BRPI0905590A2 - industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules - Google Patents
industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules Download PDFInfo
- Publication number
- BRPI0905590A2 BRPI0905590A2 BRPI0905590-8A BRPI0905590A BRPI0905590A2 BR PI0905590 A2 BRPI0905590 A2 BR PI0905590A2 BR PI0905590 A BRPI0905590 A BR PI0905590A BR PI0905590 A2 BRPI0905590 A2 BR PI0905590A2
- Authority
- BR
- Brazil
- Prior art keywords
- microorganisms
- alginate
- microcapsules
- lactobacillus
- kefir
- Prior art date
Links
Landscapes
- Medicinal Preparation (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
PROCESSO INDUSTRIAL DE IMOBILIZAçãO DE UM CONSóRCIO DE MICRORGANISMOS PRESENTES NO KEFIR BIOLOGICUS, BEM COMO DE SEUS BIOATIVOS, POR MEIO DA FORMAçãO DE MICROCáPSULAS DE ALGINATO DE CáLCIO MODIFICADO onde se microencapsula os microorganismos presentes no kefir, assim como seus produtos metabólicos, permitindo a sua conservação sem os cuidados exigidos pelo kefir não processado, bem como viabilizando a sua inclusão em alimentos, cosméticos e medicamentos sem lhes modificar a cor, sabor ou odor e, ao mesmo tempo lhes conferindo os benefícios probiáticos do kefir.INDUSTRIAL PROCESS OF IMMOBILIZATION OF A CONSORTIUM OF MICRO-ORGANISMS PRESENT IN KEFIR BIOLOGICUS, AS WELL AS ITS BIOACTIVES, THROUGH THE FORMATION OF MODIFIED CALCIUM ALGINATE MICROCASULES where microorganisms are present in their conservation, as well as microorganisms present in the kefir, thus without the care required by unprocessed kefir, as well as enabling its inclusion in foods, cosmetics and medicines without changing their color, taste or odor and, at the same time, giving them the probiotic benefits of kefir.
Description
"PROCESSO INDUSTRIAL DE !MOBILIZAÇÃO DE UMCONSÓRCIO DE MICRORGANISMOS PRESENTES NO KEFIRBIOLOGICUS, BEM COMO DE SEUS BIOATIVOS, POR MEIO DAFORMAÇÃO DE MICROCÁPSULAS DE ALGINATO DE CÁLCIOMODIFICADO"."INDUSTRIAL PROCESS OF! MOBILIZING A MICRORGANISM CONSERVATION PRESENT IN THE KEFIRBIOLOGICUS AS WELL AS ITS BIOACTIVES BY MEASURING CALCIUM MODIFIED ALGINATE MICROCapsules".
Trata a presente invenção de um processo industrial deThe present invention deals with an industrial process of
imobilização de um consórcio de microrganismos presentes no KefirBioLogicus, bem como de seus bioativos, por meio deencapsulamento em forma de microcápsulas, esféricas, à base de alginato de cálcio modificado com Kefirano e Pectina. Tal invençãopermite a distribuição dos microrganismos e de seus bioativos sema necessidade de maior manutenção pelo usuário, bem como aaplicação direta das microcápsulas em alimentos, cosméticos edermocosméticos, tornando-os probióticos e/ou com componentesprobióticos.immobilization of a consortium of microorganisms present in KefirBioLogicus, as well as their bioactives, by means of spherical microcapsule encapsulation based on Kefirane and Pectin modified calcium alginate. Such invention allows the distribution of microorganisms and their bioactives without the need for greater maintenance by the user, as well as the direct application of microcapsules in food, cosmetics and dermocosmetics, making them probiotic and / or with probiotic components.
No início dos anos 70, Todd definiu amicroencapsulação como a tecnologia de empacotamento, comfinas coberturas poliméricas aplicáveis em sólidos, gotículas delíquidos ou material gasoso, formando pequenas partículasdenominadas microcápsulas, que podem liberar seu conteúdo sobvelocidade e condições específicas. Por sua vez, ARSHADY (1993)descreveu as microcápsulas como embalagens extremamentepequenas, compostas por um polímero como material de parede eum material ativo chamado de núcleo. Ainda de acordo comSHAHIDI e HAN (1993), as microcápsulas têm a capacidade demodificar e melhorar a aparência e as propriedades de umasubstância. Esses autores listaram os seguintes motivos para o usoda microencapsulação na indústria alimentícia: (a) reduzir areatividade do material de núcleo com o ambiente; (b) diminuir avelocidade de evaporação ou de transferência do materialencapsulado; (c) promover liberação controlada; (d) mascarar sabore odor desagradáveis; e (e) promover a diluição homogênea domaterial encapsulado em uma formulação alimentícia. Nos últimosanos, tais definições e empregos da microencapsulação têm sidoampliados devido às novas necessidades que a indústria dealimentos demonstra em propriedades cada vez mais complexasnas formulações, que muitas vezes só podem ser conferidas pormeio de tal processo (GOUIN, 2004). Dentro dessas necessidades,o conceito de liberação controlada tem sido cada vez maissolicitado (GOUIN, 2004; SANGUANSRI e AUGUSTIN, 2006;UBBINK e KRUGER, 2006). Há uma tendência mundial que apontapara a necessidade de que os alimentos não sejam mais vistossomente como uma fonte de nutrientes com apelo sensorial, mastambém como fonte de bem-estar e de saúde para a população.Esta mudança de perspectiva requer, indiscutivelmente, mudançasde paradigma no desenvolvimento de novos produtos, aplicando-seos métodos tradicionais, mas também se observando anecessidade do controle da bioacessibilidade de determinadoscomponentes dos alimentos. Esta abordagem se torna cada vezmais relevante conforme se estabelecem as relações entregenética, alimentação e saúde (SANGUANSRI e AUGUSTIN,2006), e a microencapsulação é um meio efetivo de se alcançar taisobjetivos. Os ingredientes ativos adicionados aos alimentos incluemos tradicionais, como: aromas, vitaminas, minerais, e tambémoutros mais recentes, como os microrganismos probióticos(FAVARO-TRINDADE e GROSSO, 2002; KAILASAPATHY, 2006),peptídeos bioativos (ARIMOTO ET AL., 2004) e diversas outrasclasses de bioativos. GOUIN (2004) e DESAI e PARK (2005)chegaram a afirmar que, através de propriedades de liberaçãocontrolada finamente ajustadas, a microencapsulação deixa de sersomente um método de agregação de substâncias a umaformulação alimentícia, e se torna uma fonte de ingredientestotalmente novos como propriedades únicas. Além disso, ainovação na indústria de alimentos já necessita, sem dúvidaalguma, da mudança de foco da observação das propriedadesmacroscópicas para aqueias que surgem na meso e nananoescalas, com o subseqüente controle das estruturashierárquicas nos alimentos e na sua funcionalidade. Por essemotivo, são cada vez mais imprescindíveis os estudos sobre asrelações entre as estruturas nano e supramoleculares, bem comoda funcionalidade nos níveis físico, nutricional e fisiológico(SANGUANSRI e AUGUSTIN, 2006).In the early 1970s, Todd defined microencapsulation as packaging technology, with fine polymeric coatings applicable to solids, deliquid droplets, or gaseous material, forming small particles called microcapsules, which can release their contents at specific speeds and conditions. In turn, ARSHADY (1993) described microcapsules as extremely small packages, composed of a polymer as a wall material and an active material called a core. Also according to SHHIDI and HAN (1993), microcapsules have the ability to demodify and improve the appearance and properties of a substance. These authors listed the following reasons for the use of microencapsulation in the food industry: (a) reducing the reactivity of the core material to the environment; (b) decrease the rate of evaporation or transfer of encapsulated material; (c) promote controlled release; (d) mask unpleasant odor flavors; and (e) promote homogeneous dilution of encapsulated material in a food formulation. In recent years, such definitions and uses of microencapsulation have been expanded due to the new needs that the food industry demonstrates in increasingly complex properties in formulations, which can often only be met by such a process (GOUIN, 2004). Within these needs, the concept of controlled release has been increasingly requested (GOUIN, 2004; SANGUANSRI and AUGUSTIN, 2006; UBBINK and KRUGER, 2006). There is a worldwide trend that points to the need for food to no longer be seen as a source of nutrients with sensory appeal, but also as a source of well-being and health for the population. This change of perspective undoubtedly requires paradigm shifts in development of new products, applying the traditional methods, but also observing the need to control the bioaccessibility of certain food components. This approach becomes increasingly relevant as the relations between delivery, food and health are established (SANGUANSRI and AUGUSTIN, 2006), and microencapsulation is an effective means of achieving such goals. Active ingredients added to foods include traditional ingredients such as aromas, vitamins, minerals, and also newer ones such as probiotic microorganisms (FAVARO-TRINDADE and GROSSO, 2002; KAILASAPATHY, 2006), bioactive peptides (ARIMOTO ET AL., 2004) and several other classes of bioactive. GOUIN (2004) and DESAI and PARK (2005) have even stated that, through finely tuned controlled release properties, microencapsulation ceases to be merely a method of aggregating substances into a food formulation, and becomes a source of totally new ingredients as unique properties. . In addition, innovation in the food industry already undoubtedly already needs a shift in focus from observing macroscopic properties to meso and nanoscale eateries, with subsequent control of hierarchical structures in foods and their functionality. For this reason, studies on the relationship between nano and supramolecular structures are increasingly essential, as well as functionality at the physical, nutritional and physiological levels (SANGUANSRI and AUGUSTIN, 2006).
Os microrganismos probióticos são, no conceito daOrganização Mundial de Saúde, "organismos vivos que, quandoadministrados em quantidades adequadas, conferem benefício àsaúde do hospedeiro". Probióticos, para outros autores, sãodefinidos como sendo microrganismos que se estabelecem no meiointestinal e oferecem efeitos benéficos ao hospedeiro (humanos ouanimais), substancialmente através da manutenção e da melhoriada microbiota (entre os microrganismos benéficos e os maléficos)do intestino (FULLER 1989; 1991; GOLDIN 1998, GISMONDO ETAL. 1999). A humanidade já se utiliza a centenas de anos dosalimentos probióticos, principalmente aqueles derivados do leite,como é o caso do iogurte, kefir, entre outros. Nos anos recentes,com a maior conscientização da população para os benefícios àsaúde trazidos pelos probióticos, tem havido uma demanda nomercado por este tipo de alimento, predominando no mercadovariantes de leites fermentados por um ou dois tipos demicrorganismos. Vários benefícios à saúde tem sido atribuídos aosprobióticos assim como propriedades antimutagênicas,anticancerígenas, antiinflamatórias, estimulação do sistemaimunológico, redução de colesterol, alívio da intolerância a Iactose eganho nutricional (GILLILAND e SPECK, 1977; KIM e GILLILAND,1983; RASIC e KURMANN, 1983; GURR1 1987; GILLILAND, 1989;SURAWiCS ET AL., 1989; FULLER, 1992; BUCK e GiLLiLAND11994; LANKAPUTHRA AND SHAH1 1995; DALY AND DAVIS1 1998;KLEIN ET AL., 1998; MACFARLANE e CUMMINGS, 1999;MOMBELLI e GISMONDO, 2000). Espécies de Lactobacillusacidophilus, L casei, Bifidobacterium bifidum, B. longum, B. breve,B. infantis e B. Iactis (B. animalis) são as bactérias mais popularesaplicadas em produtos alimentares probióticos (DALY e DAVIS,1998; KLEIN ET AL., 1998; MACFARLANE e CUMMINGS, 1999).Muitas pesquisas envolvendo estudos de viabilidade esobrevivência dos probióticos no trato gastrointestinal e emprodutos alimentares (especialmente em produtos lácteosfermentados) tem revelado que de uma forma geral, a viabilidadediminui drasticamente devido à exposição aos fatores ambientaisprejudiciais assim como ácidos orgânicos, íons hidrogênio, oxigêniomolecular e componentes antibióticos (GILLILAND e SPECK, 1977;HAMILTON-MILLER, 1999. IWANA ET AL., 1993; LANKAPUTHRAe SHAH, 1995; SHAH ETAL., 1995; DAVE e SHAH, 1996; DAVE eSHAH, 1997; KAILASAPATHY e RYBKA, 1997; SHAH eLANKAPUTHRA, 1997; KEBARY ET AL., 1998; BEAL ET AL.,1999; GARDINI ET AL., 1999; HAMILTON-MILLER ET AL., 1999;SCHILLINGER, 1999; VINDEROLA ET AL., 2000; SULTANA ETAL., 2000; MORTAZAVIAN ET AL., 2006). Em complemento, osefeitos benéficos dos microrganismos probióticos aparecem quandoeles, após sobreviverem às condições desfavoráveis, chegam aointestino viáveis e em quantidade suficientemente alta para atuaremno meio (GILLILAND, 1989). Uma quantidade mínima de célulasprobióticas, (UFC/g) no produto no momento de consumo, que énecessária para que os efeitos farmacêuticos benéficos (preventivoou terapêutico) dos probióticos seja representado pelo mínimo doíndice "bio-vaiue" (do ingiês MBV - minimum of bio-value)(MORTAZAVIAN ET AL., 2006). De acordo com a recomendaçãoda "International Dairy Federation (IDF)" este índice deve estar igualou acima de 107 UFC/g (OUWEHAND e SALMINEN, 1998). Emalguns países como Argentina e Brasil este valor deve estar igualou acima de 106 UFC/g no caso de bifidobactérias. Este padrão noJapão tem sido apresentado como sendo acima de 107 UFC/g(ROBINSON, 1987). Outras recomendações têm sido apresentadaspor diferentes pesquisadores, assim como, índice acima de 106UFC/g para todos os probióticos presentes em iogurtes(ROBINSON, 1987; KURMAN e RASIC, 1991) e acima de 107UFC/g no caso de bifidobactérias (HOLCOMB ET AL., 1991). Alémdo índice MBV, há um segundo índice denominado ID ("intakedaily") de cada produto alimentar também determinável por seupotencial ou efetividade probiótica. A quantidade mínima desteíndice tem sido recomendada com aproximadamente 109 célulasviáveis por dia (SHAH ET AL., 1995; KURMAN e RASIC, 1991;MORTAZAVIAN, 2006). Perda de viabilidade dos probioticos emprodutos alimentares (especialmente tipos fermentados) econdições ácidas da bile do trato gastrointestinal tem estimuladopesquisadores a encontrar novos métodos eficientes quemantenham a viabilidade. Microencapsulação, como um dos novose mais eficientes métodos, tem sido alvo de especial consideração6/36Probiotic microorganisms are, in the World Health Organization's concept, "living organisms which, when administered in adequate amounts, confer a benefit on the health of the host." Probiotics, for other authors, are defined as microorganisms that settle in the gut and provide beneficial effects to the host (human or animal), substantially through the maintenance and improved microbiota (between beneficial and harmful microorganisms) of the intestine (FULLER 1989; 1991 GOLDIN 1998, GISMONDO ETAL 1999). Mankind has been using hundreds of years of probiotic foods, especially those derived from milk, such as yogurt, kefir, among others. In recent years, with increasing public awareness of the health benefits of probiotics, there has been market demand for this type of food, predominating in the market for milk fermented by one or two types of microorganisms. Various health benefits have been attributed to probiotics as well as antimutagenic, anticancer, anti-inflammatory properties, immune system stimulation, cholesterol reduction, relief of lactose and lactose intolerance (GILLILAND and SPECK, 1977; KIM and GILLILAND, 1983; RASIC and KURMANN, 1983). ; GURR1 1987; GILLILAND, 1989; SURAWiCS ET AL., 1989; FULLER, 1992; BUCK and GiLLiLAND11994; LANKAPUTHRA AND SHAH1 1995; DALY AND DAVIS1 1998; KLEIN ET AL., 1998; MACFARLANE and CUMMINGS, 1999; 2000). Lactobacillusacidophilus, L. casei, Bifidobacterium bifidum, B. longum, B. brev, B. B. Iactis (B. animalis) are the most popular bacteria applied to probiotic food products (DALY and DAVIS, 1998; KLEIN ET AL., 1998; MACFARLANE and CUMMINGS, 1999). Much research involving probiotic viability and survival studies in gastrointestinal tract and food products (especially in dairy products) has revealed that viability generally decreases dramatically due to exposure to harmful environmental factors as well as organic acids, hydrogen ions, molecular oxygen and antibiotic components (GILLILAND and SPECK, 1977; HAMILTON-MILLER 1999 IWANA ET AL., 1993; LANKAPUTHRAe SHAH, 1995; SHAH ETAL., 1995; DAVE and SHAH, 1996; DAVE eSHAH, 1997; KAILASAPATHY and RYBKA, 1997; SHAH and LANKAPUTHRA, 1997; KEBARY ET AL., 1998; BEAL ET AL., 1999; GARDINI ET AL., 1999; HAMILTON-MILLER ET AL., 1999; SCHILLINGER, 1999; VINDEROLA ET AL., 2000; SULTANA ETAL., 2000; MORTAZAVIAN ET AL., 2006). In addition, the beneficial effects of probiotic microorganisms appear when they, after surviving the unfavorable conditions, reach the intestines viable and high enough to act in the environment (GILLILAND, 1989). A minimum amount of probiotic cells (CFU / g) in the product at the time of consumption, which is necessary for the beneficial (preventive or therapeutic) pharmaceutical effects of probiotics to be represented by the minimum bio-vaue (MBV) index. -value) (MORTAZAVIAN ET AL., 2006). According to the "International Dairy Federation (IDF)" recommendation this index should be equal to above 107 CFU / g (OUWEHAND and SALMINEN, 1998). In some countries such as Argentina and Brazil this value should be equal to above 106 CFU / g for bifidobacteria. This pattern in Japan has been shown to be above 107 CFU / g (ROBINSON, 1987). Other recommendations have been presented by different researchers, as well as an index above 106UFC / g for all probiotics present in yogurts (ROBINSON, 1987; KURMAN and RASIC, 1991) and above 107UFC / g in the case of bifidobacteria (HOLCOMB ET AL. , 1991). In addition to the MBV index, there is a second index called the "intakedaily" index of each food product also determinable by its probiotic potential or effectiveness. The minimum amount of this index has been recommended with approximately 109 viable cells per day (SHAH ET AL., 1995; KURMAN and RASIC, 1991; MORTAZAVIAN, 2006). Loss of viability of probiotic food products (especially fermented types) and acid conditions of the bile of the gastrointestinal tract have encouraged researchers to find new efficient methods that maintain viability. Microencapsulation, as one of the newest and most efficient methods, has been the subject of special consideration6 / 36
e investigação. Do ponto de vista microbiológico amicroencapsulação pode ser definida como um processo deaprisionamento de microrganismos pelo revestimento destes comhidrocoloide(s) apropriado (s) com objetivo de separá-los do meiocircundante. Este processo resulta numa apropriada liberação dosmicrorganismos no meio intestinal (SULTANA ET AL., 2000;KRASAEKOOPT ET AL., 2003; PICOT e LACROiX1 2003a). Dentreos agentes que causam a liberação se encontram: mudança de pH,tensões mecânicas, aquecimento, atividades enzimática, pressãoosmótica, presença de alguns componentes químicos e tempo deestocagem podem ser mencionados (GOUIN, 2004). Amicroencapsulação dos microrganismos preserva-os da ação dosfatores do meio assim como elevada acidez e baixo pH(WENRONG e GRIFFITHS, 2000), sais biliares (LEE e HEO, 2000),choques térmicos induzidos pelas condições do processo assimcomo congelamento e secagem a frio (SHAH e RARULA, 2000),oxigênio molecular no caso de microrganismos anaeróbicos(SUNOHARA ET AL., 1995), choques térmicos quentes causadospelas condições de processos assim como "spray drying"(STEENSON ET AL., 1987) e agentes químicos antimicrobianos(SULTANA, 2000). Outras vantagens apontadas são o aumento daestabilidade das propriedades sensoriais e/ou sua melhoria(GOMES e MALCATA, 1999) e imobilização dos microrganismospara sua distribuição homogênea em um produto (STEENSON ETAL., 1987; KRASAEKOOPT ET AL., 2003) podem ser tambémcitados. A importância do método de microencapsulação, como umamaneira eficiente para aumentar a viabilidade probiótica justifica aimportância deste pedido.As microcápsulas possuem estruturas características.Cada microcápsula consiste de um recobrimento de hidrocoloides(também denominado cápsula) envolta do(s) microrganismo(s). Porserem as microcápsulas de forma geométrica esférica ou elíptica,são também denominadas micro esferas. As microcápsulas podemapresentar a superfície lisa ou rugosa. Cada microcápsula podeencapsuiar um ou vários tipos de microrganismos. Quando váriosmicrorganismos estão presentes na microcápsula, o líquidointersticial da solução preenche os espaços vazios da microcápsula.Rachaduras superficiais e/ou profundas podem aparecer nasmicrocápsulas. A propagação destas rachaduras leva a formaçãode poros, os quais reduzem consideravelmente a eficiência damicroencapsulação. As microcápsulas podem ser recobertas comuma segunda camada de um composto químico a fim de aumentara eficiência do processo de microencapsulação. A segunda camadaé também denominada revestimento ou suporte ou proteção.Microcápsulas com ou sem a presença de uma segunda camadaprotetora são conhecidas como microcápsulas recobertas oumicrocápsulas não-recobertas, respectivamente. Os constituintesaprisionados dentro do revestimento são conhecidos como núcleo(SULTANA ET AL., 2000; TRUELSTRUP-HANSEN ET AL., 2002;DIMANTOV ET AL., 2003; KRASAEKOOPT ET AL., 2003;CHANDRAMOULI ETAL., 2004).and research. From a microbiological point of view, microencapsulation can be defined as a process of trapping microorganisms by coating them with appropriate hydrocolloid (s) in order to separate them from the medium. This process results in an appropriate release of microorganisms in the intestinal environment (SULTANA ET AL., 2000; KRASAEKOOPT ET AL., 2003; PICOT and LACROiX1 2003a). Among the agents that cause the release are: pH change, mechanical stress, heating, enzymatic activities, pressure osmotic, presence of some chemical components and storage time can be mentioned (GOUIN, 2004). Micro-encapsulation of microorganisms preserves them from the action of medium factors as well as high acidity and low pH (WENRONG and GRIFFITHS, 2000), bile salts (LEE and HEO, 2000), thermal shocks induced by process conditions as well as freezing and cold drying ( SHAH & RARULA, 2000), molecular oxygen in the case of anaerobic microorganisms (SUNOHARA ET AL., 1995), hot thermal shocks caused by process conditions as well as spray drying (STEENSON ET AL., 1987) and antimicrobial chemicals (SULTANA , 2000). Other advantages pointed out are the increased stability of sensory properties and / or their improvement (GOMES and MALCATA, 1999) and the immobilization of microorganisms for their homogeneous distribution in a product (STEENSON ETAL., 1987; KRASAEKOOPT ET AL., 2003). The importance of the microencapsulation method as an efficient way to increase probiotic viability justifies the importance of this application. The microcapsules have characteristic structures. Each microcapsule consists of a hydrocolloid coating (also called a capsule) surrounded by the microorganism (s). Because the microcapsules are spherical or elliptical in shape, they are also called microspheres. The microcapsules may have a smooth or rough surface. Each microcapsule can encapsulate one or more types of microorganisms. When multiple microorganisms are present in the microcapsule, the solution's interstitial fluid fills the voids in the microcapsule. Superficial and / or deep cracks may appear in the microcapsules. The propagation of these cracks leads to pore formation, which considerably reduces the microencapsulation efficiency. The microcapsules may be coated with a second layer of a chemical compound to increase the efficiency of the microencapsulation process. The second layer is also called a coating or support or shield. Microcapsules with or without the presence of a second protective layer are known as coated microcapsules or uncoated microcapsules, respectively. Constituents trapped within the coating are known as the core (SULTANA ET AL., 2000; TRUELSTRUP-HANSEN ET AL., 2002; DIMANTOV ET AL., 2003; KRASAEKOOPT ET AL., 2003; CHANDRAMOULI ETAL., 2004).
Vários são os componentes utilizados para o processode microencapsulamento de probióticos, dentre eles estão oAlginato e suas combinações. Alginato é um heteropolissacarídeoextraído de diferentes tipos de algas, com unidades estruturaisconsistindo de ácidos D-manurônico e L-gulurônico. Alginato decálcio tem sido largamente utilizado para o microencapsulamentode ácido lácteo e bactérias probióticas, principalmente na faixa deconcentração de 0,5-4% (SHEU e MARSHALL, 1991; SHEU eMARSHALL, 1993; TRUELSTRUP-HANSEN ET AL., 2002; KIM ETAL., 1996; JANKOWSKI ETAL., 1997; KHALIL e MANSOUR, 1998;KEBARY ETAL., 1998; LEE e HEO, 2000; SHAH e RARULA, 2000;SULTANA ET AL., 2000; TRUELSTRUP-HANSEN, 2002;KRASAEKOOPT ET AL., 2004). O aiginato como ingrediente para aformação das microcápsulas possui algumas vantagens comosegue (KLIEN ET AL., 1983; TANAKA ET AL., 1984; MARTINSENET AL., 1989; PREVOST e DIVIES, 1992; DIMANTOV ET AL.,2003; CHANDRAMOULI ET AL., 2004; GOUIN1 2004): facilmenteforma gel ao redor do microrganismo, não é venenoso para o corpohumano (seguro ou biocompatível), é relativamente barato,condições de processo suaves (assim com temperatura) sãonecessárias para o seu desempenho, pode ser facilmentepreparado (simplicidade e facilidade no manuseio) e se decompõecorretamente no intestino e libera os microrganismosmicroencapsulados. A matriz gel de aiginato envolveapropriadamente as células de bactérias com um diâmetro de 1-3μm e os tamanhos de poros formados na superfície dasmicrocápsulas de aiginato não excedem 7nm (KLIEN ETAL., 1983).Contudo algumas desvantagens são atribuídas as microcápsulas deaiginato. Por exemplo, elas são susceptíveis a ambientes ácidos esua decomposição e perda da estabilidade mecânica no meiocontendo ácido láctico têm sido verificadas (EIKMEIER e REHM,1987; ROY ETAL., 1987; AUDET ETAL., 1988; ELLENTON, 1998).Também, devido ao gel de aiginato ser formado na presença deíons cálcio, sua integridade é deteriorada quando sujeito a íonsmonovalentes ou agentes quelantes, os quais absorvem íons cálcioassim como fosfatos, Iactatos e citratos (ROY ET AL., 1987;SMIDSROD e SKJAK-BRAEK, 1990; ELLENTON, 1998). Outrasdesvantagens incluem dificuldades na aplicação em escalaindustrial devido ao seu alto custo e frágil habilidade de escalonarbem o controle da porosidade na superfície das microesferas(GOUIN, 2004). Este último ponto leva a uma rápida difusão damistura e outros fluidos através da microcápsuias reduzindo assimsua barreira contra fatores ambientais desfavoráveis (GOUIN,2004). Os efeitos mencionados podem ser eficientementecompensados pela utilização de misturas de alginato com outroscompostos poliméricos, com compostos de recobrimentodepositados sobre as microcápsuias e modificação estrutural doalginato pelo uso de vários aditivos (KRASAEKOOPT ET AL.,2003). Mistura de alginato com amido é uma prática comum e háalguns estudos mostrando que a efetividade da microencapsulaçãode diferentes bactérias, especialmente láticas, pode ser melhoradapela aplicação desse método (JANKOWSKI ET AL., 1997;SULTANA ET AL., 2000; SUN e GRIFFITHS, 2000; TRUELSTRUP-HANSEN ET AL., 2002; KRASAEKOOPT ET AL., 2003). Além deboa proteção das células das bactérias, a mistura de alginato-amidoapresenta a vantagem da difusão de micronutrientes e metabólitosatravés das microcápsuias, para dentro e para fora domicrorganismo imobilizado. Como resultado, micro partículaspodem conter microrganismos ativos metabolicamente(JANKOWSKI ET AL., 1997). Alginato-Glicerol aumenta asobrevivência dos microrganismos quando armazenados emtemperatura muito baixas, em torno de -20°C. Isto é atribuído aoefeito criogênico do glicerol (TRUELSTRUP-HANSEN et al., 2002).A utilização de uma camada sobre a microcápsuias de alginato temsido utilizada por aumentar as suas características físico-químicas.Tem sido reportado que um recobrimento com uma camadasemipermeável de quitosana (um polímero catiônico) sobre amicrocápsula de alginato (um polímero aniônico) aumenta aestabilidade físico-química das microcápsulas produzidas. Estaestrutura apresentou tolerância contra efeitos deteriorantes deagentes queiantes ae cálcio e anti-geiificantes. Também do pontode vista estrutural as microcápsulas são mais densas e maisresistentes mecanicamente, dessa forma evitando a quebra e aliberação não desejada dos microrganismos (SMIDSROD e SKJAK-BRAEK1 1990; ZHOU et al., 1998; KRASAEKOOPT et al., 2003). Obaixo peso molecular da quitosana comparado com o alto pesomolecular do alginato faz com que a quitosana se difundarapidamente pela matriz de alginato resultando na formação demicrocápsulas com maior densidade e resistência mecânica.Recobrimento de cloreto de cálcio sobre as microcápsulas dealginato também tem sido investigado (CHANDRAMOULI et al.,2004). A presença de íons cálcio gera microcápsulas mais estáveiscom um efeito protetor maior sobre os microrganismos, e comoconseqüência, uma maior viabilidade dos mesmos.Poliaminoácidos, assim como a Poli-L-Lisina (PLL), são outrospolímeros catiônicos utilizados como recobrimento dasmicrocápsulas de alginato. Semelhantes a quitosana, estespolímeros formam fortes complexos com a matriz de alginato eproporcionando as microcápsulas de alginato as mesmasvantagens apresentadas pela quitosana (SMIDSROD e SKJAK-BRAEK, 1990; CHAMPAGNE ET AL., 1992; LARISCH ET AL.,1994). A geração de multicamadas de PLL sobre as microcápsulasde alginato tem sido investigada: a primeira camada de PLL sobre asuperfície da microcápsula produz uma carga positiva, então umasegunda camada de alginato promove a formação de uma camadanegativa. Este processo pode ser repetido várias vezes. Comoresultado, camadas de alginato e de PLL seriam formadasalternadamente (CHAMPAGNE ET AL., 1992; LARISCH ET AL.,1994; MARX, 1989).There are several components used for the microencapsulation process of probiotics, among them Alginate and its combinations. Alginate is a heteropolysaccharide extracted from different types of algae, with structural units consisting of D-manuronic and L-guluronic acids. Calcium alginate has been widely used for the microencapsulation of lactic acid and probiotic bacteria, mainly in the 0.5-4% concentration range (SHEU and MARSHALL, 1991; SHEU and MARSHALL, 1993; TRUELSTRUP-HANSEN ET AL., 2002; KIM ETAL. 1996; JANKOWSKI ETAL., 1997; KHALIL and MANSOUR, 1998; KEBARY ETAL., 1998; LEE and HEO, 2000; SHAH and RARULA, 2000; SULTANA ET AL., 2000; TRUELSTRUP-HANSEN, 2002; KRASAEKOOPT ET AL. , 2004). Aiginate as an ingredient for microcapsule formation has some advantages as follows (KLIEN ET AL., 1983; TANAKA ET AL., 1984; MARTINSENET AL., 1989; PREVOST and DIVIES, 1992; DIMANTOV ET AL., 2003; CHANDRAMOULI ET AL. , 2004; GOUIN1 2004): easily forms gel around the microorganism, not poisonous to the human body (safe or biocompatible), relatively inexpensive, mild process conditions (as well as temperature) necessary for its performance, can be easily prepared (simplicity and ease in handling) and decomposes properly in the gut and releases the microencapsulated microorganisms. The gelatin gel matrix appropriately surrounds the bacterial cells with a diameter of 1-3μm and the pore sizes formed on the surface of the gelatin microcapsules do not exceed 7nm (KLIEN ETAL., 1983). However, some disadvantages are attributed to the gelatin microcapsules. For example, they are susceptible to acidic environments and their decomposition and loss of mechanical stability in lactic acid containing media have been verified (EIKMEIER and REHM, 1987; ROY ETAL., 1987; AUDET ETAL., 1988; ELLENTON, 1998). When aniginate gel is formed in the presence of calcium ions, its integrity is deteriorated when subjected to monovalent ions or chelating agents, which absorb calcium ions such as phosphates, lactates and citrates (ROY ET AL., 1987; SMIDSROD and SKJAK-BRAEK, 1990; ELLENTON, 1998). Other disadvantages include difficulties in industrial scale application due to its high cost and fragile ability to stagger the control of porosity on the microsphere surface (GOUIN, 2004). This last point leads to a rapid diffusion of the mixture and other fluids through the microcapsules thus reducing its barrier against unfavorable environmental factors (GOUIN, 2004). The effects mentioned can be efficiently compensated for by the use of alginate mixtures with other polymeric compounds, with microcapsule coating compounds and structural modification of alginate by the use of various additives (KRASAEKOOPT ET AL., 2003). Mixing alginate with starch is a common practice and there are some studies showing that the microencapsulation effectiveness of different bacteria, especially lactic acid, can be improved by applying this method (JANKOWSKI ET AL., 1997; SULTANA ET AL., 2000; SUN and GRIFFITHS, 2000 TRUELSTRUP-HANSEN ET AL., 2002; KRASAEKOOPT ET AL., 2003). In addition to good bacterial cell protection, the alginate-starch mixture has the advantage of micronutrient and metabolite diffusion through microcapsules into and out of immobilized organism. As a result, micro particles may contain metabolically active microorganisms (JANKOWSKI ET AL., 1997). Glycerol Alginate increases the survival of microorganisms when stored at very low temperatures, around -20 ° C. This is attributed to the cryogenic effect of glycerol (TRUELSTRUP-HANSEN et al., 2002). The use of a layer over the dreaded alginate microcapsules used to enhance its physicochemical characteristics. It has been reported that a coating with a semipermeable layer of chitosan (a cationic polymer) on the alginate microcapsule (an anionic polymer) increases the physicochemical stability of the produced microcapsules. This structure showed tolerance against deteriorating effects of calcium-burning agents and anti-gelling agents. Also from a structural point of view the microcapsules are denser and more mechanically resistant, thus avoiding the unwanted breaking and release of microorganisms (SMIDSROD and SKJAK-BRAEK1 1990; ZHOU et al., 1998; KRASAEKOOPT et al., 2003). The low molecular weight of chitosan compared to the high pesomolecular alginate causes chitosan to diffuse rapidly through the alginate matrix resulting in the formation of higher density and mechanical strength microcapsules. Calcium chloride coating on dealginate microcapsules has also been investigated (CHANDRAMOULI et al., 2004). The presence of calcium ions generates more stable microcapsules with a greater protective effect on microorganisms and, consequently, greater viability of them. Polyamino acids, as well as Poly-L-Lysine (PLL), are other cationic polymers used as a coating of alginate microcapsules. Similar to chitosan, these polymers form strong complexes with the alginate matrix and provide the alginate microcapsules with the same advantages as chitosan (SMIDSROD and SKJAK-BRAEK, 1990; CHAMPAGNE ET AL., 1992; LARISCH ET AL., 1994). PLL multilayer generation on the alginate microcapsules has been investigated: the first layer of PLL on the microcapsule surface produces a positive charge, so a second alginate layer promotes the formation of a negative layer. This process can be repeated several times. As a result, alginate and PLL layers would be alternately formed (CHAMPAGNE ET AL., 1992; LARISCH ET AL., 1994; MARX, 1989).
Aplicações e vantagens da microencapsulação demicrorganismos probióticos podem ser discutidas de diferentesângulos. As microencapsulação podem ser utilizadas eficientementepara a preparação de culturas iniciais (starter culture) de bactériascom alta viabilidade. É mostrado que a vida de prateleira deLactobacillus rhamnosus o qual é mantido em temperaturaambiente e alta umidade está em torno de seis meses. Este tempofoi significativamente aumentado para 18 meses quando osmicrorganismos foram microencapsulados e mantidos natemperatura de nitrogênio líquido. As microcápsulas contendo osmicrorganismos podem ser diretamente adicionadas nos produtos econsumidas. Somente 10% de deterioração das microcápsulas foidetectado após serem submetidas às condições simuladas do tratogastrointestinal (MATTILA-SANDHOLM ET AL., 2002). Outro pontovantajoso da microencapsulação de microrganismos probióticosestá relacionado à viabilidade no trato gastrointestinal. Váriosartigos na literatura confirmam a eficiência da microencapsulaçãono aumento da viabilidade dos probióticos quando estes sãosubmetidos às condições ácido - enzimáticas do tratogastrointestinal. Como exemplo, RAO em 1989 demonstrou que amicroencapsulação da B. pseudolongum com ftalato acetato decelulose aumenta sua viabilidade nas condições que simulam otrato gastrointestinal (GROBOILLOT ET AL., 1993). Experimentosde LEE e HEO (2000) mostraram que a alta sobrevivência da B.Iongum microencapsulado com alginato de cálcio em condiçõessimuladas do suco gástrico (pH=1,5) foi consideravelmenteaumentada. Experimentos indicaram que um recobrimento decloreto de cálcio sobre as microcápsulas de alginato de cálciocontendo L acidophilus aumenta a tolerância do microrganismocontra valores ácidos extremos (pH=2) (CHANDRAMOULI ET AL.,2004). Simulação das condições estomacais (pH=1,5) levou a perdanas contagens de células viáveis de B. infantice, no entanto, aperda da viabilidade não excede a 0,67% da contagem inicial decélulas viáveis (SUN e GRIFFITHS, 2000). Pesquisas tem reveladoque amido resistente é um eficiente componente para amicroencapsulação de probióticos, pois tal componente não édissolvido ou decomposto no suco gástrico, em pH neutro e pelaatividade enzimática do pâncreas, mas libera os microrganismosquando a microcápsulas entra em contato com as condiçõesintestinais (ENGLYST ETAL., 1992; SUN e GRIFFITHS, 2002). Umponto importante a ser ressaltado é que alem do tipo de materialdas microcápsulas, o diâmetro das mesmas ou o recobrimentodelas é um fator determinante para manter a viabilidade dosmicrorganismos probioticos. Redução excessiva no diâmetro podeenfraquecer ou mesmo remover a função de proteção dasmicrocápsulas (SULTANA ET AL., 2000). A faixa de diâmetro idealdepende do microrganismo a ser imobilizado.Applications and advantages of microencapsulation probiotic microorganisms can be discussed from different angles. Microencapsulations can be used efficiently for the preparation of high viability bacterial starter cultures. The shelf life of Lactobacillus rhamnosus which is kept at room temperature and high humidity is shown to be around six months. This time was significantly increased to 18 months when microorganisms were microencapsulated and maintained at the temperature of liquid nitrogen. Microcapsules containing microorganisms can be added directly to the consumed products. Only 10% deterioration of microcapsules was detected after being subjected to simulated gastrointestinal tract conditions (MATTILA-SANDHOLM ET AL., 2002). Another advantage of microencapsulation of probiotic microorganisms is related to viability in the gastrointestinal tract. Several articles in the literature confirm the efficiency of microencapsulation in increasing the viability of probiotics when they are subjected to the acid - enzymatic conditions of the gastrointestinal tract. As an example, RAO in 1989 demonstrated that microencapsulation of B. pseudolongum with phthalate acetate decellulose increases its viability under conditions simulating gastrointestinal tract (GROBOILLOT ET AL., 1993). Experiments from LEE and HEO (2000) showed that the high survival of calcium alginate microencapsulated B.Iongum under simulated conditions of gastric juice (pH = 1.5) was considerably increased. Experiments have indicated that a calcium chloride coating over the calcium acid alginate microcapsules containing L acidophilus increases microorganism tolerance against extreme acid values (pH = 2) (CHANDRAMOULI ET AL., 2004). Simulation of stomach conditions (pH = 1.5) led to loss of viable cell counts of B. infantice, however, the viability does not exceed 0.67% of the initial viable cell count (SUN and GRIFFITHS, 2000). Research has shown that resistant starch is an efficient component for probiotic micro-encapsulation, as this component is not dissolved or decomposed in gastric juice, at neutral pH and by the enzymatic activity of the pancreas, but releases microorganisms when the microcapsules come into contact with intestinal conditions (ENGLYST ETAL). , 1992; SUN and GRIFFITHS, 2002). An important point to note is that in addition to the type of microcapsule material, the diameter of the microcapsules or the coating of the capsules is a determining factor in maintaining the viability of probiotic microorganisms. Excessive reduction in diameter may weaken or even remove the protection function of the microcapsules (SULTANA ET AL., 2000). The ideal diameter range depends on the microorganism to be immobilized.
Outra aplicação para as microcápsulas contendomicroorganismos probióticos é a produção de biomassa emfermentações industriais. Com isso, a microencapsulação demicrorganismos pode incluir as seguintes aplicações: aumento datolerância dos microrganismos frente a fatores tais como infecçãobacteriana (STEESON ETAL., 1987), agentes químicos venenosos,proteção dos microrganismos contra agentes mutagênicos,alcançando assim uma boa produtividade na produção demetabólitos especialmente em altas taxas de agitação (ARNAULDET AL., 1992) e uma produção de biomassa mais densa(CHAMPAGNE ETAL., 1992).Another application for microcapsules containing probiotic microorganisms is the production of biomass and industrial fermentations. Thus, microencapsulation of microorganisms may include the following applications: increased tolerance of microorganisms to factors such as bacterial infection (STEESON ETAL., 1987), poisonous chemical agents, protection of microorganisms against mutagenic agents, thus achieving good productivity in the production of metabolites especially. at high agitation rates (ARNAULDET AL., 1992) and a denser biomass production (CHAMPAGNE ETAL., 1992).
A produção de produtos probióticos é outro campo deaplicação das microcápsulas. As vantagens da microencapsulaçãode probióticos em produtos alimentares probióticos podem serdiscutidas a partir de quatro fatores: 1) aumento da viabilidade dosprobioticos nos produtos até o momento do consumo; 2) realizaçãode um novo método na produção de alimentos; 3) fixação eaumento das propriedades sensoriais dos produtos.The production of probiotic products is another field of application of microcapsules. The advantages of probiotic microencapsulation in probiotic food products can be discussed from four factors: 1) increased viability of probiotics in products up to the time of consumption; 2) realization of a new method in food production; 3) fixation and increase of sensory properties of products.
1) A microencapsulação pode notadamente melhorar aviabilidade dos microrganismos probióticos devido a seus efeitos deproteção contra fatores do ambiente com alta acidez, baixo pH,presença de oxigênio molecular (para o caso de microrganismosanaeróbicos), agentes nocivos gerados durante o processo(especialmente tratamentos térmicos), enzimas digestivas,bacteriófagos, peróxido de hidrogênio, ácidos graxos de cadeiacurta, compostos aromáticos carbonílicos (MORTAZAVIAN ET AL.,2006). O aumento da viabilidade dos microrganismos probioticosconseqüentemente resultará em um aumento da vida de prateleirado produto. Indubitavelmente, a alta acidez e o baixo pH dosprodutos fermentados são os principais fatores que causam a perdada viabilidade dos microrganismos probióticos, especialmentedurante o acondicionamento refrigerado (SHAH ET AL., 1995;DAVE e SHAH e LANKAPUTHRA, 1997; MORTAZAVIAN ET AL.,2006). O microencapsulamento de L. acidophilus e de bifidobacteriaem matriz de alginato de cálcio não aumenta consideravelmente aviabilidade dos microrganismos após submissão dos mesmos emcondições de acidez extrema (pH=2), no entanto em condiçõesácidas mais amenas (acidez natural de iogurtes) observou umasobrevivência dos microrganismos probióticos por um períodosuperior a de oito semanas em estoque refrigerado. As misturaaiginato-HACS (amido de milho com alta amüase) ou alginato-RS(amido resistente) comparados com alginato de cálcio isolado,melhora a morfologia das microcápsulas formadas no que tange acoerência e a continuidade estrutural e consequentemente, aviabilidade dos microrganismos aumentam (SULTANA ET AL.,2000). Experimentos realizados por KEBARY ET AL. (1998)mostraram que a microencapsulação de bifidobacteria com alginatopoderiam aumentar significantemente sua viabilidade em leitecongelado, enquanto que, utilizando k-carragena não apresentounenhuma alteração. Microencapsulado de B. Iongum em meiolácteo mostrou maior viabilidade comparado com microrganismoslivres durante o mesmo tempo de estocagem (TRUELSTRUP-HANSEN ET AL., 2002). De acordo com as investigaçõesrealizadas por KALIL E MANSUR (1998), o microencapsulamentode Bifidobacterium spp. com alginato de cálcio melhorousignificativamente a viabilidade dos microrganismos em maionesecom pH em torno de 4,4. O tamanho médio das microcápsulas foide 3mm após o processo de microencapsulamento (SUN eGRIFFITHS, 2000). Probióticos microencapsulados com a misturaalginato-amido e tamanho de microcápsulas entre 0,5 a 1,0 mmforam consideravelmente mais viáveis em iogurte durante o períodode estocagem (SULTANA ET AL. 2000). Verificou-se um aumentoda viabilidade de Lactobacilos, em sorvetes lácteos, após omicroencapsulamento com alginato (tamanho de 25 a 62μιτι) foiapresentado (SHEU e MARSHALL, 1993). Os mesmos resultadosforam obtidos no caso de sobremesas geladas e fermentadas. Orecobrimento das microcápsulas de alginato com PLL (PoIi-L-Lisina)aumentou consideravelmente a viabilidade contra condiçõesseveras de processo (SHAH e RARU LA, 2000). Outrospesquisadores indicaram que a sobrevivência de Sifidobacteriumspp. e L. acidophilus aumenta significativamente em sobremesas àbase de fermentados gelados quando alginato com aditivos SPS eTween 80 foram utilizados para a microencapsulação (SULTANAET AL., 2000). A melhora da viabilidade de B. bifidum em iogurteapós a microencapsulamento com alginato de cálcio após trêssemanas estocado sob refrigeração a 4°C está suportada nacontagem de microrganismos viáveis que não ficou abaixo de 107UFC/mL. Além disso, nenhuma propriedade sensorial indesejávelfoi detectada no produto final. Os resultados acima mencionadosforam também obtidos após estoque do produto congelado(SULTANA ET AL., 2000). Tem sido observado que a viabilidade deLactobacillus microencapsulado com alginato de cálcio poderia seraumentado acima de 40% em produtos congelados assim comosorvetes e leite congelado (SHEU e MARSHALL, 1993). Devido àmicroencapsulação de microrganismos probioticos diminuíremconsideravelmente a atividade metabólica dos mesmos, aviabilidade dos microrganismos deveria aumentar devido a menortaxa de produção ácida. Portanto, mostrou-se que o tempo deincubação para iogurte fabricado com L. casei e L. acidophilusacima do ponto final de pH 5, aumentou de 6 horas no caso demicrorganismos livres para 30 horas no caso de microrganismosmicroencapsulados (SULTANA ETAL., 2000). A diminuição na taxade acidificação de bactérias e como resultado a queda nadiminuição do pH neste período leva a um considerável aumento davida de prateleira do produto devido ao aumento na viabilidade dosmicrorganismos dentro do tempo de estocagem (MORTAZAVIANET AL., 2006).1) Microencapsulation may notably improve the viability of probiotic microorganisms due to its protective effects against high acidity environment factors, low pH, presence of molecular oxygen (in the case of anaerobic microorganisms), harmful agents generated during the process (especially heat treatments). , digestive enzymes, bacteriophages, hydrogen peroxide, short chain fatty acids, carbonyl aromatic compounds (MORTAZAVIAN ET AL., 2006). Increasing the viability of probiotic microorganisms will consequently result in increased shelf life of the product. Undoubtedly, the high acidity and low pH of fermented products are the main factors that cause the lost viability of probiotic microorganisms, especially during refrigerated packaging (SHAH ET AL., 1995; DAVE and SHAH and LANKAPUTHRA, 1997; MORTAZAVIAN ET AL., 2006 ). The microencapsulation of L. acidophilus and bifidobacteria in a calcium alginate matrix does not significantly increase the viability of the microorganisms following their extreme acidity conditions (pH = 2), but under milder acidic conditions (natural yoghurt acidity) observed a microorganism survival. probiotics for more than eight weeks in refrigerated stock. HACS (high ammonia cornstarch) or alginate-RS (resistant starch) mixtures compared with calcium alginate alone improves the morphology of the formed microcapsules with regard to consistency and structural continuity and consequently the viability of microorganisms increase (SULTANA ET AL., 2000). Experiments performed by KEBARY ET AL. (1998) showed that microencapsulation of bifidobacteria with alginate could significantly increase its viability in frozen milk, while using k-carrageenan showed no change. B. Iongum microencapsulated in meiolaceous showed higher viability compared to free microorganisms during the same storage time (TRUELSTRUP-HANSEN ET AL., 2002). According to the investigations carried out by KALIL and MANSUR (1998), the microencapsulation of Bifidobacterium spp. with calcium alginate significantly the viability of microorganisms in mayonnaise with pH around 4.4. The average size of the microcapsules was 3mm after the microencapsulation process (SUN eGRIFFITHS, 2000). Microencapsulated probiotics with the alginate-starch mixture and microcapsule size between 0.5 to 1.0 mm were considerably more viable in yogurt during the storage period (SULTANA ET AL. 2000). Lactobacilli viability was increased in dairy ice cream after alginate microencapsulation (size 25 to 62μιτι) was presented (SHEU and MARSHALL, 1993). The same results were obtained for frozen and fermented desserts. Recovering alginate microcapsules with PLL (PoIi-L-Lysine) has considerably increased viability against severe process conditions (SHAH and RARU LA, 2000). Other researchers indicated that survival of Sifidobacteriumspp. and L. acidophilus significantly increase in frozen fermented desserts when alginate with SPS eTween 80 additives were used for microencapsulation (SULTANAET AL., 2000). Improvement of viability of B. bifidum in yogurt following calcium alginate microencapsulation after three weeks stored under refrigeration at 4 ° C is supported by the counting of viable microorganisms not below 107UFC / mL. In addition, no undesirable sensory properties were detected in the final product. The above mentioned results were also obtained after stocking of frozen product (SULTANA ET AL., 2000). It has been observed that the viability of lactobacillus microencapsulated with calcium alginate could be increased by over 40% in frozen products such as ice cream and frozen milk (SHEU and MARSHALL, 1993). Because the microencapsulation of probiotic microorganisms considerably decreased their metabolic activity, the viability of the microorganisms should increase due to the acid production rate. Therefore, it was shown that the incubation time for yoghurt made with L. casei and L. acidophilus above the pH 5 endpoint increased from 6 hours for free microorganisms to 30 hours for microencapsulated microorganisms (SULTANA ETAL., 2000). The decrease in acidification rate of bacteria and as a result of the drop in pH decrease in this period leads to a considerable increase in shelf life of the product due to the increase in the viability of microorganisms within the storage time (MORTAZAVIANET AL., 2006).
2) Utilizando o processo de microencapsulamento deculturas iniciais de microrganismos probióticos inovações tem sidodesenvolvidas na produção de produtos probióticos lácteos assimcomo iogurte. O microencapsulamento de microrganismosprobióticos pode causar uma taxa desejável de atividade metabólicacelular. Por exemplo, novos métodos contínuos de produção deiogurte com bactérias probioticas tradicionais microencapsuladas(Streptococcus salivarius ssp. thermophilus e Lactobacillusdelbrueckii ssp. bulgaricus), tem sido propostos e apresentam asseguintes vantagens comparados com os métodos tradicionais:produtos com propriedades sensoriais relativamente constantespodem ser obtidos, a viabilidade das bactérias remanescentes émuito maior e a proporção de Lactobacillus delbrueckii ssp.bulgaricus / Streptococcus thermophilus do estágio inicial ao final doprocesso de fermentação pode ser controlado bem como aspropriedades organolépticas do produto (KRASAEKOOPT ET AL.,2003).2) Using the microencapsulation process early cultures of probiotic microorganisms innovations have been developed in the production of dairy probiotic products as well as yogurt. Microencapsulation of probiotic microorganisms may cause a desirable rate of metabolic cellular activity. For example, new continuous methods of producing yoghurt with traditional microencapsulated probiotic bacteria (Streptococcus salivarius ssp. Thermophilus and Lactobacillusdelbrueckii ssp. Bulgaricus) have been proposed and have the following advantages compared to traditional methods: products with relatively constant sensory properties can be obtained. The viability of the remaining bacteria is much higher and the proportion of Lactobacillus delbrueckii ssp.bulgaricus / Streptococcus thermophilus from the early stage to the end of the fermentation process can be controlled as well as the organoleptic properties of the product (KRASAEKOOPT ET AL., 2003).
Como desvantagens da produção de produtosfermentados utilizando culturas iniciais microencapsuladaspodemos citar o longo período de incubação e elevados preçosdevido à necessidade de se utilizar altas quantidades de inoculoinicial (devido à inexistência de multiplicação celular durante oprocesso de fermentação) podem ser mencionados. No entanto,segundo LARISCH ET AL (1994) o tempo de incubação deLactococci, microencapsulado com alginato recoberto com PLL1diminui de um fator de 17% comparado com as condições dafermentação de iogurte com microrganismos livres. Contudo, não hámais registro que confirme tal observação.As disadvantages of producing fermented products using microencapsulated starter cultures we can mention the long incubation period and high prices due to the need to use high amounts of inoculum (due to the lack of cell multiplication during the fermentation process) can be mentioned. However, according to Larisch et al (1994) the incubation time of Lactococci, microencapsulated with PLL1-coated alginate decreases by a factor of 17% compared to the conditions of yogurt fermentation with free microorganisms. However, there is no further record to confirm such observation.
O microencapsulamento de microrganismos probioticostem sido utilizados para a produção de uma dispersão homogêneados microrganismos dentro do produto. Isto é muito importanteprincipalmente em produtos viscosos e apresentando mais de umafase (polifásicos) assim como maionese (KHALIL e MANSOUR,1998).The microencapsulation of probiotic microorganisms has been used to produce a homogeneous dispersion of microorganisms within the product. This is very important mainly in viscous products having more than one phase (polyphase) as well as mayonnaise (KHALIL and MANSOUR, 1998).
O microencapsulamento de microrganismos probioticosajuda a manter ou melhorar as propriedades sensoriais do produtofinal. De maneira geral, produtos fermentados (assim como iogurte)produzidos por microrganismos encapsulados são mais suavescomparados com aqueles produzidos por microrganismos nãoencapsulados devido a menor quantidade de ácidos produzidos(ADHIKARI ET AL., 2000). Conseqüentemente,microencapsulamento de culturas iniciais promovem uma fixação doaroma dos produtos fermentados, pois as células encapsuladas sãorelativamente ou totalmente inativas de metabolismo e nãoinfluenciam no aroma dos produtos, especialmente durante o tempode estocagem. Como exemplo, nenhuma variação significativa naspropriedades sensoriais de iogurtes contendo B. bifidumencapsulados foi observado após três semanas de estocagemrefrigerada a 4°C (KRASAEKOOPT ET AL., 2003).Microencapsulation of probiotic microorganisms helps to maintain or improve the sensory properties of the final product. In general, fermented products (as well as yogurt) produced by encapsulated microorganisms are milder compared to those produced by unencapsulated microorganisms due to the lower amount of acids produced (ADHIKARI ET AL., 2000). Consequently, microencapsulation of early cultures promotes an aromatic fixation of fermented products as encapsulated cells are relatively or totally inactive of metabolism and do not influence the aroma of the products, especially during storage time. As an example, no significant variation in sensory properties of B. bifidumencapsulated yoghurt containing yoghurt was observed after three weeks of refrigerated storage at 4 ° C (KRASAEKOOPT ET AL., 2003).
Embora o microencapsulamento de microrganismosprobioticos possa ser aplicado como um eficiente método paramelhorar as propriedades sensoriais dos produtos probioticos suautilização inoportuna pode levar a uma queda em tais propriedadese na textura do produto final, especialmente defeitos no paladar.Essa sensação está relacionada ao tamanho das microcápsulas(TRUESTRUP-HANSEN ET AL. 2002; CHANDRAMOULI ET AL.,2004).Although microencapsulation of probiotic microorganisms can be applied as an efficient method to improve the sensory properties of probiotic products, their improper use can lead to a drop in such properties and texture of the final product, especially taste defects. This sensation is related to microcapsule size (TRUESTRUP). (Hansen et al., 2002; Chandramuli et al., 2004).
Bebidas probióticas são alimentos funcionais, isto é,além de fornecerem a nutrição básica, promovem a saúde. Essesalimentos possuem potencial para promover a saúde através demecanismos não previstos através da nutrição convencional,devendo ser salientado que esse efeito restringe-se à promoção dasaúde e não à cura de doenças (SANDERS, 1998). O tratogastrintestinal humano é um microecossistema cinético quepossibilita o desempenho normal das funções fisiológicas dohospedeiro, a menos que microrganismos prejudiciais epotencialmente patogênicos dominem. Manter um equilíbrioapropriado da microbiota pode ser assegurado por umasuplementação sistemática da dieta com probióticos, prebióticos esimbióticos (BIELECKA, BIEDRZYCKA, MAJKOWSKA, 2002). Emvirtude desse fato, nos últimos anos, o conceito de alimentosfuncionais passou a concentrar-se de maneira intensiva nos aditivosalimentares que podem exercer efeito benéfico sobre a composiçãoda microbiota intestinal (ZIEMER, GIBSON, 1998).Probiotic drinks are functional foods, that is, besides providing basic nutrition, they promote health. These foods have the potential to promote health through unpredictable mechanisms through conventional nutrition, and it should be noted that this effect is restricted to health promotion and not cure of disease (Sanders, 1998). The human gastrointestinal tract is a kinetic microecosystem that enables the normal performance of host physiological functions unless epotentially pathogenic harmful microorganisms dominate. Maintaining an appropriate balance of the microbiota can be ensured by systematic supplementation of the diet with probiotics, prebiotics and symbiotics (BIELECKA, BIEDRZYCKA, MAJKOWSKA, 2002). In light of this fact, in recent years, the concept of functional foods has come to focus intensively on food additives that may have a beneficial effect on the composition of the intestinal microbiota (ZIEMER, GIBSON, 1998).
Os probióticos eram classicamente definidos comosuplementos alimentares à base de microrganismos vivos, queafetam beneficamente o animal hospedeiro, promovendo o balançode sua microbiota intestinal (FULLER, 1989). Diversas outrasdefinições de probióticos foram publicadas nos últimos anos(SANDERS, 2003). Entretanto, a definição atualmente aceitainternacionalmente é que eles são microrganismos vivos,administrados em quantidades adequadas, que conferem benefíciosà saúde do hospedeiro (FOOD AND AGRICULTUREORGANIZATION OF UNITED NATIONS; WORLD HEALTHORGANIZATION, 2001; SANDERS, 2003).Probiotics were classically defined as food supplements based on living microorganisms, which beneficially affect the host animal, promoting its intestinal microbiota balance (FULLER, 1989). Several other definitions of probiotics have been published in recent years (Sanders, 2003). However, the definition currently accepted internationally is that they are living microorganisms, administered in adequate amounts, that confer host health benefits (FOOD AND AGRICULTURE ORGANIZATION OF UNITED NATIONS; WORLD HEALTHORGANIZATION, 2001; SANDERS, 2003).
A influência benéfica dos probióticos sobre a microbiotaintestinal humana inclui fatores como efeitos antagônicos,competição e efeitos imunológicos, resultando em um aumento daresistência a patógenos. Assim, a utilização de culturas bacterianasprobióticas estimula a multiplicação de bactérias benéficas, emdetrimento à proliferação de bactérias potencialmente prejudiciais,reforçando os mecanismos naturais de defesa do hospedeiro(PUUPPONEN-PIMIA ET AL., 2002).The beneficial influence of probiotics on the human microbiotestinal includes factors such as antagonistic effects, competition and immunological effects, resulting in increased resistance to pathogens. Thus, the use of bacterial probiotic cultures stimulates the multiplication of beneficial bacteria, in detriment to the proliferation of potentially harmful bacteria, reinforcing the natural mechanisms of host defense (PUUPPONEN-PIMIA ET AL., 2002).
Em condições normais, inúmeras espécies de bactériasestão presentes no intestino, a maioria delas anaeróbias estritas.Essa composição torna o intestino capaz de responder a possíveisvariações anatômicas e físico-químicas (LEE ET AL., 1999). Amicrobiota intestinal exerce influência considerável sobre uma sériede reações bioquímicas do hospedeiro. Paralelamente, quando emequilíbrio, impede que microrganismos potencialmente patogênicosnela presentes exerçam seus efeitos patogênicos. Por outro lado, odesequilíbrio dessa microbiota pode resultar na proliferação depatógenos, com conseqüente infecção bacteriana (ZIEMER,GIBSON, 1998).Under normal conditions, numerous species of bacteria are present in the gut, most of them strict anaerobic. This composition makes the gut capable of responding to possible anatomical and physicochemical variations (LEE ET AL., 1999). Intestinal microbiota exerts considerable influence on a series of biochemical reactions of the host. At the same time, when in balance, it prevents potentially pathogenic microorganisms present in it from exerting their pathogenic effects. On the other hand, the unbalance of this microbiota may result in the proliferation of pathogens, with consequent bacterial infection (ZIEMER, GIBSON, 1998).
A microbiota saudável é definida como a microbiotanormal que conserva e promove o bem-estar e a ausência dedoenças, especialmente do trato gastrintestinal. A correção daspropriedades da microbiota autóctone desbalanceada constitui aracionalidade da terapia por probióticos (ISOLAURI, SALMINEN,OUWEHAND, 2004). A influência benéfica dos probióticos sobre amicrobiota intestinal humana inclui fatores como os efeitosantagônicos e a competição contra microrganismos indesejáveis eos efeitos imunológicos (PUUPPONEN-PIMIÃ ET AL., 2002). Dadosexperimentais indicam que diversos probióticos são capazes demodular algumas características da fisiologia digestiva, como aimunidade da mucosa e a permeabilidade intestinal (FIORAMONTI,THEODOROU, BUENO, 2003). A ligação de bactérias probióticasaos receptores da superfície celular dos enterócitos também dáinício às reações em cascata que resultam na síntese de citocinas(KAUR, CHOPRA, SAINI, 2002).Healthy microbiota is defined as the microbiotanormal that conserves and promotes well-being and absence of disabilities, especially of the gastrointestinal tract. The correction of the properties of the unbalanced autochthonous microbiota constitutes the rationality of probiotic therapy (ISOLAURI, SALMINEN, OUWEHAND, 2004). The beneficial influence of probiotics on human intestinal amicrobiotic includes factors such as antagonistic effects and competition against undesirable microorganisms and immunological effects (PUUPPONEN-PIMIÃ ET AL., 2002). Experimental data indicate that several probiotics are able to modulate some characteristics of digestive physiology, such as mucosal immunity and intestinal permeability (FIORAMONTI, THEODOROU, BUENO, 2003). The binding of probiotic bacteria to enterocyte cell surface receptors also initiates the cascade reactions that result in cytokine synthesis (KAUR, CHOPRA, SAINI, 2002).
O conhecimento da microbiota intestinal e suasinterações levou ao desenvolvimento de estratégias alimentares,objetivando a manutenção e o estímulo das bactérias normais alipresentes (GIBSON, FULLER, 2000). É possível aumentar onúmero de microrganismos promotores da saúde no tratogastrintestinal (TGI), através da introdução de probióticos pelaalimentação ou com o consumo de suplemento alimentar prebiótico,o qual irá modificar seletivamente a composição da microbiota,fornecendo ao probiótico vantagem competitiva sobre outrasbactérias do ecossistema (CRITTENDEN, 1999).The knowledge of the intestinal microbiota and its interactions led to the development of eating strategies, aiming at maintaining and stimulating the normal bacteria present (GIBSON, FULLER, 2000). It is possible to increase the number of health-promoting microorganisms in the gastrointestinal tract (GIT) by introducing probiotics by feeding or by consuming prebiotic food supplements, which will selectively modify the composition of the microbiota, giving the probiotic a competitive advantage over other ecosystem bacteria ( CRITTENDEN, 1999).
Três possíveis mecanismos de atuação são atribuídosaos probióticos, sendo o primeiro deles a supressão do número decélulas viáveis através da produção de compostos com atividadeantimicrobiana, a competição por nutrientes e a competição porsítios de adesão. O segundo desses mecanismos seria a alteraçãodo metabolismo microbiano, através do aumento ou da diminuiçãoda atividade enzimática. O terceiro seria o estímulo da imunidadedo hospedeiro, através do aumento dos níveis de anticorpos e oaumento da atividade dos macrófagos. O espectro de atividade dosprobióticos pode ser dividido em efeitos nutricionais, fisiológicos eantimicrobianos (FULLER, 1989).Three possible mechanisms of action are attributed to probiotics, the first of which is the suppression of the number of viable cells through the production of compounds with antimicrobial activity, competition for nutrients and competition for adhesion sites. The second of these mechanisms would be the alteration of microbial metabolism by increasing or decreasing enzymatic activity. The third would be the stimulation of host immunity through increased antibody levels and increased macrophage activity. The spectrum of activity of probiotics can be divided into nutritional, physiological and antimicrobial effects (FULLER, 1989).
Os benefícios à saúde do hospedeiro atribuídos àingestão de culturas probióticas que mais se destacam são: controleda microbiota intestinal; estabilização da microbiota intestinal após ouso de antibióticos; promoção da resistência gastrintestinal àcolonização por patógenos; diminuição da população de patógenosatravés da produção de ácidos acético e lático, de bacteriocinas ede outros compostos antimicrobianos; promoção da digestão dalactose em indivíduos intolerantes à lactose; estimulação do sistemaimune; alívio da constipação; aumento da absorção de minerais eprodução de vitaminas. Embora ainda não comprovados, outrosefeitos atribuídos a essas culturas são a diminuição do risco decâncer de cólon e de doença cardiovascular. São sugeridos,também, a diminuição das concentrações plasmáticas de colesterol,efeitos anti-hipertensivos, redução da atividade ulcerativa deHelicobacter pylori, controle da colite induzida por rotavirus e porClostridium difficile, prevenção de infecções urogenitais, além deefeitos inibitórios sobre a mutagenicidade (SHAH, LANKAPUTHRA,1997; CHARTERIS ET AL., 1998; JELEN, LUTZ, 1998;KLAENHAMMER, 2001; KAUR, CHOPRA, SAINI, 2002; TUOHY ETAL., 2003).The health benefits of the host attributed to the ingestion of the most prominent probiotic cultures are: control of the intestinal microbiota; stabilization of the intestinal microbiota after antibiotic use; promotion of gastrointestinal resistance to pathogen colonization; decrease of the pathogen population through the production of acetic and lactic acids, bacteriocins and other antimicrobial compounds; promotion of dalactose digestion in lactose intolerant individuals; immune system stimulation; constipation relief; increased absorption of minerals and vitamin production. Although not yet proven, other effects attributed to these cultures are decreased risk of colon cancer and cardiovascular disease. Decreased plasma cholesterol concentrations, antihypertensive effects, reduced ulcerative activity of Helicobacter pylori, control of rotavirus and Clostridium difficile-induced colitis, prevention of urogenital infections, and inhibitory effects on mutagenicity (SHAH, LANKAPUTHRA) are also suggested. , 1997; CHARTERIS ET AL., 1998; JELEN, LUTZ, 1998; KLAENHAMMER, 2001; KAUR, CHOPRA, SAINI, 2002; TUYY ETAL., 2003).
Dentre os tipos de probióticos existentes, destaca-se oKefir, nome que se dá tanto aos grãos quanto às bebidasresultantes da fermentação. Kefir é originário do Cáucaso,consistindo de uma colônia contendo bactérias e leveduras, ligadospor uma complexa estrutura de proteínas, lipídios e carboidratos.Há dois tipos de grãos de Kefir: 1) De leite - porque fermenta leitede diversos tipos, produzindo uma bebida semelhante a iogurte ecoalhada; 2) De água - fermenta uma solução com água, açúcar elimão, cujo resultado é uma bebida refrescante gaseificada. Acombinação exata de bactérias e leveduras varia entre esses doistipos de grãos, mas contam com mais de 50 tipos demicroorganismos. Por ser uma colônia com diversos tipos demicroorganismos probióticos, as bebidas obtidas a partir dessesgrãos também são bebidas probióticas.Among the existing types of probiotics, we highlight Kefir, a name given to both grains and beverages resulting from fermentation. Kefir originates from the Caucasus, consisting of a colony containing bacteria and yeast, bound together by a complex structure of proteins, lipids and carbohydrates. There are two types of Kefir grains: 1) Milk - because it fermentes various types, producing a drink similar to eco-yogurt; 2) Water - Fermentes a solution with water, sugar elimão, which results in a refreshing carbonated drink. The exact combination of bacteria and yeast varies between these two types of grain, but they have more than 50 types of microorganisms. Being a colony with several types of probiotic microorganisms, the drinks obtained from these grains are also probiotic drinks.
A partir do estudo da cinética fermentativa desses grãosforam produzidas outras bebidas fermentadas com substratosdiversos, tais como sucos de frutas, água de coco, extrato de soja,aos quais denominamos Kefir BioLogicus.From the study of the fermentative kinetics of these grains were produced other fermented beverages with various substrates, such as fruit juices, coconut water, soy extract, which we call Kefir BioLogicus.
Os probióticos, assim como o Kefir BioLogicus tem ummanuseio muito trabalhoso, uma vez que são necessários diversoscuidados para a conservação dos microrganismos (consórcio demicrorganismos), como a troca regular do meio de cultura, acolheita (também regular) dos grãos de kefir formados na cultura ea conservação em determinada faixa de temperatura. Além disso,tanto o kefir quanto os microrganismos probióticos não servem, viade regra, para o enriquecimento de alimentos e cosméticos nãoprobióticos, uma vez que seu sabor forte e características como core odor terminam por descaracterizar o alimento "enriquecido",tornando-o indesejável. Uma forma de evitar tal problema é oprocesso de microencapsulação.Probiotics, as well as Kefir BioLogicus have a very laborious handling, since care is needed for the preservation of microorganisms (consortium of microorganisms), such as the regular exchange of culture medium, the (also regular) reception of kefir grains formed in the culture. and conservation in a certain temperature range. In addition, both kefir and probiotic microorganisms are generally not intended to enrich non-probiotic foods and cosmetics, as their strong taste and core odor characteristics endanger the "enriched" food, making it undesirable. One way to avoid such a problem is the microencapsulation process.
Existem várias técnicas que podem ser utilizadas para amicroencapsulação, sendo que a seleção do método é dependenteda aplicação que será dada à microcápsula, do tamanho desejado,do mecanismo de liberação e das propriedades físico-químicas,tanto do material ativo, quanto do agente encapsulante (JACKSONe LEE, 1991). O tamanho das microcápsulas pode variar de algunspoucos nanômetros até vários micrômetros; a forma também ébastante variável em função do método e do agente encapsulanteutilizados para prepará-las.There are several techniques that can be used for microencapsulation, and the method selection is dependent on the application that will be given to the microcapsule, the desired size, the release mechanism and the physicochemical properties of both the active material and the encapsulating agent ( JACKSONe LEE, 1991). Microcapsule sizes may range from a few nanometers to several micrometers; The form is also quite variable depending on the method and encapsulating agent used to prepare them.
A escolha do agente encapsulante depende de umasérie de fatores, entre eles a não reatividade com o material a serencapsulado, o processo utilzado para a formação dasmicrocápsulas e o mecanismo de liberação ideal. Muitos materiaispodem ser utilizados como cobertura para as microcápsulas, dentreeles: goma arábica, Agar1 alginato e carragena; os carboidratosamido, amidos modificados, dextrinas e sacarose; as celulosescarboximetilceluloses, acetilcelulose, nitrocelulose; os lipídios,parafina, mono e diagliceróis, óleos e gorduras; os materiaisinorgânicos sulfato de cálcio e silicatos; as proteínas do glúten,caseína, gelatina e albumina (JACKSON e LEE, 1991).The choice of encapsulating agent depends on a number of factors, including non-reactivity with the material to be encapsulated, the process used for microcapsule formation and the optimal release mechanism. Many materials can be used as a cover for microcapsules, such as gum arabic, alginate Agar1 and carrageenan; carbohydrate starch, modified starches, dextrins and sucrose; cellulosescarboxymethylcelluloses, acetylcellulose, nitrocellulose; lipids, paraffin, mono- and diaglycerols, oils and fats; inorganic materials calcium sulfate and silicates; gluten, casein, gelatin and albumin proteins (JACKSON and LEE, 1991).
Os mecanismos de liberação dos materiais ativosencapsulados variam de acordo com a natureza do agentemicroencapsulante, sendo que normalmente ocorrem devido amecanismos como: variação de temperatura e de pH, solubilidadedo meio, biodegradação, difusão, ruptura mecânica, permeabilidadeseletiva e gradiente de concentração existentes em relação ao meiode liberação (BAKAN, 1973; BRANNON-PEPPAS, 1993). Caberessaltar que a espessura da cobertura da microcápsula pode sermodificada de forma que a estabilidade e a permeabilidade sejamalteradas (BAKAN, 1973).The release mechanisms of encapsulated active materials vary according to the nature of the encapsulating agentemic, and they usually occur due to mechanisms such as temperature and pH variation, media solubility, biodegradation, diffusion, mechanical rupture, selective permeability and concentration gradient in relation to release (BAKAN, 1973; BRANNON-PEPPAS, 1993). It should be noted that the thickness of the microcapsule cover can be modified so that stability and permeability are changed (BAKAN, 1973).
Os propósitos gerais da microencapsulação podem seralguns dos que seguem: transformar um líquido em sólido, de modoa facilitar sua manipulação, transporte e adição em formulações;separar materiais reativos; reduzir toxicidade do material ativo;promover liberação controlada do ativo encapsulado; reduzirvolatilidade ou flamabilidade de líquidos; mascarar sabor e odor dedeterminados componentes; aumentar a vida de prateleira; eproteger contra a luz, umidade e calor (JACKSON e LEE, 1991).The general purposes of microencapsulation may be some of the following: transforming a liquid into solid to facilitate its handling, transport and addition into formulations, separating reactive materials; reduce toxicity of active material, promote controlled release of encapsulated active; reduce volatility or flammability of liquids; mask certain flavor and odor components; increase shelf life; and protect against light, moisture and heat (JACKSON and LEE, 1991).
Entre os matérias que podem ser encapsulados, paraaplicação na indústria alimentícia, incluem-se ácidos, bases, óleos,vitaminas, sais, gases, aminoácidos, óleos essenciais, corantes,enzimas e microrganismos (DESAI e PARK, 2005).Materials that may be encapsulated for application in the food industry include acids, bases, oils, vitamins, salts, gases, amino acids, essential oils, dyes, enzymes and microorganisms (DESAI and PARK, 2005).
Os microrganismos têm sido microencapsulados ouimobilizados para possibilitar a reutilização dos mesmos naprodução de ácido lático e produtos lácteos fermentados(Tl PAYANG e KOZAKI1 1982; HYNDMAN ET AL., 1993;GROBOILLOT ET AL., 1993), para aumentar a concentração decélulas em reatores, com conseqüente aumento de produtividade(YOO ET AL., 1996), para protegê-los contra a presença deoxigênio (KIM e OLSON, 1989), contra as baixas temperaturas decongelamento (SHEU e MARSHALL, 1993; SHEU ET AL., 1993),contra o efeito bactericida do suco gástrico e outros meios ácidos(RAO ET AL., 1989; MOLDER e VILLA-GARCIA, 1993; DINAKAR eMISTRY, 1994; KHALIL e MANSOUR, 1998; CUI ET AL., 2000;FAVARO-TRINDADE e GROSSO, 2000; SULTANA ET AL., 2000;FAVATO-TRINDADE e GROSSO, 2002; HANSEN ET AL., 2002;DESMOND ET AL., 2002; PICOT e LACROIX, 2004; IYER eKAILASAPATHY, 2005; MUTHUKUMARASAMY ET AL., 2006;CHEN ET AL., 2006; OLIVEIRA ET AL., 2007; OLIVEIRA ET AL.,2007), para retirá-los do produto, interrompendo a acidificação(CHAMPAGNE e CÔTE, 1987), para aumentar a estabilidade emanter a viabilidade da cultura durante a estocagem do produto(KIM ET AL., 1988; CHAMPAGNE ET AL., 1994; HANSEN ET AL.,2002; KAILASAPATHY, 2006; CAPELA ET AL., 2006;MUTUKUMARASAMY e HOLLEY, 2006) e para aumentar a vida útilde Pseudomonas fluorescens-putida (AMIET-CHARPENTIER ETAL., 1998).Microorganisms have been microencapsulated or immobilized to enable their reuse in the production of lactic acid and fermented dairy products (T1 PAYANG and KOZAKI1 1982; HYNDMAN ET AL., 1993; GROBOILLOT ET AL., 1993), to increase cell concentration in reactors, with consequent increase in productivity (YOO ET AL., 1996), to protect them against the presence of oxygen (KIM and OLSON, 1989), against low freezing temperatures (SHEU and MARSHALL, 1993; SHEU ET AL., 1993), against the bactericidal effect of gastric juice and other acid media (RAO ET AL., 1989; MOLDER and VILLA-GARCIA, 1993; DINAKAR eMISTRY, 1994; KHALIL and MANSOUR, 1998; CUI ET AL., 2000; FAVARO-TRINDADE and THICK 2000; SULTANA ET AL., 2000; FAVATO-TRINDADE AND GROSSO, 2002; HANSEN ET AL., 2002; DESMOND ET AL., 2002; PICOT and LACROIX, 2004; IYER eKAILASAPATHY, 2005; MUTHUKUMARASAMY ET AL., 2006; CHEN ET AL., 2006; OLIVEIRA ET AL., 2007; OLIVEIRA ET AL., 2007), to remove them from the product, inte disrupting acidification (CHAMPAGNE and CÔTE, 1987) to increase stability and maintain viability of culture during product storage (KIM ET AL., 1988; CHAMPAGNE ET AL., 1994; Hansen et al., 2002; KAILASAPATHY, 2006; CAPELA ET AL., 2006; MUTUKUMARASAMY and HOLLEY, 2006) and to increase the shelf life of Pseudomonas fluorescens-putida (AMIET-CHARPENTIER ETAL., 1998).
Embora a microencapsulação seja uma tecnologia muitoinovadora e limitada apenas pela imaginação, é ainda muito poucoexplorada comercialmente na área de alimentos.Although microencapsulation is a very innovative technology limited only by the imagination, it is still very little commercially exploited in the area of food.
Uma variedade de métodos de imobilização de umacultura altamente concentrada de microrganismos tem sidodesenvolvida com objetivo de aumentar a produtividade noprocesso de fermentação.A variety of methods of immobilizing a highly concentrated culture of microorganisms has been developed to increase productivity in the fermentation process.
Um dos mais utilizados métodos de imobilização é ométodo de aprisionamento de células, onde microrganismos sãoaprisionados em géis em formato de microcápsulas formados dealginato de cálcio, poliacrilamida, carragena, agarose, gelana, oupolitetrafluoroetileno (PTFE) (de acordo com as patentes: U.S. Pat.n° 5, 175,093; 5 288,632; 5 093,253; 4 722,898; 4 828,997; 5070,019; GHOSH, S., 1998).One of the most widely used methods of immobilization is the cell entrapment method, where microorganisms are trapped in microcapsule-shaped gels formed of calcium carcinate, polyacrylamide, carrageenan, agarose, gelane, or polytetrafluoroethylene (PTFE) (according to US Pat. No. 5, 175.093; 5 288.632; 5.093,253; 4,722,898; 4,828,997; 5070,019; GHOSH, S., 1998).
O método de aprisionamento de células, contudo,apesar de ser simples, tem revelado limitações no que tange aoaumento da concentração de microrganismos por unidade devolume da matriz, devido aos microrganismos somente poderemcrescer sobre a superfície ou espaços intersticiais da matriz.However, the cell trapping method, although simple, has shown limitations in increasing the concentration of microorganisms per unit volume of the matrix, because microorganisms can only grow on the surface or interstitial spaces of the matrix.
Por outro lado, o método de microencapsulação temsido aplicado em diferentes caminhos para imobilização de célulasanimais, vegetais, bactéria, algas ou fungos (de acordo com: U.S.Pat. n° 5, 286,495; quatro 806,355; 4 689,293; LIM, F. ET AL.,1980).Como descrito acima, é necessário o desenvolvimentode um método de imobilização de microrganismos mais simples eefetivos.On the other hand, the microencapsulation method has been applied in different ways for immobilization of animal cells, plants, bacteria, algae or fungi (according to: USPat. No. 5, 286,495; four 806,355; 4,689,293; LIM, F. ET As described above, the development of a method of immobilizing simpler and more effective microorganisms is required.
A fermentação do Kefir BioLogicus é do tipo lacto-alcoólica, com a produção de diversos tipos de ácidos (carbônico,butírico e acético), predominado o ácido lático nos fermentadoslácteos, derivado da lactose do leite. Aminoácidos como valina,leucina, lisina e serina se formam durante a fermentação, maisquantidades apreciáveis de piridoxina, da vitamina B12, do ácidofólico e de biotina. Vários bioativos são responsáveis pela atividadefuncional e probiótica do Kefir BioLogicus: os própriosmicroorganismos (mortos ou vivos), os metabólitos dosmicroorganismos, formados durante a fermentação (antibióticos,incluindo os bactericidas), os produtos da decomposição da matrizdo alimento, tais como os peptídeos (OUWEHAND e SALMINEN1998; FARNWORTH 2002).The fermentation of Kefir BioLogicus is of the lacto-alcoholic type, with the production of several types of acids (carbonic, butyric and acetic), predominantly lactic acid in lactose, derived from milk lactose. Amino acids such as valine, leucine, lysine and serine form during fermentation, plus appreciable amounts of pyridoxine, vitamin B12, folic acid and biotin. Several bioactives are responsible for the functional and probiotic activity of Kefir BioLogicus: the microorganisms themselves (dead or alive), the metabolites of the microorganisms formed during fermentation (antibiotics, including bactericides), food matrix breakdown products such as peptides (OUWEHAND and SALMINEN1998; FARNWORTH 2002).
O metabolismo secundário do Kefir dá origen aexopolissacarídeos, com estruturas diferenciadas, producidos poruma variedade de bactérias do ácido lático incluindo Iactobacilos eestreptococos - Lactococcus e Leuconostoc (DE VUYST eDEGEEST 1999; RUAS-MADIEDO ET AL. 2002.). Estescarbohidratos da superfície celular conferem característicasprotetoras e adaptantes a seus produtores bacterianos; e uma vezque estão Li itados livremente à membrana da célula, perdem-sefacilmente no ambiente. Em produtos alimentícios, osexopolissacarídeos contribuem, em geral, para as característicasoranolépticas e de estabilidade. Dentre esses polissacarídeos,destaca-se o KEFIRANO, que contém D-glicose e D-galactose emum quociente de 1:1. As reações de hidrólise seguidas por análisede NMR tem sido utilizadas para determinar a estrutura química doKefirano. A estrutura proposta é um hexa ou um hepta-sacarídeoramificado que repete a unidade que de si mesmo se compõe deuma unidade regular de pentasacarídeo à qual um dos resíduos doaçúcar se ligam aleatoriamente (KOOIMAN, 1968; MICHELI ET AL.,1999).Kefir's secondary metabolism gives rise to differentiated structures with polysaccharides produced by a variety of lactic acid bacteria including lactobacilli and streptococci - Lactococcus and Leuconostoc (DE VUYST and DEGEEST 1999; RUAS-MADIEDO ET AL. 2002.). These cell surface carbohydrates impart protective and adaptive characteristics to their bacterial producers; and since they are freely bound to the cell membrane, they are easily lost in the environment. In food products, exopolysaccharides generally contribute to the ethanol-optical and stability characteristics. Among these polysaccharides, KEFIRANO stands out, which contains D-glucose and D-galactose in a 1: 1 ratio. Hydrolysis reactions followed by NMR analysis have been used to determine the chemical structure of kephyran. The proposed structure is a hexa or a hepta saccharide which repeats the unit which is itself composed of a regular pentasaccharide unit to which one of the sugar residues bind randomly (KOOIMAN, 1968; MICHELI ET AL., 1999).
O Kefirano tem sido objeto de vários estudos realizadospela empresa BioLogicus nos últimos anos. Trabalhos científicostêm sido publicados internacionalmente, os quais relatam a grandeimportância do kefirano para a indústria de um modo geral e, maisparticularmente, para a indústria farmacêutica, uma vez que possuiatividade ántibacteriana, antimicótica e antitumoral comprovadas(J.A. PIERMARIA ET AL., 2009; RODRIGUES ET AL.,2005;MAEDA ET AL., 2004). Há também pesquisas que ressaltam apossibilidade de efeitos antiinflamatórios e antialérgicos de viasaéreas inferiores (KWON ET AL., 2009).Kefirano has been the subject of several studies conducted by BioLogicus in recent years. Scientific papers have been published internationally, which report the great importance of kefiran for the industry in general and, more particularly, for the pharmaceutical industry, as it has proven antibacterial, antimycotic and antitumor activity (JA PIERMARIA ET AL., 2009; RODRIGUES ET AL., 2005; MAEDA ET AL., 2004). There is also research that highlights the possibility of anti-inflammatory and antiallergic effects of lower airways (KWON ET AL., 2009).
Estudos realizados com kefirano demonstraram váriosefeitos benéficos à saúde, dentre os quais a supressão do aumentoda pressão sangüínea (MAEDA ET AL., 2004); a redução doestresse, uma vez que apresentam atividades sobre a produção deβ-interferon, cortisol e noradrenalina (S. KBAYAMA ET AL., 1997);aumento da atividade fagocítica de macrófagos peritoneais epulmonares (C.G. VIDEROLA ET AL., 2005; C.G. VIDEROLA ET.AL. 2006) e aumento de células IGA nestes sítios (C.G. VIDEROLAET AL., 2006); atividade anti-tumoral (J.R. LIU ET AL., 2002; M.MUROFUSHI ET AL., 1983; M. SHIOMI ET AL. 1982); atividadeantimicrobiana (K.L. RODRIGUES ET AL., 2005); efeito preventivosobre diarréias associadas a antibióticos, por favorecer a floraintestinal normal, protegendo-a contra patógenos exógenos emantendo seu balanço (M. ZUBILLAGA ET AL. 2001); aumento daatividade da dipeptidase intestinal (E. URDANETA ET AL., 2007);redução de lipídios sangüíneos, pressão arterial, glicose sangüíneae constipação intestinal (H. MAEDA ET AL., 2004).Studies with kefirane have shown several beneficial health effects, including suppression of increased blood pressure (MAEDA ET AL., 2004); stress reduction, since they present activities on the production of beta-interferon, cortisol and noradrenaline (S. KBayama et al., 1997), increased phagocytic activity of epulmonary peritoneal macrophages (CG VIDEROLA ET AL., 2005; CG VIDEROLA ET .AL. 2006) and increase of IGA cells at these sites (CG VIDEROLAET AL., 2006); anti-tumor activity (J.R. LIU ET AL., 2002; M.MUROFUSHI ET AL., 1983; M. SHIOMI ET AL. 1982); antimicrobial activity (K.L. RODRIGUES ET AL., 2005); preventive effect on antibiotic-associated diarrhea, by favoring normal intestinal bloom, protecting it against exogenous pathogens and maintaining balance (M. ZUBILLAGA ET AL. 2001); increased activity of intestinal dipeptidase (E. URDANETA ET AL., 2007), reduction of blood lipids, blood pressure, blood glucose and constipation (H. MAEDA ET AL., 2004).
O kefirano é um polissacarídeo extracelular produzidodurante a fermentação da colônia do Kefir BioLogicus, constituientre 24 - 25% (m/m) do peso seco dos grãos de Kefir BioLogicus eé uma matriz de material amorfo fibrilar. Esta matriz envolve asbactérias e leveduras nos grãos do kefir BioLogicus e os mantémjuntos oferecendo uma proteção contra microrganisrhos externos àcolônia. Estruturalmente o kefirano é formado por umglucogalactano ramificado, consistindo aproximadamente dequantidades iguais de resíduos de D-glucose e D-Galactose.Kefiran is an extracellular polysaccharide produced during the fermentation of Kefir BioLogicus colony, constituting 24 - 25% (w / w) of the dry weight of Kefir BioLogicus grains and is a matrix of fibrillar amorphous material. This matrix surrounds the bacteria and yeast in the kefir BioLogicus grains and holds them together providing protection against microorganisms outside the colony. Structurally kefirane is formed by a branched glucogalactan, consisting approximately of equal amounts of D-glucose and D-galactose residues.
Em recente estudo realizado por RODRIGUES ET AL.,(2005), o kefirano inibiu o crescimento de sete cepas bacterianas euma cepa de leveduras patógenas. E demonstrou atividadeantitumoral, ao inibir o crescimento de tumores sólidos, carcinoma eSarcoma, aspecto relatado pela primeira vez por Shiomu (SHIOMUET AL., 1982). Este biofármaco destaca-se também quanto à suaatividade anti-metástase contra carcinoma pulmonar e melanoma, oque já foi descrito em ratos (FURUKAVA, 2001).In a recent study by RODRIGUES ET AL., (2005), kefiran inhibited the growth of seven bacterial strains and one pathogenic yeast strain. It has demonstrated tumor activity by inhibiting the growth of solid tumors, carcinoma and sarcoma, an aspect first reported by Shiomu (Shiomuet Al., 1982). This biopharmaceutical also stands out for its anti-metastasis activity against lung carcinoma and melanoma, which has already been described in rats (FURUKAVA, 2001).
Devido ao fato de apresentar propriedades antitumoral,antibacteriana e antifúngica, o Kefirano pode ser usado como umbom agente cicatrizante, antiinflamatório e antimicrobiano para ouso em uma grande variedade de infecções (SALOFF-COSTE,1996).Due to its antitumor, antibacterial and antifungal properties, Kefiran can be used as a good healing, anti-inflammatory and antimicrobial agent for use in a wide range of infections (SALOFF-COSTE, 1996).
Um dos agentes responsáveis pelas propriedades dokefirano são as bacteriocinas, toxinas produzidas pelas bactériasbenéficas do kefirano para inibir, como meio de proteção, ocrescimento de outras bactérias similares.One of the agents responsible for the properties of dokefirane are bacteriocins, toxins produced by kefiran-beneficial bacteria to inhibit the growth of other similar bacteria as a means of protection.
Além das propriedades expostas acima relacionadas aoexopolissacarídeo Kefirano, que é um subproduto do metabolismosecundário do Kefir BioLogicus, uma propriedade muito importantepara a industria de alimentos e de cosmético é a utilização domesmo como aditivo alimentar. Essa característica estáintimamente relacionada às suas propriedades de ser utilizado comestabilizador em alimentos e cosméticos. De acordo com RIMADAE ABRAHAM (2006), o kefirano pode ser utilizado como aditivoalimentar para alimentos fermentados aumentando as propriedadesreológicas do produto. De acordo com PIERMARIA ET AL (2008) oKefirano é considerado um aditivo funcional.In addition to the above properties related to the kefiran polysaccharide, which is a byproduct of the secondary metabolism of Kefir BioLogicus, a very important property for the food and cosmetic industry is the use of same as a food additive. This feature is closely related to its properties of being used as a stabilizer in food and cosmetics. According to RIMADAE ABRAHAM (2006), kefiran can be used as a food additive for fermented foods increasing the rheological properties of the product. According to PIERMARIA ET AL (2008), Kephyran is considered a functional additive.
A propriedade do kefirano em formar géis também foitema de trabalho cientifico (PIERMARIA ET AL. 2008) indicando apotencialidade deste exopolissacarideo em ser utilizado comocomponente de matrizes para microencapsulamento assim como oAlginato de sódio e outros compostos poliméricos.The property of kefirane in forming gels was also a scientific work (PIERMARIA ET AL. 2008) indicating the potential of this exopolysaccharide to be used as a microencapsulation matrix component as well as sodium alginate and other polymeric compounds.
Sobre as circunstâncias acima descritas, a presenteinvenção apresenta o desenvolvimento de um método simples eefetivo no que tange a imobilização de um consórcio demicrorganismos presentes no Kefir BioLogicus e de seus produtosbioativos (proteínas, vitaminas, dentre outros) empregandomicrocápsulas à base de alginato de cálcio modificado com pectinae kefirano. Em contraste com as metodologias já existentes, apresente invenção apresenta a formação de microcápsulasformadas de alginato de cálcio modificado com pectina e kefiranoque possui a qualidade de aprisionar uma quantidade grande demicrorganismos tornando-os mais fáceis de manuseio para seremutilizados no processo de fermentação mais eficaz. A mistura dealginato com Pectina e/ou Kefirano resulta na formação demicrocápsulas mais densas e com maior resistência mecânica,possibilitando com isso uma melhora no efeito de proteção aosmicrorganismos probióticos, conseqüentemente, numa maiorviabilidade dos mesmos.Under the circumstances described above, the present invention presents the development of a simple and effective method regarding the immobilization of a consortium of microorganisms present in Kefir BioLogicus and its bioactive products (proteins, vitamins, among others) employing calcium alginate modified capsules with kefirane pectinae. In contrast to existing methodologies, the present invention discloses the formation of pectin and kefirano modified calcium alginate microcapsules which have the quality of trapping a large amount of microorganisms making them easier to handle for use in the most effective fermentation process. Mixing dealginate with Pectin and / or Kefiran results in the formation of denser and more mechanically resistant microcapsules, thereby improving the protective effect of probiotic microorganisms, thereby improving their viability.
De acordo com a presente invenção, os inventorespreparam microcápsulas à base de alginato de cálcio modificadocom Kefirano e pectina contendo em seu interior um consórcio demicrorganismos presentes no Kefir BioLogicus bem como de seusprodutos bioativos. O consórcio de microorganismos presentes noKefir BioLogicus está composto por quatro grupos, conformedescrição abaixo:1- LactobaciIos:Lactobacillus acidophilusLactobacillus bulgaricusLactobacillus brevisLactobacillus caseiLactobacillus casei ssp. lactosus;Lactobacillus casei ssp. rhamnosusLactobacillus cellobiosisLactobacillus delbrueckiiLactobacillus fermentumLactobacillus fructivoranLactobacillus helveticusLactobacillus hilgardiiLactobacillus johnsoniiLactobacillus kefir;Lactobacillus kefiranofaciensLactobacillus kefirgranumLactobacillus IaetisLactobacillus paraeaseiLactobacillus parakefirLactobacillus plantarumLactobacillus rhamnosusLactobacillus viridescensIn accordance with the present invention, the inventors have prepared microcapsules based on modified calcium alginate with Kefiran and pectin containing within them a consortium of microorganisms present in Kefir BioLogicus as well as its bioactive products. The consortium of microorganisms present in Kefir BioLogicus is composed of four groups, as described below: 1- Lactobacilli: Lactobacillus acidophilusLactobacillus bulgaricusLactobacillus brevisLactobacillus caseiLactobacillus casei ssp. lactosus; Lactobacillus casei ssp. rhamnosusLactobacillus cellobiosisLactobacillus delbrueckiiLactobacillus fermentumLactobacillus fructivoranLactobacillus helveticusLactobacillus hilgardiiLactobacillus johnsoniiLactobacillus kefir, Lactobacillus kefiranofaciensLactobacillus kefirgranumLactobacillus IaetisLactobacillus paraeaseiLactobacillus parakefirLactobacillus plantarumLactobacillus rhamnosusLactobacillus viridescens
2-Lactococcus/Streptococcus:Enteroeoceus duransLactoeoceus Iaetis subsp. eremorisLactoeoceus Iaetis subsp. IaetisLe. Iaetis var. diaeetylaetisLeueonostoe eremorisLeueonostoe kefirLeueonostoe sp.2-Lactococcus / Streptococcus: Enteroeoceus duransLactoeoceus Iaetis subsp. eremorisLactoeoceus Iaetis subsp. IaetisLe. Iaetis var. diaeetylaetisLeueonostoe eremorisLeueonostoe kefirLeueonostoe sp.
S. IaetisS. Iaetis
S. sallivarius ssp.thermophilusStreptoeoeeus thermophilusS. sallivarius ssp.thermophilusStreptoeoeeus thermophilus
3-Leveduras:Candida pseudotropiealisC. raneens3-Yeast: Candida pseudotropiealisC. raneens
Candida kefirC. tenuisK bulgarieusK. fragilisKluyveromyces IaetisKluyveromyces marxianus var. MarxianusTorula kefirCandida kefirC. tenuisK bulgarieusK. fragilisKluyveromyces IaetisKluyveromyces marxianus var. MarxianusTorula kefir
Torulaspora delbrueekiiSaccharomyces boulardiiSaccharomyces earlbergensisSaccharomyees eerevisiaeSaccharomyees IaetisSaccharomyees kefírSaccharomyees eerevisiaeTorulaspora delbrueekiiSaccharomyces boulardiiSaccharomyces earlbergensisSaccharomyees eerevisiaeSaccharomyees IaetisSaccharomyees kefírSaccharomyees eerevisiae
Saccharomyees delbrueekii ou Saccharomyees unisporusSaccharomyees delbrueekii or Saccharomyees unisporus
4- Bolores4- Molds
Geotriehum eandidumGeotriehum eandidum
5- Acetobacter:Aeetobaeter aeetiAcetobacter rasensAcetobacter sp.5- Acetobacter: Aeetobaeter aeetiAcetobacter rasensAcetobacter sp.
6- Outras BactériasBacillus sp.Micrococcus sp.Bacillus subtilis6- Other BacteriaBacillus sp.Micrococcus sp.Bacillus subtilis
Diante do cenário acima exposto, o processo oraapresentado constitui uma solução rápida e de baixo custo tantopara a conservação do consorcio de microrganismos e de seusbioativos quanto para o enriquecimento de alimentos nãoprobióticos e cosméticos.Given the above scenario, the process presented here is a quick and inexpensive solution for the conservation of the consortium of microorganisms and their bioactive as well as for the enrichment of non-probiotic and cosmetic foods.
A imobilização do consorcio de microorganismos bemcomo de seus produtos metabólicos, conforme realizada nainvenção ora descrita, ocorre da seguinte forma: o consórcio demicrorganismos e de seus produtos metabólicos são adicionados auma solução de Kefirano1 alginato de sódio e de pectina, formandouma nova solução (solução A). A solução A pode ser representadada seguinte forma: (100-X-Y)% Alginato - X% Kefirano - Y%Pectina (em porcentagem em volume). Sendo que a concentraçãoda solução de Alginato de Sódio pode variar de 1 a 5% (em massa),a de Kefirano pode variar de 1 a 3% (em massa) e a de Pectinapode variar de 1 a 4% (em massa).The immobilization of the consortium of microorganisms as well as their metabolic products, as performed in the invention described herein, occurs as follows: the consortium of microorganisms and their metabolic products are added to a solution of Kefirano1 sodium alginate and pectin, forming a new solution (solution A ). Solution A can be represented as follows: (100-X-Y)% Alginate - X% Kephyrane - Y% Pectin (by volume percentage). Since the concentration of Sodium Alginate solution may vary from 1 to 5% (by mass), that of Kefiran may vary from 1 to 3% (by mass) and Pectin may vary from 1 to 4% (by mass).
Esta nova solução é gotejada em uma segunda solução(solução B), esta última de Cloreto de Cálcio de concentração quepode variar de 0,1 a 4,0% (em massa). O gotejamento da solução Ana solução B causa a formação de microcápsulas contendo oconsórcio de microrganismos, bem como os seus produtosmetabólicos.This new solution is dripped into a second Calcium Chloride solution (solution B), the latter of which may range from 0.1 to 4.0% (by mass). The dripping of Ana solution B causes the formation of microcapsules containing the consortium of microorganisms, as well as their metabolic products.
As microcápsulas constituem uma maneira prática dearmazenar, e aplicar o consórcio de microrganismos·. eles nãonecessitam da manutenção constante do consórcio demicrorganismos do Kefir BioLogicus e podem ser adicionadas aprodutos para torná-los probióticos sem transformar-lhes o sabor,aroma ou cor, superando, assim, as desvantagens de manuseio dosprobióticos e de suas características organolépticas.Microcapsules are a practical way of storing, and applying the consortium of microorganisms. they do not require constant maintenance of the Kefir BioLogicus microorganism consortium and products may be added to make them probiotic without transforming their taste, aroma or color, thus overcoming the disadvantages of handling the probiotics and their organoleptic characteristics.
A complementar a presente descrição de modo a obteruma melhor compreensão das características do presente invento ede acordo com a preferencial aplicação prática do mesmo,acompanha a descrição um desenho em que de maneira eexemplificativa, mas não Iimitativa representou o seguinte:In addition to the present description in order to gain a better understanding of the features of the present invention and in accordance with the preferred practical application thereof, the description accompanies a drawing in which, by way of example, but not limitation, represented the following:
A figura 1 mostra que a solução polimérica (solução A,formada pelo consórcio de microrganismos mais o Kefirano, e/ouPectina e o alginato de sódio) é preparada no tanque 1 e mantidaem agitação, para alimentar o tanque 2.Figure 1 shows that the polymeric solution (solution A, formed by the pool of microorganisms plus kefiran, and / or pectin and sodium alginate) is prepared in tank 1 and stirred to feed tank 2.
Do tanque 2 a solução é aspirada e dosada pela bombaperistáltica, sendo gotejada para a formação das microcápsulas, notanque Ill/1, que contém a solução de cloreto de cálcio (solução B).Uma vez concluída a produção de uma determinadaquantidade de microcápsulas, conclusão que pode ser por tempo oumesmo por volume, esse tanque será substituído pelo tanque 111/3,que conterá somente a solução de cloreto de cálcio.From tank 2 the solution is aspirated and dosed by the bombaperistaltic, dripping into the microcapsule formation, notably Ill / 1, which contains the calcium chloride solution (solution B). Once the production of a certain amount of microcapsules is completed, conclusion which may be for time or volume, this tank will be replaced by tank 111/3, which will contain only calcium chloride solution.
As microcápsulas do tanque 111/1, que foi substituído,ficarão em repouso por um tempo entre 5 a 20 minutos,dependendo do substrato em que o consórcio esteja necessáriopara complementar o processo.The microcapsules in the 111/1 tank, which has been replaced, will be allowed to stand for 5 to 20 minutes, depending on the substrate in which the pool is needed to complete the process.
Após esse tempo de repouso, as microcápsulas e asolução, serão vertidas em uma peneira, onde haverá a separaçãodas fases líquidas e sólidas, restando a fase líquida no tanque III/2,que irá substituir o tanque recebedor das gotas da bombaperistá Itica.After this time of rest, the microcapsules and the solution will be poured into a sieve, where there will be the separation of the liquid and solid phases, leaving the liquid phase in tank III / 2, which will replace the receiving tank of bombaperistá Itica droplets.
Por outro lado as microcápsulas recolhidas serãolevadas ao tanque IV, onde, sem serem retirados da peneira,sofrerão a devida lavagem com a água mineral em circuito fechado,concluindo com essa operação um ciclo da produção.On the other hand, the collected microcapsules will be taken to tank IV, where, without being removed from the sieve, they will be properly washed with the closed circuit mineral water, thus concluding a production cycle.
De acordo com a ilustração acima citada, o presenteinvento se refere a um "PROCESSO INDUSTRIAL DE!MOBILIZAÇÃO DE UM CONSÓRCIO DE MICRORGANISMOS,ORIUNDO DO KEFIR BIOLOGICUS, BEM COMO DE SEUSBIOATIVOS OU DE SUAS BIOMOLÉCULAS, ATRAVÉS DAFORMAÇÃO DE MICROCÁPSULAS DE ALGINATO DE CÁLCIOMODIFICADO", ou seja, um processo industrial que permite ofabrico de microcápsulas de um consórcio de microrganismos quenão sofrem as limitações inerentes aos demais alimentosprobióticos: não exigem uma manutenção trabalhosa e nem influemno sabor, aroma ou coloração dos produtos a que são adicionados,conservando, todavia, todos os benefícios inerentes ao consorciode microrganismos (cultura probiótica com cerca de 50 tipos demicrorganismos).According to the above illustration, the present invention refers to an "INDUSTRIAL PROCESS OF MOBILIZING A CONSORTIUM OF MICRORGANISMS, ORIGIN OF KEFIR BIOLOGICUS, AS WELL AS ITS SEBIOACTIVES, THROUGH CODE DEFORMATION OF MICROPHALLATION, In other words, an industrial process that allows the manufacture of microcapsules from a consortium of microorganisms that do not suffer from the limitations inherent to other probiotic foods: they do not require laborious maintenance nor do they influence the taste, aroma or color of the products to which they are added, but retain all the inherent benefits of microorganism consortium (probiotic culture with about 50 types of microorganisms).
A imobilização do consorcio de microorganismos bemcomo de seus produtos metabólicos, conforme realizada nainvenção ora descrita, ocorre da seguinte forma: o consórcio demicrorganismos e seus produtos metabólicos são adicionados auma solução de Kefirano1 alginato de sódio e de pectina, formandouma nova solução (solução A), esta solução é mantida sob agitaçãoaté o momento do uso (1). A solução A pode ser representada daseguinte forma: (100-X-Y) % Alginato - X% Kefirano - Y% Pectina(em porcentagem em volume). Sendo que a concentração dasolução de Alginato de Sódio pode variar de 1 a 5% (em massa), ade Kefirano pode variar de 1 a 3% (em massa) e a de Pectina podevariar de 1 a 4% (em massa).The immobilization of the consortium of microorganisms as well as their metabolic products, as performed in the invention described herein, occurs as follows: the consortium of microorganisms and their metabolic products are added to a solution of Kefirano1 sodium alginate and pectin, forming a new solution (solution A). , this solution is kept under stirring until the moment of use (1). Solution A can be represented as follows: (100-X-Y)% Alginate - X% Kephyrane - Y% Pectin (by volume percentage). Since the concentration of Sodium Alginate solution can vary from 1 to 5% (by mass), Kefirano can vary from 1 to 3% (by mass) and Pectin may vary from 1 to 4% (by mass).
No momento do uso (2), a solução A é transferida para otanque 2 onde é aspirada e dosada por uma bomba peristáltica, quea goteja em uma segunda solução (solução B), esta última deCloreto de Cálcio de concentração que pode variar de 0,1 a 4,0%(em massa).At the time of use (2), solution A is transferred to tank 2 where it is aspirated and dosed by a peristaltic pump, which drips into a second solution (solution B), the latter of concentration of Calcium chloride which may vary from 0, 1 to 4.0% (by mass).
Uma vez concluída a produção de uma determinadaquantidade de microcápsulas (3), conclusão que pode ser portempo ou mesmo por volume, esse tanque será substituído pelotanque III/3, que conterá somente a solução de cloreto de cálcio epassará a receber o gotejamento vindo da bomba peristáltica.Once the production of a certain amount of microcapsules (3) has been completed, which may be either time or volume, this tank will be replaced by tank III / 3, which will contain only calcium chloride solution and will receive drip from the pump. peristaltic.
As microcápsulas do tanque 111/1, que foi substituído,ficarão em repouso por um tempo entre 5 a 20 minutos,dependendo do substrato em que o consórcio de microrganismosesteja contido, necessário para complementar o processo demicroencapsulação.Após esse tempo de repouso, as microcápsulas e asolução, serão vertidas em uma peneira, onde haverá a separaçãodas fases líquidas e sólidas, restando a fase líquida no tanque 111/2,que irá substituir o tanque recebedor das gotas da bombaperistáltica (4) e repetir o processo para a produção de maismicrocápsulas.The microcapsules in the 111/1 tank, which has been replaced, will be allowed to stand for 5 to 20 minutes, depending on the substrate in which the pool of microorganisms is contained, necessary to complement the microencapsulation process. After this rest time, the microcapsules and the solution will be poured into a sieve, where the liquid and solid phases will be separated, leaving the liquid phase in the 111/2 tank, which will replace the bombaperistaltic droplet receiving tank (4) and repeat the process for the production of more microcapsules. .
Por outro lado as microcápsulas recolhidas serãolevadas ao tanque IV (5), onde, sem serem retirados da peneira,sofrerão a devida lavagem com a água destilada em circuitofechado, concluindo com essa operação um ciclo da produção dasmicrocápsulas contendo o consórcio de microrganismos.On the other hand, the collected microcapsules will be taken to tank IV (5), where, without being removed from the sieve, they will be properly washed with the distilled water in closed circuit, concluding with this operation a production cycle of the microcapsules containing the consortium of microorganisms.
As microcápsulas formam uma maneira prática dearmazenar, e aplicar o consórcio de microrganismos: eles nãonecessitam da manutenção constante do consórcio demicrorganismos e podem ser adicionadas a produtos para torná-losprobióticos sem transformar-lhes o sabor, aroma ou cor, superando,assim, as desvantagens de manuseio dos probióticos e de suascaracterísticas organolépticas.REFERÊNCIAS BIBLIOGRÁFICASMicrocapsules form a practical way to store, and apply the consortium of microorganisms: they do not require constant maintenance of the microorganisms and can be added to products to make them unprobiotic without transforming their taste, aroma or color, thus overcoming the disadvantages. handling of probiotics and their organoleptic characteristics.BIBLIOGRAPHIC REFERENCES
ADHIKARI, K.; MUSTAPHA, A.; GRUN, I.U; FERNANDO,L.Viability of microencapsulated bifidobacteria in set yogurt duringrefrigerated storage. J. Dairy Sei. 83: 1946-1951, 2000.ADHIKARI, K .; MUSTAPHA, A .; GRUN, I.U; FERNANDO, L.Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy I know. 83: 1946-1951, 2000.
AMIET-CHARPENTIER, C.; GADILLE, P.; DIGAT1 B.; BENOIT1J. P. Microencapsulation of rhizobacteria by spray-drying:formulation and survival studies. Journal ofMicroencapsulation, London, v. 15, n. 5, 639-659, 1998.AMIET-CHARPENTIER, C .; GADILLE, P .; DIGAT1 B .; BENOIT1J. P. Microencapsulation of rhizobacteria by spray-drying: formulation and survival studies. Journal of Microencapsulation, London, v. 15, no. 5, 639-659, 1998.
ARIMOTO, M.; ICHIKAWA, H.; FUKUMORI, Y.Microencapsulation of water-soluble macromolecules with acrylicterpolymers by the Wurster coating process for colon-specificdrug delivery. PowderTechnoIogy, Lausanne, v. 141, n. 3, 177-186, 2004.ARIMOTO, M .; ICHIKAWA, H .; FUKUMORI, Y.Microencapsulation of water-soluble macromolecules with acrylicterpolymers by the Wurster coating process for colon-specificdrug delivery. Powder Technology, Lausanne, v. 141, no. 3, 177-186, 2004.
ARNAULD, J.P.; LAROIX, C.; CHOPLIN, L. Effect of agitationrate on cell release rate and metabolism during continuesfermentation with entrapped growing Lactobacillus casei subsp.casei. Biotech. Teeh., 6: 265, 1992.ARNAULD, J.P .; LAROIX, C .; CHOPLIN, L. Effect of agitationrate on cell release rate and metabolism during continuousfermentation with entrapped growing Lactobacillus casei subsp.casei. Biotech Teeh., 6: 265, 1992.
ARSHADY, R. Microcapsules for food. Journal ofMicroencapsulation, London, v. 10, n. 4, 413-435, 1993.ARSHADY, R. Microcapsules for food. Journal of Microencapsulation, London, v. 10, no. 4,413-435, 1993.
AUDET, P.; PAQUIN, C.; LACROIX, C. Immobilized growinglactic acid bactéria with k-carrageenan-locust bean gum gel.Applied Microbiologyand Biotechnology, v. 29, 11-18, 1988.BAKAN1 J. A. Microencapsulation of foods and related products.Food Technology, v. 27, n. 11, 34-44, 1973.AUDET, P .; PAQUIN, C .; LACROIX, C. Immobilized growinglactic acid bacteria with k-carrageenan-locust bean gum gel.Applied Microbiologyand Biotechnology, v. 29, 11-18, 1988.BAKAN1 J. A. Microencapsulation of foods and related products. Food Technology, v. 27, no. 11, 34-44, 1973.
BEAL, C.; SKOKANOVA, J.; LATRILLE, E; MARTINN, N;CORRIEU, G. Combined effects of culture conditions andstorage time on acidification and viscosity of stirred yogurt. JDairy Sei. 82: 673-681, 1999.BEAL, C .; SKOKANOVA, J .; LATRILLE, E; MARTINN, N; CORRIEU, G. Combined effects of culture conditions and time on acidification and viscosity of stirred yogurt. JDairy I know. 82: 673-681, 1999.
BIELECKA, M.; BIEDRZYCKA, E.; MAJKOWSKA, A. Selectionof probioties and prebioties for synbiotics and confirmation oftheir in vivo effectiveness. Food Res. Int., v.35, n.2/3, 125-131,2002.BIELECKA, M .; BIEDRZYCKA, E .; MAJKOWSKA, A. Selectionof probioties and prebioties for synbiotics and confirmation oftheir in vivo effectiveness. Food Res. Int., V.35, no.2 / 3, 125-131,2002.
BRANNON-PEPPAS, L. Controlled release in the food andeosmeties industries. In: Polymeric delivery systems:properties and applications. Oxford. Oxford University Press,1993. chapter 3, 42-52.BRANNON-PEPPAS, L. Controlled release in the food andeosmeties industries. In: Polymeric delivery systems: properties and applications. Oxford Oxford University Press, 1993. chapter 3, 42-52.
BUCK, L.M.; GILLILAND, S.E. Comparisons of freshly isolatedstrains of Lactobacillus acidophilus of human intestinal origin forability to assimilate cholesterol during growth. J Dairy Sci., v. 77:2925-2933, 1994.BUCK, L.M .; GILLILAND, S.E. Comparisons of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for the ability to assimilate cholesterol during growth. J Dairy Sci., V. 77: 2925-2933, 1994.
CAPELA, P.; HAY, Τ. K. C.; SHAH, Ν. P. Effeet ofcryoprotectants, prebioties and mieroeneapsulation on survival ofprobiotic organisms in yoghurt and freeze-yoghurt. FoodResearch International, v. 39, n. 2, 203-211, 2006.CHAMPAGNE, C. P.; CÔTE, C. Β. Cream fermentation byimmobilized Iactic acid bactéria. Biotechnology Letters1 v. 9, n.5, 329-332, 1987.CAPELA, P .; HAY, Τ. K. C .; SHAH, Ν. P. Effeet of cryoprotectants, prebioties and mieroeneapsulation on survival of probiotic organisms in yoghurt and freeze-yoghurt. FoodResearch International, v. 39, no. 2, 203-211, 2006. CHAMPAGNE, C. P .; CÔTE, C. Β. Cream fermentation byimmobilized Iactic acid bacteria. Biotechnology Letters1 v. 9, no. 329-332, 1987.
CHAMPAGNE, C. P.; GARDNER, N.; DUGAL, F. Increasing thestability of immobilized Lactococcus Iactis cultures stored at 4°C.J. of lnd. Microbiology, v. 13, n. 6, 367-371, 1994.CHAMPAGNE, C. P .; GARDNER, N .; DUGAL, F. Increasing thestability of immobilized Lactococcus Iactis cultures stored at 4 ° C.J. of lnd. Microbiology, v. 13, no. 6, 367-371, 1994.
CHAMPAGNE, C.P.; GAUDY, C.; PONCELET, D.; NEUFELD,R.J. Lactococcus Iaetis release from alginate beads. ApplEnviron Microbiol., v. 58: 1429-1434, 1992.CHAMPAGNE, C.P .; GAUDY, C .; PONCELET, D .; NEUFELD, R.J. Lactococcus Iaetis release from alginate beads. ApplEnviron Microbiol., V. 58: 1429-1434, 1992.
CHAMPAGNE, C.P.; MORIN1 N.; COUTURE, R.; GAGNON, C.;JELEN, P.; LACROIX, C. The potential of immobilized celltechnology to produee freeze-dried, phage-protect cultures ofLaetococeus latis. Food Res Int., v. 25, 419-427, 1992.CHAMPAGNE, C.P .; MORIN1 N .; COUTURE, R .; GAGNON, C.; JELEN, P .; LACROIX, C. The potential of immobilized cell technology to produce freeze-dried, phage-protect cultures of Laetococeus latis. Food Res Int., V. 25, 419-427, 1992.
CHANDRAMOULI, V.; KAILASAPATHY, K.; PEIRIS, P.; JONES,M. An improved method of microencapsulation and its evaluationto protect Lactobacillus spp. in simulated gastric conditions.Journal of Microbiological Methods, v. 56, n. 27/35, 2004.CHANDRAMOULI, V .; KAILASAPATHY, K .; PEIRIS, P .; JONES, M. An improved method of microencapsulation and its evaluationto protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods, v. 56, no. 27/35, 2004.
CHARTERIS, W.P.; KELLY, P.M.; MORELLI, L.; COLLINS, J.K.Ingredient selection criteria for probiotic microorganisms infunctional dairy foods. Int. J. Dairy Teehnol., v.51, n.4, 123-136,1998.CHARTERIS, W.P .; KELLY, P.M .; MORELLI, L .; COLLINS, J.K.Ingredient selection criteria for probiotic microorganisms infunctional dairy foods. Int. J. Dairy Teehnol., V.51, no. 4, 123-136,1998.
CHEN, K. N.; CHEN, M. J.; LIN, C. W. Optimal combination ofthe encapsulating materiais for probiotic microcapsules and itsexperimental verification (R1). Journal of Food Engineering, v.CHEN, K.N .; CHEN, M. J .; LIN, C. W. Optimal combination ofthe encapsulating materials for probiotic microcapsules and itsexperimental verification (R1). Journal of Food Engineering, v.
76, n. 3, 313-320, 2006.76, no. 3, 313-320, 2006.
CRITTENDEN, R.G. Prebiotics. In: TANNOCK, G.W., ed.Probiotics: a criticai review. Norfolk: Horizon Scientific Press,1999. 141-156.CRITTENDEN, R.G. Prebiotics. In: TANNOCK, G.W., ed.Probiotics: A Critical Review. Norfolk: Horizon Scientific Press, 1999. 141-156.
CUI, J. H.; GOH, J. S.; KIM1 P. H.; CHOI, S. H.; LEE, B. J.Survival and stability of bifidobacteria Ioaded in alginate poly-L-Iysine microparticles. International Journal ofPharmaceuticals, v. 210, n. 1-2, 51-59, 2000.CUI, J. H .; GOH, J. S .; KIM1 P. H .; CHOI, S. H .; LEE, B. J. Survival and stability of bifidobacteria Ioaded in alginate poly-L-Iysine microparticles. International Journal of Pharmaceuticals, v. 210, no. 1-2, 51-59, 2000.
DALY, C.; DAVIS, R. The biotechnology of lactic-acid bactériawith emphasis on application in food safety and humanhealth/agricultural and food science in Finland. Agric Food Sci.,v. 7, 251-265, 1998.DALY, C .; DAVIS, R. The biotechnology of lactic acid bacteria with emphasis on application in food safety and human health / agricultural and food science in Finland. Agric Food Sci., V. 7, 251-265, 1998.
DAVE, R. I.; SHAH1 Ν. P. Viability of yoghurt and probioticbactéria in yoghurts made from commercial starter cultures.International Dairy Journal, v. 7, 31-41, 1997.DAVE, R. I .; SHAH1 Ν. P. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, v. 7, 31-41, 1997.
DAVE1 R.I.; SHAH, N.P. Evalution of media for selectiveenumeration of Streptococcus thermophilus, Lactobacillusdelbruekii spp. bulgarieus, Lactobacillus aeidophilus andbifidobaceria. J Dairy Sci., v. 79: 1529-1539, 1996.DAVE1 R.I .; SHAH, N.P. Evalution of media for selective enumeration of Streptococcus thermophilus, Lactobacillusdelbruekii spp. bulgarieus, Lactobacillus aeidophilus andbifidobaceria. J Dairy Sci., V. 79: 1529-1539, 1996.
DAVE1 R.I.; SHAH1 N.P. Viability of yoghurt and probioticbactéria in yoghurts made from commercial starter cultures. IntDairyJ., v. 7, 31-41, 1997.DE VUYST, L.; VANDERVEKEN, F.; VAN DE VEN1 S.;DEGEEST, Β. Production by and isolation of exopolysaccharidesfrom streptoeoeeus thermophilus grown in a milk médium andevidence for their growth-assoeiated biosynthesis. Journal ofapplied microbiology, v.84, n.6, 1059-68, 1998.DAVE1 R.I .; SHAH1 N.P. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. IntDairyJ., V. 7, 31-41, 1997. DE VUYST, L .; VANDERVEKEN, F .; VEN1 S. VAN; DEGEEST, Β. Production by and isolation of exopolysaccharidesfrom streptoeoeeus thermophilus grown in a milk medium andevidence for their growth-assoiated biosynthesis. Journal of Applied Microbiology, v.84, no. 6, 1059-68, 1998.
DESAI, K. G. H.; PARK, H. J. Recent developments inmicroencapsulation of food ingredients. Drying Technology, v.23, n. 7, 1361-1394, 2005.DESAI, K. G. H .; PARK, H. J. Recent developments in micronencapsulation of food ingredients. Drying Technology, v.23, no. 7, 1361-1394, 2005.
DESMOND, C.; ROSS, R. P.; OOALLAGHAN, E.;FITZGERALD, G.; STANTON, C. Improved survival ofLactobacillus paracasei NFBC 338 in spray-dried powderscontaining gum acacia. Journal of Applied Microbiology, v. 93,n. 6, 1003-1011, 2002.DESMOND, C .; ROSS, R. P .; OOALLAGHAN, E.; FITZGERALD, G .; STANTON, C. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, v. 93, no. 6, 1003-1011, 2002.
DIMANTOV, A.; GREENBERG, M.; KESSELMAN, E.; SHIMONI.Study of high amylase corn starch as food grade enteric coatingin a mieroeapsule model systems. Innov. Food Sci EngTechnol.,v. 5, 93-100, 2003.DIMANTOV, A .; GREENBERG, M .; KESSELMAN, E .; SHIMONI.Study of high amylase corn starch as food grade enteric coatingin a mieroeapsule model systems. Innov. Food Sci EngTechnol., V. 5, 93-100, 2003.
DINAKAR, P.; MISTRY, V. V. Growth and viability ofBifidobacterium bifidum in eheddar cheese. Journal of DairyScience, v. 77, n. 10, 2854-64, 1994.DINAKAR, P .; MISTRY, V. V. Growth and viability of Bifidobacterium bifidum in eheddar cheese. Journal of DairyScience, v. 77, no. 10, 2854-64, 1994.
EIKMEIER, H.; REHM, H.J. Stability of calcium-alginate duringcitric acid production of immobilized Aspergillus niger. ApplMicrobiol Biotechnol., v. 26, 105-111, 1987.ELLENTON, J.C. (1998). Encapsulation bifidobacteria. Masterthesis, University of Guelph.EIKMEIER, H .; REHM, H.J. Stability of calcium-alginate during citric acid production of immobilized Aspergillus niger. ApplMicrobiol Biotechnol., V. 26, 105-111, 1987. Bellenton, J.C. (1998). Encapsulation bifidobacteria. Masterthesis, University of Guelph.
ENGLYST, H.N.; KINGMAN, S.M.; GUMMINGS, J.H.Classification and measurement of nutritionally important starchfractions. Eur J Clin Nutr., v. 2, 46 33-50, 1992.ENGLYST, H.N .; KINGMAN, S.M .; GUMMINGS, J.H.Classification and measurement of nutritionally important starchfractions. Eur J Clin Nutr., V. 2, 46 33-50, 1992.
FAO/WHO Experts' Report. Health and nutritional properties ofprobiotics in food including powder milk with Iive Iactic acidbactéria, 2001.FAO / WHO Experts' Report. Health and nutritional properties of probiotics in food including powder milk with Iive Iactic acidbacteria, 2001.
FARNWORTH ER. Handbook of fermented functional foods.2002; 113-144.FARNWORTH ER. Handbook of fermented functional foods.2002; 113-144.
FAVARO-TRIN DADE, C. S.; GROSSO, C. R. F.Microencapsulation of L. acidophilus (La-05) and B. Iaetis (Bb-12) and evaluation of their survival at the pH values of thestomach and in bile. Journal of Microencapsulation, v. 19, n.4, 485-494, 2002.FAVARO-TRIN DADE, C. S .; GROSSO, C.R. F. Microencapsulation of L. acidophilus (La-05) and B. Iaetis (Bb-12) and evaluation of their survival at pH values of thestomach and in bile. Journal of Microencapsulation, v. 19, no. 485-494, 2002.
FAVARO-TRINDADE, C. S.; GROSSO, C. R. F. The effect of theimmobilization of L acidophilus & B. Iactis in alginate on theirtolerance to gastrointestinal secretions. Milchwissenschaft, v.55, n. 9, 496-499, 2000.FAVARO-TRINDADE, C. S .; GROSSO, C. R. F. The effect of the immobilization of L acidophilus & B. Iactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft, v.55, no. 9, 496-499, 2000.
FIORAMONTI, J.; THEODOROU, V.; BUENO, L. Probiotics:what are they? What are their effects on gut physiology? BestPract. Res. Clin. Gastroenterol., v.17, 711-724, 2003.FULLER, R. (1992). Probiotics: the scientific basis. London:Chapman & Hall.FIORAMONTI, J .; THEODOROU, V .; BUENO, L. Probiotics: what are they? What are their effects on gut physiology? BestPract Res. Clin. Gastroenterol., V.17, 711-724, 2003.FULLER, R. (1992). Probiotics: the scientific basis. London: Chapman & Hall.
FULLER, R. Probiotics in human medicine. Gut1 v. 32: 439-442,1991.FULLER, R. Probiotics in human medicine. Gut1 v. 32: 439-442,1991.
FULLER, R. Probiotics in man and animais. Journal of AppliedBacteriology, v. 66, 365-378, 1989.FULLER, R. Probiotics in man and animals. Journal of Applied Bacteriology, v. 66, 365-378, 1989.
FURUKAWA, N.; MATSUOKA, A.; TAKAHASHI, T.;YAMANAKA, Y. Anti-metastic effect of kefir grain components onLewis Iung carcinoma and highly metastic B16 melanoma inmice, J Agric Sei, 45, 2000;FURUKAWA, N .; MATSUOKA, A .; TAKAHASHI, T.; YAMANAKA, Y. Anti-metastic effect of kefir grain components on Lewis Iung carcinoma and highly metastic B16 melanoma inmice, J Agric Sci, 45, 2000;
GARDINI, F.; LANCIOTTI, R.; GUERZONI, M.E.; TORRIANI, S.Evaluation of aroma produetion and survival of Streptococcusthermophilus, Lactobacillus delbruekii subsp bulgarieus andLactobacillus aeidophilus in fermented milks. Int Dairy J., v.9,125-134, 1999.GARDINI, F .; LANCIOTTI, R .; GUERZONI, M.E .; TORRIANI, S.Evaluation of aroma production and survival of Streptococcusthermophilus, Lactobacillus delbruekii subsp. Bulgarieus and Lactobacillus aeidophilus in fermented milks. Int Dairy J., v.9,125-134, 1999.
GHOSH, S., Immobilization of Baker1S Yeast Using Plaster ofParis, Biotechnol. Tech., v.2, n. 3, 217-219, 1988.GHOSH, S., Immobilization of Baker Yeast Using Plaster of Paris, Biotechnol. Tech., V.2, no. 3,221-219, 1988.
GIBSON, G.R.; FULLER, R. Aspects of in vitro and in vivoresearch approaches directed toward identifying probiotics andprebioties for human use. J. Nutr., v.130, 391S-394S, 2000.GILLILAND, S. Ε. Acidophilus milk-productsda review ofpotential benefits to consumers. Journal of Dairy Science, v.72, 2483-2495, 1989.GIBSON, G.R .; FULLER, R. Aspects of in vitro and in vivoresearch approaches directed toward identifying probiotics andprebioties for human use. J. Nutr., V. 130, 391S-394S, 2000. GILLILAND, S. Ε. Acidophilus milk-products from review of potential benefits to consumers. Journal of Dairy Science, v.72, 2483-2495, 1989.
GILLILAND, S.E.; SPECK1 M.L. Instability of Lactobacillusacidophilus in yogurt. J Dairy Sci., v. 60: 1394-1398, 1997.GILLILAND, S.E .; SPECK1 M.L. Instability of Lactobacillusacidophilus in yogurt. J Dairy Sci., V. 60: 1394-1398, 1997.
GISMONDO, M. R.; DRAGO, L.; LOMBARDI, A. Review ofprobiotics available to modify gastrointestinal flora. InternationalJournal of Antimicrobial Agents, v. 12, 287-292, 1999.GISMONDO, M. R .; DRAGO, L .; LOMBARDI, A. Review of probiotics available to modify gastrointestinal flora. International Journal of Antimicrobial Agents, v. 12, 287-292, 1999.
GOLDIN, B.R. Health benefits of probiotics. British J Nutr., v.80, 203-207, 1998.GOLDIN, B.R. Health benefits of probiotics. British J Nutr., V.80, 203-207, 1998.
GOMES, A.M.P; MALCATA, F.X. Bifidobacterium spp andLactobacillus acidophilus: biological and theraputical revalant foruse a probiotics. Trends Food Sci Technol., v.10, 139-157,1999.GOMES, A.M.P; MALCATA, F.X. Bifidobacterium spp and Lactobacillus acidophilus: biological and therapeutic revalant foruse a probiotics. Trends Food Sci Technol., V.10, 139-157,1999.
GOUIN1 S. Microencapsulation: industrial appraisal of existingtechnologies and trends. Trends in Food Science andTechnology, v. 15, n. 7-8, 330-347, 2004.GOUIN1 S. Microencapsulation: industrial appraisal of existingtechnologies and trends. Trends in Food Science and Technology, v. 15, no. 7-8, 330-347, 2004.
GROBOILLOT, A. F.; CHAMPAGNE, C. P.; DARLING, G. D.;PONCELET, D. Membrane formation by interfacial croos-linkingof chitosan for microencapsulation of Laetococeus laetis.Biotechnology and Bioengineering, v. 42, n. 10, 1157-1163,1993.GURR1 M.I. (1987). Nutritional aspects of fermented milkproducts. Milk: The vital force proceeding of the XX11international dairy congress, Dordrecht1 Netherlands1 September29-October 3: 1986.GROBOILLOT, A. F .; CHAMPAGNE, C. P .; DARLING, G. D. PONCELET, D. Membrane formation by interfacial croos-linkingof chitosan for microencapsulation of Laetococeus laetis.Biotechnology and Bioengineering, v. 42, no. 10, 1157-1163,1993.GURR1 M.I. (1987). Nutritional aspects of fermented milkproducts. Milk: The Vital Force Proceeding from the XX11 International Dairy Congress, Dordrecht1 Netherlands1 September29-October 3: 1986.
HAMILTON-MILLER, J.M.T.; SHAH1 S.; WINKLER, J.T. Publichealth issues arising from microbiological and survival in yogurt.Public Health Nutr., v. 2: 223-229, 1999.HAMILTON-MILLER, J.M.T .; SHAH1 S .; WINKLER, J.T. Publichealth issues increased from microbiological and survival in yogurt.Public Health Nutr., V. 2: 223-229, 1999.
HANSEN, L. T.; WONJTAS, A. P. M.; JIW1 Y. L.; PAULSON, A.T. Survival of Ca-alginate microencapsulated Bifidobacteriumspp. In: milk and simulated gastrointestinal conditions. FoodMicrobiology, v. 19, n. 1, 35-45, 2002.HANSEN, L. T .; WONJTAS, A. P. M .; JIW1 Y. L .; PAULSON, A.T. Survival of Ca-alginate microencapsulated Bifidobacteriumspp. In: milk and simulated gastrointestinal conditions. Food Microbiology, v. 19, no. 1, 35-45, 2002.
HOLCOMB, J.E.; FRANK, J.F.; MCGREGOR, J.U. Viability ofLactobacillus acidophilus and Bifidobacterium bifidum insoftserve frozen yogurt. Cult Dairy Product J., v. 26, 4-5, 1991.HOLCOMB, J.E .; FRANK, J.F .; MCGREGOR, J.U. Viability of Lactobacillus acidophilus and Bifidobacterium bifidum insoftserve frozen yogurt. Cult Dairy Product J., v. 26, 4-5, 1991.
HYNDMAN, C. L.; GROBOILLOT, A. F.; PONCELET, D.;CHAMPAGNE, C. P.; NEUFELD, R. J. Microencapsulation ofLactococcus Iaetis within cross-liked gelatin membranes.Journal Chemistry Technology Biotechnology, v. 56, n. 3,259-63, 1993.HYNDMAN, C.L .; GROBOILLOT, A. F .; PONCELET, D.; CHAMPAGNE, C. P .; NEUFELD, R. J. Microencapsulation of Lactococcus Iaetis within cross-liked gelatin membranes. Journal of Chemistry Technology Biotechnology, v. 56, no. 3,259-63, 1993.
ISOLAURI, E.; SALMINEN, S.; OUWEHAND, A.C. Probiotics.Best Pract. Res. Clin. Gastroenterol., v.18, n.2, 299-313,2004.IWANA1 H.; MASUDA, H.; FUJISAWA, T.; SUZUKI, H.;MITSUOKA, T. Isolation of Bifidobacterium spp. in commercialyoghurts sold in Europe. Bifidobacteria Microflora, v. 12, 39-45, 1993.ISOLAURI, E .; SALMINEN, S .; OUWEHAND, A.C. Probiotics.Best Pract. Res. Clin. Gastroenterol., V.18, n.2, 299-313,2004.IWANA1 H .; MASUDA, H .; FUJISAWA, T .; SUZUKI, H.; MITSUOKA, T. Isolation of Bifidobacterium spp. in commercialyoghurts sold in Europe. Bifidobacteria Microflora, v. 12, 39-45, 1993.
IYER, C.; KAILASAPATHY, K. Effect of co-encapsulation ofprobiotics with prebiotics on increasing the viability ofencapsulated bactéria under in vitro acidic and bile saltconditions and in yogurt. Journal of Food Science, v. 70, n. 1,18-23, 2005.IYER, C .; KAILASAPATHY, K. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability ofencapsulated bacteria under in vitro acidic and bile saltconditions and in yogurt. Journal of Food Science, v. 70, no. 1.18-23, 2005.
JACKSON, L. S.; LEE, K. Microencapsulation and Food Industry.LWT - Food Science and Technology, v. 24, n. 4, 289-297,1991.JACKSON, L. S .; LEE, K. Microencapsulation and Food Industry.LWT - Food Science and Technology, v. 24, no. 4,289-297,1991.
JAN KOWSKI, T.; ZIELINSKA, M.; WYSAKOWSKA.Encapsulation of Iaetie and bactéria with alginate/starchcapsules. Biotechnol Technol., v. 11, 31-34, 1997.JAN KOWSKI, T .; ZIELINSKA, M .; WYSAKOWSKA.Encapsulation of Iaetie and bacteria with alginate / starchcapsules. Biotechnol Technol., V. 11, 31-34, 1997.
JELEN, P.; LUTZ, S. Funetional milk and dairy products. In:MAZZA1 G., ed. Functional foods: biochemical andprocessing aspects. Lancaster: Teehnomic Publishing, 1998,357-381.;JELEN, P .; LUTZ, S. Funetional milk and dairy products. In: MAZZA1 G., ed. Functional foods: biochemical and processing aspects. Lancaster: Teehnomic Publishing, 1998.357-381 .;
KABAYAMA, S.; OSADA, K.; TACHIΒΑΝΑ, H.; KATAKURA, Y.;SHIRAHATA, S. Enhaneing effects of food components on theproduction of interferon β from animal cells suppressed by stresshormones, Cytotechnology, v. 23, n. 1-3, 1997.KAILASAPATHY, Κ. Survival of free and encapsulated probioticbactéria and their effect on the sensory properties of yoghurt.LWT-Food Science and Technology, v. 39, n. 10, 1221-1227,2006.KABAYAMA, S .; OSADA, K .; TACHI, H .; KATAKURA, Y.; SHIRAHATA, S. Enhaneing effects of food components on the production of interferon β from animal cells suppressed by stresshormones, Cytotechnology, v. 23, no. 1-3, 1997.KAILASAPATHY, Κ. Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt.LWT-Food Science and Technology, v. 39, no. 10, 1221-1227,2006.
KAILASAPATHY, K.; RYBKA1 S. L acidophilus andBifidobacterium spp.: their therapeutic potential and survival inyogurt. Aust J Dairy Technol., v. 52, 28-35, 1997.KAILASAPATHY, K .; RYBKA1 S. L acidophilus and Bifidobacterium spp .: their therapeutic potential and survival inyogurt. Aust J Dairy Technol., V. 52, 28-35, 1997.
KAUR, I.P.; CHOPRA, K.; SAINI, A. Probiotics: potentialpharmaceutical applications. Eur. J. Pharm. Sci., v.15, 1-9,2002.KAUR, I.P .; CHOPRA, K .; SAINI, A. Probiotics: potential pharmaceutical applications. Eur. J. Pharm. Sci., V.15, 1-9,2002.
KEBARY, K.M.K.; HUSSEIN, S.A.; BADAWI R.M. Improvingviability of Bifidobacterium and their effect on frozen ice milk. JDairy Sci., v. 26, 319-337, 1998.KEBARY, K.M.K .; HUSSEIN, S.A .; BADAWI R.M. Improvingviability of Bifidobacterium and their effect on frozen ice milk. JDairy Sci., V. 26, 319-337, 1998.
KHALIL, A. H.; MANSOUR, Ε. H. Alginate encapsulationbifidobacteria survival in mayonnaise. Journal of Food Science,v. 63, n. 4, 702-705, 1998.KHALIL, A. H .; MANSOUR, Ε. H. Alginate encapsulationbifidobacteria survival in mayonnaise. Journal of Food Science, v. 63, no. 4, 702-705, 1998.
KIM, H. S.; KAMARA, B. J.; GOOD, I. C.; ENDERS Jr., G. L.Method for the preparation of stable microencapsulated Iacticacid bactéria. Journal of Industrial Microbiology, v. 3, n. 4,253-57, 1988.KIM, H. S .; KAMARA, B. J .; GOOD, I. C .; ENDERS Jr., G. L. Method for the preparation of stable microencapsulated Iacticacid bacteria. Journal of Industrial Microbiology, v. 3, no. 4,253-57, 1988.
KIM, H.S.; GILLILAND, S. Lactobacillus acidophilus as a dietaryadjunct for milk to aid Iaetose digestion in human. J Dairy Sci., v.66, 959-966, 1983.KIM1 S. C.; OLSON1 Ν. F. Production of methanethiol in milk fat-coated microcapsules containing Brevibacterium Iinens andmethionine. Journal of Dairy Research, v. 56, n. 5, 799-811,1989.KIM, H.S .; GILLILAND, S. Lactobacillus acidophilus as a dietary adjunct for milk to aid Iaetosis digestion in human. J Dairy Sci., V.66, 959-966, 1983.KIM1 S. C .; OLSON1 Ν. F. Production of methanethiol in milk fat-coated microcapsules containing Brevibacterium Iinens and Methionine. Journal of Dairy Research, v. 56, no. 5, 799-811.1989.
KIM1 Y. D.; MORR, C. V.; SCHENZ, T. W. Microencapsulationproperties of gum Arabic and several food proteins: Liquidorange oil emulsion particles. Journal of Agricultural FoodChemistry, v. 44, 1308-1313, 1996.KIM1 Y. D .; MORR, C. V .; SCHENZ, T. W. Microencapsulationproperties of gum Arabic and several food proteins: Liquidorange oil emulsion particles. Journal of Agricultural Food Chemistry, v. 44, 1308-1313, 1996.
KLAENHAMMER, T.R. Probioties and prebiotics. In: Foodmicrobiology: fundamentais and frontiers, DOYLE, M.P.;BEUCHAT, L.R.; MONTVILLE, T.J., 2.ed. Washington: ASM,2001, 797-811.KLAENHAMMER, T.R. Probioties and prebiotics. In: Foodmicrobiology: Fundamentals and Frontiers, DOYLE, M.P.; BEUCHAT, L.R .; MONTVILLE, T.J., 2.ed. Washington: ASM, 2001, 797-811.
KLEIN, G.; PACK, A.; BONAPARTE, C.; REUTER, G. Taxonomyand physiology of probiotic Iaetie acid bactéria. Int J FoodMicrobiol., v. 41, 103-125, 1998.KLEIN, G .; PACK, A .; BONAPARTE, C .; REUTER, G. Taxonomy and physiology of probiotic acid bacteria. Int J FoodMicrobiol., V. 41, 103-125, 1998.
KLIEN, J.; STOCK, J.; VORLOP, K.D. Pore size and propertiesof spherical calcium alginate biocatalysts. Eur J Appl MicrobiolBiotechnol., v. 18, 86-91, 1983.Klien, J .; STOCK, J .; VORLOP, K.D. Pore size and propertiesof spherical calcium alginate biocatalysts. Eur J Appl Microbiol Biotechnol., V. 18, 86-91, 1983.
KOOIMAN, P. The chemical structure of kefiran, the water-soluble polysaccharide of kefir grain, Carbohydrate Research,v. 7, 200-211, 1968.KOOIMAN, P. The chemical structure of kefiran, the water-soluble polysaccharide of kefir grain, Carbohydrate Research, v. 7, 200-211, 1968.
KRASAEKOOPT, W.; BHANDARI, B.; DEETH, H. The influenceof coating materiais on some properties of alginate beads andsurvivability of microencapsulated probiotic bactéria.International Dairy Journal, v. 14, 737-743, 2004.KRASAEKOOPT, W .; BHANDARI, B .; DEETH, H. The influenceof coating materials on some properties of alginate beads and survival of microencapsulated probiotic bacteria.International Dairy Journal, v. 14, 737-743, 2004.
KRASAEKOOPT, W.; BHANDARI, B.; EETH1 H. Evaluation ofencapsulation techniques of probiotics for yoghurt. InternationalDairy Journal, v. 13, 3-13, 2003.KRASAEKOOPT, W .; BHANDARI, B .; EETH1 H. Evaluation of encapsulation techniques of probiotics for yoghurt. InternationalDairy Journal, v. 13, 3-13, 2003.
KURMAN, J.A.; RASIC, J.L. The Health Potential of ProductsContaining Bifidobacteria. In: Therapeutic Properties ofFermented Milks, Robinson, R K (Ed.). Elsevier AppliedScience, London, UK, pp: 117-157, 1991KURMAN, J.A .; RASIC, J.L. The Health Potential of Products Containing Bifidobacteria. In: Therapeutic Properties of Fermented Milks, Robinson, RK (Ed.). Elsevier Applied Science, London, UK, pp: 117-157, 1991
KURMANN, J.E. (1983). Bifidobacteria and their role. Basel:Birkhauser. Robinson (Ed). London: Elsevier Application FoodScience series.KURMANN, J.E. (1983). Bifidobacteria and their role. Basel: Birkhauser. Robinson (Ed). London: Elsevier Application FoodScience series.
LANCAPUTHRA, W.E.V.; SHAH N.P. Bifidobacterium spp in thepresence of acid and bile salts. Cult Dairy Prod J., v. 30, 2-7,1995.LANCAPUTHRA, W.E.V .; SHAH N.P. Bifidobacterium spp in the presence of acid and bile salts. Cult Dairy Prod J., v. 30, 2-7.1995.
LARISCH, B.C.; PONCELET, D.; CHAMPAGNE, C.P.;NEUFELD, R.J. Microencapsulation of Lactococcus Iaetis subsp.Creamoris. J Microencap., v. 11, 189-195, 1994.LARISCH, B.C .; PONCELET, D .; CHAMPAGNE, C.P.; NEUFELD, R.J. Microencapsulation of Lactococcus Iaetis subsp.Creamoris. J Microencap., V. 11, 189-195, 1994.
LEE, K.I.; HEO, T.R. Survival of Bifudobacterium Iongumimmobilized in calcium alginate beads in simulated gastric juicesand bile salt solution. Appl Environ Microbiol., v. 66, 869-973,2000.LEE, Y.K.; NOMOTO, K.; SALMINEN, S.; GORBACH, S.L.Handbook of probiotics. New York: Wiley, 1999. 211.LEE, K.I .; HEO, T.R. Survival of Bifudobacterium Iongumimmobilized in calcium alginate beads in simulated gastric juicesand bile salt solution. Appl Environ Microbiol., V. 66, 869-973,2000.LEE, Y.K .; NOMOTO, K .; SALMINEN, S .; GORBACH, S.L. Handbook of probiotics. New York: Wiley, 1999. 211.
LIM1 F.; SUN, A. M. Microencapsulated Islets as BioartifieialEndoerine Pancreas, Science, v. 210, 908-910, 1980.LIM1 F .; SUN, A.M. Microencapsulated Islets as BioartifiableEndoerine Pancreas, Science, v. 210, 908-910, 1980.
LIU, J. R.; WANG, S. Y.; LIN, Y. Y.; LIN, C. W.; NUTR. ANDCÂNCER,v.44, 183, 2002.LIU, J. R .; WANG, S. Y .; LIN, Y. Y .; LIN, C. W .; NUTR ANDCANER, v.44, 183, 2002.
MACFARLANE, G.T.; CUMMINGS, J.H. Probiotics andprebiotics: can regulating the activities of intestinal bactériabenefit health. BMJ., v. 318, 999-1003, 1999.MACFARLANE, G.T .; CUMMINGS, J.H. Probiotics andprebiotics: can regulating the activities of intestinal bacteriabenefit health. BMJ., V. 318, 999-1003, 1999.
MAEDA, H.; ZHU, X.; OMURA, K.; SUZUKI, S.; KITAMURA, S.,Effects of an exopolysaccharide (kefiran) on lipids, bloodpressure, blood glucose, and constipation, Biofactors, v. 22,197-200, 2004.MAEDA, H .; ZHU, X .; OMURA, K .; SUZUKI, S .; KITAMURA, S., Effects of an exopolysaccharide (kefiran) on lipids, bloodpressure, blood glucose, and constipation, Biofactors, v. 22,197-200, 2004.
MAEDA1 X.; ZHU, S.; SUZUKI, K.; KITAMURA, S. Structuralcharacterization and biological activities of an exopolysaccharidekefiran produced by Lactobacillus kefiranofaciens WT-2B(T), JAgric Food Chem, v. 52, 5533-5538, 2004.MAEDA1 X .; ZHU, S .; SUZUKI, K .; KITAMURA, S. Structuralcharacterization and biological activities of an exopolysaccharidekefiran produced by Lactobacillus kefiranofaciens WT-2B (T), JAgric Food Chem, v. 52, 5533-5538, 2004.
MARTINSEN, A.; SKJAK-BRAEK, C.; SMIDSROD, O. Alginateas immobilization material: 1. correlation between chemical andphysical properties of alginate gel beads. Biotechnol Bioeng., v.33, 79-89, 1989.MARX, J.L. (1989). A revolution in biotechnology. Cambridge:Cambridge University.MARTINSEN, A .; SKJAK-BRAEK, C .; SMIDSROD, O. Alginateas immobilization material: 1. correlation between chemical andphysical properties of alginate gel beads. Biotechnol Bioeng., V. 33, 79-89, 1989. MARX, J.L. (1989). A revolution in biotechnology. Cambridge: Cambridge University.
MATTILA-SANDHOLM1 T.; MYLLARINEN, P.; CRITTENDEN,R.; MOGENDEN, G.; FONDEN1 R.; SAARELA, M.Technological challenges for future probiotic foods. Internationa!DairyJournaI1 v. 12, 173-182, 2002.MATTILA-SANDHOLM1 T .; MYLLARINEN, P .; CRITTENDEN, R .; MOGENDEN, G .; FONDEN1 R .; SAARELA, M.Technological challenges for future probiotic foods. Internationa! DairyJournaI1 v. 12, 173-182, 2002.
MICHELI, L.; UCELLETTI, D.; PALLESCHI, C.; RESCENZI, V.Isolation and characterisation of a ropy Lactobacillus strainproducing the exopolysaccharide kefiran. Applied Microbiologyand Biotechnology, v. 53, 69-74, 1999.MICHELI, L .; UCELLETTI, D .; PALLESCHI, C .; RESCENZI, V. Isolation and characterization of a ropy Lactobacillus strainproducing the exopolysaccharide kefiran. Applied Microbiologyand Biotechnology, v. 53, 69-74, 1999.
MODLER, H. W.; VILLA-GARCIA, L. The growth ofBifídobacteríum Iongum in a whey-based médium and viability ofthis organism in frozen yogurt with Iow and high leveis ofdeveloped acidity. Cultured Dairy Products Journal, v. 28, n.3, 4-8, 1993.MODLER, H. W .; VILLA-GARCIA, L. The growth of Bifidobacterium Iongum in a whey-based medium and viability ofthis organism in frozen yogurt with Iow and high levels ofdeveloped acidity. Cultured Dairy Products Journal, v. 28, no. 4-8, 1993.
MOMBELLI, B.; GISMONDO, M.R. The use of probiotics inmedicai practice. Int J Ant Agents., v. 16, 531-536, 2000.MOMBELLI, B .; GISMONDO, M.R. The use of probiotics in medical practice. Int J Ant Agents., V. 16, 531-536, 2000.
MORT AZAVI AN, A.M.; EHSANI, M.R.; MOUSAVI, S.M.;REINHEIMER, J.A.; EMAMDJOMEH, Z.; SOHRABVANDI, S.;REZAEI, K. Preliminary investigation of the combined effect ofheat treatment incubation temperature on the viability if theprobiotic microorganisms in freshly made yoghurt. Int J DairyTechnol., v. 59, 8-11, 2006.MORTAZAVIAN, Α.Μ.; SOHRABVANDI, S. (2006). Probioticsand food Probiotic products., Eta Publication, Iran.MORT AZAVI AN, A.M .; EHSANI, M.R .; MOUSAVI, S.M.; REINHEIMER, J.A .; EMAMDJOMEH, Z .; SOHRABVANDI, S.; REZAEI, K. Preliminary investigation of the combined effect of heat treatment incubation temperature on the viability if the probiotic microorganisms in freshly made yoghurt. Int J DairyTechnol., V. 59, 8-11, 2006. MORTAZAVIAN, Α.Μ .; SOHRABVANDI, S. (2006). Probioticsand food Probiotic products., Eta Publication, Iran.
MORTAZAVIAN, A.M.; SOHRABVANDI, S.; MOUSAVI, S.M.;REINHEIMER, J.A. Combined effects of heating variables on theviability of Probiotic mieroorganisms in yogurt. Aust J DairyTeehnol., v. 61, 248-252, 2006.MORTAZAVIAN, A.M .; SOHRABVANDI, S .; MOUSAVI, S.M.; REINHEIMER, J.A. Combined effects of heating variables on the viability of Probiotic mieroorganisms in yogurt. Aust J DairyTeehnol., V. 61, 248-252, 2006.
MORTAZAVIAN, A.M.; SOHRABVANDI, S.; REINHEIMER, J.A.MRSbiIe agar: Its suitability for the enumeration of mixedprobiotic cultures in cultured dairy products.Milchwissenschaft., v. 62, 270-272, 2006.MORTAZAVIAN, A.M .; SOHRABVANDI, S .; REINHEIMER, J.A.MRSbiIar agar: Its suitability for the enumeration of mixedprobiotic cultures in cultured dairy products.Milchwissenschaft., V. 62, 270-272, 2006.
MUROFUSHI, M.; SHIOMI, M.; AIBARA1 K. Effect of orallyadministered polysaccharide from kefir grain on delayed-typehypersensitivity and tumor growth in mice. Japanese Journal ofMedicai Science & Biology, v. 36, n. 1, 49-53, 1983.MUROFUSHI, M .; SHIOMI, M .; AIBARA1 K. Effect of orallyadministered polysaccharide from kefir grain on delayed-type hypersensitivity and tumor growth in mice. Japanese Journal of Medical Science & Biology, v. 36, no. 1, 49-53, 1983.
MUTHUKUMARASAMY, P.; HOLLEY, R. A. Microbiological andsensory quality of dry fermented sausages containingalginatemicroencapsulated Lactobacillus reuteri. InternationalJournal of Food Microbiology, v. 111, n. 2, 164-169, 2006.MUTHUKUMARASAMY, P .; HOLLEY, R. A. Microbiological and sensory quality of dry fermented sausages containingalginatemicroencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, v. 111, no. 2, 164-169, 2006.
MUTHUKUMARASAMY, P.; WOJTAS, Ρ. A.; HOLLEY1 R. A.Stability of Lactobacillus reuteri in different types ofmicrocapsules. Journal of Food Science, v. 71, n. 1, 20-24,2006.OLIVEIRA, A. C.; MORETTI, Τ. S.; BOSCHINI, C.; BALIERO, J.C. C.; FREITAS, O.; FAVARO-TRINDADE, C. S. Stability ofmicroencapsulated B. Iactis (BI 01) and L. acidophilus (LAC 4) bycomplex coacervation followed by spray drying. Journal ofMicroencapsulation, v. 24, n. 7, 685-693, 2007.MUTHUKUMARASAMY, P .; WOJTAS, Ρ. THE.; HOLLEY1 R. A. Stability of Lactobacillus reuteri in different types ofmicrocapsules. Journal of Food Science, v. 71, no. 1, 20-24,2006.OLIVEIRA, A. C .; MORETTI, Τ. S.; BOSCHINI, C .; BALIERO, J.C. C .; FREITAS, O .; FAVARO-TRINDADE, C. S. Stability of microencapsulated B. Iactis (BI 01) and L. acidophilus (LAC 4) bycomplex coacervation followed by spray drying. Journal of Microencapsulation, v. 24, no. 7, 685-693, 2007.
OLIVEIRA, A. C.; MORETTI, T. S.; BOSCHINI, C.; BALIERO, J.C. C.; FREITAS, L. A. P.; FREITAS, O.; FAVARO-TRINDADE,C. S. Microencapsulation of B. Iactis (BI 01) and L. acidophilus(LAC 4) by complex coacervation followed by spouted-beddrying. Drying Technology, v. 25, n. 10, 1687-1693, 2007.OLIVEIRA, A. C .; MORETTI, T. S .; BOSCHINI, C .; BALIERO, J.C. C .; FREITAS, L. A. P .; FREITAS, O .; FAVARITY-TRINITY, C. S. Microencapsulation of B. Iactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spouted-beddrying. Drying Technology, v. 25, no. 10, 1687-1693, 2007.
OUWEHAND, A.C.; SALMINEN, S.J. Adhesion inhibitory activityof beta-lactoglobulin isolated from infant formulae. Actapaediatrica, v. 87, n.5, 491-493, 2004.OUWEHAND, A.C .; SALMINEN, S.J. Adhesion inhibitory activity of beta-lactoglobulin isolated from infant formulae. Pediatric Act, v. 87, no. 5, 491-493, 2004.
PICOT, A.; LACROIX, C. Effects of micronization on viability andthermotolerance of probiotic freeze-dried cultures. InternationalDairy Journal, v. 13, 455-462, 2003.PICOT, A .; LACROIX, C. Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures. InternationalDairy Journal, v. 13, 455-462, 2003.
PICOT, A.; LACROIX, C. Encapsulation of bifidobacteria in wheyprotein-based microcapsules and survival in simulatedgastrointestinal conditions and in yoghurt. International DairyJournal, v. 14, n. 6, 505-515, 2004.PICOT, A .; LACROIX, C. Encapsulation of bifidobacteria in wheyprotein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International DairyJournal, v. 14, no. 6, 505-515, 2004.
PIERMARIA J. A.; DE LA CANAL, M. L.; ABRAHAM, A. G.Gelling properties of kefiran, a food-grade polysaccharideobtained from kefir grain, Food Hydrocolloids, v.22, n. 8, 1520-1527, 2008.PREVOST, H.; DIVIES, C. Cream fermentation by a mixedculture of Iactococci entrapped in two-layer calcium alginate gelbeads. Biotechnol Let., v. 14, 583-588, 1992.PIERMARIA J. A .; DE LA CANAL, M.L .; ABRAHAM, A. G. Gelling properties of kefiran, the food-grade polysaccharideobtained from kefir grain, Food Hydrocolloids, v.22, n. 8, 1520-1527, 2008. PREVOST, H .; DIVIES, C. Cream fermentation by a mixed culture of Iactococci entrapped in two-layer calcium alginate gelbeads. Biotechnol Let., V. 14, 583-588, 1992.
PUUPPONEN-PIMIÀ, R.; AURA, A.M.; OKSMAN-CALDENTEY,K.M.; MYLLARINEN, P.; SAARELA, M.; MATTILA-SANHOLM,T.; POUTANEN, K. Development of functional ingredients for guthealth. Trends Food Sei. Technol., v.13, 3-11, 2002.PUUPPONEN-PIMIÀ, R .; AURA, A.M .; OKSMAN-CALDENTEY, K.M .; MYLLARINEN, P .; SAARELA, M .; MATTILA-SANHOLM, T .; POUTANEN, K. Development of functional ingredients for guthealth. Trends Food I know. Technol., V.13, 3-11, 2002.
RAO, Α. V.; SHIWNARAIN, N.; MAHARAJ, I. Survival ofmicroencapsulated Bifidobacterium pseudolongum in simulatedgastric and intestinal juices. Canadian Institute of FoodScience and Technology Journal, v. 22, n. 4, 345-49, 1989.RAO, Α. V .; SHIWNARAIN, N .; MAHARAJ, I. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Canadian Institute of Food Science and Technology Journal, v. 22, no. 4,345-49, 1989.
RIMADA, P. S.; ABRAHAM, A. G. Kefiran improves rheologicalproperties of glucono-d-lactone induced skim milk gels.International Dairy Journal, v. 16, 33-39, 2006.RIMADA, P. S .; ABRAHAM, A. G. Kefiran improves theological properties of glucono-d-lactone induced skim milk gels. International Dairy Journal, v. 16, 33-39, 2006.
ROBINSON, R.K. Survival of Lactobacillus acidophilus infermented products-afrikanse. Suid A Frikaanse Tydskrif VirSuiwelkunde., v. 19, 25-27, 1987.ROBINSON, R.K. Survival of Lactobacillus acidophilus inferreded products-afrikanse. Suid A Frikaanse Tydskrif VirSuiwelkunde., V. 19, 25-27, 1987.
RODRIGUES, K. L.; GAUDINO CAPUTO, L. R.; TAVARESCARVALHO, J. C.; EVANGELISTA, J.; SCHNEEDORF, J. M.Antimierobial and healing activity of kefir and kefiran extract.International Journal of Antimicrobial Agents, v. 25, 404-408, 2005.ROY1 D; GOULET, J; LEDUY, A. Continues production qf Iacticacid from whey permeate by free and calcium-alginate entrappedLactobacillus helveticus. J Dairy Sci., v. 70, 506-513, 1987.RODRIGUES, K. L .; GAUDINO CAPUTO, L. R .; TAVARESCALHO, J. C .; EVANGELIST, J .; SCHNEEDORF, J.M. Antimierobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, v. 25, 404-408, 2005.ROY1 D; GOULET, J; LEDUY, A. Continues production qf Iacticacid from whey permeate by free and calcium-alginate entrappedLactobacillus helveticus. J Dairy Sci., V. 70, 506-513, 1987.
RUAS-MADIEDO, P., R.; TUINIER, M.; KANNING, P.; ZOON.Role of exopolysaccharides produced by Lactococcus Iaetissubsp. eremoris on the viscosity of fermented milks. Int. Dairy J.,v. 12, 689-695, 2002.RUAS-MADIEDO, P., R .; TUINIER, M .; KANNING, P .; ZOON.Role of exopolysaccharides produced by Lactococcus Iaetissubsp. eremoris on the viscosity of fermented milks. Int. Dairy J., v. 12, 689-695, 2002.
SALOFF-COSTE, C. J., 1996. Kefir. Danone World Newsletter,n. 11.SALOFF-COSTE, C.J., 1996. Kefir. Danone World Newsletter, no. 11
SANDERS, M.E. Overview of functional foods: emphasis onprobiotic bactéria. Int. Dairy J., v.8, 341-347, 1998.SANDERS, M.E. Overview of functional foods: emphasis onprobiotic bacteria. Int. Dairy J., v. 8, 341-347, 1998.
SANDERS, M.E. Probiotics: considerations for human health.Nutr. Rev., v.61, n.3, 91-99, 2003.SANDERS, M.E. Probiotics: considerations for human health.Nutr. Rev., v.61, no. 3, 91-99, 2003.
SANGUANSRI, P.; AUGUSTIN, M. A. Nanoseale materiaisdevelopment - a food industry perspective. Trends in FoodScience and Technology, v. 17, n. 10, 547-556, 2006.SANGUANSRI, P .; AUGUSTIN, M. A. Nanoseale materials development - a food industry perspective. Trends in Food Science and Technology, v. 17, no. 10, 547-556, 2006.
SCHILLINGER, U. Isolation and Identification of Iactobacilli fromnovel-type probiotic and mild yoghurts and their stability duringrefrigerated storage. IntJ Food Microbiol., v. 47 79-87, 1999.SCHILLINGER, U. Isolation and Identification of Iactobacilli from new probiotic type and mild yoghurts and their stability during refrigerated storage. IntJ Food Microbiol., V. 47 79-87, 1999.
SHAH, N.P.; LANKAPUTHRA, W.E.V. Improving viability ofLaetobacillus aeidophilus and Bifidobaeterium ssp. in yogurt. IntDairyJ., v. 7, 349-359, 1997.SHAH1 Ν.Ρ.; LANKAPUTHRA, W.E.V; BRITZ1 M.; KYLE1 W.S.A.Survival of Lactobacillus acidophilus and Bifidobacterium Iongumin commercial yoghurt during refrigerated storage. Int Dairy J., v.5, 515-521, 1995.SHAH, N.P .; LANKAPUTHRA, W.E.V. Improving viability of Laetobacillus aeidophilus and Bifidobaeterium ssp. in yogurt. IntDairyJ., V. 7, 349-359, 1997.SHAH1 Ν.Ρ .; LANKAPUTHRA, W.E.V; BRITZ1 M .; KYLE1 W.S.A.Survival of Lactobacillus acidophilus and Bifidobacterium Iongumin commercial yoghurt during refrigerated storage. Int Dairy J., v.5, 515-521, 1995.
SHAH, N.P.; RARULA, R.R. Microencapsulation of probioticbactéria and their survival in frozen fermented dairy desserts.Aust J Dairy Technol., v. 55: 139-144, 2000.SHAH, N.P .; RARULA, R.R. Microencapsulation of probioticbacteria and their survival in frozen fermented dairy desserts.Aust J Dairy Technol., V. 55: 139-144, 2000.
SHAHIDI, F.; HAN1 X. Q. Encapsulation of food ingredients.Criticai Reviews in Food Science and Nutrition, v. 33, n. 6,SHAHIDI, F .; HAN1 X. Q. Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, v. 33, no. 6,
501-547, 1993.501-547, 1993.
SHEU, T. Y.; MARSHALL, R. T. Mieroentrapment of Iactobaeilliin calcium aginate gels. Journal of Food Science, v. 54, n. 3,557-561, 1993.SHEU, T. Y .; MARSHALL, R.T. Mieroentrapment of Iactobaeilliin calcium aginate gels. Journal of Food Science, v. 54, no. 3,557-561, 1993.
SHEU, T. Y.; MARSHALL, R. T.; Heymann, H. Improving survivalof culture bactéria in frozen desserts by microentrapment.Journal of Dairy Science, v. 76, n. 7, 1902-1907, 1993.SHEU, T. Y .; Marshall, R. T .; Heymann, H. Improving survivalof culture bacteria in frozen desserts by microentrapment.Journal of Dairy Science, v. 76, no. 7, 1902-1907, 1993.
SHEU, T. Y.; MARSHALL, R. T.; HEYMANN, H. Improvingsurvival of culture bactéria in frozen desserts bymicroentrapment. Journal of Dairy Science, v. 76, 1902-1907,1993.SHEU1 Τ.Υ.; MARSHALL, R.T. Improving culture viability infrozen dairy desserts by microencapsulation. J Dairy Sci., v. 74,107-111,1991.SHEU, T. Y .; Marshall, R. T .; HEYMANN, H. Improvingsurvival of culture bacteria in frozen desserts bymicroentrapment. Journal of Dairy Science, v. 76, 1902-1907,1993.SHEU1 Τ.Υ .; Marshall, R.T. Improving culture viability infused dairy desserts by microencapsulation. J Dairy Sci., V. 74.107-111.1991.
SHIMIZU, H.; MIZUGUCHI, T.; TANAKA, E.; SHIOYA, S. Nisinproduction by a mixed-cuIture system consisting of Lactococcuslactis and Kluyveromyces marxianus. Appl. Environ. Microbiol.,v. 65, n.7, 3134/3141, 1999.SHIMIZU, H .; MIZUGUCHI, T .; TANAKA, E .; SHIOYA, S. Nisinproduction by a mixed-system system consisting of Lactococcuslactis and Kluyveromyces marxianus. Appl. Environ. Microbiol., V. 65, no. 7, 3134/3141, 1999.
SMIDSROD, O.; SKJ AK-BRAE K, G. Alginate for cellimmobilization. Trends in Food Sei Technol., v. 8, 71-75, 1990.SMIDSROD, O .; SKJ AK-BRAE K, G. Alginate for cellimobilization. Trends in Food I Know Technol., V. 8, 71-75, 1990.
STEENSON, L.R.; KLAENHAMMER, T.R.; SWAISGOOD, H.E.Caleium alginate-immobilized cultures of Iaetie streptococci areprotected from attack by Iytie bacteriophage. J Dairy Sei., v. 70,1121-1127,1987.STEENSON, L.R .; KLAENHAMMER, T.R .; SWAISGOOD, H.E.Caleium alginate-immobilized cultures of Iaetie streptococci are protected from attack by Iytie bacteriophage. J Dairy I know., V. 70.1121-1127.1987.
SULTANA, K.; GODWARD, G.; REYNOLDS, N. Encapsulationof probiotic bactéria with alginate-starch and evaluation ofsurvival in simulated gastrointestinal conditions and in yoghurt.International Journal of Food Mierobiology, v. 62, n. 1-2, 47-55, 2000.SULTANA, K .; GODWARD, G .; REYNOLDS, N. Encapsulationof probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt.International Journal of Food Mierobiology, v. 62, no. 1-2, 47-55, 2000.
SUN, W.; GRIFFITHS, M.W. Survival of bifidobacteria in yogurtand simulate gastric juice following immobilization ingellanxanthan beads. IntJ Food Mierobiol., v. 61: 17-25, 2000.SUNOHARA, H.; OHNO1 T.; SHIΒΑΤΑ, N.; SEKI1 Κ. Process forproducing capsule and capsule obtained thereby. US Patent. 5:478-570, 1995.SUN, W .; GRIFFITHS, M.W. Survival of bifidobacteria in yogurt and simulate gastric juice following immobilization ingellanxanthan beads. IntJ Food Mierobiol., V. 61: 17-25, 2000.SUNOHARA, H .; OHNO1 T .; SHIΒΑΤΑ, N .; SEKI1 Κ. Process for producing capsule and capsule obtained thereby. US Patent. 5: 478-570, 1995.
SURAWICZ, C.M.; ELMER, G.; SPEELMAN, P.; VAN BELLE,G.M.C.; FARLAND, LV.; CHINNj J. Prevention of antibioticsassociated diarrhea by Saccharomyces boulardi as prospectivestudy. Gastroenterology, v. 9, 981-988, 1989.SURAWICZ, C.M .; ELMER, G .; SPEELMAN, P .; Van Belle, G.M.C .; FARLAND, LV .; CHINNj J. Prevention of antibiotics associated with diarrhea by Saccharomyces boulardi as prospectivestudy. Gastroenterology, v. 9, 981-988, 1989.
TANAKA, H.; MASATOSE, M.; VELEKY, I.A. Diffusioncharacteristics of substrates in calcium-alginate beads.Biotechnol Bioeng., v. 26, 53-58, 1984.TANAKA, H .; MASATOSE, M .; VELEKY, I.A. Diffusioncharacteristics of substrates in calcium-alginate beads.Biotechnol Bioeng., V. 26, 53-58, 1984.
TlPAYANG, P.; KOZAKI, M. Lactic acid production by a newLactobacillus sp., Lactobacillus vaeeinostereus Kozaki andOkada sp. nov., immobilized in calcium alginate. Journal ofFermentation Technology, v. 60, n. 6, 595-98, 1982.TiPAYANG, P .; KOZAKI, M. Lactic acid production by a new Lactobacillus sp., Lactobacillus vaeeinostereus Kozaki andOkada sp. nov., immobilized in calcium alginate. Journal of Fermentation Technology, v. 60, no. 6, 595-98, 1982.
TODD, R. D. Microencapsulation and flavour industry. FlavourIndustry, v. 1, n. 11, 768-771, 1970.TODD, R. D. Microencapsulation and flavor industry. FlavorIndustry, v. 1, no. 11, 768-771, 1970.
TRUELSTRUP-HANSEN, L.; ALLAN-WOJTAS, P.M.; JIN, Y.L.;PAULSON, AT. Survival of free and calcium-alginatemicroencapsulated Bifidobaeterium spp. in simulated gastro-intestinal conditions. Food Microbiol., v. 19, 35-45, 2002.TRUELSTRUP-HANSEN, L .; ALLAN-WOJTAS, P.M .; JIN, Y.L.; PAULSON, AT. Survival of free and calcium-alginatemicroencapsulated Bifidobaeterium spp. in simulated gastro-intestinal conditions. Food Microbiol., V. 19, 35-45, 2002.
TUOHY, K.M.; PROBERT, H.M.; SMEJKAL, C.W.; GIBSON,G.R. Using probiotics and prebiotics to improve gut health. DrugDiscovery Today, v.8, n.15, 692-700, 2003.U.S. Pat. n° 5, 175,093; 5 288,632; 5 093,253; 4 722,898; 4828,997; 5 070,019;TUOHY, K.M .; PROBERT, H.M .; SMEJKAL, C.W .; GIBSON, G.R. Using probiotics and prebiotics to improve gut health. Drug Discovery Today, v.8, no.15, 692-700, 2003.U.S. Pat. No. 5, 175.093; 5,288,632; 5,093,253; 4,722,898; 4828,997; 5,070,019;
U.S. Pat. n° 5, 286,495; quatro 806,355; 4 689,293;U.S. Pat. No. 5, 286,495; four 806.355; 4,689,293;
UBBINK, J.; KRÜGER, J. Physical approaches for the delivery ofactive ingredients in foods. Trends in Food Science andTechnology, v. 17, n. 5, 244-254, 2006.UBBINK, J .; Kruger, J. Physical approaches for the delivery of active ingredients in foods. Trends in Food Science and Technology, v. 17, no. 5, 244-254, 2006.
URDANETA, J.; BARRENETXE, P.; ARANGUREN, A.;IRIGOYEN, F.; MARZO, F.; IBÁNEZ, E. Intestinal beneficiaieffects of kefir-supplemented diet in rats. Nutrition Research, v.27, n. 10, 653-658, 2007.URDANETA, J .; BARRENETXE, P .; ARANGUREN, A.; IRIGOYEN, F .; MARZO, F .; IBÁNEZ, E. Intestinal benefits from kefir-supplemented diet in rats. Nutrition Research, v. 27, no. 10, 653-658, 2007.
VINDEROLA, C.G.; BAILO, N.; REINHEIMER, J.A. Survival ofprobiotic microflora in Argentinian yoghurts during refrigeratedstorage. Food Res Int. ,v. 33: 97-102, 2002.VINDEROLA, C.G .; BAILO, N .; REINHEIMER, J.A. Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res Int., V. 33: 97-102, 2002.
VINDEROLA, C.G.; DUARTE, J.; THANGAVEL, D.; PERDIGÓN,G.; FARNWORTH, E.; MATAR, C. Immunomodulating capacityof kefir. J. Dairy Res., v. 72, 195-202, 2005.VINDEROLA, C.G .; DUARTE, J .; THANGAVEL, D .; PERDIGÓN, G .; FARNWORTH, E .; MATAR, C. Immunomodulating capacityof kefir. J. Dairy Res., V. 72, 195-202, 2005.
VINDEROLA, G.; PERDIGO' N, G.; DUARTE, J.; FARNWORTH,E.; MATAR, C. Effects of the oral administration of theexopolysaccharide produced by Lactobacillus kefiranofaciens onthe gut mucosal immunity. Cytokine, v. 36, 254-260, 2006.WENRONG, S.; GRIFFITHS, M.W. Survival of bifidobacteria inyogurt and simulated gastric juice following immobilization ingellan-xanthan beads. IntJ Food Microbiol., v.61: 17-26, 2000.VINDEROLA, G .; DANGER 'N, G .; DUARTE, J .; FARNWORTH, E .; MATAR, C. Effects of the oral administration of theexopolysaccharide produced by Lactobacillus kefiranofaciens onthe gut mucosal immunity. Cytokine, v. 36, 254-260, 2006. WENRONG, S .; GRIFFITHS, M.W. Survival of bifidobacteria inyogurt and simulated gastric juice following immobilization ingellan-xanthan beads. IntJ Food Microbiol., V.61: 17-26, 2000.
YOO, I. K.; SEONG, G. H.; CHANG1 H. N.; PARK, J. K.Encapsulation of Lactobacillus casei cells in liquid-core alginatescapsules for Iactic aeid produetion. Enzyme and MicrobialTechnology, v. 19, n. 6, 428-33, 1996.YOO, I.K .; SEONG, G. H .; CHANG1 H. N .; PARK, J. K. Encapsulation of Lactobacillus casei cells in liquid-core alginatescapsules for Iactic aeid produetion. Enzyme and MicrobialTechnology, v. 19, no. 6, 428-33, 1996.
ZHOU, Y.; MARTINS, E.; GROBOILLOOT, A.; CHAMPAGNE,C.P; NEUFELD, R.J. Spectrophotometric quantification of Iaetieaeid bactéria in alginate and control of cell release with chitosancoating. J Appl Microbiol., v. 84, 342-348, 1998.ZHOU, Y .; MARTINS, E .; GROBOILLOOT, A .; CHAMPAGNE, C.P; NEUFELD, R.J. Spectrophotometric quantification of Iaetieaeid bacteria in alginate and control of cell release with chitosancoating. J Appl Microbiol., V. 84, 342-348, 1998.
ZIEMER, C.J.; GIBSON, G.R. An overview of probiotics,prebiotics and synbiotics in the functional food concept:perspectives and future strategies. Int. Dairy J., v.8, 473-479,1998.ZIEMER, C.J .; GIBSON, G.R. An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int. Dairy J., v. 8, 473-479,1998.
ZUBILAGA, M.; WEILL, R.; POSTAIRE, E.; GOLDMAN, C.;CARO, R.; BOCCIO, J. Effect of probiotics and functional foodsand their use in different diseases. Nutr. Res., v.21, n. 3, 569-579, 2001.ZUBILAGA, M .; WEILL, R .; POSTAIRE, E .; GOLDMAN, C.; CARO, R .; BOCCIO, J. Effect of probiotics and functional foods and their use in different diseases. Nourish Res., V. 21, n. 3,569-579, 2001.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0905590-8A BRPI0905590A2 (en) | 2009-12-22 | 2009-12-22 | industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0905590-8A BRPI0905590A2 (en) | 2009-12-22 | 2009-12-22 | industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules |
Publications (1)
Publication Number | Publication Date |
---|---|
BRPI0905590A2 true BRPI0905590A2 (en) | 2011-08-23 |
Family
ID=44484632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BRPI0905590-8A BRPI0905590A2 (en) | 2009-12-22 | 2009-12-22 | industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules |
Country Status (1)
Country | Link |
---|---|
BR (1) | BRPI0905590A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020257722A3 (en) * | 2019-06-19 | 2021-01-28 | Solarea Bio, Inc. | Microbial compositions and methods for producing upgraded probiotic assemblages |
EP3846830A4 (en) * | 2018-09-05 | 2022-07-06 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases |
US11938158B2 (en) | 2021-11-22 | 2024-03-26 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause |
US11980647B2 (en) | 2018-09-05 | 2024-05-14 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause |
-
2009
- 2009-12-22 BR BRPI0905590-8A patent/BRPI0905590A2/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3846830A4 (en) * | 2018-09-05 | 2022-07-06 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases |
US11980647B2 (en) | 2018-09-05 | 2024-05-14 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause |
US12048722B2 (en) | 2018-09-05 | 2024-07-30 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases |
WO2020257722A3 (en) * | 2019-06-19 | 2021-01-28 | Solarea Bio, Inc. | Microbial compositions and methods for producing upgraded probiotic assemblages |
US11938158B2 (en) | 2021-11-22 | 2024-03-26 | Solarea Bio, Inc. | Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Solanki et al. | Development of microencapsulation delivery system for long‐term preservation of probiotics as biotherapeutics agent | |
Silva et al. | Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival | |
Corona‐Hernandez et al. | Structural stability and viability of microencapsulated probiotic bacteria: a review | |
Burgain et al. | Encapsulation of probiotic living cells: From laboratory scale to industrial applications | |
CN102740866B (en) | Short time high temperature is processed and is generated the microbial product with anti-inflammatory spectrum | |
Mortazavian et al. | Delivery of probiotic microorganisms into gastrointestinal tract by food products | |
Arepally et al. | A review on probiotic microencapsulation and recent advances of their application in bakery products | |
Xing et al. | Effect of porous starch concentrations on the microbiological characteristics of microencapsulated Lactobacillus acidophilus | |
JP2012519659A (en) | Compositions and methods for producing symbiotic maple | |
EP2347661B1 (en) | Method for obtaining a mixture of probiotics, nutrient prebiotics having synergistic symbiotic action | |
Moumita et al. | Effect of long-term storage on viability and acceptability of lyophilized and spray-dried synbiotic microcapsules in dry functional food formulations | |
CN109170908A (en) | A kind of microcapsule life tonifying bacterium powder and preparation method thereof | |
El Sayed et al. | Encapsulation of probiotics using mixed sodium alginate and rice flour to enhance their survivability in simulated gastric conditions and in UF-Kariesh cheese | |
BRPI0905590A2 (en) | industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules | |
CN106306029A (en) | Portable full nutritional yoghurt for spaceflight, yoghurt sheet, and preparation method thereof | |
CN102300472A (en) | Symbiotic composition, and method for manufacturing same | |
WO2015053641A1 (en) | Pro-healthy food product | |
RU2490918C1 (en) | Method for production of enriched cultured milk bioproduct | |
Hati et al. | Encapsulation of probiotics for enhancing the survival in gastrointestinal tract | |
Anekella | Microencapsulation of probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus) in raspberry powder by spray drying: optimization and storage stability studies | |
Kiprono et al. | Microencapsulation of Probiotics and Its Application as Co-Delivery Systems: Review of Literature | |
Mhatre et al. | Enhancing bioavailability of probiotics using microencapsulation | |
CN107205425A (en) | Ice cream mix | |
Shori et al. | Advances in Biotechnology | |
Shoaei | Food Health with Increased Probiotic Survival During Storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B03A | Publication of an application: publication of a patent application or of a certificate of addition of invention | ||
B11A | Dismissal acc. art.33 of ipl - examination not requested within 36 months of filing | ||
B11Y | Definitive dismissal acc. article 33 of ipl - extension of time limit for request of examination expired | ||
B15K | Others concerning applications: alteration of classification |
Free format text: AS CLASSIFICACOES ANTERIORES ERAM: A23L 1/00; A23L 1/0532; A23L 1/30; A23L 2/02 Ipc: A23L 2/02 (2006.01), A23L 33/135 (2016.01), A23L 5 |