AU2019201413B2 - Surgery table attachment apparatus - Google Patents
Surgery table attachment apparatus Download PDFInfo
- Publication number
- AU2019201413B2 AU2019201413B2 AU2019201413A AU2019201413A AU2019201413B2 AU 2019201413 B2 AU2019201413 B2 AU 2019201413B2 AU 2019201413 A AU2019201413 A AU 2019201413A AU 2019201413 A AU2019201413 A AU 2019201413A AU 2019201413 B2 AU2019201413 B2 AU 2019201413B2
- Authority
- AU
- Australia
- Prior art keywords
- crossbar
- tower
- carriage
- gear rack
- slide lock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001356 surgical procedure Methods 0.000 title claims abstract description 42
- 230000007246 mechanism Effects 0.000 claims description 36
- 238000006073 displacement reaction Methods 0.000 claims 3
- 230000003213 activating effect Effects 0.000 claims 1
- 230000033001 locomotion Effects 0.000 description 9
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Landscapes
- Accommodation For Nursing Or Treatment Tables (AREA)
Abstract
OF THE DISCLOSURE
An adjustable support apparatus for a surgery table
utilizing a platform having first and second end portions. First
and second end supports are used to mount the platform which is
adjusted by a carriage having a pawl operator. The carriage
includes studs having support surfaces for the platform. A tower
utilizing a gear rack interacts with the carriage pawl operator to
positon the platform relative to the first and second end support
of the surgery table.
21
19
1028 30
10 32
14 3
18 ~ 22 1
=P,1-20
24e 1261 FIG.2I
28 30
10
3
0 32 0
- 14 34 1
-0- 18 22 1
Ef- 20
24 26 FIG.32
Description
1028 30
10 32
14 3 18 ~ 22 1 =P,1-20
24e 1261 FIG.2I 28 30
3
0 32 0
- 14 34 1 -0- 18 22 1 Ef- 20
24 26 FIG.32
The present invention relates to an adjustable support
apparatus for surgery table.
Medical and surgical procedures require placement of a
patient on a surgical table in various positions to allow a
practitioner surgical access. For example, a patient platform on
a surgical table must be moved upwardly or downwardly, or tilted
about a horizontal axis. In addition, the head or foot portions
of a patient platform on a surgical table must be independently
depressed or elevated to achieve particular orientations, referred
to as Trendelenberg or reverse Trendelenberg positions.
As heretofore stated it is important to configure a
surgery table to accommodate the needs of a surgeon. In certain
cases, table movement may be employed to shift the patient's
internal organs relative to the patients head for the sake of
surgical access. In addition, a reverse Trendelenberg position on
a surgical table may also increase blood flow to the patient's
head to minimize shock during surgery and permit anterior or
posterior access to the patient.
In the past, adjustments of surgical table platforms have
been manually accomplished by the interaction of such surgical
platform with the end supports of a surgical table specifically
adjustments of the surgical platform had been achieved through the
removal and insertion of a rod between parallel bars having
openings for accommodating the rod. Although being functional, such a system requires great care on the part of the surgical team to prevent a patient from accidentally being lowered on the surgical platform. In addition, the raising, lowering, tilting, and independently elevating or lowering the head and foot portions of a surgical platform was often difficult and inconvenient through the mechanisms of the prior art.
Reference is made to US Patent 6,260,220 as representative of a typical prior
art adjustable surgery table.
A positioning system for a surgical table that is safe and easy to
manipulate would be a notable advance in the medical field.
In this specification where reference has been made to patent
specifications, other external documents, or other sources of information, this
is generally for the purpose of providing a context for discussing the features
of the invention. Unless specifically stated otherwise, reference to such
external documents is not to be construed as an admission that such
documents, or such sources of information, in any jurisdiction, are prior art,
or form part of the common general knowledge in the art.
In accordance with a first aspect of the present invention, there
is provided a system of an adjustable support apparatus for a surgery table,
comprising:
a first post extending vertically between a first and a second
end of the first post;
a first crossbar mounted to the first post proximate to the
second end of the first post, the first crossbar capable of being oriented
perpendicular to the first post such that a first and a second end ofthe first
crossbar being in a different plane than the first and second ends of the first
post, the first crossbar comprising top and bottom surfaces, the first crossbar
able to be fixed to at least one first tower and at least one second tower;
a first tower extending between first and second ends of the
first tower, the second end of the first tower being coupled to the top surface
of the first crossbar so that the first tower is perpendicular to the first
crossbar, the first tower configured to removably fix with the first crossbar
such that the first crossbar and the first tower securely engage with each
other, the first crossbar configured to rotate around an axis perpendicular to a
plane of the first crossbar while fixed to the first tower; and
a first carriage coupled to the first tower, the first carriage
configured to move in upward and downward directions with respect to the
first crossbar, the first carriage comprising:
a first handle and a second handle at opposite first end and
second end of the first carriage,
at least one pawl,
3a at least one gear rack, and a controller configured to move the at least one pawl into and out of engagement with the at least one gear rack, wherein when the at least one pawl is in engagement with the at least one gear rack, the first carriage is prevented from moving in the upward and downward directions.
In accordance with a second aspect of the present invention,
there is provided a system of an adjustable support apparatus for a surgery
table, comprising:
a crossbar mounted to a post, the crossbar capable of being
oriented perpendicular to the post such that first and second ends of the
crossbar being in a different plane than first and second ends of the post;
a tower extending in a vertical direction between first and
second ends of the tower, the tower configured to removably fix with the
crossbar at a first opening formed in one of the crossbar and tower such that
the crossbar and the tower securely engage with each other, the crossbar
configured to rotate along an axis perpendicular to a plane of the crossbar
while fixed to the tower; and
a carriage coupled to the tower, the carriage configured to move
in upward and downward directions with respect to the crossbar, the carriage
is not configured to move in the upward and downward directions without
rotation of a slide lock knob coupled to the carriage, the rotation of the slide
lock knob configured to disengage one or more pawls from a gear rack upon
inward rotation of the one or more pawls.
3b
In accordance with a third aspect of the present invention, there
is provided a system of an adjustable support apparatus for a surgery table,
comprising:
a first post extending vertically between a first and a second
end of the first post;
a first crossbar mounted to the first post proximate to the
second end of the first post, the first crossbar capable of being oriented
perpendicular to the first post such that a first and a second end of the first
crossbar being in a different plane than the first and second ends of the first
post, the first crossbar comprising top and bottom surfaces, the first crossbar
able to be fixed to at least one first tower and at least one second tower;
a first tower extending between first and second ends of the
first tower, the second end of the first tower being coupled to the top surface
of the first crossbar so that the first tower is perpendicular to the first
crossbar, the first tower configured to removably fix with the first crossbar
such that the first crossbar and the first tower securely engage with each
other, the first crossbar configured to rotate along an axis perpendicular to a
plane of the first crossbar while fixed to the first tower;
a first carriage coupled to the first tower, the first carriage
configured to move in upward and downward directions with respect to the
first crossbar, the first carriage comprising a first handle and a second handle
at opposite first end and second end of the first carriage;
a gear rack extending along a vertical direction of the first
tower, the gear rack coupled to a pawl mechanism, the pawl mechanism
incorporated in the first carriage, the pawl mechanism configured to engage
3c and disengage the gear rack as the first carriage moves in the upward and downward directions with respect to the first crossbar; and a first platform coupled to the first carriage, the first platform extending perpendicular to the first carriage such that the plane of the first crossbar is perpendicular to a plane of the first platform, wherein the first carriage is not configured to move in the upward and downward directions without rotation of a slide lock knob coupled to the first carriage, the rotation of the slide lock knob configured to disengage and engage one or more pawls from the gear rack.
In accordance with the present disclosure a novel and useful
adjustable support apparatus for a surgery table is herein provided.
The apparatus of the present disclosure is utilized with a patient
platform having a first and second end portions. First and second end
supports are also employed with the present apparatus and are linked to the
first and second end portions of the patient platform in a manner that is safe
and easy to accomplish.
In this regard, the apparatus includes a crossbar mounted to and
forming a portion of either end support. A carriage is also employed and
utilizes a base housing and first and second studs that extend from the base
housing. Each of the first and second studs provides an engagement surface
for connectors associated with either end portion of the patient platform.
Each connector may take the form of a claw-like member that rotatably locks
at the first and second stud engagement surfaces extending from the base
housing of the carriage.
3d
In addition, at least one tower is employed to be removably
fixed to the first and/or second end supports, preferably to the crossbar.
Each tower is provided with at least one gear rack having alternating recesses
and shoulders. The combined carriage and one or more towers forms a tower
assembly. A controller associated with the carriage moves at least one pawl
into and out of engagement with any of the gear racks, thus,
3e allowing the end portions of the patient platform and the carriage to move upwardly and downwardly relative to a tower through a ratchet mechanism.
Needless to say, the use of a carriage, one or more towers and controllers,
hereinabove described, may be utilized with the first and second end supports
of the surgery table. Consequently, the first and second end portions of the
patient platform may be independently raised and lowered relative to the first
and second end supports.
Moreover, each tower assembly may include a mechanism for
removably fixing the same to the crossbar of the first, and/or second end
support. In essence the tower may be formed with a single protuberance
having a boss engaging an opening in a crossbar. However, such mechanism
preferably includes the provision of first and second openings in the
crossbar. Each tower is then fitted with first and second protuberances. The
first protuberance rotatably fits within the first opening of a crossbar, while
the second protuberance fits into the second opening of such cross bar upon
rotation of the first protuberance. A locking mechanism audibly actuates and
holds the second protuberance in the second opening ofthe crossbar,
achieving a bayonet type of connection.
It may be apparent that a novel and useful adjustable support
apparatus for a surgery table has been herein above described.
It is therefore an object of at least an embodiment of the present
disclosure to provide an adjustable support apparatus for a surgery table that
provides for patient safety and facilitates manipulation by a surgical staff.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
that permits multiple movements of a patient platform to allow positioning of
a patient that is convenient for a surgeon.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
that eliminates hazards associated with surgery tables of the prior art,
including inadvertent unlocking of the table, uncontrolled movement of the
table, or inability to position the patient platform in certain instances.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
that provides for audible indicators, signaling locking and unlocking of
various components of the surgery table.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
that eliminates carriage drift under patient weight.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
that is relatively maintenance free.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
which achieves a high degree of stability during use.
Another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table that employs a tower attached to an end support by the way of a crossbar via a bayonet type fitting that prevents removal of a linked patient supporting tabletop.
Yet another object of at least an embodiment of the present
disclosure is to provide an adjustable support apparatus for a surgery table
that complies with governmental standards for lift limits.
An additional or alternative object of the present disclosure is
to provide the public with a useful choice.
The disclosure possesses other objects and advantages
especially as concerns particular characteristics and features thereof which
will become apparent as the specification continues.
The term "comprising" as used in this specification and claims
means "consisting at least in part of'. When interpreting statements in this
specification and claims which include the term "comprising", other features
besides the features prefaced by this term in each statement can also be
present. Related terms such as "comprise" and "comprised" are to be
interpreted in a similar manner.
Reference may be made in the description to subject matter
which is not in the scope of the appended claims. That subject matter should
be readily identifiable by a person skilled in the art and may assist putting
into practice the invention as defined in the appended claims.
FIG. 1 is a side schematic elevational view of the
apparatus of the present invention indicating a reverse
Trendelenberg movement of an H-frame in phantom.
FIG. 2 is a side elevational view of the apparatus of
the present invention utilizing an H-frame and a patient support.
FIG. 3 is a side schematic elevational view of the
apparatus of the present invention where the H-frame and patient
support have been rotated 180 degrees.
FIG. 4 is a top left isometric view of the head portion
of a surgery table utilizing the apparatus of the present
application.
FIG. 5 is a top left partial isometric view of a
surgery table employing an adjustment mechanism of the prior art.
FIG. 6 is a front elevational view of the tower
assembly including a pair of towers and carriage mechanism of the
present invention.
FIG. 7 is a front elevational view of the controlling
mechanism of the carriage of the present invention.
FIG. 8 is a sectional view taken along 8-8 of FIG 7.
FIG. 8A is a top plan view of a crossbar of an end
support having a single opening for capture of a single
protuberance of a tower.
FIG. 8B. is a sectional view along line 8B-8B of FIG.
8A with a tower protuberance in place.
FIG. 9 is a partial front elevational view of the fixing mechanism of the tower portion of the apparatus of the present invention.
FIG. 10 is a left side view of FIG. 9.
FIG. 11 is a right side view of FIG. 9.
FIG. 12 is a top plan view of a surface of a crossbar of an end
support receiving the tower fixing mechanism, depicted in FIGS. 9-11.
FIG. 13 is a top plan view of a carriage of an end support
depicting the tower in phantom and indicating its movement into fixation
relative to a crossbar of an end support.
FIG. 14 is a partial top elevational view of the connectors
employed with respect to a platform and stud engagement surfaces of a
carriage.
FIG. 15 is a sectional view taken along line 15-15 of FIG. 14.
FIG. 16 is a front elevational view of the paddle release
structure.
FIG. 17 is a sectional view taken along line 17-17 of FIG. 16.
For a better understanding of the invention reference is made to
the following detailed description of the preferred embodiments of the
invention which should be taken in conjunction with the above described
drawings.
Various aspects of the present invention will evolve
from the following detailed description of the preferred
embodiments thereof. Such descriptions should be taken in
conjunction with the prior delineated drawings to fully understand
the idea sought for patenting.
The adjustable support apparatus for a surgery table of
the present invention is shown in the drawings, as a whole, by
reference character 10. With reference to FIGS 1-3, it may be
observed that apparatus 10 is used in conjunction with a surgery
table 12. Surgery table 12 is shown as possessing end supports or
posts 14 and 16. Posts 14 and 16 are connected to feet or bases
18 and 20, respectively. Bases 18 and 20 are linked to one
another by spanning member 22. Plurality of casters 24 allow
surgery table 12 to be rolled along surface 26.
Apparatus 10 further includes tower assemblies 28 and
found at the head and foot end of surgical table 12,
respectively. FIG. 1 denotes surgical table 12 with a basic H
frame 32 linked to tower assembles 28 and 30. In addition, FIGS.
2 and 3 show an additional table top or platform 34 which may take
the form of a spinal surgery top, orthopedic trauma top, radio
lucent imaging top, and the like. It should be seen that FIGS. 2
and 3 represents that the position of H-frame 32 and table top 34
may be reversed by rotation about axis 36 through a known
mechanism. In addition, FIG. 1 illustrates the fact that H-frame
32 may be moved vertically along either tower assembly 28 and/or through the apparatus 10 of the present application, which will be discussed in greater detail as the specification continues.
With reference now to FIG. 4, apparatus 10 is depicted
in further delineated. Apparatus 10 includes tower assembly 28
associated with first end support at the head end of surgery table
12. It should be noted that a similar tower assembly 30 is
associated with second end support 16 at the foot end of surgery
table 12, shown schematically in FIGS. 1-3. Tower assembly 28
includes a crossbar or mount 40 which is connected directly to and
forms a part of first end support 14. Crossbar 40 orients towers
42 and 44 outwardly therefrom and, as depicted in FIG. 4, in a
generally vertical orientation. Tower assembly 28 also possesses
carriages 46 and 48 that move along towers 42 and 44 via a ratchet
mechanism which will be further discussed hereinafter. Carriage
46 is depicted in FIG. 4, for clarity without engagement and
support of a table top as shown in FIGS 2 and 3. Carriage 46
includes a first stud 50 and a second stud 52 that extend from a
base housing 54. Engagement surfaces 56 and 58 lie intermediate
base housing 54 and handles 60 and 62 of studs 50 and 52,
respectively. Engagement surfaces 56 and 58 are shown as being
generally cylindrical members. However, engagement surface 58 is
longer than engagement surface 56 in order to aid in the
orientation of table top 34 or H-frame 32. With further reference
to FIG. 4, it may be seen that H-frame 32 is connected to carriage
48 by the use of connectors 64 and 66, which will be further
detailed as the specification continues. Directional arrows 68 and 70 are intended to show the inward and outward movement of carriages 46 and 48 relative to crossbar 40, respectively, as well as a table top connected to carriage 46 and H-frame 32 connected to carriage 48.
Turning now to FIG. 5, a schematic rendition of a prior
art adjustment mechanism for a surgery table 72 is depicted, such
as that found in U.S. Patent 6,260,220. A patient platform 74 is
held to an H-frame 76 by the use of a removable rod or pin 78
which selectively engages openings 75 through H-frame 76.
Needless to say, rod 78 must be cautiously removed and reinserted
in any of the openings of H-frame 76 to move table top 74 upwardly
or downwardly according to directional arrow 80.
In contrast, the adjustment apparatus 10 of the present
application offers superior advantages and is illustrated in FIG.
6 by exemplary tower 42 and carriage 46. Again, it should be
noted that carriage 48 of tower assembly 28, and other carriages
associated with the tower assembly 30 on the foot end of surgery
table 12, are similarly constructed. Carriage 46, in FIG. 6 is
shown at its rear side, opposite to the front side orientation
shown in FIG. 4. As it may be seen, tower 42 includes an inner
open chamber 82 which hold gear racks 84 and 86. Carriage 46
includes a pawl mechanism 88 detailed in FIGS 7 and 8.
Viewing FIGS. 7 and 8, a controller in the form of a
slide lever lock actuator 90 connects to slide lock knob 92 which
is manually rotated according to directional arrow 94. Cam
follower 96 moves along cam surface 98 to urge slide lever lock actuator 90 outwardly according to directional arrow 100. Such movement displaces lever lock actuator 102, in slot 108 as shown, by directional arrow 100 in FIGS 7 and 8. Lever lock actuator 102 lies between plates 104 and 106. Plate 106 has been removed from
FIG. 7 for sake of visibility of the pawl mechanism 88. Lever
lock actuator 102 rotatably attaches to ratchet pawls 110 and 112
at pins 114 and 116, respectively. Again, movement of lever lock
actuator 102, according to directional arrow 100, causes the
rotation of ratchet pawls 110 and 112, indicated by directional
arrows 122 and 124. Pawl notches 126 and 128 are held in
engagement with the gear racks 84 and 86, respectively, in tower
42 by biasing springs 130 and 132. The inward rotation of ratchet
pawls 110 and 112 according to directional arrows 122 and 124 will
disengage pawl notches 126 and 128 from gear racks 84 and 86,
respectively, allowing carriage 46 to travel upwardly and
downwardly relative to gear racks 84 and 86. The release of knob
92 will cause pawls 110 and 112 to reengage gear racks 84 and 86
through the action of biasing springs 130 and 132, respectively.
Of course, pawls 110 and 112 as well as gear racks 84 and 86 may
be configured to allow carriage 46 to travel in an upward
direction without the operation of slide lock knob 92, yet
prohibit the downward motion of carriage 46 without the turning of
slide lock knob 92, as heretofore described. It should be
apparent that ratchet pawls 110 and 112 rotate relative to plates
104 and 106 by the use of pawl pins 134 and 136 held by plates 104
and 106, FIG. 8. Return spring 138 between slide lever lock actuator 90 and buttress 140 turns knob 94 to a rest position where pawls 110 and 112 are extended into engagement with gear racks 84 and 86. Buttress 140 is firmly attached to body member
142 of carriage 46.
A basic mechanism 143 is revealed in FIGS. 8A and 8B
for removably fixing tower 42 to crossbar 40 of first end support
14. In this regard an opening 145 is formed in crossbar 40 with
undercut chambers 147 and 149. Protuberance 151 extends from
tower 42 and includes lateral projections 153 and 155. Placement
of protuberance 151 within opening 145 and twisting or turning of
tower 42 and protuberance 151 will cause lateral projections 153
and 155 to engage surfaces or ceilings 157 and 159 of undercut
chambers 153 and 155, respectively. Directional arrow 161 of FIG.
8B includes such twisting. Protuberance 151 and projections 153
and 155 remain in opening 145 by a tight tolerance construction of
such components. However, a preloaded spring may be employed to
bear against protuberance 151 within opening 145, if desired.
With reference to FIGS 9-13, a preferred mechanism 144
is depicted for removably fixing tower 42 to crossbar 40 of first
end support 14. In this regard, tower 142 includes an end surface
146 into which protuberances 148 and 150 extend. Protuberance 148
bears a slot 152. Protuberance 150 is formed in a generally
cylindrical shape with an extending boss 154. As may be apparent,
upper surface 148 of crossbar 40 is formed with a first opening
158 having a recess 160 with an undercut hollow 162 shown in
phantom on FIG. 12. A second opening 164 is also found on surface
148 of crossbar 40 and includes a spring loaded plunger 166.
Plunger 166 is intended to engage slot 152 of protuberance 148.
With reference to FIG. 13, once protuberance 150 is placed in
opening 158, boss 154 rides in undercut hollow 162 and tower 42 is
swung into place such that protuberance 148 of tower 142 enters
second opening 164 and is held in place by spring biased plunger
166, concomitant with a snapping noise. As such, tower 42 engages
and fits into crossbar 40 in a bayonet connection fashion. Knob
168 maybe pulled to retract spring loaded plunger 166 via shaft
170 connected knob 168. Mechanism 144 also fixes tower 44 to
crossbar 40 and fixes a similar tower or towers to a crossbar of
tower assembly 28.
With respect to FIGS 14 and 15, the connection of
platform 34 to carriage 46 is illustrated in that a pair of
connectors 172 and 174 are shown. Connectors 172 and 174 are
linked by a spanning body 176 having a handle 178. It should be
noted that connectors 172 and 174 are similar to connectors 64 and
66 shown partially in FIG. 4 that are employed with respect to H
frame 32. Pairs of connectors, similar to connectors 172 and 174,
are used at each end of platform 34 and H-frame 32. Each
connector 172 and 174 is constructed as a claw-like member,
illustrated in section on FIG. 15 with respect to connector 172.
As may be seen from FIG. 15, claw-like connector 174 fits over
engagement surface 56 of stud 52. Likewise, connector 172 would
fit over engagement surface 58 of stud 50. Connectors 172 and 174
click into place by the use of a retractable tip, such as exemplary ball tip 180 used with respect to connector 174. Tip
180 also allows the rotation of connector 174, directional arrow
182, and is linked to paddle structure via rods 184 and 186.
Paddle structure 188 which may be employed to release or retract
tip 180 from its position against engagement surface 56 of stud
52, directional arrows 190 and 192. Springs 194 and 196 bias tip
180 in its extended position 198 (phantom) to hold claw-like
connector 174 against engaging surface 156 of stud 52. Needless
to say, table top 34 may be rotated should the table top 34, at
the second end support 30, lie at a higher or lower level than the
table top portion connected to first end support and tower
assembly 28, and vice versa.
FIGS. 16 and 17 depict a front view of connectors 172
and 174 as well as paddle structure 188 that rotates about axis
190. Paddle structure 190 links to alternate flattened projection
tips 192 and 194 of connectors 172 and 174 via hubs 196 and 198,
respectively. Spanning member 176 holds connectors 172 and 174
together. With particular reference to FIG. 17, another operation
mechanism 202 for maneuvering tip 194 is shown. A similar
mechanism maneuvers projection tip 192 associated with connector
172. A rotor 204 connects to hub 190 and turns with any force
applied to upper portion 206 or lower portion 208 of paddle
structure 188, directional arrows 210 and 212, FIG. 16. Slotted
arms 214 and 216 engage pin 218 on body 220 which pivots about
axis 222. Directional arrow 224 indicated such rotation and the
release or retraction of flattened projection tip 194 from stud 52 when either slotted arm 214 or 126 moves toward pin 218, according to directional arrows 226 and 228, respectively. Spring 230 holds flattened projection tip 194 in place against stud 52, absent any force on paddle structure 188. In summary, paddle structure 186 releases flattened projection tip 194 by pressing of either upper portion 206 or lower portion 208, thereof.
In operation, the user attaches H-frame 32 and/or table
top 34 to tower assemblies 28 and 30, which are similarly
constructed, at the first end support 14 and the second end
support 16 of surgery table 12. Tower assemblies 28 and 30 are
erected using the bayonet structure illustrated in FIGS. 9-13,
showing the exemplary connection of tower 42 to crossbar 40, FIG.
4. H-frame 32 and/or table top 34 are fastened to tower structure
28 by the interaction of the exemplar connectors 172 and 174 shown
in FIGS 14 and 15, which are similar to the connectors 64 and 66
illustrated in FIG. 4. The exemplar connectors 172 and 174 are
held to exemplar tower 42 by the use of engagement surfaces 56 and
58 of studs 52 and 50. Paddle structure 188, FIGS 16 and 17 may
be employed to release connectors 172 and 174 from studs 50 and 52
via the exemplar mechanism 202, thus, freeing table top 34 from
end supports 14 and 16. Exemplary carriage 46 positions tabletop
34 relative to exemplary tower 42 by the ratchet mechanism
described in FIGS. 6-8. Of course, the structure described with
respect to tower 42 and carriage 46 also applies to H-frame 32,
tower 44, and carriage 48, as well as a similar arrangement with
respect to tower assembly 30 associated with table top 34 and H frame 32. Using the ratchet assembly illustrated in FIGS. 6-8, the user of surgery table 12 may adjust either end of H-frame 32 or table top 34 upwardly, downwardly and/or into a Trendelenberg or reverse Trendelenberg configuration.
While in the foregoing, embodiments of the present
invention have been set forth in considerable detail for the
purposes of making a complete disclosure of the invention, it may
be apparent to those of skill in the art that numerous changes may
be made in such detail without departing from the spirit and
principles of the invention.
Claims (54)
1. A system of an adjustable support apparatus for a surgery table, comprising:
a first post extending vertically between a first and a second end of the first post;
a first crossbar mounted to the first post proximate to the second end of the first post,
the first crossbar capable of being oriented perpendicular to the first post such that a first and
a second end of the first crossbar being in a different plane than the first and second ends of
the first post, the first crossbar comprising top and bottom surfaces, the first crossbar able to
be fixed to at least one first tower and at least one second tower;
a first tower extending between first and second ends of the first tower, the second end
of the first tower being coupled to the top surface of the first crossbar so that the first tower is
perpendicular to the first crossbar, the first tower configured to removably fix with the first
crossbar such that the first crossbar and the first tower securely engage with each other, the
first crossbar configured to rotate around an axis perpendicular to a plane of the first crossbar
while fixed to the first tower; and
a first carriage coupled to the first tower, the first carriage configured to move in
upward and downward directions with respect to the first crossbar, the first carriage
comprising:
a first handle and a second handle at opposite first end and second end of the
first carriage,
at least one pawl,
at least one gear rack, and
a controller configured to move the at least one pawl into and out of engagement with
the at least one gear rack, wherein when the at least one pawl is in engagement with the at least one gear rack, the first carriage is prevented from moving in the upward and downward directions.
2. The system of claim 1, wherein,
one of the first tower and the first crossbar comprises a first protuberance, and the
other of the first crossbar and the first tower includes a first opening, the first opening
configured to receive the first protuberance as the first tower engages with the first crossbar.
3. The system of claim 1, further comprising a first platform coupled to the first
carriage by a combination of at least one engagement surface and at least one claw-like
connector, the claw-like connector being disengaged from the engagement surface by
activating a paddle structure.
4. The system of claim 1, wherein the first tower is configured to engage and
disengage the first crossbar as the first tower is removably fixed to the first crossbar.
5. The system of claim 1, wherein the first tower disengages from the first
crossbar by means of a spring-loaded knob.
6. The system of claim 1, further comprising:
a second tower extending in a vertical direction between first and second ends of the
second tower, the second tower configured to removably fix with the first crossbar such that
the first crossbar and the second tower securely engage with each other, the first crossbar
configured to rotate around the axis perpendicular to the plane of the first crossbar while
fixed to the second tower.
7. The system of claim 6, wherein,
the first crossbar comprises a top and a bottom surface, and
the second end of the second tower being coupled to the bottom surface of the first
crossbar.
8. The system of claim 6, wherein,
one of the second tower and first crossbar comprises a first protuberance, and
the other one of the first crossbar and second tower comprises a first opening, the first
opening configured to receive the first protuberance as the second tower engages with the
first crossbar.
9. The system of claim 6, further comprising:
a second carriage coupled to the second tower, the second carriage configured to
move in upward and downward directions with respect to the first crossbar.
10. The system of claim 9, further comprising:
a first platform coupled to the first carriage; and
a second platform coupled to the second carriage by at least one engagement surface,
the second platform extending perpendicular to the second carriage such that the plane of the
first crossbar is perpendicular to a plane of the second platform.
11. The system of claim 9, wherein the second tower further comprises,
a gear rack extending along a vertical direction of the second tower, the gear rack
coupled to a pawl mechanism, the pawl mechanism incorporated in the second carriage, the pawl mechanism configured to engage and disengage the gear rack as the second carriage moves in the upward and downward directions with respect to the first crossbar.
12. The system of claim 6, wherein the second tower is configured to engage and
disengage the first crossbar as the second tower is removably fixed to the first crossbar.
13. The system of claim 6, wherein the first crossbar, the first tower and the
second tower configured to rotate simultaneously around the axis perpendicular to the plane
of the first crossbar.
14. The system of claim 1, further comprising:
a second post extending vertically between first and second ends of the second post,
the second post spaced apart from the first post; and
a second crossbar mounted to the second post proximate to the second end of the
second crossbar, the second crossbar capable of being oriented perpendicular to the second
post such that first and second ends of the second crossbar being in a different plane the first
and second ends of the second post.
15. The system of claim 1, further comprising:
a first platform coupled to the first carriage, the first platform extending perpendicular
to the first carriage such that the plane of the first crossbar is perpendicular to a plane of the
first platform; and
wherein, the gear rack extending along a vertical direction of the first tower, the gear
rack coupled to a pawl mechanism comprising the at least one pawl, the pawl mechanism
incorporated in the first carriage, the pawl mechanism configured to engage and disengage the gear rack as the first carriage moves in the upward and downward directions with respect to the first crossbar.
16. A system of an adjustable support apparatus for a surgery table, comprising:
a crossbar mounted to a post, the crossbar capable of being oriented perpendicular to
the post such that first and second ends of the crossbar being in a different plane than first and
second ends of the post;
a tower extending in a vertical direction between first and second ends of the tower,
the tower configured to removably fix with the crossbar at a first opening formed in one of
the crossbar and tower such that the crossbar and the tower securely engage with each other,
the crossbar configured to rotate along an axis perpendicular to a plane of the crossbar while
fixed to the tower; and
a carriage coupled to the tower, the carriage configured to move in upward and
downward directions with respect to the crossbar, the carriage is not configured to move in
the upward and downward directions without rotation of a slide lock knob coupled to the
carriage, the rotation of the slide lock knob configured to disengage one or more pawls from
a gear rack upon inward rotation of the one or more pawls.
17. The system of claim 16, further comprising:
a platform coupled to the carriage by at least one engagement surface, the platform
extending perpendicular to the carriage such that the plane of the crossbar is perpendicular to
a plane of the platform.
18. The system of claim 16, wherein the tower comprises the gear rack extending
along a vertical direction of the tower, the gear rack coupled to a pawl mechanism, the pawl mechanism is incorporated in the carriage and configured to engage and disengage the gear rack as the carriage moves in the upward and downward directions with respect to the crossbar.
19. A system of an adjustable support apparatus for a surgery table, comprising:
a first post extending vertically between a first and a second end of the first post;
a first crossbar mounted to the first post proximate to the second end of the first post,
the first crossbar capable of being oriented perpendicular to the first post such that a first and
a second end of the first crossbar being in a different plane than the first and second ends of
the first post, the first crossbar comprising top and bottom surfaces, the first crossbar able to
be fixed to at least one first tower and at least one second tower;
a first tower extending between first and second ends of the first tower, the second end
of the first tower being coupled to the top surface of the first crossbar so that the first tower is
perpendicular to the first crossbar, the first tower configured to removably fix with the first
crossbar such that the first crossbar and the first tower securely engage with each other, the
first crossbar configured to rotate along an axis perpendicular to a plane of the first crossbar
while fixed to the first tower;
a first carriage coupled to the first tower, the first carriage configured to move in
upward and downward directions with respect to the first crossbar, the first carriage
comprising a first handle and a second handle at opposite first end and second end of the first
carriage;
a gear rack extending along a vertical direction of the first tower, the gear rack
coupled to a pawl mechanism, the pawl mechanism incorporated in the first carriage, the
pawl mechanism configured to engage and disengage the gear rack as the first carriage moves
in the upward and downward directions with respect to the first crossbar; and a first platform coupled to the first carriage, the first platform extending perpendicular to the first carriage such that the plane of the first crossbar is perpendicular to a plane of the first platform, wherein the first carriage is not configured to move in the upward and downward directions without rotation of a slide lock knob coupled to the first carriage, the rotation of the slide lock knob configured to disengage and engage one or more pawls from the gear rack.
20. The system of claim 1, wherein the controller comprises a slide lock knob, and
the one or more pawls configured to engage the gear rack upon release of the slide lock knob.
21. The system of claim 20, wherein the slide lock knob is configured to displace
a lever lock actuator in a slot upon rotation of the slide lock knob, the lever lock actuator
rotatably attached to the one or more pawls, and wherein the displacement of the lever lock
actuator causes rotation of the one or more pawls.
22. The system of claim 16, wherein the one or more pawls configured to engage
the gear rack upon release of the slide lock knob.
23. The system of claim 16, wherein the slide lock knob is configured to displace
a lever lock actuator in a slot upon rotation of the slide lock knob, the lever lock actuator
rotatably attached to the one or more pawls, and wherein the displacement of the lever lock
actuator causes rotation of the one or more pawls.
24. The system of claim 19, wherein the one or more pawls configured to engage
the gear rack upon release of the slide lock knob.
25. The system of claim 19, wherein the slide lock knob is configured to displace
a lever lock actuator in a slot upon rotation of the slide lock knob, the lever lock actuator
rotatably attached to the one or more pawls, and wherein the displacement of the lever lock
actuator causes rotation of the one or more pawls.
26. The system of claim 1, wherein the first carriage is not held to the tower by a
rod or pin.
27. The system of claim 1, wherein the controller and the first and second handles
are configured to allow a user to move the carriage in the upward and downward directions.
28. They system of claim 27, wherein the controller comprises a slide lock knob.
29. The system of claim 1, wherein the controller is configured to be engaged by a
user simultaneously with at least one of the first and second handles.
30. They system of claim 29, wherein the controller comprises a slide lock knob.
31. The system of claim 1, wherein the controller and at least one of the first and
second handles are configured to be engaged simultaneously by a user's hand.
32. They system of claim 31, wherein the controller comprises a slide lock knob.
33. The system of claim 1, wherein the first carriage, the controller, the at least
one pawl and the at least one gear rack are configured to allow a user to disengage the at least
one pawl to move the first carriage in the upward and downward directions, and reengage the
at least one pawl into engagement with the at least one gear rack at a desired location in the
upward and downward directions.
34. They system of claim 33, wherein the controller comprises a slide lock knob.
35. The system of claim 1, wherein rotation of the controller causes the at least
one pawl to disengage the at least one gear rack.
36. The system of claim 35, wherein the at least one pawl is configured to
disengage the at least one gear rack based on inward rotation of the at least one pawl.
37. The system of claim 36, wherein the first carriage is configured to travel in the
upward and downward directions relative to the at least one gear rack upon the
disengagement of the at least one pawl from the at least one gear rack by the controller.
38. The system of claim 37, wherein the at least one pawl is configured to
reengage the at least one gear rack upon release of the controller.
39. The system of claim 38, wherein the first carriage is configured to travel in the
upward and downward directions through simultaneous manipulation by a user of the
controller and at least one of the first handle and the second handle.
40. The system of claim 39, wherein the controller comprises a slide lock knob.
41. The system of claim 16, further comprising first and second handles at
opposite ends of the carriage, wherein the slide lock knob and the first and second handles are
configured to allow a user to move the carriage in the upward and downward directions.
42. The system of claim 16, further comprising first and second handles at
opposite ends of the carriage, wherein the slide lock knob is configured to be engaged by a
user simultaneously with at least one of the first and second handles.
43. The system of claim 16, wherein the carriage, the slide lock knob, the one or
more pawls and the gear rack are configured to allow a user to disengage the one or more
pawl to move the carriage in the upward and downward directions, and reengage the one or
more pawls into engagement with the gear rack at a desired location in the upward and
downward directions.
44. The system of claim 16, wherein the carriage is configured to travel in the
upward and downward directions relative to the gear rack upon the disengagement of the one
or more pawls from the gear rack by the slide lock knob.
45. The system of claim 44, wherein the one or more pawls are configured to
reengage the gear rack upon release of the slide lock knob.
46. The system of claim 45, wherein the carriage is configured to travel in the
upward and downward directions through simultaneous manipulation by a user of the slide
lock knob and of one of first and second handles.
47. The system of claim 19, wherein the slide lock knob and the first and second
handles are configured to allow a user to move the carriage in the upward and downward
directions.
48. The system of claim 19, wherein the slide lock knob is configured to be
engaged by a user simultaneously with at least one of the first and second handles.
49. The system of claim 19, wherein the slide lock knob and at least one of the
first and second handles are configured to be engaged simultaneously by a user's hand.
50. The system of claim 19, wherein the first carriage, the slide lock knob, the one
or more pawls and the gear rack are configured to allow a user to disengage the one or more
pawls to move the first carriage in the upward and downward directions, and reengage the
one or more pawls into engagement with the gear rack at a desired location in the upward and
downward directions.
51. The system of claim 19, wherein the one or more pawls are configured to
disengage the gear rack based on inward rotation of the one or more pawls.
52. The system of claim 51, wherein the first carriage is configured to travel in the
upward and downward directions relative to the gear rack upon the disengagement of the one
or more pawls from the gear rack by the slide lock knob.
53. The system of claim 52, wherein the one or more pawls are configured to
reengage the gear rack upon release of the slide lock knob.
54. The system of claim 53, wherein the first carriage is configured to travel in the
upward and downward directions through simultaneous manipulation by a user of the slide
lock knob and of one of the first handle and the second handle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2019201413A AU2019201413B2 (en) | 2016-02-24 | 2019-02-28 | Surgery table attachment apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2016201158A AU2016201158A1 (en) | 2016-02-24 | 2016-02-24 | Surgery table attachment apparatus |
AU2016201158 | 2016-02-24 | ||
AU2019201413A AU2019201413B2 (en) | 2016-02-24 | 2019-02-28 | Surgery table attachment apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016201158A Division AU2016201158A1 (en) | 2016-02-24 | 2016-02-24 | Surgery table attachment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2019201413A1 AU2019201413A1 (en) | 2019-03-21 |
AU2019201413B2 true AU2019201413B2 (en) | 2021-03-25 |
Family
ID=59742235
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016201158A Abandoned AU2016201158A1 (en) | 2016-02-24 | 2016-02-24 | Surgery table attachment apparatus |
AU2019201413A Active AU2019201413B2 (en) | 2016-02-24 | 2019-02-28 | Surgery table attachment apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016201158A Abandoned AU2016201158A1 (en) | 2016-02-24 | 2016-02-24 | Surgery table attachment apparatus |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2016201158A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6240582B1 (en) * | 1999-07-30 | 2001-06-05 | Hill-Rom, Inc. | Apparatus for positioning a patient-support deck |
US20100249780A1 (en) * | 2009-03-31 | 2010-09-30 | Integra Lifesciences Corporation | Skull Clamp With Improved Positionability And Cleaning Capability |
US20100293713A1 (en) * | 2009-04-01 | 2010-11-25 | Lewis Sharps | Patient-rotation system with center-of- gravity assembly |
-
2016
- 2016-02-24 AU AU2016201158A patent/AU2016201158A1/en not_active Abandoned
-
2019
- 2019-02-28 AU AU2019201413A patent/AU2019201413B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6240582B1 (en) * | 1999-07-30 | 2001-06-05 | Hill-Rom, Inc. | Apparatus for positioning a patient-support deck |
US20100249780A1 (en) * | 2009-03-31 | 2010-09-30 | Integra Lifesciences Corporation | Skull Clamp With Improved Positionability And Cleaning Capability |
US20100293713A1 (en) * | 2009-04-01 | 2010-11-25 | Lewis Sharps | Patient-rotation system with center-of- gravity assembly |
Also Published As
Publication number | Publication date |
---|---|
AU2019201413A1 (en) | 2019-03-21 |
AU2016201158A1 (en) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2919702C (en) | Patient platform connection device | |
CA2919681C (en) | Surgery table attachment apparatus | |
US10888481B2 (en) | Adjustable support apparatus for a surgery table | |
AU2019201413B2 (en) | Surgery table attachment apparatus | |
EP3216437A1 (en) | An adjustable support apparatus for a surgery table | |
AU2016201156B2 (en) | Patient platform connection device | |
EP3216438B1 (en) | Patient platform connection device | |
EP3216439B1 (en) | Surgery table attachment apparatus | |
AU2016201155B2 (en) | An adjustable support apparatus for a surgery table |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |