc for 3.5 hours. The resulting prepolymer was allowed to cool to 500c, and spandex fibers were formed by extruding the prepolymer into a solvent bath containing 2.5~ by weight of ethylene diamine viaconventional reaction spinning techniques. The spandex fibers CA 02209483 l997-07-09 of 840 denier (932 dtex) had the following physical characterlstic~:
Second cycle unload power at 100~ elongation: 0.016 g/dtex Second cycle set: 28%
Break tenacity: 0.51 d/tex The invention has been described in detail with reference to preferred embodiment~ thereof. It should be understood, however, that variations and modifications can be made within the spirit and scope of the invention.
AND POLYOXYALKYLENE POLYh~ POLYOLS HAVING
A LOW DEGREE OF UNSATURATION
Field of the Invention This invention relates to blends of poly-tetramethylene polyether glycols and polyoxyalkylene polyether polyols having a low degree of unsaturation of 0.04 or less, and to the cast elastomers, spandex fibers, and thermoplastic polyurethanes made therefrom.
Backqround of the Invention Polyurethane elastomers often utilize one or more polytetramethylene ether glycols (PTMEG's) as a polyol component to react with one or more polyisocyanates such as MDI because they can impart to the elastomer the high level of mechanical properties required for specific applications. PTMEG's are are often used for such applications where high tensile strength, low compression set, high resilience, and/or a high modulus of elasticity are required. PTMEG's, however, can be difficult and expensive to make due to the availability of starting materials and the formation of undesired side-reaction products during synthesis.
It would therefore be desirable to provide polyol 2S compositions that can be used to manufacture high-quality polyurethane elastomers while reducing the amount of PTMEG
required.
SummarY of the Invention Thus, there is provided according to the present invention polyol compositions comprising - (A) a polytetramethylene ether glycol, and (B) a trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyol having a degree of unsaturation of not greater than 0.04 milliequivalents per gram of said polyether polyol.
The polyol compositions according to the present invention can be used for the manufacture of polyurethane elastomers via a one-shot technique or a prepolymer technique.
Elastomers based on the polyol compositions of the invention exhibit a good comblnation of properties such as tensile strength, compression set, resilience, and/or a modulus of elastiaity, which often previously required the use pure PTMEG.
Other properties, such as elongation and resilience, can often be improved by utilizing the blend compositions of the invention.
Thus, in one embodiment of the invention, there is provided a prepolymer obtained by reacting a polyol composition comprising at least the above-described PTMEG and a polyoxyalkylene polyether polyol having a degree of unsaturation of 0.04 or less, with an organic polyisocyanate. The prepolymer may be isocyanate terminated by adding a sub-stoichiometric amount of the polyol composition to the isocyanate, or hydroxyl terminated by adding to the isocyanate a molar excess of the polyol composition.
In another embodiment of the invention, there is provided an elastomer made by reacting an organic di- or polyisocyanate with the polyol compo~ition, optionally in the presence of a hydroxyl and/or amine functional chain extender at an equivalent NCO:OH ratio of at least 1.5:1, where the polyol composition is made up of at least PTMEG and a polyoxyalkylene polyether polyol having a degree of unsaturation of 0.04 or less.
The polyol composition of the invention may be a principal polyol component of the urethane elastomer-fojrming reaction mixture (i.e., one-shot method) or it may first be incorporated into a prepolymer prior to lncorporation into the urethane elastomer-forming reaction (i.e., prepolymer methods).
DescriPtion of the Preferred Embodiments PTMEG's useful in the practice of the invention generally have a number average molecular weight ranging from 500 to 5000, preferably 800 to 3000, more preferably from 1000 to 2600. Techniques for the manufacture of PTMEG are well-known in the art, such as described in , the disclosure of which is incorporated herein by reference Examples of useful PTMEG's include POLYTHF'9 650, POLYTT~F0 1000, POLYTHFaD 2000, and POLYTHF~ID 2 9 0 0 .
PTMEG ~ S are generally synthesized by a ring-opening chain extension reaction of the monomeric tetrahydrofuran (THF).
In one well-known method, the ring-opening reaction is catalyzed by fluorosulfonic acid, followed by hydrolysis of sulfate ester groups and water extraction of the acid, followed by neutralization and drying. In many cases, the PTMEG will be solid at room temperature because of its high degree of crystalllnity. In the event one desires to employ a room temperature liquid PTMEG, the THF can be copolymerized with alkylene oxides (also known as cyclic ethers or monoepoxides) as suggested in U.S. Patent 4,211,854, incorporated herein by reference. Such copolymers have an A-~3-A block-heteric structure, wherein the A blocks are random copolymers of tetrahydrofuran and alkylene oxides, and the B block is made up of polytetramethylene oxides.
The cyclic ethers copolymerizable with tetrahydrofuran are not particularly limited, provided that they are cyclic ethers capable of ring-opening polymerization, and may lnclude, for example, 3-membered cyclic ethers, 4-membered cyclic ethers, cyclic ethers such as tetrahydrofuran derivatives, and cyclic ethers such as l,3-dioxolan, trioxane, etc. Examples of cyclic ethers include ethylene oxide, 1,2-butene oxide, 1,2-hexene oxide, 1,2-tert-butyl ethylene oxide, cyclohexene oxide, 1,2-octene oxide, cyclohexylethylene oxide, styrene oxide, phenyl glycidyl ether, allyl glycidyl ether, 1,2-decene oxide, 1,2-octadecene oxide, epichlorohydrin, epibromohydrin, epiiodohydrin, perfluoropropylene oxide, cyclopentene oxide, 1,2-pentene oxide, propylene oxide, isobutylene oxide, trimethyleneethylene oxide, tetramethyleneethylene oxide, ~tyrene oxide, 1,1-diphenylethylene oxide, epifluorohydrinr epichlorohydrin, epibromohydrin, epiiodohydrin, l,l,1-trifluoro-2-propylene oxide, 1,1,1-trifluoro-2-methyl-2-propylene oxide, 1,1,1-trichloro-2-methyl-3-bromo-2-propylene oxide, 1rlrl-tribromo-2-~utyleneoxider 1,1,1-trifluoro-2-butyleneoxide, 1,1,1-trichloro 2-butylene oxide, oxetane, 3-methyloxetane, 3,3-dimethyloxetane, 3,3-diethyloxetane, 3,3-bis(chloromethyl)oxetane, 3,3-bis(bromomethyl)oxetane, 3,3-bis(iodomethyl)oxetane, 3,3-bis(fluoromethyl)oxetane, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2-methyl-3-chloromethYltetrahydrofuran, 3-ethyltetrahydrofuran, 3-isopropyltetrahydrofuran, 2-isobutyltetrahydrofuran, 7-oxabicyclo(2,2,1)heptane, and the like.
The content of the copolymerized cyclic ether, if present, in a PTMEG may be within the range of from 5 to 95~ by weight, but when obtaining a copolymerized polyetherglycol containing oxytetramethylene qroups as a main component wllich is effective as the soft segment in a polyurethane elastomer such as spandex, the amount of the cyclic ether in the A block copolymerizable with THF is generally from 30 to 70 wt~. In the event one chooses to randomly copolymerize cyclic ethers with THF
across the whole copolymer, the amount of cyclic ether may ran~e from 5 to 60 weight % of the copolymer.
Additionally, in the synthesizing reaction of PTMEG, a part of the starting THF may be replaced with an oligomer of PTMEG as the starting material. Further, in the synthesizing reaction of a copolymerized polyetherglycol, an oligomer of P~MEG
or an oligomer of the polyetherglycol to be synthesized may also be added as a part of the starting material to carry out the reaction. In such a case, the oligomSr generally has a molecular weight lower than the polymer to be synthesized. More specifically, one may use an oligomer having a number-average molecular weight within the range of from lOo to 800 when synthesizinq a polymer with a number-average molecular weight of loO0 or more, and an oligomer with a number-average molecular weight of lOo to 2000 when synthesizing a polymer with a number-average molecular weight of 3000 or more. ~lso, an oligomer separated by fractional extraction or vacuum distillation from the PTMEG or the copolymerized polyetherglycol synthesized may be employed. Such an oligomer may be added in an amount of up to 10~ by weight into the starting monomer.
.
The degree of polymerization tends to decrease as the reaction temperature is increased and therefore, and also in view of the polymerization yield, the polymerization temperature should preferably be -10~ to 120~C., more preferably 30~ to 80~c.
If the temperature exceeds 120~ C., the yield decreases. The time required for the reaction is generally 0.5 to 20 hours, although it may vary depending upon the catalyst amount and the reaction temperature. The reaction may be carried out in any system generally employed such as tank type or tower type vessel.
It is also feasible by either batch or continuous system.
Catalysts used in the preparation of PTMEG are well known, and include any cationic catalyst, such as strongly acidic cationic exchange resins, fuming sulfuric acids, and boron trifluorides.
The polyol blends of the present invention comprise a trifunctional active hydrogen compound-lnitiated polyoxyalkylene polyether polyol. Trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyols useful in the practice of the invention should have number average molecular weights suitable for the particular application, and generally from 400 to 7000, preferably from 1000 to 6500, more preferably from 1500 to 3500, and most preferably from 2000 to 3000.
The hydroxyl numbers of the polyoxyalkylene polyether polyols used in the invention correspond to the desired number average molecular weight by the formula:
OH = (f) 56,100/equivalent weight For most applications, 6uitable hydroxyl numbers for the polyoxyalkylene polyether polyol ranges from 15 to 250, and most often from 25 to 120.
The polyoxyalkylene polyether polyols used in the invention have a degree of unsaturation of 0.04 meq KO~/g of polyol or less, preferably 0.03 or less, more preferably 0.02 or less .
The structure of the polyoxyalkylene polyether polyol contains a nucleus of a trifunctional active hydrogen compound initiator compound containlng at least three hydrogen atoms reactive to alkylene oxides. Specifically, the reactive hydrogen atoms on the initiator compound should be sufficiently labile to open up the epoxide ring of ethylene oxide. The initiator compound has a relatively low molecular weight, generally under 400, more preferably under 150.
Examples of initiator compounds useful in the practice of this invention include, but are not limited to glycerin, trimethylol propane, and the like. Another class of reactive lo hydrogen c~ poul.ds that can be used are the alkyl amines and alkylene polyamines havlng three reactive hydrogen atoms, such as ammonia, ethanolamine, diethanolamine, triethanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, and the like. It may be necessary to select catalysts or ad~ust reaction conditions that would allow both primary and secondary amine hydrogens to ring-open the alkylene oxides in order to render diamines trifunctional. conversely, it may be necessary to select catalysts or adjust reaction conditions to favor only primary amine hydrogens in order to render triamines trifunctional. Cyclic amines or amides may also be used as initiators. A still further class of such reactive hydrogen compounds are the polycarboxylic acids having the requisite number of functional groups. The initiator can also be one containing different functional groups having reactive hydrogen atoms, also, such as diethanolamine and the like.
In one preferred embodiment, the polyoxyalkylene polyether polyols used in the invention contain at least one hydrophobic block made from propylene oxide or a mixture of propylene oxide and other cyclic ethers. Such other cyclic ethers are either of the type that are hydrophobic relative to polyoxyethylene groups; or if of a hydrophilic character, are admixed with propylene oxide only in those relative amounts that will not render the polyol ineffective for its ultimate application. The hydrophobic block may consist of a homoblock of oxypropylene groups or a block of randomly distributed oxypropylene groups and other oxyalkylene groups. As an alternative to or in combination with propylene oxide, butylene oxide may also be used, as it also exhibits hydrophobic properties and yields polyols having a low degree of unsaturation.
The polyether of the ~nvention may also be prepared by the addition reaction between a suitable initiator compound directly or indirectly with a defined amount of propylene oxide to form an internal block of oxypropylene groups, followed by further direct or indlrect addition of one or more other oxides.
The polyoxyalkylene polyether polyol may contain only ethylene oxide groups, especially if the molecular weight 1s below 600. However, it preferably contains from 50 to lO0 wt.
of oxypropylene groups, preferably from 70 to 96 wt.~ of oxypropylene groups, based on the weight of all of the cyclic ether groups added.
In one preferred embodiment of the invention, propylene oxide is added to and reacted directly with the initiator compounds through the reactive hydrogen atom sites to form an internal block of polyoxypropylene groups. The structure of such an intermediate compound can be represented according to the following formula:
R[(c3H6o)w]3 wherein R is the nucleus of the initiator; w is an i~teger representing the number of oxypropylene groups in the block such that the weight of the oxypropylene groups is from S0 to less than lO0 weight percent, (or lO0 weight % if one desires to make a polyol based solely on oxypropylene groups and the initiator), based on the weight of all alkylene oxides added and 3 represents the number of reactive sites on the initiator molecule onto which are bonded the chains of oxypropylene groups.
The polyether polyol may also comprise more than one internal block of oxypropylene groups. By an internal block is meant that the block of oxypropylene groups should be structurally located between the nucleus of the initiator compound and a different block of one or more different kinds of oxyalkylene groups. It is within the scope of the invention to interpose a block of different oxyalkylene groups between the initiator nucleus and the block of oxypropylene group5, especially if the different oxyalkylene groups are also hydrophobic. In one prefered embodiment, however, the internal block of oxypropylene groups i8 directly attached to the nucleus of the initiator compound through its reactive hydrogen sitQ~.
The polyoxyalkylene polyether polyols used in the invention are terminated with isocyanate reactive hydrogens. The ~eactive hydrogens may be ~n the form of primary or secondary hydroxyl groups, or primary or secondary amine groups. In the manufacture of elastomers, it is often desirable to introduce isocyanate reactive yL U~yS which are more reactive than secondary hydroxyl groups. Primary hydroxyl groups can be introduced onto the polyether polyol by reacting the growing polyether polymer with ethylene oxide. Therefore, in one preferred embodiment of the invention, the polyoxypropylene polyether polyol i5 terminated with a terminal block of oxyethylene groups. ~lternatively, in another embodiment, the polyether polymer of the invention may be terminated with of a mixture of primary and secondary terminal hydroxyl groups when a mixture of ethylene oxide and, for example, propylene oxide is employed in the manufacture of a terminal cap.
Primary and secondary amine groups can be introduced onto the polyether polymer by a reductive amination process as described in U.S. Patent No. 3,654,370, incorporated herein by reference.
The weight of the terminal block of oxyethylene groups when employed, is at least 4 welght ~ to 30 weight ~, preferably from 10 weight ~ to 25 weight %, based upon the weight of all compounds added to the lnitiator.
The method of polymerizing the polyether po]ymers of the invention is not limited and can occur hy anionic, cationic, or coordinate mechanisms.
Methods of anionic polymerization are generally known in the art. Typically, an initiator molecule is reacted with an alkylene oxide in the presence of a basic catalyst, such as an alkoxide or an alkali metal hydroxide. The reaction can be carried out under super atmospheric pressure and an aprotic solvent such as dimethylsulfoxide or tetrahydrofuran, or in bulk.
The type of catalyst used to manufacture the polyoxyalkylene polyether polyol is al60 not limited so long as the catalyst i5 of the type that will produce polyoxyalkylene polyether polyols having a degree of unsaturation of 0.04 or less at the desired number average molecular weight. Suitable catalysts include the alkali metal compounds, alkali earth comounds, ammonium, and double metal cyanide catalysts as described in U.S. Patent No. 3,829,505, incorporated herein by reference, as well as the hydroxides and alkoxides of lithium and rubidium.
other useful catalysts include the oxides, hydroxides, hydrated hydroxides, and the monohydroxide salts of barium or strontium.
Suitable alXali metal compounds include compounds that contain sodium, potassium, lithium, rubidium, and cesium. These compounds may be ln the form of alkali metal, oxides, hydroxides, carbonates, salts of organic acids, alkoxides, bicarbonates, natural minerals, silicates, hydrates, etc. and mixtures thereof.
Suitable alkali earth metal compounds and mixtures thereof include compounds which contain calcium, strontium, magnesium, beryllium, copper, zinc, titanium, zirconium, lead, arsenic, antimony, bismuth, molybdenum, tungsten, manganese, iron, nickel, cobalt, and barium. Suitable ammonium compounds include, but are not limited to, compounds which contain ammonium radical, such as ammonia, amino compounds, e.g., urea, alkyl ureas, dicyanodiamide, melamine, guanidine, aminoguanidine; amines, e.g., aliphatic amines, aromatic amines; organic ammonium salts, e.g., ammonium carbonate, quaternary ammonium hydroxide, ammonium silicate, and mixtures thereof. The ammonium compounds may be mixed with the aforementioned basic salt-forming compounds. Other typical anions may include the halide ions of fluorine, chlorine, bromine; iodine, or nitrates, benzoates, acetates, sulfonates, and the like.
of the alkali metals, cesium is the most preferred.
Lithium, sodium, and potassium are often not effective at reducing the degree of unsaturation of polyoxyalkylene polyether polyols at the higher equivalent weights. In a preferred emobiment, the polyoxyalkylene polyether polyols are made with a cesium containing catalyst. Examples of ceslum-containing catalysts include cesium oxide, cesium acetate, cesium carbonate, cesium alkoxides of the Cl-C~ lower alkanols, and cesium hydroxide. These catalysts are effective at reducing the unsaturation of high equivalent weight polyols having a large amount of oxypropylene groups. Unlike double metal cyanide catalysts, which can also be effective at lowering the degree of unsaturation of polyoxyalkylene polyether polyols, the ce~ium-based catalysts do not have to be removed from the reaction chamber prior to addlng an ethylene oxide cap onto a polyether polyol. Thus, the manufacture of a polyoxypropylene polyether polyol having an ethylene oxide cap can proceed throughout the whole reaction with a cesium based catalyst.
The degree of unsaturation can be determined by reacting the polyether polymer with mercuric acetate and methanol in a methanolic solution to release the acetoxymercuric methoxy compounds and acetic acids. ~ny left over mercuric acetate is treated with sodium bromide to convert the mercuric acetate to the bromide. Acetic acid in the solution can then be titrated with potassium hydroxide, and the degree of unsaturation can be calculated for a number of moles of acetic acid titrated. More specifically, 30 grams of the polyether polymer sample are weighed into a sample flask, and 50 ml of reagent grade mercurlc acetate is added to a sample flask and to a blank,flask. The sample is 6tirred until the contents are di~solved. The sample and blank flasks are left ~tanding for thirty (30) minutes with occasional swirling. Subsequently, 8 to 10 grams of sodium bromide are added to each and stirred for two (2) minutes, after which one (1) ml of phenolphthalein indicates i9 added to each and titrated with standard 1.0 N methanolic KOH to a pink endpoint. The degree of unsaturation is calculated and expressed as milliequivalents per gram:
(ml KOH sample - ml KOH blank) X NKOH . .
-Actdlty(A)asmeq/g weight of sample CA 02209483 1997-07-og The acidity correction is made only if the acid number of the sample is greater than 0.04, in which case lt is divided by 56.1 to give meq/g.
The reaction conditions can be set to those typically employed in the manufacture of polyoxyalkylene polyether polyols.
Generally, from 0.005 percent to about 5 percent, preferably from 0.005 to 2.0 percent, and most preferably from 0.005 to 0.5 percent by weight of the catalyst relative to the polyether polymer is utilized.
Any catalyst left in the polyether polymers produced according to the invention can be neutrali~ed by any of the well-known processes described in the art, such as by an acid, adsorption, water washing, or ion exchange. Examples of acids used in the neutralization technique include solid and liquid orqanic acids, such as 2-ethylhexanoic acid and acetic acid. For ion exchange, phosphoric acid or sulfuric acid may be used. Extraction or adsorption techniques employ activated clay or synthetic magnesium silicates. It is desirable to remove metal cationic contents down to less than 500 ppm, preferably less than lOO ppm, most preferably from O.l to 5 ppm.
As for other processing conditions, the temperature at which polymerization of the polyether polymers occurs generally ranges from 80~C to 160~C, preferably from 95~C to 115~C. The reaction can be carried out in a columnar reactor, a tube reactor, or batchwise in an autoclave. In the b/atch process, the reaction is carried out in a closed vessel under pressure which can be regulated by a pad of inert gas and the feed of alkylene oxides into the reaction chamber. Generally, the operating pressures produced by the addition of alkylene oxide range from lO to 50 psig. Generating a pressure over lOO psig increases the risk of a runaway reaction. The alkylene oxides can be fed into the reaction vessel as either a gas or a liquid. The contents of the reaction vessel are vigorously agitated to maintain a good dispersion of the catalyst and uniform reaction rates throughout the mass. The cotlrse of polymerization can be controlled by consecutively metering in each alkylene oxide until a desired amount has been added. Where a block of a random or a statistical distribution of alkylene oxides are desired in the polyether polymer, the alkylene oxides may be metered into the reaction vessel as mixtures.
Agitation of the aontents in the reactor at the reaction temperature i8 continued until the pressure falls to a low value.
The final reaction product may then be cooled, neutralized as decired, and removed.
The polyol composition of the invention may include additional polyols in addition to the PTMEG and the above-described polyether polyol. For example, polyols of other functionalities, i.e., functionalities of 2 or of greater than 3, may be included.
Such polyols may be prepared as described above, except that an initiator having a functionality 2 or greater than three is used, including polyols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 2,3-butylene glycol, 1,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, pentaerythritol, sorbitol, sucrose and the like, and amines such as ethylenediamine, toluenediamine, and the like. Polyols of different functionalities may be incorporated either by physical blending of the finislled polyols or by including other functionality initiator(s) in a mixture with the above-described difunctional initiator prior to reaction with alkylene oxide(s). Thus, a mlxture of initiator compounds may be used to ad~ust the functionality of the initiator to a number between whole numbers. If one desires to manufacture 2S an elastomer having only a slight degree, of crosslinking, a high proportion of an initiator having a functionality of 2, to which is added relatively small amounts of tri- or higher functional initiator compounds, may be mixed together to arrive at an initiator having an average functionality close to Z and up to 2.3.
On the other hand, a larger p~Vp~L ~ion of tri- or higher functional initiator compounds can be mixed with a di-functional initiator compound when a higher degree of crosslinking is desired.
Other types of polyol may also be included in the the polyol c~ ,Gsition of the invention. For example, polyester polyols may be added to improve certain mechanical properties of an elastomer such as tensile strength and modulus of the urethane polymer. For some elastomeric applications, however, it is preferred to use only polyether polyols because they can be more hydrolytically stable than polyester polyols, and they process well due to their lower viscosities. other polyols that can be employed in addition to the polyoxyalkylene polyether polymers of the invention are hydroxyl terminated hydrocarbons, such as polybutadiene polyols, where a high degree of hydrophobicity is desired. Castor oils and other natural oils may also be employed.
In addition, polycaprolactones can be used to increase the tensile strengths of elastomers. Other polyether polyols may be added, and it is preferred that these polyether polyols have a low degree of unsaturation to optimize the mechanical properties of the product.
other ingredients in the polyol composition, besides the PTMEG and the polyoxyalkylene polyether polyol, may include other polyols, chain extenders or curing agents, catalysts, fillers, pigments, uv stabilizers, and the like.
The above-described components of the polyol composition can be blended together with standard mixing techniques, preferably in a PTMEG:polyether polyol weight ratio of from 20:80 to 95:5, although ratios of greater than 95:5 may also be useful. If either of the components (A) or (B) are solid, they should be li~uified, preferably by melting, prior to mixing. Preferably, the polyol composition of the lnvention should form a homogeneous blend without vi~ual phase separation. It may be necessary to adjust the relative molecular weights of either or both of the components (~) and (B) in order to achieve a homogeneous blend.
Depending upon the application of the elastomer, the average actual functionality of the blend should be from 2.1 to 2.8, preferably from 2.2 to 2.6. In these embodiments, polyols having functionalities outside of these ranges can be used so long as the average functionality falls within the range. In one embodiment that is preferred for certain applications, the functionality of the blend should be maintained at 3.0 or less to avoid losing too much elongation, a desirable feature for certain elastomeric applications. In applicatlons where high hardness, high tensile strenqth, and low elongations are desired, it may be CA 02209483 l997-07-09 ' 14 desirable for the actual average functionality of the blend to exceed 3Ø For most elastomer applications, the mean number average molecular weight for the polyol composition of the invention can range from 500 to 5000, preferably ~rom looo to 4500, and more preferably from 1000 to 2000.
one-c~ ,ullent elastomers can be cured by molsture from the air. Two-component elastomers can be cured along with chain extenders with compounds containing isocyanate reactive hydrogen.
The~e chain extenders may be contalned in the polyol composition.
Elastomers may be prepared using the one-shot technique or the prepolymer technique. If the prepolymer technique is used, the polyol composition will usually be free of a chain extender during the manufacture of the prepolymer. The prepolymer is then reacted with any remaining polyol composition which at that point contains a chain extender. In the one-shot process, the polyisocyanate is reacted at the outset with a polyol composition containing the chain extender.
Chain extenders may be, and are typically, employed in the preparation of polyurethane elastomers. The term "chain extender" i8 used to mean a relatively low equivalent weight compound, usually less than about 250 equivalent weight, preferably less than 100 equivalent weight, having a plurality of isocyanate-reactive hydrogen atoms. Chain-extending agents can include water, hydrazine, primary and secondary aliphatic or aromatic diamineg, amino alcohols, amino acids, hydroxy acids, glycols, or mixtures thereof. A preferred group of alcohol chain-extending agent~
includes water, ethylene glycol, 1,3-propanediol, 1,4-butanediol, l,10-decanediol, o,-m,-p-dihydroxycyclohexane, diethylene glycol, 1,6-hexanediol, glycerine, trimethylol propane, 1,2,4-, 1,3,5-trihydroxycyclohexane, and bis(2-hydroxyethyl) hydroquinone. A
preferred group of amine chain extenders includes 1,3-diaminocyclohexane, piperazine, ethylenediamine, propylenediamine, and mixtures thereof.
Examples of secondary aromatic diamines include N,N'-dialkyl-substituted aromatic diamines, which may be unsubstituted or substituted on the aromatic radical by alkyl radicals; having 1 CA 02209483 l997-07-09 to 20, preferably 1 to 4, carbon atoms in the N-alkyl radical, e.g., N,N'-diethyl-, N,N~-di-sec-pentyl-, N,~'-di-sec-hexyl-, N,N'-di-sec-decyl-, and N,N~-dicyclohexyl-p- and m-phenylenediamine, N,N'-dimethyl-, N,N'-diethyl-, N,N'-diisopropyl-, N,N,'-disec-butyl- and N,N'-dicyclohexyl-4,4'-diaminodiphenylmethane and N,N'-di-sec-butylbenzidine.
The amount of chain extender used may vary depending on the desired physical properties of the elastomer. A higher proportion of chain extender and isocyanate provide~ the elastomer with a larger number of hard segments, resulting in an elastomer having greater stlffness and heat distortion temperature. Lower amounts of chain extender and isocyanate result in a more flexible elastomer. Generally, about 2 to 70, preferably about 10 to 40, parts of the chain extender may be used per 100 parts of polyether polymer and PTMEG and any other higher molecular weight isocyanate reactive cu ~ollents.
Catalysts may be employed to accelerate the reaction of the compounds containing hydroxyl groups with polyisocyanates.
Examples of suitable compounds are cure catalysts which also function to shorten tack time, promote green strength, and prevent shrinkage. Suitable cure catalysts include organometalllc catalysts, preferably organotin cata]ysts, although it is possible to employ metals such as lead, titanium, copper, mercury, cobalt, nickel, iron, vanadium, antimony, and manganese. Suitable organometallic catalysts, exemplified hejre by tin as the metal, are represented by the formula: RnSntX-R1-Y]2, wherein R is a Cl-C~
alkyl or aryl group, Rl is a C0-Cl8 methylene group optionally substituted or branched with a C1-C4 alkyl group, Y is hydrogen or an hydroxyl group, preferably hydrogen, X is methylene, an -S-, an -SR2Coo-, -SOOC-, an -03S-, or an -OOc- group wherein R2 is a C1-C4 alkyl, n is 0 or 2, provided that Rl is C0 only when X is a methylene group. Specific examples are tin (II) acetate, tin (II) octanoate, tin (II) ethylhexanoate and tin (II) laurate and dialkyl (1-8C) tin (IV) salts of organic carboxylic acid3 having 1-32 carbon atoms, preferably 1-20 carbon atoms, e.g., diethyltin diacetate, dibutyltin diacetate, dibutyltin diacetate, dibutyltin CA 02209483 l997-07-09 dilaurate, dibutyltin maleate, dihexyltin diacetate, and dioctyltin diacetate. Other suitable organotin catalysts are organotin alkoxides and mono or polyalkyl (Cl-C~) tin (IV) salt~ of inorganic compounds such as butyltin trichloride, dimethyl- and diethyl- and dibutyl- and dioctyl- and diphenyl- tin oxide, dibutyltin dibutoxide, di(2-ethylhexyl) tln oxide, and dibutyltin dichloride.
Preferred, however, are tln catalyst5 with tin-sulfur bonds which are resistant to hydrolysls, such as dialkyl (C1-C20) tin dimercaptides, including dimethyl-, dibutyl-, and dioctyl-tin dimercaptides.
Tertiary amines also promote urethane linkage formation, and include triethylamine, 3-methoxypropyldimethylamlne, triethylenediamine, tributylamine, dimethylbenzylamine, N-methyl-, N-ethyl- and N-cyclohexylmorpholine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethylbutanediamine or N,N,N',N'-tetramethylhexanediamine, N,N,N'-trimethyl isopropyl propylenediamine, pentamethyldiethylenetriamine, tetramethyldiaminoethyl ether, bis(dimethylaminopropyl)urea, dimethylpiperazine, l-methyl-4-dimethylaminoethylpiperazine, 1,2-dimethylimidazole, 1-a~abicylot3.3.0]octane and preferably 1,4-diazabicylot2.2.2]octane, and alkanolamine compounds, such as triethanolamine, triisopropanolamine, N-methyl- and N-ethyldiethanolamine and dimethylethanolamine.
To prevent the entrainment of air bubbles in the sealants or elastomers, a batch mixturç may be subjected to degassing at a reduced pressure once the ingredients are mixed together. In the degassing method, the mixed polyurethane formed ingredients can be heated under vacuum to an elevated temperature to react out or volatilize residual water. By heating to an elevated temperature, residual water reacts with the isocyanate to liberate carbon dioxide, which is drawn from the mixture by the reduced pressure.
Alternatively, or in addition to the degassing procedure, the polyurethane formlng ~ngredients may be diluted with solvents to reduce the viscosity of the polyurethane forming mixture. Such solvents should be nonreactive and include .
tetrahydrofura", acetone, dimethylformamide, dimethylacetamide, normal methylpyrrolidone, methyl ethyl ketone, etc. The reduction in viscosity of poly~rethane forming ingredients aid their extrudabllity. For sealant applications, however, the amount of solvent should be kept as low as possible to avoid deteriorating their adhesion to substrates. other solvents include xylene, ethyl acetate, toluene, and cellosolve acetate.
Plasticizers may also be included in the A- or B-side components to soften the elastomer and decrease its brittleness temperature. Examples of plasticizers include the dialkyl phthalates, dibutyl benzyl phthalate, tricresyl phosphate, dialkyl adipates, and trioctylphosphate.
In addition to solvents or plasticizers, other ingredients such as adhesion promoters, fillers, and pigments, such as clay, silica, fume silica, carbon black, talc, phthalocyanine blue or green, titanium oxide, magnesium carbonate, calcium carbonate, W -absorbers, antioxidants, and ~ALS may be added in amounts ranqing from o to 75 weight percent, based upon the weight of the polyurethane. Other fillers include dissolved gels, plasticells, graded and coated calcium carbonate, urea solids, the reaction product of hydrogenated castor oils with amines, and fibers.
The polyurethane elastomers of tlle invention can be prepared by the prepolymer technique or in a one-shot process. The elastomers of the invention can be prep~red by a reaction injection molding technique, or in a cast process wherein the polyurethane forming ingredients are mixed together and poured into a heated mold into pressure. Other techniques include conventional hand-mixed techni~ues and low pressure or high pressure impingement machine mixing technique6 followed by pouring polyurethane forming ingredients into molds.
In a one-shot process, the PTMEG and the polyoxyalkylene polyether polyol of the invention, catalysts, and other isocyanate reactive ~u ,onents forming the polyol composition (also known as 35 "B-side" CG ,unents) are simultaneously reacted with an organic isocyanate ("A-side" components). Once the B-side components are mixed together, the urethane reaction commences; and the ingredients are poured or in~ected into molds to make cast elastomers, or may ba extruded or spun to make thermoplastic polyurethane or spandex fiber.
In a prepolymer technique, all or a portion of the PTMEG
and the polyoxyalkylene polyether polyol having an end group degree of unsaturation of 0.04 or less, and any other isocyanate reactive polyols in the polyol c~ ~osition, and usually without any chain extender, are reacted with a stoichiometric excess of the organic isocyanate to form an isocyanate-terminated prepolymer.
Such prepolymers usually have free NCO contents of 0.5 to 30 weight ~, and for many elastomeriC applications, have free NCO
contents of from 1 to 15 weight ~. The isocyanate-terminated prepolymer is then reacted as an A-side component with any remaining B-side components to form a polyurethane elastomer. In some cases, all of the B-side components are in the form of an active hydrogen-terminated prepolymer. In other cases, only a portion of the polyol c~ position i~ reacted with the stoichiometric excess of organic isocyanate to form an isocyanate terminated prepolymer, which is subsequently reacted with the remainder of the polyol ~v ~osition, as a two-component elastomer.
An isocyanate-terminated prepolymer is usually reacted with the isocyanate reactive functionalities in the polyol compo~ition at an NCO to OH equivalent ratio of at least 1.5:1.
Alternatively, an active hyd~ogen-terminated prepolymer can be prepared if all or a portion of the PTMEG and the polyoxyalkylene polyether polyol having an end group degree of unsaturation of 0.04 or less, and any other isocyanate reactive polyols in the polyol ~ ,osition, and usually without any chain extender, are reacted with a stoichiometric deficiency of the organic isocyanate to form an active hydrogen-terminated prepolymer. The prepolymer is then reacted as a B-side component with A-side ~u ~nents to form a polyurethane elastomer.
In one embodiment of the invention, there is manufacture of a spandex fiber using the blends of the lnvention. Spandex is, by definition, a hard-segment/soft-segment-containing, urethane-' 19 containing polymer composed of at least ~5~ by weight of a se~ ed polyurethane(or urea). The term "segmented" refers to alternating soft and hard regions within the polymer structure.
Spandex is typlcally produced using one of four different processe~: melt extrusion, reaction spinning, solution dry spinning, and solution wet spinning. All processes involve differing practical applications of basically similar chemlstry.
In general, a block copolymer iB prepared by reacting a diisocyanate with the polyol c~-position of the invention in a lo molar ratio of about 1-2 and then chain extending the prepolymer with a low molecular weight diol or diamine near stoichiometry equivalence. If the chain extenslon is carried out in a solven~, the resulting solution may be wet- or dry-spun into fiber. The prepolymer may be reaction-spun by extrusion into an aqueous or non-aqueous diamine bath to begin polymerization to form a fiber or the prepolymer may be chain extended with a diol in bulk and thè
resulting block copolymer melt-extruded in fiber form. Melt spinning is conducted in a manner similar to the melt extrusion of polyolefins. Reaction spinning i8 typically carried out after reacting the polyol composition with a diisocyanate to form a prepolymer. The prepolymer is then extruded into a dlamine bath where filament and polymer formation occur slmultaneously, as described in more detail in U.S. Pat. No. 4,002,711.
In another embodiment of the invention, there i8 provided a thermoplastic polyurethane,(TPU) elastomer made with the blends of the invention. TPU is made by reacting a plyol composition comprising PTMEG and a polyoxyalkylene polyether diol having a low degree of unsaturation with and organic diisocyanate to form a linear polymer structure. While other polyols with higher functionalities than 2 can be combined with the diol, these should be used in minor amounts if at all. It is preferable that the functionality of the initiators used to make the polyoxyalkylene polyether polyols is 2, and that no initiators having functionalities of over or under 2 are used, in order to make the polymer chain linear. The same type of chain .' . 20 extenders as described above can be used, with the preferable chain extenders being the difunctional glycols.
$he reaction may be carried out in a one shot process or by the prepolymer technlque. In the one shot process, the raw ingredient~ are fed into the reaction zone of an extruder, heated at a temperature effective for polymerization to occur, extruded onto a conveyor belt, and pelletized. The prepolymer technique i8 similar except that the prepolymer and chain extender are the materials fed into the reaction zone of the extruder. The type of extruder empolyed is not limited. For example, either twin or ~ingle screw extruders can be used.
The following examples further describe the inventi~n.
ExamPle A polyol was prepared as an ethylene oxide(10%)/propylene oxide heteric adduct of glycerine having a 5 weight ~ terminal ethylene oxide cap, a molecular weight of 2854, and a hydroxyl number of 57.0, manufactured uslng cesium hydroxide as a polymerization catalyst, with a degree of unsaturation of 0.012. Thi~ polyol was blended at various levels with 2000 molecular weight PTMEG for use in the preparation of urethane elastomers ExamDle 2 A weight of 200 g of a 3000 molecular weight glycerine-initiated polyoxypropylene polyether polyol having an ~H number of 57.0 was mixed with 5 g of antioxi~ants and 600 g of polytetramethylene ether glycol having a molecular weight of 2000. The mixture was stirred at 60~C for 2 hours in a nitrogen-blanketed vessel, and then allowed to cool to 400c. A capped prepolymer was prepared by adding 175 g of methylene bis(4-phenylisocyanate) (MDI) to the polyol mixture and then heatingthe resulting mixture under vacuum to sooc for 3.5 hours. The resulting prepolymer was allowed to cool to 500c, and spandex fibers were formed by extruding the prepolymer into a solvent bath containing 2.5~ by weight of ethylene diamine viaconventional reaction spinning techniques. The spandex fibers CA 02209483 l997-07-09 of 840 denier (932 dtex) had the following physical characterlstic~:
Second cycle unload power at 100~ elongation: 0.016 g/dtex Second cycle set: 28%
Break tenacity: 0.51 d/tex The invention has been described in detail with reference to preferred embodiment~ thereof. It should be understood, however, that variations and modifications can be made within the spirit and scope of the invention.
Claims (25)
1. A polyol composition comprising (A) a polyoxytetramethylene ether glycol, and (B) a trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyol having a degree of unsaturation of not greater than 0.04 milliequivalents per gram of said polyether polyol.
2. The polyol composition according to claim 1, wherein at least 33% of the hydroxyl groups on the polyol (B) are terminated with primary hydroxyl groups.
3. The polyol composition according to claim 1, wherein the polyol is capped wlth oxyalkylene groups derived from ethylene oxide ln an amount of from 4 weight percent to 30 weight percent, based on the weight of all oxyalkylene groups.
4. The polyol composition according to claim 2, wherein the number average molecular weight of the polyol composition is from 500 to 5000.
5. The polyol composition according to claim 4, wherein the number average molecular weight of the polyol composition ranges from 1000 to 4500.
6. The polyol composition according to claim 1, wherein the average functionality of the polyol composition ranges from 2.1 to 2.8.
7. The polyol composition according to claim 6, wherein the average functionality of the polyol composition ranges from 2.2 to 2.6.
8. The polyol composition according to claim 1, wherein said polyether polyol has a degree of unsaturation of not greater than 0.03 milliequivalents per gram of said polyether polyol.
9. The polyol composition according to claim 1, wherein said polyether polyol has a degree of unsaturation of not greater than 0.02 milliequivalents per gram of said polyether polyol.
10. The polyol composition according to claim 1, wherein said polyether polyol has a degree of unsaturation of not greater than 0.01 milliequivalents per gram of said polyether polyol.
11. The polyol composition according to claim 1, wherein the weight ratio of said glycol and said polyether polyol ranges from 99:1 to 20:80.
12. The polyol composition according to claim 11, wherein the weight ratio of said glycol to said polyether polyol ranges from 95:5 to 40:60.
13. The polyol composition according to claim 12, wherein the weight ratio of said glycol to said polyether polyol ranges from about 90:10 to about 50:50, respectively.
14. The polyol composition according to claim 1, wherein said polyether polyol is a triol prepared with a cesium-containing catalyst.
15. The polyol composition according to claim 14 wherein said cesium-containing catalyst is cesium hydroxide.
16. The polyol composition according to claim 1, wherein the glycol and polyether polyol form a homogeneous mixture.
17. A prepolymer that is the reaction product of a polyisocyanate with a polyol composition according to claim 1.
18. A prepolymer according to claim 17 wherein said prepolymer is a hydroxyl terminated prepolymer obtained by reacting a stoiciometric excess of the polyol composition with the polyisocyanate.
19. A prepolymer according to claim 17, wherein said prepolymer is an isocyanate terminated prepolymer having a free NCO
content of 0.5 weight percent to 30 weight percent.
content of 0.5 weight percent to 30 weight percent.
20. An elastomer that is the reaction product of a mixture comprising:
(A) a polyisocyanate, (B) a polyol composition according to claim 1, and (C) optionally, an active hydrogen chain extender.
(A) a polyisocyanate, (B) a polyol composition according to claim 1, and (C) optionally, an active hydrogen chain extender.
21. An elastomer the reaction product of a mixture comprising:
(A) a prepolymer according to claim 19, (B) an active hydrogen chain extender, (C) optionally, a polyisocyanate different from said prepolymer.
(A) a prepolymer according to claim 19, (B) an active hydrogen chain extender, (C) optionally, a polyisocyanate different from said prepolymer.
22. An elastomer comprising the reaction product of:
(A) a prepolymer according to claim 18, (B) a polyisocyanate, and (C) optionally, an active hydrogen chain extender.
(A) a prepolymer according to claim 18, (B) a polyisocyanate, and (C) optionally, an active hydrogen chain extender.
23. A spandex fiber that is the reaction product of a mixture comprising:
(A) a polyisocyanate, (B) a polyol composition according to claim 1, and (C) optionally, an active hydrogen chain extender.
(A) a polyisocyanate, (B) a polyol composition according to claim 1, and (C) optionally, an active hydrogen chain extender.
24. A spandex fiber that is the reaction product of a mixture comprising:
(A) a prepolymer according to claim 19, (B) an active hydrogen chain extender, (C) optionally, a polyisocyanate different from said prepolymer.
(A) a prepolymer according to claim 19, (B) an active hydrogen chain extender, (C) optionally, a polyisocyanate different from said prepolymer.
25. A spandex fiber comprising the reaction product of:
(A) a prepolymer according to claim 18, (B) a polyisocyanate, and (C) optionally, an active hydrogen chain extender.
(A) a prepolymer according to claim 18, (B) a polyisocyanate, and (C) optionally, an active hydrogen chain extender.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/678,001 | 1996-07-10 | ||
US08/678,001 US6040413A (en) | 1996-07-10 | 1996-07-10 | Composition of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2209483A1 true CA2209483A1 (en) | 1998-01-10 |
Family
ID=24720970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002209483A Abandoned CA2209483A1 (en) | 1996-07-10 | 1997-07-09 | Compositions of polytetramethylene ether glycols and polyoxyalkylene polyether polyols having a low degree of unsaturation |
Country Status (2)
Country | Link |
---|---|
US (2) | US6040413A (en) |
CA (1) | CA2209483A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2345064B (en) * | 1998-12-24 | 2002-06-05 | Kao Corp | Process for preparing polyurethane foam |
CA2390209A1 (en) | 2001-08-10 | 2003-02-10 | The Goodyear Tire & Rubber Company | Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track |
US6902921B2 (en) * | 2001-10-30 | 2005-06-07 | 454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
KR20040097143A (en) * | 2002-03-07 | 2004-11-17 | 아사히 가라스 가부시키가이샤 | Thermosetting polyurethane elastomer composition, polyurethane elastomer and process for production thereof |
US6737497B2 (en) * | 2002-05-30 | 2004-05-18 | Bayer Polymers Llc | Polyurethane/ureas useful for the production of spandex and a process for their production |
WO2005010068A1 (en) * | 2003-07-24 | 2005-02-03 | Asahi Glass Company, Limited | Polyurethane resins and process for production thereof |
US20050288340A1 (en) * | 2004-06-29 | 2005-12-29 | Pfizer Inc | Substituted heteroaryl- and phenylsulfamoyl compounds |
US20060009605A1 (en) * | 2004-07-07 | 2006-01-12 | Erickson John P | Elastomer composition, a resin component, and a process for making a composite structure |
US20060135724A1 (en) * | 2004-12-20 | 2006-06-22 | Lawrey Bruce D | Spandex having low heat-set temperature and materials for their production |
DE102005011784A1 (en) * | 2005-03-11 | 2006-09-14 | Basf Ag | Prepolymers and cellular polyisocyanate polyaddition products prepared therefrom |
US20060223900A1 (en) * | 2005-03-29 | 2006-10-05 | Hokushin Corporation | Member formed from foamed material, feed/transport roller, and sheet-separation roller |
KR101670012B1 (en) * | 2008-07-25 | 2016-10-28 | 바스프 에스이 | Cellular elastomer having low tendency to creep at high temperatures |
GB0903717D0 (en) * | 2009-03-04 | 2009-04-15 | Innochem Ltd | Flexible polyurethane foam |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3393243A (en) * | 1964-09-24 | 1968-07-16 | Jefferson Chem Co Inc | Process of preparing polyoxypropylene polyether polyols |
CA1216597A (en) * | 1983-05-23 | 1987-01-13 | Atsushi Aoshima | Process for producing polyetherglycol |
US4745170A (en) * | 1985-07-25 | 1988-05-17 | The Dow Chemical Company | Polyurethane elastomers from EO/BO polyether polyols |
JPS6235301A (en) * | 1985-08-09 | 1987-02-16 | Takashi Mori | Optical radiator |
US4764567A (en) * | 1986-11-20 | 1988-08-16 | Basf Corporation | Process for the preparation of polyoxyalkylene block polyethers having enhanced properties |
CA1312399C (en) * | 1986-11-21 | 1993-01-05 | Jay Gregory Otten | Process for preparing capped polyoxyalkylene block polyethers |
US4973647A (en) * | 1989-05-31 | 1990-11-27 | E. I. Du Pont De Nemours And Company | Fiber from polyether-based spandex |
US5106874A (en) * | 1989-06-16 | 1992-04-21 | The Dow Chemical Company | Process for preparing elastomeric polyurethane or polyurethane-urea polymers, and polyurethanes so prepared |
US5137934A (en) * | 1989-09-29 | 1992-08-11 | The Dow Chemical Company | Alkylene oxide adducts and polyurethane foams prepared therefrom |
US4985491A (en) * | 1989-10-05 | 1991-01-15 | Olin Corporation | Polyurethane sealants made using high molecular weight polyols prepared with double metal cyanide catalysts |
US5116931A (en) * | 1990-09-28 | 1992-05-26 | Olin Corporation | Thermoset polyurethane elastomers and polyurea elastomers made using high functionality, low unsaturation level polyols prepared with double metal cyanide catalysts |
US5136010A (en) * | 1990-09-28 | 1992-08-04 | Olin Corporation | Polyurethane elastomers and polyurea elastomers made using high functionality, low unsaturation level polyols prepared with double metal cyanide catalysts |
US5185420A (en) * | 1990-11-02 | 1993-02-09 | Olin Corporation | Thermoplastic polyurethane elastomers and polyurea elastomers made using low unsaturation level polyols prepared with double metal cyanide catalysts |
US5096993A (en) * | 1990-11-02 | 1992-03-17 | Olin Corporation | Thermoplastic polyurethane elastomers and polyurea elastomers made using low unsaturation level polyols prepared with double metal cyanide catalysts |
CA2095876A1 (en) * | 1992-06-05 | 1993-12-06 | Nigel Barksby | Isocyante-terminated prepolymers derived from polyether polyol mixtures having low monol content and their use in polyurethanes |
US5254723A (en) * | 1992-11-23 | 1993-10-19 | Arco Chemical Technology, L.P. | Preparation of glycol diesters from polyethers |
US5340902A (en) * | 1993-06-04 | 1994-08-23 | Olin Corporation | Spandex fibers made using low unsaturation polyols |
US5374705A (en) * | 1993-12-27 | 1994-12-20 | The Dow Chemical Company | Process for the preparation of polyether polyols with a reduced unsaturation content |
US5648447A (en) * | 1995-12-22 | 1997-07-15 | Arco Chemical Technology, L.P. | Elastomeric polyurethanes with improved properties based on crystallizable polyols in combination with low monol polyoxpropylene polyols |
-
1996
- 1996-07-10 US US08/678,001 patent/US6040413A/en not_active Expired - Fee Related
-
1997
- 1997-07-09 CA CA002209483A patent/CA2209483A1/en not_active Abandoned
-
2000
- 2000-01-17 US US09/483,852 patent/US6255431B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6255431B1 (en) | 2001-07-03 |
US6040413A (en) | 2000-03-21 |
MX9704752A (en) | 1998-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5998574A (en) | Compositions of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation | |
US6103850A (en) | Sealants made using low unsaturation polyoxyalkylene polyether polyols | |
KR100259667B1 (en) | Hard thermoplastic polyurethane elastomers and their preparation method | |
US5185420A (en) | Thermoplastic polyurethane elastomers and polyurea elastomers made using low unsaturation level polyols prepared with double metal cyanide catalysts | |
US5096993A (en) | Thermoplastic polyurethane elastomers and polyurea elastomers made using low unsaturation level polyols prepared with double metal cyanide catalysts | |
US6852823B2 (en) | Polyurethane and polyurethane-urea elastomers from polytrimethylene ether glycol | |
US5340902A (en) | Spandex fibers made using low unsaturation polyols | |
US5136010A (en) | Polyurethane elastomers and polyurea elastomers made using high functionality, low unsaturation level polyols prepared with double metal cyanide catalysts | |
US4985491A (en) | Polyurethane sealants made using high molecular weight polyols prepared with double metal cyanide catalysts | |
US5545706A (en) | PTMEG polyurethane elastomers employing monofunctional polyethers | |
US6040413A (en) | Composition of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation | |
CA2178139A1 (en) | Polyurethane elastomers having improved green strength and demold time, and polyoxyalkylene polyols suitable for their preparation | |
EP0850258A1 (en) | Compositions of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation | |
EP0781791B1 (en) | Low unsaturation polyoxyalkylene polyether polyols | |
MXPA97004752A (en) | Compositions of politetrametilen-eter-glicoles and polioxi-alquilen.polieter-polioles, which have a low degree of insaturac | |
MXPA97002993A (en) | Compositions of politetrametilen-eter-glicoles and polioxi-alquilen-polieter-polioles, which have a low degree of insaturac | |
JPH0680105B2 (en) | Method for producing polyurethane elastomer | |
CA2193252C (en) | Methods of making low unsaturation polyether polyols | |
MXPA96006467A (en) | Low insaturac polioxylquylene polyethyl polyoles | |
MXPA96006468A (en) | Fabricated sealant compounds using low insaturac polioxylycylene polyethylene polyetholes | |
MXPA96006314A (en) | Method for manufacturing polyolet polyoles from bajainsaturac |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |