[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CA2295107A1 - Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions - Google Patents

Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions Download PDF

Info

Publication number
CA2295107A1
CA2295107A1 CA002295107A CA2295107A CA2295107A1 CA 2295107 A1 CA2295107 A1 CA 2295107A1 CA 002295107 A CA002295107 A CA 002295107A CA 2295107 A CA2295107 A CA 2295107A CA 2295107 A1 CA2295107 A1 CA 2295107A1
Authority
CA
Canada
Prior art keywords
alkyl
aqueous
aqueous liquid
surfactants
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002295107A
Other languages
French (fr)
Inventor
David William Ingram
Gert Frank Maurits Drieghe
Jose Luis Vega
Iwein Jozef Marie Jaak Goderis
Axel Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2295107A1 publication Critical patent/CA2295107A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3935Bleach activators or bleach catalysts granulated, coated or protected
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

A non-aqueous liquid detergent composition comprising a bleach precursor composition comprising: a) a bleach precursor; and b) a surfactant system; and c) salt of an organic acid.

Description

NON-AQUEOUS, PARTICULATE-CONTAINING
DETERGENT COMPOSITIONS CONTAINING
s BLEACH PRECURSOR COMPOSITIONS
FIELD OF THE INVENTION
This invention relates to non-aqueous laundry detergent products io which are in the form of a liquid and which are in the form of stable dispersions of particulate material such as bleaching agents and bleach precursor.
is BACKGROUND OF THE INVENTION
Detergent products in the form of a liquid are often considered to be more convenient to use than are dry powdered or particulate detergent products. Said detergents have therefore found substantial favor with 2o consumers. Such detergent products are readily measurable, speedily dissolved in the wash water, capable of being easily applied in concentrated solutions or dispersions to soiled areas on garments to be laundered and are non-dusting. They also usually occupy less storage space than granular products. Additionally, such detergents may have incorporated in their 2s formulations materials which could not withstand drying operations without deterioration, which operations are often employed in the manufacture of particulate or granular detergent products.
Although said detergents have a number of advantages over granular 3o detergent products, they also inherently possess several disadvantages. In particular, detergent composition components which may be compatible with each other in granular products may tend to interact or react with each other.
Thus such components as enzymes, surfactants, perfumes, brighteners, solvents and especially bleaches and bleach activators can be especially 3s difficult to incorporate into liquid detergent products which then have an acceptable degree of chemical stability.

_WO 99/00481 PCT/US98/13190 One approach for enhancing the chemical compatibility of detergent composition components in detergent products has been to formulate non-aqueous (or anhydrous) detergent compositions. In such non-aqueous products, at least some of the normally solid detergent composition s components tend to remain insoluble in the liquid product and hence are less reactive with each other than if they had been dissolved in the liquid matrix.
Non-aqueous liquid detergent compositions, including those which contain reactive materials such as peroxygen bleaching agents, have been disclosed for example, in Hepworth et al., U.S. Patent 4,615,820, Issued October 17, io 1986; Schultz et al., U.S. Patent 4,929,380, Issued May 29, 1990; Schultz et al., U.S. Patent 5,008,031, Issued April 16, 1991; Elder et al., EP-A-030,096, Published June 10, 1981; Hall et al., WO 92/09678, Published June 11, 1992 and Sanderson et al., EP-A-565,017, Published October 13, 1993.
is A particular problem that has been observed with the incorporation of bleach precursor in non-aqueous detergents, include the chemical stability of the bleach precursor. EP 339 995 describes a non-aqueous liquid detergent composition comprising a persalt bleach and a precursor therefore, the composition containing a capped alkoxylated nonionic surfactant.
2o EP 540 090 proposes to use a bleach precursor which is relatively insoluble in the non aqueous liquid phase of the liquid detergent composition.
A difficulty associated with the improvement of chemical stability of bleach precursor is that, upon dilution in the wash liquor, the bleach 2s precursors still need to have a certain degree of solubility high enough to be effective as a bleaching species in the wash liquor.
Given the foregoing, there is clearly a continuing need to identify and provide non-aqueous, bleach precursor containing detergent compositions in 3o the form of liquid products that have a high degree of chemical stability in the concentrate along with an efficient bleaching performance in the wash liquor.
Accordingly, it is an object of the present invention to provide a non-aqueous detergent composition wherein the bleach precursors have 3s improved chemical stability in the concentrate, while at the same time still being effective as bleach species in the wash liquor.
According to the present invention, there is provided a non-aqueous detergent composition which is in the form of a liquid, containing a bleaching agent and a bleach precursor composition.
s SUMMARY OF THE INVENTION
The present invention provides a non-aqueous heavy-duty detergent composition which is in the form of a liquid, said composition comprising a bleaching agent and a bleach precursor composition.
io DETAILED DESCRIPTION OF THE INVENTION
Bleach precursor composition is According to the present invention, the bleach precursor composition comprises a) a bleach precursor; and b) a surfactant system; and c) salt of an organic acid, According to a preferred embodiment of the present invention, the bleach precursor composition comprises a) a bleach precursor; and b) a surfactant system comprising a non-ethoxylated anionic surfactant Zs andlor a nonionic surfactant; and c) salt of an organic acid, wherein said surfactant, said precursor and said organic acid are in the form of an agglomerate, granule or extrudate in which said precursor, said surfactant system and the salt of the organic acid are optionally coated in 3o intimate admixture;
a) Bleach precursor An essential component of the invention is a bleach precursor. Bleach 3s precursors for inclusion in the composition in accordance with the invention typically contain one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, nitrites and acylated derivatives of imidazoles and aximes, and examples of useful materials within these classes are disclosed in GB-A-1586789.
Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386. The acylation products of sorbitol, glucose and all saccharides with benzoylating agents and acetylating agents are also suitable.
to Specific O-acylated precursor compounds include 3,5,5-tri-methyl hexanoyl oxybenzene sulfonates, benzoyl oxybenzene sulfonates, cationic derivatives of the benzoyl oxybenzene sulfonates, nonanoyl-6-amino caproyl oxybenzene sulfonates, monobenzoyltetraacetyl glucose and pentaacetyl glucose. Phtalic anhydride is a suitable anhydride type precursor. Useful N-is acyl compounds are disclosed in GB-A-855735, 907356 and GB-A-1246338.
Preferred precursor compounds of the imide type include N-benzoyl succinimide, tetrabenzoyl ethylene diamine, N-benzoyl substituted ureas and the N,N-N'N' tetra acetylated alkylene diamines wherein the alkylene 2o group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. A most preferred precursor compound is N,N-N',N' tetra acetyl ethylene diamine (TAED).
2s N-acylated precursor compounds of the lactam class are disclosed generally in GB-A-955735. Whilst the broadest aspect of the invention contemplates the use of any lactam useful as a peroxyacid precursor, preferred materials comprise the caprolactams and valerolactams.
Suitable caprolactam bleach precursors are of the formula:

s O
p C CH2 CH2 wherein R1 is H or an alkyl, aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbon atoms, preferably from 6 to 12 carbon atoms.
s Suitable valero lactams have the formula:

io wherein R1 is H or an alkyl, aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbon atoms, preferably from 6 to 12 carbon atoms. In highly preferred embodiments, R1 is selected from phenyl, heptyl, octyl, nonyl, 2,4,4-trimethylpentyl, decenyl and mixtures thereof.
is The most preferred materials are those which are normally solid at <30°C, particularly the phenyl derivatives, ie. benzoyl valerolactam, benzoyl caprolactam and their substituted benzoyl analogues such as chloro, amino, nitro, alkyl, alkyl, aryl and alkyoxy derivatives.
ao Caprolactam and vaferolactam precursor materials wherein the R1 moiety contains at least 6, preferably from 6 to about 12, carbon atoms provide peroxyacids on perhydrolysis of a hydrophobic character which afford nucleophilic and body soil clean-up. Precursor compounds wherein R1 comprises from 1 to 6 carbon atoms provide hydrophilic bleaching 2s species which are particularly efficient for bleaching beverage stains.

Mixtures of 'hydrophobic' and 'hydrophilic' caprolactams and valero lactams, typically at weight ratios of 1:5 to 5:1, preferably 1:1, can be used herein for mixed stain removal benefits.
s Another preferred class of bleach precursor materials include the cationic bleach activators, derived from the valerolactam and acyl caprolactam compounds, of formula:
R' R~~ ~ R
X- N O
CH2\ O C - (CH2)X - C; 2 ~//\\.', C_N~ /CH2 wherein x is 0 or 1, substituents R, R' and R" are each C1-C10 alkyl or C2-C4 hydroxy alkyl groups, or [(CyH2y)O]n-R"' wherein y=2-4, n=1-20 and R"' is a C1-C4 alkyl group or hydrogen and X is an anion.
is Suitable imidazoles include N-benzoyl imidazole and N-benzoyl benzimidazole and other useful N-acyf group-containing peroxyacid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
2o Another preferred class of bleach activator compounds are the amide substituted compounds of the following general formulae:
R1 N{R5)C(O}R2C(O)L or R1 C(O)N(R5)R2C(O)L
2s wherein R1 is an al~~ rl, alkylene, aryl or alkaryl group with from about 1 to about 14 carbon ai.~ ~s, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from about 6 to 12 carbon atoms. R2 3o preferably contains from about 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sourEes ~or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. The substitution can include alkyl; aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic s compounds. R5 is preferably H or methyl. R1 and R5 should preferably not contain more than 18 carbon atoms total. Preferred examples of bleach precursors of the above formulae include amide substituted peroxyacid precursor compounds selected from (fi-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxy benzene io sulfonate, (6-decanamido-caproyl) oxybenzene-sulfonate, and mixtures thereof as described in EP-A-01703$6.
Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-4$2,$07, particularly those is having the formula:
O
II
CEO
I
N C-R~
including the substituted benzoxazins of the type R3 ~O
C-R~

Rs wherein R1 is H, alkyl, alkaryl, aryl, arylalkyl, secondary or tertiary amines and wherein R2, R3, R4, and R5 may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxyl, amino, alkyl 2s amino, COORO (wherein R6 is H or an alkyl group) and carbonyl functions.
An especially preferred precursor of the benzoxazin-type is:

O -I I
I
~C
N
The particles of particulate bleach activator component preferably have a particle size of from 250 micrometers to 2000 micrometers.
s These bleach precursors can be partially replaced by preformed peracids such as N,N phthaloylaminoperoxy acid (PAP), nonyl amide of peroxyadipic acid (NAPAA), 1,2 diperoxydodecanedioic acid (DPDA) and trimethyl ammonium propenyl imidoperoxy mellitic acid (TAPIMA).
to More preferred among the above described bleach precursors are the amide substituted bleach precursor compounds. Most preferably, the bleach precursors are the amide substituted bleach precursor compounds selected from (6-octanamido-caproyl)oxybenzenesulfonate, (6-ls nonanamidocaproyl)oxy benzene sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof.
The bleach precursors are normally incorporated at a level of from 20% to 95% preferably 50% to 90% by weight of the bleach activator 2o component and most preferably at least 60% by weight thereof.
b) Surfactant system Surfactants are useful in the bleaching precursor compositions of the 2s present invention in particular as solubilising agents. Anionic, nonionic, cationic, amphoteric and/or zwitterionic surfactants are useful. Nonlimiting examples of surfactants useful herein include the conventional C11-C18 alkyl benzene sulphonates ("LAS") and primary, branched-chain and random C10-C20 alkyl sulphates ("AS"), the C10-C18 secondary (2,3) alkyl 3o sulphates of the formula CH3(CH2)x(CHOS03- M+) CH3 and CH3(CH2)y(CHOS03- M+) CH2CH3 where x and (y+1 ) are integers of at least 7, preferably at least about 9, and M is a water-solubilising cation, especially sodium, unsaturated sulphates such as oleyl sulphate, the C10-C18 alkyl alkoxy sulphates ("AExS"; especially EO 1-7 ethoxy sulphates), C10-C18 alkyl alkoxy carboxylates (especially EO 1-7 ethoxy carboxylates), the C10-C18 glycerol ethers, the C10-C18 alkyl polyglycosides and their corresponding sulphated polyglycosides, the C12-C18 alpha-sulphonated s fatty acid esters, methyl ester sulphonate {"MES") and oleoyl sarcosinate.
A preferred embodiment of the present invention is a surfactant system comprising an anionic surfactant and/or a nonionic surfactant. The surfactant system will typically be present in amount of 0.1 % to 50% by io weight of the precursor composition, more preferably in an amount of 5-15%.
Preferred anionic surfactants are non-ethoxylated anionic surfactants.
These can include salts (including, for example, sodium, potassium, is ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
Other anionic surfactants include the isethionates such as the acyl 2o isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6 C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, 2s such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, fatty oleyl glycerol sulfates, the C5-C17 3o acyl-N-{C1-Cq, alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferably selected from the group 3s consisting of branched-chain and random C10-C20 alkyl sulphates ("AS"), the C10-C18 secondary (2,3) alkyl sulphates of the formula CH3(CH2)x(CHOS03- M+) CH3 and CH3(CH2)y(CHOS03- M+) CH2CH3 where x and (y+1 ) are integers of at least 7, preferably at feast about-9, and M is a water-solubilising cation, especially sodium, unsaturated sulphates such as oleyl sulphate.
s Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, Cg-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxyfic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
to Anionic carboxylate surfactants suitable for use herein include the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
is Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no 2o hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion). The secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid. The following general structures further illustrate some of the preferred secondary soap surfactants:
2s A. A highly preferred class of secondary soaps comprises the secondary carboxyl materials of the formula R3 CH(R4)COOM, wherein R3 is CH3(CH2)x and R4 is CH3(CH2)y, wherein y can be 0 or an integer from 1 to 4, x is an integer from 4 to 10 and the sum of (x + y) is 6-10, preferably 9, most preferably 8.
3o B. Another preferred class of secondary soaps comprises those carboxyl compounds wherein the carhoxyl substituent is orr 'a ring hydrocarbyl unit, i.e., secondary soaps of the ;ormu3a R5-R8-COOP~d r herein R~ is C7-C10, preferably C8-C9, alkyl or alkenyl and R6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: R5 can be in the ortho;
3s meta or para position relative to the carboxyl on the ring.)C. Still another preferred class of secondary soaps comprises secondary carboxyl compounds of the formula _WO 99/00481 PCT/US98/13190 CHg(CHR)k-(CHZ)m-{CHR)n-CH(COOM)(CHR)o-(CH2)p-(CHR)q-CHg, wherein each R is C1-Cq, alkyl, wherein k, n, o, q are integers in the range of s 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of 10 to 18. In each of the above formulas A, B
and C, the species M can be any suitable, especially water-solubilizing, counterion.
Especially preferred secondary soap surfactants for use herein are to water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
is Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1 ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion.
Preferred examples are the myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
Among the above described non-ethoxylated anionic surfactants, the anionic sulfate surfactants, anionic sulfonate surfactants, or mixtures thereof are preferred. More preferably, the anionic surfactant is selected from salts 2s of C12-C15 {AS), C5-C20 linear alkylbenzene sulfonates and mixtures thereof, and most preferably is the salt of C5-C2p linear alkylbenzene sulfonate.
3o Preferably the anionic surfactant is present in an amount of 1-25%, more preferably 5-15%.
Nonionic surfactant 3s Essentially any nonionic surfactants useful for detersive purposes can be included in the compositions such as polyhydroxy fatty acid amide surfactants, condensates of alkyl phenols, ethoxylated alcohol surfactants, WO 99/00481 PCT/LlS98/13190 _ ethoxylated/propoxylated fatty alcohol surfactant, ethylene oxidelpropylene oxide condensates with propylene glycol, ethylene oxide condensation products with propylene oxide/ethylene diamine adducts, alkylpolysaccharide surfactants, fatty acid amide surfactants and mixtures s thereof. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein : R1 is H, C1-Cq.
to hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more preferably C1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a Cb-C31 hydrocarbyl, preferably straight-chain Cb-C1 g alkyl or alkenyl, more preferably straight-chain Cg-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture is thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing 2s from about 6 to about 18 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
The alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein.
3o The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and gener~!ly contains from 6 to 22 carbon atoms.
Particularly preferred are the cone-~nsation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
As ethoxylated/propoxylated fatty alcohol surfactants, the ethoxylated Cg-C1 g fatty alcohols and Cg-C1 g mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly wheror water soluble. Preferably the ethoxylated fatty alcohols are the C1p-C18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12-C1 g ethoxylated fatty alcohols with a degree of s ethoxylation from 3 to 40. Preferably the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
to The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein. The hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility. Examples of compounds of this type include is certain of the commercially-available PluronicTM surfactants, marketed by BASF.
The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are 2o suitable for use herein. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
Examples of this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
2s Suitable alkylpolysaccharides for use herein are disclosed in U.S.
Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a 3o polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and gaiactosyl moieties can be substituted for the glucosyl moieties. (Optionally the hydrophobic 3s group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.) The intersaccharide bonds can be, e.g., between the one position of the additional saccharide _WO 99/00481 PCT/US98/13i90 units and the 2-, 3-, 4-, and/or fi- positions on the preceding saccharide units.
s The preferred alkylpolyglycosides have the formula R20(CnH2n0)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, to hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The glycosyl is preferably derived from glucose.
is Fatty acid amide surfactants suitable for use herein are those having the formula: R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the 2o group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and -{C2H40)xH, where x is in the range of from 1 to 3.
Preferred among the above described nonionic surfactants are the 2s ethoxylated surfactants, preferably selected from ethoxylated alcohol surfactants, ethoxylated/propoxylated fatty alcohol surfactant, ethylene oxide/propylene oxide condensates with propylene glycol, ethylene oxide condensation products with propylene oxide/ethylene diamine adducts and mixtures thereof, more preferably the ethoxylated alcohol surfactants.
3o Most preferred ethoxylated alcohol surfactants are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with frorrr 2 to 10 moles of ethylene oxide per mole of alcohol, in particular the linear primary alcohol (C12/C14) condensed with an average of 3 moles of ethylene oxide.
c) Organic acid or salt thereof _ WO 99/00481 PCT/US98/13190 Organic acid compounds suitable for the purposes of the present invention comprise aliphatic or aromatic monomeric or oligomeric carboxylates and preferably comprise monomeric aliphatic carboxylic acids.
Examples of such aliphatic acid compounds are glycolic, glutamic, s citraconic, succinic, 1-lactic and citric acids. Citric acid is a particularly preferred surface treating agent.
Typical levels of such acids are from 1-30%, preferably from 2-20%, most preferably from 5-15% by weight of the bleach precursor composition.
to It has been surprisingly found that the salt of the organic acid enhances the chemical stability of the bleach precursor in the non-aqueous liquid detergent and reduces the tendency for the bleach activator to solubilize in the matrix. In addition, the rheological stability of the product is improved.
is Form of the bleach precursor composition The bleach precursor composition may be in any known suitable particulate form for incorporation in a detergent composition, such as agglomerate, granule, extrudate or spheronised extrudate. Preferably, the 2o bleach precursor composition is in a form of a spheronised extrudate.
Preferably, the process for the manufacture of the bleach activator spheronised extrudate comprises the steps of:
{i) preparing a mix of solids, and optionally liquids, comprising the 2s bleach activator;
(ii) extruding the mix through a die under pressure to form an extrudate, the pressure being less than 25 bar; and {iii) breaking the extrudate to form the spheronised extrudate.
3o Preferably, the mixing step (i) is carried out using a a Loedige~ mixer, the extrusion step {ii) by using a dome extruder such as a Fuji Paudal Model DGL-1, most preferably having a die with orifices < 1 mm and extruded at a pressure of about 20 bar. Step (iii) is preferably carried using a a rotating disc spheroniser such as a Fuji Paudal QJ-400 where the extrudate are 3s broken down into short lengths and formed into substantially spherical particles.

Preferably, the non-ethoxylated anionic surfactant is mixed in-step(i) with the bleach precursor component. , The non-aqueous liquid detergent compositions incorporating the s peroxy acid bleach precursor particulates will normally contain from 1 % to 25% of the precursor particulates, more frequently from 1 % to 20% and most preferably from 1 % to 15%, on a composition weight basis.
Surprisingly, it has now been found that the bleach precursors of the to present invention are physically and chemically stable in the concentrate (the non-aqueous liquid detergent), while at the same time being more effective as a bleach species in the wash liquor.
The non-aqueous detergent compositions of this invention may further is comprise a surfactant- and low-polarity solvent-containing liquid phase having dispersed therein the bleach precursor composition. The components of the liquid and solid phases of the detergent compositions herein, as well as composition form, preparation and use, are described in greater detail as follows:
2o All concentrations and ratios are on a weight basis unless otherwise specified.
Surfactant 2s The amount of the surfactant mixture component of the non-aqueous liquid detergent compositions herein can vary depending upon the nature and amount of other composition components and depending upon the desired rheological properties of the ultimately formed composition.
Generally, this surfactant mixture will be used in an amount comprising from 3o about 10% to 90% by weight of the composition. More preferably, the surfactant mixture will comprise from about 15% to 50% by weight of the composition.
A typical listing of anionic, nonionic, ampholytic and zwitterionic 3s classes, and species of these surfactants, is given in US Patent 3,664,961 issued to Norris on May 23, 1972.

_ WO 99/00481 PCT/US98/13190 Highly anionic preferred surfactants are the linear alkyl benzene sulfonate (LAS) materials. Such surfactants and their preparation are described for example in U.S. Patents 2,220,099 and 2,477,383, incorporated herein by reference. Especially preferred are the sodium and s potassium linear straight chain alkylbenzene sulfonates in which the average number of carbon atoms in the alkyl group is from about 11 to 14. Sodium C11-C14, e~9~~ C12~ LAS is especially preferred.
Preferred anionic surfactants include the alkyl sulfate surfactants 1o hereof are water soluble salts or acids of the formula ROS03M wherein R
preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C18 alkyl component, more preferably a C12-C15 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g.
sodium, potassium, lithium), or ammonium or substituted ammonium (quaternary 1s ammonium cations such as tetramethyl-ammonium and dimethyl piperdinium cations).
Highly preferred anionic surfactants include alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula 2o RO(A)mS03M wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component, preferably a C12-C1g alkyl or hydroxyalkyl, more preferably C12-C15 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a 2s cation which can be, for example, a metal cation {e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include quaternary ammonium cations such as tetramethyl-ammonium and 3o dimethyl piperdinium cations Exemplary surfactants are C12-C15 alkyl polyethoxylate {1.0) sulfate (C12-C15E(1.0)M), C12-C15 alkyl polyethoxylate (2.25) sulfate {C12-C15E(2.25)M), C12-C15 alkyl polyethoxylate (3.0) sulfate (C12-C15E(3.0)M), and C12-C15 alkyl polyethoxylate (4.0) sulfate (C12 C15E(4.0)M), wherein M is conveniently selected from sodium and 3s potassium.

.WO 99/00481 PCT/US98/13190 Other suitable anionic surfactants to be used are alkyl ester sulfonate surfactants including linear esters of Cg-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous S03 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329. Suitable s starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural to formula:
O
(I

is I

wherein R3 is a Cg-C20 hydrocarbyl, preferably an alkyl, or combination thereof, R4 is a C1-C6 hydrocarbyl, preferably an alkyl, or combination 2o thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate. Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations.
Preferably, R3 is C1p-C1g alkyl, and R4 is methyl, ethyl or isopropyl.
Especially preferred are the methyl ester sulfonates wherein R3 is C10-C16 2s alkyl.
Other anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention.
These can include salts (including, for example, sodium, potassium, 3o ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C20 linear alkylbenzenesulfonates, Cg-C22 primary of secondary alkanesulfonates, Cg-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent 3s specification No. 1,082,179, Cg-C24 alkylpolyglycolethersulfates {containing up to 90 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates sucfa as-the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C1g monoesters) and diesters of sulfosuccinates (especially saturated and s unsaturated Cg-C12 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), and alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)k-CH2C00-M+ wherein R is a Cg-C22 alkyl, k is an integer from 1 to 10, and M is a soluble salt-forming cation. Resin acids and to hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued is December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
When included therein, the detergent compositions of the present invention typically comprise from about 1 % to about 40%, preferably from 2o about 5% to about 25% by weight of such anionic surfactants.
One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance (HLB) in the 2s range from 8 to 17, preferably from 9.5 to 14, more preferably from 12 to 14.
The hydrophobic {lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and 3o hydrophobic elements.
Especially preferred nonionic surfactants of this type are the Cg-C15 primary alcohol ethoxylates containing 3-12 moles of ethylene oxide per mole of alcohol, particularly the C12-C15 primary alcohols containing 5-8 3s moles of ethylene oxide per mole of alcohol.

_WO 99/00481 PCT/US98/13190 Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (CnH2n0)tZx s wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10%
unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
io Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
Also suitable as nonionic surfactants are poly hydroxy fatty acid amide is surfactants of the formula R2-C-N-Z, wherein R1 is H, or R1 is C1~ hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R2 is C5_31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at feast 3 hydroxyls directly connected to the chain, or an alkoxylated derivative 2s thereof. Preferably, R1 is methyl, R2 is a straight C11-15 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
3o Non-aqueous Liquid Diluent To form the liquid phase of the detergent compositions, the hereinbefore described surfactant (mixture) may be combined with a non aqueous liquid difuent such as a liquid alcohol alkoxylate material or a non 3s aqueous, low-polarity organic solvent.
Alcohol Alkoxylates _WO 99/00481 PCT/US98/13190 One component of the liquid diluent suitable to form the compositions herein comprises an alkoxylated fatty alcohol material. Such materials are themselves also nonionic surfactants. Such materials correspond to the s general formula:
R1 (CmH2m0)nOH
wherein R1 is a Cg - C15 alkyl group, m is from 2 to 4, and n ranges from about 2 to 12. Preferably R1 is an alkyl group, which may be primary or to secondary, that contains from about 9 to 15 carbon atoms, more preferably from about 10 to 14 carbon atoms. Preferably also the alkoxylated fatty alcohols will be ethoxylated materials that contain from about 2 to 12 ethylene oxide moieties per molecule, more preferably from about 3 to 10 ethylene oxide moieties per molecule.
The alkoxylated fatty alcohol component of the liquid diluent will frequently have a hydrophilic-lipophilic balance (HLB) which ranges from about 3 to 17. More preferably, the HLB of this material will range from about 6 to 15, most preferably from about 8 to 15.
Examples of fatty alcohol alkoxylates useful as one of the essential components of the non-aqueous liquid diluent in the compositions herein will include those which are made from alcohols of 12 to 15 carbon atoms and which contain about 7 moles of ethylene oxide. Such materials have been zs commercially marketed under the trade names Neodol 25-7 and Neodol 23-6.5 by Shell Chemical Company. Other useful Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with about 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C12 -C13 alcohol having about 9 moles of ethylene oxide and Neodol 91-10, an 3o ethoxylated Cg - C11 primary alcohol having about 10 moles of ethylene oxide. Alcohol ethoxylates of this type have also been marketed by Shell Chemical Company under the Dobanol tradename. Dobanol 91-5 is an ethoxylated Cg-C11 fatty alcohol with an average of 5 moles ethylene oxide and Dobanol 25-7 is an ethoxylated C12-C15 fatty alcohol with an average 3s of 7 moles of ethylene oxide per mole of fatty alcohol.

.WO 99/00481 PCT/US98/13190 Other examples of suitable ethoxylated alcohols include Tergitol_15-S-7 and Tergitol 15-S-9 both of which are linear secondary alcohol ethoxylates that have been commercially marketed by Union Carbide Corporation. The former is a mixed ethoxylation product of C11 to C15 linear secondary s alkanol with 7 moles of ethylene oxide and the latter is a similar product but with 9 moles of ethylene oxide being reacted.
Other types of alcohol ethoxylates useful in the present compositions are higher molecular weight nonionics, such as Neodol 45-11, which are io similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14-15 carbon atoms and the number of ethylene oxide groups per mole being about 11. Such products have also been commercially marketed by Shell Chemical Company.
is The alcohol alkoxylate component when utilized as part of the liquid diluent in the non-aqueous compositions herein will generally be present to the extent of from about 1 % to 60% by weight of the composition. More preferably, the alcohol alkoxylate component will comprise about 5% to 40%
by weight of the compositions herein. Most preferably, the alcohol alkoxylate 2o component will comprise from about 10% to 25% by weight of the detergent compositions herein.
Non-aqueous Low-Polarity Organic Solvent 2s Another component of the liquid diluent which may form part of the detergent compositions herein comprises non-aqueous, low-polarity organic solvent(s). The term "solvent" is used herein to connote the non-surface active carrier or diluent portion of the liquid phase of the composition.
While some of the essential and/or optional components of the compositions herein 3o may actually dissolve in the "solvent"-containing phase, other components will be present as particulate m:~terial dispersed within the "solvent"-containing phase. Thus the term "solvent" is not meant to require that the solvent material be capable of actually dissolving all of the detergent composition components added thereto.
3s The non-aqueous organic materials which are employed as solvents herein are those which are liquids of low polarity. For purposes of this . invention, "low-polarity" liquids are those which have little, if any, tendency to dissolve one of the preferred types of particulate material used in the compositions herein, i.e., the peroxygen bleaching agents, sodium perborate or sodium percarbonate. Thus relatively polar solvents such as ethanol s should not be utilized. Suitable types of low-polarity solvents useful in the non-aqueous liquid detergent compositions herein do include alkylene glycol mono lower alkyl ethers, lower molecular weight polyethylene glycols, lower molecular weight methyl esters and amides, and the like.
io A preferred type of non-aqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra- C2-C3 alkylene glycol mono C2-Cg alkyl ethers. The specific examples of such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropolyene glycol monoethyl ether, and dipropylene glycol monobutyl ether. Diethylene is glycol monobuty! ether and dipropylene glycol monobutyl ether are especially preferred. Compounds of the type have been commercially marketed under the tradenames Dowanol, Carbitol, and Cellosolve.
Another preferred type of non-aqueous, low-polarity organic solvent 2o useful herein comprises the lower molecular weight polyethylene giycols (PEGs). Such materials are those having molecular weights of at least about 150. PEGs of molecular weight ranging from about 200 to 600 are most preferred.
2s Yet another preferred type of non-polar, non-aqueous solvent comprises lower molecular weight methyl esters. Such materials are those of the general formula: R1-C(O)-OCH3 wherein R1 ranges from 1 to about 18. Examples of suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, and methyl 3o dodecanoate.
The non-aqueous, low-polarity organic solvents) employed should, of course, be compatible and non-reactive with other composition components, e.g., bleach and/or activators, used in the liquid detergent compositions 3s herein. Such a solvent component will generally be utilized in an amount of from about 1 % to 60% by weight of the composition. More preferably, the non-aqueous, low-polarity organic solvent will comprise from about 5% to _WO 99/00481 PCT/US98/13190 40% by weight of the composition, most preferably from about 10% to 25%
by weight of the composition.
Liquid Diluent Concentration s As with the concentration of the surfactant mixture, the amount of total liquid diluent in the compositions herein will be determined by the type and amounts of other composition components and by the desired composition properties. Generally, the liquid diluent will comprise from about 20% to 95%
to by weight of the compositions herein. More preferably, the liquid diluent will comprise from about 50% to 70% by weight of the composition.
SOLID PHASE
is The non-aqueous detergent compositions herein may further comprise a solid phase of particulate material which is dispersed and suspended within the liquid phase. Generally such particulate material will range in size from about 0.1 to 1500 microns. More preferably such material will range in size from about 5 to 500 microns.
The particulate material utilized herein can comprise one or more types of detergent composition components which in particulate form are substantially insoluble in the non-aqueous liquid phase of the composition.
The types of particulate materials which can be utilized are described in 2s detail as follows:
Hydroaen peroxide sources Preferred particulate material which can be suspended are hydrogen 3o peroxide or a source thereof.
Preferred sources of h ~~gen peroxide include perhydrate bleaches.
The perhydrate is typically aorganic perhydrate bleach, normally it .ne form of the sodium salt, as the source of alkaline hydrogen peroxide in the wash liquor. This perhydrate is normally incorporated at a level of from 0.1 3s to 60%, preferably from 3% to 40% by weight, more preferably from 5% to 35% by weight and most preferably from 8% to 30% by weight of the composition.

The perhydrate may be any of the alkalimetal inorganic salts such as perborate monohydrate or tetrahydrate, percarbonate, perphosphate and persilicate salts but is conventionally an alkali metal perborate or s percarbonate.
Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid. Most commercially available material includes a low level of to a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1, 1-diphosphonic acid (HEDP) or an amino-phosphonate, that is incorporated during the manufacturing process. For the purposes of the detergent composition aspect of the present invention, the percarbonate can be incorporated into detergent compositions without additional protection, but is preferred executions of such compositions utilise a coated form of the material. A variety of coatings can be used including borate, boric acid and citrate or sodium silicate of Si02:Na20 ratio from 1.6:1 to 3.4:1, preferably 2.8:1, applied as an aqueous solution to give a level of from 2% to 10%, {normally from 3% to 5%} of silicate solids by weight of the percarbonate.
2o However the most preferred coating is a mixture of sodium carbonate and sulphate or sodium chloride.
The particle size range of the crystalline percarbonate is from 350 micrometers to 1500 micrometers with a mean of approximately 500-1000 2s micrometers.
Surfactants Another type of particulate material which can be suspended in the non-3o aqueous liquid detergent compositions herein includes ancillary anionic surfactants which are fully or partially insoluble in the non-aqueous liquid phase. The most common type of anionic surfactant with such solubility properties comprises primary or secondary alkyl sulfate anionic surfactants.
Such surfactants are those produced by the sulfation of higher Cg-C20 fatty 3s alcohols.
Conventional primary alkyl sulfate surfactants have the general formula ROS03-M+

wherein R is typically a linear Cg - C20 hydrocarbyl group, which may be straight chain or branched chain, and M is a water-solubilizing cation.
Preferably R is a C10 - C14 alkyl, and M is alkali metal. Most preferably R is s about C12 and M is sodium.
Conventional secondary alkyl sulfates may also be utilized as the essential anionic surfactant component of the solid phase of the compositions herein. Conventional secondary alkyl sulfate surfactants are to those materials which have the sulfate moiety distributed randomly along the hydrocarbyl "backbone" of the molecule. Such materials may be depicted by the structure CH3(CH2)n(CHOSOg-M+) (CH2)mCH3 is wherein m and n are integers of 2 or greater and the sum of m + n is typically about 9 to 15, and M is a water-solubilizing cation.
If utilized as all or part of the requisite particulate material, ancillary 2o anionic surfactants such as alkyl sulfates will generally comprise from about 1 % to 10% by weight of the composition, more preferably from about 1 % to 5% by weight of the composition. Alkyl sulfate used as all or part of the particulate material is prepared and added to the compositions herein separately from the unalkoxylated alkyl sulfate material which may form part 2s of the alkyl ether sulfate surfactant component essentially utilized as part of the liquid phase herein.
Organic Builder Material 3o Another possible type of particulate material which can be suspended in the non-aqueous liquid detergent compositions herein comprises an organic detergent builder material which serves to counteract the effects of calcium, or other ion, water hardness encountered during laundering/bleaching use of the compositions herein. Examples of such materials include the alkali 3s metal, citrates, succinates, malonates, fatty acids, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates. Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, WO 99/004$1 PCT/US98/13190 mellitic acid, benzene polycarboxylic acids and citric acid. Other examples of organic phosphonate type sequestering agents such as those which have been sold by Monsanto under the bequest tradename and alkanehydroxy phosphonates. Citrate salts are highly preferred.
s Other suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties. For example, such materials include appropriate polyacrylic acid, polymafeic acid, and polyacryliclpolymaleic acid copolymers and their salts, such as those sold by io BASF under the Sokalan trademark.
Another suitable type of organic builder comprises the water-soluble salts of higher fatty acids, i.e., "soaps". These include alkali metal soaps such as the sodium, potassium, ammonium, and alkyiolammonium salts of is higher fatty acids containing from about 8 to about 24 carbon atoms, and preferably from about 12 to about 18 carbon atoms. Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium 2o tallow and coconut soap.
If utilized as all or part of the requisite particulate material, insoluble organic detergent builders can generally comprise from about 1 % to 20% by weight of the compositions herein. More preferably, such builder material 2s can comprise from about 4% to 10% by weight of the composition.
Inorganic Aikalinity Sources Another possible type of particulate material which can be suspended in 3o the non-aqueous liquid detergent compositions herein can comprise a material which serves to render aqueous washing solutions formed from such compositions generally alkaline in nature. Such materials may or may not also act as detergent builders, i.e., as materials which counteract the adverse effect of water hardness on detergency performance.
3s Examples of suitable alkalinity sources include water-soluble alkali metal carbonates, bicarbonates, borates, silicates and metasilicates.

_WO 99/00481 PCT/US98/13190 Although not preferred for ecological reasons, water-soluble phosphate salts may also be utilized as alkalinity sources. These include alkali metal pyrophosphates, orthophosphates, polyphosphates and phosphonates. Of all of these alkalinity sources, alkali metal carbonates such as sodium s carbonate are the most preferred.
The alkalinity source, if in the form of a hydratable salt, may also serve as a desiccant in the non-aqueous liquid detergent compositions herein.
The presence of an alkalinity source which is also a desiccant may provide io benefits in terms of chemically stabilizing those composition components such as the peroxygen bleaching agent which may be susceptible to deactivation by water.
If utilized as all or part of the particulate material component, the is alkalinity source will generally comprise from about 1 % to 15% by weight of the compositions herein. More preferably, the alkalinity source can comprise from about 2% to 10% by weight of the composition. Such materials, while water-soluble, will generally be insoluble in the non-aqueous detergent compositions herein. Thus such materials will generally be dispersed in the 2o non-aqueous liquid phase in the form of discrete particles.
OPTIONAL COMPOSITION COMPONENTS
2s In addition to the composition liquid and solid phase components as hereinbefore described, the detergent compositions herein can, and preferably will, contain various optional components. Such optional components may be in either liquid or solid form. The optional components may either dissolve in the liquid phase or may be dispersed within the liquid 3o phase in the form of fine particles or droplets. Some of the materials which may optionally be utilizeri in the compositions herein are described in greater detail as follows:
3s Optional organic additives r The detergent compositions may contain an organic additiue. A
preferred organic additive is hydrogenated castor oil and its derivatives.
Hydrogenated castor oil is a commercially available commodity being s sold, for example, in various grades under the trademark CASTORWAX® by NL Industries, Inc., Highstown, New Jersey.Other Suitable hydrogenated castor oil derivatives are Thixcin R, Thixcin E, Thixatrol ST, Perchem R and Perchem ST. Especially preferred hydrogenated castor oil is Thixatrol ST.
io The castor oil can be added as a mixture with ,for example stereamide.
The organic additive will be partially dissolved in the non-aqueous is liquid diluent. To form the structured liquid phase required for suitable phase stability and acceptable theology, the organic additive is generally present to the extent of from about 0.05% to 20% by weight of the liquid phase. More preferably, the organic additive will comprise from about 0.1 % to 10% by weight of the non-aqueous liquid phase of the compositions herein.
Optional Inorganic Detergent Builders The detergent compositions herein may also optionally contain one or more types of inorganic detergent builders beyond those listed hereinbefore zs that also function as alkalinity sources. Such optional inorganic builders can include, for example, aluminosilicates such as zeolites. Aluminosilicate zeolites, and their use as detergent builders are more fully discussed in Corkill et al., U.S. Patent No. 4,605,509; Issued August 12, 1986, the disclosure of which is incorporated herein by reference. Also crystalline layered silicates, such as those discussed in this '509 U.S. patent, are also suitable for use in the detergent compositions herein. If utilized, optional inorganic detergent builders can comprise from about 2% to 15% by weight of the compositions herein.
3s Optional Enzymes _WO 99/00481 PCT/US98/13190 The detergent compositions herein may also optionally contain one -or more types of detergent enzymes. Such enzymes can include proteases, amylases, cellulases and lipases. Such materials are known in the art and are commercially available. They may be incorporated into the non-aqueous s liquid detergent compositions herein in the form of suspensions, "marumes"
or "prills". Another suitable type of enzyme comprises those in the form of slurries of enzymes in nonionic surfactants. Enzymes in this form have been commercially marketed, for example, by Novo Nordisk under the tradename "LDP."
ZO
Enzymes added to the compositions herein in the form of conventional enzyme prills are especially preferred for use herein. Such prills will generally range in size from about 100 to 1,000 microns, more preferably from about 200 to 800 microns and will be suspended throughout the non-is aqueous liquid phase of the composition. Prills in the compositions of the present invention have been found, in comparison with other enzyme forms, to exhibit especially desirable enzyme stability in terms of retention of enzymatic activity over time. Thus, compositions which utilize enzyme prills need not contain conventional enzyme stabilizing such as must frequently be 2o used when enzymes are incorporated into aqueous liquid detergents.
if employed, enzymes will normally be incorporated into the non-aqueous liquid compositions herein at levels sufficient to provide up to about 10 mg by weight, more typically from about 0.01 mg to about 5 mg, of active 2s enzyme per gram of the composition. Stated otherwise, the non-aqueous liquid detergent compositions herein will typically comprise from about 0.001 % to 5%, preferably from about 0.01 % to 1 % by weight, of a commercial enzyme preparation. Protease enzymes, for example, are usually present in such commercial preparations at levels sufficient to 3o provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
Optional Chelating Agents 3s The detergent compositions herein may also optionally contain a chelating agent which serves to chelate metal ions, e.g., iron and/or manganese, within the non-aqueous detergent compositions herein. Such chelating agents thus serve to form complexes with metal impurities ~n the composition which would otherwise tend to deactivate composition components such as the peroxygen bleaching agent. Useful chelating agents can include amino carboxylates, phosphonates, amino s phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof.
Amino carboxylates useful as optional chelating agents include ethylenediaminetetraacetates, N-hydroxyethyl-ethylene-diaminetriacetates, to nitrilotriacetates, ethylenediamine tetrapropionates, triethylenetetraamine-hexacetates, diethylenetriaminepentaacetates, ethylenediamine-disuccinates and ethanoldiglycines. The alkali metal salts of these materials are preferred.
Amino phosphonates are also suitable for use as chelating agents in is the compositions of this invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylene-phosphonates) as DEQUEST.
Preferably, these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
Preferred chelating agents include hydroxyethyl-diphosphonic acid {HEDP), diethylene triamine penta acetic acid (DTPA), ethylenediamine disuccinic acid (EDDS) and dipicolinic acid (DPA) and salts thereof. The chelating agent may, of course, also act as a detergent builder during use of 2s the compositions herein for fabric laundering/ bleaching. The chelating agent, if employed, can comprise from about 0.1 % to 4% by weight of the compositions herein. More preferably, the chelating agent will comprise from about 0.2% to 2% by weight of the detergent compositions herein.
3o Optional Thickening Viscosi~ Control and/or Dispersing A
The detergent compositions herein may also optionally contain a polymeric material which serves to enhance the ability of the composition to maintain its solid particulate components in suspension. Such materials may 3s thus act as thickeners, viscosity control agents and/or dispersing agents.
Such materials are frequently polymeric polycarboxylates but can include other polymeric materials such as polyvinylpyrrolidone (PVP) and polymeric amine derivatives such as quaternized, ethoxylated hexametfaylene diamines.
Polymeric polycarboxylate materials can be prepared by polymerizing s or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, malefic acid (or malefic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric io polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer.
is Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000, and most preferably 2o from about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, Diehl, U.S. Patent 3,308,067, issued March 7, 1967. Such materials may also perform a builder function.
2s if utilized, the optional thickening, viscosity control and/or dispersing agents should be present in the compositions herein to the extent of from about 0.1 % to 4% by weight. More preferably, such materials can comprise from about 0.5% to 2% by weight of the detergents compositions herein.
Optional Brighteners. Suds Suppressors andlor Perfumes The detergent compositions herein may also optionally contain conventional brighteners, suds suppressors, silicone oils, bleach catalysts, 3s and/or perfume materials. Such brighteners, suds suppressors, silicone oils, bleach catalysts, and perfumes must, of course, be compatible and non-reactive with the other composition components in a non-aqueous environment. If present, brighteners, suds suppressors and/or perfumes will typically comprise from about 0.01 % to 2% by weight of the compositions herein.
s Suitable bleach catalysts include the manganese based complexes disclosed in US 5,246,621, US 5,244,594, US 5,114,606 and US 5,114,611.
Especially preferred catalysts are the metallo-catalysts as described in co-pending US Patent applications Serial No. 60/040,629, Serial No.
60/039,915, Serial No. 60/040,222, Serial No. 60/040,156, Serial No.
Io 60/040,115, Serial No. 60/038,714, Serial No. 60/039,920, filed on March 7, 1997.
The catalyst can be protected by dissolving the catalyst in a biopolymer.
Suitable biopolymers are disclosed in EP 672 104. A preferred biopolymer is is starch.
COMPOSITION FORM
The particulate-containing liquid detergent compositions of this Zo invention are substantially non-aqueous (or anhydrous) in character. While very small amounts of water may be incorporated into such compositions as an impurity in the essential or optional components, the amount of water should in no event exceed about 5% by weight of the compositions herein.
More preferably, water content of the non-aqueous detergent compositions 2s herein will comprise less than about 1 % by weight.
The particulate-containing non-aqueous detergent compositions herein will be in the form of a liquid.
3o COMPOSITION PREPARATION AND USE
The non-aqueous liquid detergent compositions herein can be prepared by mixing non-aqueous liquid phase and by thereafter adding to this phase the additional particulate components in any convenient order 3s and by mixing, e.g., agitating, the resulting component combination to form the phase stable compositions herein. In a typical process for preparing such compositions, essential and certain preferred optional components will be combined in a particular order and under certain conditions.
In a first step of a preferred preparation process, the anionic surfactant-s containing liquid phase is prepared. This preparation step involves the formation of an aqueous slurry containing from about 30 to 60% of one or more alkali metal salts of linear C10-16 alkyl benzene sulfonic acid and from about 2-15% of one or more diluent non-surfactant salts. In a subsequent step, this slurry is dried to the extent necessary to form a solid material to containing less than about 4% by weight of residual water.
After preparation of this solid anionic surfactant-containing material, this material can be combined with one or more of the non-aqueous organic diluents to form the surfactant-containing liquid phase of the detergent is compositions herein. This is done by reducing the anionic surfactant-containing material formed in the previously described pre-preparation step to powdered form and by combining such powdered material with an agitated liquid medium comprising one or more of the non-aqueous organic diluents, either surfactant or non-surfactant or both as herein before zo described. This combination is carried out under agitation conditions which are sufficient to form a thoroughly mixed dispersion of particles of the insoluble fraction of the co-dried LAS/salt material throughout a non-aqueous organic liquid diluent.
2s Subsequently, particulate material to be used in the detergent compositions herein can be added. Such components which can be added under high shear agitation include any optional surfactant particles, particles of substantially all of an organic builder, e.g. citrate and/or fatty acid and/or alkalinity source, e.g. sodium carbonate, can be added while continuing to 3o maintain this admixture of composition components under shear agitation.
Ac: ::ion of the mixture is contir ~d, and if necessary, can be increased at this point to form a uniform disf ~sion of insoluble solid phase particulates within the liquid phase.
3s The non-aqueous liquid dispersion so prepared can be subjected to milling or high shear agitation. Milling conditions will generally include maintenance of a temperature between about 10 and 90°C, preferably between 20°C and 60°C. Suitable equipment for this purpose includes:
stirred ball mills, co-ball mills (Fryma), colloid mills, high pressure homogenizers, high shear mixers, and the like. The colloid mill and high shear mixers are preferred for their high throughput and low capital and s maintenance costs. The small particles produced in such equipment will generally range in size from 0.4- 150 microns.
Agitation is then continued, and if necessary, can be increased at this point to form a uniform dispersion of insoluble solid phase particles within io the liquid phase.
In a second process step, the bleach precursor particles are mixed with the ground suspension from the first mixing step in a second mixing step.
This mixture is then subjected to wet grinding so that the average particle is size of the bleach precursor is less than 600 microns, preferably between and 500 microns, most preferred between 100 and 400 microns.
After some or all of the foregoing solid materials have been added to this agitated mixture, the particles of the highly preferred peroxygen 2o bleaching agent can be added to the composition, again while the mixture is maintained under shear agitation.
In a third processing step, the activation of the organic additive is obtained. The organic additives are subjected to wetting and dispersion 2s forces to reach a dispersed state. It is well within the ability of a skilled person to activate the organic additive. The activation can be done according to that described by Rheox, in Rheology Handbook, A practical guide to rheological additives. There are basically three distinct stages.
The first stage consists in adding the agglomerated powder in the solvent.
3o This combination is carried out under agitation conditions (shear, heat, Stage 2) which are sufficient to lead to complete deagglomeration. With continued shear and heat development over a period of time, the solvent-swollen particles of the organic additive are reduced to their active state in Stage 3.
In adding solid components to non-aqueous liquids in accordance with the foregoing procedure, it is advantageous to maintain the free, unbound - _ W O 99/00481 PCT/US98/13190 moisture content of these solid materials below certain limits. Free moisture in such solid materials is frequently present at levels of 0.8% or greater (see method described below). By reducing free moisture content, e.g. by fluid bed drying, of solid particulate materials to a free moisture level of 0.5% or s lower prior to their incorporation into the detergent composition matrix, significantly stability advantages for the resulting composition can be realized.
Free and Total Water Determinations:
io For the purpose of this patent application, and without wanting to be bound by theory, we refer to "free water" as the amount of water that can be detected after removal of the solid, undissolved components of the product, whereas "total water" is referred to as the amount of water that is present in Is the product as a whole, be it bound to solids (e.g. water of hydration), dissolved in the liquid phase, or in any other form. A preferred method of water determinations is the so-called "Karl Fischer titration". Other methods than Karl Fischer titration, e. g. NMR, microwave, or IR spectroscopy, may also be suited for the determination of water in the liquid part of the product 2o and in the full product as described below.
The "free water" of a formulation is determined in the following way. At least one day after preparation of the formula (to allow for equilibration), a sample is centrifuged until a visually clear layer, free of solid components, is 2s obtained. This clear layer is separated from the solids, and a weighed sample is directly introduced into a coulometric Karl Fischer titration vessel.
The water level determined in this way (mg water / kg clear layer) is referred to as "free water" (in ppm).
3o The "total water" is determined by first extracting a weighed amount of - finished product with an anhydrous, polar extra 'eon liquid. The extra;:cf;~n liquid is selected in such a way that interference Irom dissc: . ed solids are minimized. In most cases, dry methanol is a preferred extraction liquid.
Usually, the extraction process reaches an equilibrium within a few hours -3s this needs to be validated for different formulations - and can be accelerated by sonification (ultrasonic bath). After that time, a sample of the extract is centrifuged or filtered to remove the solids, and a known aliqot then introduced into the (coulometric or volumetric) Karl Fischer titration cell.
The value found in this way (mg water / kg product) is referred to as "total water"
of the formulation.
s Preferably, the non-aqueous liquid detergent compositions of the present invention comprise less than 5%, preferably less than 3%, most preferred less than 1 % of free water.
Viscosity and yield measurements:
io The particulate-containing non-aqueous liquid detergent compositions herein will be relatively viscous and phase stable under conditions of commercial marketing and use of such compositions. Frequently, the viscosity of the compositions herein will range from about 300 to 10,000 cps, is more preferably from about 500 to 3000 cps. The physical stability of such formulations can also be determined by yield measurements. Frequently, the yield of the compositions herein will range from about 1 to 20 Pa, more preferably from about 1.5 to 10 Pa. For the purpose of this invention, viscosity and yield are measured with a Carri-Med CSL2100 rheometer 2o according to the method described herein below.
Rheological properties were determined by means of a constant stress rheometer (Carri-Med CSL2100) at 25°C. A parallel-plate configuration with a disk radius of 40 mm and a layer thickness of 2 mm was used. The shear 2s stress was varied between 0.1 Pa and 125 Pa. The reported viscosity was the value measured at a shear rate of about 20 s 1. Yield stress was defined as the stress above which motion of the disk was detected. This implies that the shear rate was below 3 x 10'4 s-1.
3o The compositions of this invention, prepared as herein before described, can be used to form aqueous washing solutions for use in the laundering and bleaching of fabrics. Generally, an effective amount of such compositions is added to water, preferably in a conventional fabric laundering automatic washing machine, to form such aqueous 3s laundering/bleaching solutions. The aqueous washing/bleaching solution so formed is then contacted, preferably under agitation, with the fabrics to be laundered and bleached therewith.

An effective amount of the liquid detergent compositions herein added to water to form aqueous laundering/bleaching solutions can comprise amounts sufficient to form from about 500 to 8,000 ppm of composition in s aqueous solution. More preferably, from about 800 to 5,000 ppm of the detergent compositions herein will be provided in aqueous washing/bleaching solution.
The following examples illustrate the preparation and performance Io advantages of non-aqueous liquid detergent compositions of the instant invention. Such examples, however, are not necessarily meant to limit or otherwise define the scope of the invention herein.
EXAMPLE I
is Preparation of the bleach precursor composition The following bleach precursor particles were made:
Example Example Example C
A B

TAED - - -LAS 9.8 - 9.8 C12/14 AE3S - 9.8 -AE3 0.3 0.3 0.3 Na citrate 11.3 11.3 11.3 AAM 6.2 6.2 -Water to balance to100%

NACA-OBS : (6-nonanamidocaproyl)oxy benzene sulfonate TAED . Tetraacetyl ethylene diamine LAS . Sodium linear C12 alkyl benzene sulphonate 2s AE3 . A C12-15 Predominantly linear primary alcohol condensed with an average of 3 motes of ethylene oxide C'2-C'4 AE3S: C12-C14 sodium alkyl sulphate condensed with an average of 3 moles of ethylene oxide per mole AAM . Acrylic acid/Maleic acid copolymers s In each of examples A to D the bleach activator (i.e. NACA-OBS or TAED) was premixed with sodium citrate (where present), LAS or AS and an aqueous solution (40% active) of the AAM polymer in a Loedige~ FM
mixer. The premix was then fed into a dome extruder (Fuji Paudal Model DGL-1 ) having a die with 0.7 mm orifices and extruded at a pressure of io about 20 bar. The resulting extrudate was then fed into a rotating disc spheroniser (Fuji Paudal QJ-400) where they were broken down into short lengths and formed into substantially spherical particles. The particles were then dried in a Niro vibrating fluid-bed dryer resulting in crisp, free-flowing dust free particles with a particle size range of from 0.25 mm to 2.00 mm.
is EXAMPLE II
Preparation of Non-Aqueous L9uid Detergent Composition 1 ) Part of the Butoxy-propoxy-propanol (BPP) and a C» EO(5) ethoxylated alcohol nonionic surfactant (Genapol 24/50) are mixed for a short time (1-5 minutes) using a blade impeller in a mix tank into a single phase.
2s 2) LAS is added to the BPP/NI mixture after heating the BPP/NI mixture up to 45°C.
3) If needed, liquid base (LAS/BPP/NI) is pumped out into drums.
Molecular sieves (type 3A, 4-8 mesh) are added to each drum at 10%
of the net weight of the liquid base. The molecular sieves are mixed into the liquid base using both single blade turbine mixers and drum rolling techniques. The mixing is done under nitrogen blanket to prevent moisture pickup from the air. Total mix time is 2 hours, after which 0.1-0.4% of the moisture in the liquid base is removed. Molecular sieves are removed by passing the liquid base through a 20-30-mesh screen. Liquid base is returned to the mix tank.
4) Additional solid ingredients are prepared for addition to the s composition. Such solid ingredients include the following:
Sodium carbonate (particle size 100 microns) Sodium citrate dehydrate Malefic-acrylic copolymer (BASF Sokolan) Brightener (Tinopal PLC) io Tetra sodium salt of hydroxyethylidene diphosphonic acid (HEDP) Sodium diethylene triamine penta methylene phosphonate Ethylenediamine disuccinic acid (EDDS) These solid materials, which are all millable, are added to the mix is tank and mixed with the liquid base until smooth. This takes approximately 1 hour after addition of the last powder. The tank is blanketed with nitrogen after addition of the powders. No particular order of addition for these powders is critical.
20 5) The batch is pumped once through a Fryma colloid mill, which is a simple rotor-stator configuration in which a high-speed rotor spins inside a stator which creates a zone of high shear. This reduces particle size of all of the solids. This leads to an increase in yield value (i.e. structure). The batch is then recharged to the mix tank after Zs cooling.
6) The bleach precursor particles are mixed with the ground suspension from the first mixing step in a second mixing step. This mixture is then subjected to wet grinding so that the average particle size of the bleach precursor is less than 600 microns, preferably between 50 and 500 3o microns, most preferred between 100 and 400 microns.
7) Other solid materials could be added after the first processing step.
These include the following Sodium percarbonate (400-600 microns) 3s Protease, cellulase and amylase enzyme prills (400-800 microns, specific density below 1.7 g/mL) Titanium dioxide particles (5 microns) _ Catalyst These non-millable solid materials are then added to the mix tank followed by liquid ingredients (perfume and silicone-based suds s suppressor fatty acid/silicone). The batch is then mixed for one hour (under nitrogen blanket).
The resulting composition has the formula set forth in Table I.
to The catalyst is prepared by adding an octenylsuccinate modified starch, to water in the approximate ratio of 1:2. Then, the catalyst is added to the solution and mixed to dissolve. The composition of the solution is catalyst 5%
is starch 32% (the starch includes 4-6% bound water) water 63%
The solution is then spray dried using a lab scale Niro Atomizer spray drier.
The inlet of the spray drier is set at 200°C, and the atomizing air is 2o approximately 4 bar. The process air pressure drop is roughly 30-35 mm water. The solution feed rate is set to get an outlet temperature of 100°C.
The powdered material is collected at the base of the spray drier.
The composition is 2s catalyst 15%
starch (and bound water) 85%
The particle size is 15 to 100 um exiting the dryer.
TABLE I
Non-Aqueous Liquid Detergent Composition with Bleach Component Wt % Active Wt % Active LAS Na Salt 16 15 C11 EO=5 alcohol ethoxylate 21 20 Sodium citrate 4 5 [4-[N-nonanoyl-6-aminohexanoyloxy]6 7 benzene sulfonate] Na salt Chloride salt of methyl quarternized1.2 1 polyethoxylated hexamethylene diamine Ethyienediamine disuccinic acid 1 1 Sodium Carbonate 7 7 Malefic-acrylic copolymer 3 3 Protease Prills 0.40 0.4 Amylase Prills 0.8 0.8 Cellulase Prills 0.50 0.5 Sodium Percarbonate 16 -Sodium Perborate - 15 Suds Suppressor 1.5 1.5 Perfume 0.5 0.5 Titanium Dioxide 0.5 0.5 Brightener 0.14 0.2 Thixatrol ST 0.1 0.1 Catalyst 0.03 0.03 Speckles 0.4 0.4 Miscellaneous up to 100%

The resulting Table I composition is a structured, stable, pourable anhydrous heavy-duty liquid laundry detergent which provides excelient stain and soil removal performance when used in normal fabric laundering s operations. The chemical decomposition of the bleach precursor was insignificant even after 6 weeks of storage at room temperature.

Claims (11)

WHAT IS CLAIMED IS:
1. A non-aqueous liquid detergent composition comprising a bleach precursor composition comprising a) a bleach precursor; and b) a surfactant system; and c) salt of an organic acid.
2. A non-aqueous liquid detergent composition according to claim 1 wherein said surfactant system comprises a nonionic and an anionic surfactant.
3. A non-aqueous liquid detergent composition comprising a bleach precursor composition comprising:
a) a bleach precursor; and b) a surfactant system comprising a non-ethoxylated anionic surfactant and/or a nonionic surfactant;
c) salt of an organic acid, wherein said surfactant system, the precursor and the organic acid are in the form of an agglomerate, granule or extrudate in which said precursor, said surfactant system and the salt of the organic acid are optionally coated in intimate admixture;
4. A non-aqueous liquid detergent composition according to Claim 1, wherein said surfactant system is present in amount of 0.1 % to 50% by weight of the precursor composition.
5. A non-aqueous liquid detergent composition according to any of Claims 1-4, wherein said precursor is present in an amount of 10% to 99% by weight of the precursor composition.
6. A non-aqueous liquid detergent composition according to any one of Claims 2-5, wherein said anionic surfactant is selected from sulfate surfactants, sulfonate surfactants, carboxylate surfactants, sarcosinate surfactants and mixtures thereof.
7. A non-aqueous liquid detergent composition according to Claim 6, wherein said anionic surfactant is the salt of C5-C20 linear alkylbenzene sulfonate.
8. A non-aqueous liquid detergent composition according to any one of Claims 1-7, wherein said bleach precursor is selected from (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxy benzene sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof.
9. A non-aqueous liquid detergent composition according to claims 1-10 wherein the organic salt is present by 1-20% by weight of the bleach precursor composition.
10. A non-aqueous liquid detergent composition according to any one of Claims 1-9, wherein said composition further comprises a film polymeric compound.
11. A non-aqueous liquid detergent composition according to any one of Claims 1-10, wherein said composition is in a form of an agglomerate or a spheronised extrudate.
CA002295107A 1997-06-27 1998-06-25 Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions Abandoned CA2295107A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5116097P 1997-06-27 1997-06-27
US60/051,160 1997-06-27
PCT/US1998/013190 WO1999000481A1 (en) 1997-06-27 1998-06-25 Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions

Publications (1)

Publication Number Publication Date
CA2295107A1 true CA2295107A1 (en) 1999-01-07

Family

ID=21969702

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002295107A Abandoned CA2295107A1 (en) 1997-06-27 1998-06-25 Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions

Country Status (7)

Country Link
EP (1) EP0991750A1 (en)
JP (1) JP2002507233A (en)
CN (1) CN1268970A (en)
AR (1) AR016103A1 (en)
BR (1) BR9810489A (en)
CA (1) CA2295107A1 (en)
WO (1) WO1999000481A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961765B2 (en) 2000-04-06 2005-11-01 Bbx Technologies, Inc. System and method for real time monitoring and control of networked computers
EP3101107B1 (en) * 2015-06-05 2019-04-24 The Procter and Gamble Company Compacted liquid laundry detergent composition
JP6923588B2 (en) * 2019-04-02 2021-08-18 浜田 勉 Detergent set and how to use it

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9025624D0 (en) * 1990-11-26 1991-01-09 S B Chemicals Limited Liquid built detergent concentrates
EP0738778A1 (en) * 1995-04-19 1996-10-23 The Procter & Gamble Company Nonaqueous, particulate-containing liquid detergent compositions
WO1997000938A1 (en) * 1995-06-20 1997-01-09 The Procter & Gamble Company Nonaqueous, particulate-containing liquid detergent compositions with alkyl benzene sulfonate surfactant
AU3483397A (en) * 1996-06-28 1998-01-21 Procter & Gamble Company, The Nonaqueous liquid detergent compositions containing bleach precursors
CA2258626C (en) * 1996-06-28 2002-09-17 The Procter & Gamble Company Nonaqueous detergent compositions containing bleach precursors
BR9710077A (en) * 1996-06-28 1999-08-10 Procter & Gamble Liquid non-aqueous cleaning compositions containing coated particles

Also Published As

Publication number Publication date
WO1999000481A1 (en) 1999-01-07
CN1268970A (en) 2000-10-04
BR9810489A (en) 2001-10-30
EP0991750A1 (en) 2000-04-12
AR016103A1 (en) 2001-06-20
JP2002507233A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
CA2258626C (en) Nonaqueous detergent compositions containing bleach precursors
CA2295115C (en) Non-aqueous, speckle-containing liquid detergent compositions
US6207634B1 (en) Non-aqueous, particulate-containing detergent compositions containing bleach
CA2258509C (en) Preparation of non-aqueous, particulate-containing liquid detergent compositions with surfactant-structured liquid phase
CA2258702C (en) Non-aqueous, particulate-containing liquid detergent compositions with surfactant-structured liquid phase
CA2295117A1 (en) Non-aqueous, fatty acid-containing structured liquid detergent compositions
CA2258669C (en) Nonaqueous detergent compositions containing specific alkyl benzene sulfonate surfactant
EP0912714A1 (en) Coated particle-containing, non-aqueous liquid cleaning compositions
CA2258666C (en) Nonaqueous liquid detergent compositions containing bleach precursors
CA2295107A1 (en) Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions
EP0907708A2 (en) Nonaqueous detergent compositions containing specific alkyl benzene sulfonate surfactant
CA2295127C (en) Non-aqueous bleaching compositions containing a bleach precursor, a bleach agent and a metal-containing oxygen scavenger
US6159923A (en) Nonaqueous detergent compositions containing bleach precursors
WO1999000472A1 (en) Non-aqueous detergent compositions containing bleach
CA2295118A1 (en) Non-aqueous detergent compositions containing bleach
MXPA00000164A (en) Non-aqueous, particulate-containing detergent compositions containing bleach precursor compositions
MXPA00000141A (en) Non-aqueous, particulate-containing detergent compositions containing bleach
MXPA00000186A (en) Non-aqueous detergent compositions containing bleach
MXPA99000110A (en) Compositions non-aqueous detergents containing blanq precursors

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued