CA1144566A - Alkyl perfluoro-w-fluoroformyl esters, their preparation and monomers therefrom - Google Patents
Alkyl perfluoro-w-fluoroformyl esters, their preparation and monomers therefromInfo
- Publication number
- CA1144566A CA1144566A CA000394206A CA394206A CA1144566A CA 1144566 A CA1144566 A CA 1144566A CA 000394206 A CA000394206 A CA 000394206A CA 394206 A CA394206 A CA 394206A CA 1144566 A CA1144566 A CA 1144566A
- Authority
- CA
- Canada
- Prior art keywords
- formula
- compound
- monomers
- compounds
- esters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
ALKYL PERFLUORO-.omega.-FLUOROFORMYL ESTERS, THEIR PREPARATION AND MONOMERS THEREFROM
ABSTRACT OF THE DISCLOSURE
Alkyl perfluoro-.omega.-fluoroformyl esters are provided which have the formula:
wherein R is alkyl of 1-6 carbon atoms, and n is 0-6 (preferably 0).
Compounds where n is 0 are prepared by contacting SO3 with a compound of the formula ROOC-CF2-CF2-OR1. Compounds where n is 1-6 are prepared by contacting a compound where n is 0 with hexafluoropropylene oxide.
Also provided are polymerizable monomers having the formula:
ABSTRACT OF THE DISCLOSURE
Alkyl perfluoro-.omega.-fluoroformyl esters are provided which have the formula:
wherein R is alkyl of 1-6 carbon atoms, and n is 0-6 (preferably 0).
Compounds where n is 0 are prepared by contacting SO3 with a compound of the formula ROOC-CF2-CF2-OR1. Compounds where n is 1-6 are prepared by contacting a compound where n is 0 with hexafluoropropylene oxide.
Also provided are polymerizable monomers having the formula:
Description
il44S66 BACKGROUND OF THE INVENTION
Field of Invention This invention relates to fluorinated ~-carboxylic-~-carbonyl fluorides, their preparation and the preparation of fluorinated vinyl ether monomers therefrom.
Prior Art _ Fluoromonomers containing carboxyl or carboxylic ester groups, such as described in U.S. Patent 3,546,186, issued December 8, 1970, have been difficult to prepare.
Such monomers are useful in preparing fluorohomopolymers or copolymers with tetrafluoroethylene. Thus, it would be advantageous to be able to prepare fluoromonomers easily.
Symmetrical difluoromalonic compounds of the formula CF2Q2 where Q may be COOH, COOalkyl or COF are known (E.J.P. Fear et al., J. Appl. Chem., 5, 5~9-594 (1955); and J. Heicklen, J. Phys. Chem., 70, 618-627 (1966)).
Ryazanova et al., Zh. Vses. Khim. Obshchest, 1972, 17, No. 3, 347-8, describe compounds of the formula ROOC(CF2)nCOF where n i8 3, 4 or 6.
Fluoromonomers having the general structure A-Y-CF2CF2O~CF-CF2O~pCF=CF2 wherein Y is -CnFmHl, where n, m, 1 are zero or positive numbers which satisfy the requirements of a difunctional fluorinated hydrocarbon residue, and A is a functional group including -COOR, -SO2F
and -COF, are disclosed in German Application 2,504,622, published August 7, 1975.
Fluoromonomers of the above general structure in which A also includes -C~ are disclosed in German Application
Field of Invention This invention relates to fluorinated ~-carboxylic-~-carbonyl fluorides, their preparation and the preparation of fluorinated vinyl ether monomers therefrom.
Prior Art _ Fluoromonomers containing carboxyl or carboxylic ester groups, such as described in U.S. Patent 3,546,186, issued December 8, 1970, have been difficult to prepare.
Such monomers are useful in preparing fluorohomopolymers or copolymers with tetrafluoroethylene. Thus, it would be advantageous to be able to prepare fluoromonomers easily.
Symmetrical difluoromalonic compounds of the formula CF2Q2 where Q may be COOH, COOalkyl or COF are known (E.J.P. Fear et al., J. Appl. Chem., 5, 5~9-594 (1955); and J. Heicklen, J. Phys. Chem., 70, 618-627 (1966)).
Ryazanova et al., Zh. Vses. Khim. Obshchest, 1972, 17, No. 3, 347-8, describe compounds of the formula ROOC(CF2)nCOF where n i8 3, 4 or 6.
Fluoromonomers having the general structure A-Y-CF2CF2O~CF-CF2O~pCF=CF2 wherein Y is -CnFmHl, where n, m, 1 are zero or positive numbers which satisfy the requirements of a difunctional fluorinated hydrocarbon residue, and A is a functional group including -COOR, -SO2F
and -COF, are disclosed in German Application 2,504,622, published August 7, 1975.
Fluoromonomers of the above general structure in which A also includes -C~ are disclosed in German Application
2,659,581, published July 13, 1977.
~k No method of preparing the above monomers is provided in either of the above applications. The first disclosures of a preparative method of which we are aware are contained in German Application 2,635,312, published February 17, 1977, Japanese Application J5-2,003,017, Serial No. JA 079326, published January 11, 1977, and Japanese Application J5 2,105,118, Serial No. JA 020144, published September 3, 1977. Taken together, these applications describe the reaction of perfluoroalkyl diiodides I(CF2)nI, where n = 3-5, with fuming sulfuric acid to form a lactone;
reaction of said lactone with HFPO to form a ~-~ diacylfluo-ride; and conversion of the diacylfluoride to esters of the ula R02C RF-~CF2O-CF~-nCF2OCF=CF2 wherein RF is perfluorinated alkyl of 1-10 carbon atoms and n = 1-5, preferably 1-2.
Fluoromonomers having the general structure CF2=CFO(CF2)n-X, where X includes -CO2R and -CN, R z H or alkyl of 1-10 carbon atoms, and n = 2-12, preferably 2-4, are disclosed in U.S. Patent 3,546,156 issued December 8, 1970.
Such monomers are useful in preparing fluorohomopolymers or copolymers with tetrafluoroethylene, but ha~e been difficult to make from symmetrical compounds such as FOC-(CF2)n-COF.
Fluoromonomers having the formula FS02-CF2CF20-~CF-CF20~-pCF=CF2 are disclosed in U.S. Patent
~k No method of preparing the above monomers is provided in either of the above applications. The first disclosures of a preparative method of which we are aware are contained in German Application 2,635,312, published February 17, 1977, Japanese Application J5-2,003,017, Serial No. JA 079326, published January 11, 1977, and Japanese Application J5 2,105,118, Serial No. JA 020144, published September 3, 1977. Taken together, these applications describe the reaction of perfluoroalkyl diiodides I(CF2)nI, where n = 3-5, with fuming sulfuric acid to form a lactone;
reaction of said lactone with HFPO to form a ~-~ diacylfluo-ride; and conversion of the diacylfluoride to esters of the ula R02C RF-~CF2O-CF~-nCF2OCF=CF2 wherein RF is perfluorinated alkyl of 1-10 carbon atoms and n = 1-5, preferably 1-2.
Fluoromonomers having the general structure CF2=CFO(CF2)n-X, where X includes -CO2R and -CN, R z H or alkyl of 1-10 carbon atoms, and n = 2-12, preferably 2-4, are disclosed in U.S. Patent 3,546,156 issued December 8, 1970.
Such monomers are useful in preparing fluorohomopolymers or copolymers with tetrafluoroethylene, but ha~e been difficult to make from symmetrical compounds such as FOC-(CF2)n-COF.
Fluoromonomers having the formula FS02-CF2CF20-~CF-CF20~-pCF=CF2 are disclosed in U.S. Patent
3,282,875, issued November 1, 1966. Preparation of these monomers by reaction of FSO2-CF2-COF with hexafluoropropylene oxide (HFPO) is disclosed in U.S. Patent 3,301,893, issued January 31, 1967.
11~4566 Fluoromonomers of the formula CF3-CFCF20-~CFCF20~nCF=CF2 containing secondary -CN groups are disclosed in U.S. Patent 3,852,326, issued December 3, 1974. Such monomers are prepared by reacting CF3CF-COF with HFPO.
CN
Conversion of fluoromonomers of formula FS02-CF2CF20-~CF-CF20~-nCF=CF2 to carboxylated monomers of formula HOOC-CF20-~CF-CF20~-nCF=CF2 is disclosed in Japanese Application J5 2053-814, Serial No. JA 129691, published April 30, 1977.
Fluoropolymers having the formula CF2CF2~ ( CF2,1~F )n ~1-3 A
where A is an acid group which includes -COOH and -SO3H, are disclosed in V.S. Patents 3,853,720 and 3,853,721, issued December 10, 1974. These patents do not disclose a method of preparing the fluorinated vinyl ether monomers.
SUMMARY OF THE INVENTION
According to the present invention there is provided a compound of the formula:
CF2 ( CF2-O-CF ~ COF
wherein R is alkyl of 1-6 carbon atoms, and n is 0-6.
Also provided is a process for preparing ROOC-CF2-COF comprising: contacting SO3 with a compound of the formula ROOC-CF2-CF2-ORl wherein R and Rl, alike or different, are alkyl of 1-6 carbon atoms.
Further provided is a process for preparing a compound of the formula CF2 ( CF2-O-CF )m COF
wherein R is alkyl of 1-6 carbon atoms, and m is 1-6, comprising: contacting a compound of the formula ROOC-CF2-COF where R is as defined above with hexafluoro-propylene oxide.
Further provided are polymerizable monomers of the formula CF2CF2O + CF-CF2O ~ CF=CF2 wherein Y is -COOR, -COOH, -COOM or -CN, R and M are defined as above, and p is l-5, and processes for preparing such monomers from compounds of the formula COOR CF
. 1 3 CF2 ( CF2OCF )m--COF
DETAILED DESCRIPTION OF THE INVENTION
The compounds of the invention are fluorine-containing a-carboxylic-~-carbonyl fluorides of the formula COOR ~ ICF3~
CF2 ~ CF2-O-CF ~ OF
I
.,
11~4566 Fluoromonomers of the formula CF3-CFCF20-~CFCF20~nCF=CF2 containing secondary -CN groups are disclosed in U.S. Patent 3,852,326, issued December 3, 1974. Such monomers are prepared by reacting CF3CF-COF with HFPO.
CN
Conversion of fluoromonomers of formula FS02-CF2CF20-~CF-CF20~-nCF=CF2 to carboxylated monomers of formula HOOC-CF20-~CF-CF20~-nCF=CF2 is disclosed in Japanese Application J5 2053-814, Serial No. JA 129691, published April 30, 1977.
Fluoropolymers having the formula CF2CF2~ ( CF2,1~F )n ~1-3 A
where A is an acid group which includes -COOH and -SO3H, are disclosed in V.S. Patents 3,853,720 and 3,853,721, issued December 10, 1974. These patents do not disclose a method of preparing the fluorinated vinyl ether monomers.
SUMMARY OF THE INVENTION
According to the present invention there is provided a compound of the formula:
CF2 ( CF2-O-CF ~ COF
wherein R is alkyl of 1-6 carbon atoms, and n is 0-6.
Also provided is a process for preparing ROOC-CF2-COF comprising: contacting SO3 with a compound of the formula ROOC-CF2-CF2-ORl wherein R and Rl, alike or different, are alkyl of 1-6 carbon atoms.
Further provided is a process for preparing a compound of the formula CF2 ( CF2-O-CF )m COF
wherein R is alkyl of 1-6 carbon atoms, and m is 1-6, comprising: contacting a compound of the formula ROOC-CF2-COF where R is as defined above with hexafluoro-propylene oxide.
Further provided are polymerizable monomers of the formula CF2CF2O + CF-CF2O ~ CF=CF2 wherein Y is -COOR, -COOH, -COOM or -CN, R and M are defined as above, and p is l-5, and processes for preparing such monomers from compounds of the formula COOR CF
. 1 3 CF2 ( CF2OCF )m--COF
DETAILED DESCRIPTION OF THE INVENTION
The compounds of the invention are fluorine-containing a-carboxylic-~-carbonyl fluorides of the formula COOR ~ ICF3~
CF2 ~ CF2-O-CF ~ OF
I
.,
4~66 in which R is alkyl of 1-6 carbon atoms, particularly methyl or ethyl and n is 0-6, preferably 0. The compound H3COOC-CF2-COF is most preferred.
The compounds of the invention where n is 0 are prepared by reacting lower alkyl ~-alkoxytetrafluoropropio-nates (Wiley U.S. 2,988,537) with sulfur trioxide to obtain the corresponding carboalkoxydifluoroacetyl fluorides according to the equation COOR COOR
' 1 SO3 CF2-CF2-OR > CF -COF
II III
The compounds of formula III are then reacted with hexafluoropropylene oxide to obtain the a-carboxylic-~-carbonyl fluorides of formula V in which m = 1-6, according to the equation COOR /O\ COOR CF3 CF2-COF + CF2-CF-CF3 > CF2 ~ CF -O-CF )----COF
III IV V
The reaction of compounds of formula II with sulfur trioxide is exothermic and provision should be made for dissipating the heat of reaction. One method is to add the alkoxyester compound of formula II in small portions to the SO3 with cooling by reflux condenser or external cooling means. Alternatively, the SO3 can be added in small portions to the alkoxyester, but the former procedure is preferred.
The reaction can also be carried out on a continuous basis by slowly feeding the separate reactants into a cooled reaction zone from which product is continuously withdrawn.
Sulfur trioxide can be used either in monomeric form or polymeric form. The reaction is preferably carried out neat.
However, it can be operated also in the presence of diluents which are relatively inert to SO3 or which couple with SO3, e.g., dioxane, chloroform, carbon tetrachloride, fluoro-carbon liquids and the like. Temperatures at which the reaction is operable range from about -30C to about 250C
and temperatures from about 0-100C are preferred. Pressure is not a critical variable and pressure both below and above atmospheric pressure can be employed. The molecular propor-tions in which SO3 and the compounds of formula II can be brought together to carry out this reaction can be varied widely such as from about 1:20 to 20:1, preferably about 2 to 1.
The reaction of a compound of formula III with hexafluoropropylene oxide is preferably carried out in the presence of fluoride ion as a catalyst. This is readily accomplished by using a suitable fluoride, e.g., an alkali metal fluoride such as cesium fluoride, potassium fluoride;
silver fluoride; ammonium fluoride; a tetraalkylammonium fluoride (alkyl of 1-4 carbons) such as tetramethylammonium fluoride, ~etraethylammonium fluoride, and tetrabutylammonium fluoride, and sulfonium fluorides such as benzene sulfonium fluoride. The fluoride catalyst is usually used in conjunc-tion with an inert liquid diluent (preferably an organic liquid) in which the selected fluoride is at least 0.001~
soluble. The fluoride catalyst may be used in amounts from about 0.001 to about 1.0 molar equivalent per mole of the compound of formula III. Suitable diluents include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and aprotic solvents such as acetonitrile. The reaction is somewhat exothermic and provision for dissipation of the heat of reaction should be made. Temperatures employed can range from about -50C
to about 200C with temperatures in the range of about -10 to about 80C being preferred. Pressure is not a critical variable and pressures both below and above atmospheric pressure are operable. Hexafluoropropylene oxide is a gas over much of the operable temperature range and pressures close to atmospheric pressure are preferred. Operable molar proportions of hexafluoropropylene oxide to the compounds of formula III can vary from about 1:20 to about 20:1, preferably about 1 to 1.
As illustrated in the examples, more than one mol of hexafluoropropylene oxide can react with a compound of formula III to yield compounds of formula V in which m is greater than one. To obtain products with higher values of m, higher molecular proportions of hexafluoropropylene oxide are employed and higher pressures and lower tempera-tures are selected. To obtain products with lower values of m (e.g. 1 or 2) higher molecular proportions of the compound of formula III are employed and lower pressures and higher temperatures are selected.
Each of the compounds of formula I is a reactive organic compound which is at once a carboxylic ester and an acid fluoride. Such fluorinated compounds are rare, and understandably so because the known processes for synthe-sizing difunctional carboxylic compounds readily yield dicarboxylic esters as well as diacid fluorides but teach almost nothing about how to obtain compounds with both a carboxylic ester group and a carbonyl fluoride group in the same molecule. In carrying out reactions with compounds ,~ O
` 1~L4~566 of formula I care must be taken to prevent their ready conversion to the more ordinary corresponding dicarboxylic esters or dicarbonyl fluorides.
Compounds of formula I are useful as intermediates in the preparation of new fluorine-substituted polymerizable olefinic compounds containing carboxylic acid, ester or nitrite groups. As shown in the examples, the compounds of formula I in which n = 0 can be reacted with hexafluoro-propylene oxide in the presence of fluoride ion catalyst to prepare the compounds of formula I in which n is 1 to 6, e.g., the compounds of formula V. In turn the compounds of formula V can be pyrolyzed over a solid basic salt such as sodium phosphate, sodium carbonate or potassium carbonate at moderate temperatures to obtain the corresponding polymerizable monomers of formula VI according to the equation (Example 7) . . , , 3 CF2--~--CF20CF )m COF ~ CF2CF2O-~-CF-CF2-O ~ CF=CF2 V VI (p is 1 to 5) As illustrated in the examples, the monomers of formula VI can be homopolymerized to heavy oils suitable as lubricants and can be copolymerized with one or more comonomers such as, for example, tetrafluoroethylene or chlorotrifluoroethylene, to yield tough, solid polymers which are thermoplastic and capable of being hot pressed or rolled into sheets and films for wrapping uses, as protective layers where exceptional chemical stability is required and as ion exchange membranes in electrolysis cells.
For polymer uses requiring ion-exchange capability, such as electrolysis cell membranes, monomers of formula VI
may also be polymerized in a form in which the terminal functional group is -COOM or -COOH. The metal salts (-COOM) are produced from the esters (-COOR) by hydrolysis with alkali metal hydroxides, ammonium hydroxide or quaternary ammonium hydroxide. The free acids (-COOH) are readily produced by acid-catalyzed hydrolysis of the diesters in cold water.
Alternatively, monomers of formula VI can be converted as illustrated in Example 8 to polymerizable monomers containing primary -CN groups:
CF2CF20 ~ CF-CF20 ~ CF=CF2 ~ CF2CF20 ~ CF-CF20 ~ CF=CF2 VI VII
Monomers of formula VII can also be homopolymerized or, preferably, copolymerized with one or more comonomers such as, for example, tetrafluoroethylene, chlorotrifluoro-ethylene or perfluoromethylvinylether, to yield tough, solid polymers in the same manner as formula VI monomers (Utility Fxamples A-D). Formula VII monomers, by virtue of their primary -CN groups, are especially useful for incorporating cure sites into elastomeric copolymer compositions.
The polymerizable monomers of this invention contain a tetrafluoroethylene segment -CF2CF2- between the terminal -COOR or -CN groups and the first ether oxygen, e.g., carbons (1) and (2) in the structure CF2CF20 ~ CF-CF20 )p CF=CF2 (1)(2) 456t~
The art provides a means of preparing structures of the formula SO2F ,CF3 CF2CF2O-~-CF-CF O-~-CF=CF
VIII
However, it is not known how to convert formula VIII structures to the corresponding carboxylated compounds because one -CF2-is necessarily consumed in such conversions; thus SO2F ,CF3 CF2CF2O-t-CF-CF2o ~ CF=CF2 >
VIII
CF2 O~CF-CF2 O~CF=CF2 IX
While monomers of formula IX are useful they are distinctly different and demonstrably inferior to the monomers of this invention in the properties they impart to copolymers prepared from them. For example, experiments summarized in Tables 1 and 2 show that copolymers of monomer VI (R=H) with tetrafluoroethylene are superior to similar copolymers of monomer IX (R=H) in tensile properties and in retention of these properties on exposure to heat and high concentrations of alkali, conditions found in chlor-alkali electrolysis cells where carboxyl functional fluorovinylether copolymers are useful as membranes.
4~i66 Table 1 Tensile Properties After Aging in 30% NaOH at 90 Days Tensile Strength Elongation CopolymerAged psi (%) <10 ---Table 2 Days to Onset of Film Brittleness* in Alkaline Environment Temperature Copolymer Copolymer Solution(C) TFE/VI TFE/IX
25% KOH ~110 >0.1 <0.1 25% DMSOJ
30% NaOH115 >10 3-7 30% NaOH 90 120 20 * Defined as rupture when film is bent 180.
Copolymer~ prepared from formula VI and VII monomers may be represented by the repeating unit ~~ ~ [ CX--CX
~P
5f~6 in which Y is -COOR, -COOH, -COOM, or -CN, where R and M
are defined as above, p is 1 to 5, q is 0 to 1000, the X's may all be fluorine or two fluorine and one chlorine, and Z is -F, -RF or -ORF where RF is perfluoroalkyl of 1-6 carbon atoms, preferably 1-2 carbon atoms. The preferred copolymers are prepared from two or more monomers and have average compositions represented by the above formula where .p is 1 or 2 and q is 1 to 200. Values of q from 1 to 9 are preferred for carboxylated copolymers used as electrolysis cell membranes; q of 20 to 200 is preferable in nitrile-functional elastomers.
In the examples which follow parts are by weight unless otherwise specified.
Example 1 CF -COF
Sulfur trioxide (40 ml) was added to a 3-neck flask attached to a still and fitted with a dropping funnel and thermometer. Crude CH3OCF2CF2COOCH3 (100 g) was added dropwise from the funnel to the magnetically stirred sulfur trioxide at a rate to maintain a gentle reflux due to the exothermic reaction. When addition was complete, the mixture was distilled at atmospheric pressure. Product distilling at 82-86C was shown by gas chromatographic analysis to contain about 69.5 g of H3COOC-CF2-COF (85~) and the remainder mostly CH3OSO2F. This mixture was passed over sodium fluoride pellets at about 400C/4 mm, converting the CH3OSO2F to CH3F and NaOSO~F. Pure H3COOC-CF2-COF was then isolated by distillation.
Example 2 COOCH3F + CF CF CF CsF COOCH3 ,CF3 o In a 250 ml glass flask fitted with a dry ice condenser and ports for addition of gases, liquids and solids, was placed 20 ml tetraglyme (tetraethyleneglycol dimethyl ether), 6.0 g CSF and 26.3 g crude H3COOCCF2COF
(containing 3% CH3OSO2F). With the mixture kept below 15C, 29. 2 g of hexafluoropropylene oxide (HFPO) was slowly added.
Upon completion of the reaction, excess H3COOCCF2COF and HFPO were removed under vacuum at 40C. The residue was distilled and crude H3COOC-CF2-CF2-O-CF(CF3)-COF distilled at 75-95C/400 mm. Its structure was confirmed by:
IR (liq.): 1900, 1820, 1330, 1250, 1140, 1035 cm 1 PMR (CC14): 4.04 ppm (singlet) FMR (CC14): +21.6 (multiplet, lF), -82.4 (broad mult., 4F), -86. 3 (mult., lF), -119.8 (mult., 2F), -130 ppm (mult., lF) ~ ~,.
Example 3 A 150 ml Carius tube was loaded with a mixture of 0.5 g each of CsF and KF (vacuum dried at 400C), 3 ml tetraglyme, 34.5 g H3COOC-CF2-COF and 60 g HFPO. The tube was sealed and rotated overnight at room temperature.
Distillation of the reaction mixture yielded 15 g H3COOC-CF2-CF2-O-CF(CF3)-COF, b.p. 65C/100 mm.
Anal. Calcd. for C7H3F~04: C, 26.10; H, 0.94;
F, 53.09 Found: C, 25.87; H, 0.89;
F, 53.34 Example 4 CF2COF + CF2-CF-CF3 CsF ~ CF2--~--CF2-0-CF ~ OF
o Powdered cesium fluoride (15 g) was placed in a 500 ml 4-necked flask, which was then plugged except for a connection to a manifold attached to a vacuum pump and open-end manometer. Vacuum was applied to the flask while it was heated with a Meeker burner to thoroughly dry the cesium fluoride. After the flask had cooled, dry nitrogen was admitted and then a large magnetic stirrer. The flas~ was fitted with a thermometer, reevacuated, filled with nitro-gen and 20 ml of tetraglyme and 63 g (0.4 m) of H3COOCCF2COF
added. The flask was then cooled to -10C, evacuated and filled to 600 mm pressure with hexafluoropropene epoxide (HFPO) three times. Stirring was started and the pressure of HFPO was maintained automatically at 600 mm by a vacuum regulator. The HFPO was absorbed steadily in an exothermic reaction and cooling was necessary to keep the temperature between 0 and ~10C. The reaction was stopped after 140 g (0.84 m) of HFPO had been absorbed.
The low layer (190 g) was distilled. The products obtained are tabulated below. The ratio of products formed can be varied by the temperature of reaction and mainly by the amount of HFPO used.
PP~D~rS
P~ALYSES
.
FormLla b.p. wt. Empirical %C %H %F
n = C/mm (g) Formula Calcd. Fd. Calcd. F ~lcd. -Fd.
169/100 11.8 C7H3F904 26.10 25.87 0.94 0.89 53.09 53.34 2106/100 14.9 CloH3F15O5 24.61 24.65 0.62 0.74 58.39 58.49 357/0.3 31.3 C13H3F21O6 23.87 24.07 0.46 0.61 60.99 60.72 480/0.2 42.5 C16H3F27O7 23.43 23.78 0.37 0.48 62.55 62.40 585/0.2 24.8 C18H3F33O8 23.14 23.51 0.31 0.52 63.58 63.29 6107/0.5 5.7 Example 5 The procedure of Example 4 was repeated except that 182 g (1.17 m) of H3COOCCF2COF was used, no cooling was used (run at 55C) and the addition of HFPO was stopped after 190 g had been absorbed. In the distillation, 100 g of H3COOCCF2COF
was recovered and the products obtained were 87.5 g (0.27 m, 23%) of the product where n = 1, 40 g (0.08 m, 7%) of the product where n = 2 and 10 g (0.015 m, 1.3~) of the product where n = 3.
Example 6 COOCH3 ,COOCH3 ,CF3 2 20CF(CF3)COF + CF2-CF-CF CF2--~--CF2-0-CF--)n COF
\O
1~4~66 Using the apparatus and general procedure of Example 4, the reaction of 15 g of CSF, 20 ml tetraglyme, 234 g of H3COOCCF2CF2OCF(CF3)COF and 63 g HFPO was carried out at 68C. Distillation yielded 38 g (0.08 m, 11%) of the above product where n = 2 and 6 g (0.01 m, 1%) of the product where n = 3.
Example 7 COOCH3 ,CF3 CF3 Na3P4 COOCH3 CF3 CF2CF2OCFCF2OCFCOF > CF2CF2OCFCF2OCF=CF2 Into the top of a vertically mounted quartz tube 1 inch in diameter and 12 inches long containing 90 cc of fine granules of sodium phosphate (predried at 400C) stirred by a motor driven stainless steel screw in the center, the granules heated to 235-240C by an external split-type fur-nace, was passed 6.4 g of H3COOCCF2CF2OCF(CF3)CF2OCF(CF3)COF
along with a slow current of nitrogen over a period of 9 minutes. Off-vapors from the bottom of the tube were condensed and collected in a Dry Ice-acetone cooled trap.
The liquid product was distilled to obtain 3.7 g (67~) of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)-trifluoroethoxy]tetrafluoropropionate, b.p. 98C/110 mm.
~nal. Calcd. for CgH3F13O4: C, 25-61; H~ 0-72;
F, 58.51 Found: C, 25.47; H, 0.81;
F, 59.87.
" 11~4566 Example 8 2 2 2 CF2 + NH3 ~ CF2CF20CFCF20CF=CF + CH OH
CONH2 Trifluoroacetic CF2CF20CFCF20CF=CF2 anhYidirid-CF2 CF2 CFCF2 CF=CF2 + H2 8 g (0.47 mol) of ammonia was added slowly with stirring from a weighed cylinder to 200 g (0.47 mol) of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)trifluoro-ethoxy]tetrafluoropropionate (Example 7) and 150 cc of ether contained in a flask cooled in a Dry Ice-acetone bath (ca.
-80C) and evacuated. The amide so formed was extracted at room temperature with 1,1,2-trichlorolrifluoroethane, washed with water and then distilled; yield 17 g of clear liquid;
b.p. 90C at lmm. Hg.
The above amide was dehydrated to the nitrile by a method similar to that described by Campagna et al.
Tetrahedron Letters No. 21, 1813 (1977). 170 g (0.42 mol) of amide was dissolved in 150 cc of tetrahydrofuran at -10C, and 80 cc (1.0 mol) of pyridine and 70 cc (0.50 mol) of trifluoroacetic anhydride were added consecutively, with stirring, dropwise, maintaining temperature at -10 to 0C.
The mixture was allowed to warm to 25C, ice water was added, and the product layer was separated with the aid of a small quantity of 1,1,2-trichlorotrifluoroethane. The product was washed five times with water, then distilled.
Re-distillation over P205 is sometimes necessary to remove traces of water. Yield 135.3 g; b.p. 95-102C.
~45~;6 VTIIITY E~LE A
(1) _ - CF-CF2 - _ O
,CF2 FC-CF
o A glass tube containing 2 g of methyl 3-[2-(trifluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionate and 0.01 ml of a 6% solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoro-ethane was sealed under vacuum and rotated overnight at room temperature. Removal of unreacted monomer under vacuum left 0.5 g of oily homopolymer having a repeating unit of the above formula.
~F-CF2~F2 -CF2~
F,CCF3 o A glass tube containing 6 g of methyl 3-[2-(trifluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionate, 1 g tetrafluoroethylene and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoroethane was sealed under vacuum at liquid nitrogen temperature and then rotated at room temperature overnight. The mixture became very viscous.
Remaining tetrafluoroethylene was bled off and an 3Q additional 5 g of tetrafluoroethylene and 0.01 ml of the perfluoropropionyl peroxide solution was sealed into the tube. The tube was rotated for 5 hours at room temperature and then opened. Removal of volatiles at 100C under vacuum left 0.6 g of elastomeric copolymer of the above repeating unit where q is greater than 1.
F-CF2 ] [ CF2 2 ,CF2 F,CCF3 A 20 ml Carius tube containing 6.8 g (0.016 m) of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)-trifluoroethoxy]tetrafluoropropionate, 1.7 g (0.017 m) of tetrafluoroethylene, 2 ml of 1,1,2-trichlorotrifluoroethane and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in l,1,2-trichlorotrifluoroethane was sealed at liquid nitrogen temperature, rotated at room temperature overnight and then opened. The solid product was separated by filtration and washed with ether to obtain 1.7 g Of elastomeric copolymer. The copolymer was pressed at 250C
under 500 psi to yield a 3 mil film which showed strong infrared absorption for ester carbonyl at 5.5 ~. This film was heated for 3 hours at 100C in a solution of 15 g KOH
in 35 g water and 35 g dimethylsulfoxide (DMSO). Infrared examination of the resulting film showed the ester carbonyl band had been replaced by carboxylic acid absorption (broad at 2.8 ~ for -OH and at 5.95 ~ for C=O). This confirmed that a copolymer of the above repeating unit where q is greater than 1 was obtained.
(4) COOCH3 CF3 Na3PO4 COOCH3 CF3 CF2(CF2OCF)3COF ~ CF2CF20(CFCF2)2CF=CF2 Using the apparatus and general procedure of Example A(l) above, 22 g of H3COOCCF2[CF2OCF(CF3)]3COF was passed slowly with nitrogen over Na3PO4 at 235-240C.
Distillation of the collected product yielded 12 g (61%) of methyl 3-~2-(2-[trifluoroethenoxy]-1-[trifluoromethyl]-trifluoroethoxy)-1-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionate, b. p. 71C/5.5 mm.
C12 3 19 5: C, 24-50; H, 0.51;
F, 61.38 Found: C, 24.28; H, 0.68;
F, 61.44 UTILITY EXAMPLE B
(1) COOCH3 CF3 COOH CF
CF2CF2OCFCF2OCF=CF2 ~21~ NHclH~ CF2CF2OCFCF2OCF=CF2 In a separatory funnel 15 g of crude H3COOCCF2CF2OCF(CF3)CF2OCF=CF2 was shaken with 25 ml of 10%
aqueous NaOH at room temperature. The aqueous layer was separated and acidified with cold concentrated HCl. The lower layer which separated was distilled from a little P2O5 to obtain 10.7 g of 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)trifluoroethoxy]tetrafluoropropionic acid, b.p. 53C/0.25 mm, nD5 = 1.3078.
Anal. Calcd. for C8HF13O4: C, 23.54; H, 0.25;
F, 60.53;
. Neut. Eq., 408 Found: C, 23.80; H, 0.52;
F, 61.71;
Neut. Eq., 407.7 F-CF2 ~ [ CF2 2 ,CF2 o A glass tube containing 8.8 g of 3-[2-(tri-fluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]tetra-fluoropropionic acid, 2.2 g tetrafluoroethylene, 13 ml 1,1,2-trichlorotrifluoroethane and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoro-ethane was sealed and rotated at room temperature for 60 hours. Gases were bled off and 3 g tetrafluoroethylene and 0.01 ml of a 6% solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoroethane were added. The tube was sealed, rotated overnight at room temperature and then opened. Filtration and washing in ether yielded 2.3 g of copolymer of the repeating unit indicated above where q is greater than 1. A pressed film showed strong infrared absorption for -COOH.
UTILITY EXAMPLE C
( 1) ~F-CF2 ( CF2 CF2 CE'2 Using the general procedure of Example A(3), six 20 ml Carius tubes were each charged with 0.01 ml of a 6%
solution of perfluoropropionyl peroxide in 1,1,2-trichloro-trifluoroethane and the respective quantities of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)trifluoro-ethoxy]tetrafluoropropionate (vinyl ether), tetrafluoro-ethylene (TFE) and 1,1,2-trichlorotrifluoroethane (solvent) indicatsd in the table below. The tubes were sealed at liquid nitrogen temperature, rotated at room temperature overnight, cooled and opened. The respective amounts of copolymer were recovered by filtration, washed with ether and dried.
Vinyl TFE Solvent Copolymer Tube Ether (~) (g) (ml) (g) A 30.4 7.2 0 2.45 B 19.5 4.6 4 2.31 C 18 5 5 3.01 D 19 5 4 3.55 E 12.9 3 12 2.9 F 12.8 3 8 2.8 The six copolymer products were combined and a film was pressed at 360C/20,000 psi. After hydrolysis in KOH-H2O-DMSO as in Example A(4) the copolymer was shown to have a neutral equivalent of 1500, confirming that the copolymer had the average composition represented by the formula above.
~F CF2 3 [ CF2 2 ~
,CF2 ~0 FCCF3 A glass tube containing 8.8 g of 3-[2-(trifluoro-ethenoxy)-1-(trifluoromethyl)trifluoroethoxy]tetrafluoro-propionic acid, 2.2 g tetrafluoroethylene, 13 ml 1,1,2-trichlorotrifluoroethane and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoro-ethane was sealed and rotated at room temperature for 60 hours. Gases were bled off and 3 g tetrafluoroethylene and 0.01 ml of a 6% solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoroethane were added. The tube was sealed, rotated overnight at room temperature and then opened. Filtration and washing in ether yielded 2.3 g of copolymer of the repeating unit indicated above where q is greater than 1. A pressed film showed strong infrared absorption for -COOH.
UTILITY EXAMPLE D
(1) Titration of 12.671 g (0.031 m) of 3-[2-(tri-fluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionic acid to a neutral end point (phenol-phthalein indicator) with 15.54 ml of 0.2N sodium hydroxide indicated a neutral equivalent of 407.69 (Calcd. 408). An excess of l ml of 0.2N NaOH was added and the solution frozen in a 50 ml Carius tube. Then a solution of 0.25 g ammonium persulfate in 10 ml water, a solution of 0.2 g Na2S2O3 5H2O in 10 ml water and 3.1 g tetrafluoroethylene were added separately with freezing before sealing the tube. The tube was rotated overnight at room temperature to obtain a clear solution and a little solid polymer.
The solution was filtered and acidified to give a gel which was mostly soluble in ether. Removal of ether and drying at 100C under vacuum gave 3.2 g of copolymer from which a film was pressed at 100C/10,000 psi. The copolymer absorbed strongly in the infrared for -COOH
(broad 3 ~ and 5.7 ~).
(2) _ _ _--------CF-CF2 ( CF2 CF2 )15 _ o 2 C 2 COONa Using the general procedure of Example D(l) a 200 ml Carius tube containing 6 g (0.015 m) of 3-[2-(trifluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionic acid neutralized with a slight excess of 0.2N sodium hydroxide, 0.25 g ammonium persulfate in 10 ml water, 0.02 g Na2S2O3-5H2O in 10 ml water and 10 g tetrafluoroethylene was rotated overnight at room temper-ature and then cooled and opened. A gel-like polymer tSodium salt) was collected by filtration and vacuum dried at 100C to give 6.5 g of copolymer of the average compo-sition indicated by the above repeating unit (neutral equivalent by titration 1976). The filtrate was acidified to give an acid copolymer which was collected by filtration and vacuum dried at 100C (wt. 5.8 g).
The application is a division of copending Canadian Application Serial No. 301 618, filed 1978 April 20.
The compounds of the invention where n is 0 are prepared by reacting lower alkyl ~-alkoxytetrafluoropropio-nates (Wiley U.S. 2,988,537) with sulfur trioxide to obtain the corresponding carboalkoxydifluoroacetyl fluorides according to the equation COOR COOR
' 1 SO3 CF2-CF2-OR > CF -COF
II III
The compounds of formula III are then reacted with hexafluoropropylene oxide to obtain the a-carboxylic-~-carbonyl fluorides of formula V in which m = 1-6, according to the equation COOR /O\ COOR CF3 CF2-COF + CF2-CF-CF3 > CF2 ~ CF -O-CF )----COF
III IV V
The reaction of compounds of formula II with sulfur trioxide is exothermic and provision should be made for dissipating the heat of reaction. One method is to add the alkoxyester compound of formula II in small portions to the SO3 with cooling by reflux condenser or external cooling means. Alternatively, the SO3 can be added in small portions to the alkoxyester, but the former procedure is preferred.
The reaction can also be carried out on a continuous basis by slowly feeding the separate reactants into a cooled reaction zone from which product is continuously withdrawn.
Sulfur trioxide can be used either in monomeric form or polymeric form. The reaction is preferably carried out neat.
However, it can be operated also in the presence of diluents which are relatively inert to SO3 or which couple with SO3, e.g., dioxane, chloroform, carbon tetrachloride, fluoro-carbon liquids and the like. Temperatures at which the reaction is operable range from about -30C to about 250C
and temperatures from about 0-100C are preferred. Pressure is not a critical variable and pressure both below and above atmospheric pressure can be employed. The molecular propor-tions in which SO3 and the compounds of formula II can be brought together to carry out this reaction can be varied widely such as from about 1:20 to 20:1, preferably about 2 to 1.
The reaction of a compound of formula III with hexafluoropropylene oxide is preferably carried out in the presence of fluoride ion as a catalyst. This is readily accomplished by using a suitable fluoride, e.g., an alkali metal fluoride such as cesium fluoride, potassium fluoride;
silver fluoride; ammonium fluoride; a tetraalkylammonium fluoride (alkyl of 1-4 carbons) such as tetramethylammonium fluoride, ~etraethylammonium fluoride, and tetrabutylammonium fluoride, and sulfonium fluorides such as benzene sulfonium fluoride. The fluoride catalyst is usually used in conjunc-tion with an inert liquid diluent (preferably an organic liquid) in which the selected fluoride is at least 0.001~
soluble. The fluoride catalyst may be used in amounts from about 0.001 to about 1.0 molar equivalent per mole of the compound of formula III. Suitable diluents include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and aprotic solvents such as acetonitrile. The reaction is somewhat exothermic and provision for dissipation of the heat of reaction should be made. Temperatures employed can range from about -50C
to about 200C with temperatures in the range of about -10 to about 80C being preferred. Pressure is not a critical variable and pressures both below and above atmospheric pressure are operable. Hexafluoropropylene oxide is a gas over much of the operable temperature range and pressures close to atmospheric pressure are preferred. Operable molar proportions of hexafluoropropylene oxide to the compounds of formula III can vary from about 1:20 to about 20:1, preferably about 1 to 1.
As illustrated in the examples, more than one mol of hexafluoropropylene oxide can react with a compound of formula III to yield compounds of formula V in which m is greater than one. To obtain products with higher values of m, higher molecular proportions of hexafluoropropylene oxide are employed and higher pressures and lower tempera-tures are selected. To obtain products with lower values of m (e.g. 1 or 2) higher molecular proportions of the compound of formula III are employed and lower pressures and higher temperatures are selected.
Each of the compounds of formula I is a reactive organic compound which is at once a carboxylic ester and an acid fluoride. Such fluorinated compounds are rare, and understandably so because the known processes for synthe-sizing difunctional carboxylic compounds readily yield dicarboxylic esters as well as diacid fluorides but teach almost nothing about how to obtain compounds with both a carboxylic ester group and a carbonyl fluoride group in the same molecule. In carrying out reactions with compounds ,~ O
` 1~L4~566 of formula I care must be taken to prevent their ready conversion to the more ordinary corresponding dicarboxylic esters or dicarbonyl fluorides.
Compounds of formula I are useful as intermediates in the preparation of new fluorine-substituted polymerizable olefinic compounds containing carboxylic acid, ester or nitrite groups. As shown in the examples, the compounds of formula I in which n = 0 can be reacted with hexafluoro-propylene oxide in the presence of fluoride ion catalyst to prepare the compounds of formula I in which n is 1 to 6, e.g., the compounds of formula V. In turn the compounds of formula V can be pyrolyzed over a solid basic salt such as sodium phosphate, sodium carbonate or potassium carbonate at moderate temperatures to obtain the corresponding polymerizable monomers of formula VI according to the equation (Example 7) . . , , 3 CF2--~--CF20CF )m COF ~ CF2CF2O-~-CF-CF2-O ~ CF=CF2 V VI (p is 1 to 5) As illustrated in the examples, the monomers of formula VI can be homopolymerized to heavy oils suitable as lubricants and can be copolymerized with one or more comonomers such as, for example, tetrafluoroethylene or chlorotrifluoroethylene, to yield tough, solid polymers which are thermoplastic and capable of being hot pressed or rolled into sheets and films for wrapping uses, as protective layers where exceptional chemical stability is required and as ion exchange membranes in electrolysis cells.
For polymer uses requiring ion-exchange capability, such as electrolysis cell membranes, monomers of formula VI
may also be polymerized in a form in which the terminal functional group is -COOM or -COOH. The metal salts (-COOM) are produced from the esters (-COOR) by hydrolysis with alkali metal hydroxides, ammonium hydroxide or quaternary ammonium hydroxide. The free acids (-COOH) are readily produced by acid-catalyzed hydrolysis of the diesters in cold water.
Alternatively, monomers of formula VI can be converted as illustrated in Example 8 to polymerizable monomers containing primary -CN groups:
CF2CF20 ~ CF-CF20 ~ CF=CF2 ~ CF2CF20 ~ CF-CF20 ~ CF=CF2 VI VII
Monomers of formula VII can also be homopolymerized or, preferably, copolymerized with one or more comonomers such as, for example, tetrafluoroethylene, chlorotrifluoro-ethylene or perfluoromethylvinylether, to yield tough, solid polymers in the same manner as formula VI monomers (Utility Fxamples A-D). Formula VII monomers, by virtue of their primary -CN groups, are especially useful for incorporating cure sites into elastomeric copolymer compositions.
The polymerizable monomers of this invention contain a tetrafluoroethylene segment -CF2CF2- between the terminal -COOR or -CN groups and the first ether oxygen, e.g., carbons (1) and (2) in the structure CF2CF20 ~ CF-CF20 )p CF=CF2 (1)(2) 456t~
The art provides a means of preparing structures of the formula SO2F ,CF3 CF2CF2O-~-CF-CF O-~-CF=CF
VIII
However, it is not known how to convert formula VIII structures to the corresponding carboxylated compounds because one -CF2-is necessarily consumed in such conversions; thus SO2F ,CF3 CF2CF2O-t-CF-CF2o ~ CF=CF2 >
VIII
CF2 O~CF-CF2 O~CF=CF2 IX
While monomers of formula IX are useful they are distinctly different and demonstrably inferior to the monomers of this invention in the properties they impart to copolymers prepared from them. For example, experiments summarized in Tables 1 and 2 show that copolymers of monomer VI (R=H) with tetrafluoroethylene are superior to similar copolymers of monomer IX (R=H) in tensile properties and in retention of these properties on exposure to heat and high concentrations of alkali, conditions found in chlor-alkali electrolysis cells where carboxyl functional fluorovinylether copolymers are useful as membranes.
4~i66 Table 1 Tensile Properties After Aging in 30% NaOH at 90 Days Tensile Strength Elongation CopolymerAged psi (%) <10 ---Table 2 Days to Onset of Film Brittleness* in Alkaline Environment Temperature Copolymer Copolymer Solution(C) TFE/VI TFE/IX
25% KOH ~110 >0.1 <0.1 25% DMSOJ
30% NaOH115 >10 3-7 30% NaOH 90 120 20 * Defined as rupture when film is bent 180.
Copolymer~ prepared from formula VI and VII monomers may be represented by the repeating unit ~~ ~ [ CX--CX
~P
5f~6 in which Y is -COOR, -COOH, -COOM, or -CN, where R and M
are defined as above, p is 1 to 5, q is 0 to 1000, the X's may all be fluorine or two fluorine and one chlorine, and Z is -F, -RF or -ORF where RF is perfluoroalkyl of 1-6 carbon atoms, preferably 1-2 carbon atoms. The preferred copolymers are prepared from two or more monomers and have average compositions represented by the above formula where .p is 1 or 2 and q is 1 to 200. Values of q from 1 to 9 are preferred for carboxylated copolymers used as electrolysis cell membranes; q of 20 to 200 is preferable in nitrile-functional elastomers.
In the examples which follow parts are by weight unless otherwise specified.
Example 1 CF -COF
Sulfur trioxide (40 ml) was added to a 3-neck flask attached to a still and fitted with a dropping funnel and thermometer. Crude CH3OCF2CF2COOCH3 (100 g) was added dropwise from the funnel to the magnetically stirred sulfur trioxide at a rate to maintain a gentle reflux due to the exothermic reaction. When addition was complete, the mixture was distilled at atmospheric pressure. Product distilling at 82-86C was shown by gas chromatographic analysis to contain about 69.5 g of H3COOC-CF2-COF (85~) and the remainder mostly CH3OSO2F. This mixture was passed over sodium fluoride pellets at about 400C/4 mm, converting the CH3OSO2F to CH3F and NaOSO~F. Pure H3COOC-CF2-COF was then isolated by distillation.
Example 2 COOCH3F + CF CF CF CsF COOCH3 ,CF3 o In a 250 ml glass flask fitted with a dry ice condenser and ports for addition of gases, liquids and solids, was placed 20 ml tetraglyme (tetraethyleneglycol dimethyl ether), 6.0 g CSF and 26.3 g crude H3COOCCF2COF
(containing 3% CH3OSO2F). With the mixture kept below 15C, 29. 2 g of hexafluoropropylene oxide (HFPO) was slowly added.
Upon completion of the reaction, excess H3COOCCF2COF and HFPO were removed under vacuum at 40C. The residue was distilled and crude H3COOC-CF2-CF2-O-CF(CF3)-COF distilled at 75-95C/400 mm. Its structure was confirmed by:
IR (liq.): 1900, 1820, 1330, 1250, 1140, 1035 cm 1 PMR (CC14): 4.04 ppm (singlet) FMR (CC14): +21.6 (multiplet, lF), -82.4 (broad mult., 4F), -86. 3 (mult., lF), -119.8 (mult., 2F), -130 ppm (mult., lF) ~ ~,.
Example 3 A 150 ml Carius tube was loaded with a mixture of 0.5 g each of CsF and KF (vacuum dried at 400C), 3 ml tetraglyme, 34.5 g H3COOC-CF2-COF and 60 g HFPO. The tube was sealed and rotated overnight at room temperature.
Distillation of the reaction mixture yielded 15 g H3COOC-CF2-CF2-O-CF(CF3)-COF, b.p. 65C/100 mm.
Anal. Calcd. for C7H3F~04: C, 26.10; H, 0.94;
F, 53.09 Found: C, 25.87; H, 0.89;
F, 53.34 Example 4 CF2COF + CF2-CF-CF3 CsF ~ CF2--~--CF2-0-CF ~ OF
o Powdered cesium fluoride (15 g) was placed in a 500 ml 4-necked flask, which was then plugged except for a connection to a manifold attached to a vacuum pump and open-end manometer. Vacuum was applied to the flask while it was heated with a Meeker burner to thoroughly dry the cesium fluoride. After the flask had cooled, dry nitrogen was admitted and then a large magnetic stirrer. The flas~ was fitted with a thermometer, reevacuated, filled with nitro-gen and 20 ml of tetraglyme and 63 g (0.4 m) of H3COOCCF2COF
added. The flask was then cooled to -10C, evacuated and filled to 600 mm pressure with hexafluoropropene epoxide (HFPO) three times. Stirring was started and the pressure of HFPO was maintained automatically at 600 mm by a vacuum regulator. The HFPO was absorbed steadily in an exothermic reaction and cooling was necessary to keep the temperature between 0 and ~10C. The reaction was stopped after 140 g (0.84 m) of HFPO had been absorbed.
The low layer (190 g) was distilled. The products obtained are tabulated below. The ratio of products formed can be varied by the temperature of reaction and mainly by the amount of HFPO used.
PP~D~rS
P~ALYSES
.
FormLla b.p. wt. Empirical %C %H %F
n = C/mm (g) Formula Calcd. Fd. Calcd. F ~lcd. -Fd.
169/100 11.8 C7H3F904 26.10 25.87 0.94 0.89 53.09 53.34 2106/100 14.9 CloH3F15O5 24.61 24.65 0.62 0.74 58.39 58.49 357/0.3 31.3 C13H3F21O6 23.87 24.07 0.46 0.61 60.99 60.72 480/0.2 42.5 C16H3F27O7 23.43 23.78 0.37 0.48 62.55 62.40 585/0.2 24.8 C18H3F33O8 23.14 23.51 0.31 0.52 63.58 63.29 6107/0.5 5.7 Example 5 The procedure of Example 4 was repeated except that 182 g (1.17 m) of H3COOCCF2COF was used, no cooling was used (run at 55C) and the addition of HFPO was stopped after 190 g had been absorbed. In the distillation, 100 g of H3COOCCF2COF
was recovered and the products obtained were 87.5 g (0.27 m, 23%) of the product where n = 1, 40 g (0.08 m, 7%) of the product where n = 2 and 10 g (0.015 m, 1.3~) of the product where n = 3.
Example 6 COOCH3 ,COOCH3 ,CF3 2 20CF(CF3)COF + CF2-CF-CF CF2--~--CF2-0-CF--)n COF
\O
1~4~66 Using the apparatus and general procedure of Example 4, the reaction of 15 g of CSF, 20 ml tetraglyme, 234 g of H3COOCCF2CF2OCF(CF3)COF and 63 g HFPO was carried out at 68C. Distillation yielded 38 g (0.08 m, 11%) of the above product where n = 2 and 6 g (0.01 m, 1%) of the product where n = 3.
Example 7 COOCH3 ,CF3 CF3 Na3P4 COOCH3 CF3 CF2CF2OCFCF2OCFCOF > CF2CF2OCFCF2OCF=CF2 Into the top of a vertically mounted quartz tube 1 inch in diameter and 12 inches long containing 90 cc of fine granules of sodium phosphate (predried at 400C) stirred by a motor driven stainless steel screw in the center, the granules heated to 235-240C by an external split-type fur-nace, was passed 6.4 g of H3COOCCF2CF2OCF(CF3)CF2OCF(CF3)COF
along with a slow current of nitrogen over a period of 9 minutes. Off-vapors from the bottom of the tube were condensed and collected in a Dry Ice-acetone cooled trap.
The liquid product was distilled to obtain 3.7 g (67~) of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)-trifluoroethoxy]tetrafluoropropionate, b.p. 98C/110 mm.
~nal. Calcd. for CgH3F13O4: C, 25-61; H~ 0-72;
F, 58.51 Found: C, 25.47; H, 0.81;
F, 59.87.
" 11~4566 Example 8 2 2 2 CF2 + NH3 ~ CF2CF20CFCF20CF=CF + CH OH
CONH2 Trifluoroacetic CF2CF20CFCF20CF=CF2 anhYidirid-CF2 CF2 CFCF2 CF=CF2 + H2 8 g (0.47 mol) of ammonia was added slowly with stirring from a weighed cylinder to 200 g (0.47 mol) of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)trifluoro-ethoxy]tetrafluoropropionate (Example 7) and 150 cc of ether contained in a flask cooled in a Dry Ice-acetone bath (ca.
-80C) and evacuated. The amide so formed was extracted at room temperature with 1,1,2-trichlorolrifluoroethane, washed with water and then distilled; yield 17 g of clear liquid;
b.p. 90C at lmm. Hg.
The above amide was dehydrated to the nitrile by a method similar to that described by Campagna et al.
Tetrahedron Letters No. 21, 1813 (1977). 170 g (0.42 mol) of amide was dissolved in 150 cc of tetrahydrofuran at -10C, and 80 cc (1.0 mol) of pyridine and 70 cc (0.50 mol) of trifluoroacetic anhydride were added consecutively, with stirring, dropwise, maintaining temperature at -10 to 0C.
The mixture was allowed to warm to 25C, ice water was added, and the product layer was separated with the aid of a small quantity of 1,1,2-trichlorotrifluoroethane. The product was washed five times with water, then distilled.
Re-distillation over P205 is sometimes necessary to remove traces of water. Yield 135.3 g; b.p. 95-102C.
~45~;6 VTIIITY E~LE A
(1) _ - CF-CF2 - _ O
,CF2 FC-CF
o A glass tube containing 2 g of methyl 3-[2-(trifluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionate and 0.01 ml of a 6% solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoro-ethane was sealed under vacuum and rotated overnight at room temperature. Removal of unreacted monomer under vacuum left 0.5 g of oily homopolymer having a repeating unit of the above formula.
~F-CF2~F2 -CF2~
F,CCF3 o A glass tube containing 6 g of methyl 3-[2-(trifluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionate, 1 g tetrafluoroethylene and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoroethane was sealed under vacuum at liquid nitrogen temperature and then rotated at room temperature overnight. The mixture became very viscous.
Remaining tetrafluoroethylene was bled off and an 3Q additional 5 g of tetrafluoroethylene and 0.01 ml of the perfluoropropionyl peroxide solution was sealed into the tube. The tube was rotated for 5 hours at room temperature and then opened. Removal of volatiles at 100C under vacuum left 0.6 g of elastomeric copolymer of the above repeating unit where q is greater than 1.
F-CF2 ] [ CF2 2 ,CF2 F,CCF3 A 20 ml Carius tube containing 6.8 g (0.016 m) of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)-trifluoroethoxy]tetrafluoropropionate, 1.7 g (0.017 m) of tetrafluoroethylene, 2 ml of 1,1,2-trichlorotrifluoroethane and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in l,1,2-trichlorotrifluoroethane was sealed at liquid nitrogen temperature, rotated at room temperature overnight and then opened. The solid product was separated by filtration and washed with ether to obtain 1.7 g Of elastomeric copolymer. The copolymer was pressed at 250C
under 500 psi to yield a 3 mil film which showed strong infrared absorption for ester carbonyl at 5.5 ~. This film was heated for 3 hours at 100C in a solution of 15 g KOH
in 35 g water and 35 g dimethylsulfoxide (DMSO). Infrared examination of the resulting film showed the ester carbonyl band had been replaced by carboxylic acid absorption (broad at 2.8 ~ for -OH and at 5.95 ~ for C=O). This confirmed that a copolymer of the above repeating unit where q is greater than 1 was obtained.
(4) COOCH3 CF3 Na3PO4 COOCH3 CF3 CF2(CF2OCF)3COF ~ CF2CF20(CFCF2)2CF=CF2 Using the apparatus and general procedure of Example A(l) above, 22 g of H3COOCCF2[CF2OCF(CF3)]3COF was passed slowly with nitrogen over Na3PO4 at 235-240C.
Distillation of the collected product yielded 12 g (61%) of methyl 3-~2-(2-[trifluoroethenoxy]-1-[trifluoromethyl]-trifluoroethoxy)-1-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionate, b. p. 71C/5.5 mm.
C12 3 19 5: C, 24-50; H, 0.51;
F, 61.38 Found: C, 24.28; H, 0.68;
F, 61.44 UTILITY EXAMPLE B
(1) COOCH3 CF3 COOH CF
CF2CF2OCFCF2OCF=CF2 ~21~ NHclH~ CF2CF2OCFCF2OCF=CF2 In a separatory funnel 15 g of crude H3COOCCF2CF2OCF(CF3)CF2OCF=CF2 was shaken with 25 ml of 10%
aqueous NaOH at room temperature. The aqueous layer was separated and acidified with cold concentrated HCl. The lower layer which separated was distilled from a little P2O5 to obtain 10.7 g of 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)trifluoroethoxy]tetrafluoropropionic acid, b.p. 53C/0.25 mm, nD5 = 1.3078.
Anal. Calcd. for C8HF13O4: C, 23.54; H, 0.25;
F, 60.53;
. Neut. Eq., 408 Found: C, 23.80; H, 0.52;
F, 61.71;
Neut. Eq., 407.7 F-CF2 ~ [ CF2 2 ,CF2 o A glass tube containing 8.8 g of 3-[2-(tri-fluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]tetra-fluoropropionic acid, 2.2 g tetrafluoroethylene, 13 ml 1,1,2-trichlorotrifluoroethane and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoro-ethane was sealed and rotated at room temperature for 60 hours. Gases were bled off and 3 g tetrafluoroethylene and 0.01 ml of a 6% solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoroethane were added. The tube was sealed, rotated overnight at room temperature and then opened. Filtration and washing in ether yielded 2.3 g of copolymer of the repeating unit indicated above where q is greater than 1. A pressed film showed strong infrared absorption for -COOH.
UTILITY EXAMPLE C
( 1) ~F-CF2 ( CF2 CF2 CE'2 Using the general procedure of Example A(3), six 20 ml Carius tubes were each charged with 0.01 ml of a 6%
solution of perfluoropropionyl peroxide in 1,1,2-trichloro-trifluoroethane and the respective quantities of methyl 3-[2-(trifluoroethenoxy)-1-(trifluoromethyl)trifluoro-ethoxy]tetrafluoropropionate (vinyl ether), tetrafluoro-ethylene (TFE) and 1,1,2-trichlorotrifluoroethane (solvent) indicatsd in the table below. The tubes were sealed at liquid nitrogen temperature, rotated at room temperature overnight, cooled and opened. The respective amounts of copolymer were recovered by filtration, washed with ether and dried.
Vinyl TFE Solvent Copolymer Tube Ether (~) (g) (ml) (g) A 30.4 7.2 0 2.45 B 19.5 4.6 4 2.31 C 18 5 5 3.01 D 19 5 4 3.55 E 12.9 3 12 2.9 F 12.8 3 8 2.8 The six copolymer products were combined and a film was pressed at 360C/20,000 psi. After hydrolysis in KOH-H2O-DMSO as in Example A(4) the copolymer was shown to have a neutral equivalent of 1500, confirming that the copolymer had the average composition represented by the formula above.
~F CF2 3 [ CF2 2 ~
,CF2 ~0 FCCF3 A glass tube containing 8.8 g of 3-[2-(trifluoro-ethenoxy)-1-(trifluoromethyl)trifluoroethoxy]tetrafluoro-propionic acid, 2.2 g tetrafluoroethylene, 13 ml 1,1,2-trichlorotrifluoroethane and 0.01 ml of a 6~ solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoro-ethane was sealed and rotated at room temperature for 60 hours. Gases were bled off and 3 g tetrafluoroethylene and 0.01 ml of a 6% solution of perfluoropropionyl peroxide in 1,1,2-trichlorotrifluoroethane were added. The tube was sealed, rotated overnight at room temperature and then opened. Filtration and washing in ether yielded 2.3 g of copolymer of the repeating unit indicated above where q is greater than 1. A pressed film showed strong infrared absorption for -COOH.
UTILITY EXAMPLE D
(1) Titration of 12.671 g (0.031 m) of 3-[2-(tri-fluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionic acid to a neutral end point (phenol-phthalein indicator) with 15.54 ml of 0.2N sodium hydroxide indicated a neutral equivalent of 407.69 (Calcd. 408). An excess of l ml of 0.2N NaOH was added and the solution frozen in a 50 ml Carius tube. Then a solution of 0.25 g ammonium persulfate in 10 ml water, a solution of 0.2 g Na2S2O3 5H2O in 10 ml water and 3.1 g tetrafluoroethylene were added separately with freezing before sealing the tube. The tube was rotated overnight at room temperature to obtain a clear solution and a little solid polymer.
The solution was filtered and acidified to give a gel which was mostly soluble in ether. Removal of ether and drying at 100C under vacuum gave 3.2 g of copolymer from which a film was pressed at 100C/10,000 psi. The copolymer absorbed strongly in the infrared for -COOH
(broad 3 ~ and 5.7 ~).
(2) _ _ _--------CF-CF2 ( CF2 CF2 )15 _ o 2 C 2 COONa Using the general procedure of Example D(l) a 200 ml Carius tube containing 6 g (0.015 m) of 3-[2-(trifluoroethenoxy)-l-(trifluoromethyl)trifluoroethoxy]-tetrafluoropropionic acid neutralized with a slight excess of 0.2N sodium hydroxide, 0.25 g ammonium persulfate in 10 ml water, 0.02 g Na2S2O3-5H2O in 10 ml water and 10 g tetrafluoroethylene was rotated overnight at room temper-ature and then cooled and opened. A gel-like polymer tSodium salt) was collected by filtration and vacuum dried at 100C to give 6.5 g of copolymer of the average compo-sition indicated by the above repeating unit (neutral equivalent by titration 1976). The filtrate was acidified to give an acid copolymer which was collected by filtration and vacuum dried at 100C (wt. 5.8 g).
The application is a division of copending Canadian Application Serial No. 301 618, filed 1978 April 20.
Claims (9)
1. A compound of the formula:
wherein Y is -COOR, -COOH, -COOM or -CN, R is an alkyl group of from 1 to 6 carbon atoms, M is an alkali metal, ammonium or quaternary ammonium, and p is 1 to 5.
wherein Y is -COOR, -COOH, -COOM or -CN, R is an alkyl group of from 1 to 6 carbon atoms, M is an alkali metal, ammonium or quaternary ammonium, and p is 1 to 5.
2. The compound of Claim 1 wherein Y is -COOR.
3. The compound of Claim 1 wherein p is 1.
4. The compound of Claim 2 wherein p is 1.
5. The compound of Claim 2 wherein R is methyl or ethyl.
6. The compound of Claim 4 wherein R is methyl or ethyl.
7. The compound of Claim 5 wherein p is 2.
8. The compound of Claim 1 wherein y is -CN.
9. The compound of Claim 8 wherein p is 1.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/789,724 US4131740A (en) | 1977-04-20 | 1977-04-20 | Alkyl perfluoro-ω-fluoroformyl esters and their preparation |
US789,724 | 1977-04-20 | ||
US05/868,615 US4138426A (en) | 1977-04-20 | 1978-01-11 | Alkyl perfluoro-ω-fluoroformyl esters and monomers therefrom |
US868,615 | 1978-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1144566A true CA1144566A (en) | 1983-04-12 |
Family
ID=27120942
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA301,618A Expired CA1130313A (en) | 1977-04-20 | 1978-04-18 | ALKYL PERFLUORO-.omega.-FLUOROFORMYL ESTERS, THEIR PREPARATION AND MONOMERS THEREFROM |
CA000394206A Expired CA1144566A (en) | 1977-04-20 | 1982-01-14 | Alkyl perfluoro-w-fluoroformyl esters, their preparation and monomers therefrom |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA301,618A Expired CA1130313A (en) | 1977-04-20 | 1978-04-18 | ALKYL PERFLUORO-.omega.-FLUOROFORMYL ESTERS, THEIR PREPARATION AND MONOMERS THEREFROM |
Country Status (1)
Country | Link |
---|---|
CA (2) | CA1130313A (en) |
-
1978
- 1978-04-18 CA CA301,618A patent/CA1130313A/en not_active Expired
-
1982
- 1982-01-14 CA CA000394206A patent/CA1144566A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1130313A (en) | 1982-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4138426A (en) | Alkyl perfluoro-ω-fluoroformyl esters and monomers therefrom | |
US3274239A (en) | Fluorocarbon ethers | |
JP3801661B2 (en) | Novel perfluorodioxole, process for its production, and homopolymers and copolymers obtained therefrom | |
US4526948A (en) | Fluorinated vinyl ethers, copolymers thereof, and precursors thereto | |
US3467638A (en) | Fluorinated cure-site monomers and vulcanizable fluorocarbon polymers made therewith | |
US4515989A (en) | Preparation decarboxylation and polymerization of novel acid flourides and resulting monomers | |
EP0062324A1 (en) | Perfluoroglycidyl ethers | |
CN113166304B (en) | Method for producing fluorosulfonyl group-containing fluoropolymer, method for producing fluoropolymer containing salt-type sulfonic acid groups, and method for producing fluoropolymer containing acid-type sulfonic acid groups | |
EP0062120B1 (en) | Alkyl perfluoro(2-methyl-5-oxo-3-oxahexanoates) and derivatives thereof | |
GB1571356A (en) | Polyfluoroallyloxy compounds their preparation and copolymers therefrom | |
WO1991011420A1 (en) | Hydroxy containing fluorovinyl compounds and polymers thereof | |
US4687821A (en) | Preparation, decarboxylation and polymerization of novel acid fluorides and resulting monomers | |
CA1210024A (en) | Fluorinated polyether and derivatives thereof | |
US5313003A (en) | Copolymerizable fluorinated compounds, a process for their preparation and thermoplastic fluoropolymers obtainable therefrom | |
US4440917A (en) | Vinyl ethers monomers and polymers therefrom | |
US4454247A (en) | Ion exchange membranes | |
US4474899A (en) | Process for preparing ester fluorinated ion exchange polymer precursor by acid treatment of ether | |
CA1144566A (en) | Alkyl perfluoro-w-fluoroformyl esters, their preparation and monomers therefrom | |
US4675453A (en) | Process and intermediates for fluorinated vinyl ether monomer | |
US4390720A (en) | Alkyl-ω-fluoroformyl ester and process | |
US4556747A (en) | Fluorinated vinyl ethers, copolymers thereof, and precursors thereto | |
DE69025412T2 (en) | PARTLY FLUORINE COMPOUNDS AND POLYMERS | |
US4247713A (en) | Alkyl perfluoro-ω-fluoroformyl esters and their preparation | |
US3480603A (en) | Polymers of difluoroketene dialkyl acetals | |
US3694499A (en) | Process for preparing perfluoro 3-phenoxypropionic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |