[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

BE1016509A3 - Hub-split carrier of energy via fluid phase change heat transfer to new device. - Google Patents

Hub-split carrier of energy via fluid phase change heat transfer to new device. Download PDF

Info

Publication number
BE1016509A3
BE1016509A3 BE2005/0217A BE200500217A BE1016509A3 BE 1016509 A3 BE1016509 A3 BE 1016509A3 BE 2005/0217 A BE2005/0217 A BE 2005/0217A BE 200500217 A BE200500217 A BE 200500217A BE 1016509 A3 BE1016509 A3 BE 1016509A3
Authority
BE
Belgium
Prior art keywords
fractionation
fluid
phase change
ensures
heat
Prior art date
Application number
BE2005/0217A
Other languages
French (fr)
Original Assignee
Sprl Joseph Zurstrassen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sprl Joseph Zurstrassen filed Critical Sprl Joseph Zurstrassen
Priority to BE2005/0217A priority Critical patent/BE1016509A3/en
Application granted granted Critical
Publication of BE1016509A3 publication Critical patent/BE1016509A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The device has transporter tubes integrated to collector blades that form enclosures, where each blade is directly and individually connected in a heat exchanger placed in a reserve of water to be heated. Each transporter tube contains a heat transfer fluid which accumulates the thermal energy during the changing of the liquid phase into gaseous phase. The transporter tubes constitute the base of the heat exchanger.

Description

       

  1 2005/0217 Description
Concentrateur-Transporteur fractionné d'énergie via fluide caloporteur à changement de phases Nouveau Dispositif
PREAMBULE :
Il est connu que l'énergie thermique se trouve en quantité très importante, mais à très bas niveau énergétique, dans l'atmosphère. L'homme cherche ;depuis toujours, à utiliser cette énergie thermique pour chauffer l'eau , sanitaire ou non , dont il a besoin et ce dans les meilleures conditions de : -résultat technique -sécurité environnementale -longévité des composants -retour raisonnable investissement/économie réalisée.
En résumé,il s'agit de concentrer dans un réservoir d'eau très chaude à proximité du point d'utilisation et généralement à l'intérieur de la maison , les calories trouvées à l'extérieur dans l'atmosphère , à bas niveau énergétique .

   Le nouveau dispositif est donc un simple concentrateurtransporteur de calories.
Les 5 phases de l'opération de concentration-transfert de calories se décrivent en résumé comme suit :
PHASE n[deg.]l : le CAPTAGE puis la CONCENTRATION des calories par effet de serre : élévation du niveau énergétique , induisant
PHASE n[deg.]2 : la VAPORISATION du fluide caloporteur contenu dans le tube en Cu solidaire de l'ailette du capteur : accumulation d'énergie thermique dans ce fluide lors de changement de phase liquide>gaz induisant 2005/0217
PHASE n[deg.]3 : la CONVECTION et le transport ascensionel FRACTIONNE ET SECURISE du gaz chargé de calories :

   ( effet caloduc bien connu).
Le Fractionnement qui est l'objet principal de ce brevet , assure,grace à une nouvelle disposition des tubes en Cu : - un parfait fonctionnement de l'effet caloduc -une technique sécurisée du transport du fluide induisant
PHASE n[deg.]4 : la RECONDENSATION du gaz caloporteur, libérant la chaleur latente y accumulée, qui est transférée , via l'échangeur de chaleur , à l'eau à chauffer induisant
PHASE n[deg.]5 : le RETOUR , par gravitation , du fluide , recondensé et déchargé de ses calories , vers la captage et pérennité du cycle : celui-ci fonctionne tant que T[deg.] capteur > T[deg.] réservoir+DT[deg.]( minimum pour remettre le cycle en route ; si DT[deg.] trop petit, nul ou négatif le cycle s'arrête , (la nuit par exemple).
NB :

   ces 5 PHASES sont intimement liées et tout le système est conçu , point de vue compatibilité et agencement des matériaux , surtout grâce au tube de cuivre omniprésent pour assurer un fonctionnement 100% intégré , parfait , inusable avant un temps très long , non gélif , sans aucun apport énergétique artificiel , mais fonctionnant uniquement suivant les LOIS DE LA PHYSIQUE . 
2005/0217
DESCRIPTION , CONSTRUCTION ET FONCTIONNEMENT DETAILLES DU NOUVEAU DISPOSITIF
PHASE 1: CAPTAGE , CONCENTRATION :
Sachant que  la chaleur monte  , le dispositif commence , au point le plus bas , par le captage .

   En plaçant le réservoir d'eau à réchauffer au point le plus haut on trouvera plusieurs avantages à cette configuration : - utiliser la loi physique de la convection citée ici plus haut
- utiliser un site bien protégé des vents tout en étant bien ensoleillé ( le pied des murs est reconnu comme privilégié pour y placer traditionnellement des couches horticoles )
- le site solaire est de première importance : on ne peut pas installer n'importe où un capteur et donc beaucoup de sites sont , hélas , à proscrire : de plus un chemin trop long pour le transport de l'eau chaude , depuis le captage jusqu'au point de consommation est aussi à procrire , l'eau chaude perdant ses calories en cours de transport - la pose , la surveillance et l'entretien du capteur sont plus aisés au sol On ne reviendra pas sur le capteur , dispositif bien connu permettant l'effet de serre :

   notons que l'absorbeur doit être en tôle de Cu noirci sur une face suivant les règles et solidarisée longitudinalement ( généralement par soudure) à des tubes de Cu : l'absorbeur doit être monté de façon à éviter tout effet galvanique ou d'incompatibilité de matériaux surtout avec le caisson capteur.
Phase 2 : VAPORISATION + Phase 3 : CONVECTION :
Cet absorbeur est délibérément scindé en autant de parties longitudinales qu'il y a d'ailettes ( p. ex. 8 ailettes de 0,125 m de largeur sur 2 m de long formant un capteur de 2m<2>) . Chaque aillette est munie sur sa face interne d'un tube de Cu recuit de +/-3.5m de long dont la partie inférieure (sur 2m de long) est soudée à la tôle de Cu noir.

   Ces 8 tubes sortent du caisson par la face supérieure dans une trémie fortement isolée thermiquement 2005/0217
4 où ces tubes sont disposés de manière à former une botte cylindrique et isolée entrant dans le mur de la maison et dirigée ensuite dans le culot inférieur du réservoir solaire : chacun des 8 tubes est fixé verticalement sur le culot au moyen d'un presse étoupe assurant l'étanchéité du réservoir : ces tubes arrivent ainsi à environ 70 cm de hauteur à l'intérieur du boiler et y sont solidarisés mécaniquement à un échangeur de chaleur en Cu ( dont ils font intégralement partie eux-mêmes) baignant dans l'eau à réchauffer.

   Ces 8 tubes sont remplis du liquide/gaz caloporteur et soudés hermétiquement à chaque extrémité formant ainsi 8 enceintes fractionnées , complètement séparées ,propices à favoriser un bon mouvement ascendant-descendant du fluide : dans ces 8 tubes indépendants s'effectue l'effet  caloduc (trop connu que pour être redécrit ici ).
Phase 4 : RECONDENSATION et Phase 5 : RETOUR
Le lecteur aura compris , suivant la description du principe de fonctionnement ci-dessus , que les 8 enceintes ( ou +/- si l'on veut ) jouent un rôle identique ,dès le gaz recondensé et les calories libérées simultanément dans l'eau ( libération de la chaleur latente), pour reconduire le liquide vers le capteur assurant la continuité du processus jusqu'à ce que le DT[deg.] entre capteur et réservoir d'eau devienne trop petit pour faire tourner le cycle.



  1 2005/0217 Description
Concentrator-Transporter fractionated energy via heat transfer fluid with phase change New Device
PREAMBLE:
It is known that thermal energy is found in a very large quantity, but at a very low energy level, in the atmosphere. Man has always sought to use this heat energy to heat water, sanitary or not, which he needs and in the best conditions of: - technical result - environmental safety - longevity of components - reasonable return investment / economy achieved.
In summary, it's about concentrating in a hot water tank near the point of use and usually inside the house, the calories found outside in the atmosphere, at low energy level .

   The new device is therefore a simple concentratortransporter of calories.
The 5 phases of the concentration-calorie transfer operation are summarized as follows:
PHASE n [deg.] L: the CAPTAGE then the CONCENTRATION of the calories by greenhouse effect: raising of the energetic level, inducing
PHASE n [deg.] 2: the VAPORIZATION of the coolant contained in the Cu tube integral with the fin of the sensor: accumulation of thermal energy in this fluid during a liquid phase change> inducing gas 2005/0217
PHASE n [deg.] 3: the CONVECTION and the ascensional transport FRACTIONED and SECURED of the gas loaded with calories:

   (well known heat pipe effect).
The fractionation which is the main object of this patent, ensures, thanks to a new arrangement of the Cu tubes: - a perfect functioning of the heat pipe effect - a safe technique of the transport of the inducing fluid
PHASE n [deg.] 4: the RECONDENSATION of the heat-transfer gas, releasing the latent heat accumulated therein, which is transferred, via the heat exchanger, to the water to be heated inducing
PHASE n [deg.] 5: the gravitational RETURN of the fluid, recondensed and discharged from its calories, towards the capture and durability of the cycle: this one works as long as T [deg.] Sensor> T [deg.] tank + DT [deg.] (minimum to restart the cycle, if DT [deg.] is too small, no or negative the cycle stops, (at night, for example).
NB:

   these 5 PHASES are intimately linked and the whole system is designed, from the point of view of compatibility and arrangement of the materials, especially thanks to the ubiquitous copper tube to ensure a 100% integrated, perfect, indestructible operation before a very long time, non-freezing, without no artificial energy supply, but operating only according to the LAWS OF PHYSICS.
2005/0217
DESCRIPTION, CONSTRUCTION AND OPERATION DETAILS OF THE NEW DEVICE
PHASE 1: CAPTAGE, CONCENTRATION:
Knowing that the heat rises, the device begins, at the lowest point, by the capture.

   By placing the water tank to be heated at the highest point, several advantages to this configuration will be found: - use the physical law of convection mentioned above
- use a site well protected from the winds while being very sunny (the foot of the walls is recognized as privileged to place there traditionally horticultural layers)
- The solar site is of prime importance: you can not install anywhere a sensor and therefore many sites are, alas, to proscribe: more a way too long for the transport of hot water, since the capture to the point of consumption is also to procrire, hot water losing its calories during transport - the installation, monitoring and maintenance of the sensor are easier on the ground We will not return to the sensor, well known device allowing the greenhouse effect:

   note that the absorber must be blackened Cu sheet on one side following the rules and longitudinally fixed (usually by welding) to Cu tubes: the absorber must be mounted so as to avoid any galvanic effect or incompatibility of materials especially with the sensor box.
Phase 2: SPRAY + Phase 3: CONVECTION:
This absorber is deliberately split into as many longitudinal parts as there are fins (eg 8 fins 0.125 m wide by 2 m long forming a 2m <2> sensor). Each fin is provided on its inner side with an annealed Cu tube +/- 3.5m long, the lower part (over 2m long) is welded to the black Cu sheet.

   These 8 tubes leave the box from the top in a thermally insulated hopper 2005/0217
4 where these tubes are arranged to form a cylindrical and isolated boot entering the wall of the house and then directed into the lower base of the solar tank: each of the 8 tubes is fixed vertically on the base by means of a cable gland thus ensuring the watertightness of the tank: these tubes thus arrive about 70 cm high inside the boiler and are mechanically secured to a heat exchanger in Cu (of which they are entirely part themselves) bathed in water to warm up.

   These 8 tubes are filled with the liquid / heat-transfer gas and hermetically welded at each end thus forming 8 fractionated enclosures, completely separated, conducive to favor a good ascending-descending movement of the fluid: in these 8 independent tubes the heat pipe effect takes place ( too well known to be redrafted here).
Phase 4: RECONDENSATION and Phase 5: BACK
The reader will have understood, according to the description of the principle of operation above, that the 8 enclosures (or +/- if one wants) play an identical role, as of the recondensed gas and the calories released simultaneously in the water ( release of the latent heat), to return the liquid to the sensor ensuring the continuity of the process until the DT [deg.] between sensor and water tank becomes too small to turn the cycle.


    

Claims (2)

2005/0217 5 Revendications2005/0217 5 Claims 1.fractionnement du captage-transport de calories en autant de tubes transporteurs qu'il y a d'ailettes captrices : ce fractionnement est la caractéristique principale de cette invention : 1.fractionation of the capture-transport of calories in as many conveying tubes as there are catching fins: this fractionation is the main characteristic of this invention: -elle est en opposition complète avec la fabrication habituelle en reseau-échelle utilisant des collecteurs raccordant en un seul ensemble les ailettes ; -ce fractionnement provoque autant d'enceintes particulières qu'il y a d'aillettes ,assurant la fuite de très peu de fluide en cas de problème ; de plus cette faible quantité de fluide assure une très petite inertie de fonctionnement -ce fractionnement assure un bon rendement calorifique du fluide caloporteur par sa vaporisation/condensation aisée et efficace it is in complete opposition to the usual scale-scale fabrication using collectors connecting in a single set the fins; This fractionation causes as many special speakers as there are blades, ensuring the leakage of very little fluid in case of problems; moreover, this small quantity of fluid ensures a very small inertia of operation - this fractionation ensures a good thermal efficiency of the coolant by its vaporization / easy and efficient condensation -ce fractionnement assure une fabrication très simple et bon marché du système techniquement très fiable, -c'est le même tube caloporteur qui est dans le capteur et constitue en même temps la base de l'échangeur de chaleur dans l'eau à chauffer d'où grande efficacité thermique. This fractionation ensures a very simple and inexpensive production of the technically very reliable system, it is the same heat-transfer tube which is in the sensor and at the same time constitutes the base of the heat exchanger in the water to be heated. where high thermal efficiency. 2. utilisation d'un fluide à changement de phases liquide/vapeur et retour en cours de cycle : captage et restitution de la chaleur latente : ce fluide est indissociable du dispositif fractionné, pour assurer un bon rendement de celui-ci et vice-versa. 2. use of a liquid / vapor phase change fluid and return during the cycle: capture and recovery of latent heat: this fluid is inseparable from the fractional device, to ensure a good performance thereof and vice versa .
BE2005/0217A 2005-04-27 2005-04-27 Hub-split carrier of energy via fluid phase change heat transfer to new device. BE1016509A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE2005/0217A BE1016509A3 (en) 2005-04-27 2005-04-27 Hub-split carrier of energy via fluid phase change heat transfer to new device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE2005/0217A BE1016509A3 (en) 2005-04-27 2005-04-27 Hub-split carrier of energy via fluid phase change heat transfer to new device.

Publications (1)

Publication Number Publication Date
BE1016509A3 true BE1016509A3 (en) 2006-12-05

Family

ID=35431119

Family Applications (1)

Application Number Title Priority Date Filing Date
BE2005/0217A BE1016509A3 (en) 2005-04-27 2005-04-27 Hub-split carrier of energy via fluid phase change heat transfer to new device.

Country Status (1)

Country Link
BE (1) BE1016509A3 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267825A (en) * 1979-06-27 1981-05-19 Entec Products Corporation Solar heat collector with heat pipes
US4513732A (en) * 1981-11-10 1985-04-30 Feldman Jr Karl T Passive integral solar heat collector system
JPS60103249A (en) * 1983-11-11 1985-06-07 Sekisui Chem Co Ltd Heater
FR2566884A1 (en) * 1984-06-29 1986-01-03 Showa Aluminum Corp SOLAR WATER HEATER
DE3542011A1 (en) * 1985-11-28 1987-06-04 Grotjan Hartmut Device for heat recovery from in particular spatially extensive heat sources
EP1167892A2 (en) * 2000-06-22 2002-01-02 Energineering Di Del Duca Amelia Solar thermoaccumulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267825A (en) * 1979-06-27 1981-05-19 Entec Products Corporation Solar heat collector with heat pipes
US4513732A (en) * 1981-11-10 1985-04-30 Feldman Jr Karl T Passive integral solar heat collector system
JPS60103249A (en) * 1983-11-11 1985-06-07 Sekisui Chem Co Ltd Heater
FR2566884A1 (en) * 1984-06-29 1986-01-03 Showa Aluminum Corp SOLAR WATER HEATER
DE3542011A1 (en) * 1985-11-28 1987-06-04 Grotjan Hartmut Device for heat recovery from in particular spatially extensive heat sources
EP1167892A2 (en) * 2000-06-22 2002-01-02 Energineering Di Del Duca Amelia Solar thermoaccumulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 252 (M - 420) 9 October 1985 (1985-10-09) *

Similar Documents

Publication Publication Date Title
EP2396607B1 (en) Solar collector, and electrical power-generating plant including such solar collectors
KR101022367B1 (en) Sea water desalination device using solar energy
CA1212849A (en) Heat storage and delivery process, and related device acting as a support structure for a building
WO2014191512A1 (en) Heat transfer device with diphasic fluid
WO2010094618A1 (en) Flag-shaped heat exchanger
BE1016509A3 (en) Hub-split carrier of energy via fluid phase change heat transfer to new device.
FR2999830B1 (en) ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT
BE1017115A6 (en) Hub-split carrier fluid power via caloporteura phase change: new device.
WO2013174901A1 (en) Coupling of a turbopump for molten salts
FR2873191A1 (en) Rigging non-tracting focusing vacuum piping solar water heater
JP2003302109A (en) Geothermal heat exchanger
FR3025593A1 (en) HYDROELECTRIC SOLAR TOWER WITH PONCTUAL CONCENTRATION
WO2017007296A1 (en) Vacuum tube sensor operating under atmospheric pressure
CH621619A5 (en) Storage unit for heat-transfer liquid, particularly water
FR2615569A1 (en) SOLAR AUTONOMOUS ATMOSPHERIC PUMP
FR2957071A1 (en) Device for treating brackish water, comprises submersible solar furnace, solar energy reflectors to evaporate water, funnel placed over furnace to push vapor, condenser placed above funnel for liquefying the vapor, and water tower/bowl
Cao Heat pipe solar receivers for concentrating solar power (CSP) plants
FR2955647A1 (en) Fluid i.e. water, solar-heating device, has solar tubes for connecting self-drainable collectors, where collectors include openings allowing complete filling of fluid without pressure and allowing complete drainage of fluid by gravity
FR2900947A1 (en) DEVICE FOR CAPTURING RAINWATER AND CALORIES FROM SOLAR RADIATION.
FR2470946A3 (en) Heat recovery reservoir with bottom cold water feed - has refrigerator heat exchanger warm side near top hot water outlet, and cold side near cold water inlet
FR3026832B1 (en) HEAT TRANSFER SYSTEM BY HEATING AND REFRIGERATION IN RIVER HABITAT
FR2461207A1 (en) Heat pump for production of boiling water - utilises source of low grade heat to heat water in evacuated boiler which feeds vapour to second boiler
CH651125A5 (en) Method for using the heat contained in water for heat source.
BE1016897A3 (en) Geothermal energy collection installation for terrestrial crust, has tubular system with descending perimetric coil whose turns are connected to ascending rectilinear axial column, where installation forms boiler well
FR2897657A1 (en) Aqueduct water pumping device for e.g. desertic zone, has aqueduct heated by device using solar energy, to make boiling water produce pressure and water vapor, where vapor is converted into mechanical energy

Legal Events

Date Code Title Description
RE Patent lapsed

Effective date: 20080430