AU762530B2 - Improvements to free-piston engines - Google Patents
Improvements to free-piston engines Download PDFInfo
- Publication number
- AU762530B2 AU762530B2 AU42050/01A AU4205001A AU762530B2 AU 762530 B2 AU762530 B2 AU 762530B2 AU 42050/01 A AU42050/01 A AU 42050/01A AU 4205001 A AU4205001 A AU 4205001A AU 762530 B2 AU762530 B2 AU 762530B2
- Authority
- AU
- Australia
- Prior art keywords
- free
- internal combustion
- combustion engine
- piston internal
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B71/00—Free-piston engines; Engines without rotary main shaft
- F02B71/04—Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Description
J. AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR OFFICE USE Short Title: Int. CI: Application Number: Lodged: Complete Specification-Lodged: Accepted: Lapsed: Published: Priority: PQ8065 dated 9 June, 2000 Related Art: TO BE COMPLETED BY APPLICANT Name of Applicant: Address of Applicant: Edward Wechner 5 Charles Avenue MINNAMURRA NSW 2533 Actual Inventor: AS ABOVE Address for Service: ANDERSON-TAYLOR ASSOCIATES, Registered Patent Attorneys of 10 Harrison Avenue BONNET BAY N.S.W. 2226 Complete Specification for the invention entitled: IMPROVEMENTS TO FREE-PISTON ENGINES The following statement is a full description of this invention, including the best method of performing it known to me: IMPROVEMENTS TO FREE-PISTON ENGINES FIELD OF THE INVENTION This invention relates to internal combustion engines. More particularly although not exclusively it discloses an improved form of free-piston engine.
BACKGROUND OF THE INVENTION With known prior art free-piston engines such as those described by M. Goertz and L. Peng in March 2000 SAE Paper 2000-01-0996, entitled FREE-PISTON ENGINE ITS APPLICATION AND OPTIMIZATION, and Galileo Research. Inc. at www.galileoresearch.com, 1999 entitled FREE-PISTON ENGINE- GENERATOR TECHNOLOGY the gas enters the combustion chamber via intake slots through the wall of the cylinder sleeve.
This is typical of the method used on most conventional two stroke internal combustion engines. The disadvantage of such intake arrangement is that as the piston rings slide over the intake slots (twice during each stroke) the radial support area is reduced and a slight ring deformation occurs. The deformation results from the elasticity of the unsupported ring material when subjected to radial forces imposed by gas pressure and the pre-tension in the rings. This deformation accelerates the wear rate of the rings and cylinder sleeve and is partly responsible for abandonment of the two stroke engine in modern passenger cars.
It is also known to provide a valve-in-piston arrangement in a reciprocating piston crankcase engine as described in Australian patent application 63021/99 by E. Wechner. Such engines however are are relatively inefficient when used in modern hybrid vehicles as additional mechanical linkage is required to generate the electrical power required for the drive wheels and energy storage cells.
SUMMARY OF THE INVENTION It is therefore an object of this invention to ameliorate the aforementioned disadvantages and accordingly an internal combustion engine is disclosed having at least one pair of longitudinally opposed cylinders with electricity generating stator means fixed relative thereto, respective pistons oooo arranged in said cylinders for cycles of reciprocating compression and power strokes, inlet valve means for oo introducing air or a fuel mixture into said cylinders prior to said compression strokes, outlet valve means for the S"expulsion of exhaust gases following said power strokes and said pistons being linked together with a linear actuator for movement therewith whereby during operation of said engine the reciprocating strokes of said pistons and linear actuator *with respect to said stator means generates usable electrical energy and said inlet valve means being located in said pistons and comprising a portion of the heads thereof.
BRIEF DESCRIPTION OF THE DRAWINGS The currently preferred embodiment of the invention will now be described with reference to the attached drawings in which:- Figure 1 shows a cross-sectional schematic view of a free-piston engine along the centre axis of the cylinders, Figure 2 shows a cross-sectional view of the engine along the lines A-A of figure 1, and Figure 3 is a cross-sectional view of the engine along the lines B-B of figure 1 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring first to figure 1 the main components of the engine are the longitudinally opposed cylinder blocks 1 and 2, the cylinder heads 3 and 4, the pistons 5 and 6, linear actuator 7 and electricity generating stator 8.
As with prior art free-piston engines the cylinders fire alternately in the two stroke cycle and the resulting reciprocating linear motion is convertedinto electrical energy by means of relative movement between the linear actuator and stator assemblies.
In accordance with this invention however the inlet valves comprise poppet valves 9 which are located in the heads and 6A of the pistons.
In figure 1 the piston 5 is shown at the end of the expansion or power stroke in cylinder 1. Both the inlet valve 9 and exhaust valve 10 are thus open to enable the two stroke gas exchange or scavenging process to take place. The intake gas for this scavenging process was compressed in the linear actuator compression chamber 11 during the preceding expansion stroke of piston 5. The pressure obtained for the intake gas 10A is sufficient to open the inlet valve 9 in the piston 5 against both the force of coil spring 20 and the opposing kinetic force from deceleration of the valve mass 9 at the end of the power stroke. During this gas exchange process the cool intake gas 10A passes through the linear actuator heat exchanger 23, the charge pipe 13, the piston heat exchanger 14 and the inlet valve 9 before entering the :combustion chamber 15. The incoming pressure of this gas assists the evacuation of the exhaust gas through the exhaust or outlet valve 10 and port 32. There is a control solenoid 21 in the cylinder head 3. This opens the exhaust valve oo. for selected variable time periods to optimise the efficiency of the gas exchange at a given power consumption. For example, at low power consumption only a small amount of exhaust gas is evacuated through the valve 10. This in turn :limits the entry of intake gas 10A to the mass required to maintain the desired idle speed of the engine. Such arrangement releases a minimum amount of pressure in the combustion chamber during the gas exchange process to reduce pumping losses. At maximum power the valve 10 is held open long enough to evacuate substantially all of the exhaust gas.
This allows the maximum mass of fresh intake gas 10A to enter the combustion chamber. As with the prior art valve-in-piston engine the inlet valve 9 is held closed during the subsequent compression stroke against the opposing kinetic forces of deceleration by gas pressure in the chamber The opposite engine piston 6 is shown by figure 1 in the ignition position after having completed a compression stroke. There is a linear heat exchanger 24, charge pipe 13A and outlet port 32A associated with piston 6 and cylinder 2 similar to that described earlier but orientated at degrees as shown in figure 3. During this compression stroke of piston 6 fresh intake gas 10B was drawn by the linear actuator 7 in through the inlet 17, the ring chamber 18, the ring valve 19 and into the compression chamber 12. During the next expansion or power stroke of piston 6 after ignition this gas 10B will be compressed in chamber 12 to comprise the subsequent intake charge for the combustion chamber 16 of "cylinder 2.
The linear actuator 7 is equipped with gas seals 22 on both ends to facilitate its function as a compressor piston for the gas exchage process. This eliminates the need for a external intake gas charging device. Between the electricity generating stator 8 and the linear actuator there is also a cylindrical sleeve 25 which provides a dynamic mating surface for the gas seals 22. This sleeve 25 should be electrically non-conductive, non-magnetic and sufficiently thin to avoid adverse effects on the generating process. Suitable material may include ceramics or high temperature composite plastics which may be either deposited on the surface or pressed into the bore of the stator 8.
Other components of the preferred embodiment as shown in the drawings are as follows:- 27 Cooling water jacket 28 Electricity generating coils 29 Electric power outlet junction box Permanent magnets 31 Permanent magnet back iron It will thus be appreciated that this invention at least in the form of the embodiment disclosed provides a novel and useful improvement to free-piston internal combustion engines. Clearly however the example disclosed is only the currently preferred form of the invention and a wide variety of modifications may be made which would be apparent to a person skilled in the art. For example the shape and S•configuration of the valves and linear actuator gas compressor may be changed according to engine design requirements. Also, while the engine described has only two opposed cylinders the invention could be extended to any *number of pairs.
-7-
Claims (11)
1. An free-piston internal combustion engine of a type having at least one pair of longitudinally opposed cylinders with electricity generating stator means fixed relative thereto, respective pistons arranged in said cylinders for cycles of reciprocating compression and power strokes, inlet valve means for introducing air or a fuel mixture into said cylinders prior to said compression stroke, outlet valve means for the expulsion of exhaust gas following said power stroke and said pistons being linked together with a linear actuator for movement therewith whereby during operation of *oo. said engine the reciprocating strokes of said pistons and ooee linear actuator with respect to said stator means generates e usable electrical energy and said inlet valve means being located in said pistons and comprising a portion of the heads ooooo thereof. S
2. The free-piston internal combustion engine as claimed in claim 1 wherein said cylinders fire alternately in a two stroke cycle.
3. The free-piston internal combustion engine as claimed in claim 2 where said stator means is located between said opposed cylinders and said linear actuator is located between said respective pistons.
4. The free-piston internal combustion engine as claimed in claim 3 wherein said air or fuel mixture is drawn into a compression chamber associated with said linear actuator during said compression strokes.
The free-piston internal combustion engine as claimed in claim 4 wherein said air or fuel mixture is compressed in said compression chamber during said power strokes before introduction into said cylinders.
6. The free-piston internal combustion engine as claimed in claim 5 wherein said inlet means are poppet valves which are biased to a closed position by springs and said air or fuel omixture is compressed to a pressure that opens said poppet valves against said springs and opposing kinetic forces to initiate gas exchange at the end of said power strokes. S•
7. The free-piston internal combustion engine as claimed in claim 6 wherein during the compression strokes the inlet valve means are held closed by gas forces in the cylinders.
8. The free-piston internal combustion engine as claimed in *claim 7 wherein said combustion chamber is formed by a cylindrical sleeve disposed inside said stator means and said linear actuator is fitted with gas seals to engage said sleeve and act as a reciprocating compressor piston.
9. The free-piston internal combustion engine as claimed in claim 8 wherein said outlet valve means are poppet valves located in the heads of said cylinders and are opened by solenoids for variable periods to optimise the efficiency of said gas exchange at a given power level.
A free-piston internal combustion engine substabntially as described herein with reference to the drawings.
11. A motor vehicle powered by a free-piston internal combustion engine as claimed in claim 1. -I Dated this 37~ day of 1 2001 Edward Wechner By His Patent Attorney MICHAEL ANDERSON-TAYLOR o**
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU42050/01A AU762530B2 (en) | 2000-06-09 | 2001-05-04 | Improvements to free-piston engines |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPQ8065 | 2000-06-09 | ||
AUPQ8065A AUPQ806500A0 (en) | 2000-06-09 | 2000-06-09 | Improvements to free-piston engines |
AU42050/01A AU762530B2 (en) | 2000-06-09 | 2001-05-04 | Improvements to free-piston engines |
Publications (2)
Publication Number | Publication Date |
---|---|
AU4205001A AU4205001A (en) | 2001-12-13 |
AU762530B2 true AU762530B2 (en) | 2003-06-26 |
Family
ID=25625797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU42050/01A Ceased AU762530B2 (en) | 2000-06-09 | 2001-05-04 | Improvements to free-piston engines |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU762530B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016109038A1 (en) | 2016-05-17 | 2017-11-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Free-piston device |
DE102016109055A1 (en) | 2016-05-17 | 2017-11-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Free piston device and method for operating a free piston device |
DE102016109046A1 (en) | 2016-05-17 | 2017-11-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Free-piston device |
DE102016109029A1 (en) | 2016-05-17 | 2017-11-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Free piston device and method for operating a free piston device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993011352A1 (en) * | 1991-11-27 | 1993-06-10 | Sergei Dmitrievich Duhovlinov | Power installation |
DE4344915A1 (en) * | 1993-12-29 | 1995-07-06 | Jakob Hilt | Linear combustion engine and electro-generator |
US5775273A (en) * | 1997-07-01 | 1998-07-07 | Sunpower, Inc. | Free piston internal combustion engine |
-
2001
- 2001-05-04 AU AU42050/01A patent/AU762530B2/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993011352A1 (en) * | 1991-11-27 | 1993-06-10 | Sergei Dmitrievich Duhovlinov | Power installation |
DE4344915A1 (en) * | 1993-12-29 | 1995-07-06 | Jakob Hilt | Linear combustion engine and electro-generator |
US5775273A (en) * | 1997-07-01 | 1998-07-07 | Sunpower, Inc. | Free piston internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
AU4205001A (en) | 2001-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1287233B1 (en) | Free-piston internal combustion engine with valves located in pistons | |
JP6790027B2 (en) | High efficiency linear combustion engine | |
EP1866530B1 (en) | Double piston cycle engine | |
Carter et al. | The free piston power pack: Sustainable power for hybrid electric vehicles | |
US20120126544A1 (en) | High-efficiency two-piston linear combustion engine | |
US8161921B2 (en) | Method to convert free-piston linear motion to rotary motion | |
JPH02294522A (en) | Cycle convertible engine and its control device | |
JP3859595B2 (en) | Internal combustion engine having a single crankshaft and having opposing cylinders with opposing pistons | |
US8584629B2 (en) | Interstage valve in double piston cycle engine | |
WO2008028216A1 (en) | An improved free-piston engine | |
KR960008774B1 (en) | Power aggregate | |
US7334558B2 (en) | Slide body internal combustion engine | |
US20120255434A1 (en) | Piston | |
US8151744B2 (en) | Method to convert free-piston linear motion to rotary motion | |
AU762530B2 (en) | Improvements to free-piston engines | |
US10035413B2 (en) | Hybrid drive system for a motor vehicle, and method of operating a motor vehicle | |
US7063065B1 (en) | Four cycle, piston-driven, rotary ported intake and exhaust super atmospherically charged on demand internal combustion engine | |
RU2537324C1 (en) | Method of compressed air generation by free-piston power module with common external combustion chamber | |
CN103261626B (en) | Free piston engine driving type electric generator | |
CN113047953A (en) | Single-piston type internal combustion linear generator with two-stage compression expansion cycle | |
WO2010014890A1 (en) | Electricity generator using two-stroke engine | |
WO2003091555A1 (en) | Power unit | |
RU2176025C1 (en) | Power-generating heat engine | |
CN103827465A (en) | Piston for a free piston engine generator | |
CN110454283B (en) | Gas type free piston linear engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |