AU603992B2 - Enzymatic immunoassay - Google Patents
Enzymatic immunoassay Download PDFInfo
- Publication number
- AU603992B2 AU603992B2 AU61591/86A AU6159186A AU603992B2 AU 603992 B2 AU603992 B2 AU 603992B2 AU 61591/86 A AU61591/86 A AU 61591/86A AU 6159186 A AU6159186 A AU 6159186A AU 603992 B2 AU603992 B2 AU 603992B2
- Authority
- AU
- Australia
- Prior art keywords
- substrate
- enzyme
- antigen
- beads
- enzymatic immunoassay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/557—Immunoassay; Biospecific binding assay; Materials therefor using kinetic measurement, i.e. time rate of progress of an antigen-antibody interaction
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Description
D
AUSTRALIA
603992 Form PATENTS ACT 1952 COMPLETE SPECIFICATION
(ORIGINAL)
FOR OFFICE USE Short Title: Int. Cl: Application Number: Lodged: Complete Specification-Lodged: Accepted: Lapsed: Published: Priority: Related Art: This document contains the amndients tinadc un'der Section 49 and is correct for printing, TO BE COMPLETED BY APPLICANT t t$ Name of Applicant: Address of Applicant: TOYO SODA MANUFACTURING CO., LTD.- 4560, OAZA TONDA
SHINNANYO-SHI
YAMAGUCHI-KEN
JAPAN
Actual Inventor: Address for Service: CLEMENT HACK CO., 601 St. Kilda Road, Melbourne, Victoria 3004, Australia.
'IS'
44 4 4( 4 Complete Specification for the invention entitled: ENZYMATIC IMMUNOASSAY The following statement is a full description of this ivention including the best method of performing it known to me:- Background of the Invention: 7 Field of the Invention: The present invention relates to an enzymatic immunoassay by which a minute amount of biological substances can be detected and/or estimated.
As one of known immunological methods to detect and/or estimate a minute amount of biological substances, the enzymatic immunoassay is recently recognized as noteworthy and actively developed through investigations, in which an enzyme is used as a label on an antigenantibody reaction complex. This method is an alternative to the hitherto used radio-immunoassay which is carried tout using radioisotopes and requires much cares in handling.
,t The enzymatic immunoassay may be realized in some different manners, as taught for example in "Clinical Chemistry", Vol. 22, No. 8, 1243-1255(1976).
However, in general, the procedure goes as follows. At t St first an antigen or an antibody is affixed to the surface of the inner wall of a cell as reaction chamber or on the surface of beads placed in the cell, the antigen or antibody is brought into an antigen-antibody reaction with i* a conjugate which is combined with an enzyme as label to form a complex, then a substrate is introduced in the cell which, by the activity of the enzyme, gives rise to an optically detectable change (such as in fluorescent intensity, absorbance, and emission intensity), the change is measured by an optical means such as a fluoro-photometer, and an absorbance photometer, and from the result 2 of measurement the amount of the complex containing enzyme, or hence the amount of the antigen or antibody. In the enzymatic immunoassay which is concerned with the determination of an amount as minute as 10 1 3 of biological substances in general, a relatively large error is involved in the estimation and therefore a high performance of the instrument for measurements as well as removal of error sources are ardently required.
With these points in mind, the present inventors investigated the conventional processes in general of enzymatic immunoassay and found the problems described below.
The processes in the enzymatic immunoassay are ,,,generally carried out as follows: at first, an antigeno o antibody-enzyme complex is formed affixed to the inner wall of the cup as the reaction chamber, on the surface of beads placed in the cup, or on an insoluble carrier, and then the complex is brought into contact with a subs strate solution to start the enzyme reaction. The enzymatic ,0 immunoassay is conducted by measuring the fluorescence Sao intensity of the substrate after a certain period of time, either stopping the enzyme reaction with a stopping solution or not. However, in these processes, the time from the initiation of enzyme reaction to the measurement should be strictly controlled, and so-called zero point correction is needed for the fluorescence intensity of the substrate because the intensity at the starting point is not always zero but shows some dispersion. Further, in the characteristic curve expressin, the increase of the fluorescence intensity at the substrate, the rate of increase in the 3 j intensity becomes gradually smaller from the initiation of the enzyme reaction, and in addition the characteristic f curve varies depending on the difference in the amount of enzyme. The correlation between two curves is not linear and hence errors due to difference in the measuring time are different in magnitude and depend individually on the characteristic curves.
Summary of the Invention: To solve the above-mentioned problems, an object of the present invention is to improve the accuracy and. precision of measurements in the enzymatic Oal ~immunoassay.
S Another object of the present invention is to realize a high precision measurement without any heavier o 0 load in controlling the process and procedure.
Brief Explanation of the Drawings: Fig. 1 is a sketch showing an example of the constitution of an apparatus to which the present invention is applied. Fig. 2 shcds the characteristic curves of variation of fluorescence intensity obtained by the apparatus. Fig. 3 explains another example of the apparatus and Fig. 4 is to show the characteristic curves of variation of fluorescence intensity obtained by the apparatus in Fig. 3.
Detailed Description of the Invention, The characteristic features of the present 4
L.
invention which intends to realize the above-mentioned objects are as follows: enzymatic immunoassay for estimating the concentration of antigen or antibody comprising bringing an antigen-antibody complex, which is labelled by an enzyme and is present heterogeneously in a solution, into contact with a substrate where pH of the solution is so adjusted as to be suitable for the enzyme to be activated P and also for measuring the fluorescence of the substrate, measuring the time-variation of fluorescent intensity of i the substrate produced by the enzyme reaction, and estimating the concentration of the antigen or the antibody from the slope of the substantially straight linear portion on the characteristic curve representing variation of the fluorescence intensity.
The reason why the above-mentioned composition has been adopted is as follows.
The intensity of fluorescence at a substrate as a result of an enzyme reaction depends on the concentration of the substrate and the amount of enzyme (hence the amount of the antigen-antibody-enzyme complex), and directly on the amount of the enzyme when the concentration of substrate is constant. In a heterogeneous reaction where an antigen-antibody-enzyme complex is formed affixed to the surface of an insoluble carrier such as beads mentioned above and a substrate is brought into contact with the complex, observations in detail of the enzyme reaction as a variation of the fluorescence intensity reveal the substantially linear increase of the fluorescence intensity in the initial period of the enzyme reaction. In this linear region, the slope of the char- j acteristic curve can be significantly estimated with a J sufficiently small error, and the slope (or rate of increase) may linearly depend on the amount of enzyme in the solution so far as the concentration of substrate is constant. The present invention which is based on the values thus measured is adopted as useful anywhere.
The system, of which an antigen-antibody-enzyme complex can be present heterogeneously in a solution affixed on the surface of an insoluble carrier, can be an object of this invention. The insoluble carriers are exemplified by the inner wall of a vessel provided as cell, the surface of beads placed in the cell, and textiles and unwoven textiles.
The rate of increase of the fluorescence intensity that is constant in the initial linear portion gradually decreases as time goes on, as pointed out before. This 4 4 is because the complex that is present heterogeneously o in the solution undergoes the enzyme reaction which is rate-controlled by the diffusion of the substrate in the solution except in the initial stage of reaction. There- .0,0 fore, for the purpose of expanding the interval between 40: the two points of measuirement to improve the precision in estimating the slope, it may be useful to oscillate the insoluble carrier at a low frequency to impel the reaction as diffusion-controlled. For the end, the magnetic beads placed in the cell can be oscillated by an oscillating magnetic field. The frequency is selected usually 10 180/min. preferably 70 120/min, and in case of beads I 6 they are preferably moved in an alternatingly linear or circular movement throughout the entire part of the cell bottom. Devices for these oscillation of beads may consist of a magnetically permeable cup, magnetic beads composed of magnetic (preferably paramagnetic) powder such as ferrite combined with a resin binder made from polystyrene and EVA, and a magnetic device that generates an oscillating field, for example, by a permanent magnet which is moved in alternating directions.
A known process may be followed to affix an antigen or antibody to the surface of beads.
e The antigens and antibodies employed in the oo o enzymatic immunoassay of the present invention are not o 00 0 0 particularly restricted. With regard to the enzyme as o label and the substrate, the only necessary condition is 0 04.
0 00 that the pH range for activating the enzyme and that suitable for the fluorescence of the substrate overlap to each other.
The measurement of fluorescence can be per- 0 *0 formed with a suitable optical instrument. Thus, the slope of the substantially linear portion can be measured on o the observed characteristic curve of the fluorescence intensity. The result is compared with a calibration graph which is prepared beforehand, to obtain the amount of enzyme, hence the amount of the antigen or the antibody.
Detailed Description of the Preferred Embodiments: The embodiments of the present invention will be described below with reference to the attached drawings.
7 In Fig. 1i, 1 is a test cup, 2 is beads placed in the cup 1 (dimension of the beads is not restricted, but preferably equal or less than half of the diameter of the cell), and an antigen-antibody-enzyme complex is formed affixed on the surface of beads by a usual process.
3 is a substrate solution, the pH of which for the measurement of fluorescence intensity is selected so as to be matched with that of activating the enzyme.
Measuring the fluorescence intensity is started by means of a fluorescence detection apparatus immediately after the addition of both beads 2 and substrate solution 3 to the test cup 1.
:808 The fluorescence detection apparatus according 0a Sto the present invention consists of light source 4, filter *0 0 for exciting light 5, dichroic mirror 6, focusing lens 7, Sfilter for fluorescent light 8 and light sensor 9. Signals detected at the light sensor 9 are transferred via San appropriate amplifier to a computation circuit (in- 8*1 a 8 cluding a microcomputer, but not indicated in the drawing) S to calculate a characteristic curve on variation of the fluorescence intensity as a function of time.
In Fig. 2, a, b, and c are examples of the 488# S characteristic curve on variation of the fluorescence intensity thus obtained, showing the amounts of the antigen (or antibody) in the samples being in the order of a b c. Moreover, in the early stage of the enzyme reaction, there appears a substantially linear portion in the region between tl t2 on each curve in Fig. 2, which is hardly affected by the diffusion. Thus, if 8- L the rate of increase (or the slope) of the fluorescence intensity is determined in the above-mentioned region for each sample and compared with that of the calibration graph, determination of the amounts of the antigen or the antibody can be realized with higher accuracy and precision.
In this process the zero point correction is not required for the characteristic curves. Further, if the time interval between two measuring points is exactly controlled to estimate the rate of increase (or slope), the time for the initiation procedure of the reaction (for example, adding the substrate solution to the test cup) is not particularly required to be controlled.
o0 Thus the present invention has realized a remarkably easier o1 «and simpler procedure of measurement. This is especially advantageous for the apparatus with which many samples are to be dealt continuously, because designing engineers o ,can have a large freedom at their disposal in deciding the time point of adding a substrate solution to the test cup, and this is invaluable in practice.
In Fig. 3, beads 2' are magnetic bodies and influenced by a magnetic field and a number of permanent magnets 11 are fixed at appropriate intervals on a bar that moves alternatingly closely beneath the test cup 1.
In operation, the beads undergo an alternating movement in the test cup 1 in accordance with the alternatingly moving permanent magnets 11. The characteristic curves thus obtained of the variation of fluorescence intensity as a function of time, indicated as b' and c', -9- 9 contain substantially linear portions which are longer than those obtained otherwise. Therefore, the rate of increase (or slope) can be estimated with a better precision than in the example in Fig. i, and this is markedly effective for the determination of a minute amount of biological substances.
Example 1: Using the apparatus in Fig. i, a complex which was labelled with an enzyme alkaliphosphatase was formed on the surface of a bead, and a substrate solution containing 4-methylumbelliferone (1 mmol/l, pH 9.5) was poured in the test cup 1 and the intensity of fluorescence o was measured.
The characteristic curve obtained showing the r ti o variation of fluorescence intensity as a function of time contained a substantially linear portion from the addition of the substrate solution to the elaps- of 60 sec. The slope of the curve as measured using two arbitrary points in the range was obtained with an error not more than 0.i in a plurality of runs using the same sample.
Example 2: Following the example in Fig. 3, the same test as in Example 1 was conducted using 10 beads of 1.4 mm in diameter which were oscillated at a frequency of In this case, a substantially linear portion appeared on the characteristic curve of variation of fluorescence intensity as a function of time in the range from the injection of the substrate solution to the elapse of 60 sec. The slope as measured from two points on the 10 i I i IL curve was obtained with an error not more than 0.1 in a plurality of runs using the same sample.
As has been mentioned above, the process of the present invention permits the determination of a minute amount of biological substances to be carried out with a high accuracy and precision, and further the requirements to correct the zero point offset and to strictly control the time for the procedure is either lessened or rendered irrelevant, and thus achieves great advantages. In addition, when an apparatus is assembled to treat a number of samples in a continuous manner, the present invention provides a large degree of freedom in the design of apparatus, also giving a great advantage.
Sr I A S Sr Vf S S* *4 4o A Vb' S. 11
Claims (4)
1. Enzymatic immunoassay for estimating the concentration of antigen or antibody comprising bringing an antigen-antibody complex, which is labelled by an enzyme and is present heterogeneously in a solution as affixed to the surface of insoluble carrier beads, into contact with a substrate where the pH of the solution is so adjusted as to j be suitable for the enzyme to be activated and also for measuring the fluorescence of the substrate with an optical system, measuring the time-variation of fluorescent intensity of the substrate produced by the enzyme reaction, and estimating the concentration of the antigen or the antibody from the slope of the substantially straight linear portion, as estimated from at least two points, on a characteristic curve representing variation of the fluorescence intensity, wherein the time-variation of the fluorescence intensity of the substrate is measured while the beads are being oscillated at a low frequency in the cell.
2. Enzymatic immunoassay according to Claim 1 wherein the carrier beads are magnetic particles.
3. Enzymatic immunoassay according to at least one of the foregoing claims, wherein the oscillation of beads is affected by a magnetic member arranged outside the cell,
4. Enzymatic immunoassay according to at least one of the foregoing claims, wherein the ovcillation of frequency is from 10 to 180/min. Enzymatic immunoassay according to at least one of the foregoing claims, wherein the optical system for measuring the fluorescence is a top-to-top type arranged above an upper-opening cell. DATED this 4th day of September 1990 TOSOH CORPORATION By Their Patent Attorneys: A GRIFFITH HACK CO F ellows Institute of Patent Attorneys of Australia NT
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60-191125 | 1985-08-30 | ||
JP60191125A JPH0660901B2 (en) | 1985-08-30 | 1985-08-30 | Enzyme immunoassay |
Publications (2)
Publication Number | Publication Date |
---|---|
AU6159186A AU6159186A (en) | 1987-03-05 |
AU603992B2 true AU603992B2 (en) | 1990-12-06 |
Family
ID=16269282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU61591/86A Ceased AU603992B2 (en) | 1985-08-30 | 1986-08-19 | Enzymatic immunoassay |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0216177B1 (en) |
JP (1) | JPH0660901B2 (en) |
AU (1) | AU603992B2 (en) |
CA (1) | CA1280692C (en) |
DE (1) | DE3678078D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU615415B2 (en) * | 1986-07-04 | 1991-10-03 | Tosoh Corporation | Assay method of immune reaction and apparatus |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0288793A3 (en) * | 1987-04-22 | 1990-04-25 | Abbott Laboratories | Cartridge and methods for performing a solid-phase immunoassay |
JP2656564B2 (en) * | 1988-08-26 | 1997-09-24 | 株式会社日立製作所 | Immunoassay method |
JP2912957B2 (en) * | 1991-06-18 | 1999-06-28 | 東ソー株式会社 | Method and apparatus for measuring enzyme activity |
EP0597951B1 (en) * | 1991-07-26 | 1999-03-31 | Dade Chemistry Systems Inc. | An assay with signal detection in the presence of a suspended solid support |
US5540890A (en) | 1992-03-27 | 1996-07-30 | Abbott Laboratories | Capped-closure for a container |
US6190617B1 (en) | 1992-03-27 | 2001-02-20 | Abbott Laboratories | Sample container segment assembly |
US5376313A (en) * | 1992-03-27 | 1994-12-27 | Abbott Laboratories | Injection molding a plastic assay cuvette having low birefringence |
US5960160A (en) | 1992-03-27 | 1999-09-28 | Abbott Laboratories | Liquid heater assembly with a pair temperature controlled electric heating elements and a coiled tube therebetween |
US5507410A (en) | 1992-03-27 | 1996-04-16 | Abbott Laboratories | Meia cartridge feeder |
US5575978A (en) | 1992-03-27 | 1996-11-19 | Abbott Laboratories | Sample container segment assembly |
US5536471A (en) | 1992-03-27 | 1996-07-16 | Abbott Laboratories | Syringe with bubble flushing |
US5610069A (en) | 1992-03-27 | 1997-03-11 | Abbott Laboratories | Apparatus and method for washing clinical apparatus |
US5578494A (en) | 1992-03-27 | 1996-11-26 | Abbott Laboratories | Cap actuator for opening and closing a container |
US5627522A (en) | 1992-03-27 | 1997-05-06 | Abbott Laboratories | Automated liquid level sensing system |
US5646049A (en) | 1992-03-27 | 1997-07-08 | Abbott Laboratories | Scheduling operation of an automated analytical system |
US5605665A (en) | 1992-03-27 | 1997-02-25 | Abbott Laboratories | Reaction vessel |
US5635364A (en) | 1992-03-27 | 1997-06-03 | Abbott Laboratories | Assay verification control for an automated analytical system |
US5371021A (en) * | 1992-07-17 | 1994-12-06 | Beckman Instruments, Inc. | Initial rate photometric method for immunoassay |
WO2005085810A1 (en) * | 2003-08-21 | 2005-09-15 | University Of Massachusetts Medical Center | Rapid plague detection system |
EP1693672A4 (en) * | 2003-11-28 | 2008-06-11 | Olympus Corp | Method of detecting substance to be analyzed |
GB0419325D0 (en) * | 2004-09-01 | 2004-09-29 | Perkinelmer Ltd | A method of analysing a sample including fluorescent labels and apparatus therefor |
CN112945923B (en) * | 2021-02-03 | 2024-06-14 | 长沙理工大学 | Interface sensitization type detection reagent and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1087285B (en) * | 1976-11-10 | 1985-06-04 | Hoffmann La Roche | IMMUNOLOGICAL DETERMINATION PROCEDURE |
IL51668A (en) * | 1977-03-16 | 1981-12-31 | Israel State | Analytical method for the quantitative determination of immunogens and antibodies and a kit therefor |
JPS53145912A (en) * | 1977-04-28 | 1978-12-19 | Sanyo Chem Ind Ltd | Antibody-magnetic particle complex, its preparation, and immobilized antibody for immunoassay containing the same |
JPH0672881B2 (en) * | 1982-10-13 | 1994-09-14 | バイオウィッテッカー・インコーポレーテッド | Fluorescence analysis of allergic reaction |
-
1985
- 1985-08-30 JP JP60191125A patent/JPH0660901B2/en not_active Expired - Fee Related
-
1986
- 1986-08-19 AU AU61591/86A patent/AU603992B2/en not_active Ceased
- 1986-08-27 EP EP19860111834 patent/EP0216177B1/en not_active Expired
- 1986-08-27 DE DE8686111834T patent/DE3678078D1/en not_active Expired - Fee Related
- 1986-08-28 CA CA000517031A patent/CA1280692C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU615415B2 (en) * | 1986-07-04 | 1991-10-03 | Tosoh Corporation | Assay method of immune reaction and apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP0216177A2 (en) | 1987-04-01 |
EP0216177B1 (en) | 1991-03-13 |
DE3678078D1 (en) | 1991-04-18 |
AU6159186A (en) | 1987-03-05 |
JPH0660901B2 (en) | 1994-08-10 |
CA1280692C (en) | 1991-02-26 |
EP0216177A3 (en) | 1987-12-16 |
JPS6250662A (en) | 1987-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU603992B2 (en) | Enzymatic immunoassay | |
US5238815A (en) | Enzymatic immunoassay involving detecting fluorescence while oscillating magnetic beads | |
EP0117019B1 (en) | Immunoassay methods employing patterns for the detection of soluble and cell surface antigens | |
CA1298547C (en) | Assay method of immune reaction and apparatus | |
RU2102758C1 (en) | Devices, method and reagent for performing automated immune analysis in several sequential stages of at least one biological substance from a set of biological samples | |
US4725140A (en) | Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field | |
CA2521773C (en) | Optical chemical sensing device with pyroelectric or piezoelectric transducer | |
JP4068148B2 (en) | Assay method | |
ES8802544A1 (en) | Method of automatically detecting agglutination reaction and apparatus therefor. | |
US6410251B2 (en) | Method for detecting or assaying target substance by utilizing oxygen electrode | |
CN107810414B (en) | Method for detecting an analyte using electromagnetic radiation | |
DK476489A (en) | PROCEDURE FOR DETERMINING A QUANTITY OF ANTIGEN AND ANTIBODY | |
JP2006078364A (en) | Measuring apparatus and measuring method for surface plasmon | |
Law et al. | Enzyme-linked immunosorbent assay (ELISA) development and optimisation | |
JPH046464A (en) | Immunological examination method | |
EP1253427A2 (en) | Bio-device and quantitative measurement apparatus and method using the same | |
Ligler et al. | Biological microstructures in biosensors | |
JPH08166388A (en) | Method and sensor for immunoassay of enzyme | |
JP2000162124A (en) | Sensor chip for surface plasmon resonance angle detecting device | |
JPH0712816A (en) | Bio-substance measuring method utilizing specific bonding reaction | |
JPS62218863A (en) | Enzyme immunity measurement using fluorophotometer | |
Kobayashi et al. | Automated Protein-Expression Profiling System using Crude Protein Direct Blotting Method | |
JPH01172755A (en) | Method and apparatus for detecting abnormality of sealed immunoreaction reagent | |
Pollema | A study of reactive surfaces for use in flow injection immunoassays | |
JP2000146977A (en) | Method and apparatus for determination of biologically specific reaction |