AU723058C - Disease resistance in vitis - Google Patents
Disease resistance in vitisInfo
- Publication number
- AU723058C AU723058C AU34038/97A AU3403897A AU723058C AU 723058 C AU723058 C AU 723058C AU 34038/97 A AU34038/97 A AU 34038/97A AU 3403897 A AU3403897 A AU 3403897A AU 723058 C AU723058 C AU 723058C
- Authority
- AU
- Australia
- Prior art keywords
- plant
- lytic peptide
- transgenic
- transgenic plant
- vitis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 241000219095 Vitis Species 0.000 title claims description 19
- 235000009392 Vitis Nutrition 0.000 title claims description 19
- 208000035240 Disease Resistance Diseases 0.000 title description 8
- 241000196324 Embryophyta Species 0.000 claims description 94
- 240000006365 Vitis vinifera Species 0.000 claims description 78
- 235000014787 Vitis vinifera Nutrition 0.000 claims description 61
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 57
- 230000002101 lytic effect Effects 0.000 claims description 55
- 230000009261 transgenic effect Effects 0.000 claims description 52
- 230000000392 somatic effect Effects 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 30
- 201000010099 disease Diseases 0.000 claims description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 29
- 108010031086 Shiva-1 Proteins 0.000 claims description 28
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 27
- 230000014509 gene expression Effects 0.000 claims description 22
- 108020004707 nucleic acids Proteins 0.000 claims description 19
- 102000039446 nucleic acids Human genes 0.000 claims description 19
- 150000007523 nucleic acids Chemical class 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 244000000003 plant pathogen Species 0.000 claims description 13
- 230000009466 transformation Effects 0.000 claims description 12
- 210000001161 mammalian embryo Anatomy 0.000 claims description 10
- 230000001131 transforming effect Effects 0.000 claims description 8
- 239000013604 expression vector Substances 0.000 claims description 7
- 235000002532 grape seed extract Nutrition 0.000 claims description 7
- 241000204362 Xylella fastidiosa Species 0.000 claims description 6
- 231100000676 disease causative agent Toxicity 0.000 claims description 6
- 230000001902 propagating effect Effects 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 description 30
- 210000004027 cell Anatomy 0.000 description 28
- 210000002257 embryonic structure Anatomy 0.000 description 27
- 101900233100 Tomato ringspot virus Coat protein Proteins 0.000 description 20
- 235000009754 Vitis X bourquina Nutrition 0.000 description 19
- 235000012333 Vitis X labruscana Nutrition 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- 150000001413 amino acids Chemical class 0.000 description 11
- 241001465180 Botrytis Species 0.000 description 10
- 235000013399 edible fruits Nutrition 0.000 description 10
- 108700019146 Transgenes Proteins 0.000 description 9
- 244000052769 pathogen Species 0.000 description 9
- 239000013615 primer Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 6
- 102000053187 Glucuronidase Human genes 0.000 description 6
- 108010060309 Glucuronidase Proteins 0.000 description 6
- 108700022013 Insecta cecropin B Proteins 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 241000589158 Agrobacterium Species 0.000 description 5
- 241000607479 Yersinia pestis Species 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- 241000219094 Vitaceae Species 0.000 description 4
- 235000004254 Vitis berlandieri Nutrition 0.000 description 4
- 244000216205 Vitis berlandieri Species 0.000 description 4
- 235000006382 Vitis cinerea var. helleri Nutrition 0.000 description 4
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000021021 grapes Nutrition 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 101710132601 Capsid protein Proteins 0.000 description 3
- 101710094648 Coat protein Proteins 0.000 description 3
- 101710125418 Major capsid protein Proteins 0.000 description 3
- 101710141454 Nucleoprotein Proteins 0.000 description 3
- 238000010222 PCR analysis Methods 0.000 description 3
- 101710083689 Probable capsid protein Proteins 0.000 description 3
- 241001251761 Riparia Species 0.000 description 3
- 240000003180 Vitis riparia Species 0.000 description 3
- 235000012124 Vitis riparia Nutrition 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241001414720 Cicadellidae Species 0.000 description 2
- 241001133184 Colletotrichum agaves Species 0.000 description 2
- 241000221785 Erysiphales Species 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000233679 Peronosporaceae Species 0.000 description 2
- 235000004305 Vitis rotundifolia Nutrition 0.000 description 2
- 244000068697 Vitis rotundifolia Species 0.000 description 2
- 235000004284 Vitis rupestris Nutrition 0.000 description 2
- 244000070471 Vitis rupestris Species 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 2
- 229960003669 carbenicillin Drugs 0.000 description 2
- 229960004261 cefotaxime Drugs 0.000 description 2
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 244000053095 fungal pathogen Species 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- -1 melittins Proteins 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 230000020978 protein processing Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000014101 wine Nutrition 0.000 description 2
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000723635 Arabis mosaic virus Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 241000550198 Constantia Species 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101100437498 Escherichia coli (strain K12) uidA gene Proteins 0.000 description 1
- 241000378864 Eutypa Species 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 241000723697 Grapevine fanleaf virus Species 0.000 description 1
- 241001518863 Grapevine leafroll-associated virus Species 0.000 description 1
- 241001489631 Graphocephala atropunctata Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- 241000227653 Lycopersicon Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 241001480007 Phomopsis Species 0.000 description 1
- 241001516577 Phylloxera Species 0.000 description 1
- 101710159789 Sapecin Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000723681 Tomato ringspot virus Species 0.000 description 1
- 101710195626 Transcriptional activator protein Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 235000017252 Vitis californica Nutrition 0.000 description 1
- 240000006572 Vitis californica Species 0.000 description 1
- 235000017254 Vitis girdiana Nutrition 0.000 description 1
- 241001594222 Vitis girdiana Species 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- JKLNYGDWYRKFKR-UHFFFAOYSA-N ethyl methyl sulfate Chemical compound CCOS(=O)(=O)OC JKLNYGDWYRKFKR-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 108700003621 insect attacin antibacterial Proteins 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- RDQMORJTLICVPR-UHFFFAOYSA-N phosphoric acid;2-(trimethylazaniumyl)acetate Chemical compound OP(O)([O-])=O.C[N+](C)(C)CC(O)=O RDQMORJTLICVPR-UHFFFAOYSA-N 0.000 description 1
- 230000008659 phytopathology Effects 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- OOHSAXUMXBYUKE-JFFWMJMXSA-N sapecin Chemical compound C([C@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@H](C)N)[C@@H](C)O)[C@@H](C)O)[C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O)C1=CN=CN1 OOHSAXUMXBYUKE-JFFWMJMXSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/88—Vitaceae, e.g. Vitus [grape]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8281—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8283—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/00022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/18011—Comoviridae
- C12N2770/18022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Physiology (AREA)
- Botany (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Description
DISEASE RESISTANCE TN VITIS
Background of the Invention
This application relates to disease resistance in Vitis. Grape (Vitis spp.) is a deciduous temperate fruit crop of ancient origin. Grape production (65 x 106 metic tons) exceeds that of any other temperate fruit crop and ranks after Citrus and banana among all fruit crops worldwide (FAO Production Yearbook, 1990). Grape surpasses all other fruit crops in value due to its multiple uses for fresh fruit, juice, jelly, raisins, and wine. For example, in the United States, seedless grapes represent about 80% and 98% of the total table and raisin grape production, respectively (In: 1994-95: The Distribution and Per Capita Consumption of California Table Grapes By Major Varieties in the United States and Canada, California Table Grape Commission, Fresno, CA 1995). Only a few seedless cultivars make up this production, of which 'Thompson Seedless' is the most important. This cultivar accounts for the most production of any single grape variety in the United States. In 1992, 'Thompson Seedless' was grown on 263,621 acres in California (In: California Grape Acreage, California Agricultural Statistics Service, Sacramento, CA, 1993). Thirty- five percent of the table grape production in California in 1994 was 'Thompson Seedless' (23,244,683 boxes, 10 kg/box). In 1993, 97% of the grapes grown for raisin production was 'Thompson Seedless' (In: Raisin Committee Marketing Policy 1994-95, Raisin Administrative Committee, Fresno, CA, 1994). Although Vitis spp. is generally considered to have desirable fruit quality, it is susceptible to many pests and diseases, including anthracnose, black rot, botrytis bunch rot, crown gall, downy mildew, eutypa dieback, various nematodes, phomopsis cane and leaf spot, phylloxera, Pierce's disease, and powdery mildew. Hybridization with resistant species has been the only method available to
produce resistant cultivars (Galet and Morton, In: Compendium of Grape Diseases, R.C. Pearson and A.C. Goheen, eds., APS Press, St. Paul, 1990, pp. 2- 3). While improving grape is possible by conventional breeding, it is difficult and time consuming due to the two- to three-year generation cycle, the long period of time required for reliable progeny testing and selection, and inbreeding depression that prohibits selfing (Gray and Meredith, In: Biotechnology of Perennial Fruit Crops, F.A. Hammerschlag and R.E. Litz, eds., C.A.B. Intl., Wallingford, U.K. 1992). These characteristics make introgression of desirable traits into existing grape cultivars difficult if not impossible to achieve in an individual breeder's lifetime. Thus, the alternative, and potentially less time-consuming, approach of using gene transfer to insert desirable genes is one approach for improving grapevine cultivars, even considering the time necessary for field testing transgenic lines. The ability to improve the disease or pest resistance or both of a major grape cultivar (e.g., 'Thompson Seedless') offers the possibility of improving a large portion of the grape production in a relatively short time, assuming that cultivar integrity would not be compromised by the transgene or the insertion event. Such a change could also reduce pesticide use for a significant portion of grape production.
Summary of the Invention
In one aspect, the invention features a method for producing a transgenic plant of the genus Vitis having resistance to a plant pathogen. The method, in general, includes the step of transforming a plant cell with a nucleic acid which expresses a lytic peptide, where the expression of such a lytic peptide provides resistance to a plant pathogen. In preferred embodiments, the method further includes propagating a grape plant from the transformed plant cell. In other preferred embodiments, the method involves transforming a plant cell that is a
part of a somatic embryo and propagating or regenerating a transgenic grape plant from the transformed somatic embryo. Expression of the lytic peptide confers disease resistance or tolerance or both to grapevine pathogens and pests including, without limitation, bacterial, fungal, and viral pathogens. In general, Vitis is transformed by introducing into a plant cell or somatic or zygotic embryos a nucleic acid that includes a lytic peptide by using A. tumefaciens, microprojectile bombardment, or any combination of these methods (for example, by bombarding the plant cell with microprojectiles, followed by infecting the bombarded cells with Agrobacterium tumefaciens including a nucleic acid which expresses the lytic peptide).
In preferred embodiments, the method of the invention involves the use of the lytic peptides Shiva- 1 or cecropin B or both.
The methods of the invention are useful for providing disease resistance or tolerance or both to a variety of grape plants (for example, Vitis spp., Vitis spp. hybrids, and all members of the subgenera Euvitis and Muscadinia), including scion or rootstock cultivars. Exemplary scion cultivars include, without limitation, those which are referred to as table or raisin grapes and those used in wine production such as Cabernet Franc, Cabernet Sauvignon, Chardonnay (e.g., CH 01 , CH 02, CH Dijon), Merlot, Pinot Noir (PN, PN Dijon), Semillon, White Riesling, Lambrusco, Thompson Seedless, Autumn Seedless, Niagrara Seedless, and Seval Blanc. Rootstock cultivars that are useful in the invention include, without limitation, Vitis rupestris Constantia, Vitis rupestris St. George, Vitis California, Vitis girdiana, Vitis rotundifolia, Vitis rotundifolia Carlos, Richter 110 (Vitis berlandieri x rupestris), 101-14 Millarder et de Grasset (Vitis riparia x rupestris), Teleki 5C (Vitis berlandieri x riparia), 3309 Courderc (Vitis riparia x rupestris), Riparia Gloire de Montpellier (Vitis riparia), 5BB Teleki (selection Kober, Vitis berlandieri x riparia), SO4 (Vitis berlandieri x rupestris), 41B Millardet (Vitis vinifera x berlandieri), and 039-16 (Vitis vinifera x Muscadinia).
In another aspect, the invention features a transgenic plant or plant cell of the genus Vitis transformed with a nucleic acid which expresses a lytic peptide, wherein expression of the lytic peptide provides resistance to a plant pathogen. In preferred embodiments, the transgenic grapevine or cell with the nucleic acid includes an expression vector. Preferably, the transgenic grapevine or cell is
Vitis vinifera 'Thompson Seedless' and the expression of the lytic peptide provides resistance to the bacterium Xylella fastidiosa, the causative agent of Pierce's Disease. In other preferred embodiments, the transgenic grapevine is a somatic embryo, a scion, or a rootstock. In still another aspect, the invention features a method of transforming Vitis with a nucleic acid which expresses a tomato ringspot virus coat protein (TomRSV-CP) gene, where the expression of such a coat protein gene provides resistance to a plant pathogen.
In still another aspect, the invention features a method of transforming Vitis with a nucleic acid which expresses a TomRSV-CP gene and a lytic peptide gene, where the expression of such genes in a grapevine provides resistance to a plant pathogen.
The invention also features scions, rootstocks, somatic or zygotic embryos, cells, or seeds that are produced from any of the transgenic grape plants described herein.
By "lytic peptide" is meant a gene encoding a polypeptide capable of lysing a cell. Exemplary lytic peptides include, without limitation, apidaceins, attacins, cercropins (e.g., cercropin B), caerulins, bombinins, lysozyme, magainins, melittins, sapecin, sarcotoxins, and xenopsins. By "peptide" is meant any chain of amino acids, regardless of length or post-translational modification (for example, glycosylation or phosphorylation).
By "positioned for expression" is meant that the DNA molecule is positioned adjacent to a DNA sequence which directs transcription and translation
of the sequence (i.e., facilitates the production of, for example, a lytic peptide).
By "operably linked" is meant that a gene and a regulatory sequence(s) are connected in such a way as to permit gene expression when the appropriate molecules (for example, transcriptional activator proteins) are bound to the regulatory sequence(s).
By "plant cell" is meant any self-propagating cell bounded by a semi- permeable membrane and containing a plastid. Such a cell also requires a cell wall if further propagation is desired. A plant cell, as used herein, is obtained from, without limitation, seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, somatic and zygotic embryos, as well as any part of a reproductive or vegetative tissue or organ.
By "transgenic" is meant any cell which includes a DNA sequence which is inserted by artifice into a cell and becomes part of the genome of the organism which develops from that cell. As used herein, the transgenic organisms are generally transgenic grapevines and the DNA (transgene) is inserted by artifice into the nuclear or plastidic genome. A transgenic grapevine according to the invention contains at least one lytic peptide or TomRSV-CP or both.
By "transgene" is meant any piece of DNA which is inserted by artifice into a cell, and becomes part of the genome of the organism which develops from that cell. Such a transgene may include a gene which is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism.
As discussed above, we have discovered that the expression of a lytic peptide provides grapevines with resistance against disease caused by plant pathogens and pests. Accordingly, the invention provides a number of important advances and advantages for viticulturists. For example, by demonstrating that the lytic peptide Shiva- 1 is effective against Xyellela fastidiosa, the invention
facilitates an effective and economical means for protection against Pierce's Disease. Such protection reduces or minimizes the need for traditional chemical practices that are typically used by viticulturists for controlling the spread of plant pathogens and providing protection against disease-causing pathogens in vineyards. In addition, because grape plants expressing one or more lytic peptide gene(s) described herein are less vulnerable to pathogens and their diseases, the invention further provides for increased production efficiency, as well as for improvements in quality, color, flavor, and yield of grapes. Furthermore, because the invention reduces the necessity for chemical protection against plant pathogens, the invention benefits the environment where the crops are grown. In addition, the expression of a lytic peptide gene or TomRSV-CP or both in a grapevine provides resistance to plant pathogens and can be used to protect grapevines from pathogen infestation that reduces productivity and viability. The methods of the invention are useful for producing grapevines having resistance to diseases including, without limitation, Pierce's disease, crown gall, bunch rot, downy and powdery mildews, and viral diseases caused by arabis mosaic virus, grapevine fanleaf virus, tomato ringspot virus, grapevine leafroll associated virus.
Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
Detailed Description
The drawings will first be described. Drawings
Figure 1A shows the partial map of the T-DNA region of pBRSl. Figure IB shows the partial map of the T-DNA region of pGA482GG/cpTomRSV.
Figure 2 is a photograph showing the results of PCR amplified TomRSV- CP and Shiva- 1 fragments from transgenic 'Thompson Seedless' grape plants.
PCR analysis using TomRSV-CP primers are as follows: pGA482GG transformant (without the TomRSV-CP gene); lane 2, transformant 3-2; lane 3, transformant 3-3; lane 4, transformant 3S-2; lane 5, transformant 3S-6; lane 6, transformant 3SB-X. PCR analysis using Shiva-1 primers are as follows: lane 7, untransformed 'Thompson Seedless' plant; lane 8, transformant 4-3; lane 9, transformant 4S-2. Transgenic plants 3-2, 3-3, and 4-3, were obtained from A. tumefaciens infection alone. Plants 3S-2, 3S-3, 3SB-X, and 4S-2 were obtained from A. tumefaciens infection after microprojectile bombardment.
Figure 3 is a photograph showing the results of a Southern analysis of transgenic 'Thompson Seedless' grape plants. DNA extracted from TomRSV-CP transformants that was digested with EcoRI and probed with a NOS/NPTII fragment is shown in lanes 1 through 9. Lane 1, pGA482GG transformant (control without the TomRSV-CP gene); lane 2, transformant 3-2; lane 3, transformant 3-3 from tissue culture; lane 4, transformant 3-3 from greenhouse leaves (DNA runs slower on gel); lane 5, transformant 3S-2; lane 6, transformant
3S-3; lane 7, transformant 3SB-X; lane 8, untransformed control 'Thompson Seedless'; lane 9, pGA482GG/cpTomRSV plasmid. Shiva- 1 transformants digested with BamHI and probed with a NOS/NPTII fragment are shown in lanes a-c. Lane a, transformant 4-3; lane b, transformant 4S-2; lane c, untransformed control 'Thompson Seedless'. Transgenic plants 3-2, 3-3, and 4-3 were obtained from
A. tumefaciens infection alone. Plants 3S-2, 3S-3, 3SB-X, and 4S-2 were obtained from A. tumefaciens infection after microprojectile bombardment.
Figure 4 is a photograph showing a transgenic 'Thompson Seedless' grape plant four months after transfer to the greenhouse.
A description for the production of disease resistant transgenic Vitis now follows. Transgenic grape plants expressing either lytic peptide or TomRSV coat
protein genes were regenerated from somatic embryos derived from leaves of in v/tro-grown plants of 'Thompson Seedless' grape (Vitis vinifera L.) plants. Somatic embryos were either exposed directly to engineered A. tumefaciens or they were bombarded twice with 1-μm gold particles and then exposed to A. tumefaciens. Somatic embryos were transformed with either the lytic peptide
Shiva- 1 gene or the tomato ringspot virus coat protein (TomRSV-CP) gene. Integration of the foreign genes into these grapevines was verified by growth in the presence of kanamycin (kan), positive β-glucuronidase (GUS) and polymerase chain-reaction (PCR) assays, and Southern analysis. Resistance to Pierce's disease in transgenic plants expressing a lytic peptide was also examined. These examples are provided for the purpose of illustrating the invention, and should not be construed as limiting.
Plant Materials and Culture
Leaves from 'Thompson Seedless' in vitro cultures were used to produce somatic embryos following the method of Stamp et al. (J. Amer. Hort. Sci.
115:1038-1042, 1990). Expanding leaves (approximately 0.5 cm long) excised from in v/tro-grown shoots were cultured on a modified Nitsch and Nitsch (Science 163:85-87, 1969) (NN) medium containing 5 μM of 2,4-D, 1 μM of BA, 60 grams/liter of sucrose, 2 grams/liter of activated charcoal, and 7 grams/liter of agar, pH 5.7. After a three- to twelve-week culture period, somatic embryos formed. These were transferred to a modified Murashige and Skoog (Plant Physiol. 15:473-497, 1962) (MS) medium containing 120 grams/liter of sucrose, 2 grams/liter of activated charcoal, and 7 grams/liter of agar, pH 5.7. After three years of continual culture on the modified MS medium with transfers each four to six weeks, somatic embryos were transferred to Emershad and Ramming proliferation (ERP) medium (Emershad and Ramming, Plant Cell Rpt. 14:6-12, 1994) for several transfers and then exposed to transformation treatments.
Agrohacterium Strain and Plasmid Descriptions
For the transformation treatments described below, A. tumefaciens strains were EHA101 and EHA105 (Hood et al., J. Bacterial. 168: 1283-1290, 1986) containing plasmid pGA482GG/cρTomRSV (Slightom, Gene 100:252-255, 1991 ; Slightom et al., In: Plant Mol Biol. Man., S. B. Gelivn, R. A. Schilperoot, and
D.P.S. Verma, eds., Kluwer, Dordrecht, The Netherlands) or pBPRSl, respectively, were used (Figs. 1 A -IB). Both plasmids contained chimeric gusA (β-glucuronidase (GUS)) and kanamycin (Kan) (neomycin phosphotransferase II (NPT II)) genes. Plasmid pGA482GG/cpTomRSV contained the tomato ringsport virus coat protein (TomRSV-CP) gene and pBRPS contained the Shiva- 1 lytic peptide gene (Destefano-Beltran et al., In: The Molecular and Cellular Biology of the Potato, M. Vayada and W. Parks, eds., C.A.B. Int'l Wallingford, U.K.; Jaynes et al., Ada Hort. 336:33-39, 1993). Cocultivation and Selection Putative A. tumefaciens transformants were cocultivated and selected as described by Scorza et al. (Plant Cell Rpt. 14:589-592, 1995). Briefly, A. tumefaciens cultures were grown overnight at 28°C in LB medium containing selective antibiotics for each plasmid. These cultures were centrifuged (5,000 x g, 10 minutes) and resuspended in a medium consisting of MS salts containing 20 grams/liter of sucrose, 100 μM of acetosyringone, and 1.0 μM of betaine phosphate. The cultures were then shaken for about six hours at 20°C before use in the transformation treatments that are described below.
Transformation
Somatic embryos were either bombarded with gold microprojectiles and then exposed to A. tumefaciens as described by Scorza et al. (J. Amer. Soc. Hort.
Sci. 119: 1091-1098, 1994) or they were exposed to A. tumefaciens without prior bombardment as follows. Microprojectile bombardment was accomplished using the Biolistic PDS-1000/He device (Bio-Rad Laboratories). A total of 700 somatic
embryos were separated into groups of 100. Each group was placed onto a 25- mm polycarbonate membrane in the center of a 100-mm petri plate containing ERP medium twenty-four hours before bombardment. Somatic embryos were shot with 1.0-μm diameter gold particles following the general procedures of Sanford et al. (Meth. Enzmol. 217:483-509, 1991) using the parameters described by Scorza et al. (Plant Cell Rpt. 14:589-592, 1995). All plates were bombarded twice. Within two hours of bombardment, embryos were cocultivated with A. tumefaciens. After bombardment, somatic embryos were immersed in the resuspended A. tumefaciens culture that was prepared as described above. After fifteen to twenty minutes, the A. tumefaciens culture medium was removed and somatic embryos were placed onto cocultivation medium (ERP medium containing 100 μm acetosyringone). Somatic embryos were cocultivated for two days and then washed with liquid ERP medium (without charcoal) containing 300 μg/ml of cefotaxime and 200 μg/ml of carbenicillin. Somatic embryos were then plated on agar-solidifϊed ERP medium (0.75% agar) with the above-mentioned selective antibiotics. All somatic embryo cultures were allowed to proliferate for two passages (3 weeks each) before being placed onto selection medium. Selection was carried out on ERP medium containing the above specified amounts of cefotaxime and carbenicillin, and 40 μg/ml of kanamycin.
In a second series of transformation experiments, an additional 700 somatic embryos were exposed to A. tumefaciens without prior bombardment according to the methods described above.
After cocultivation and selection on ERP medium, putatively transformed embryos were induced to germinate and root on woody plant medium (Lloyd and
McCown, Proc. Intl. Plant Prop. Soc. 30:421-427, 1981) containing 15 grams/liter of sucrose, 1 μM of BA, 3 grams/liter of agar, pH 6.0 following the protocol of Emershad and Ramming (Plant Cell Rpt. 14:6-12, 1994).
Transformation Confirmation
Transformed somatic embryos and shoots produced after somatic embryo germination were assayed by growth on kanamycin-containing medium and through a histological GUS assay (Jefferson, Plant Mol. Biol. Rpt. 5:387-405, 1987). Leaf samples of the plants surviving kanamycin selection were observed to produce the characteristic blue GUS positive reaction, indicating the presence and activity of the GUS gene in these plants. Leaves from untransformed control plants showed no blue staining.
Leaves sampled from plants growing in vitro were also cultured for one week in liquid LB medium to assay for the presence of contaminating
A. tumefaciens. Excised leaves from putative transformants cultured in liquid LB medium were negative for the presence of contaminating A. tumefaciens.
After rooting and transfer to the greenhouse, transformed plants were subjected to PCR and Southern analysis. PCR amplification was conducted on DNA isolated from leaves of putatively transformed grape plants. Specific oligonucleotide primers from TomRSV-CP and Shiva- 1 gene sequences were used to identify the presence of these genes in DNA from the different clones. For the TomRSV-CP gene, these sequences were the 5' primer 5'- GGTTCAGGGCGGGTCCTGGAAG-3' (SEQ ID NO: 1) and 3* primer 5'- GTAAAAGCTAATTAAGAGGCCACC-3' (SEQ ID NO: 2); for Shiva- 1 gene, the sequences were the 51 primer
5'-ATCAAACAGGGTATCCTGCG-3' (SEQ ID NO: 3) and 3' primer 5'-TTCCCACCAACGCTGATC-3' (SEQ ID NO: 4). PCR reactions were run using the GeneAmp kit components (Perkin Elmer, Norwalk, Conn.) using the following parameters: 1 minute at 94°C, 1.5 minutes at 65°C, and 2 minutes at
72°C. The first cycle used an additional 3 minutes melt at 95°C and the last five cycles had a 4 minute extension time period at 72°C. After thirty-five amplification cycles, the PCR products were analyzed by agarose gel
electrophoresis and stained with ethidium bromide. PCR analysis using TomRSV-CP and Shiva- 1 primers indicated that the thirteen plants that survived kanamycin selection after being exposed to TomRSV-CP or Shiva- 1 transformation treatments contained the predicted gene sequences (Figure 2). In addition, Southern analysis was used to demonstrate the incorporation of the foreign genes into the grape genome. Southern analysis was carried out using a PCR-generated 1.1 -kb NOS/NPTII probe. Digestion with EcoKl was then used to test for unique insertion events that would include segments of grape DNA in pGA482GG/cpTomRSV transformants. BamHI restriction digestion was used for the pBPRSl (Shiva- 1) transformants. Extraction of DNA from transformants followed the procedures of Callahan et al. (Plant Physiol. 100:482-488, 1992). Conditions for Southern analysis were described by Scorza et al. (In Vitro Cell Dev. Biol. 26:829-834, 1990). The NOS/NPTII probe was radioactively labeled according to standard methods using random primers according to the instructions with the BioRad Random Primer DNA Labeling Kit (BioRad, Hercules, CA).
While Southern analysis directly showed only the incorporation of the NPTII gene into the genomes of the assayed grape plants, the close linkage of the TomRSV-CP or the Shiva- 1 genes to the NPTII gene coupled with the positive PCR assays for the presence of these genes leads to the conclusion that these plants also contained the TomRSV or Shiva- 1 genes. This analysis also indicated that most TomRSV-CP transformants contained multiple copies of the gene insert. Shiva- 1 transformants, however, appeared to contain a single insert. Plasmid pGA482GG was used for transferring the TomRSV-CP gene. Previous work using plasmid pGA482GG for transforming grape and other species suggested that multiple copy transformants are common (Scorza et al., J. Amer. Soc. Hort. Sci.
119:1091-1098, 1994; Scorza et al., Plant Cell Rpt. 14:589-592, 1995).
Previous work examined the use of microprojectile bombardment with A. tumefaciens to produce transgenic grape plants. Here we used both
microprojectile bombardment and A. tumefaciens infection. Although microprojectile bombardment before A. tumefaciens infection improved the yield of transformants, the numbers of transformants obtained in this study were too low to be compared with infection with A. tumefaciens infection alone. It is apparent, however, that both microprojectile bombardment followed by exposure to A. tumefaciens and A. tumefaciens infection alone are effective for transforming grape somatic embryos. The overall transformation rate in terms of transgenic plants produced per somatic embryo treated was about 1% (Table 1).
Table 1
The results described here differ from our previous report in that we now report transforming grape from somatic embryos derived from leaves, while previously we reported producing transgenic plants from somatic embryos derived from zygotic embryos. The genes transferred include a viral coat protein gene and a lytic peptide gene. To date there have been few reports of transgenic grapevine production, and our results document the successful transformation of a major Vitis vinifera scion cultivar. Disease Resistance
Resistance to Pierce's Disease (PD) has been evaluated in transgenic
'Thompson Seedless' grapevines expressing the lytic peptide Shiva- 1. PD is a fatal disease of grapevine known throughout the world. PD kills grapevines by blocking the plant's water- transporting tissue, the xylem. The disease is caused by the bacterium, Xyllella fastidiosa, and is spread by a leafhopper, the blue-green sharpshooter that feeds on the xylem fluid of grape. The sharpshooter transmits the bacteria from vine to vine. As the bacteria multiply inside the plant, they plug the xylem vessels, inhibiting water and nutrient transport throughout the plant. Infected vines die for reasons related to water uptake. The symptoms of PD therefore resemble those of water stress and include the drying, marginal burning, or scorching of leaves due to initial clogging of fine vessel elements, and eventual dieback of the vine due to total occlusion of the vessels in the trunk. Other symptoms include the shriveling and dying of fruit clusters.
Three transgenic grapevines expressing the Shiva- 1 construct have been evaluated for resistance to X. fastidiosa. These included a non-transformed control; a transformed grapevine containing one Shiva- 1 insert (designated clone
B); and a transgenic grapevine containing four Shiva- 1 inserts (designated clone A). Each of these plants were vegetatively propagated and then inoculated with X. fastidiosa according to the methods described by Hopkins (Phytopathology 75:713-717, 1985). While replicate plants of all three clones eventually succumbed to PD, clone A was observed to exhibit milder PD symptomology, which did not include the typical signs of marginal leaf burn when compared to the non-transformed control plant. Instead the leaves of clone A slowly became chlorotic, without signs of marginal burn. A second series of inoculations were performed with the same results. In addition, the growth of bacteria in the transgenic clones was evaluated and compared to the non-transformed control plant. Although bacteria were eventually found in the leaves of both transgenic and non-transformed plants, the spread of bacteria was slower in clone A. Our results therefore indicate that transgenic grapevine expressing the lytic peptide
Shiva-1 are effective at inhibiting PD.
The methods of the invention are also useful for providing resistance to other grapevine diseases. Transgenic grapevines expressing a transgene containing a lytic peptide (e.g., Shiva- 1 or cecropin B) or TomRSV-CP or both are operably linked to a constitutive promoter or to a controllable promoter such as a tissue-specific promoter, cell-type specific promoter, or to a promoter that is induced by an external signal or agent such as a pathogen- or wound-inducible control element, thus limiting the temporal or tissue expression or both. Such transgenes may also be expressed in roots, leaves, or fruits, or at a site of a grapevine that is susceptible to pathogen penetration and infection. For example, a lytic peptide gene may be engineered for constitutive low level expression in xylem-tissue expression and then transformed into a Vitis host plant. To achieve pathogen resistance or disease resistance or both, it is important to express the transgene at an effective level. Evaluation of the level of pathogen protection conferred to a plant by expression of such a transgene is determined according to conventional methods and assays as described herein.
In one working example, expression of a lytic peptide (e.g., Shiva- 1 or cecropin B) is used to control bacterial infection, for example, to control Agrobacterium, the causative agent of crown gall disease. Specifically, the Shiva- 1 expression vector described herein or a plant expression vector containing the cecropin B gene is used to transform somatic embryos according to the methods described above. To assess resistance to Agrobacterium infection and crown gall formation, transformed plants and appropriate controls are grown, and the stems are inoculated with a suspension of Agrobacterium according to standard methods. Transformed grape plants are subsequently incubated in a growth chamber, and the inoculated stems are analyzed for signs of resistance to crown gall formation according to standard methods. For example, the number of galls per inoculation are recorded and evaluated after inoculation. From a statistical
analysis of these data, levels of resistance to Agrobacterium and crown gall formation are determined. Transformed grape plants that express a lytic peptide (e.g., Shiva- 1 or cecropin B or both) having an increased level of resistance to Agrobacterium or crown gall disease or both relative to control plants are taken as being useful in the invention.
By "increased level of resistance" is meant a greater level of resistance or tolerance to a disease-causing pathogen or pest in a transgenic grapevine (or scion, rootstock, cell, or seed thereof) than the level of resistance or tolerance or both relative to a control plant (for example, a non- transgenic grapevine). In preferred embodiments, the level of resistance in a transgenic plant of the invention is at least 5-10% (and preferably 30% or 40%) greater than the resistance of a control plant. In other preferred embodiments, the level of resistance to a disease-causing pathogen is 50% greater, 60% greater, and more preferably even 75% or 90% greater than a control plant; with up to 100% above the level of resistance as compared to a control plant being most preferred. The level of resistance or tolerance is measured using conventional methods. For example, the level of resistance to a pathogen may be determined by comparing physical features and characteristics (for example, plant height and weight, or by comparing disease symptoms, for example, delayed lesion development, reduced lesion size, leaf wilting, shriveling, and curling, decay of fruit clusters, water-soaked spots, leaf scorching and marginal burning, and discoloration of cells) of transgenic grape plants.
In another working example, constitutive expression of a lytic peptide (e.g., Shiva- 1 or cecropin B) is used to control the fungus Botrytis, the causative agent of bunch rot disease. Specifically, a plant expression vector is constructed that contains a transgene sequence that expresses the lytic peptide(s). This expression vector is then used to transform somatic embryos according to the methods described above. To assess resistance to fungal infection, transformed plants and
appropriate controls are grown to approximately 30 cm vinelength, and young leaves and shoots are inoculated with a mycelial suspension of Botrytis. For example, plugs of Botrytis mycelia are inoculated on each side of the leaf midvein of developing leaves. Plants are subsequently incubated in a growth chamber at 30 °C with constant fluorescent light and high humidity. Leaves of transformed and control grapevines are then evaluated for resistance to Botrytis infection and disease according to conventional experimental methods. For this evaluation, for example, the number of lesions per leaf and percentage of leaf area infected are recorded every twenty-four hours for seven days after inoculation. From these data, levels of resistance to Botrytis are determined. In addition, if desired, fruit clusters can be sprayed with a suspension of Botrytis and infection monitored at 15-20°C at 90% relative humidity after fifteen to twenty-four hours. Transformed grapevines that express a lytic peptide gene having an increased level of resistance to Botrytis and infection and disease relative to control plants are taken as being useful in the invention.
Alternatively, to assess resistance at the whole plant level, transformed and control grapevines are transplanted to potting soil containing an inoculum of Botrytis. Plants are then evaluated for symptoms of fungal infection (for example, wilting or decayed leaves) over a period of time lasting from several days to weeks. Again, transformed grapevines expressing the lytic peptide gene(s) having an increased level of resistance to the fungal pathogen, Botrytis, relative to control plants are taken as being useful in the invention.
Other Embodiments The invention further includes analogs of any naturally-occurring lytic peptide. Analogs can differ from the naturally-occurring lytic peptide by amino acid sequence differences, by post-translational modifications, or by both. In preferred embodiments, lytic peptide analogs used in the invention will generally
exhibit about 30%, more preferably 50%, and most preferably 60% or even having 70%, 80%, or 90% identity with all or part of a naturally-occurring lytic peptide amino acid sequence. The length of sequence comparison is at least 10 to 15 amino acid residues, preferably at least 25 amino acid residues, and more preferably more than 35 amino acid residues. Modifications include chemical derivatization of polypeptides, e.g., acetylation, carboxylation, phosphorylation, or glycosylation; such modifications may occur during polypeptide synthesis or processing or following treatment with isolated modifying enzymes. Lytic peptide analogs can also differ from the naturally-occurring by alterations in primary sequence. These include genetic variants, both natural and induced (for example, resulting from random mutagenesis by irradiation or exposure to ethyl methylsulfate or by site-specific mutagenesis as described in Sambrook, Fritsch and Maniatis, Molecular Cloning: A Laboratory Manual (2d ed.), CSH Press, 1989, or Ausubel et al., supra). Also included are cyclized peptides, molecules, and analogs which contain residues other than L-amino acids, e.g., D-amino acids or non-naturally occurring or synthetic amino acids, e.g., β or γ amino acids.
In addition to full-length lytic peptides, the invention also includes peptide fragments. As used herein, the term "fragment," means at least 10 contiguous amino acids, preferably at least 15 contiguous amino acids, more preferably at least 20 contiguous amino acids, and most preferably at least 30 to 40 or more contiguous amino acids. Fragments of lytic peptides can be generated by methods known to those skilled in the art or may result from normal protein processing (e.g., removal of amino acids from the nascent polypeptide that are not required for biological activity or removal of amino acids by alternative mRNA splicing or alternative protein processing events).
All publications mentioned in this specification are herein incoφorated by reference to the same extent as if each independent publication or patent application was specifically and individually indicated to be incorporated by
reference.
SEQUENCE LISTING
(1) GENERAL INFORMATION ) APPLICANT: University of Florida Research Foundation, Inc. et al.
(ii) TITLE OF THE INVENTION: DISEASE RESISTANCE IN VITIS
(iii) NUMBER OF SEQUENCES: 4
(iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Clark & Elbing LLP
(B) STREET: 176 Federal Street
(C) CITY: Boston
(D) STATE: MA
(E) COUNTRY: USA
(F) ZIP: 02110
(v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: DOS
(D) SOFTWARE: FastSEQ for Windows Version 2.0
(vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:
(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 60/020,569
(B) FILING DATE: 26-JUN-1996
(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Clark, Paul T
(B) REGISTRATION NUMBER: 30,162
(C) REFERENCE/DOCKET NUMBER: 07678/012WO1
(ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 617-428-0200
(B) TELEFAX: 617-428-7045
(C) TELEX:
(2) INFORMATION FOR SEQ ID NO: 1 :
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS : single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1 : GGTTCAGGGC GGGTCCTGGA AG 22
(2) INFORMATION FOR SEQ ID NO:2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2 : GTAAAAGCTA ATTAAGAGGC CACC 24
(2) INFORMATION FOR SEQ ID NO:3 :
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3 : ATCAAACAGG GTATCCTGCG 20
(2) INFORMATION FOR SEQ ID NO:4 :
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA
(xi) SEQUENCE DESCRIPTION: SEQ ID Nθ:4: TTCCCACCAA CGCTGATC 18
Claims
1. A method for producing a transgenic plant with resistance to a plant pathogen, said method comprising: transforming a plant cell of the genus Vitis with a nucleic acid which expresses a lytic peptide, wherein expression of said lytic peptide provides resistance to a plant pathogen.
2. The method of claim 1 , further comprising propagating a plant from said plant cell.
3. The method of claim 1 , wherein said plant cell is part of a somatic embryo.
4. The method of claim 3, further comprising propagating a plant from said somatic embryo.
5. The method of claim 1, wherein said transformation comprises infecting said plant cell with Agrobacterium tumefaciens comprising said nucleic acid which expresses said lytic peptide.
6. The method of claim 1, wherein said transformation comprises bombarding said plant cell with microprojectiles comprising said nucleic acid which expresses said lytic peptide.
7. The method of claim 1, wherein said transformation comprises bombarding said plant cell with microprojectiles, followed by infecting said bombarded cells with Agrobacterium tumefaciens comprising said nucleic acid which expresses said lytic peptide.
8. The method of claim 1 , wherein said lytic peptide is Shiva- 1.
9. The method of claim 1, wherein said plant cell is Vitis vinifera 'Thompson Seedless.'
10. The method of claim 1 , wherein expression of said lytic peptide provides resistance to the bacterium Xylella fastidiosa, the causative agent of
Pierce's Disease.
11. A transgenic plant cell of the genus Vitis transformed with a nucleic acid which expresses a lytic peptide, wherein expression of said lytic peptide provides resistance to a plant pathogen.
12. The transgenic plant cell of claim 11 , wherein said nucleic acid comprises an expression vector.
13. The transgenic plant cell of claim 11 , wherein said lytic peptide is Shiva- 1.
14. The transgenic plant cell of claim 11 , wherein said transgenic plant cell is Vitis vinifera 'Thompson Seedless.'
15. The transgenic plant cell of claim 11 , wherein expression of said lytic peptide provides resistance to the bacterium Xylella fastidiosa, the causative agent of Pierce's Disease.
16. A transgenic plant or a plant component of the genus Vitis transformed with a nucleic acid which expresses a lytic peptide, wherein expression of said lytic peptide provides resistance to a plant pathogen.
17. The transgenic plant of claim 16, wherein said plant component is a somatic embryo.
18. The transgenic plant of claim 16, wherein said plant component is a scion.
19. The transgenic plant of claim 16, wherein said plant component is a rootstock.
20. The transgenic plant of claim 16, wherein said transgenic plant is Vitis vinifera 'Thompson Seedless.'
21. The transgenic plant of claim 16, wherein said nucleic acid comprises an expression vector.
22. The transgenic plant of claim 16, wherein said lytic peptide is Shiva- 1.
23. The method of claim 16, wherein expression of said lytic peptide provides resistance to the bacterium Xylella fastidiosa, the causative agent of Pierce's Disease.
24. A scion, rootstock, somatic embryo, cell, or seed from a transgenic plant of claim 16.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU34038/97A AU723058C (en) | 1996-06-26 | 1997-06-20 | Disease resistance in vitis |
AU71629/00A AU759417B2 (en) | 1996-06-26 | 2000-11-16 | Disease resistance in vitis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2056996P | 1996-06-26 | 1996-06-26 | |
US60/020569 | 1996-06-26 | ||
PCT/US1997/010646 WO1997049277A1 (en) | 1996-06-26 | 1997-06-20 | DISEASE RESISTANCE IN $i(VITIS) |
AU34038/97A AU723058C (en) | 1996-06-26 | 1997-06-20 | Disease resistance in vitis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU71629/00A Division AU759417B2 (en) | 1996-06-26 | 2000-11-16 | Disease resistance in vitis |
Publications (3)
Publication Number | Publication Date |
---|---|
AU3403897A AU3403897A (en) | 1998-01-14 |
AU723058B2 AU723058B2 (en) | 2000-08-17 |
AU723058C true AU723058C (en) | 2008-02-14 |
Family
ID=25622699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU34038/97A Ceased AU723058C (en) | 1996-06-26 | 1997-06-20 | Disease resistance in vitis |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU723058C (en) |
-
1997
- 1997-06-20 AU AU34038/97A patent/AU723058C/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
JAYNES ET AL. (1993) PLANT SCIENCE 89:43-53 * |
Also Published As
Publication number | Publication date |
---|---|
AU3403897A (en) | 1998-01-14 |
AU723058B2 (en) | 2000-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0938564B1 (en) | Disease resistance in vitis | |
Scorza et al. | Producing TransgenicThompson Seedless' Grape (Vitis vinifera L.) Plants | |
CA1341565C (en) | Protection of plants against viral infection | |
CN101802205B (en) | Late blight resistance genes and methods | |
AU4365200A (en) | Plant transformation process | |
AU707935B2 (en) | Transgenic plants exhibiting heterologous virus resistance | |
EP1026941B1 (en) | Nepovirus resistance in grapevine | |
AU723058C (en) | Disease resistance in vitis | |
AU759417B2 (en) | Disease resistance in vitis | |
EP1138767B1 (en) | Disease resistance in vitis | |
Scorza et al. | Disease resistance in Vitis | |
Motioike et al. | Development of methods to genetically transform American grape (Vitis× labruscana LH Bailey) | |
Martinelli et al. | Genetic transformation of tobacco and grapevine for resistance to viruses related to the rugose wood disease complex | |
Trinca et al. | Transformation of potato (Solanum tuberosum L.) leaf disc using A. tumefaciens-mediated transfer of DNA sequences coding for lytic peptides | |
AU727208C (en) | Grapevine leafroll virus proteins and their uses | |
CN109678942A (en) | A kind of method improving rice distant hybrid progeny fertility and protein used | |
Krasatanova et al. | Genetic Engineering of Grape for Resistance to Crown Gall | |
MXPA00003651A (en) | Bacterial resistance in grapevine | |
MXPA00003023A (en) | Nepovirus resistance in grapevine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |