AU594070B2 - Low phosphate or phosphate free laundry detergent - Google Patents
Low phosphate or phosphate free laundry detergent Download PDFInfo
- Publication number
- AU594070B2 AU594070B2 AU60737/86A AU6073786A AU594070B2 AU 594070 B2 AU594070 B2 AU 594070B2 AU 60737/86 A AU60737/86 A AU 60737/86A AU 6073786 A AU6073786 A AU 6073786A AU 594070 B2 AU594070 B2 AU 594070B2
- Authority
- AU
- Australia
- Prior art keywords
- amount
- acid
- builder
- salt
- nonionic surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0004—Non aqueous liquid compositions comprising insoluble particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
N,
~j 0 '1 594070 1 COMMONWEALTH OF AUSTRALIA Patents Act 1952 COMPLETE SPEC IFICATI ON
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification lodged Accepted Published ora, T1
V
0-40 ovo t9o9 Priority Z 5 August 1985; 5 August 1985 5 August 1985 Related Art Name of Applicant Address of Applicant COLGATE-PALMOLIVE COMPANY 300 Park Avenue, NEW YORK, N.Y. 10022, United States of America Trazollah Ouhadi; Louis Dehan and Lucie Fellen F.B. RICE CO., Patent Attorneys, 28A Montague Street, BALMAIN 2041 9 9 96 99 99 9 9 Actual Inventors Address for Service Complete Specification for the invention entitled: LOW PHOSPHATE OR PHOSPHATE FREE LAUNDRY DETERGENT The following statement is a full description of this invention including the best method of performing it known to us To The Commissioner of Patents COMMONWEALTH OF AUSTRALIA APPUCATION ACCEPTED AND AMENDMENTS ALLO W ED -9 C C C Cf Cf C1[ fcf' 4' 44 £4 44ff 4 4I 4 44 BACKGROUND OF THE INVENTION Field of Invention This invention relates to nonaqueous liquid fabric treating compositions.
More particularly, this invention relates to phosphate free or low phosphate nonaqueous liquid laundry detergent compositions containing a suspension of a heptonate builder salt, a carboxymethyloxy succinate builder salt, or an alginate builder salt in nonionic surfactants which compositions are stable against phase separation and gelation and are easily pourable and to the use of these compositions for cleaning soiled fabrics.
Discussion of Prior Art Liquid nonaqueous heavy duty laundry detergent compositions are well known in the art. For instance, compositions of that type may comprise a liquid nonionic surfactant in which are dispersed particles of a builder, as shown for instance in the U.S.P. Nos. 4,316,812, 3,630,929 and 4,264,466 and British Patent Nos. 1,205,711, 1,270,040 and 1,600,981.
The related pending applications assigned to the corDnaruessidneea- SN 687,815, filed December 31, 1984; SN 597,793, filed April 6, 1984; SN 597,948, filed April 9, 1984; SN 725,455, filed April 22, 198 SN (IR 2 21), filed These plications ar, directed to liquid nonaqueous nonionic laundry rgent compositions.
The washing power of synthetic nonionic surfactant detergents in laundry detergent compositions can be increased by the addition of builders.
Sodium tripolyphosphate is one of the preferred builders, However, the use of sodium polyphosphate in dry powder detergents does involve several disadvantages such as, for example, the tendency of the polyphosphates to 2 I LJC1dLtcU dL lVtW IULS Nlu U S I/ 1 Udy Ul UL10 U IA-e- CO GATE-PALMOLIVE COMPANY By H.S. ylvester Assi tant General Industrial Property F. B. RICE 6 CO., To: The Commissioner of Patents Patent Attorneys, Conimonv ealth of Australia, Sydney.
hydrolyse into pyro- and ortho-phosphates which represent less valuable builders.
In addition the polyphosphate content of laundry detergents has been blamed for the undesirat ,y high phosphate content of surface water. An increased phosphate content in surface water has been found to contribute towards greater algae growth with the result that the biological equilibrium of the water can be adversely altered.
Recently enacted government legislation has been directed to reducing the amount of polyphosphates present in laundry detergents and in some 440 I jurisdictions in which polyphosphates have been a problem to require that the laundry detergents not contain any polyphosphate builders.
°Liquid detergents are often considered to be more convenient to employ O e9 than dry powdered or particulate products and, therefore, have found substantial favor with consumers. They are readily measurable, speedily O eq o0 I dissolved in the wash water, capable of being easily applied in concentrated o solutions or dispersions to soiled areas on garments to be laundered and are 0| o non-dusting, and they usually occupy less storage space. Additionally, the liquid detergelts may have incorporated in their formulations materials which o could not stand drying operations without deterioration, which materials are 0 20 often desirably employed in the manufacture of particulate detergent products. Although they are possessed of many advantages over unitary or particulate solid products, liquid detergents often have certain inherent disadvantages too, which have to be overcome to produce acceptable commercial detergent products. Thus, some such products separate out on storage and others separate out on cooling and are not readily redispersed.
In some cases the product viscosity changes and it becomes either too thick to pour or so thin as to appear watery. Some clear products become cloudy and others gel on standing.
In addition to the problem of settling or phase separation the nonaqueous liquid laundry detergents based on liquid nonionic surfactants suffer from the drawback that the nonionics tend to gel when added to cold water. This is a particularly important problem in the ordinary use of European household automatic washing machines where the user places the laundry detergent composition in a dispensing unit a dispensing drawer) of the machine. During the operation of the machine the detergent in the dispenser is subjected to a stream of cold water to transfer it to the main body of wash solution. Especially during the winter months when the detergent composition and water fed to the dispenser are particularly cold, the detergent viscosity increases markedly and a gel forms. As a result t some of the composition is not flushed completely off the dispenser during r a operation of the machine, and a deposit of the composition builds up with cr repeated wash cycles, eventually requiring the user to flush the dispenser with hot water.
The gelling phenomenon can also be a problem whenever it is desired to carry out washing using cold water as may be recommended for certain o t synthetic and delicate fabrics or fabrics which can shrink in warm or hot water.
The tendency of concentrated detergent compositions to gel during storage is aggravated by storing the compositions in unheated storage areas, 20 or by shipping the compositions during winter months in unheated transportation vehicles.
Partial solutions to the gelling problem in aqueous, substantially builder free compositions have been proposed, for example, by diluting the liquid nonionic with certain viscosity controlling solvents and gel-inhibiting agents, such as lower alkanols, e.g. ethyl alcohol (see U.S.P. 3,953,380), alkali metal formates and adipates (see U.S.P. 4,368,147), hexylene glycol, polyethylene glycol, etc. and nonionic structure modification and optimization. As an example of nonionic surfactant modification one particularly successful result has been achieved by acidifying the hydroxyl moiety end group of. the nonionic molecule. The' advantages of introducing a carboxylic acid at the end of the nonionic include gel inhibition upon dilution; decreasing the nonionic pour point; and formation of an anionic surfactant when neutralized in the washing liquor. Nonionic structure optimization has centered on the chain length of the hydrophobic-lipophilic moiety and the number and make-up of alkylene oxide ethylene oxide) units of the hydrophilic moiety. For example, it has been found that a C13 fatty alcohol ethoxylated with 8 moles of ethylene oxide presents only a limited tendency to gel formation.
Nevertheless, improvements are desired in both the stability and gel inhibition of low phosphate and phosphate free nonaqueous liquid fabric treating compositions.
00Q o a 0O 0 0 6 0 o Of OQ S o o 000 0 0- 0 0 O0O 0 0 Bft tl 0 00 0 0 B11 B S'0 00 0 o a o tD o BRIEF DESCRIPTION OF THE INVENTION In accordance with the present invention a highly concentrated low phosphate, more particularly a polyphosphate detergent builder free, nonaqueous liquid laundry detergent composition is prepared by dispersing heptonete builder salts, carboxymethyloxy succinate builder salts, or alginate builder salts in a liquid nonionic surfactant detergent.
The heptonic acid salts used in accordance with the present invention are well known. The heptonic acid is an acid derivative of an aldoheptose (monosaccharide). The alkali metal salts of heptonic acid are water soluble.
The alkali metal heptonic acid salts used in the present invention have the general formula
H
I
H-C-OH
(H-C-OH)
I s
O=C-OM
wherein M is an alkali metal or ammonium cation.
The carboxymethyloxy succinic acid salts used in accordance with the present invention are known. The alkali metal and ammonium salts. of carboxymethyloxy succinic acid are water soluble.
ft 9 r rr 4 4 4 '20 The carboxymethyloxy succinic acid salts used in the present invention have the general formula
MOOC-CH-COOM
wherein M is hydrogen, an alkali metal, such as sodium and potassium, or ammonium cation, and at least one M is an alkali metal or ammonium cation.
The alginic acid salts used in accordance with the present invention are well known. The alginate is a polysaccharide extract from sea weeds. The alkali metal salts of alginic acid are water soluble. The alginate is extracted from sea weeds in the form of mixed salts comprising calcium and magnesium.
In order to improve the viscosity characteristics of the composition an acid terminated nonionic surfactant can be added. To further improve the viscosity characteristics of the composition and the storage properties of the composition there can be added to the composition viscosity improving and anti gel agents such alkylene glycol mono alkyl ethers and anti settling agents such as phosphoric acid esters and aluminum stearate. In preferred embodiment of the invention the detergent composition contains an acid terminated noni6nic surfactant and/or an alkylene glycol mono alkyl ether, and an anti settling agent.
Sanitizing or bleaching agents and activators therefore can be added to improve the bleaching and cleansing characteristics of the composition.
In an embodiment of the invention the builder components of the composition are ground to a particle size of less than 100 microns and to preferably less than 10 microns to further improve the stability of the suspension of the builder components in the liquid nonionic surfactant detergent.
In addition other ingredients can be added to the composition such as anti-incrustation agents, anti-foam agents, optical brighteners, enzymes, anti-redeposition agents, perfume and dyes.
d0 *0 0 044 00 0.1 00..10 00 0 0 0400 o o 00 0 0 Q 00 0r 0000 *a 0 0 *0 00 r 4q42I The presently manufactured washing machines for home use normally operate at washing temperatures of up to 1000°C. Up to 18.5 gallons liters) of water are used during the wash and rinse cycles.
About 175 grams of powder detergent per wash is normally used.
In accordance with the present invention where the highly concentrated liquid detergent is used normally only about 100 grams (77 ml) or less of the liquid detergent composition is required to wash a full load of dirty laundry.
Accordingly, in one aspect the present invention there is provided a phosphate builder free or substantially phosphate builder free liquid heavy duty laundry composition composed of a suspension of an alkali metal heptonic acid builder salt, an alkali metal carboxymethyloxy succinic acid builder salt, or an alkali metal alginic acid builder salt in liquid nonionic surfactant.
According to another aspect, the invention provides a phosphate free or low phosphate concentrated liquid heavy duty laundry detergent composition which is stable, non-settling in storage and non-gelling in storage and in use. The liquid compositions of the present invention are easily pourable, easily measured and easily put into the washing machine.
According to another aspect, the invention provides a method for dispensing a phosphate free or low phosphate liquid nonionic laundry detergent composition into and/or with cold water without undergoing gelation. In particular, a method is provided for filling a container with a nonaqueous liquid laundry detergent composition in which the detergent is composed, at least predominantly, of a polyphosphate builder free liquid nonionic surface active agent and for dispensing the composition from the container into an aqueous wash bath, wherein the dispensing is effected by directing a stream of unheated water onto the composition such that the composition is carried by the stream of water into the wash bath.
ADVANTAGES OVER THE PRIOR ART The polyphosphate builder free detergent compositions overcome the problem of phosphate pollution of surface water.
The polyphosphate free or low polyphosphate concentrated nonaqueous liquid nonionic surfactant laundry detergent compositions of the present invention have the added advantages of being stable, non-settling in storage, and non-gelling in storage. The liquid compositions are easily pourable, easily measured and easily put into the laundry washing machines.
OBJECTS OF THE INVENTION 'la It is an object of the present invention to provide a low polyphosphate, more particularly a polyphosphate free non-polluting liquid heavy duty nonaqueous nonionic detergent composition containing heptonate builder salt, carboxymethyloxy succinate builder salt, or alginate builder salt suspended in a nonionic surfactant.
It is another object of the invention to provide a polyphosphate free or low polyphosphate liquid fabric treating compositions which are suspensions of heptonate builder salt, carboxymethyloxy succinate builder salt, or alginate builder salt in a nonaqueous liquid and which are storage stable, S easily pourable and dispersible in cold, warm or hot water.
Sl 20 Another object of this invention is to formulate a polyphosphate free or low polyphosphate highly built heavy duty nonaqueous liquid nonionic surfactant laundry detergent compositions which can be poured at all temperatures and which can be repeatedly dispersed from the dispensing unit of European style automatic laundry washing machines without fouling or plugging of the dispenser even during the winter months.
Another object of this invention is to provide a polyphosphate free or low polyphosphate non-gelling, stable suspensions of heavy duty built nonaqueous liquid nonionic laundry detergent composition which include an effective amount of heptonate builder salt, carboxymethyloxy succinate builder salt, or alginate builder salt.
1.41 c* 1.z it A further object of this invention is to provide non-gelling, stable suspensions of heavy duty built nonaqueous liquid nonionic laundry detergent composition which include an amount of phosphoric acid alkanol ester and/or aluminum fatty acid salt anti-settling agent which is sufficient to increase the stability of the composition, i.e. prevent settling of builder particles, etc., preferably while reducing or at least without increasing the plastic viscosity of the composition.
These and other objects of the invention which will become more apparent from the following detailed description of preferred embodiments are generally provided for by preparing a low polyphosphate or polyphosphate free detergent builder composition by adding to the nonaqueous liquid nonionic surfactant an effective amount of an alkali metal heptonate builder salt, a carboxymethyl succinate builder salt, or an alkali metal alginate builder salt and inorganic or organic fabric treating additives, e.g. viscosity improving and anti-gel agents, nti-settling agents, anti-incrustation agents, bleaching agents, bleach activators, anti-foam agents, optical brighteners, enzymes, anti-redeposition agents, perfume and dyes.
Nonionic Surfactant Detergent The nonionic synthetic organic detergents employed in the practice of 20 the invention may be any of a wide variety of such compounds, which are well known.
As is well known, the nonionic synthetic organic detergents are characterized by the presence of an organic hydrophobic group and an organic hydrophilic group and are typically produced by the condensation of Ph organic aliphatic or alkyl aromatic hydrophobic compound with ethylene oxide (hydrophilic in nature). Practically any hydrophobic compound having a carboxy, hydroxy, amido or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a nonionic detergent. The length of the hydrophilic or polyoxy ethylene chain can be readily adjusted *44 I OI I 9 to achieve the desired balance between the hydrophobic and hydrophilic groups. Typical suitable nonionic surfactants are those disclosed in U.S.
patents 4,316,812 and 3,630,929.
Usually, the nonionic detergents are poly-lower alkoxylated lipophiles wherein the desired hydrophile-lipophile balance is obtained from addition of a hydrophilic poly-lower alkoxy group to a lipophilic moiety. A preferred class of the nonionic detergent employed is the poly-lower alkoxylated higher alkanol wherein the alkanol is of 9 to 18 carbon atoms and wherein the number of mols of lower alkylene oxide (of 2 or 3 carbon atoms) is from 3 to 12. Of such materials it is preferred to employ those wherein the higher S alkanol is a higher fatty alcohol of 9 to 11 or 12 to 15 carbon atoms and which contain from 5 to 8 or 5 to 9 lower alkoxy groups per mol.
~Preferably, the lower alkoxy is ethoxy but in some instances, it may be desirably mixed with propoxy, the latter, i present, often being a minor ~(less than 50%) proportion.
Exemplary of such compounds are those wherein the alkanol is of 12 to 15 carbon atoms and which contain about 7 ethylene oxide groups per mol, e.g. Neodol 25'-7 and Neodol 23-6.5, which products are made by Shell o..A Chemical Company, Inc. The former is a condensation product of a mixture oQ20 of higher fatty alcohols averaging about 12 to 15 carbon atoms, with about 7 mols of ethylene oxide and the latter is a corresponding mixture wherein the carbon atom content of the higher fatty alcohol is 12 to 13 and the number of ethylene oxide groups present averages about 6.5. The higher alcohols are primary alkanols.
Other examples of such detergents include Tergitol 15-S-7 and Tergitol 15-S-9, both of which are linear secondary alcohol ethoxylates made by Union Carbide Corp. The former is mixed ethoxylation product of 11 to carbon atoms linear secondary alkanol with seven mols of ethylene oxide and the latter is a similar product but with nine mols of ethylene oxide being reacted.
I Also useful in the present composition as a component of the nonionic detergent are higher molecular weight nonionics, such as Neodol 45-11, which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14 to 15 carbon atoms and the number of ethylene oxide groups per mol being about 11. Such products are also made by Shell Chemical Company.
Other useful nonionics are represented by the commercially well known class of nonionics sold under the trademark Plurafac. The Plurafacs are the reaction product of a higher linear alcohol and a mixture of ethylene and propylene oxides, containing a mixed chain of ethylene oxide and propylene oxide, terminated by a hydroxyl group. Examples include Plurafac RA30 (a
C
1 3
-C
1 5 fatty alcohol condensed with 6 moles ethylene oxide and 3 moles It fill propylene oxide), Plurafac RA40 (a C13-C15 fatty alcohol condensed with 7 moles propylene oxide and 4 moles ethylene oxide), Plurafac D25 (a C 1 3
-C
1 fatty alcohol condensed with 5 moles propylene oxide and 10 moles ethylene oxide.
S, Another group of liquid nonionics are commercially available from Shell Chemical Company, Inc. under the Dobanol trademark: Dobanol 91-5 is an o, ethoxylated C9-C11 fatty alcohol with an average of 5 moles ethylene oxide 20 and Dobanol 25-7 is an ethoxylated C12-CI5 fatty alcohol with an average of 7 moles ethylene oxide per mole of fatty alcohol.
In the preferred poly-lower alkoxylated higher alkanols, to obtain the best balance of hydrophilic and lipophilic moieties the number of lower alkoxies will usually be from 40% to 100% of the number of carbon atoms in the higher alcohol, preferably 40 to 60% thereof and the nonionic detergent will preferably contain at least 50% of such preferred poly-lower alkoxy higher alkanol. Higher molecular weight alkanols and various other normally solid nonionic detergents and surface active agents may be contributory to gelation of the liquid detergent and consequently, will preferably be omitted or limited in quantity in the present compositions, although minor 11 proportions thereof may be employed for their cleaning properties, etc. With respect to both preferred and less preferred nonionic detergents the alkyl groups present therein are generally linear although branching may be tolerated, such as at a carbon next to or two carbons removed from the terminal carbon of the straight chain and away from the ethoxy chain, if such branched alkyl is not more than three carbons in length. Normally, the proportion of carbon atoms in such a branched configuration will be minor rarely exceeding 20% of the total carbon atom content of the alkyl.
Similarly, although linear alkyls which are terminally joined to the ethylene t0 oxide chains are highly preferred and are considered to result in the best combination of detergency, biodegradability and non-gelling characteristics, medial or secondary joinder to the ethylene oxide in the chain may occur. It is usually in only a minor proportion of such alkyls, generally less than but, as is in the cases of the mentioned Tergitols, may be greater. Also, (fi when propylene oxide is present in the lower alkylene oxide chain, it will usually be less than 20% thereof and preferably less than 10% thereof.
When greater proportions of non-terminally alkoxylated alkanols, propylene oxide-containing poly-lower alkoxylated alkanols and less hydrophile-lipophile balanced nonionic detergent than mentioned above are S 20 employed and when other nonionic detergents are used instead of the preferred nonionics recited herein, the product resulting may not have as tIn good detergency, stability, viscosity and non-gelling properties as the S preferred compositions but use of the viscosity and gel controlling compounds of the invention can also improve the properties of the detergents based on such nonionics. In some cases, as when a higher molecular weight poly lower alkoxylated higher alkanol is employed, often for its detergency, the proportion thereof will be regulated or limited in accordance with the results of routine experiments, to obtain the desired detergency and still have the product nci-gelling and of desired viscosity. Also, it has been found that it is only rarely necessary to utilize the higher molecular weight 12 nonionics for their detergent properties since the preferred nonionics described herein are excellent detergents and additionally, permit the attainment of the desired viscosity in the liquid detergent without gelation at low temperatures.
Another useful group of nonionic surfactants are the "Surfactant T" series of nonionics available from British Petroleum. The Surfactant T nonionics are obtained by the ethoxylation of secondary C 1 3 fatty alcohols having a narrow ethylene oxide distribution. The Surfactant T5 has an average of 5 moles of ethylene oxide; Surfactant T7 an average of 7 moles of i0 ethylene oxide; Surfactant T9 an average of 9 moles of ethylene oxide and Surfactant T12 an average of 12 moles of ethylene oxide per mole of secondary C 13 fatty alcohol.
SIn the compositions of this invention, preferred nonionic surfactants o I t include the C13-C15 secondary fatty alcohols with relatively narrow contents t of ethylene oxide in the range of from about 7 9 moles, and the C9 to C11 i# fatty alcohols ethoxylated with about 5-6 moles ethylene oxide.
Mixtures of two or more of the liquid nonionic surfactants can be used and in some cases advantages can be obtained by the use of such mixtures.
Acid Terminated Nonionic Surfactant 20 The viscosity and gel properties of the liquid detergent compositions can be improved by including in the composition an effective amount an acid terminated liquid nonionic surfactant. The acid terminated nonionic S surfactants consist of a nonionic surfactant which has been modified to convert a free hydroxyl group thereof to a moiety having a free carboxyl group, such as an ester or a partial ester of a nonionic surfactant and a polycarboxylic acid or anhydride.
As disclosed in the commonly assigned copending application Serial No.
597,948 filed April 9, 1984, the disclosure of which is incorporated herein by reference, the free carboxyl group modified nonionic surfactants, which may iTLL dUctylcyLenyi.ene alamine (TAED) bleach activator in an amount of 4-8%.
be broadly characterized as polyether carboxylic acids, function to lower the temperature at which the liquid nonionic forms a gel with water.
The addition of the acid terminated nonionic surfactants to the liquid nonionic surfactant aids in the dispensibility of the composition, i.e.
pourability, and lowers the temperature at which the liquid nonionic surfactants form a gel in water without a decrease in their stability against settling. The acid terminated nonionic surfactant reacts in the washing machine water with the alkalinity of the dispersed builder salt phase of the detergent composition and acts as an effective anionic surfactant.
Specific examples include the half-esters of Plurafac RA30 with succinic anhydride, the ester or half ester of Do',anol 25-7 with succinic anhydride, and the ester or half ester of Dobanol 91-5 with succinic anhydride. Instead 8 of succinic anhydride, other polycarboxylic acids or anhydrides can be used, Soo. e.g. maleic acid, mlseic acid anhydride, citric acid and the like.
The acid terminated nonionic surfactants can be prepared as follows: a 00 Acid Terminated Plurafac 30. 400g of Plurafac 30 nonionic surfactant which is a C13 to C15 alkanol which has been alkoxylated to introduce 6 ethyleneoxide and 3 propylene oxide units per alkanol unit is mixed with 32g of succinic anhydride and heated for 7 hours at 100°C. The mixture is 20 cooled and filtered to remove unreacted succinic material. Infrared analysis indicated that about one half of the nonionic surfactant has been converted to the acidic half-ester thereof.
Acid Terminated Dobanol 25-7. 522g of Dobanol 25-7 nonionic surfactant which is the product of ethoxylation of a C 12 to C15 alkar.ol and has about 7 ethyloneoxide units per molecule of alkanol is mixed with 100g of succinic anhydride and O.lg of pyridine (which acts as an esterification catalyst) and heated at 2600C for 2 hours, cooled and filtered to remove unreacted succinic material. Infrared analysis indicates that substantially all the free hydroxyls of ihe surfactant have reacted.
14 1 4 Acid Terminate Dobanol 91-5. 1000g of Dobanol 91-5 nonionic surfactant which is the product of ethoxylation of a C 9 to C11 alkanol and has about ethylene oxide units per molecule of alkanol is mixed with 265g of succinic anhydride and O.1g of pyridine catalyst and heated at 260 0 C for 2 hours, cooled and filtered to remove unreacted succinic material. Infrared analysis indicates that substantially all the free hydroxyls of the surfactant have reacted.
Other esterification catalysts, such as an alkali metal alkoxide (e.g.
sodium methoxide) may be used in place of, or in admixture with, the 1Q pyridine.
The acidic polyether compound, i.e. the acid terminated nonionic surfactant is preferably added dissolved in the nonionic surfactant.
SBUILDER SALTS I 'm The liquid nonaqueous nonionic surfactant used in the compositions of the present invention has dispersed and suspended therein fine particles of organic and/or inorganic detergent builder salts.
The present invention includes as an essential part of the composition an organic heptonate builder sIlt, an organic carboxymethyloxy succinate builder salt, or an organic alginate builder salt.
1 20 Organic Builder Salts Preferred organic builder salts comprise alkali metal salts of heptonic acid, preferably the sodium and potassium salts. Other monosaccharide acid salts that can be used are any monosaccharide acid salts with a longer chain. A specific example of monosaccharide acid salts is heptonic acid sodium salt.
Other preferred organic builder salts comprise alkali metal or ammonium salts of carboxymethyloxy succinic acid, preferably the trisodium salt.
The carboxymethyloxy succinic acid salts used in the detergent compositions of the present invention have the following general formula 2
MOOC-CH-COOM
CH3O-CH-COOM wherein M is a member selected from the group consisting of hydrogen, alkali metal and ammonium cation, and at least one M is an alkali metal or ammonium. The preferred alkali metals are sodium and potassium, with sodium being the more preferred. The mono, di and trisodium salts can be used, with the trisodium salt being the most preferred.
A specific example of carboxymethyloxy succinic acid salts that can be used is 0 Na-OOC-CH--COO-Na
CH
3 0-CH-COO-Na Still other preferred organic builder salts comprise alkali metal salts of alginic acid, preferably the sodium and potassium salts. The sodium alginate is a well known product, is readily available and has many known uses.
The sodium alginate is also known as sodium polymannuronate. The polymannuronic acid can have a molecular weight of approximately 240,000.
The alginic acid is extracted from giant brown sea weed (giant kelp Smacrocystis p rrifera Ag Lessoniaceae) in the form of mixed salts comprising calcium and magnesium alginic acid salts. The alginate salts can 20 also be extracted from horsetail kelp (Laminaria digitata Lamour, Laminariaceae) and sugar kelp (Taminaria saccharina Lamour). The calcium and magnesium salts of alginic acid are readily converted to alkali S* metal salts, particularly sodium alginate by methods well known in the art.
The sodium alginate is a cream colored powder which is soluble in water.
A specific example of alkali metal alginic acid salts that can be used is COOM COOM H p if H H 1 H OH OOM OOM OH M Na (Manutex RH) 16 In addition to the problem of settling or phase separation tne nonaqueous liquid laundry detergents based on liquid nonionic surfactants Other organic builders that can be used are polymers and copolymers of polyacrylic acid and polymaleic anhydride and the alkali metal salts thereof.
More specifically such builder salts can consist of a copolymer which is the reaction product of about equal moles of methacrylic acid and maleic anhydride which has been completely neutralized to form the sodium salt thereof. The builder is commercially available under the tradename of Sokalan CP5. This builder serves when used even in small amounts to inhibit encrustation, i.e. as an anti-encrustation agent.
Since the compositions of this invention are generally highly concentrated, and, therefore, may be used at relatively low dosages, it is desirable to supplement the builder with an auxiliary builder such as an alkali metal lower polycarboxylic acid having high calcium and magnesium binding capacity to inhibit incrustation which could otherwise be caused by f S. formation of insoluble calcium and magnesium salts. Suitable alkali metal o polycarboxylic acids are alkali metal salts of citric and tartaric acid, e.g.
monosodium citrate (anhydrous), trisodium citrate, glutaric acid salt, gluconic acid salt and diacid salt with longer chain.
O Example's of organic alkaline sequestrant builder salts which can be used with the heptonate builder salts, carboxymethyloxy succinnte builder 20 salts, or alkinate builder salts, or in admixture with other organic and inorganic builders are alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g. sodium and potassium ethylene Sdiaminetetraacetate (EDTA), sodium and potassium nitriloacetates (NTA) and triethanolammonium N-(2-hydroxyethyl)nitrilodiacetates. Mixed salts of these aminopolycarboxylates are also suitable. Other suitable builders of the organic type include carboxymethylsuccinates, tartranates and glycollates.
Inorganic Builder Salts The invention detergent compositions can also include inorganic water soluble and/or water insoluble detergent builder salts. Suitable inorganic 17 moiety end group of. the nonionic molecule. The' advantages ot introaucing a 4 alkaline builder salts that can be used are alkali metal carbonate, borates, bicarbonates, and silicates. (Ammonium or substituted ammonium salts can also be used.) Specific examples of such salts are sodium carbonate, sodium tetraborate, sodium bicarbonate, sodium sesquicarbonate and potassium bicarbonate.
The alkali metal silicates are useful builder salts which also function to adjust or control the pH and to make the composition anticorrosive to washing machine parts. Sodium silicates of Na20/SiO 2 ratios of from 1.6/1 to 1/3.2, especially about 1/2 to 1/2.8 are preferred. Potassium silicates of the same ratios can also be used.
Though it is preferred that the detergent composition be phosphate or 0 polyphosphate free or substantially polyphosphate free, small amounts of the S° conventional polyphosphate builder salts can be added where the local legislation permits such use. Specific examples of such builder salts are Ssodium tripolyphosphate (TPP), sodium pyrophosphate, potassium pyrophosphate, potassium tripolyphosphate and sodium hexametaphosphate.
The sodium tripolyphosphate (TPP) is a preferred polyphosphate. In the S formulations wlere the polyphosphate is added it is added in an amount of 0 to 50%, such as 0 to 30% and 5 to 15. As mentioned previously, however, it 20 is preferred that the formulations be polyphosphate free or substantially polyphosphate free.
Other typical suitable builders include, for example, those disclosed in S0 U. S. Patents 4,316,812, 4,264,466 and 3,630,929. The inorganic alkaline builder salts can be used with the nonionic surfactant detergent compound or in admixture with other organic or inorganic builder salts.
The water insoluble crystalline and amorphous aluminosilicate zeolites can be used. The zeolites generally have the formula (Al20 3 y (SiO 2 wherein x is 1, y is from 0.8 to 1.2 and preferably 1, z is from 1.5 to or higher and preferably 2 to 3 and w is from 0 to 9, preferably 2.5 to 6 18 Srsuccinic acid are water soluOle.
i and M is preferably sodium. A typical zeolite is type A or similar structure, with type 4A particularly preferred. The preferred aluminosilicates have calcium ion exchange capacities of about 200 milliequivalents per gram or greater, e.g. 400meq Ig.
Various crystalline zeolites alumino-silicates) that can be used are described in British Patent 1,504,168, U.S.P. 4,409,136 and Canadian Patents 1,072,835 and 1,087,477, all of which are hereby incorporated by Sreference for such descriptions. An example of amorphous zeolites useful herein can be found in Belgium Patent 835,351 and this patent too is incorporated herein by reference.
Other materials such as clays, particularly of the water-insoluble types, may be useful adjuncts in compositions of this invention. Particularly useful is bentonite. This material is primarily montmorillonite which is a hydrated aluminum silicate in which about 1/6th of the aluminum atoms may be replaced by magnesium atoms and with which varying amounts of hydrogen, sodium, potassium, calcium, etc., may be loosely combined. The bentonite in its more purified form free from any grit, sand, etc.) suitable for detergents contains at least 50% montmorillonite and thus its cation exchange capacity is at least about 50 to 75 meq per 100g of bentonite. Particularly 20 preferred bentonites are the Wyoming or Western U.S. bentonites which have been sold as Thixo-jels 1, 2, 3 and 4 by Georgia Kaolin Co. These bentonites are known to soften textiles as described in British Patent 401,413 to Marriott and British Patent 461,221 to Marriott and Dugan.
Viscosity Control and Anti Gel Agents The inclusion in the detergent composition of an effective amount of low molecular weight amphiphilic compounds which function as viscosity control and gel-inhibiting agents for the nonionic surfactant substantially improves the storage properties of the composition. The amphiphilic compounds can be considered to be analogous in chemical structure to the ethoxylated and/or propoxylated fatty alcohol liquid nonionic surfactants but have relatively short hydrocarbon chain lengths (C 2 to C 8 and a low content of ethylene oxide (about 2 to 6 ethylene oxide groups per molecule).
Suitable amphiphilic compounds can be represented by the following general formula
RO(CH
2
CH
2 O)nH where R is a C 2
-C
8 alkyl group, and n is a number of from about 1 to 6, on average.
Specifically the compounds are lower (C 2 to C 3 alkylene glycol mono lower (C 2 to C 5 alkyl ethers.
More specifically the compounds are mono di- or tri lower (C 2 to C) alkylene glycol mono lower to C 5 alkyl ethers.
Specific examples of suitable amphiphilic compounds include ethylene glycol monoethyl ether C 2
H
5
-O-CH
2 CH2OH, diethylene glycol monobutyl ether C 4
H
9
-O-(CH
2 CH 2
H,
r S l tetraethylene glycol monobutyl ether C 4 H -O-(CH 2
CH
2 0) 4 H and dipropylene glycol monomethyl ether CH 3
-O-(CH
2
CHO)
2 H. Diethylene
CH
3 a* C glycol monobut'yl ether is especially preferred.
The inclusion in the composition of the low molecular weight lower t 20 alkylene glycol mono alkyl ether decreases the viscosity of the composition, such that it is more easily pourable, improves the stability against settling and improves the dispersibility of the composition on the addition to warm Swater or cold water.
The compositions of the present invention have improved viscosity and stability characteristics and remain stable and pourable at temperatures as low as about 5 0 C and lower.
Stabilizing Agents In an embodiment of this invention the physical stability of the suspension of the detergent builder compound or compounds and any other suspended additive, such as bleaching agent, etc., in the liquid vehicle is
A
improved by the presence of a stabilizing agent which is an alkanol ester of phosphoric acid or an aluminum salt of a higher fatty acid.
Improvements in stability of the composition may be achieved in certain formulations by incorporation of a small effective amount of an acidic organic phosphorus compound having an acidic POH group, such as a partial ester of phosphorous acid and an alkanol.
As disclosed in the commonly assigned copending application Serial No.
597,948 filed April 9, 1984 the disclosure of which is incorporated herein by reference, the acidic organic phosphorous compound having an acidic POH group can increase the stability of the suspension of builders in the nonaqueous liquid nonionic surfactant.
S, The acidic organic phosphorus compound may be, for instance, a partial ester of phosphoric acid and an alcohol such as an alkanol which has a S lipophilic character, having, for instance, more than 5 carbon atoms, e.g. 8 to 20 carbon atoms.
A specific example is a partial ester of phosphoric acid and a C 1 6 to
C
1 8 alkanol (Empiphos 5632 from Marchon); it is made up of about monoester and 65% diester.
The inclusion of quite small amounts of the acidic organic phosphorus compound makes the suspension significantly more stable against settling on standing but remains pourable, while, for the low concentration of stabilizer, Sj e.g. below about its plastic viscosity will generally decrease.
Further improvements in the stability and anti-settling properties of the composition may be achieved by the addition of a small effective amount of an aluminum salt of a higher fatty acid to the composition.
The aluminum salt stabilizing agents are the subject matter of the commonly assigned copending application Serial No. 725,455, filed April 22, 1985, the disclosure of which is incorporated herein by reference.
The preferred higher aliphatic fatty acids will have from about 8 to about 22 carbon atoms, more preferably from about 10 to 20 carbon atoms, 21 m aa 00 Q a on nan.~
CQ
*0 a 0 0 a no 8 4t a 0 0 and especially preferably from about 12 to 18 carbon atoms. The aliphatic radical may be saturated or unsaturated and may be straight or branched.
As in the case of the nonionic surfactants, mixtures of fatty acids may also be used, such as those derived from natural sources, such as tallow fatty acid, coco fatty acid, etc.
Examples of the fatty acids from which the aluminum salt stabilizers can be formed include, decanoic acid, dodecanoic acid, palmitic acid, myristic acid, stearic acid, oleic acid, eicosanoic acid, tallow fatty acid, coco fatty acid, mixtures of these acids, etc. The aluminum salts of these acids are g0 generally commercially available, and are preferably used in the triacid form, e.g. aluminum stearate as aluminum tristearate Al(C 1 7
H
3 5
COO)
3 The monoacid salts, e.g. aluminum monostearate, Al(OH) 2 (C17H 3 5 COO) and diacid salts, e.g. aluminum distearate, Al(OH)(C 1 7
H
3 5
COO)
2 and mixtures of two or three of the mono-, di- and triacid aluminum salts can also be used. It is most preferred, however, that the triacid aluminum salt comprises at least 30%, preferably at least 50%, especially preferably at least of the total amount of aluminum fatty acid salt.
The aluninum salts, as mentioned above, are commercialy available and can be easily produced by, for example, saponifying a fatty acid, e.g.
animal fat, stearic acid, etc., followed by treatment of the resulting soap with alum, alumina, etc.
Although applicants do not wish to be bound by any particular theory of the manner by which the aluminum salt functions to prevent settling of the suspended particles, it is presumed that the aluminum salt increases the wettability of the solid surfaces by the nonionic surfactant. This increase in wettability, therefore, allows the suspended particles to more easily remain in suspension.
Only very small amounts of the aluminum salt stabilizing agent is required to obtain the significant improvements in physical stability.
length of the hydrophilic or polyoxy ethylene chain can be readily adjusted In addition to its action as a physical stabilizing agent, the aluminum salt has the additional advantages over other physical stabilizing agents that it is non-ionic in character and is compatible with the nonionic surfactant component and does not interfere with the overall detergency of the composition; it exhibits some anti-foaming effect; it can function to boost the activity of fabric softeners, and it confers a longer relaxation time to the suspensions.
Bleaching Agents The bleaching agents are classified broadly, for convenience, as gO chlorine bleaches and oxygen bleaches. Chlorine bleaches are typified by sodium hypochlorite (NaOC1), potassium dichloroisocyanurate (59% available chlorine), and trichloroisocyanuric acid (95% available chlorine). Oxygen o bleaches are preferred and are represented by percompounds which liberate hydrogen peroxide in solution. Preferred examples include sodium and potassium perborates, percarbonates, and perphosphates, and potassium monopersulfate. The perborates, particularly sodium perborate monohydrate, are especially preferred.
The perox'ygen compound is preferably used in admixture with an o 44 activator therefor. Suitable activators which can lower the effective 20Q operating temperature of the peroxide bleaching agent are disclosed, for example, in U.S.P. 4,264,466 or in column 1 of U.S.P. 4,430,244, the oBu^ relevant disclosures of which are incorporated herein by reference.
o Polyacetylated compounds are preferred activators; among these, compounds such as tetraacetyl ethylene diamine ("TAED") and pentaacetyl glucose are particularly preferred.
Other useful activators include, for example, acetylsalicylic acid derivatives, ethylidene benzoate acetate and its salts, ethylidene carboxylate acetate and its salts, alkyl and alkenyl succinic anhydride, tetraacetylglycouril and the derivatives of these. Other useful 23 ,Io Al LI C I ,I.niaL u u L UUL WILl l 1 i I I JL VL AAU 11111 reacjed.
classes of activators are disclosed, for example, in U.S.P. 4,111,826, 4,422,950 and 3,661,789.
The bleach activator usually interacts with the peroxygen compound to form a peroxyacid bleaching agent in the wash water. It is preferred to include a sequestering agent of high complexing power to inhibit any undesired reaction between such peroxyacid and hydrogen peroxide in the wash solution in the presence of metal ions.
Suitable sequestering agents for this purpose include sodium salts of nitrilotriacetic acid (NTA), ethylene diamine tetraacetic acid (EDTA), diethylene triamine pentaacetic acid (DETPA), diethylene triamine pentamethylene phosphonic acid (DTPMP) sold under the tradename Dequest 2066; and ethylene diamine tetramethylene phosphonic acid (EDITEMPA).
The sequestering agents can be used alone or in admixture.
fT In order to avoid loss of peroxide bleaching agent, e.g. sodium i t perborate, resulting from enzyme-induced decomposition, such as by catalase enzyme, the compositions may additionally include an enzyme inhibitor compound, i.e. a compound capable of inhibiting enzyme-induced decomposition 6f the peroxide bleaching agent. Suitable inhibitor compounds are disclosed in U.S.P. 3,606,990, the relevant disclosure of which is incorporated herein by reference.
Of special interest as the inhibitor compound, mention can be made of hydroxylamine sulfate and other water-soluble hydroxylamine salts. In the S* preferred nonaqueous compositions of this invention, suitable amounts of the hydroxylamine salt inhibitors can be as low as about 0.01 to 0.4%.
Generally, however, suitable amounts of enzyme inhibitors are up to about for example, 0.1 to 10%, by weight of the composition.
In addition to the detergent builders, various other detergent additives or adjuvants may be present in the detergent product to give it additional desired properties, either of functional or aesthetic nature. Thus, there 3p may be included in the formulation, minor amounts of scil suspending or.
or limited in quantity in the present compositions, although minor 11 anti-redeposition agents, e.g. polyvinyl alcohol, fatty amides, sodium carboxymethyl cellulose, hydroxy-propyl methyl cellulose. A preferred anti-redeposition agent is sodium carboxymethyl cellulose having a 2:1 ratio of CM/MC which is sold under the tradename Relatin DM 4050.
Optical brighteners for cotton, polyamide and polyester fabrics can be used. Suitable optical brighteners include stilbene, triazole and benzidine sulfone compositions, especially sulfonated substituted triazinyl stilbene, sulfonated naphthotriazole stilbene, benzidene sulfone, etc., most preferred are stilbene and triazole combinations. Preferred brighteners are stilbene fg Brightener N4 which is a dimorpholino dianilino stilbene sulfonate and Tinapal ATS-X which are well known in the art.
Enzymes, preferably proteolytic enzymes, such as subtilisin, bromelin, v papain, trypsin and pepsin, as well as amylase type enzymes, lipase type i 4 enzymes, and mixtures thereof can be used. Preferred enzymes include protease slurry, esperase slurry and amylase. A preferred enzyme is Esperase SL8 which is a protease. Anti-foam agents, e.g. silicon compounds, such as Silicane L 7604 can also be added in small effective amounts.
Bactericides, e.g. tetrachlorosalicylanilide and hexachlorophene, Sfungicides, dyes, pigments (water dispersible), preservatives, ultraviolet absorbers, anti-yellowing agents, such as sodium carboxymethyl cellulose, pH modifiers and pH buffers, color safe bleaches, perfume, and dyes and 44 41 I bluing agents such as ultramarine blue can be used.
The composition may also contain an inorganic insoluble thickening agent or dispersant of very high surface area such as finely divided silica of extremely fine particle size of 5-100 millimicrons diameters such as sold under the name Aerosil) or the other highly voluminous inorganic carrier materials disclosed in U.S.P. 3,630,929, in proportions of 0.1-10%, e.g. 1 to It is preferable, however, that compositions which form peroxyacids in 3Q the wash bath compositions containing peroxygen compound and found that it is only rarely necessary to utilize the higher molecular weight activator therefor) be substantially free of such compounds and of other silicates; it has been found, for instance, that silica and silicates promote the undesired decomposition of the peroxyacid.
In an embodiment of the invention the stability of the builder salts in the composition during storage and the dispersibility of the composition in water is improved by grinding and reducing the particle size of the solid builders to less than 100 microns, preferably less than 40 microns and more preferably to less than 10 microns. The solid builders, e.g. alkali metal polyphosphates, are generally supplied in particle sizes of about 100, 200 or 400 microns. The nonionic liquid surfactant phase can be mixed with the solid builders prior to or after carrying out the grinding operation.
In a preferred embodiment of the invention, the mixture of liquid nonionic surfactant and solid ingredients is subjected to an attrition type of mill in which the particle sizes of the solid ingredients are reduced to less
I
t f I than about 10 microns, e.g. to an average particle size of 2 to 10 microns or t it even lower 1 micron). Preferably less than about 10%, especially less than about 5% of all the suspended particles have particle sizes greater than microns. Compositions whose dispersed particles are of such small size have improved stability against separation or settling on storage. Addition of the acid terminated nonionic surfactant compound aids in the dispersibility of the dispersions without a corresponding decrease in the dispersions stability against settling.
In the grinding operation, it is preferred that the proportion of solid ingredients be high enough at least about 40% such as about 50%) that the solid particles are in contact with each other and are not substantially shielded from one another by the nonionic surfactant liquid. After the grinding step any remaining liquid nonionic surfactant can be added to the ground formulation. Mills which employ grinding balls (ball mills) or similar mobile grinding elements have given very good results. Thus, one may use a laboratory batch attritor having 8 mm diameter steatite grinding balls. For 26 larger scale work a continuously operating mill in which there are 1 mm or mm diameter grinding balls working in a very small gap between a stator and a rotor operating at a relatively high speed a CoBall mill) may be employed; when using such a mill, it is desirable to pass the blend of nonionic surfactant and solids first through a mill which does not effect such fine grinding a colloid mill) to reduce the particle size to less than 100 microns to about 40 microns) prior to the step of grinding to an average particle diameter below about 10 microns in the continuous ball mill.
In the preferred heavy duty liquid laundry detergent compositions of the invention, typical proportions (percent based on the total weight of composition, unless otherwise specified) of the ingredients are as follows: Liquid nonionic surfactant detergent in the range of about 10 or 20 to such as 20 or 25 to 50 and 30 to 40 percent.
Acid terminated nonionic surfactant may be omitted, it is preferred however that it be added to the composition in an amount in the range of about 0 to 30, such as 5 to 25 and 5 to 15 percent; carboxymethyloxy succinic acid builder salt in the range of about 5 to 50, such as 10 to and 25 to 35 percent; or alginate acid builder salt in the range of about 5 to r 50, such as 10 to 40 and 25 to 35 percent.
20 Heptonate acid builder salt, carboxymethyloxy succinic acid builder salt tilt or alginic acid builder salt in the range of about 5 to 50, such as 10 to ciff and 25 to 35 percent.
Polyphosphate detergent builder salt in the range of about 0 to percent, such as 0 to 30 and 5 to 15 percent.
Copolymer of polyacrylate and polymaleic anhydride alkali metal salt anti encrustation agent in the range of about 0 to 10, such as 2 to 8 and 2 to 6 percent.
Alkylene glycol monoalkylether anti-gel agent in an amount in the range of about 0 to 20, such as 5 to 15 and 8 to 12 percent.
I
Phosphoric acid alkanol ester stabilizing agent in the range of 0 to or 0.1 to 1.0, such as 0.10 to 0.5 percent.
Aluminum salt of fatty acid stabilizing agent in the range of about 0 to such as 0.1 to 2.0 and 0.5 to 1.5 percent.
It is preferred that at least one of phosphoric acid ester or aluminum salt stabilizing agents be included in the composition.
Bleaching agent in the range of about 0 to 35, such as 5 to 30 and 8 to percent.
Bleach activator in the range of about 0 to 25, such as 3 to 20 and 4 to 8 percent.
Sequestering agent for bleach in the range of about 0 to preferably 0.5 to 2.0 and 0.5 to 1.5 percent.
Anti-redeposition agent in the range of about 0 to 3.0, such as 0.5 to and to 1.5 percent.
Optical brightener in the range of about 0 to 2.0, such as 0.1 to and 0.3 to 1.0 percent.
Enzymes in the range of about 0 to 3.0, such as 0.5 to 2.0 and 0.5 to percent.
Perfume in the range of about 0 to 2.0, such as 0.10 to 1.0 and 0.5 to 1.0 percent.
Dye in the range of about 0 to 1.0, such as 0.0025 to 0.050 and 0.25 to 0.0100 percent.
Various of the previously mentioned additives can optionally be added to achieve the desired function of the added materials.
Mixtures of the acid terminated nonionic surfactant and the alkylene glycol alkyl ether anti-gel agents can be used and in some cases advantages can be obtained by the use of such mixtures alone, or with the addition to the mixture of a stabilizing and anti settling agent, e.g. phosphoric acid alkanol ester.
28
I'
t tt
I
*1 tt
I'A
IIb .4 In the selection of the additives, they will be chosen to be compatible with the main constituents of the detergent composition. In this application, as mentioned above, all proportions and percentages are by weight of the entire formulation or composition unless otherwise indicated.
The concentrated nonaqueous nonionic liquid detergent composition of the present invention dispenses readily in the water in the washing machine.
The presently used home washing machines normally use about 175 grams or 250 grams of powder detergent to wash a full load of laundry. In accordance with the present invention only about 77 ml or about 100 grams of the concentrated liquid nonionic detergent composition is needed.
In a preferred embodiment of the invention the detergent composition of a typical formulation is formulated using the below named ingredients: Weight Nonionic surfactant detergent. 30-40 Acid terminated surfactant. 5-15 Alkali metal heptonic acid builder salt; alkali metal carboxymethyloxy succinic acid builder salt; or alkali metal alginic acid builder salt. 25-35 Anti-encrust'ation agent (Sokalan CP-5). 0-10 Polyphosphate builder salt. 0-30 Alkylene glycol monoalkyl ether. 8-12 Alkanol phosphoric acid ester (Empiphos 5632). 0.1-0.5 Anti-redeposition agent (Relatine DM 4050) 0-3.0 Alkali metal perborate bleaching agent. 8-15 Bleach activator (TAED). 4-8 Sequestering agent (Dequest 2066). 0-3.0 Optical brightener (ATS-X). 0.05 or 0.3-1.0 Enzymes (Protease-Esperase SL8). 0.5-1.5 Perfume. 0.5-1.0 The present invention is further illustrated by the following examples.
29 Iil i II ii I
I*
I
I I S I Sodium Salt of Heptonic Acid EXAMPLE 1 A concentrated nonaqueous liquid nonionic surfactant detergent composition is formulated from the following ingredients in the amounts specified.
Weight A mixture of C 1 3
-C.
5 fatty alcohol condensed with 7 moles of propylene oxide an5 4 moles ethylene oxide and C -C 1 5 fatty alcohol condensed with 5 moles propylene oxide ana 10 moles 1g ethylene oxide.
Surfactant T 7.
Surfactant T 9.
Acid terminated Dobanol 91-5 reaction product with succinic anhydride.
13.5 10.0 10.0 44 r 1(4 4, ft 41 4 4 1 4, 4 14: 14*4 4 4 If I I ii 44 4 :It4 I 44 4 4444 4 II 449 4 44 44C 44i 4 444 20 Sodium salt of heptonic acid. 28.7 Diethylene glycol monobutyl ether. 10.0 Alkanol phosphoric acid ester (Empiphos 5632). 0.3 Anti-encrustation agent (Sokalan CP-5). Sodium perborate monohydrate bleaching agent. Sodium carborlate. 0.9 Tetraacetylethylene diamine (TAED) bleach activator. Sequestering agent (Dequest 2066). Optical brightener (Tinopal ATS-X). Anti-redeposition agent (Relatin DM 4050). Esperase slurry (Esperase SL8). Perfume. 0.5925 Dye .0075 The formulation is ground for about 1 hour to reduce the particle size of the suspended builder salts to less than 40 microns. The formulated detergent composition is found to be stable and non-gelling in storage and to have a high detergent capacity.
0 4 A 1 The formulation exhibits yield stress of 5.0 P.a. and an apparent viscosity of 1.1 P.a. S-1.
EXAMPLE 2 In order to demonstrate the effect on encrustation of the substitution of sodium polyphosphate by an equivalent detergent builder amount of sodium heptonate, the detergent composition formulation of Example 1 containing 28.7% by weight of sodium heptonate was compared in laundry washing machine use with the same composition in which the sodium heptonate was replaced with 28.7% by weight of sodium polyphosphate.
The wash cycles were carried out at concentrations of the sodium heptonate and sodium polyphosphate detergent compositions at laundry wash water concentrations of each of the detergent compobitions of 1 to 9 gm/liter of the respective detergent compositions.
After 6 wash cycles of each detergent composition was used in a washing machine the amount of encrustation that resulted, i.e. the percent ash deposited was measured. The percent ash deposited measurement is determined by calcination of wash swatches.
The results observed are reported in the graph illustrated in the Figure 1 drawing and show that at detergent composition concentrations of 1 to 5 g/l of wash water the sodium heptonate is substantially better than sodium polyphosphate in preventing encrustation or ash deposit. At detergent composition concentrations of about 5 to 9 g/l of wash water the behavior of sodium heptonate and sodium polyphosphate detergent builder salts are about the same in their anti-encrustation properties.
EXAMPLE 3 In order to demonstrate the effect on encrustation buildup of the substitution of sodium polyphosphate by an equivalent detergent builder amount of sodium heptonate, the detergent composition of Example 1 containing 28.7 percent by weight of sodium heptonate was compared in repeated laundry wash machine wash cycles with the same composition in
I
4l 4
I
44 4< 44r *4 .4 04 4 9 4' 4 4' 4 I -Y 1 ly LJ LU Ei p11u wL L' L a 1 1 1U V b, 1. V which the sodium heptonate was replaced with 28.7 percent by weight of sodium polyphosphate.
The repeated wash cycles were carried out at 5 g/l wash water concentrations of each of the detergent compositions for twelve washing cycles. The encrustation buildup, i.e. percent ash buildup was measured in each washing machine after 3, 6, 9 and 12 washings.
The results of encrustation buildup obtained is reported in the graph illustrated in the Figure 2 drawing. As far as the encrustation buildup is concerned, no buildup was observed with the sodium heptonate, whereas a I0 small buildup was observed with the sodium polyphosphate detergent builder salt.
The alkali metal heptonate detergent replace all or part of the polyphosphate compositions, and in aqueous and cream effect.
builder salts can also be used to builder salts in powder detergent detergent compositions with good 4' Ut ii 41 41 pr 4 @4 4 4 I I 4 4 U I 4..
#4 p~ o p. #4*
'I
Trisodium Salt of Carboxymethyloxy Succinic Acid EXAMPLE 4 A conctntrated nonaqueous liquid nonionic surfactant detergent composition is formulated from the following ingredients in the amounts specified.
Weight A mixture of C -C fatty alcohol condensed with 7 moles of propylene oxide an5 4 moles ethylene oxide and C -C15 fatty alcohol condensed with 5 moles propylene oxide ana 10 moles ethylene oxide.
Surfactant T 7.
Surfactant T 9.
Acid terminated Dobanol 91-5 reaction product with succinic anhydride.
Trisodium salt of carboxymethyloxy succinic acid.
Diethylene glycol monobutyl ether.
Alkanol phosphoric acid ester (Empiphos 5632).
13.5 10.0 10.0 29.6 10.0 0.3 32 3) and/or propoxylated fatty alcohol liquid nonionic surfactants but have Anti-encrustation agent (Sokalan CP-5). Sodium perborate monohydrate bleaching agent. Tetraacetylethylene diamine (TAED) bleach activator. Sequestering agent (Dequest 2066). Optical brightener (Tinopal ATS-X). Anti-redeposition agent (Relatin DM 4050). Esperase slurry (Esperase SL8). Perfume. 0.5925 Dye .0075 |q The formulation is ground for about 1 hour to reduce the particle size of the suspended builder salts to less than 40 microns. The formulated detergent composition is found to be stable and non-gelling in storage and to have a high detergent capacity.
The formulation exhibits a yield stress of 7.5 P.a. and an apparent viscosity of 0.4 P.a. S-1.
EXAMPLE In order to'demonstrate the effect on encrustation of the substitution of S. sodium tripolyphosphate by an equivalent detergent builder amount of trisodium carboxymethyloxy succinate, the detergent composition formulation S 20 of Example 4 containing 29.6% by weight of trisodium carboxymethyloxy succinate was compared in laundry washing machine use with the same composition in which the trisodium carboxymethyloxy succinate was replaced S:r with 29.6% by weight of sodium tripolyphosphate.
The wash cycles were carried out at concentrations of the trisodium carboxymethyloxy succinate and sodium tripolyphosphate detergent compositions at laundry wash water concentrations of each of the detergent compositions of 1 to 9 gm/liter of the respective detergent compositions.
After each detergent composition was used in a washing machine the amount of encrustation that resulted, i.e. the percent ash deposited was 1 measured. The percent ash deposited measurement is determined by calcination of washed swatches.
The results observed are reported in the graph illustrated in the Figure 3 drawing and show that at detergent composition concentrations of 1 to 5 g1l of wash water the trisodium carboxymethyloxy succinate is substantially better than sodium tripolyphosphate in preventing encrustation or ash deposit. At detergent composition concentrations of about 5 to 9 g/1 of wash water the behavior of trisodium carboxymethyloxy succinate and sodium tripolyphosphate detergent builder salts are about the same in their Santi-encrustation properties.
EXAMPLE 6 In order to demonstrate the effect on encrustation buildup of the substitution of sodium tripolyphosphate by an equivalent detergent builder amount of trisodium carboxymethyloxy succinate, the detergent composition of Example 4 containing 29.6 percent by weight of trisodium carboxymethyloxy succinate was compared in repeated laundry wash machine wash cycles with the same composition in which the trisodium carboxymethyloxy succinate was replaced with 29.6 percent by weight of sodium tripolyphosphate.
The repeated wash cycles were carried out at 5 g/l wash water 20 concentrations of each of the detergent compositions for twelve washing *0ou So, cycles. The encrustation buildup, i.e. percent ash buildup was measured in each washing machine after 3, 6, 9 and 12 washings.
So** The results of encrustation buildup obtained is reported in the graph illustrated in the Figure 4 drawing. As far as the encrustation buildup is 0c coerned, no buildup was observed with the trisodium carboxymethyloxy oo succinate, whereas a small buildup was observed with the sodium tripolyphosphate detergent builder salt.
O 0 The alkali metal carboxymethyloxy succinate detergent builder salts can S0 also be used to replace all or part of the polyphosphate builder salts in powder detergent compositions, and in aqueous and cream detergent compositions with good effect.
1 Sodium Salt of Alginic Acid EXAMPLE 7 A concentrated nonaqueous liquid nonionic surfactant detergent composition is formulated from the following ingredients in the amounts 'specified.
Weight A mixture of C 1 3
-C
1 5 fatty alcohol condensed with 7 moles of propylene oxide and 4 moles ethylene oxide and C -C 1 5 fatty alcohol condensed with 5 moles propylene oxide an 10 moles ethylene oxide.
Surfactant T 7.
Surfactant T 9.
Acid terminated Dobanol 91-5 reaction product with succinic anhydride.
13.5 10.0 10.0 94 *r i 4 r C 44ll 42 r 4 4 Sodium salt of alginic acid. 29.6 Diethylene glycol monobutyl ether. 10.0 Alkanol phosphoric acid ester (Empiphos 5632). 0.3 Anti-encrustation agent (Sokalan CP-5). Sodium perborate monohydrate bleaching agent. 20 Tetraacetylethylene diamine (TAED) bleach activator. Sequestering agent (Dequest 2066). Optical brightener (Tinopal ATS-X). Anti-redeposition agent (Relatin DM 4050). Protease (Esperase SL8). Perfume. 0.5925 Dye .0075 100. U0 The formulation is ground for about 1 hour to reduce the particle size of the suspended builder salts to less than 40 microns. The formulated detergent composition is found to be stable and non-gelling in storage and to 30 have a high detergent capacity.
The formulation exhibits a yield stress of 4.7 P.a. and an apparent viscosity of 0.46 P.a. S-1.
EXAMPLE 8 In order to demonstrate the effect on encrustation of the substitution of sodium tripolyphosphate by an equivalent detergent builder amount of sodium alginate, the detergent composition formulation of Example 7 containing 29.6% by weight of sodium alginate was compared in laundry washing machine use with the same composition in which the sodium alginate was replaced with 29.6% by weight of sodium tripolyphosphate.
The wash cycles were carried out at concentrations of the sodium alginate and sodium tripolyphosphate detergent compositions at laundry wash Swater concentrations of each of the detergent compositions of 1 to 9 gm/liter of the respective detergent compositions.
After each detergent composition was used in a washing machine the amount of encrustation that resulted, i.e. the percent ash deposited was measured. The percent ash deposited measurement is determined by calcination of washed swatches.
The res'ults observed are reported in the graph illustrated in the Figure 5 drawing and show that at detergent composition concentrations of 1 to 5 g/l of wash water the sodium alginate is substantially better than S* sodium tripolyphosphate in preventing encrustation or ash deposit. At 20 detergent composition concentrations of about 5 to 9 g/l of wash water the behavior of sodium alginate and sodium tripolyphosphate detergent builder salts are about the same in their anti-encrustation properties.
EXAMPLE 9 e In order to demonstrate the effect on encrustation buildup of the substitution of sodium tripolyphosphate by an equivalent detergent builder 00 S amount of sodium alginate, the detergent composition of Example 7 containing 29.6 percent by weight of sodium alginate was compared in repeated laundry 0"""00 wash machine wash cycles with the same composition in which the sodium Go 0o 0 alginate was replaced with 29.6 percent by weight of sodium tripolyphosphate.
B:
~I
The repeated wash cycles were carried out at 5 g/l wash water concentrations of each of the detergent compositions for twelve washing cycles. The encrustation buildup, i.e. percent ash buildup was measured in each washing machine after 3, 6, 9 and 12 washings.
The results of encrustation buildup obtained is reported in the graph illustrated in the Figure 6 drawing. As far as the encrustation buildup is concerned, substantially no buildup was observed with the sodium alginate, whereas a small buildup was observed with the sodium tripolyphosphate detergent builder salt.
,IQ The alkali metal alginate detergent builder salts can also be used to replace all or part of the polyphosphate builder salts in powder detergent compositions, and in aqueous and cream detergent compositions with good effect.
The formulations of Examples 1, 4 and 7 can be prepared without grinding the builder salts and suspended solid particles to a small particle size, but best results are obtained by grinding the formulation to reduce the particle size of the suspended solid particles.
The builder salts can be used as provided, or the builder salts and suspended solid particles can be ground or partially ground prior to mixing them with the nonionic surfactant. The grinding can be carried out in part prior to mixing and grinding completed after mixing or the entire grinding operation can be carried out after mixing with the liquid surfactant. The I formulations contain suspended builder and solid particles less than 100 microns or preferably less than 40 microns in size.
It is understood that the foregoing detailed description is given merely by way of illustration and that variations may be made therein without departing from the spirit of the invention.
6 4li3 I t 37
Claims (10)
1. A stable, non-settling and non-gelling. nonaqueous liquid heavy duty laundry detergent composition which comprises at least one liquid nonionic surfactant detergent and an alkali metal heptonic acid, a carboxymethyloxy succinate, or an alkali metal alginic acid builder salt.
2. The detergent composition of claim 1 comprising at least one of the members of the group consisting of an acid terminated nonionic surfactant anti-gel agent, t• an alkylene glycol mono ether and an alkanol phosphoric acid ester stabilizing agent.
3. The detergent composition of claim 1 comprising 5 to percent of an alkali metal heptonic acid, a carboxymethyloxy succinate, or an alkali metal alginic acid detergent builder salt.
4. The laundry detergent composition of claim 1 which is polyphosphate free or low polyphosphate and which comprises at least one liquid nonionic surfactant in an amount of 25 to I' an acid terminated nonionic surfactant in an amount of 5 to an alkali metal heptonic acid, a carboxymethyloxy t succinate, or an alkali metal alginic acid builder salt in an amount of 10 to an alkalene glycol mono-ether in an amount of 5 to a polyphosphate detergent builder in an amount of 0 to 30%, and an alkanol phosphoric acid ester in an amount of 0.1 to 7Q ~'T 'rTO Sa laboratory batch attritor having 8 mm diame LU 26 39 The laundry detergent composition of claim 4 comprising an alkali metal perborate monohydrate bleaching agent in an amount of 5 to tetraacetylethylene diamine bleach activator in an amount of 3 to 20%, and optionally one or more detergent adjuvants selected from the group consisting of anti-encrustation agent, anti-redeposition agent, sequestering agent for the bleach, optical brighteners, enzymes and perfume.
6. The detergent composition of claim 4 wherein the i alkali metal salt of heptonic acid has the formula (H-C-OH) O=C-ONa Sthe carboxymethyloxy succinate has the formula NaOOC-CH-COONa and the alkali metal alginic acid salt is the sodium S, salt of alginic acid.
7. The laundry detergent composition of claim 4 where the alkanol phosphoric acid ester comprises a C 1 6 to C 18 alkanol ester of phosphoric acid. S.it 8. The detergent composition of claim 4 which comprises a polyphosphate builder salt in an amount of 5 to S, percent. nt9. A phosphate detergent builder free nonaqueous liquid \I heavy duty laundry detergent composition which comprises Nonionic surfactant in an amount of 30-40% Acid terminated nonionic surfactant in an amount of 5-15% Sodium salt of heptonic acid in an amount of 25-35% Alkylene glycol monobutyl ether in an amount of 8-12% IIIY~-'UPL LLrY'i"Y I~IEnli i 10 C 1 6 to C 1 8 alkanol ester of phosphoric acid in an amount of 0.1-0.5% Sodium perborate monohydrate bleaching agent in an amount of 8-15% Tetraacetylethylene diamine (TAED) bleach activator in an amount of 4-8%. A phosphate detergent builder free nonaqueous liquid heavy duty laundry detergent composition which comprises Nonionic surfactant in an amount of 30-40% Acid terminated nonionic surfactant in an amount of 5-15% Trisodium salt of carboxymethyloxy succinic acid Sin an amount of 25-35% t It¢ Alkylene glycol monobutyl ether in an amount of 8-12% C16 to C 1 8 alkanol ester of phosphoric acid in an amount of 0.1-0.5% e Sodium perborate monohydrate bleaching agent in an e we amount of 8-15% Tetraacetylethylene diamine (TAED) bleach activator in an amount of 4-8%.
11. A phosphate detergent builder free nonaqueous liquid heavy duty laundry detergent composition which comprises ,i Nonionic surfactant in an amount of 30-40% Acid terminated nonionic surfactant in an amount of 5-15% r Sodium salt of alginic acid in an amount of 25-35% Alkylene glycol monobutyl ether in an amount of 8-12% C 1 6 to C 1 8 alkanol ester of phosphoric acid in an amount of 0.1-0.5% SSodium perborate monohydrate bleaching agent in an amount of 8-15% Tetraacetylethylene diamine (TAED) bleach activator in an amount of 4-8%.
12. A method for cleaning soiled fabrics which comprises contacting the soiled fabrics with the laundry detergent L^ ii 1 28 i 41 composition of claim 9,
13. A method for cleaning soiled fabrics which comprises contacting the soiled fabrics with the laundry detergent composition of claim
14. A method for cleaning soiled fabrics which comprises contacting the soiled fabrics with the laundry detergent composition of claim 11. DATED this 8th day of December 1989 COLGATE-PALMOLIVE COMPANY Patent Attorneys for the Applicant: SF.B. RICE CO. t f
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/762,167 US4781856A (en) | 1985-08-05 | 1985-08-05 | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use |
US762162 | 1985-08-05 | ||
US762167 | 1985-08-05 | ||
US06/762,163 US4647393A (en) | 1985-08-05 | 1985-08-05 | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use |
US06/762,162 US4891148A (en) | 1985-08-05 | 1985-08-05 | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent comopsition and method of use |
US762163 | 1985-08-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
AU6073786A AU6073786A (en) | 1987-02-12 |
AU594070B2 true AU594070B2 (en) | 1990-03-01 |
Family
ID=27419552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU60737/86A Ceased AU594070B2 (en) | 1985-08-05 | 1986-07-31 | Low phosphate or phosphate free laundry detergent |
Country Status (23)
Country | Link |
---|---|
KR (1) | KR940010115B1 (en) |
AT (1) | ATA205386A (en) |
AU (1) | AU594070B2 (en) |
BE (1) | BE905216A (en) |
BR (1) | BR8603675A (en) |
CH (1) | CH669957A5 (en) |
DE (1) | DE3625256A1 (en) |
DK (1) | DK373186A (en) |
ES (1) | ES2000223A6 (en) |
FR (3) | FR2585719B1 (en) |
GB (2) | GB2178753B (en) |
GR (1) | GR862057B (en) |
IL (1) | IL79615A0 (en) |
IN (1) | IN166313B (en) |
IT (1) | IT1196565B (en) |
LU (1) | LU86545A1 (en) |
MX (1) | MX164111B (en) |
NL (1) | NL8601998A (en) |
NO (1) | NO863142L (en) |
NZ (1) | NZ216983A (en) |
PT (1) | PT83120B (en) |
SE (3) | SE8603264L (en) |
ZW (1) | ZW14986A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8625974D0 (en) * | 1986-10-30 | 1986-12-03 | Unilever Plc | Non-aqueous liquid detergent |
DE3818626A1 (en) * | 1988-06-01 | 1989-12-14 | Huels Chemische Werke Ag | CONCENTRATED PUMPABLE POLYETHERCARBOXYLATE |
US4884524A (en) * | 1988-10-20 | 1989-12-05 | Minotti Peter L | Vehicle distress signal |
ES2098909T3 (en) * | 1992-12-03 | 1997-05-01 | Unilever Nv | LIQUID CLEANING PRODUCTS. |
DE69427137T2 (en) * | 1993-07-19 | 2001-08-16 | Unilever N.V., Rotterdam | Liquid cleaning products |
WO1996010073A1 (en) * | 1994-09-26 | 1996-04-04 | The Procter & Gamble Company | Nonaqueous bleach-containing liquid detergent compositions |
WO2001021536A1 (en) | 1999-09-23 | 2001-03-29 | Reckitt Benckiser (Uk) Limited | Method for combating hard water and scale by using algins |
CN1223525C (en) | 2000-09-01 | 2005-10-19 | 雷克特本克斯尔(英国)有限公司 | Cleaning method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635830A (en) * | 1968-05-24 | 1972-01-18 | Lever Brothers Ltd | Detergent compositions containing oxydisuccing acid salts as builders |
GB1309092A (en) * | 1969-12-23 | 1973-03-07 | Pyrene Chemical Services Ltd | Process of and materials for cleaning the paintwork of road vehicles |
GB1398263A (en) * | 1971-08-17 | 1975-06-18 | Unilever Ltd | Detergent compositions |
EP0028849B1 (en) * | 1979-11-09 | 1983-09-28 | Unilever N.V. | Non-aqueous, built liquid detergent composition and method for preparing same |
GB2134132A (en) * | 1983-01-14 | 1984-08-08 | Unilever Plc | Vehicle cleaning compositions |
US4753750A (en) * | 1984-12-31 | 1988-06-28 | Delaware | Liquid laundry detergent composition and method of use |
EP0189225A2 (en) * | 1985-01-22 | 1986-07-30 | The Procter & Gamble Company | Built liquid detergent containing anionic, ethoxylated nonionic and amide surfactants |
DE3689385T2 (en) * | 1985-04-15 | 1994-05-19 | Procter & Gamble | Stable liquid detergent. |
-
1986
- 1986-07-24 IN IN673/DEL/86A patent/IN166313B/en unknown
- 1986-07-25 DE DE19863625256 patent/DE3625256A1/en not_active Withdrawn
- 1986-07-25 NZ NZ216983A patent/NZ216983A/en unknown
- 1986-07-28 FR FR868610918A patent/FR2585719B1/en not_active Expired
- 1986-07-28 MX MX3283A patent/MX164111B/en unknown
- 1986-07-30 AT AT0205386A patent/ATA205386A/en not_active IP Right Cessation
- 1986-07-30 CH CH3085/86A patent/CH669957A5/de not_active IP Right Cessation
- 1986-07-31 SE SE8603264A patent/SE8603264L/en not_active Application Discontinuation
- 1986-07-31 ZW ZW149/86A patent/ZW14986A1/en unknown
- 1986-07-31 AU AU60737/86A patent/AU594070B2/en not_active Ceased
- 1986-08-01 PT PT83120A patent/PT83120B/en unknown
- 1986-08-01 GB GB8618856A patent/GB2178753B/en not_active Expired
- 1986-08-04 GR GR862057A patent/GR862057B/en unknown
- 1986-08-04 BE BE0/217007A patent/BE905216A/en not_active IP Right Cessation
- 1986-08-04 BR BR8603675A patent/BR8603675A/en unknown
- 1986-08-04 KR KR1019860006433A patent/KR940010115B1/en active IP Right Grant
- 1986-08-04 IL IL79615A patent/IL79615A0/en not_active IP Right Cessation
- 1986-08-04 NO NO863142A patent/NO863142L/en unknown
- 1986-08-04 ES ES8600843A patent/ES2000223A6/en not_active Expired
- 1986-08-05 NL NL8601998A patent/NL8601998A/en not_active Application Discontinuation
- 1986-08-05 LU LU86545A patent/LU86545A1/en unknown
- 1986-08-05 IT IT48359/86A patent/IT1196565B/en active
- 1986-08-05 DK DK373186A patent/DK373186A/en not_active Application Discontinuation
- 1986-10-20 FR FR868614547A patent/FR2586698B1/en not_active Expired
- 1986-10-20 FR FR868614546A patent/FR2586697B1/en not_active Expired - Lifetime
-
1988
- 1988-11-04 GB GB8825856A patent/GB2208653B/en not_active Expired
-
1990
- 1990-10-29 SE SE9003437A patent/SE9003437D0/en unknown
- 1990-10-29 SE SE9003436A patent/SE9003436D0/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4769168A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
US4661280A (en) | Built liquid laundry detergent composition containing salt of higher fatty acid stabilizer and method of use | |
US4744916A (en) | Non-gelling non-aqueous liquid detergent composition containing higher fatty dicarboxylic acid and method of use | |
AU592812B2 (en) | Built detergent compositions containing stabilizing agents | |
US4806260A (en) | Built nonaqueous liquid nonionic laundry detergent composition containing acid terminated nonionic surfactant and quarternary ammonium softener and method of use | |
US4797225A (en) | Nonaqueous liquid nonionic laundry detergent composition containing an alkali metal dithionite or sulfite reduction bleaching agent and method of use | |
AU598017B2 (en) | Liquid nonionic laundry detergent composition and method of use | |
US4648983A (en) | Built non aqueous liquid nonionic laundry detergent composition containing urea stabilizer and method of use | |
AU597029B2 (en) | Built non-aqueous liquid laundry detergent compositions | |
US4690771A (en) | Phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
US4767558A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
US4891148A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent comopsition and method of use | |
AU601762B2 (en) | Nonaqueous liquid nonionic laundry detergent composition and method of use | |
GB2179365A (en) | Phosphate free or low phosphate laundry detergent | |
US4839084A (en) | Built liquid laundry detergent composition containing an alkaline earth metal or zinc salt of higher fatty acid liquefying agent and method of use | |
US4655954A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
GB2194536A (en) | Polyether surfactants used in nonaqueous liquid nonionic laundry detergent compositions | |
US4873012A (en) | Built nonaqueous liquid nonioinic laundry detergent composition containing hexylene glycol and method of use | |
US4789496A (en) | Built nonaqueous liquid nonionic laundry detergent composition containing | |
US4647393A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
AU594070B2 (en) | Low phosphate or phosphate free laundry detergent | |
GB2195124A (en) | Laundry detergent compositions containing a persalt bleach and calcium cyanamide bleach activator | |
GB2194955A (en) | High foam nonaqueous liquid nonionic laundry detergent composition | |
US4781856A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
AU602362B2 (en) | Built nonaqueous liquid nonionic laundry detergent composition containing hexylene glycol and method of use |