AU2017302034A1 - Polymer-based antimicrobial compositions and methods of use thereof - Google Patents
Polymer-based antimicrobial compositions and methods of use thereof Download PDFInfo
- Publication number
- AU2017302034A1 AU2017302034A1 AU2017302034A AU2017302034A AU2017302034A1 AU 2017302034 A1 AU2017302034 A1 AU 2017302034A1 AU 2017302034 A AU2017302034 A AU 2017302034A AU 2017302034 A AU2017302034 A AU 2017302034A AU 2017302034 A1 AU2017302034 A1 AU 2017302034A1
- Authority
- AU
- Australia
- Prior art keywords
- antimicrobial composition
- composition
- antimicrobial
- contact
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 312
- 230000000845 anti-microbial effect Effects 0.000 title claims abstract description 235
- 229920000642 polymer Polymers 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims description 79
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 152
- 229920006317 cationic polymer Polymers 0.000 claims abstract description 79
- 238000011012 sanitization Methods 0.000 claims abstract description 76
- 239000004599 antimicrobial Substances 0.000 claims abstract description 71
- 239000002318 adhesion promoter Substances 0.000 claims abstract description 41
- 239000010954 inorganic particle Substances 0.000 claims abstract description 35
- 239000011146 organic particle Substances 0.000 claims abstract description 35
- 238000012360 testing method Methods 0.000 claims description 110
- 150000003839 salts Chemical class 0.000 claims description 91
- -1 silane compound Chemical class 0.000 claims description 84
- 241000894006 Bacteria Species 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 69
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 57
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 48
- 241000700605 Viruses Species 0.000 claims description 47
- 150000004820 halides Chemical class 0.000 claims description 46
- 244000309711 non-enveloped viruses Species 0.000 claims description 43
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 41
- 229920006318 anionic polymer Polymers 0.000 claims description 36
- 230000002070 germicidal effect Effects 0.000 claims description 34
- 230000009467 reduction Effects 0.000 claims description 30
- 241000193163 Clostridioides difficile Species 0.000 claims description 26
- 241000588724 Escherichia coli Species 0.000 claims description 26
- 229920001661 Chitosan Polymers 0.000 claims description 24
- 230000002147 killing effect Effects 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 18
- 150000001450 anions Chemical class 0.000 claims description 18
- 241000191967 Staphylococcus aureus Species 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 125000002091 cationic group Chemical group 0.000 claims description 13
- 229960003085 meticillin Drugs 0.000 claims description 13
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 12
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 claims description 12
- 241000192125 Firmicutes Species 0.000 claims description 11
- 230000000844 anti-bacterial effect Effects 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims description 11
- 230000003253 viricidal effect Effects 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- 231100000263 cytotoxicity test Toxicity 0.000 claims description 8
- 229910000077 silane Inorganic materials 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 229920000547 conjugated polymer Polymers 0.000 claims description 7
- 238000000338 in vitro Methods 0.000 claims description 7
- 208000037801 influenza A (H1N1) Diseases 0.000 claims description 7
- 201000010740 swine influenza Diseases 0.000 claims description 7
- 229920001400 block copolymer Polymers 0.000 claims description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 229910000510 noble metal Inorganic materials 0.000 claims description 5
- 230000008520 organization Effects 0.000 claims description 5
- 125000002252 acyl group Chemical group 0.000 claims description 4
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 239000002054 inoculum Substances 0.000 claims description 3
- 229920002401 polyacrylamide Polymers 0.000 claims description 3
- 150000001805 chlorine compounds Chemical group 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 74
- 231100000252 nontoxic Toxicity 0.000 abstract description 6
- 230000003000 nontoxic effect Effects 0.000 abstract description 6
- 208000035473 Communicable disease Diseases 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 109
- 235000002639 sodium chloride Nutrition 0.000 description 90
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 66
- 239000004408 titanium dioxide Substances 0.000 description 52
- 235000013305 food Nutrition 0.000 description 36
- 239000000243 solution Substances 0.000 description 36
- 241001465754 Metazoa Species 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 238000003860 storage Methods 0.000 description 20
- 239000000975 dye Substances 0.000 description 19
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 18
- 230000009477 glass transition Effects 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000011521 glass Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 230000001699 photocatalysis Effects 0.000 description 15
- 239000000835 fiber Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 239000002105 nanoparticle Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229920002125 Sokalan® Polymers 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000003981 vehicle Substances 0.000 description 11
- 239000003814 drug Substances 0.000 description 10
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000004584 polyacrylic acid Substances 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000004202 carbamide Substances 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 230000000249 desinfective effect Effects 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 238000004806 packaging method and process Methods 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 8
- 241000233866 Fungi Species 0.000 description 8
- 239000007983 Tris buffer Substances 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000002537 cosmetic Substances 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 7
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 7
- 239000003642 reactive oxygen metabolite Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 6
- 241000219146 Gossypium Species 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 241000702670 Rotavirus Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 231100000433 cytotoxic Toxicity 0.000 description 6
- 230000001472 cytotoxic effect Effects 0.000 description 6
- 239000000645 desinfectant Substances 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000003801 milling Methods 0.000 description 6
- 239000011941 photocatalyst Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 239000002023 wood Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 241000991587 Enterovirus C Species 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 238000011081 inoculation Methods 0.000 description 5
- 238000002386 leaching Methods 0.000 description 5
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 239000002114 nanocomposite Substances 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 229920000867 polyelectrolyte Polymers 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 235000013772 propylene glycol Nutrition 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 241000125945 Protoparvovirus Species 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 4
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical class [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 4
- 239000005516 coenzyme A Substances 0.000 description 4
- 229940093530 coenzyme a Drugs 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 4
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical compound C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 150000003346 selenoethers Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical compound OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 description 4
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- 241000218631 Coniferophyta Species 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 241000709661 Enterovirus Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 241000588747 Klebsiella pneumoniae Species 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 241000218922 Magnoliophyta Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241001263478 Norovirus Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 241000286209 Phasianidae Species 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 241000282887 Suidae Species 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002591 computed tomography Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000009313 farming Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229960000587 glutaral Drugs 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000004579 marble Substances 0.000 description 3
- 229910052976 metal sulfide Inorganic materials 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000712 poly(acrylamide-co-diallyldimethylammonium chloride) Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 2
- JJWJFWRFHDYQCN-UHFFFAOYSA-J 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylate;ruthenium(2+);tetrabutylazanium;dithiocyanate Chemical compound [Ru+2].[S-]C#N.[S-]C#N.CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC.OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C([O-])=O)=C1.OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C([O-])=O)=C1 JJWJFWRFHDYQCN-UHFFFAOYSA-J 0.000 description 2
- CRAXKQYYMORDPI-UHFFFAOYSA-N 2-(4-carboxypyridin-2-yl)pyridine-4-carboxylic acid;ruthenium Chemical compound [Ru].OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1.OC(=O)C1=CC=NC(C=2N=CC=C(C=2)C(O)=O)=C1 CRAXKQYYMORDPI-UHFFFAOYSA-N 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 2
- NCKMMSIFQUPKCK-UHFFFAOYSA-N 2-benzyl-4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1CC1=CC=CC=C1 NCKMMSIFQUPKCK-UHFFFAOYSA-N 0.000 description 2
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- ZAFJUCKHIVBFIV-QGOAFFKASA-N CC1(C)CCN2CCC(C)(C)C(C=3OC4=O)=C2C1=CC=3C=C4C(S1)=CC=C1C1=CC=C(\C=C(/C#N)C(O)=O)S1 Chemical compound CC1(C)CCN2CCC(C)(C)C(C=3OC4=O)=C2C1=CC=3C=C4C(S1)=CC=C1C1=CC=C(\C=C(/C#N)C(O)=O)S1 ZAFJUCKHIVBFIV-QGOAFFKASA-N 0.000 description 2
- GZIOPASHOUHBJY-LFIBNONCSA-N CC1(C)CCN2CCC(C)(C)C(C=3OC4=O)=C2C1=CC=3C=C4C1=CC=C(\C=C(/C#N)C(O)=O)S1 Chemical compound CC1(C)CCN2CCC(C)(C)C(C=3OC4=O)=C2C1=CC=3C=C4C1=CC=C(\C=C(/C#N)C(O)=O)S1 GZIOPASHOUHBJY-LFIBNONCSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 241000272201 Columbiformes Species 0.000 description 2
- 240000000491 Corchorus aestuans Species 0.000 description 2
- 235000011777 Corchorus aestuans Nutrition 0.000 description 2
- 235000010862 Corchorus capsularis Nutrition 0.000 description 2
- 241000709687 Coxsackievirus Species 0.000 description 2
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000588915 Klebsiella aerogenes Species 0.000 description 2
- 241000714216 Levivirus Species 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920000153 Povidone-iodine Polymers 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 230000000386 athletic effect Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- RFVVBBUVWAIIBT-UHFFFAOYSA-N beryllium nitrate Chemical compound [Be+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O RFVVBBUVWAIIBT-UHFFFAOYSA-N 0.000 description 2
- KQHXBDOEECKORE-UHFFFAOYSA-L beryllium sulfate Chemical compound [Be+2].[O-]S([O-])(=O)=O KQHXBDOEECKORE-UHFFFAOYSA-L 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 231100000481 chemical toxicant Toxicity 0.000 description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229960000956 coumarin Drugs 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 230000006196 deacetylation Effects 0.000 description 2
- 238000003381 deacetylation reaction Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 229960004670 didecyldimethylammonium chloride Drugs 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 229940092559 enterobacter aerogenes Drugs 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 239000010438 granite Substances 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 210000003709 heart valve Anatomy 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 2
- 229960004068 hexachlorophene Drugs 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 238000010316 high energy milling Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 208000037797 influenza A Diseases 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 244000000010 microbial pathogen Species 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 239000011858 nanopowder Substances 0.000 description 2
- 201000009240 nasopharyngitis Diseases 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 150000004291 polyenes Chemical class 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 235000013594 poultry meat Nutrition 0.000 description 2
- 229960001621 povidone-iodine Drugs 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Chemical compound [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 2
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Chemical compound [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- IQVLXQGNLCPZCL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2,6-bis[(2-methylpropan-2-yl)oxycarbonylamino]hexanoate Chemical compound CC(C)(C)OC(=O)NCCCCC(NC(=O)OC(C)(C)C)C(=O)ON1C(=O)CCC1=O IQVLXQGNLCPZCL-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- BTWNEJOURYOHME-UHFFFAOYSA-N 1,3-thiazol-2-ylhydrazine Chemical compound NNC1=NC=CS1 BTWNEJOURYOHME-UHFFFAOYSA-N 0.000 description 1
- HNTGIJLWHDPAFN-UHFFFAOYSA-N 1-bromohexadecane Chemical compound CCCCCCCCCCCCCCCCBr HNTGIJLWHDPAFN-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- HEBRBFLYMOGEJY-UHFFFAOYSA-N 2-[3-aminopropyl(dodecyl)amino]acetic acid Chemical compound CCCCCCCCCCCCN(CC(O)=O)CCCN HEBRBFLYMOGEJY-UHFFFAOYSA-N 0.000 description 1
- BQQVEASFNMRTBA-UHFFFAOYSA-N 2-[4-(3-aminopropyl)piperazin-1-yl]ethanol Chemical compound NCCCN1CCN(CCO)CC1 BQQVEASFNMRTBA-UHFFFAOYSA-N 0.000 description 1
- QEGKXSHUKXMDRW-UHFFFAOYSA-N 2-chlorosuccinic acid Chemical compound OC(=O)CC(Cl)C(O)=O QEGKXSHUKXMDRW-UHFFFAOYSA-N 0.000 description 1
- WBPWDGRYHFQTRC-UHFFFAOYSA-N 2-ethoxycyclohexan-1-one Chemical compound CCOC1CCCCC1=O WBPWDGRYHFQTRC-UHFFFAOYSA-N 0.000 description 1
- NYEZZYQZRQDLEH-UHFFFAOYSA-N 2-ethyl-4,5-dihydro-1,3-oxazole Chemical compound CCC1=NCCO1 NYEZZYQZRQDLEH-UHFFFAOYSA-N 0.000 description 1
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 1
- CFEMBVVZPUEPPP-UHFFFAOYSA-N 2-methylbuta-1,3-diene;prop-2-enenitrile Chemical compound C=CC#N.CC(=C)C=C CFEMBVVZPUEPPP-UHFFFAOYSA-N 0.000 description 1
- UYKWDAPDQOLFRV-UHFFFAOYSA-N 2-methyloxirane;molecular iodine;oxirane Chemical compound II.C1CO1.CC1CO1 UYKWDAPDQOLFRV-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- WQVPMJYORBZJIU-UHFFFAOYSA-N 3,4-dihydroxyfuran-2,5-dicarboxylic acid Chemical compound OC(=O)C=1OC(C(O)=O)=C(O)C=1O WQVPMJYORBZJIU-UHFFFAOYSA-N 0.000 description 1
- OMEFLKJMLJSDTO-UHFFFAOYSA-N 3,4-dihydroxyoxolane-2,5-dicarboxylic acid Chemical compound OC1C(O)C(C(O)=O)OC1C(O)=O OMEFLKJMLJSDTO-UHFFFAOYSA-N 0.000 description 1
- YALKQBRWLMDVSA-UHFFFAOYSA-N 3,5-dibromo-2-hydroxy-n-phenylbenzamide Chemical compound OC1=C(Br)C=C(Br)C=C1C(=O)NC1=CC=CC=C1 YALKQBRWLMDVSA-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical group OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- ZQHYXNSQOIDNTL-UHFFFAOYSA-N 3-hydroxyglutaric acid Chemical compound OC(=O)CC(O)CC(O)=O ZQHYXNSQOIDNTL-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XPDVQPODLRGWPL-UHFFFAOYSA-N 4-(dichlorosulfamoyl)benzoic acid Chemical compound OC(=O)C1=CC=C(S(=O)(=O)N(Cl)Cl)C=C1 XPDVQPODLRGWPL-UHFFFAOYSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- CTFFKFYWSOSIAA-UHFFFAOYSA-N 5-bromo-n-(4-bromophenyl)-2-hydroxybenzamide Chemical compound OC1=CC=C(Br)C=C1C(=O)NC1=CC=C(Br)C=C1 CTFFKFYWSOSIAA-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- FTGPOQQGJVJDCT-UHFFFAOYSA-N 9-aminoacridine hydrochloride Chemical compound Cl.C1=CC=C2C(N)=C(C=CC=C3)C3=NC2=C1 FTGPOQQGJVJDCT-UHFFFAOYSA-N 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- 241000251169 Alopias vulpinus Species 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 241000722957 Amborella Species 0.000 description 1
- 241000722956 Amborella trichopoda Species 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 241001547066 Ascarina Species 0.000 description 1
- 241001622882 Austrobaileyales Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 208000031729 Bacteremia Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000157302 Bison bison athabascae Species 0.000 description 1
- 240000008564 Boehmeria nivea Species 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- JMHWNJGXUIJPKG-UHFFFAOYSA-N CC(=O)O[SiH](CC=C)OC(C)=O Chemical compound CC(=O)O[SiH](CC=C)OC(C)=O JMHWNJGXUIJPKG-UHFFFAOYSA-N 0.000 description 1
- 208000019300 CLIPPERS Diseases 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004151 Calcium iodate Substances 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 241001466804 Carnivora Species 0.000 description 1
- 241000723418 Carya Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000209441 Ceratophyllum Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 201000006082 Chickenpox Diseases 0.000 description 1
- 241000039469 Chloranthales Species 0.000 description 1
- 241000721167 Chloranthus Species 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 235000019743 Choline chloride Nutrition 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XFTRTWQBIOMVPK-YFKPBYRVSA-N Citramalic acid Natural products OC(=O)[C@](O)(C)CC(O)=O XFTRTWQBIOMVPK-YFKPBYRVSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000480069 Cochlospermum religiosum Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000203572 Cycadidae Species 0.000 description 1
- ZPAKUZKMGJJMAA-UHFFFAOYSA-N Cyclohexane-1,2,4,5-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)CC1C(O)=O ZPAKUZKMGJJMAA-UHFFFAOYSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- 241000271571 Dromaius novaehollandiae Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010014199 Eczema infected Diseases 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- 241000203570 Ginkgoidae Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000203591 Gnetidae Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 241000735383 Hedyosmum Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000224421 Heterolobosea Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 235000008227 Illicium verum Nutrition 0.000 description 1
- 240000007232 Illicium verum Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000002979 Influenza in Birds Diseases 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 244000147568 Laurus nobilis Species 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- UILOTUUZKGTYFQ-UHFFFAOYSA-N Mafenide acetate Chemical compound CC(O)=O.NCC1=CC=C(S(N)(=O)=O)C=C1 UILOTUUZKGTYFQ-UHFFFAOYSA-N 0.000 description 1
- 241000218378 Magnolia Species 0.000 description 1
- 241000616993 Magnoliidae Species 0.000 description 1
- 241000220225 Malus Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 241000272458 Numididae Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 241000209490 Nymphaea Species 0.000 description 1
- 235000016791 Nymphaea odorata subsp odorata Nutrition 0.000 description 1
- 241000039470 Nymphaeales Species 0.000 description 1
- 241000233855 Orchidaceae Species 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000287858 Pavo cristatus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 241000218633 Pinidae Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 235000016976 Quercus macrolepis Nutrition 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000736026 Sarcandra Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 229920001872 Spider silk Polymers 0.000 description 1
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000272534 Struthio camelus Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241001493546 Suina Species 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 206010046980 Varicella Diseases 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 229920001617 Vinyon Polymers 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 206010048038 Wound infection Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- DUDJJJCZFBPZKW-UHFFFAOYSA-N [Ru]=S Chemical compound [Ru]=S DUDJJJCZFBPZKW-UHFFFAOYSA-N 0.000 description 1
- VJIZLUGQDHCIHL-UHFFFAOYSA-N [Ru]=[Se] Chemical compound [Ru]=[Se] VJIZLUGQDHCIHL-UHFFFAOYSA-N 0.000 description 1
- SAUAUKZRTZELLP-UHFFFAOYSA-N [Se-2].[Ti+4].[Cu+2].[Se-2].[Se-2] Chemical compound [Se-2].[Ti+4].[Cu+2].[Se-2].[Se-2] SAUAUKZRTZELLP-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical class 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940008232 aminacrine hydrochloride Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000002669 amniocentesis Methods 0.000 description 1
- 210000003001 amoeba Anatomy 0.000 description 1
- CKGWFZQGEQJZIL-UHFFFAOYSA-N amylmetacresol Chemical compound CCCCCC1=CC=C(C)C=C1O CKGWFZQGEQJZIL-UHFFFAOYSA-N 0.000 description 1
- 210000000077 angora Anatomy 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 229920001448 anionic polyelectrolyte Polymers 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001166 anti-perspirative effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229920002118 antimicrobial polymer Polymers 0.000 description 1
- 239000003213 antiperspirant Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 206010064097 avian influenza Diseases 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 1
- 229910001620 barium bromide Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- SGUXGJPBTNFBAD-UHFFFAOYSA-L barium iodide Chemical compound [I-].[I-].[Ba+2] SGUXGJPBTNFBAD-UHFFFAOYSA-L 0.000 description 1
- 229910001638 barium iodide Inorganic materials 0.000 description 1
- 229940075444 barium iodide Drugs 0.000 description 1
- ONPIOWQPHWNPOQ-UHFFFAOYSA-L barium(2+);dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [Ba+2].[O-]S([O-])(=O)=S ONPIOWQPHWNPOQ-UHFFFAOYSA-L 0.000 description 1
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- QNSOHXTZPUMONC-UHFFFAOYSA-N benzene pentacarboxylic acid Natural products OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O QNSOHXTZPUMONC-UHFFFAOYSA-N 0.000 description 1
- NHDLVKOYPQPGNT-UHFFFAOYSA-N benzene-1,2,3,5-tetracarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1 NHDLVKOYPQPGNT-UHFFFAOYSA-N 0.000 description 1
- XKXHCNPAFAXVRZ-UHFFFAOYSA-N benzylazanium;chloride Chemical compound [Cl-].[NH3+]CC1=CC=CC=C1 XKXHCNPAFAXVRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229940064804 betadine Drugs 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- KDAKOPXAEMJUSU-UHFFFAOYSA-N bis(selanylidene)manganese Chemical compound [Se]=[Mn]=[Se] KDAKOPXAEMJUSU-UHFFFAOYSA-N 0.000 description 1
- ROUIDRHELGULJS-UHFFFAOYSA-N bis(selanylidene)tungsten Chemical compound [Se]=[W]=[Se] ROUIDRHELGULJS-UHFFFAOYSA-N 0.000 description 1
- NFMAZVUSKIJEIH-UHFFFAOYSA-N bis(sulfanylidene)iron Chemical compound S=[Fe]=S NFMAZVUSKIJEIH-UHFFFAOYSA-N 0.000 description 1
- 235000013614 black pepper Nutrition 0.000 description 1
- 208000037815 bloodstream infection Diseases 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 229960002645 boric acid Drugs 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 235000012745 brilliant blue FCF Nutrition 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical class CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical group [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 229940059251 calcium bromide Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- UHWJJLGTKIWIJO-UHFFFAOYSA-L calcium iodate Chemical compound [Ca+2].[O-]I(=O)=O.[O-]I(=O)=O UHWJJLGTKIWIJO-UHFFFAOYSA-L 0.000 description 1
- 235000019390 calcium iodate Nutrition 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000002729 catgut Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000011093 chipboard Substances 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229960005443 chloroxylenol Drugs 0.000 description 1
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 1
- 229960003178 choline chloride Drugs 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 208000021930 chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids Diseases 0.000 description 1
- GTZCVFVGUGFEME-HNQUOIGGSA-N cis-Aconitic acid Natural products OC(=O)C\C(C(O)=O)=C/C(O)=O GTZCVFVGUGFEME-HNQUOIGGSA-N 0.000 description 1
- XFTRTWQBIOMVPK-UHFFFAOYSA-N citramalic acid Chemical compound OC(=O)C(O)(C)CC(O)=O XFTRTWQBIOMVPK-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 1
- QVYIMIJFGKEJDW-UHFFFAOYSA-N cobalt(ii) selenide Chemical compound [Se]=[Co] QVYIMIJFGKEJDW-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- ICDSPCREXLHCQV-UHFFFAOYSA-N cyclobutane-1,1,3,3-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CC(C(O)=O)(C(O)=O)C1 ICDSPCREXLHCQV-UHFFFAOYSA-N 0.000 description 1
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 1
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical group CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229950005821 dibromsalan Drugs 0.000 description 1
- IOMDIVZAGXCCAC-UHFFFAOYSA-M diethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](CC)(CC)CC=C IOMDIVZAGXCCAC-UHFFFAOYSA-M 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YRHAJIIKYFCUTG-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;bromide Chemical compound [Br-].C=CC[N+](C)(C)CC=C YRHAJIIKYFCUTG-UHFFFAOYSA-M 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 description 1
- KDSXXMBJKHQCAA-UHFFFAOYSA-N disilver;selenium(2-) Chemical compound [Se-2].[Ag+].[Ag+] KDSXXMBJKHQCAA-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000007937 eating Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N ethyl formate Chemical compound CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000002618 extracorporeal membrane oxygenation Methods 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- FOYKKGHVWRFIBD-UHFFFAOYSA-N gamma-tocopherol acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 FOYKKGHVWRFIBD-UHFFFAOYSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 229910052631 glauconite Inorganic materials 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940074046 glyceryl laurate Drugs 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000003370 grooming effect Effects 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 239000008266 hair spray Substances 0.000 description 1
- 229960001648 halazone Drugs 0.000 description 1
- ZFSXZJXLKAJIGS-UHFFFAOYSA-N halocarban Chemical compound C1=C(Cl)C(C(F)(F)F)=CC(NC(=O)NC=2C=CC(Cl)=CC=2)=C1 ZFSXZJXLKAJIGS-UHFFFAOYSA-N 0.000 description 1
- 229950006625 halocarban Drugs 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 229930194951 hedyosmum Natural products 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical class ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- STANDTQHKUAYEO-UHFFFAOYSA-N hypochlorous acid;4-tetradecylbenzenesulfonic acid Chemical compound ClO.CCCCCCCCCCCCCCC1=CC=C(S(O)(=O)=O)C=C1 STANDTQHKUAYEO-UHFFFAOYSA-N 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- AKUCEXGLFUSJCD-UHFFFAOYSA-N indium(3+);selenium(2-) Chemical compound [Se-2].[Se-2].[Se-2].[In+3].[In+3] AKUCEXGLFUSJCD-UHFFFAOYSA-N 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 125000001905 inorganic group Chemical group 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000339 iron disulfide Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- WALCGGIJOOWJIN-UHFFFAOYSA-N iron(ii) selenide Chemical compound [Se]=[Fe] WALCGGIJOOWJIN-UHFFFAOYSA-N 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007934 lip balm Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229960002721 mafenide acetate Drugs 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 229960003390 magnesium sulfate Drugs 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- UYNRPXVNKVAGAN-UHFFFAOYSA-L magnesium;diiodate Chemical compound [Mg+2].[O-]I(=O)=O.[O-]I(=O)=O UYNRPXVNKVAGAN-UHFFFAOYSA-L 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- SQFDQLBYJKFDDO-UHFFFAOYSA-K merbromin Chemical compound [Na+].[Na+].C=12C=C(Br)C(=O)C=C2OC=2C([Hg]O)=C([O-])C(Br)=CC=2C=1C1=CC=CC=C1C([O-])=O SQFDQLBYJKFDDO-UHFFFAOYSA-K 0.000 description 1
- 229960002782 merbromin Drugs 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 229950003401 metabromsalan Drugs 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 229940124561 microbicide Drugs 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000000050 mohair Anatomy 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 235000012459 muffins Nutrition 0.000 description 1
- NALMPLUMOWIVJC-UHFFFAOYSA-N n,n,4-trimethylbenzeneamine oxide Chemical compound CC1=CC=C([N+](C)(C)[O-])C=C1 NALMPLUMOWIVJC-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 description 1
- 229960001907 nitrofurazone Drugs 0.000 description 1
- UEHLXXJAWYWUGI-UHFFFAOYSA-M nitromersol Chemical compound CC1=CC=C([N+]([O-])=O)C2=C1O[Hg]2 UEHLXXJAWYWUGI-UHFFFAOYSA-M 0.000 description 1
- 229940118238 nitromersol Drugs 0.000 description 1
- 229920006113 non-polar polymer Polymers 0.000 description 1
- 231100000065 noncytotoxic Toxicity 0.000 description 1
- 230000002020 noncytotoxic effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- UFOIOXZLTXNHQH-UHFFFAOYSA-N oxolane-2,3,4,5-tetracarboxylic acid Chemical compound OC(=O)C1OC(C(O)=O)C(C(O)=O)C1C(O)=O UFOIOXZLTXNHQH-UHFFFAOYSA-N 0.000 description 1
- 229940067767 oxychlorosene Drugs 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000329 polyazepine Polymers 0.000 description 1
- 229920000323 polyazulene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000013460 polyoxometalate Substances 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- MOVRCMBPGBESLI-UHFFFAOYSA-N prop-2-enoyloxysilicon Chemical compound [Si]OC(=O)C=C MOVRCMBPGBESLI-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- ZZPKZRHERLGEKA-UHFFFAOYSA-N resorcinol monoacetate Chemical compound CC(=O)OC1=CC=CC(O)=C1 ZZPKZRHERLGEKA-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 1
- 229910000344 rubidium sulfate Inorganic materials 0.000 description 1
- GANPIEKBSASAOC-UHFFFAOYSA-L rubidium(1+);sulfate Chemical compound [Rb+].[Rb+].[O-]S([O-])(=O)=O GANPIEKBSASAOC-UHFFFAOYSA-L 0.000 description 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- IRPLSAGFWHCJIQ-UHFFFAOYSA-N selanylidenecopper Chemical compound [Se]=[Cu] IRPLSAGFWHCJIQ-UHFFFAOYSA-N 0.000 description 1
- QHASIAZYSXZCGO-UHFFFAOYSA-N selanylidenenickel Chemical compound [Se]=[Ni] QHASIAZYSXZCGO-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- VIDTVPHHDGRGAF-UHFFFAOYSA-N selenium sulfide Chemical compound [Se]=S VIDTVPHHDGRGAF-UHFFFAOYSA-N 0.000 description 1
- 229960005265 selenium sulfide Drugs 0.000 description 1
- HQASLXJEKYYFNY-UHFFFAOYSA-N selenium(2-);titanium(4+) Chemical compound [Ti+4].[Se-2].[Se-2] HQASLXJEKYYFNY-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 239000008257 shaving cream Substances 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 206010040872 skin infection Diseases 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229940083542 sodium Drugs 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000011697 sodium iodate Substances 0.000 description 1
- 235000015281 sodium iodate Nutrition 0.000 description 1
- 229940032753 sodium iodate Drugs 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940030998 streptococcus agalactiae Drugs 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- YJPVTCSBVRMESK-UHFFFAOYSA-L strontium bromide Chemical compound [Br-].[Br-].[Sr+2] YJPVTCSBVRMESK-UHFFFAOYSA-L 0.000 description 1
- 229910001625 strontium bromide Inorganic materials 0.000 description 1
- 229940074155 strontium bromide Drugs 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- KRIJWFBRWPCESA-UHFFFAOYSA-L strontium iodide Chemical compound [Sr+2].[I-].[I-] KRIJWFBRWPCESA-UHFFFAOYSA-L 0.000 description 1
- 229910001643 strontium iodide Inorganic materials 0.000 description 1
- HKSVWJWYDJQNEV-UHFFFAOYSA-L strontium;hydron;phosphate Chemical compound [Sr+2].OP([O-])([O-])=O HKSVWJWYDJQNEV-UHFFFAOYSA-L 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000010677 tea tree oil Substances 0.000 description 1
- 229940111630 tea tree oil Drugs 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- MRXYMLOJPVRIMT-UHFFFAOYSA-N trinitrooxymethyl nitrate Chemical compound [O-][N+](=O)OC(O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O MRXYMLOJPVRIMT-UHFFFAOYSA-N 0.000 description 1
- UJMBCXLDXJUMFB-UHFFFAOYSA-K trisodium;5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)diazenyl]-4h-pyrazole-3-carboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-UHFFFAOYSA-K 0.000 description 1
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000005050 vinyl trichlorosilane Substances 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- 229940063789 zinc sulfide Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/34—Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N33/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
- A01N33/02—Amines; Quaternary ammonium compounds
- A01N33/12—Quaternary ammonium compounds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/22—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients stabilising the active ingredients
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/24—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients to enhance the sticking of the active ingredients
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/32—Ingredients for reducing the noxious effect of the active substances to organisms other than pests, e.g. toxicity reducing compositions, self-destructing compositions
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N33/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/36—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/29—Titanium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/36—Carboxylic acids; Salts or anhydrides thereof
- A61K8/365—Hydroxycarboxylic acids; Ketocarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8141—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- A61K8/8158—Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/817—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/005—Antimicrobial preparations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L39/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D139/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/54—Polymers characterized by specific structures/properties
- A61K2800/542—Polymers characterized by specific structures/properties characterized by the charge
- A61K2800/5424—Polymers characterized by specific structures/properties characterized by the charge anionic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/54—Polymers characterized by specific structures/properties
- A61K2800/542—Polymers characterized by specific structures/properties characterized by the charge
- A61K2800/5426—Polymers characterized by specific structures/properties characterized by the charge cationic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/594—Mixtures of polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Plant Pathology (AREA)
- Dentistry (AREA)
- Pest Control & Pesticides (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Dispersion Chemistry (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Catalysts (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Medicinal Preparation (AREA)
Abstract
Provided is a polymer-based antimicrobial composition that is non-toxic, water soluble, and that mitigates the transmission of infectious diseases from surfaces. The composition comprises a cationic polymer, at least one adhesion promoter, optionally organic and/or inorganic particles that are photocatalytically active in visible light, and a carrier, in which the components of the composition are not covalently bound to one another. Also provided is an antimicrobial composition that comprises at least (i) a polyethylenimine-based polymer and a carrier or (ii) an organic and/or inorganic particle that is photocatalytically active in visible light, an adhesion promoter, and a carrier. The antimicrobial compositions can be applied to disinfect a surface and to form residual self-sanitizing films on the surface that are removable.
Description
POLYMER-BASED ANTIMICROBIAL COMPOSITIONS AND METHODS OF USE
THEREOF
BACKGROUND OF THE INVENTION
[0001] Infectious diseases kill more people worldwide each year than any other single cause. Minimizing infections caused by pathogenic microorganisms is a great concern in many fields, particularly in medical devices, drugs, hospital surfaces/fumiture, dental restoration and surgery equipment, healthcare products and hygienic applications, water purification systems, textiles, food packaging and storage, industrial or domestic appliances, aeronautics, etc. Particularly in hospitals, great efforts and significant costs are incurred in the fight against infections.
[0002] Infections are produced by touching, eating, drinking, or breathing something that contains a pathogen. It is estimated that 80% of human infections occur as a result of contact with microbe-contaminated surfaces (Salwiczek et al., Trends Biotechnol 32: 82-90 (2014)). Generally, these infections are combated with antimicrobial agents that target the pathogen. Particularly problematic, however, are the microorganisms that can rapidly and easily mutate their genes to become resistant to these agents, making their elimination difficult. For instance, Staphylococcus aureus (S. aureus) commonly colonizes human skin and mucosa without causing severe problems, but if the bacteria enter the body, illnesses that range from mild to life-threatening can develop, including skin and wound infections, infected eczema, abscess infections, heart valve infections or endocarditis, pneumonia, and bloodstream infections or bacteraemia. Some S. aureus are resistant to methicillin and other β-lactam antibiotics—methicillin-resistant S. aureus (MRSA)—and require alternative types of antibiotics to treat them. Moreover, the spore-forming Clostridium difficile (C. difficile), an intestinal superbug causing symptoms ranging from diarrhea to life-threatening inflammation of the colon, is the most common bacterial infection acquired in hospitals.
[0003] Over the past several years, there have been a growing number of researchers working on new antimicrobial systems aimed at helping to mitigate, combat and/or eradicate costly debilitating infections. Much of this research has focused on polymers due to their intrinsic properties: polymers can act as a matrix for holding antimicrobial agents and their characteristics, such as their hydrophilicity and/or molecular weight, can have a great influence on the resulting antimicrobial activity. Therefore, the use of polymeric materials with antimicrobial properties has attracted increasing interest from both the academic and industrial community.
[0004] Known antimicrobial polymer coatings have been prepared by impregnating, adsorbing, or covalently attaching antimicrobial agents to various surfaces in order to provide a filmed layer. For example: U.S. Patent 9,127,173 discloses preparing a layer by layer coating on a substrate, in which the coating comprises quaternary amine groups that impart antibacterial properties to the substrate. Non-leaching surfaces are often considered preferable because microbes are exposed to high surface concentrations of the antimicrobial agent compared with slow-release surfaces. Moreover, leaching surfaces make it difficult to pass the Environmental Protection Agency (EPA) cytotoxicity tests. As a general rule, nonleaching antimicrobial coatings and preparation methodologies are extremely complex and impractical for large-scale production and commercialization. Furthermore, this technique is generally surface specific. Alternative approaches to the preparation of antimicrobial coatings include the use of coatings that are non-covalently linked to the surface. However, similar to the covalently linked coatings, these methodologies generally require complex multiple synthetic steps and need to be adjusted for coating different substrates, thus making them impractical for commercial use.
[0005] Therefore, despite active research in this area, there remains a need for novel antimicrobial materials that exhibit broad-spectrum antimicrobial activity and that can easily be adapted to the complexity of different environments (e.g., homes, healthcare providers, schools, agriculture), surfaces (e.g., wood, stainless steel, marble, glass, and textiles), and applications (e.g., food packaging, water or air filters, or even protecting fruits and vegetables). In addition, such an antimicrobial residual self-sanitizing film or coating should ideally provide a very high kill rate, be viable for weeks, be non-toxic yet easily removed. It would also be desirable to have a versatile and inexpensive process for preparing such surface coatings on a commercial scale.
BRIEF SUMMARY OF THE INVENTION
[0006] The invention is predicated on a polymer-based antimicrobial composition that is non-toxic, water soluble, and that significantly mitigates the transmission of infectious diseases from surfaces, such as glass, plastic, granite, and metallic substrates as well as skin. The polymers used in the compositions are capable of serving two functions: (i) the ability to disinfect surfaces by killing existing germs (kill-now); and (ii) providing a removable, residual self-sanitizing film that prevents future microbial growth (kill-later). The polymer-based composition is effective against bacteria, viruses, and spores, including Clostridium difficile (C. difficile). Additionally, unlike most commercial disinfectants the polymer-based composition inactivates non-enveloped viruses, which typically are the cause of the common cold and gastro-intestinal flu. Because the antimicrobial composition does not require germicidal chemicals or metals, the composition is safe for humans, animals, and the environment, unlike many other commercial disinfectants.
[0007] The invention provides a polymer-based antimicrobial composition comprising a cationic polymer, at least one adhesion promoter, a carrier, and optionally organic and/or inorganic particles that are photocatalytically active in visible light, wherein the components of the composition are not covalently bound to one another. The antimicrobial composition is in accordance with at least one of the following tests: (i) a germicidal spray test according to American Society for Testing and Materials (ASTM) international method El 153 that meets the EPA requirement of log 3 reduction for viruses and a log 5 reduction for bacteria, (ii) a suspension test according to ASTM international method E1052-96 (2002) or ASTM international method E2315 (2016), (iii) a film formed from the composition kills (iii-a) at least 95% of log 5 population of a gram positive or gram negative bacteria in 30 minutes, (iii-b) at least 95% of log 4 population of an enveloped virus within 30 minutes of contact of contact, (iii-c) at least 95% of a non-enveloped virus within 30 minutes of contact, and/or (iii-d) at least 94% of a log 4 population of Clostridium difficile bacteria within 24 hours of contact, in accordance with Japanese Industrial Standard (JIS) Z 2801 (2006) test for antimicrobial activity, or a modified version of such test as described herein, (iv) a film formed from the composition has a value of 2 or less according to International Organization for Standardization (ISO) 10993-5 in vitro cytotoxicity test, (v) a durability test selected from either (v-a) a film formed from the composition kills at least 99.9% of gram-positive bacteria and gram-negative bacteria according to EPA Protocol # 01-1A residual self-sanitizing activity test, or (v-b) waiting 7 days after film formation, a film formed from the composition kills at least 95% of gram-positive bacteria and gram-negative bacteria, or enveloped and non-enveloped viruses according a modified version of Protocol # 01-1A residual self-sanitizing activity test, as described herein.
[0008] The invention also provides a method of killing microbes on a surface comprising applying to the surface the antimicrobial composition comprising a cationic polymer, at least one adhesion promoter, a carrier, and optionally organic and/or inorganic particles that are photocatalyically active in visible light.
[0009] The invention further provides a method of killing microbes on a surface comprising applying to the surface an antimicrobial composition comprising a high molecular weight polydiallyldimethylammonium salt and a carrier.
[0010] The invention further provides a composition comprising a polyethylenimine-based polymer, optionally a second cationic polymer selected from a polydiallyldialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium halide), chitosan, or a combination thereof, optionally a polyacid, and a carrier. Also provided is an antimicrobial composition comprising at least one organic and/or inorganic particle that is photocatalytically active in visible light, at least one adhesion promoter, and a carrier. These compositions can be used in a method of killing microbes on a surface.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 illustrates counter-ion exchange in the polydiallyldimethylammonium chloride (polyDADMAC) by LiTFSI in an embodiment of the invention.
[0012] FIG. 2A illustrates a small pore size from a filter comprising 5 pm glass that is not positively charged. FIG. 2B illustrates a filter comprising positively charged alumina with a larger pore size and a cationic polymer coupled to the alumina.
DETAILED DESCRIPTION OF THE INVENTION
[0013] The invention provides a polymer-based antimicrobial composition comprising a cationic polymer, at least one adhesion promoter, optionally organic and/or inorganic particles that are photocatalytically active in visible light, and a carrier, wherein the components of the composition are not covalently bound to one another. The antimicrobial composition is in accordance with at least one of the following tests: (i) a germicidal spray test according to ASTM El 153 that meets the EPA requirement of log 3 reduction for viruses and a log 5 reduction for bacteria, (ii) a suspension test according to ASTM El052-96 (2002) or ASTM E2315 (2016), (iii) a film formed from the composition kills (iii-a) at least 95% of log 5 population of a gram positive or gram negative bacteria in 30 minutes, (iii-b) at least 95% of log 4 population of an enveloped virus within 30 minutes of contact of contact, (iii-c) at least 95% of a non-enveloped virus within 30 minutes of contact, and/or (iii-d) at least 94% of a log 4 population of Clostridium difficile bacteria within 24 hours of contact, in accordance with JIS Z 2801 (2006) test for antimicrobial activity, or a modified version of such test as described herein, (iv) a film formed from the composition has a value of 2 or less according to International Organization for Standardization (ISO) 10993-5 in vitro cytotoxicity test, (v) a durability test selected from either (v-a) a film formed from the composition kills at least 99.9% of gram-positive bacteria and gram-negative bacteria according to EPA Protocol # 01-1A residual self-sanitizing activity test, or (v-b) waiting 7 days after film formation, a film formed from the composition kills at least 95% of gram-positive bacteria and gram-negative bacteria, or enveloped and non-enveloped viruses according a modified version of Protocol # 01-1A residual self-sanitizing activity test, as described herein.
[0014] The effectiveness of the antimicrobial composition, described herein, is best viewed in terms of the following advantages. The composition has the ability to “kill now” when applied to a surface as a traditional disinfectant - even without the presence of conventional germicidal chemicals that can be toxic. The composition has the ability to “kill later,” i.e., to kill persistently (sanitize) into the future post-application by forming a residual self-sanitizing film that passes an EPA-acceptable durability test and EPA-approved toxicity tests, as described herein. The residual self-sanitizing film is removable with water (e.g., warm soapy water), alcohol, or a water-alcohol mixture. The technology is highly tunable because: i) the composition can be tuned to create films of various thicknesses, solvency, and adhesion, ii) one or more cationic polymers can be mixed in particular proportions so as to target specific pathogens and/or to design products with various cost profiles, and/or iii) the natural “kill-now” feature stemming from the cationic polymer can be augmented, if desired, by adding one or more conventional antimicrobial agents to the composition. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
[0015] The antimicrobial composition comprises at least one cationic polymer. The cationic polymer can be any suitable cationic polymer of a molecular weight and charge density that demonstrates an antimicrobial property and enables the composition or a film formed from the composition to pass at least one of tests (i)-(v). It was determined that charge density is influenced by the molecular weight and pH of the formulation. For example, charge tends to be increased with higher molecular weight. Alternatively, or in addition, charge tends to be increased with lower pH. Thus, the molecular weight and/or the pH can be modified to provide a desired charge density and/or antimicrobial activity.
Suitable molecular weights of various cationic polymers are described herein. The pH of the composition typically is less than about 7, such as a pH between about 3-7, more preferably a pH between about 4-6.
[0016] Without wishing to be bound to any particular theory, the cationic polymer is highly effective at, inter alia, targeting gram-positive and/or gram-negative bacteria and enveloped and non-enveloped viruses. In particular, it is believed that the positively charged polymer attracts and binds to a microbe particle, such as a virus particle. The polymer continues to encapsulate the microbe. Once the polymer fully encapsulates the microbe, the capsid is destroyed, which results in a harmless release of the genomic material.
[0017] Specific examples of a suitable cationic polymer include a polydiallyldialkylammonium salt, an acryloxyalkyltrialkylammonium salt (e.g., acryloxyethyltrimethylammonium halide, methacryloxyethyltrimethylammonium halide), a vinylphenalkyltrialkylammonium salt (e.g., vinylbenzyltrimethylammonium halide), an acrylamidoalkyltrialkylammonium salt (e.g., 3-acrylamido-3- methylbutyltrimethylammonium halide), a poly(acrylamide-6Y>-diallyldi alkyl ammonium salt) (e.g., poly(acrylamide-6o-diallyldimethylammonium chloride)), a polyethylenimine-based polymer, chitosan, or a combination thereof. In any of the foregoing polymers, each alkyl group is the same or different and is a straight chain Ci-6 or branched C3-6 (e.g., methyl, ethyl, t-butyl) group, and the salt is an anion, such as a halide (e.g., chloride, fluoride, bromide), a halide-containing anion (e.g., bis(triflouromethane)sulfonimide, trifluoroacetate), a sulfate, or a phosphate. Preferably, the cationic polymer is a polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide), a poly(acrylamide-co-diallyldialkylammonium halide) (e.g., poly(acrylamide-co-diallyldimethylammonium chloride)), and/or a polyethylenimine-based polymer (e.g., linear, non-chemically modified PEI). In some embodiments, the composition does not contain a bridged polycyclic compound (e.g., a cavitand structure), including a polymer-bound bridged polycyclic compound (e.g., a polymer-bound cavitand). In some embodiments, the cationic polymer is not a hybrid material that comprises one or more divalent metals and siloxane bridges.
[0018] In some instances, a combination of two or more cationic polymers selected from a polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide), an acryloxyalkyltrialkylammonium salt, a vinylphenalkyltrialkylammonium salt, an acrylamidoalkyltrialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium halide), a polyethylenimine-based polymer, and chitosan are used in the composition. In a particular embodiment, a polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide) is used in combination with a polyethylenimine-based polymer (e.g., a linear or branched polyethylenimine (PEI)). In a preferred embodiment, polydiallyldimethylammonium chloride or poly(aery 1 amide-co-dial 1 y 1 dialky 1 ammonium chloride) is used in combination with a non-chemically modified linear PEI.
[0019] The cationic polymer may or may not be used in concert with an anionic polymer to form a polyelectrolyte complex (PEC). As used herein, PEC refers to the complex that forms automatically upon addition of one or more cationic polymers in concert with one or more anionic polymers. A PEC typically is hydrophilic and tends to be water soluble. In some embodiments, the composition does not comprise an anionic polymer. When the cationic polymer is a polydiallyldialkylammonium salt (e.g., a polydiallyldialkylammonium halide), the formation of a PEC is optional, i.e., an anionic polymer is optional in the composition. In some embodiments, the composition does not comprise an anionic polymer in combination with a polydiallyldialkylammonium salt (e.g., a polydiallydimethylammonium halide).
[0020] In an embodiment, the cationic polymer is a polydiallyldialkylammonium salt, such as a polydiallyldialkylammonium halide (e.g., a halide or halide-containing anion), a polydiallyldialkylammonium sulfate, or polydiallyldialkylammonium phosphate. In the polydiallyldialkylammonium halide, the halide can be any suitable compound in which the anion is a halide or includes a halide (e.g., bis(triflouromethane)sulfonimide, trifluoroacetate), such as, polydiallyldimethylammonium fluoride, polydiallyldimethylammonium chloride, polydiallyldimethylammonium bromide, polydiallyldimethylammonium iodide, polydiallyldimethylammonium bis(triflouromethane)sulfonimide or a combination thereof. In preferred embodiments, the polydiallyldimethylammonium halide is polydiallyldimethylammonium fluoride, polydiallyldimethylammonium chloride (polyDADMAC), or a mixture of polydiallyldimethylammonium chloride and polydiallyldimethylammonium fluoride and/or polydiallyldimethylammonium bis(triflouromethane)sulfonimide.
[0021] Preferred polydiallyldialkylammonium salts are those polymers made from polymerization of diallyldialkylammonium compounds, which can be represented by the following formula:
in which Ri and R2 are the same or different and each is hydrogen or C1-C6 alkyl; R3 and R4 are, independently, hydrogen or an alkyl, hydroxyalkyl, carboxyalkyl, carboxyamidalkyl or alkoxyalkyl group with 1 to 12 carbon atoms; and Y' represents an anion such as a halide, a halide-containing anion (e g., bis(triflouromethane)sulfonimide), a sulfate, or a phosphate. Examples of the preferred diallydialkylammonium monomer include diallyldimethylammonium chloride (DADMAC), diallyldimethylammonium fluoride, diallyldimethylammonium bis(triflouromethane)sulfonimide, diallyldimethylammonium bromide, diallyldimethylammonium sulfate, diallyldimethylammonium phosphate, dimethyallyldimethylammonium chloride, dimethyallyldimethylammonium fluoride, dimethyallyldimethylammonium bis(triflouromethane)sulfonimide, diethylallyldimethylammonium chloride, diethylallyldimethylammonium fluoride, diethylallyldimethylammonium bis(triflouromethane)sulfonimide, diallyldi(beta-hydroxyethyl)ammonium chloride, diallyldi(beta-hydroxyethyl)ammonium fluoride, diallyldi(beta-hydroxyethyl)ammonium bis(triflouromethane)sulfonimide, diallyldi(beta-ethoxyethyl)ammonium chloride, diallyldi(beta-ethoxyethyl)ammonium fluoride, diallyldi(beta-ethoxyethyl)ammonium bis(triflouromethane)sulfonimide, diallyldiethylammonium chloride, diallyldiethylammonium fluoride, and diallyldiethylammonium bis(triflouromethane)sulfonimide. In a preferred embodiment, the cationic polymer is polyDADMAC.
[0022] In a particular embodiment, some of the polyDADMAC molecular chloride counterions can be converted into insoluble fluoride-containing counterions. Such conversion can occur, for example, by adding a dilute mixture of lithium bis(triflouromethane)sulfonimide (LiTFSI). LiTFSI, as well as polyDADMAC, bears electrostatic charges that endows the moiety with a (poly)electrolyte behavior in solution.
This counter-ion exchange in the polyDADMAC by LiTFSI is illustrated in FIG. 1. LiTFSI is known to have a good solubility and stability in water. The reaction of exchange consists of mixing two solutions: one containing the positively charged polyDADMAC and the other containing the negatively charged TFSI' anions. When a sufficient fraction of the polymer counter-anions has been exchanged for TFSI' anions, the polymer becomes insoluble, and precipitates from the solution. TFSI' anions in the solution either can be linked to a polymer chain or can be part of a micelle. The present invention seeks to use the ion-exchange strategy to create only enough micelles to slightly decrease the solubility of the cationic polymer whether used by itself or in a PEC film. The addition of the TFSI' anions decrease the polymer’s solubility but increases the resulting film’s durability relative to the EPA Protocol # 01-1A residual self-sanitizing activity test, or a modification thereof, as described herein. Desired solubility is achieved by experimentally determining the amount of TFSI' that will yield the desired reduction in solubility. In a specific example, the following steps can be used: 1) initially reduce the water added to the polyDADMAC solution by 125 ml; 2) create a dilute solution of TFSI by mixing into the solution 0.125 to 0.250 grams of TFSI for every 2.4 gram of polyDADMAC; then 3) drizzle this dilute solution into the polyDADMAC solution. The method is carried out at room temperature with vigorous stirring for 24 hours, which is necessary to ensure a homogeneous distribution. This mixture can, if desired, be used to create a PEC with one or more anionic polymers. If a PEC is desired in such an embodiment, the partial replacement of the CT counter ions in the water-soluble polyDADMAC is achieved by adding a dilute solution of TFSI' before introducing an anionic polymer to create the PEC.
[0023] The counter-ion transformation strategy of polyDADMAC does not adversely affect its antimicrobial activity. To test the activity, excess TFSI' was used to create a precipitate that was then dissolved in dimethyl sulfoxide (DMSO). This solution was then placed on a slide to create a film that was held for 7 days and then inoculated with a log 6 population of Escherichia coli (E. coli). The transformed polyDADMAC with a mix of fluoride and chloride ions provided a film that was able to kill > 99.99% of the E. coli population within 30 minutes.
[0024] The polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide), acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, and/or acrylamidoalkyltrialkylammonium salt preferably has a number average molecular weight between 25,000 g/mol and 20,000,000 g/mol. A higher molecular weight typically is preferred in order to reduce the solubility of a film formed from the antimicrobial composition. The polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide), acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, and/or acrylamidoalkyltrialkylammonium salt can have a number average molecular weight of 20.000. 000 g/mol or less, for example, 15,000,000 g/mol or less, 10,000,000 g/mol or less, 5.000. 000 g/mol or less, or 1,000,000 g/mol or less. Alternatively, or in addition, the polydiallyldialkylammonium salt, acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, and/or acrylamidoalkyltrialkylammonium salt can have a number average molecular weight of 25,000 g/mol or more, for example, 50,000 g/mol or more, 100,000 g/mol or more, 150,000 g/mol or more, 200,000 g/mol or more, 250.000 g/mol or more, 300,000 g/mol or more, 350,000 g/mol or more, 400,000 g/mol or more, 450,000 g/mol or more, 500,000 g/mol or more, 550,000 g/mol or more, 600,000 g/mol or more, 650,000 g/mol or more, 700,000 g/mol or more, 750,000 g/mol or more, or 800,000 g/mol or more. Thus, the polydiallyldialkylammonium salt, acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, and/or acrylamidoalkyltrialkylammonium salt can have a number average molecular weight bounded by any two of the aforementioned endpoints. For example, the polydiallyldialkylammonium salt, acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, and/or acrylamidoalkyltrialkylammonium salt can have a number average molecular weight between 25.000 g/mol and 20,000,000 g/mol, between 25,000 g/mol and 15,000,000 g/mol, between 25.000 g/mol and 10,000,000 g/mol, between 25,000 g/mol and 5,000,000 g/mol, between 25.000 g/mol and 1,000,000 g/mol, between 50,000 g/mol and 1,000,000 g/mol, between 100.000 g/mol and 1,000,000 g/mol, between 150,000 g/mol and 1,000,000 g/mol, between 200.000 g/mol and 1,000,000 g/mol, between 250,000 g/mol and 1,000,000 g/mol, between 300.000 g/mol and 1,000,000 g/mol, between 350,000 g/mol and 1,000,000 g/mol, or between 400,000 g/mol and 1,000,000 g/mol. In some embodiments, polydiallyldialkylammonium salt, acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, and/or acrylamidoalkyltrialkylammonium salt has a number average molecular weight between 250,000 g/mol and 1,000,000 g/mol or between 800,000 g/mol and 1,000,000 g/mol, including between 900,000 g/mol and 1,000,000 g/mol.
[0025] In some embodiments, the polydiallyldialkylammonium salt is “an ultra-high molecular weight” polydiallyldialkylammonium salt, such as an ultra high molecular weight polydiallyldimethylammonium halide. The ultra-high molecular weight polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide) typically has a number average molecular weight between about 800,000 g/mol and about 20,000,000 g/mol (e.g., between about 1,000,000 g/mol and 15,000,000 g/mol, between about 1,000,000 g/mol and 10,000,000 g/mol, between about 1,000,000 g/mol and 5,000,000 g/mol, between about 2.000. 000 g/mol and 5,000,000 g/mol, between about 3,000,000 g/mol and 5,000,000 g/mol, between about 4,000,000 g/mol and 10,000,000 g/mol, between about 5,000,000 g/mol and 20.000. 000 g/mol, between about 5,000,000 g/mol and 15,000,000 g/mol, between about 6.000. 000 g/mol and 20,000,000 g/mol, and between about 6,000,000 g/mol and 15,000,000 g/mol). In these embodiments, generally, the halide in polydiallyldialkylammonium halide is fluoride, chloride, including anions containing fluoride and/or chloride. In particular, the polydiallyldialkylammonium halide is polyDADMAC or a mixture of polyDADMAC and polydiallyldimethylammonium fluoride and/or polydiallyldimethylammonium bis(triflouromethane)sulfonimide.
[0026] In another embodiment, the cationic polymer is a polyethylenimine-based polymer, which typically is effective against non-enveloped viruses, which account for a large number of pathogenic microbes, such as rhinovirus, poliovirus, adenoviruses, coxsackievirus, parvovirus, and rotavirus. The polyethylenimine-based polymer can be any suitable polyethylenimine-based polymer that is linear or non-linear, preferably linear.
[0027] There are a number of reports of polyethylenimine (PEI) that has been chemically modified to create an antimicrobial agent. See, for example, Gao et al. (J. Biomaterial Science, Polymer Edition, 2007, 18, 531-544) reported that quatemized branched PEI (ΒΡΕΙ) was antimicrobial against Escherichia coli (E. coli) at low concentrations. Pasquier et al. {Biomacromolecules, 2007, 8, 2874-2882) reported that ΒΡΕΙ quaternized with various long alkyl groups exhibited some degree of antimicrobial activity against E. coli, while linear PEI (LPEI) grafted with long alkyl chains produced a series of hydrophobically-modified water insoluble LPEI derivatives that effectively killed E. coli and Staphyloccoccus aureus. See also, U.S. Patent 9,399,044 and WO 2008/127416 A2. For example, the chemically modified PEI described in U.S. Patent 9,399,044 is only effective against bacterium (e.g., Tuberculosis mycobacterium, gram negative E. coli and Pseudomonas aeruginosa, gram positive Staphylococcus aureus) and the fungus Candida albicans, but not viruses. WO 2008/127416 A2 demonstrates that an antimicrobial coating comprising a chemically modified PEI is capable of killing enveloped viruses but not non-enveloped viruses, as shown in Table 1.
Table 1
[0028] However, chemical modification requires expensive, low yield, organic chemical processes that use toxic chemicals that are harmful to humans and the environment. Thus, in some embodiments of the invention, the polyethylenimine-based polymer is linear PEI that has not been chemically or structurally modified (e.g., does not include alkyl and/or quaternary ammonium groups). Moreover, it was discovered that non-chemically modified linear PEI can kill non-enveloped viruses. In particular, a film of the non-chemically modified linear PEI described herein kills not only gram positive and gram negative bacteria but also demonstrates at least a log 4 (99.99%) reduction against both enveloped and non-enveloped viruses, which is particularly important because many non-enveloped viruses are the pathogenic microbes that cause common colds and gastrointestinal flu, such as rhinovirus, poliovirus, adenoviruses, coxsackievirus, parvovirus, and rotavirus. The ability of an antimicrobial composition comprising non-chemically modified, linear PEI to reduce an MS2 bacteriophage, which is considered to be a surrogate for a non-enveloped virus, is demonstrated in Table 2.
Table 2
[0029] In other embodiments, the polyethylenimine-based polymer is a deacylated PEI or a quaternized A-alkyl-Af-methylpolyethylenimine. The deacylated polyethylenimine can be supplied by a commercial source, such as Poly sciences, Inc. (Warrington, PA). As used herein, “deacylated polyethylenimine” refers to a polyethylenimine with protonatable nitrogens and of the formula:
wherein the polymer has been partially (at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%) or fully (about 98-100%) hydrolyzed (deacylated). Without wishing to be bound to any particular theory, it is believed that dealkylation strengthens PEI’s ability to kill viruses and decreases its cytotoxicity.
[0030] As used herein, “quaternized-A-alkyl-A-methylpolyethylenimine” refers to a polyethylenimine that has been partially (at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%) or fully (about 98-100%) hydrolyzed, methylated, then quaternized with an alkyl substituent. The alkyl substituent in this embodiment can be any suitable alkyl substituent that is straight chain or branched. Generally, the alkyl substituent has a chain length chosen to be most effective against viruses, e.g., Ci-i8, including Cx-u and C10-12. In an embodiment, the alkyl substituent is decane, dodecane, or hexadecane.
[0031] A synthetic route to providing a PEI that is fully hydrolyzed (deacylated), methylated, and then quaternized includes the following method steps: [0032] Step 1: Prepare a fully deacetylated linear PEI by the acid-catalyzed hydrolysis of commercial PEOZs (e.g., 500 kDa, 200 kDa, and 50 kDa, preferably 50kDa). For example, 10.0 g of the PEOZs was added to 400 mL of 24% (wt/vol) HC1, followed by refluxing for 96 h. The POEZ crystals dissolved completely in 2h, but 3h later, (i.e., total of 5h) a white precipitate appeared. The precipitate in each case was isolated by filtration and then air-dried.
[0033] The protonated PEOZ (2-ethyl-2-oxazoline) was then deprotonated using an aqueous base (e.g., KOH) solution. Briefly, 10 g of protonated linear PEI was dissolved in distilled water (50 mL), and 6 M KOH was added until the pH of the solution became ~11. The fully deprotonated PEIs appeared as a white precipitate, which was filtered and washed repeatedly with distilled water until it became neutral (pH ~7). The end product was a linear PEI without N-acyl groups having a molecular weight of approximately 217 kDa, 87 kDa, or preferably 22 kDa.
[0034] Step 2: The E. Clarke methylation technique (Clarke et al., JACS, 55(11): 4571 (1933)) can be used to create linear N-Methyl-PEI. A 50% aqueous solution of PEI consisting of 10 g of 22 kDa PEI created in step 1 was transferred to a round-bottom flask to which 90% formic acid (24.5 mL, 0.48 mol) was added followed by 37% formaldehyde (29.3 mL, 0.36 mol) and 20 mL of water. The reaction mixture was stirred at 90 °C for 96h. After cooling to room temperature, the pH of the reaction mixture was adjusted to 11 using an 8M KOH solution. The deprotonated Λ^-methylated PEI was extracted several times with chloroform, and the entire organic solution was subjected to repeated water wash.
Chloroform was then removed to yield a yellow viscous TV-methylated PEI with 100% degree of methylation.
[0035] Step 3: TV-Alkyl TV-Methyl PEI was then quaternized to be water soluble and target viruses. In particular, lg (17.5mmol/repeating unit) of TV-methylated PEI was dissolved in 75 ml fert-butanol in a screw-top pressure tube. To this was added 1-bromohexadecane, to provide the side chain lengths that are most effective against viruses. The reaction mixture then was heated at 105 °C for 48h to 96h, depending upon the desired solubility of the end product. After completing the reaction, the solvent was removed to one-tenth of its initial volume. Then, an excess of acetone (200 mL) was added to the reaction mixture, and the precipitate was filtered off. To further purify the product, the precipitate was dissolved in chloroform, and acetone was added to re-precipitate the product. The excess solvent was decanted off, and the precipitate was dried using a high vacuum pump to yield a linear N-alkyl TV-methyl PEI polymer.
[0036] The polyethylenimine-based polymer typically has a number average molecular weight between 15,000 g/mol and 250,000 g/mol. The polyethylenimine-based polymer can have a number average molecular weight of 250,000 g/mol or less, for example, 230,000 g/mol or less, 210,000 g/mol or less, 190,000 g/mol or less, or 170,000 g/mol or less. Alternatively, or in addition, the polyethylenimine-based polymer can have a number average molecular weight of 15,000 g/mol or more, for example, 30,000 g/mol or more, 60,000 g/mol or more, 90,000 g/mol or more, 100,000 g/mol or more, 120,000 g/mol or more, or 150,000 g/mol or more. Thus, the polyethylenimine-based polymer can have a number average molecular weight bounded by any two of the aforementioned endpoints. For example, the polyethylenimine-based polymer can have a number average molecular weight between 15.000 g/mol and 250,000 g/mol, between 15,000 g/mol and 230,000 g/mol, between 15,000 g/mol and 210,000 g/mol, between 15,000 g/mol and 190,000 g/mol, between 15,000 g/mol and 170,000 g/mol, between 30,000 g/mol and 170,000 g/mol, between 60,000 g/mol and 170.000 g/mol, between 90,000 g/mol and 170,000 g/mol, between 120,000 g/mol and 170.000 g/mol, or between 150,000 g/mol and 170,000 g/mol, e.g., about 160,000 g/mol.
[0037] An aspect of the invention is an antimicrobial composition comprising (a) a polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide) is used in combination with a polyethylenimine-based polymer (e.g., a linear or branched polyethylenimine (PEI), preferably linear PEI), (b) at least one adhesion promoter, (c) optionally organic and/or inorganic particles that are photocatalytically active in visible light, (d) optionally at least one salt, and (e) a carrier, each of which is described herein. The antimicrobial composition passes at least one of tests (i) - (v). The weight ratio of polydiallyldialkylammonium salt to polyethylenimine-based polymer is any suitable amount, but typically ranges from 80/20 to 20/80 (e.g., 30/70, 33/67, 40/60, 45/55, 50/50, 55/45, 60/40, 67/33, 70/30). In a particular example, the weight ratio of polyDADMAC : PEI is 50/50 or 33/67.
[0038] When the cationic polymer is a polyethylenimine-based polymer, the composition can further comprise an anionic polymer, such that the cationic polymer and anionic polymer combine to form a PEC. In some embodiments, the polyethylenimine-based polymer, such as non-chemically modified linear PEI, is used without an anionic polymer, such as a polyacrylic acid salt. In other embodiments in which a PEC is desired, the composition comprises both a polydiallyldialkylammonium salt (e.g., polydiallyldimethylammonium halide) and PEI, such as a branched PEI. Two approaches are suggested for adding PEI to the system. One approach is to first complex the polydiallyldialkylammonium halide and anionic polymer and then complex the PEI to the anionic polymer, followed by the blending of the two complexes. The second, and preferred, approach is to simultaneously complex both cationic polymers with the anionic polymer in a one-pot synthesis.
[0039] It is known by those skilled in the art that non-enveloped viruses are resistant to ethanol, which is the alcohol most commonly used in hand sanitizers and other disinfectants. The inventors discovered that a composition of ethanol and non-chemically modified linear PEI is effective at killing non-enveloped viruses and that the antimicrobial activity can be further improved by adding an organic small molecule polyacid, such as citric acid. Without wishing to be bound by any theory, it is believed that protonated liner PEI binds the anionic form of the polyacid (e.g., citrate) to form a complex. Suitable organic polyacids include a polycarboxylic acid comprising at least three carboxylic acid groups (e.g., 3, 4, 5, and/or 6 carboxylic acid groups), such as an organic tribasic acid. Specific examples of a polycarboxylic acid include citric acid, isocitric acid, aconitic acid, propane-1,2,3-tricarboxylic acid, hemimelitic acid, trimellitic acid, trimesic acid, prehnitic acid, meallanophanic acid, pyromellitic aicd, benzenepentacarboxylic acid, mellitic acid, ethylenediamine-N,N'-dimalonic acid (EDDM), 2,2'-azanediyldisuccinic acid, 2,2'-oxydisuccinic acid (ODS), ethylenediaminedisuccinic acid (EDDS), diethylenetriaminepentaacetic acid (DTPA), ethylene diamine ietraacetic· acid (EDTA), 2,2'-((((l,2-dicarboxyethyl)azanediyl)bis(ethane-2,l-diyl))bis(oxy))disuccinic acid, and any combination thereof. Preferably the polyacid is citric acid. A PEI-citrate complex forms a stable colloidal when the ratio of protonated linear PEI to citric acid ranges from about 70: 30 to 90:10 (e.g., about 70:30, about 75:25, about 80:20, about 85/15, or about 90:10). If more citric acid is desired in the complex, for example 60:40, the colloidal may become unstable. However, the colloidal can be made stable by filtering out the larger citrate complexes.
[0040] In another embodiment, the cationic polymer is chitosan. When the cationic polymer is chitosan, formation of a PEC is optional, i.e., an anionic polymer is optionally present in the composition. In some instances, chitosan with 95% or less deacetylation and/or deacetylation with quartemization (e.g., trimethylchitosan) results in a more soluble high molecular weight chitosan. Thus, it is possible to create a low soluble film durable enough to not require the formation of a PEC.
[0041] The chitosan typically has a number average molecular weight between 20,000 g/mol and 2,000,000 g/mol. The chitosan can have a number average molecular weight of 2.000. 000 g/mol or less, for example, 1,750,000 g/mol or less, 1,500,000 g/mol or less, or 1.250.000 g/mol or less. Alternatively, or in addition, the chitosan can have a number average molecular weight of 20,000 g/mol or more, for example, 50,000 g/mol or more, 100.000 g/mol or more, 250,000 g/mol or more, 500,000 g/mol or more, or 1,000,000 g/mol or more. Thus, the chitosan can have a number average molecular weight bounded by any two of the aforementioned endpoints. For example, the chitosan can have a number average molecular weight between 20,000 g/mol and 2,000,000 g/mol, between 20,000 g/mol and 1.750.000 g/mol, between 20,000 g/mol and 1,500,000 g/mol, between 20,000 g/mol and 1.250.000 g/mol, between 20,000 g/mol and 1,000,000 g/mol, between 50,000 g/mol and 2.000. 000 g/mol, between 100,000 g/mol and 2,000,000 g/mol, between 250,000 g/mol and 2.000. 000 g/mol, between 500,000 g/mol and 2,000,000 g/mol, or between 1,000,000 g/mol and 2,000,000 g/mol.
[0042] When the antimicrobial composition optionally comprises at least one anionic polymer, which forms a PEC with the cationic polymer, the PECs can offer two important advantages to the present invention: 1) the assembly of polymers using PECs eliminates the use of chemical cross-linking agents, thereby reducing possible toxicity and other undesirable effects of the reagents; and 2) the PECs formed between a poly acid and poly base are tolerant of pH variations in the dissolution medium.
[0043] The anionic polymer can be any suitable anionic polymer that is capable of forming a PEC with the cationic polymer, such as an anionic polymer selected from a polyacrylic acid salt, a polysulfate, a polysulfonate, a polycarboxylate, a polyoxometalate, a sulfonated or carboxylated metalloporphyrin, xanthan gum, alginate, or a lignin compound (e.g., lignosulfonate, pectin, carrageenan, humate, fulvate, angico gum, gum Kondagogu (Cochlospermum gossypium DC.), sodium alkyl naphthalene sulfonate (e.g., MORWET™), poly-y-glutamic acid, maleic starch half-ester, carboxymethyl cellulose, chondroitin sulphate, dextran sulphate, and hyaluronic acid). The anionic polymer can be linear, branched, dendritic, graft, or present as a copolymer (e.g., block copolymer).
[0044] In preferred embodiments, the anionic polymer is a polyacrylic acid salt (PAAS). Specific examples of PAAS include polyacrylic acid alkali metal salts (e.g., polyacrylic acid sodium salt) and polyacrylic acid ammonium salts. The polyacrylic acid salt has a number average molecular weight of at least 10,000 g/mol. For example, the polyacrylic acid salt can have a number average molecular weight of 20,000 g/mol or more, e.g., 40,000 g/mol or more, 60,000 g/mol or more, 80,000 g/mol or more, 100,000 g/mol or more, 120,000 g/mol or more, or 140,000 g/mol or more.
[0045] The size and internal structure of the PEC particles are regulated by, for example, the formation process, media and structural parameters, particular mixing order, mixing ratio, PEC concentration, pH, and molecular weight. Controlling the size of the PEC particle is important because the particle size affects 1) the overall stability of the Pickering PEC; 2) the solvency of the film formed by the dispersion; and 3) the adhesive strength of the film to a substrate. The solvency and adhesiveness of the film can be tuned by controlling the size of the final PEC colloidal. Some applications might require a less soluble and more adhesive film. However, tuning these two attributes will always be constrained by the stability issue.
If too much anionic polymer is used, the PEC colloidal will become too large and precipitate out.
[0046] The size of the final PEC particle can be determined by the quantity of anionic polyelectrolyte (n-) relative to the quantity of cationic poly electrolyte (n+). If the n-/n+ratio is high, the PEC particle will grow. However, when the cationic polymer is dosed into the anionic polymer, there is a point of accelerated growth and then a fall-off in size. The preferred method of doping is to dose the anionic polymer into the cationic polymer, even though this order of dosing cannot create the smallest particles (assuming n-/n+ is below 0.8).
[0047] The size of the PEC particle is also influenced by the mixing order. When the anionic polymer is dosed into cationic polymer, the PEC particle becomes larger. Nevertheless, there are techniques to offset this undesirable growth. First, the size of the PEC emulsion particles can be kept small by limiting the concentration of polyelectrolyte in the forming solution; in other words, work with a very dilute solution. Given that the preferred mixing order has a detrimental effect on particle size, the offsetting strategy put forth in the present invention is to work with dilute solutions, i.e., limit the concentration of the polymers and then evaporate off the excess water after the formation of the PECs. In a specific embodiment of the invention, the method prefers, but is not limited to, using a cationic polymer (e.g., polydiallyldialkylammonium salt, acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, acrylamidoalkyltrialkylammonium salt, PEI, and/or chitosan) at a concentration of about 0.001 to 0.1 M (e.g., 0.005 M).
[0048] A second method of offsetting the tendency of the PEC to grow is to control the pH of the cationic polymer mixture relative to the pH of the anionic polymer mixture. For example, a lower pH of the cationic polymer (pH ~4) and high pH of the anionic polymer (pH ~10) results in a smaller particle size. Thus, the preferred, but not required, pH of the cationic polymer (e.g., polydiallyldialkylammonium salt, acryloxyalkyltrialkylammonium salt, vinylphenalkyltrialkylammonium salt, acrylamidoalkyltrialkylammonium salt, PEI, and/or chitosan) solution for creating the PEC is kept at ~4 and the anionic pH is maintained at ~10. The pH of the final PEC solution is ~4.5 and after evaporation, the pH is adjusted to ~7.4. It is believed that the lower pH of the cationic polymer fluid contributes to a smaller particle size and thus helps to offset the negative influence of dosing order and molecular weight, encouraging a larger particle size.
[0049] The antimicrobial composition should be kept at a pH near 7 in order to pass the EPA cytotoxicity test. Even a slight dissolution of the film during the test can cause leaching, and a pH much above or below 7 will kill the mammalian cells used in the test and the film will fail. Also, a pH of 7 should help ensure that the anionic polymer is maintained in an ionized form. If necessary, the pH can be adjusted by the addition of suitable acids (e.g., hydrochloric acid, sulfuric acid, citric acid, etc.) or bases (e.g., sodium hydroxide, potassium hydroxide). It is recommended that the final pH be adjusted subsequent to dispersing any organic and/or inorganic particles into the PEC.
[0050] With respect to the present invention, it is important that the PEC surface remains strongly positive. For example, if an excess quantity of anionic polymer is added (i.e., if the (n-/n+) is too high) the PEC particle charge will become negative, which would destroy the effectiveness of the antimicrobial composition, since it is believed that the antimicrobial mode of action is related to the positively charged cationic polymer(s) attracting and piercing a negatively charged microbial membrane. It is therefore important that the PEC particle charge remains positive. For the purpose of the present invention, it is recommended that (n-/n+) value does not exceed 0.3, and preferably is below 0.2.
[0051] In general, the ppm for the film thickness is determined by the amount of carrier (e.g., water) that is evaporated from the combined solution (e.g., PEC solution). When working with a very dilute concentration, the considerable excess carrier needs to be evaporated to arrive at a desirable ppm of solids in the film-forming composition.
[0052] It is an aspect of the present invention that the PECs are assembled in such a way that the PECs have an average aggregate size in solution of less than about 500 nm (e.g., less than 400 nm, less than 300 nm, less than 200 nm). In some embodiments, the aggregate size is less than about 100 nm (e.g., less than 80 nm, less than 50 nm, less than 25 nm, less than 10 nm) in diameter. The particle size and molecular weights of the associative PECs can be measured via static or dynamic light scattering.
[0053] The antimicrobial composition preferably also comprises at least one adhesion promoter that allows the composition to adhere to the surface of a substrate to form a residual self-sanitizing film that cannot be immediately washed away. In some embodiments, the residual self-sanitizing film is not covalently bound to the surface of the substrate. The adhesion promoter can, in some instances, be described as a coupling agent. The adhesion promoter typically is one or more compounds with at least one functional group that has an attractive force to the surface of a desired substrate, the at least one cationic polymer, or both. Suitable examples of an adhesion promoter include a titanate, carboxylated branched or linear PEI, a silane compound, cationic block copolymers, and other polymers that will create “sticky,” reactive groups, such as acyl or carboxylic acid, and carboxylic acid derivatives. Preferably, the adhesion promoter is a carboxylated branched PEI, as it does not detract from the cationic charge of the polymers.
[0054] The titanate can be any suitable titanate that increases the composition’s ability to adhere to a surface and/or enables the composition or a film formed from the composition to pass one or more of tests (i)-(v). Typically, the titanate is selected from an alkoxy titanate, a neoalkoxytitanate, an oxyacetate chelated titanate, an ethylene chelated titanate, a pyrophosphate titanate, and combinations thereof.
[0055] In preferred embodiments, the titanate is selected from titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris neodecanoato-O, titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(dodecyl)benzenesulfonato-(9, titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(dioctyl)phosphato-(9, titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(dioctyl)pyrophosphato-O, titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(2-ethylenediamino)ethylato, titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(3-amino)phenylato, titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(6-hydroxy)hexanoato-0, or any combination thereof. Typically, the titantate is titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris neodecanoato-O.
[0056] The antimicrobial composition can comprise any suitable amount of titanate to form a residual self-sanitizing film. The antimicrobial composition can comprise, for example, titanate in an amount of 0.1% weight based on monomers (“wbm”) of the cationic polymer, or more, for example, 0.2% wbm or more, 0.3% wbm or more, 0.4% wbm or more, or 0.5% wbm or more. Alternatively, or in addition, the antimicrobial composition can comprise titanate in an amount of 6% wbm of the cationic polymer, or less, for example, 5% wbm or less, 4% wbm or less, 3% wbm or less, 2% wbm or less, 1% wbm or less, 0.9% wbm or less, 0.8% wbm or less, or 0.7% wbm or less. Thus, the antimicrobial composition can comprise titanate in an amount bounded by any two of the aforementioned endpoints. For example, the antimicrobial composition can comprise titanate in an amount between 0.1% wbm to 6% wbm of the cationic monomers, for example, between 0.2% wbm to 6% wbm, between 0.3% wbm to 6% wbm, between 0.4% wbm to 6% wbm, between 0.5% wbm to 6% wbm, between 0.5% wbm to 5% wbm, between 0.5% wbm to 4% wbm, between 0.5% wbm to 3% wbm, between 0.5% wbm to 2% wbm, between 0.5% wbm to 1% wbm, between 0.5% wbm to 0.9% wbm, between 0.5% wbm to 0.8% wbm, or between 0.5% wbm to 0.7% wbm, e.g., 0.6% wbm.
[0057] The adhesion promoter can be carboxylated PEI (PEI-COOH) that is either branched, linear, or a mixture of branched and linear. The PEI-COOH can be purchased commercially or prepared from PEI. For example, bromoacetic acid in water can be added to PEI in water. The resulting mixture is then stirred and then filtered to isolate the polymer and remove unreacted acid. The PEI-COOH can have any suitable molecular weight but typically has a number average molecular weight between 15,000 g/mol and 250,000 g/mol. The PEI-COOH can be used in a suitable amount that usually ranges from 0.001% to 3% by weight, including ranges with end points at 0.01%, 0.1%, 0.5%, 1%, 1.5%, 2%, and/or 2.5%. A preferred amount ranges from 0.001% to 0.01%, such as 0.001% by weight.
[0058] A silane compound, such as a silane coupling agent, can be used as the adhesion promoter. In general, a silane coupling agent has functional groups at both terminal ends that allow an organic group, such as the cationic polymer, to bond to an inorganic group, such as a substrate. The silane compound can have the formula R-(CH2)n-Si-X3, in which R is an organofunctional group (e.g., optionally substituted linear or branched C1-C20 alkyl, optionally substituted aryl, such as phenyl or naphthyl, amino, such as -NH(CH2)3NH2, epoxy, or methacryloxy), n is an integer from 0 to 6, and X is a hydrolyzable group (e.g., alkoxy, acyloxy, halo, or amino). Suitable examples include a trialkoxysilane and a monoalkoxysilane, in which the alkoxy is C1-C6 alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, or a combination thereof), a dipodal (branched) silane with two alkoxy-silane branches, a cyclic azasilane, a vinyl silane, an acryloxy silane, an epoxysilane, and an aminosilane, or any combination thereof. Specific examples of silane compounds include methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, n-octytriethoxysilane, phenyltrimethoxysilane, vinyltrichlorosilane, vinyltris(P-methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, 3-metacryloxypropyl-trimethoxysilane, β-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, γ-glycidoxypropyl-trimethoxysilane, γ-glycidopropyl-methylidiethoxysilane, N-P(aminoethyl)-y-aminopropyl-trimethoxysilane, N-P(aminoethyl)-y-aminopropyl-methyldimethoxysilane, 3-aminopropyl-triethoxysilane, and N-phenyl-y-aminopropyl-trimethoxysilane, or a combination thereof.
[0059] The adhesion promoter can also be a cationic block copolymer, such a high molecular weight polyethylene-based copolymer with basic or acidic adhesive groups, such as an amino and/or hydroxy. Commercial products of this type include BYK™ 4500, BYK™ 4510, BYK™ 4509, BYK™ 4512, and BYK™ 4513, which are available from BYK Chemie GmbH (Wesel, Germany). Suitable amounts of the block copolymer range from 0.001% to 5% by weight, including ranges with end points at 0.01%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, or 5%. A preferred amount ranges from 0.5% to 2%, such as 1% by weight.
[0060] The adhesion promoter can also be a polymer that either naturally has or has been modified to have “sticky,” reactive groups, such as an acyl group, a carboxylic acid, a carboxylic acid derivative, a sulfur-containing moiety (e.g., thio), an amino group, hydroxyl, and/or a halo-containing group. The polymer itself is any suitable moiety, preferably without a charge, such as polyethylene, polypropylene, poly(ethylene-vinylacetate), polyester, polyurethane, polyamide, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, polyvinyl ether, or a combination thereof. Suitable amounts of the polymer range from 0.001% to 3% by weight, including ranges with end points at 0.01%, 0.1%, 0.5%, 1%, 1.5%, 2%, and/or 2.5%. A preferred amount ranges from 0.5% to 2%, such as 1% by weight.
[0061] In some embodiments, the antimicrobial composition comprises organic and/or inorganic particles that are photocatalytically active in visible light and can be any suitable organic-based (e g., graphene or graphitic carbon nitride (g-C3N4)) and/or inorganic-based particles that are photocatalytically active in visible light (e.g., between 390 to 700 nm). Organic and/or inorganic particles that are photocatalytically active generate reactive oxygen species that are able to destroy pathogenic microbes (e.g., kills C. difficile, bacteria and/or viruses, including avian flu and SARS) that augments the disinfectant property of the composition. Generally, the organic and/or inorganic particles that are photocatalytically active in visible light are selected from graphene, g-C3N4, a transition metal oxide, a transition metal sulfide, a transition metal selenide, a dye sensitizer, a conjugated polymer, a noble metal, or a mixture thereof. A mixture of particles means that two or more different kinds of particles are present in the antimicrobial composition, whereas in a multijunction composite, various components of the composite are tightly coupled to assure electron transfer, and minimize recombining of holes.
[0062] As used herein, the term “particle” includes sphere-like particles (e.g., spheres) and other shapes, such as platelets, rods, cubes, and flakes or combinations of various shapes and morphologies.
[0063] Graphene is an allotrope of carbon, in which carbon atoms are bonded to one another in sheet form that is one atom thick. The graphene can optionally be functionalized with an oxygen- and/or nitrogen-containing group. An analog of graphite is graphitic carbon nitride (g-C3N4), which is photocatalytic.
[0064] The transition metal oxide, sulfide, and selenide can be any suitable compound comprising at least one metal atom and at least one anion of oxygen, sulfur, or selenium that has an oxidation state of -2. In some aspects, the transition metal oxide is selected from the group consisting of silicon dioxide (including fumed silica, amorphous silica, precipitated silica, hydrophilic silica, and hydrophobic silica), titanium dioxide, zinc oxide, iron oxide, aluminum oxide, cerium oxide, zirconium oxide, and a combination thereof; the transition metal sulfide is selected from cadmium sulfide, molybdenum disulfide, tungsten sulfide, silver sulfide, zinc sulfide, selenium sulfide, iron disulfide, nickel sulfide, ruthenium sulfide, cobalt sulfide, and a combination thereof; and/or the transition metal selenide is selected from cadmium selenide, copper selenide, copper geranium selenide, copper indium gallium selenide, copper titanium selenide, indium selenide, manganese diselenide, titanium selenide, tungsten diselenide, silver selenide, disilver selenide, digold triselenide, zinc sulfide, iron selenide, nickel selenide, ruthenium selenide, cobalt selenide, and a combination thereof.
[0065] Tungsten doping, as well as other metallic doping, has been demonstrated to inhibit charge recombination and improve photocatalytic activity of photocatalysts (Rozenberg et al., ProgPolym Sci, 2008, 33: 40-112). In certain embodiments, the transition metal oxide/sulfide/selenide particle can be doped with a suitable metal, such as tungsten, nitrogen, or a combination of tungsten and nitrogen.
[0066] In one embodiment, the transition metal oxide is titanium dioxide (T1O2). The T1O2 particles can be obtained from any suitable mineral form of T1O2. For example, the T1O2 particles can maintain an anatase crystalline structure, a brookite crystalline structure, or a rutile crystalline structure. In preferred embodiments, the T1O2 maintains an anatase crystalline structure.
[0067] The T1O2 particles can be any suitable structure type. Typically, the T1O2 particles are T1O2 nanoparticles (“NP”). The T1O2 nanoparticles can be synthesized by any suitable process. For example, the T1O2 nanoparticles can be liquid-synthesized or gas-synthesized. In preferred embodiments, the T1O2 nanoparticles are liquid-synthesized, since a liquid synthesis tends to create soft agglomerates, which make it easier to disperse the T1O2. An illustrative T1O2 nanoparticle is a 25 nm, anatase, liquid-phase synthesized T1O2 nanoparticle doped with tungsten, which can be purchased from Nanostructured & Amorphous Materials, Inc. (Houston, TX).
[0068] In a specific example of functionalizing T1O2 particles, W-doped, liquid synthesized T1O2 (20 nm) is calcined with urea at 400 °C for 1 hour, which produces a poly(amino-tri-.s-triazine) polymer covalently attached to the T1O2 particles. Next, the W/N-doped T1O2 particles are milled along with powdered urea. The hard material created from calcination is ground into powder so that it can be placed, along with urea, into a planetary ball mill. The milling spec is to mill at 300 rpm for 30 minutes with 10% urea and balls weighing 10 times the weight of the T1O2. After 30 minutes, the milling drum is three-quarters filled with 200 ml of H2O and milled an additional 5 minutes to capture and disperse the T1O2 nanoparticles. The contents are then put into a beaker and mixed under 150W UV light for 1 hour. The highly dispersed nanopowder is then available to be added to the antimicrobial composition. It is important to note that the nanopowder is highly dispersed in water, which keeps it in a non-agglomerated nano state. As such, the functionalization process described herein enables the T1O2 to be dispersible in water, wherein T1O2 is typically only dispersible in alcohol. Creating such a stable nano-dispersion without a surfactant means that when the particles are dispersed into a cationic polymer solution or the PEC, the particles will not be contaminated with a surfactant that could possibly dampen their ability to respond to visible light.
[0069] The high-energy milling of T1O2 particles achieves two things: 1) it deagglomerates the powder to create nanoparticles; and 2) the urea double dopes the particles with nitrogen, and in particular, any new exposed particle facets are doped as the high-energy milling breaks up agglomerates and aggregates. Essentially, it is believed that the milling forces nitrogen into the pores and covers facets that were not previously exposed during the calcination process. Following calcination with urea and milling with urea, the TiCE nanoparticles are irradiated with a 150 watt UV light. Without wishing to be bound by any theory, it is believed that UV irradiation improves the visible light responsiveness of T1O2 nanoparticles because of the introduction of hydroxyl groups on to the surface of the TiC>2 nanoparticles. This is one explanation for why the particles are easily dispersed in water.
The ability of the functionalized nanoparticles to degrade methylene blue was tested, and it was observed that the sum of all four functionalization steps significantly degraded the dye within 90 minutes.
[0070] Lastly following calcination, milling, washing, and light irradiation, the particles can be dye-sensitized. The theory and practice of using dye to enhance the visible-light sensitivity of a transition metal oxide particle (e g., TiCh) is central to “dye-sensitized solar cell” (DSSC) technology. DSSCs have been attracting considerable attention in recent years owing to their comparatively low cost and high efficiency. A DSSC is essentially a photo-electrochemical system, in which light harvesting is accomplished by dye molecules that are adsorbed on the surface of the oxide nanostructures that form the photo-electrode film. Surface sensitization of a wide band gap semiconductor photo-catalyst, such as TiCh, via chemisorbed or physisorbed dyes can increase the efficiency of the excitation process and expand the wavelength range of excitation for the transition metal oxide particle (e.g., TiCh). This occurs through excitation of the sensitizer that can inject either a hole or, more commonly, an electron into the particle. Highly efficient charge injection is observed when a monolayer of a dye is dispersed on a photocatalyst with a high surface area. This sensitization increases the range of the wavelength response of the photocatalyst, which is important for it to operate under natural sunlight. The electron injection and back electron-transfer rates from the dye to the transition metal oxide particle (e.g., TiCh) depend on the nature of the dye molecule, the properties of the transition metal oxide particle (e.g., TiCh), and the interactions between the dye and the transition metal oxide particle. The dye is any suitable compound, such as fluorescein, fluorescein isothiocyanate, a cyanine, a merocyanine, a hemicyanine, a perylene, a xanthene, a porphyrin (e.g., tetraphenylporphyrin), a phthalocyanine (e.g., copper phthalocyanine), a polyene, a polythiophene, a coumarin (e.g., NKX-2677, NKX-2587, NKX-2697, NKX-2753, NKX-2586, or NKX-2311), and a ruthenium-based dye (e.g., (Bu4N)2[Ru(dcbpyH)2(NCS)2] (N719), (Bu4N)2[Ru(dcbpy)2(NCS)2], c/s-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) (N3), tri(thiocyanato)-2,2',2''-terpyridyl-4,4',4''-tricarboxylate)mthenium(II) (black dye), K8, K9, K19, and Z907). In a specific embodiment of the invention, N719 dye is applied by mixing calcinated/milled/UV light functionalized transition metal oxide particles (e.g., T1O2) for 1 hour in the dark with a 0.5 mM mixture of N719 dye in ethanol. Other dyes can also be used. The functionalized particles are decanted, centrifuged, and added back to water.
[0071] In any of the embodiments described herein, the TiCh particles are doped with tungsten and nitrogen and are hydrolyzed under ultraviolet (UV) light. The resulting particles are visible light-responsive T1O2 particles that are effective as an antimicrobial agent, particularly when such particles are embedded in a film formed from an antimicrobial composition of the present invention. Accordingly, the invention provides a method of killing microbes on a surface (e.g., disinfecting a surface, providing a residual self-sanitizing film, or both) comprising applying to the surface an antimicrobial composition comprising (i) visible light-responsive T1O2 particles that are doped with tungsten and nitrogen, (ii) at least one adhesion promoter (e.g., a titanate, a carboxylated branched PEI), and (iii) a carrier. The adhesion promoter is as described herein, and the carrier can be, e.g., water, alcohol, or a combination of water and alcohol, as described herein.
[0072] Without wishing to be bound by any particular theory, the electronic structure of T1O2 is characterized by a filled valence band and an empty conduction band. The band gap energy is excited and an electron is promoted from the valence band to the conduction band and an electron-hole pair is generated. This electron hole reacts with water to generate active oxygen such as hydroxyl radicals, sometimes referred to as reactive oxygen species (ROS). The positive hole of T1O2 breaks the water molecule apart to form hydrogen gas and hydroxyl radicals. The negative electron reacts with oxygen molecules to form a super-oxide anion (O2')· Super oxide anions further react with water molecules to generate hydroxyl radical peroxide (·ΟΟΗ) and hydrogen peroxide (H2O2). Each ·ΟΗ, O2', ·ΟΟΗ, and H2O2 can react with pathogenic microbes and destroy their cell structure.
[0073] In addition, the electron holes themselves can directly react with the microbial cell wall, cell membrane, and cell components. In microzymes and bacilli, intracellular coenzyme A (CoA) is oxidized by T1O2 such that the CoA dimer loses its activity, which causes the respiration of the cell to stop and finally results in microbial death. During this process, the electron shift between the killed cell and T1O2 is passed through CoA.
Therefore, the content of CoA decreases and the CoA dimer increases.
[0074] The dye sensitizer is any suitable compound, such as fluorescein, fluorescein isothiocyanate, a cyanine, a merocyanine, a hemicyanine, a perylene, a xanthene, a porphyrin (e.g., tetraphenylporphyrin), a phthalocyanine (e g., copper phthalocyanine), a polyene, a polythiophene, a coumarin (e.g., NKX-2677, NKX-2587, NKX-2697, NKX-2753, NKX-2586, or NKX-2311), and a ruthenium-based dye (e.g., (Bu4N)2[Ru(dcbpyH)2(NCS)2] (N719), (Bu4N)2[Ru(dcbpy)2(NCS)2], 6v.v-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) (N3), tri(thiocyanato)-2,2',2"-terpyridyl-4,4',4"-tricarboxylate)ruthenium(II) (black dye), K8, K9, K19, and Z907).
[0075] The organic and/or inorganic photocatalytic particles can include a conjugated polymer that conducts. A suitable conjugated polymer includes polypyrrole (Ppy), poly(3-hexylthiophene) (P3HT), polycarbazole, polyindole, polyazepine, polyaniline, polyfluorene, polyphenylene, polypyrene, polyazulene, polynaphthalene, polythiophene (Ptp), polype-ethyl enedioxy thiophene), poly(p-phenylene sulfide), polyacetylene, poly(p-phenylene vinylene), and any combination thereof. The conjugated polymer can be incorporated into a nanocomposite that is specifically designed to react with ordinary room lighting to create reactive oxygen species (ROS). The ROS destroy difficult-to-kill spore-like microbes, such as C. difficile and fungi. The ROS also oxidize microbial debris, thus performing an ongoing cleaning function. In a particular embodiment, the photocatalytic nanocomposite is comprised of a multi-junction composite comprising: WT1O2/CN heterojunction/Ppy, in which WT1O2 is tungsten-doped T1O2 nanoparticles, as described herein, CN is graphitic carbon nitride (g-C3N4), and Ppy is polypyrrole.
[0076] Historically, most photocatalytic materials have been designed around various metal sulfides and metal oxides rather than polymers. Titanium dioxide (T1O2) has been the metal oxide of choice because it is readily available, inexpensive, stable, non-toxic, and highly reactive in the ultraviolet (UV) light spectrum. The inventors wanted to go beyond the use of T1O2 because the goal was to create a photocatalytic material that would be reactive in ordinary room lighting. As T1O2 has a wide band gap (3-3.2 eV), it only absorbs light in the UV spectrum, none of which is present in indoor room lighting. Thus, the present invention provides a photocatalytic nanocomposite that is based upon polymers, i.e., with no or very limited use of metals. Such nanocomposite is likely to be less toxic for humans and the environment and has no anionic charge to off-set the cationic charge when incorporated in a cationic polymer-containing residual self-sanitizing film, as described herein. In a nanocomposite based more on polymers, WTiCte in the WTiCh/CN heterojunction/Ppy multijunction composite is replaced with an acid-modified or protonated graphitic carbon nitride (g-C3N4). The protonation of CN gives the CN a band gap with valance and conductive bands that are quite close to TiC>2. The inventors have developed several techniques to create the protonated CN, which is termed acidified carbon nitrate (ACN), and then strongly couple the protonated CN to the heterogeneous CN and a conjugated polymer (such as polypyrrole (Ppy), poly(3-hexylthiophene) (P3HT), polythiophene (Ptp), and the like), thereby resulting in a photocatalytic composite specifically engineered to capture low level indoor light. This method is explained in detail in U S. Provisional Patent Application 62/367,981 and the inventors’ concurrently filed provisional patent application, the entire contents of which are incorporated herein by reference.
[0077] The benefits of this new, polymer-based, photo-reactive material include one or more of the following: (i) maximum light harvesting with multi-junction band slicing, (ii) maximum photon utilization by using materials with appropriate band edges, sequencing the assembly and tight coupling to foster rapid electron transport, and minimizing electron-hole recombination, (iii) assembly using a low-cost, easily scalable manufacturing process that does not use toxic chemicals or generate waste, and that creates a Nano, mesoporous material with an exceedingly high surface area that creates a mixed morphology stable dispersion of micro, nano, and crystalline particles and platelets that maximizes the optical path of the incident light and preserves all “unseen” nano/crystalline particles and platelets.
[0078] The organic and/or inorganic photocatalytic particles can include a noble metal, such as ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, or a mixture thereof. In some embodiments, the noble metal is platinum.
[0079] The average diameter of the organic and/or inorganic particles that are photocatalytically active in visible light is not particularly limited and can range from 5 nm to 1,000 nm. The organic and/or inorganic particles can have an average diameter of 1,000 nm or less, for example, 750 nm or less, 500 nm or less, 250 nm or less, or 100 nm or less. Alternatively, or in addition, the organic and/or inorganic particles can have an average diameter of 5 nm or more, for example, 10 nm or more, or 15 nm or more. Thus, the organic and/or inorganic photocatalytic particles can have an average diameter bounded by any two of the aforementioned endpoints. For example, the organic and/or inorganic photocatalytic particles can have an average diameter of 5 nm to 1,000 nm, 5 nm to 750 nm, 5 nm to 500 nm, 5 nm to 250 nm, 5 nm to 100 nm, 10 nm to 100 nm, or 15 nm to 100 nm.
[0080] The antimicrobial composition can comprise any suitable amount of organic and/or inorganic photocatalytic particles to form a residual self-sanitizing film. The antimicrobial composition can comprise organic and/or inorganic photocatalytic particles in an amount of 1% weight based on monomers (“wbm”) of the cationic monomers, or more, for example, 1.5% wbm or more, 2% wbm or more, 2.5% wbm or more, 3% wbm or more, 4% wbm or more, or 5% wbm or more. Alternatively, or in addition, the antimicrobial composition can comprise organic and/or inorganic particles in an amount of 20% wbm or less of the cationic polymer, or less, for example, 18%% wbm or less, 15% wbm or less, 12% wbm or less, 10% wbm, 9% wbm or less, 8% wbm or less, 7% wbm or less, 6% wbm or less, or 5% wbm or less. Thus, the antimicrobial composition can comprise organic and/or inorganic particles in an amount bounded by any two of the aforementioned endpoints. For example, the antimicrobial composition can comprise organic and/or inorganic particles in an amount between 1% wbm to 20% wbm of the cationic monomers, for example, between 1% wbm to 15% wbm, between 1% wbm to 10% wbm, between 1% wbm to 7% wbm, between 1% wbm to 6% wbm, between 1% wbm to 5% wbm, between 4% wbm to 20% wbm, between 5% wbm to 15% wbm, between 4% wbm to 8% wbm, or between 5% wbm to 8% wbm.
[0081] In an aspect of the invention, an antimicrobial composition comprises at least one organic and/or inorganic particle that is photocatalytically active in visible light, at least one adhesion promoter, and a carrier. The organic and inorganic photocatalytic particles, adhesion promoter, and carrier are described herein. A film formed from an antimicrobial composition comprising a photocatalytic particle kills microbes under the conditions of the modified protocol for JIS Z 2801 (2006 version, which was updated in 2010). For example, an antimicrobial composition comprising at least one organic and/or inorganic particle that is photocatalytically active in visible light kills at least 90% (e.g., at least 92%, at least 94%, at least 96%, at least 97%, at least 98%, at least 99%) of a log 4 population of Clostridium difficile bacteria, fungus, or yeast within 24 hours of contact. As such, the composition can be used in accordance with any of the methods described herein to kill microbes on a surface.
[0082] In some embodiments, the antimicrobial composition comprises a salt, which can affect the ability of the cationic polymer to adsorb to the surface of a substrate and create a film. Without wishing to be bound by any theory, it is believed that high salt concentrations cause conditions similar to the interactions experienced by a polymer in a favorable solvent. Polyelectrolytes, while charged, are still mainly non-polar with carbon backbones. While the charges on the polymer backbone exert an electrostatic force that drives the polymer into a more open and loose conformation, if the surrounding solution has a high concentration of salt, then the charge repulsion will be screened. Once this charge is screened, the polyelectrolyte will act as any other non-polar polymer would in a high ionic strength solution and begin to minimize interactions with the solvent, which can lead to a much more clumped and dense polymer deposited onto the surface and improved adsorption or adhesion.
[0083] The salt is any inorganic salt, such as any salt containing a cation of a Group I metal (lithium, sodium, potassium, rubidium, or cesium), a Group II metal (beryllium, magnesium, calcium, strontium, or barium), ammonium, or aluminum. The counter anion can be a halide, carbonate, bicarbonate, sulfate, thiosulfate, phosphate, nitrate, nitrite, acetate, bromate, chlorate, iodate, etc. Specific examples of salt include lithium bromide, lithium chloride, lithium iodate, lithium iodide, lithium hydroxide, lithium sulfate, lithium phosphate, sodium bromide, sodium chloride, sodium acetate, sodium bicarbonate, sodium bisulfate, sodium bromate, sodium chlorate, sodium hydrosulfide, sodium hydroxide, sodium hypophosphite, sodium iodate, sodium iodide, potassium acetate, potassium bicarbonate, potassium bromate, potassium bromide, potassium chloride, potassium carbonate, potassium chlorate, potassium hydroxide, potassium iodide, potassium phosphate, potassium thiosulfate, rubidium bromide, rubidium chloride, rubidium fluoride, rubidium iodide, rubidium nitrate, rubidium sulfate, cesium bromide, cesium chloride, cesium carbonate, cesium nitrate, beryllium nitrate, beryllium sulfate, magnesium acetate, magnesium bromide, magnesium chloride, magnesium iodate, magnesium iodide, magnesium nitrate, magnesium phosphate, magnesium sulfate, calcium acetate, calcium bromide, calcium chloride, calcium iodide, calcium iodate, calcium nitrite, calcium nitrate, calcium phosphate, calcium sulfate, strontium bromide, strontium chloride, strontium hydrogen phosphate, strontium iodide, strontium nitrate, strontium sulfate, barium acetate, barium bromide, barium chloride, barium iodide, barium nitrate, barium phosphate, barium sulfate, barium thiosulfate, ammonium acetate, ammonium bicarbonate, ammonium bromide, ammonium chloride, ammonium nitrate, aluminum chloride, aluminum phosphate, and any combination thereof. In some embodiments, the salt is a Group I-halide salt, such as sodium chloride or potassium chloride.
[0084] The antimicrobial composition can comprise any suitable amount of salt, such as 0.01 M to 0.1 M, including any combination of endpoints at, e.g., 0.01 M, 0.02 M, 0.03 M. 0.04 Μ, 0.05 Μ, 0.06 Μ, 0.07 Μ, 0.08 Μ, 0.09 Μ, and 0.1 Μ. In a specific example, the antimicrobial composition comprises 0.01 M to 0.05 M salt.
[0085] If desired, the cationic polymer can be blended with one or more non-electrolyte (nonionic) polymers. A suitable non-electrolyte (nonionic) polymer preferably is water soluble and includes, for example, a polyacrylamide, a polyamine, a polyamidoamine, polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, and a polyacrylate (e.g., poly(methyl)methacrylate), or any combination thereof.
[0086] The antimicrobial composition comprises a carrier. The carrier can be any suitable carrier that evaporates once the composition is applied to a desired surface. In general, the carrier is selected from an alcohol, water, or a combination thereof. In some embodiments, the carrier comprises a combination of water and alcohol. A suitable alcohol includes methanol, ethanol, «-propanol, Ao-propanol, «-butanol, .sec-butanol, and /-butanol, or a combination thereof. In preferred embodiments, the carrier comprises ethanol (e.g., the carrier is a combination of ethanol and water). When a combination of alcohol and water is used as the carrier, the ratio of alcohol : water preferably ranges from 10:90 to 99:1 (e.g., 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, and 99:1). In certain embodiments, the alcohol : water ratio ranges from 70:30 to 80:20.
[0087] In general, the antimicrobial composition does not comprise a germicidal small molecule compound (i.e., non-polymer) or antimicrobial metal, including those conventional germicidal agents that are EPA-registered, because such components have a material effect on the composition. EPA-approved germicidal agents that can be excluded from the composition include, for example, glutaral, halazone, hexachlorophene, nitrofurazone, nitromersol, povidone-iodine, thimerosol, Ci-Cs-parabens, hypochlorite salts, clofucarban, clorophen, poloxamer iodine, phenolics, mafenide acetate, aminacrine hydrochloride, quaternary ammonium salts, oxychlorosene, metabromsalan, merbromin, dibromsalan, glyceryl laurate, sodium and/or zinc pyrithione, (dodecyl)(diethylenediamine)glycine, (dodecyl)(aminopropyl)glycine, a phenolic compound, (e.g., m-cresol, o-cresol, p-cresol, o-phenyl-phenol, 4-chloro-m-cresol, chloroxylenol, 6-n-amyl-m-cresol, resorcinol, resorcinol monoacetate, p-tert-butylphenol and o-benzyl-p-chlorophenol), alkaline glutaraldehyde, and a quaternary ammonium salt (e.g., N-(higher) Cio-C24-alkyl-/V-benzyl-quaternary ammonium salts that comprise water-solubilizing anions such as halide, e.g., chloride, bromide and iodide; sulfate, and methosulfate, and the heterocyclicimides such as the imidazolinium salts). Suitable quaternary ammonium compounds are described in U.S Patent 8,067,403 and include: benzalkonium chlorides (e.g., benzalkonium chloride), substituted benzalkonium chlorides (e.g., alkyl dimethyl benzyl ammonium chloride), dual quaternary ammonium compounds (e.g., contain an equal mixture of alkyldimethyl benzyl ammonium chloride and alkyl dimethyl ethylbenzyl ammonium chloride), twin or dual chain quaternary ammonium compounds, such as dialkylmethyl amines (e.g., didecyl dimethyl ammonium chloride or dioctyldimethyl ammonium chloride), and mixtures of fourth generation quaternary ammonium compounds with second-generation quaternary ammonium compounds (e.g., didecyl dimethyl ammonium chloride with alkyl dimethyl benzyl ammonium chloride). In an embodiment, the germicide is at least one member selected from the group consisting of sodium hypochlorite, chloride, chlorine dioxide, sodium chloride, potassium persulfate, potassium permanganate, silver nitrate, chlordexidine, hexachlorophene, hydrogen peroxide, acetic acid, peracetic acid, betadine, povidone iodine, formaldehyde, glutaraldehyde, benzalkonium chloride, triclosan, boric acid, phenol, cresylic acid, thymol, and polyhexamethylbiguanide.
[0088] However, if desired, one or more additional chemical germicidal agents, such as those agents described above, can be added to any of the foregoing embodiments of the antimicrobial composition. This option provides an additional chemical killing mechanism to further enhance the antimicrobial activity of the antimicrobial composition. When one or more germicidal agents are incorporated into the antimicrobial composition, the agents are entrapped in the antimicrobial residual self-sanitizing film and are incrementally released when the coated surface comes into contact with moisture. When the film is exposed to larger amounts of water, such as when the surface is moistened by wiping, food residues, or dishwater, this can lead to the release of increased amounts of the germicide. Thus, it is important that whatever germicidal agents are used, the agents must not be toxic to humans, nor should they make the film tacky, hazy or in any way detract from the appearance of the surfaces to which they are applied. The germicidal agents are typically added in lower concentrations. Accordingly, such additives preferably comprise between 0.001% and 5% weight based on monomers (“wbm”) of the cationic polymer.
[0089] In certain embodiments, the antimicrobial composition consists essentially of or consists of a polydiallydimethylammonium halide, a polyethylenimine-based polymer, an anionic polymer, at least one adhesion promoter (e.g., a titanate, a carboxylated branched PEI), optionally organic and/or inorganic particles that are photocatalytically active in visible light, and a carrier, each component of which is described herein. In some aspects of this embodiment, the organic and/or inorganic particles that are photocatalytically active in visible light are present in the composition. In certain embodiments, the antimicrobial composition consists essentially of or consists of a polydiallydimethylammonium halide, a polyethylenimine-based polymer, at least one adhesion promoter, optionally an anionic polymer, optionally organic and/or inorganic particles that are photocatalytically active in visible light, and a carrier, each component of which is described herein. In certain embodiments, the antimicrobial composition consists essentially of or consists of a polydiallydimethylammonium halide, at least one adhesion promoter (e g., a titanate, a carboxylated branched PEI), organic and/or inorganic particles that are photocatalytically active in visible light, and a carrier, each component of which is described herein.
[0090] Another aspect of the invention is an antimicrobial composition comprising a polyethylenimine-based polymer, optionally a second cationic polymer selected from a polydiallyldialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium halide), chitosan, or a combination thereof, optionally a polyacid, optionally at least one adhesion promoter, and a carrier. The polyethylenimine-based polymer typically is linear or branched polyethylenimine (PEI), as described herein, but preferably is linear PEI that is not chemically or structurally modified.
[0091] In some instances, the second cationic polymer is absent. In other instances, the second cationic polymer is a polydiallyldialkylammonium salt that is a polydiallyldimethylammonium halide (e g., polydiallyldimethylammonium chloride and/or polydiallyldimethylammonium fluoride). In an embodiment, the second cationic polymer is a poly(acrylamide-6'o-diallyldialkylammonium halide), such as poly(acrylamide-co-diallyldimethylammonium chloride). In other embodiments, the second cationic polymer is chitosan.
[0092] The polyacid and at least one adhesion promoter are as described herein.
[0093] The carrier used in the composition is any suitable carrier, as described herein (e.g., water, propanol, /vo-propanol, and/or ethanol). Typically, the composition will comprise a blend of 20% to 80% by volume of various blends of alcohol with the balance made up with water. In order to increase the virucidal action, between 3% and 10% of various blends of diols, preferably those with a chain length of from 3 to 5 carbon atoms, such as a propanediol (1,2-propanediol and 1,3-propanediol) or butanediols (1,3-butanediol), can be added to the composition. Preferably the diol is 1,2-propanediol and/or the alcohol is ethanol.
[0094] A proton donor can be added to the composition in a suitable amount (e.g., about 0.015 to about 1 percent of the total weight of the alcohol, including about 0.05 to about 1 percent, about 0.08 to about 0.8 percent, about 0.1 to about 0.8 percent). The proton donor is any suitable compound, such as hydrochloric acid, nitric acid, phosphoric acid, phosphonic acid, boric acid, sulfuric acid, adipic acid, benzene 1,3,5 tricarboxylic acid, chlorosuccinic acid, cholinechloride, cis-aconitic acid, citramalic acid, citric acid, cyclobutane 1,1,3,3 tetracarboxylic acid, cyclohexane 1,2,4,5 tetracarboxylic acid, cyclopentane 1,2,3,4 tetracarboxylic acid, diglycolic acid, fumaric acid, glutamic acid, glutaric acid, glyoxylic acid, isocitric acid, ketomalonic acid, lactic acid, maleic acid, malic acid, malonic acid, nitrilotriacetic acid, oxalacetic acid, oxalic acid, phytic acid, p-toluenesulfonic acid, salicylic acid, succinic acid, tartaric acid, tartronic acid, tetrahydrofuran 2,3,4,5 tetracarboxylic acid, tricarballylic acid, versene acids, 3-hydroxyglutaric acid, 2-hydroxypropane, 1,3 dicarboxylic acid, glyceric acid, furan 2,5 dicarboxylic acid, 3,4-dihydroxyfuran-2,5 dicarboxylic acid, 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylic acid, 2-oxo-glutaric acid, dl-glyceric acid, 2,5 furan-dicarboxylic acid, or mixtures thereof. Preferably the proton donor is citric acid, tartaric acid, malonic acid, and/or malic acid. More preferably, the proton donor is citric acid.
[0095] If desired, the composition can contain other components that include, for example, propylene glycol, a thickening agent (e.g., polyacrylic acid), a humectant (e.g., glycerine, aloe vera), an essential oil (e.g., tea tree oil), fruit extract, fragrance (e.g., carbomer, aminomethyl propanol, isopropyl myristate, tocopheryl acetate), and/or dye (e.g., blue 1, red 33, yellow 5). Depending on the carrier, polymers used, and presence of additional components, the composition can be in any desirable formulation, including a liquid, a cream, a gel, or a foam.
[0096] In a specific example, the composition comprises non-chemically modified linear PEI, polyDADMAC, optionally citric acid, a carboxylated branched PEI, and a water/alcohol carrier.
[0097] In an embodiment, the polyethylenimine-based polymer and second cationic polymer form a crystalline miscible blend that results in a stable dispersion in the carrier. A miscible blend provides a clear crystalline solution that is stable, i.e., from which there is no precipitation or fall-out. A miscible blend is different than a PEC. In addition, without wishing to be bound by any theory, it is believed that the crystalline nature of the polymers in the blend have a greater surface area and are able to provide more of an interface between the cationic polymer and microbial pathogens, both in solution and as a film.
[0098] The crystalline miscible blend can be prepared by any suitable method. In a specific example, a miscible blend of non-chemically modified linear PEI and other cationic polymers can be prepared as follows. An appropriate amount of water/PEI dispersion (e.g., about 4000 ppm PEI) is heated to a temperature that is slightly above the glass transition temperature of PEI (e.g., at least 1 °C above the glass transition temperature, at least about 2 °C above the glass transition temperature, at least about 3 °C above the glass transition temperature, at least about 4 °C above the glass transition temperature, at least about 5 °C above the glass transition temperature; including a temperature that ranges from 65-80 °C or from 68-78 °C or from 70-75 °C or about 70 °C, about 72 °C, or about 74 °C). Next, an appropriate amount of a second cationic polymer (e.g., polyDADMAC) solution with a lower pH (e.g., a pH of about 5-6, including a pH of about 5, a pH of about 5.5, or a pH of about 6), is added. This lower pH further helps to ensure that the PEI will remain in a solution state. After vigorous mixing, the solution is cooled to room temperature. Next, an appropriate amount (e.g., between 25 and 100 ppm) of an adhesion promoter (e.g., carboxylated branched PEI) is added. Carboxylated branched PEI is very basic, which will raise the pH of the solution. The pH should be adjusted back to 6.5 so that the linear PEI does not solidify.
Next, the solution is reheated to a temperature that is slightly above the glass transition temperature of PEI (e.g., at least 1 °C above the glass transition temperature, at least about 2 °C above the glass transition temperature, at least about 3 °C above the glass transition temperature, at least about 4 °C above the glass transition temperature, at least about 5 °C above the glass transition temperature; including a temperature that ranges from 65-80 °C or from 68-78 °C or from 70-75 °C or about 72 °, or about 75 °C). While vigorously stirring the blend, an appropriate amount of alcohol is drizzled in. The blend is continuously stirred while cooling to room temperature. The room temperature solution is then stirred for an additional 24 hours.
[0099] The PEI-containing composition can have one or more bactericidal, virucidal, and/or germicidal properties and can, if desired, be used as an antimicrobial composition, in particular as a hand sanitizer, in accordance with the tests, substrates, and/or methods described herein. Accordingly, provided is a method of disinfecting a surface comprising applying to the surface a composition comprising a polyethylenimine-based polymer, optionally a second cationic polymer selected from a polydiallyldialkylammonium salt, a poly (aery 1 ami de-co-di al 1 y 1 di al ky 1 am m oni urn halide), chitosan, or a combination thereof, optionally a polyacid, optionally at least one adhesion promoter, and a carrier. In an aspect of this method, a composition comprising non-chemically modified, linear PEI, optionally a polyacid, and a carrier comprising water and alcohol is used as a hand sanitizer that is particularly effective against non-enveloped viruses.
[0100] Because linear PEI is pH- and temperature-sensitive, special techniques were developed to create a stable, crystal clear, non-sticky, hand sanitizer blend comprising a linear PEI colloidal dispersion. In a specific example, a method of preparing a hand sanitizer composition includes the following steps: At room temperature, an appropriate amount of linear PEI in water was stirred vigorously to create a PEI dispersion. Under vigorous stirring, the PEI in the dispersion was then protonated with an appropriate acid, thereby bringing the pH to 6 and resulting in a clear liquid. The clear liquid was then brought to a temperature that is slightly above the glass transition temperature of PEI (e.g., at least 1 °C above the glass transition temperature, at least about 2 °C above the glass transition temperature, at least about 3 °C above the glass transition temperature, at least about 4 °C above the glass transition temperature, at least about 5 °C above the glass transition temperature; including a temperature that ranges from 65-80 °C or from 68-78 °C or from 70-75 °C or about 70 °C, about 72 °C, or about 74 °C). An appropriate amount of alcohol was then drizzled in so as to maintain the temperature of the clear liquid at about 65 °C. The clear hand sanitizer mixture was taken off the heat to avoid excessive alcohol evaporation and then stirred for several hours (e.g., at least 2 hours, at least 3 hours, at least 4 hours, or at least 5 hours) while covered.
[0101] An antimicrobial composition of the present invention meets or exceeds at least one of the following antimicrobial tests: (i) a germicidal spray test according to ASTM El 153 that meets the EPA requirement of log 3 reduction for viruses and a log 5 reduction for bacteria, (ii) a suspension test according to ASTM El052-96 (2002) or ASTM E2315 (2016), (iii) a film formed from the composition kills (iii-a) at least 95% of log 5 population of a gram positive or gram negative bacteria in 30 minutes, (iii-b) at least 95% of log 4 population of an enveloped virus within 30 minutes of contact of contact, (iii-c) at least 95% of a non-enveloped virus within 30 minutes of contact, and/or (iii-d) at least 94% of a log 4 population of Clostridium difficile bacteria within 24 hours of contact, in accordance with JIS Z 2801 (2006) test for antimicrobial activity, or a modified version of such test as described herein, (iv) a film formed from the composition has a value of 2 or less according to International Organization for Standardization (ISO) 10993-5 in vitro cytotoxicity test, (v) a durability test selected from either (v-a) a film formed from the composition kills at least 99.9% of gram-positive bacteria and gram-negative bacteria according to EPA Protocol # 01-1A residual self-sanitizing activity test, or (v-b) waiting 7 days after film formation, a film formed from the composition kills at least 95% of gram-positive bacteria and gram-negative bacteria, or enveloped and non-enveloped viruses according a modified version of Protocol # 01-1A residual self-sanitizing activity test, as described herein.
[0102] Test (i) refers to ASTM El 153, the entire contents of which are incorporated by reference, is a germicidal spray test (i.e., “kill now” claim) that is used to evaluate the antimicrobial efficacy of one-step cleaner-sanitizer formulations recommended for use on lightly soiled, inanimate, nonporous, non-food contact surfaces. In ASTM El 153 (last revision in 2014), the antimicrobial efficacy of sanitizers is tested on precleaned, inanimate, hard, nonporous, non-food contact surfaces against Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter aerogenes, or a combination thereof.
[0103] Germicidal spray test results related to an inventive miscible blend formulation are set forth in Table 3 along with a comparison with three commercially available products. MS2, MRSA, and E. coli germicidal spray tests were conducted with two cationic polymer compositions. Composition A was a miscible blend comprising 3000 ppm non-chemically modified, linear PEI, 3000 ppm polyDADMAC, 25 ppm carboxylated branched PEI, 35% ethanol, and the balance of water. Composition B was a miscible blend comprising 200 ppm of non-chemically modified, linear PEI, 200 ppm polyDADMAC, 25 ppm branched PEI carboxylated, 70% ethanol, and the balance in water (operational pH of about 7.6).
Table 3
[0104] The results in Table 3 demonstrate that Composition B contained 400 ppm of cationic polymer and passed the MS2 germicidal spray test within 5 minutes of contact, which is notable since the EPA’s maximum ppm standard for quaternary ammonium compounds in accordance with ASTM El 153 is 400 ppm. Moreover, the antimicrobial efficacy of some quaternary ammonium compounds is significantly diminished by soil or an organic load. As seen in Table 3, Composition B was also highly effective against MRSA and E. Coli spray tests (ASTM El 153) in the presence of a 5% soil load.
[0105] Test (ii) is a suspension test in accordance with ASTM E1052-96 (2002) or ASTM E2315 (2016) to determine the effectiveness of an antimicrobial solution that is in the form of a suspension against specific viruses, such as adenovirus, coronavirus, influenza viruses, rhinovirus, and rotavirus. An aliquot of the test substance is inoculated with the test virus and held for the requested exposure time. At each pre-determined exposure time, an aliquot is removed, neutralized by serial dilution, and assayed for viral infectivity by an assay method specific for the test virus. Appropriate virus, test substance cytotoxicity, and neutralization controls are run concurrently. The percent and log reduction in viral infectivity are calculated as compared to the corresponding virus control. ASTM E1052-96 (2002) and ASTM E2315 (2016) are most appropriate for an antimicrobial composition that is a suspension, such as a hand sanitizer composition.
[0106] For test (iii), the ability for a film formed from the antimicrobial composition to kill gram positive and gram negative bacteria and an enveloped virus, a non-enveloped virus, and/or Clostridium difficile bacteria can be tested in accordance with the conditions set forth in JIS Z 2801 (2006 version, updated in 2010), which is known as the Japanese Industrial Standard Test for Antimicrobial Activity and Efficacy in Antimicrobial Products, the entire contents of which are incorporated by reference. In particular, in accordance with JIS Z 2801 (2006) or a modified version thereof, as described herein, a film formed from an antimicrobial composition of the present invention kills: (iii-a) at least 95% of log 5 population of a gram positive or gram negative bacteria in 30 minutes, (iii-b) at least 95% of log 4 population of an enveloped virus within 30 minutes of contact, (iii-c) at least 95% of a non-enveloped virus within 30 minutes of contact, and/or (iii-d) at least 94% of a log 4 population of Clostridium difficile bacteria within 24 hours of contact. In a preferred embodiment, a film formed from an antimicrobial composition of the present invention meets 2 or more, 3 or more, or all 4 of each of the requirements (iii-a) - (iii-d).
[0107] For example, under the conditions of this test, the JIS Z 2801 protocol demonstrated a log 4 reduction of E. coli on a film comprising only polyDADMAC after 30 minutes, against a log 5 challenge (Table 4).
Table 4
[0108] The same film demonstrated a log 4 reduction of MRSA after 10 minutes, but with a log 7 challenge (Table 5).
Table 5
[0109] An additional self-sanitizing (“kill latef’) test was devised for a residual self-sanitizing film that is believed to be more practical for a realistic utility, particularly when testing antiviral activity. This test is based on the assumption that in a real world application, an antimicrobial residual self-sanitizing film would not be covered. This test modifies JIS Z 2801 (2006 version, which was updated in 2010) by not requiring the inoculated film to be covered and starting the test time after the inoculum dries. Test results using modified JIS Z 2801 are set forth in Table 6 for determining the lysis of MS2 on a film created from a nontoxic, miscible blend of 3000 ppm non-chemically modified, linear PEI, 3000 ppm polyDADMAC, 79% ethanol, 25 ppm carboxylated branched PEI, and the balance water.
The “kill later” data for gram positive and gram negative bacteria were generated using the standard JIS test.
Table 6
[0110] Moreover, JIS Z 2801 (2006 version, which was updated in 2010) can be modified when testing against Clostridium difficile bacteria by testing under lighted conditions and increasing the sample surface area from 1600 mm2 to 2500 mm2.
[0111] Test (iv) is directed to ISO 10993-5 (last updated in 2009), the entire contents of which are incorporated by reference, in which the in vitro cytotoxicity of medical device materials is tested. The method is directed to the incubation of cultured cells in contact with a device and/or extracts of a device either directly or through diffusion. In particular, the test article, positive and negative controls are extracted according to the method ISO 10993-12. The original extract is serially diluted and 5 concentrations are used for testing. L-929 cells (mouse, C3H/An, connective tissue) are treated with extracts of the sample, reagent control, and either negative control or positive control. Triplicate plates are prepared for each treatment. The cells are incubated for 24 hours and observed microscopically for cytotoxic effects. Cultures are observed under microscopy and graded for reactivity using a 0 to 4 scale (“4” means severely cytotoxic; “3” means moderately cytotoxic; “2” means mildly cytotoxic; “1” means slightly cytotoxic, and “0” means non-cytotoxic). Test article meets the requirement of the test when results are less than or equal to a grade of 2 (i.e., 0, 1, or 2).
[0112] A residual self-sanitizing film formed from a PEC, a miscible blend, or individual cationic polymers, as described herein, is non-leaching, and thus passes the ISO 10993-5 (2009 version) in vitro cytotoxicity test with a score of 0, as shown by the following test results in Table 7.
Table 7
[0113] Test (v) is directed to Protocol #01-1 A, commonly known as “the Clorox test,” which is a method approved by the EPA for measuring long-term sanitization claims (i.e., “kill later” durability claim). Protocol #01-1 A, the entire contents of which are incorporated by reference, measures the residual self-sanitizing activity of dried chemical residues (films) on inanimate, hard, non-porous surfaces against only bacteria: Staphylococcus aureus, Klebsiella pneumoniae, and/or bjilerobacler aerogenes. In particular, surfaces are inoculated, treated with test product, allowed to dry, then abraded under alternating wet and dry conditions, which are interspersed with several re-inoculations. At the end of the study and at least 24 hours later, the ability of the test surfaces to kill 99.9% of microorganisms within 5 minutes is measured. To pass this test, a film formed from the composition must maintain its antimicrobial efficacy between, and after, 12 alternating wet and dry rubs with a weighted cloth.
[0114] A modified version of the EPA’s durability test, Protocol #01-1A can be used. It is believed that a modified protocol is more appropriate for evaluating residual self-sanitizing films formed from an inventive antimicrobial composition because Protocol #01-1A was designed for products that depend on killing microbes by releasing germicidal chemicals from a film and which deplete over time. The inventive antimicrobial composition does not require germicidal chemicals, but rather comprises charged, cationic polymers whose killing mechanism is not believed to deplete over time. The modified test consists of daily submitting the film to three rubs (one dry, one wet, one dry) using the EPA #01-1A protocol weight and cycle time. This modified test captures the antimicrobial effectiveness of an antimicrobial composition over days, compared to the single 24 hour measurement of the standard Protocol #01-1 A. Passing the modified test will require that after 4 to 7 days, the polymer-based film will continue to demonstrate at least a 95% (e.g., at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5%, at least 99.9%) reduction of gram-positive, gram-negative bacteria, enveloped virus, and/or non-enveloped virus on glass or stainless steel substrates.
[0115] The invention also provides a method of killing microbes on a surface comprising applying to the surface an antimicrobial composition comprising a cationic polymer (by itself or encapsulated in a PEC), at least one adhesion promoter (e.g., a titanate, a carboxylated branched PEI), optionally organic and/or inorganic particles that are photocatalyically active in visible light, and a carrier, each of these components are as described herein. The method can include disinfecting a surface, providing a residual self-sanitizing film, or both. The term “microbe” includes any single cell or multicellular organism, such as bacteria, viruses, fungi, archaea, and protists (e.g., algae, amoebas, protozoa). As used herein, the term “applying” refers to any suitable technique used to transfer the antimicrobial composition to a surface. For example, techniques for applying can be, but are not limited to, brushing, rolling, spraying, wiping, mopping, pouring, painting, absorbing, adsorbing, imbibing, soaking, saturating, permeating, immersing, and a combination of these methods.
[0116] Further provided is a method of killing microbes on a surface (e.g., disinfecting a surface, providing a residual self-sanitizing film, or both) comprising applying to the surface an antimicrobial composition comprising a high molecular weight (preferably an ultra-high molecular weight) polydiallyldimethylammonium salt (e.g., polydiallyldimethylammonium halide) and a carrier, as described herein. The antimicrobial composition of this embodiment can further comprise (i) a polyethylenimine-based polymer, chitosan, or a combination thereof, and/or (ii) an anionic polymer, and/or (iii) organic and/or inorganic particles that are photocatalyically active in visible light, and/or (iv) at least one adhesion promoter (e.g., a titanate, a carboxylated branched PEI), and/or (v) at least one salt. Each of these optional components is as described herein.
[0117] Once applied to the surface, the carrier, as described herein, in the composition evaporates to leave an antimicrobial residual self-sanitizing film on the surface. The antimicrobial residual self-sanitizing film renders the surface bactericidal, virucidal, and/or germicidal. As used herein, the term “renders the surface bactericidal, virucidal, and/or germicidal” refers to reducing (e.g., eliminating, killing, or preventing and/or inhibiting growth) the presence of bacteria, viruses, and/or germs (including a fungus, such as Aspergillas brasliensis) to any suitable degree. As used herein, the term “any suitable degree” refers to 50% reduction or more, including 60% reduction or more, 70% reduction or more, 80% reduction or more, 90% reduction or more, 92% reduction or more, 94% reduction or more, 95% reduction or more, 97% reduction or more, 98% reduction or more, 99% reduction or more, or 99.5% elimination or more.
[0118] In accordance with this embodiment, the invention provides a coated surface comprising a surface (e.g., a surface of a substrate) and an antimicrobial residual self-sanitizing film, as described herein, that is applied to the surface. The resulting film provides a non-leaching surface that is not easily removed. In most embodiments, the antimicrobial residual self-sanitizing film is not covalently bound to the surface (e.g., surface of the substrate).
[0119] The surface that is rendered bactericidal, virucidal, and/or germicidal can be of any suitable material, including a biocompatible material. The surface can be used in or derived from any suitable form, such as, for example, a powder, dust, an aggregate, an amorphous solid, a sheet, a fiber, a tube, a fabric, or the like. In embodiments, the surface comprises metal, glass, fiberglass, silica, sand, wood, fiber, natural polymer, synthetic polymer, plastic, rubber, ceramic, porcelain, stone, marble, cement, a human or animal body (e.g., skin), or any hybrid, alloy, copolymer, blend, or combination thereof.
[0120] Metal surfaces suitable for use in the invention include, for example, stainless steel, nickel, titanium, tantalum, aluminum, copper, gold, silver, platinum, zinc, nickel titanium alloy (nitinol), an alloy of nickel, chromium, and iron (INCONEL™, Special Metals, Corporation, Elkhart, IN), iridium, tungsten, silicon, magnesium, tin, galvanized steel, hot dipped galvanized steel, electrogalvanized steel, annealed hot dipped galvanized steel, alloys of any of the foregoing metals, coatings containing any of the foregoing metals, and combinations thereof.
[0121] Glass surfaces suitable for use in the invention include, for example, soda lime glass, strontium glass, borosilicate glass, barium glass, glass-ceramics containing lanthanum, fiber glass, and combinations thereof.
[0122] Silica surfaces suitable for use in the invention include, for example, quartz, fused quartz, crystalline silica, fumed silica, silica gel, silica aerogel, and mixtures thereof.
[0123] Sand surfaces suitable for use in the invention include, for example, sand comprised of silica (e.g., quartz), calcium carbonate (e.g., aragonite), and mixtures thereof. The sand can comprise other components, such as minerals (e.g., magnetite, chlorite, glauconite, gypsum, olivine, garnet), metal (e.g., iron), shells, coral, limestone, and/or rock.
[0124] Suitable wood surfaces include, for example, hard wood and soft wood, and materials engineered from wood, wood chips, or fiber (e.g., plywood, oriented strand board, laminated veneer lumber, composites, strand lumber, chipboard, hardboard, medium density fiberboard), and combinations thereof. Types of wood include alder, birch, elm, maple, willow, walnut, cherry, oak, hickory, poplar, pine, fir, and combinations thereof.
[0125] Fiber surfaces suitable for use in the invention include, for example, natural fibers (e.g., derived from an animal, vegetable, or mineral) and synthetic fibers (e.g., derived from cellulose, mineral, or polymer). Suitable natural fibers include cotton, hemp, jute, flax, ramie, sisal, bagasse, wood fiber, silkworm silk, spider silk, sinew, catgut, wool, sea silk, wool, mohair, angora, and asbestos. Suitable synthetic fibers include rayon (e.g., lyocell), modal, and metal fiber (e.g., copper, gold, silver, nickel, aluminum, iron), carbon fiber, silicon carbide fiber, bamboo fiber, seacell, nylon, polyester, polyvinyl chloride fiber (e.g., vinyon), polyolefin fiber (e.g., polyethylene, polypropylene), acrylic polyester fiber, aramid (e.g., TWARON™, KEVLAR™, orNOMEX™), spandex, and combinations thereof.
[0126] Natural polymer surfaces suitable for use in the invention include, for example, a polysaccharide (e.g., cotton, cellulose), shellac, amber, wool, silk, natural rubber, a biopolymer (e.g., a protein, an extracellular matrix component, collagen), and combinations thereof.
[0127] Synthetic polymer surfaces suitable for use in the invention include, for example, polyvinylpyrrolidone, acrylics, acrylonitrile-butadiene-styrene, polyacrylonitrile, acetals, polyphenylene oxides, polyimides, polystyrene, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyethylenimine, polyesters, polyethers, polyamide, polyorthoester, polyanhydride, polysulfone, polyether sulfone, polycaprolactone, polyhydroxy-butyrate valerate, polylactones, polyurethanes, polycarbonates, polyethylene terephthalate, as well as copolymers and combinations thereof.
[0128] Typical rubber surfaces suitable for use in the invention include, for example, silicones, fluorosilicones, nitrile rubbers, silicone rubbers, polyisoprenes, sulfur-cured rubbers, butadiene-acrylonitrile rubbers, isoprene-acrylonitrile rubbers, and combinations thereof.
[0129] Ceramic surfaces suitable for use in the invention include, for example, boron nitrides, silicon nitrides, aluminas, silicas, combinations thereof, and combinations thereof.
[0130] Stone surfaces suitable for use in the invention include, for example, bauxite, calcite, feldspar, gypsum, slate, granite, quartz, quartzite, limestone, dolostone, sandstone, marble, soapstone, serpentine and combinations thereof.
[0131] For purposes of the present invention, animal bodies include, but are not limited to, the order Rodentia (e.g., mice), the order Logomorpha (e.g., rabbits), the order Carnivora (e.g., Felines (cats) and Canines (dogs)), the order Artiodactyla (e.g., Bovines (cows) and Swines (pigs)), the order Perssodactyla (e.g., Equines (horses)), the order Primates, Ceboids, or Simioids (e.g., monkeys), the class Aves (e.g., birds), the class of Phylum Arthropoda (e.g., insects), the class of Pisces (e.g., fish), or the order Anthropoids (e.g., humans and apes). Typically skin (including intact skin, wounded or broken skin, and/or skin that is otherwise damaged, by for example, a bum) and/or mucosal tissue (e.g., oral, nasal, ocular, or genital tissue) of the animal body serves as the surface suitable for application of the antimicrobial composition. The skin and/or mucosal tissue can be associated with any part of the animal body, including the limbs, tail, abdomen, chest, head, neck, face, genital area (e.g., udder), buttocks, or back. In general, the type and amount of components of the antimicrobial composition will be selected to ensure biocompatibility, to minimize toxicity, to minimize irritation, and/or have a desired level of surface tack and/or adhesiveness of the formed film.
[0132] The surface typically is a component of a larger structure. For example, the surface can be part of a substrate, such as a medical device, diagnostic equipment, implant, glove, mask, curtain, mattress, sheets, blankets, gauze, dressing, tissue, surgical drape, tubing, surgical instrument, safety gear, fabric, apparel item, floor, handles, wall, sink, shower or tub, toilet, furniture, wall switch, toy, athletic equipment, playground equipment, shopping cart, countertop, appliance, railing, door, air filter, pipe, utensil, dish, cup, container, object display container, food, food display container, food package, food processing equipment, food handling equipment, food transportation equipment, food vending equipment, food storage equipment, food packaging equipment, plant, phone, cell phone, remote control, computer, mouse, keyboard, touch screen, leather, cosmetic, cosmetic making equipment, cosmetics storage equipment, cosmetics packaging equipment, personal care item, personal care item making equipment, personal care storage equipment, personal care packaging equipment, animal care item, animal care item making equipment, veterinary equipment, powder, cream, gel, salve, eye care item, eye care item making equipment, contact lens, glasses, eye care storage equipment, contact lens case, jewelry, jewelry making equipment, jewelry storage equipment, animal housing, farming equipment, animal food handling equipment, animal food storage space, animal food storage equipment, animal food container, air vehicle, land vehicle, air processing equipment, air filter, water vehicle, water storage space, water storage equipment, water processing equipment, water storage container, water filter, hand, hair, foot, leg, arm, torso, head, or animal body part, pharmaceuticals display container, pharmaceuticals package, pharmaceuticals processing equipment, pharmaceuticals handling equipment, pharmaceuticals transportation equipment, pharmaceuticals vending equipment, pharmaceuticals, pharmaceuticals storage equipment, pharmaceuticals packaging equipment.
[0133] A “medical device” includes any device having surfaces that contact tissue, blood, or other bodily fluids in the course of their use or operation, which are found on or are subsequently used within a mammal (e.g., a human). Medical devices include, for example, extracorporeal devices for use in surgery, such as blood oxygenators, blood pumps, blood storage bags, blood collection tubes, blood filters including filtration media, dialysis membranes, tubing used to carry blood and the like which contact blood which is then returned to the patient or mammal. Medical devices also include endoprostheses implanted in a mammal (e.g., a human), such as vascular grafts, stents, pacemaker leads, surgical prosthetic conduits, heart valves, and the like, that are implanted in blood vessels or the heart. Medical devices also include devices for temporary intravascular use such as catheters, guide wires, amniocentesis and biopsy needles, cannulae, drainage tubes, shunts, sensors, transducers, probes and the like which are placed into the blood vessels, the heart, organs or tissues for purposes of monitoring or repair or treatment. Medical devices also include prostheses such as artificial joints such as hips or knees as well as artificial hearts. In addition, medical devices include penile implants, condoms, tampons, sanitary napkins, ocular lenses, sling materials, sutures, hemostats used in surgery, antimicrobial materials, surgical mesh, transdermal patches, and wound dressings/bandages.
[0134] The “diagnostic equipment” includes any device or tool used to diagnose or monitor a medical condition. Examples include an ultrasound, magnetic resonance imaging (MRI) machine, positron emission tomography (PET) scanner, computed tomography (CT) scanner, ventilator, heart-lung machine, extracorporeal membrane oxygenation (ECMO) machine, dialysis machine, blood pressure monitor, otoscope, ophthalmoscope, stethoscope, sphygmomanometer, blood pressure cuff, electrocardiograph, thermometer, defibrillator, speculum, sigmoidoscope, and anoscope.
[0135] The “surgical instrument” includes any tool or device used for performing surgery or an operation. Examples include a scalpel, lancet, trocar, hemostat, grasper, forceps, clamp, retactor, distractor, positioner, tracheotome, dilator, stapler, irrigation needle, injection needle, drill, scope, endoscope, probe, ruler, and caliper.
[0136] “Safety gear” includes devices used to protect a person, animal, or object. Examples of “safety gear” are a mask, face shield, visor, goggles, glasses, gloves, shoe covers, foot guard, leg guard, belt, smock, apron, coat, vest, raingear, hat, helmet, chin strap, hairnet, shower cap, hearing protection (ear plugs, ear muffins, hearing bands), respirator, gas mask, supplied air hood, collar, leash, and first aid kit.
[0137] “Fabric” includes any type of suitable fabric, such as bedding, curtains, towels, table coverings, protective sheeting, and dish cloths.
[0138] An “apparel item” includes an item of clothing, footwear, or other item someone would wear on his/her person. Examples include a uniform, coat, shirt, pants, waders, scrubs, socks, shoe or boot liner, an insole, gloves, hats, shoes, boots, and sandals.
[0139] The surface can be part of a building structure or an item that can be found in a building structure, such as a floor, wall, an appliance (e.g., a refrigerator, oven, stove, dishwasher, washing machine, clothes dryer, furnace, water heater, air conditioner, heater), sink, shower or tub, toilet, furniture (e.g., mattress, couch, sofa, chair, table, shelf, mantle, bed, dresser), countertop, railing, air filter, air processing equipment, water processing equipment, water filter, pipe, door, handle, light, light switch, thermostat, sprinkler, air conditioner evaporator and/or condenser.
[0140] The surface can also be a toy or athletic equipment, including exercise equipment, playground equipment, or a pool.
[0141] The surface can be a utensil (e.g., knife, fork, spoon, ladle, spatula, whisk, etc ), a dish (e g., a food storage container, a food serving piece, etc.), a food package (e.g., a bag, a box, foil, plastic wrap), or other item that comes in contact with food (e.g., a cutting board, food display container, food processing equipment, food handling equipment, food transportation equipment, food vending equipment, animal food handling equipment, animal food storage space, food storage equipment, animal food container, animal food storage equipment). The surface can be part of food processing equipment, such as food processing tanks, stirrers, conveyor belts, knives, grinders, packaging machines, labeling machines, etc.
[0142] The “food” is any food in which it would be desirable to provide with an antimicrobial residual self-sanitizing film. In such embodiments, the antimicrobial residual self-sanitizing film and the composition thereof should be nontoxic for human and animal consumption. The “food” can be, e.g., any fruit, vegetable, meat, or egg.
[0143] The “plant” is any suitable plant, including an angiosperm (a flowering plant), gymnosperm (a seed-producing plant), a conifer, fern, and moss. Suitable angiosperms are from the amborella (e.g., Amborella trichopoda Bail!), nymphaeales (e.g., water lily), austrobaileyales (e.g., Illicium verum), chloranthales (e.g., from the genus ascarina, chloranthus, hedyosmum, or sarcandra), magnoliids (e.g., magnolia, bay laurel, black pepper), monocots (e.g., grasses, orchids, palms), ceratophyllum (e.g., aquatic plants), or eudicots (e.g., sunflower, petunia, apple) groups. Suitable gymnosperms are from the subclass cycadidae, ginkgoidae, gnetidae, or pinidae.
[0144] The surface can be part of an electronic device, such as a phone, cell phone, remote control, computer, mouse, keyboard, and touch screen.
[0145] The surface can further be part of a cosmetic (e.g., eye shadow, eyeliner, primer, foundation, lipstick, lip gloss, blush), cosmetic making equipment, cosmetic storage equipment, cosmetic packaging equipment, a personal care item (e.g., cream, gel, salve, lip balm, body soap, facial soap, lotion, cologne, perfume, antiperspirant, deodorant, facial tissue, cotton swabs, cotton pads, mouthwash, toothpaste, nail polish, shampoo, conditioner, hairspray, talcum powder, shaving cream, contact lens, contact lens case, glasses), personal care item making equipment, personal care storage equipment, personal care packaging equipment, jewelry (e.g., necklace, ring, earring, bracelet, watch), jewelry making equipment, or jewelry storage equipment.
[0146] The “animal care item” and “veterinary equipment” can be any product used in a setting that includes animals, such as a house, boarding house, or veterinary hospital. Of course, veterinary equipment can be used at a location outside of a hospital setting. Animals are any animals that are typically considered pets, non-pets, boarded, treated by a veterinarian, and animals in the wild. Examples include a dog, cat, reptile, bird, rabbit, ferret, guinea pig, hamster, rat, mouse, fish, turtle, horse, goat, cattle, and pigs. Suitable animal care items include the personal care items described herein, toys, bed, crate, kennel, carrier, bowl, dish, leash, collar, litterbox, and grooming items (e.g., clippers, scissors, a brush, comb, dematting tool, and deshedding tool). Suitable veterinary equipment includes any of the medical devices and surgical instruments described herein and other equipment, such as a table, tub, stretcher, sink, scale, cage, carrier, and leash.
[0147] The “animal housing” can be any suitable housing, such as a coop, stable, shelter, grab bag shelter, hutch, bam, shed, pen, nestbox, feeder, stanchion, cage, carrier, or bed.
[0148] The “farming equipment” is any device used in an agricultural setting, including a farm or ranch, particularly a farm or ranch that houses animals, processes animals, or both. Animal livestock that can be housed or processed as described herein and include, e g., horses, cattle, bison, and small animals such as poultry (e g., chickens, quails, turkeys, geese, ducks, pigeons, doves, pheasants, swan, ostrich, guineafowl, Indian peafowl, emu), pigs, sheep, goats, alpacas, llamas, deer, donkeys, rabbits, and fish. Examples of farming equipment include as a wagon, trailer, cart, bam, shed, fencing, sprinkler, shovel, scraper, halter, rope, restraining equipment, feeder, waterer, trough, water filter, water processing equipment, stock tank, fountain, bucket, pail, hay rack, scale, poultry flooring, egg handling equipment, a barn curtain, tractor, seeder, planter, plow, rotator, tiller, spreader, sprayer, agitator, sorter, baler, harvester, cotton picker, thresher, mower, backhoe loader, squeeze chute, hydraulic chute, head chute, head gate, crowding tub, corral tub, alley, calving pen, calf table, and milking machine.
[0149] The surface can be part of a vehicle, such as an air vehicle, land vehicle, or water vehicle. Suitable vehicles include a car, van, truck, bus, ambulance, recreational vehicle, camper, motorcycle, scooter, bicycle, wheelchair, train, streetcar, ship, boat, canoe, submarine, an unmanned underwater vehicle (UUV), a personal water craft, airplane, jet, helicopter, unmanned autonomous vehicle (UAV), and hot air balloon.
[0150] If desired, the surface to which the antimicrobial residual self-sanitizing film has been applied can be regenerated by removing the antimicrobial residual self-sanitizing film, since the film typically is not covalently bonded to the surface. The removing step can be performed by any suitable method, such as washing or rinsing with a solvent (e g., water and/or alcohol). Thus, the antimicrobial coating on a surface (e.g., the surface of a substrate) described herein can be considered temporary (e.g., removable). In an embodiment, the antimicrobial residual self-sanitizing film is water soluble and is removable with water (e.g., hot soapy water).
[0151] The antimicrobial residual self-sanitizing film renders the surface bactericidal against any suitable bacteria to any suitable degree. In other words, an antimicrobial composition of the present invention can form an antimicrobial residual self-sanitizing film on a surface (e.g., the surface of a substrate) that kills at least 75% (e.g., at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) of bacteria that comes in contact with the antimicrobial residual self-sanitizing film. For example, the bacteria can be, for example, Staphylococcus aureus, gram positive methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus saprophyticus, Pseudomonas aeruginosa, Listeria monocytogenes, Klebsiella pneumoniae, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Haemophilus influenzae, Helicobacter pylori, Salmonella, Shigella, Clostridium, Enterobacter aerogenes, gram negative Escherichia coli, Clostridium difficile, or a combination thereof. In certain embodiments, the antimicrobial composition is effective in reducing (e.g., eliminating, killing, or preventing and/or inhibiting growth) gram positive methicillin-resistant Staphylococcus aureus (MRSA), gram negative Escherichia coli (ATCC 8739), Clostridium difficile (ATCC 43598), or a combination thereof.
[0152] In an aspect of the invention, an antimicrobial residual self-sanitizing film formed from an antimicrobial composition described herein renders the surface bactericidal against gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Preferably, the antimicrobial residual self-sanitizing film kills at least 95% (e.g., at least 96%, at least 97%, at least 98%, at least 99%) of a log 5 population of gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria within 30 minutes (e.g., within 20 minutes, within 15 minutes, within 10 minutes, within 5 minutes) of contact. In a particularly preferred embodiment, the antimicrobial residual self-sanitizing film kills at least 99.8% of a log 5 population of gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria within 5 minutes of contact.
[0153] In another aspect of the invention, an antimicrobial residual self-sanitizing film formed from an antimicrobial composition described herein renders the surface bactericidal against gram negative Escherichia coli (ATCC 8739) bacteria. In particular, the antimicrobial residual self-sanitizing film kills at least 95% (e.g., at least 96%, at least 97%, at least 98%, at least 99%) of a log 5 population of gram negative Escherichia coli (ATCC 8739) bacteria within 30 minutes (e.g., within 20 minutes, within 15 minutes, within 10 minutes, within 5 minutes) of contact. In a preferred embodiment, the antimicrobial residual self-sanitizing film kills at least 99.7% of a log 5 population of gram negative Escherichia coli (ATCC 8739) bacteria within 5 minutes of contact.
[0154] In yet another aspect of the invention, an antimicrobial residual self-sanitizing film formed from an antimicrobial composition described herein renders the surface bactericidal against Clostridium difficile (ATCC 43598) bacteria. More specifically, the antimicrobial residual self-sanitizing film kills at least 75% (e.g., at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%) of a log 4 population of Clostridium difficile (ATCC 43598) bacteria within 24 hours of contact (e.g., within 18 hours, within 12 hours, within 10 hours, within 8 hours, within 6 hours) of contact. In a preferred embodiment, the antimicrobial residual self-sanitizing film kills at least 99.7% of a log 4 population of Clostridium difficile (ATCC 43598) bacteria within 8 hours of contact.
[0155] Viruses are much more difficult to kill, especially non-enveloped viruses, e.g., norovirus, rotavirus, adenovirus, and poliovirus. Generally, the only way to kill an array of non-enveloped viruses is with an abundance of very harsh chemicals such as hypochlorite, acids and peroxides, all of which are extremely cytotoxic. Remarkably, the technology described in the present invention is capable of forming antimicrobial residual self-sanitizing films that kill non-enveloped viruses. Accordingly the present invention provides an antimicrobial residual self-sanitizing film formed from an antimicrobial composition described herein that renders a surface virucidal against any suitable virus to any suitable degree, such as, reducing (e.g., eliminating, killing, or preventing and/or inhibiting growth) at least 75% (e.g., at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) of the virus. In a particular example, an antimicrobial residual self-sanitizing film formed from an antimicrobial composition described herein renders the surface virucidal against at least one enveloped virus (e.g., chickenpox virus, influenza, herpes simplex, severe acute respiratory syndrome (SARS), flavivirus, togavirus) or non-enveloped virus (e.g., levivirus, norovirus, rotavirus, adenovirus, parvovirus, and poliovirus).
[0156] In another aspect of the invention, an antimicrobial residual self-sanitizing film formed from an antimicrobial composition described herein renders the surface virucidal against influenza A (e.g., H1N1, H1N2, and H5N1) enveloped virus. In an embodiment, the antimicrobial residual self-sanitizing film kills at least 95% (e.g., at least 96%, at least 97%, at least 98%, at least 99%) of a log 4 population of influenza A (H1N1) (ATCC CCL-34) enveloped virus within 60 minutes (e.g., within 45 minutes, within 30 minutes, within 20 minutes) of contact. In a preferred embodiment, the antimicrobial residual self-sanitizing film kills at least 99% of a log 4 population of influenza A (H1N1) (ATCC CCL-34) enveloped virus within 30 minutes of contact of contact.
[0157] In yet another aspect of the invention, an antimicrobial residual self-sanitizing film renders the surface virucidal against a non-enveloped virus, such as levivirus (e.g., MS2), norovirus, rotavirus, adenovirus, parvovirus, or poliovirus. In an embodiment, the antimicrobial residual self-sanitizing film kills at least 95% (e.g., at least 96%, at least 97%, at least 98%, at least 99%) of a non-enveloped virus within 30 minutes of contact (e.g., within 20 minutes, within 15 minutes, within 10 minutes, within 5 minutes) of contact. In a preferred embodiment, the antimicrobial residual self-sanitizing film kills at least 97% of a non-enveloped virus within 5 minutes of contact. In some instances of this embodiment, the non-enveloped virus is MS2 (ATCC 15597-B1).
[0158] One embodiment of the invention is directed to treated filter media that comprises one or more insoluble cationic polymers, as described herein, that is coupled to positively charged non-woven filter media. The filter media is suitable for filtering, for example, liquids (e.g., water) and air and can be made from any suitable material, such as alumina (AI2O3), polyester (e.g., PET), polyethylene, polypropylene, polyamide (e.g., nylon 6,6), polyimide, polyacrylic, glass, metal, dextran, cellulose, jute, wood pulp, cotton, or a combination thereof (e.g., microglass fibers and/or cellulose coated with nanoalumina fibers). If the material is not positively charged in its natural form, the material can be modified, as needed, to provide the necessary positive charge, by for example, adding one or more quaternary ammonium groups. The non-woven filter media can be purchased commercially and can be prepared by any suitable method (e.g., wetlaid, airlaid, drylaid, meltblown, spunbond, nanofiber web spinning, and continuous draw fiberization). See, e.g., Argonide (Sanford, FL), Pall Corporation (Port Washington, New York), GE Infrastructure Water and
Process Technologies (Trevose, PA), and Meissner Filtration Products (Camarillo, CA). An adhesion promoter that acts as a coupling agent, as described herein, can be used. Embodiments in which the adhesion promoter is cationic, such as branched carboxolated PEI, are preferred.
[0159] Most filtration media reduce pathogenic microbes by simple screening by size, but such filters require high pressure to effective screen a material (e g., fluid), easily foul, and require frequent maintenance. A treated filter that is positively charged and coupled to one or more insoluble cationic polymers, as described herein, can effectively kill microorganisms with reduced pressure and/or less fouling. FIG. 2A illustrates a small pore size from a filter comprising 5 pm glass that is not positively charged. FIG. 2B illustrates a filter comprising positively charged alumina with a larger pore size. However, the filter acts like the smaller pore sized microglass filter in FIG. 2A, because of the cationic polymer (e.g., insoluble polyDADMAC, linear PEI) that is coupled to the alumina.
[0160] In one example of a treated water filter, polyDADMAC that has been made insoluble (e.g., by substituting part of the chloride counterions with fluoride) is coupled to positively charged, non-woven filter AI2O3 media with branched carboxylated PEI. The resulting treated filter media has a very high positive zeta value. In another example, a treated air filter is made by coupling linear PEI to positively charged, non-woven filter AI2O3 media using an adhesion promoter, such as branched carboxylated PEI.
[0161] Upon testing, a highly contaminated (log 7) metal working fluid passed through a treated filter, as described herein, reduced microbes, including a non-enveloped virus, by 99.9%.
[0162] The invention is further illustrated by the following embodiments.
[0163] (1) An antimicrobial composition comprising: (a) a cationic polymer, (b) at least one adhesion promoter, (c) optionally organic and/or inorganic particles that are photocatalytically active in visible light, and (d) a carrier, wherein the components of the composition are not covalently bound to one another, and the antimicrobial composition is in accordance with one or more of the following tests: (i) a germicidal spray test according to American Society for Testing and Materials (ASTM) international method El 153 that meets the EPA requirement of log 3 reduction for viruses and a log 5 reduction for bacteria, (ii) a suspension test according to ASTM international method El052-96 (2002) or ASTM international method E2315 (2016), (iii) a film formed from the composition kills (iii-a) at least 95% of log 5 population of a gram positive or gram negative bacteria in 30 minutes, (iii- b) at least 95% of log 4 population of an enveloped virus within 30 minutes of contact of contact, (iii-c) at least 95% of a non-enveloped virus within 30 minutes of contact, (iii-d) at least 94% of a log 4 population of Clostridium difficile bacteria within 24 hours of contact, in accordance with Japanese Industrial Standard (JIS) Z 2801 (2006) test for antimicrobial activity, or a modified version of such test as described herein, (iv) a film formed from the composition has a value of 2 or less according to International Organization for Standardization (ISO) 10993-5 in vitro cytotoxicity test; and (v) a durability test selected from either (v-a) a film formed from the composition kills at least 99.9% of gram-positive bacteria and gram-negative bacteria according to Environmental Protection Agency (EPA) Protocol # 01-1A residual self-sanitizing activity test, or (v-b) waiting 7 days after film formation, a film formed from the composition kills at least 95% of gram-positive bacteria and gram-negative bacteria, or enveloped and non-enveloped viruses according a modified version of Protocol # 01-1A residual self-sanitizing activity test, as described herein.
[0164] (2) The antimicrobial composition of embodiment (1), wherein the cationic polymer is a polydiallyldialkylammonium salt, an acryloxyalkyltrialkylammonium salt, a vinylphenalkyltrialkylammonium salt, an acrylamidoalkyltrialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium salt), a polyethylenimine-based polymer, chitosan optionally used in combination with an anionic polymer, or a combination thereof.
[0165] (3) The antimicrobial composition of embodiment (2), wherein the polydiallyldialkylammonium salt is a polydiallyldimethylammonium halide, and the halide is chloride, fluoride, an anion containing chloride, an anion containing fluoride, or a combination thereof.
[0166] (4) The antimicrobial composition of any one of embodiments (1)-(3), wherein the cationic polymer is non-chemically modified linear polyethylenimine (PEI).
[0167] (5) The antimicrobial composition of any one of embodiments (1)-(4), wherein the at least one adhesion promoter is selected from a titanate, carboxylated branched or linear PEI, a silane compound, cationic block copolymers, and a polymer comprising at least one acyl group, carboxylic acid group, or carboxylic acid derivative, and a combination thereof.
[0168] (6) The antimicrobial composition of any one of embodiments (1)-(5), wherein the organic and/or inorganic particles that are photocatalytically active in visible light are selected from the group consisting of graphene, g-C3N4, a transition metal oxide, a transition metal sulfide, a transition metal selenide, a dye sensitizer, a conjugated polymer, a noble metal,or a mixture thereof.
[0169] (7) The antimicrobial composition of any one of embodiments (1)-(6), wherein the organic and/or inorganic particles that are photocatalytically active in visible light are W- and N-doped T1O2 particles that have been hydrolyzed under ultraviolet (UV) light.
[0170] (8) The antimicrobial composition of any one of embodiments (1)-(7), wherein the antimicrobial composition does not contain a germicidal small molecule compound.
[0171] (9) The antimicrobial composition of any one of embodiments (1)-(7), wherein the antimicrobial composition further comprises at least one germicidal agent.
[0172] (10) The antimicrobial composition of any one of embodiments (1)-(9), wherein the antimicrobial composition further comprises one or more non-electrolyte polymers.
[0173] (11) The antimicrobial composition of embodiment (10), wherein the one or more non-electrolyte polymers comprises a polyacrylamide.
[0174] (12) An antimicrobial composition comprising a polyethylenimine-based polymer, optionally a second cationic polymer selected from a polydiallyldialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium halide), chitosan, or a combination thereof, optionally a polyacid, optionally at least one adhesion promoter, and a carrier.
[0175] (13) The antimicrobial composition of embodiment (12), wherein the polyethylenimine-based polymer is linear PEI.
[0176] (14) The antimicrobial composition of embodiment (12) or (13), wherein the composition comprises non-chemically modified linear PEI, polydiallyldimethylammonium chloride (polyDADMAC), optionally citric acid, a carboxylated branched PEI, and a water-alcohol carrier.
[0177] (15) The antimicrobial composition of any one of embodiments (12)-(14), wherein the composition comprises citric acid.
[0178] (16) An antimicrobial composition comprising at least one organic and/or inorganic particle that is photocatalytically active in visible light, at least one adhesion promoter, and a carrier, wherein a film formed from the antimicrobial composition kill microbes under the conditions of JIS Z 2801 that has been modified by not requiring the inoculated film to be covered and starting the test time after the inoculum dries.
[0179] (17) A method of killing microbes on a surface comprising applying to the surface the antimicrobial composition of any one of embodiments (1)-(16).
[0180] (18) The method of embodiment (17), wherein the carrier evaporates to leave a residual self-sanitizing film on the surface.
[0181] (19) The method of embodiment (18), wherein the residual self-sanitizing film renders the surface bactericidal, virucidal, and/or germicidal.
[0182] (20) The method of embodiment (18) or (19), wherein the residual self-sanitizing film kills one or more of the following: (i) at least 95% of a log 5 population of gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria within 30 minutes of contact; (ii) at least 95% of a log 5 population of gram negative Escherichia coli (ATCC 8739) bacteria within 30 minutes of contact; (iii) at least 95% of a log 4 population of influenza A (H1N1) (ATCC CCL-34) enveloped virus within 60 minutes of contact; (iv) at least 95% of a non-enveloped virus within 30 minutes of contact of contact; and/or (v) at least 75% of a log 4 population of Clostridium difficile (ATCC 43598) bacteria within 24 hours of contact of contact.
[0183] (21) The method of embodiment (20), wherein the non-enveloped virus is MS2 (ATCC 15597-B1).
[0184] (22) A method of killing microbes on a surface comprising applying to the surface an antimicrobial composition comprising high molecular weight polydiallyldialkylammonium salt and a carrier.
[0185] (23) The method of embodiment (22), wherein the antimicrobial composition further comprises a polyethylenimine-based polymer, chitosan, or a combination thereof.
[0186] (24) The method of embodiment (22) or (23), wherein the antimicrobial composition further comprises organic and/or inorganic particles that are photocatalytically active in visible light.
[0187] (25) The method of any one of embodiments (22)-(24), wherein the antimicrobial composition does not contain a germicidal small molecule compound.
[0188] (26) The method of any one of embodiments (22)-(25), wherein the carrier evaporates to leave a residual self-sanitizing film on the surface.
[0189] (27) The method of embodiment (26), wherein the residual self-sanitizing film kills one or more of the following: (i) at least 95% of a log 5 population of gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria within 30 minutes of contact; (ii) at least 95% of a log 5 population of gram negative Escherichia coli (ATCC 8739) bacteria within 30 minutes of contact; (iii) at least 95% of a log 4 population of influenza A (H1N1) (ATCC CCL-34) enveloped virus within 60 minutes of contact; (iv) at least 95% of a non-enveloped virus within 30 minutes of contact of contact; and/or (v) at least 75% of a log 4 population of Clostridium difficile (ATCC 43598) bacteria within 24 hours of contact of contact.
[0190] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
EXAMPLES
[0191] The antimicrobial compositions for the following examples were prepared according to the following general procedure: (1) a highly dilute mixture of one or more cationic polymers is prepared, (2) photocatalyst particles are added as a percent weight based on cationic monomers (% wbcm), (3) a highly dilute mixture of one or more anionic polymers is prepared, (4) the dilute cationic polymer and the dilute anionic polymers are blended to create a PEC, (5) if used, a titanate adhesion promoter is added as a percent weight based on total monomers (% wbtm), (6) the cationic/anionic PEC is condensed (i.e., the solvent is partially evaporated) to obtain the desired concentration used in determining, for example, film thickness and film durability, and (7) the antimicrobial composition is further diluted for desired modifications. Steps 2-7 are optional depending on the desired disinfecting composition and concentration. EXAMPLE 1 [0192] This example demonstrates the preparation of an antimicrobial composition in an embodiment of the invention.
[0193] The individual components and their relative amounts for forming a polyDADMAC/PEI/PAAS PEC are tabulated and provided in Table 8. The amounts of the individual components are listed in addition to a calculation of the concentration (ppm) of the solution.
Table 8
[0194] The antimicrobial composition that creates the PEC set forth in Table 8 comprises two cationic polymers (i.e., polyDADMAC and PEI), an anionic polymer (PAAS), a titanate, T1O2 particles (photocatalyst), and water as the carrier. Alcohol is not required for the creation of the PEC. Following the formation of the PEC, a certain percentage of the water is replaced with alcohol. When the composition is used as a spray on disinfectant, the alcohol helps kill bacteria. The alcohol also helps the composition dry faster to form a residual self-sanitizing film. This replacement of water with alcohol can range from 5% alcohol to 90% alcohol, preferably from 35% to 70%. EXAMPLE 2 [0195] This example demonstrates the future antimicrobial protection against gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria and gram negative Escherichia coli (ATCC 8739) bacteria exhibited by an antimicrobial composition in accordance with an embodiment of the invention.
[0196] Disinfecting compositions were prepared comprising either 250 kDa pDADMAC or ultra-high molecular weight (1,000,000 g/mol) pDADMAC, a water-methanol mixture, titanate, and functionalized T1O2 particles as set forth in Table 9. The kill rates and times reported are after inoculation of a 7-day-old film with the bacteria. The bacteria testing was conducted by an independent test laboratory, BioSan Laboratories, Inc. (Warren, MI), and the results for the 4.8K ppm film are set forth in Table 10. A simulated EPA durability test used herein consists of the requisite 12 alternating wet and dry wipes with a prescribed weight. Recovered organisms from each sample were measured after 5 minutes. The results are set forth in Table 10, row 4.
Table 9
Table 10
[0197] As is apparent from the results set forth in Table 10, the ultra-high molecular weight pDADMAC is very effective at preventing future growth of both gram-positive (MRSA) and gram-negative (E. coli) bacteria, killing greater than 99.5% in 5 minutes. In addition, these results are measured after a period of 7 days demonstrating that the antimicrobial residual self-sanitizing film is continually killing at this efficient level. Furthermore, the ultra-high molecular weight polyDADMAC is equally effective at killing gram-negative (E. coli) bacteria after the EPA durability test. Thus, the antimicrobial residual self-sanitizing film does not easily wipe off of the surface. EXAMPLE 3 [0198] This example demonstrates the future antimicrobial protection against influenza A (H1N1) (ATCC CCL-34) enveloped virus and MS2 (ATCC 15597-B1) non-enveloped virus exhibited by an antimicrobial composition in accordance with an embodiment of the invention.
[0199] Disinfecting compositions comprising pDADMAC and/or PEI, a titanate, and optionally functionalized T1O2 in a water-methanol mixture were prepared in accordance with either Table 8, 9, or 11. The kill rates and times reported are after inoculation of a 7-day-old film with the virus. The virus testing was conducted by an independent test laboratory, Antimicrobial Test Laboratories (Round Rock, TX), and the results set forth in Table 12.
Table 11
Table 12
[0200] As is apparent from the results set forth in Table 12, antimicrobial compositions comprising pDADMAC and T1O2 lyse 98.2% of a log 4 population of influenza A (H1NI) virus within 30 minutes of contact and 99% within 60 minutes. In addition, antimicrobial compositions comprising PEI kill 97.4% of a log 4 population of the non-enveloped virus MS2 within 5 minutes, and 99% within 30 minutes. Table 12 also demonstrates that disinfecting compositions comprising polyDADMAC, T1O2, and PEI become more antiviral, particularly against non-enveloped MS2, with the addition of 33% PEI. Without PEI, 82.3% are killed within 30 minutes, but with 33% PEI 95% are killed within 30 minutes. Furthermore, Table 12 demonstrates that an antimicrobial composition comprising pDADMAC and T1O2 only kills 82.3% of the non-enveloped MS2 virus within 30 minutes of contact, this increased to 97.8% after 24 hours. EXAMPLE 4 [0201] This example demonstrates the future antimicrobial protection against spore generating Clostridium difficile (ATCC 43598) bacteria exhibited by an antimicrobial composition in accordance with an embodiment of the invention.
[0202] An antimicrobial composition was prepared comprising ultra-high molecular weight pDADMAC, a titanate, and functionalized T1O2 in a water-methanol mixture as set forth in Table 9. The kill rates and times reported are after inoculation of a 7-day-old film with the bacteria. The bacteria testing was conducted by an independent test laboratory, Antimicrobial Test Laboratories (Round Rock, TX), and the results set forth in Table 13.
Table 13
[0203] As is apparent from the results set forth in Table 13, an antimicrobial composition comprising ultra-high molecular weight pDADMAC and TiCte kills 98% of a log 5 population of Clostridium difficile (ATCC 43598) bacteria in 8 hours. EXAMPLE 5 [0204] This example demonstrates the future antimicrobial protection against Aspergillas brasliensis fungus exhibited by an antimicrobial composition in accordance with an embodiment of the invention.
[0205] An antimicrobial composition comprising ultra-high molecular weight pDADMAC, a titanate, and functionalized TiCh in a water-methanol mixture was prepared using the formulation set forth in Table 9. The kill rates and times reported are after inoculation of a 7-day-old film with the fungus. The fungus testing was conducted by independent test laboratory, BioSan Laboratories, Inc. (Warren, MI) and the results set forth in Table 14.
Table 14
[0206] As is apparent from the results set forth in Table 14, an antimicrobial composition comprising ultra-high molecular weight pDADMAC, a titanate, and T1O2 kills 86% of a log 4 population of Aspergillas brasliensis fungus in 8 hours. EXAMPLE 6 [0207] This example demonstrates the future antimicrobial protection against gram positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria exhibited by an antimicrobial composition in accordance with an embodiment of the invention.
[0208] Disinfecting compositions were prepared in accordance with the components set forth in Table 9 except that no titanium dioxide was present. A simulated EPA durability test used herein consists of the requisite 12 alternating wet and dry wipes with a prescribed weight. Recovered organisms from each sample were measured after 5 minutes. The results are set forth in Table 15.
Table 15
[0209] This example demonstrates the “kill later” antimicrobial protection against MRSA exhibited by a film formed by an antimicrobial composition containing polyDADMAC, a titanate, and a carrier. EXAMPLE 7 [0210] This example demonstrates the antimicrobial activity exhibited by a composition comprising pDADMAC and a carrier.
[0211] Antimicrobial compositions were prepared comprising either low molecular weight polyDADMAC (250,000 g/mol) or ultra-high molecular weight (1,000,000 g/mol) polyDADMAC in a water-methanol (80/20) mixture. The composition was coated onto a clear glass slide that was allowed to dry to form a film. The killing power of the polyDADMAC film was tested against Methicillin-resistant Staphylococcus aureus (MRSA). Recovered organisms from each sample were measured after 5 minutes. The results are set forth in Table 16.
Table 16
[0212] It was unexpectedly discovered that a film created with an ultra-high molecular weight polyDADMAC is considerably more effective than a lower molecular weight (250,000 g/mol) at killing gram-positive and gram-negative bacteria. As seen in Table 16, after 5 minutes of exposure to a log 7 MRSA population, the 250,000 g/mol MW film only provides an antimicrobial activity of 2.08. In comparison, a 1,000,000 g/mol MW film created an antimicrobial activity of 5.7, i.e., more than double, using the same amount of polymer in each case. It is believed that the difference in the kill rate of the lower molecular weight polyDADMAC compared to the higher molecular weight polyDADMAC is likely due to the differences in film formation rather than differences in charge density. EXAMPLE 8 [0213] This example demonstrates providing a residual self-sanitizing film on a textile with an antimicrobial composition in an embodiment of the invention.
[0214] An antimicrobial composition in the form of a PEC comprising 6,000 ppm pDADMAC, 1,500 ppm polyacrylic acid, 400 ppm titanate, and 0.1% w/w functionalized T1O2 particles was prepared. The composition was applied in a rinse cycle to a cloth and then was tested for antimicrobial resistance using the American Association of Textile Chemists and Colorists (AATCC) test method 100, which is designed to assess the performance of antimicrobial finishes on textiles. The test demonstrated that the polymer-based composition was able to lysis 99.58% of a log 4 MRSA population on a cloth after 4 hours (Table 17). While AATCC does not specify a standard, a similar test method, ISO 20743, recommends a 2-Logio or 99% reduction.
Table 17
[0215] A second antimicrobial composition comprising 4000 ppm PEI, 2000 ppm poly(acrylamide-co-diallyldimethylammonium chloride), and 25 ppm carboxylated branched PEI in a carrier was prepared and had a pH of about 6. The composition was applied in a rinse cycle to a cloth and then tested for antimicrobial resistance under the same conditions above. The results are summarized in Table 18.
Table 18
EXAMPLE 9 [0216] This example demonstrates the antimicrobial protection against E. coli exhibited by an antimicrobial composition containing titanate.
[0217] A composition comprising titanate in water was applied to a glass slide. The coated slide was allowed to set for 5 days, and then the slide was inoculated with a log 6 E. coli population. The pure titanate film resulted in an 88.72% kill after 24 hours, as seen in Table 19.
Table 19
EXAMPLE 10 [0218] This example demonstrates the antimicrobial activity of a hand sanitizer composition in an embodiment of the invention.
[0219] At room temperature, 4000 ppm of linear PEI in water was stirred vigorously to create a PEI dispersion. Under vigorous stirring, the PEI in the dispersion was then protonated with citric acid, thereby bringing the pH to 6 and resulting in a clear liquid. The clear liquid was then brought to a temperature of 70 °C. Ethanol and 1,2-propanediol were then drizzled in so as to maintain the temperature of the clear liquid at 65 °C. The clear mixture was taken off the heat to avoid excessive alcohol evaporation and then stirred for a minimum of 4 hours while covered. The resulting miscible blend comprised 4000 pm non-chemically modified, linear PEI, 72% ethanol, 5% 1,2-propanediol, 0.25% by weight citric acid, and the balance water.
[0220] The activity of the hand sanitizer composition against non-enveloped viruses was in accordance with ASTM E 1052-96 (2002) (“Standard Test Method to Assess the Activity of Microbicides against Viruses in Suspension”). Using this test the hand sanitizer formulation inactivated MS2 (a surrogate for non-enveloped viruses) with a 99.9% (log 3) reduction within 60 seconds of contact. The activity of the hand sanitizer composition against MRSA (gram positive bacteria) and E. coli (gram negative bacteria) was in accordance with ASTM E 2315. The hand sanitizer composition inactivated both bacteria with a 99.999% (log 5) reduction within 30 seconds of contact. The results of these tests are summarized in Table 20.
Table 20
EXAMPLE 11 [0221] This example demonstrates the synthesis of functionalized T1O2 particles in an embodiment of the invention.
[0222] T1O2 particles were functionalized using the following method. Starting with 1 g of tungsten-doped, 20 nm liquid-synthesized T1O2, 5 g urea was added, and the mixture was calcined for 40 min at 400 °C to yield NT1O2. The NT1O2 was then ground to a fine powder, to which was added 10 g of milling balls for every gram of NT1O2 plus 10% urea. The mixture was milled for 30 min at 300 rpm. After 30 min, 200 mL of water was added, and the mixture was milled an additional 5 min. The milled mixture was then subjected to 160 W UV light. After 1 hour, the mixture was decanted and centrifuged and 0.5 mM dye was added in the dark. The mixture was again decanted and centrifuged, after which water was added once more.
[0223] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
[0224] The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B”) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
[0225] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Claims (27)
- CLAIM(S):1. An antimicrobial composition comprising: (a) a cationic polymer, (b) at least one adhesion promoter, (c) optionally organic and/or inorganic particles that are photocatalytically active in visible light, and (d) a carrier, wherein the components of the composition are not covalently bound to one another, and the antimicrobial composition is in accordance with one or more of the following tests: (i) a germicidal spray test according to American Society for Testing and Materials (ASTM) international method El 153 that meets the EPA requirement of log 3 reduction for viruses and a log 5 reduction for bacteria, (ii) a suspension test according to ASTM international method El052-96 (2002) or ASTM international method E2315 (2016), (iii) a film formed from the composition kills (iii-a) at least 95% of log 5 population of a gram positive or gram negative bacteria in 30 minutes, (iii-b) at least 95% of log 4 population of an enveloped virus within 30 minutes of contact of contact, (iii-c) at least 95% of a non-enveloped virus within 30 minutes of contact, and/or (iii-d) at least 94% of a log 4 population of Clostridium difficile bacteria within 24 hours of contact, in accordance with Japanese Industrial Standard (JIS) Z 2801 (2006) test for antimicrobial activity, or a modified version of such test, (iv) a film formed from the composition has a value of 2 or less according to International Organization for Standardization (ISO) 10993-5 in vitro cytotoxicity test, and (v) a durability test selected from either (v-a) a film formed from the composition kills at least 99.9% of gram-positive bacteria and gram-negative bacteria according to Environmental Protection Agency (EPA) Protocol # 01-1A residual self-sanitizing activity test, or (v-b) waiting 7 days after film formation, a film formed from the composition kills at least 95% of gram-positive bacteria and gram-negative bacteria, or enveloped and non-enveloped viruses according to a modified version of Protocol # 01-1A residual self-sanitizing activity test.
- 2. The antimicrobial composition of claim 1, wherein the cationic polymer is a polydiallyldialkylammonium salt, an acryloxyalkyltrialkylammonium salt, a vinylphenalkyltrialkylammonium salt, an acrylamidoalkyltrialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium salt), a polyethylenimine-based polymer, chitosan optionally used in combination with an anionic polymer, or a combination thereof.
- 3. The antimicrobial composition of claim 2, wherein the polydiallyldialkylammonium salt is a polydiallyldimethylammonium halide, and the halide is chloride, fluoride, an anion containing chloride, an anion containing fluoride, or a combination thereof.
- 4. The antimicrobial composition of any one of claims 1-3, wherein the cationic polymer is non-chemically modified, linear polyethylenimine (PEI).
- 5. The antimicrobial composition of any one of claims 1-4, wherein the at least one adhesion promoter is selected from a titanate, carboxylated branched or linear PEI, a silane compound, cationic block copolymers, and a polymer comprising at least one acyl group, carboxylic acid group, or carboxylic acid derivative, and a combination thereof.
- 6. The antimicrobial composition of any one of claims 1-5, wherein the organic and/or inorganic particles that are photocatalytically active in visible light are selected from the group consisting of graphene, g-C3N4, a transition metal oxide, a transition metal sulfide, a transition metal selenide, a dye sensitizer, a conjugated polymer, a noble metal,or a mixture thereof.
- 7. The antimicrobial composition of any one of claims 1-6, wherein the organic and/or inorganic particles that are photocatalytically active in visible light are W- and N-doped T1O2 particles that have been hydrolyzed under ultraviolet (UV) light.
- 8. The antimicrobial composition of any one of claims 1-7, wherein the antimicrobial composition does not contain a germicidal small molecule compound.
- 9. The antimicrobial composition of any one of claims 1-7, wherein the antimicrobial composition further comprises at least one germicidal small molecule compound.
- 10. The antimicrobial composition of any one of claims 1-9, wherein the antimicrobial composition further comprises one or more non-electrolyte polymers.
- 11. The antimicrobial composition of claim 10, wherein the one or more nonelectrolyte polymers comprises a polyacrylamide.
- 12. An antimicrobial composition comprising a polyethylenimine-based polymer, optionally a second cationic polymer selected from a polydiallyldialkylammonium salt, a poly(acrylamide-co-diallyldialkylammonium halide), chitosan, or a combination thereof, optionally a polyacid, optionally at least one adhesion promoter, and a carrier.
- 13. The antimicrobial composition of claim 12, wherein the polyethylenimine-based polymer is linear PEI.
- 14. The antimicrobial composition of claim 12 or claim 13, wherein the composition comprises non-chemically modified linear PEI, polydiallyldimethylammonium chloride (polyDADMAC), optionally citric acid, a carboxylated branched PEI, and a water-alcohol carrier.
- 15. The antimicrobial composition of any one of claims 12-14, wherein the composition comprises citric acid.
- 16. An antimicrobial composition comprising at least one organic and/or inorganic particle that is photocatalytically active in visible light, at least one adhesion promoter, and a carrier, wherein a film formed from the antimicrobial composition kill microbes under the conditions of JIS Z 2801 that has been modified by not requiring the inoculated film to be covered and starting the test time after the inoculum dries.
- 17. A method of killing microbes on a surface comprising applying to the surface the antimicrobial composition of any one of claims 1-16.
- 18. The method of claim 17, wherein the carrier evaporates to leave a residual self-sanitizing film on the surface.
- 19. The method of claim 18, wherein the residual self-sanitizing film renders the surface bactericidal, virucidal, and/or germicidal.
- 20. The method of claim 18 or claim 19, wherein the residual self-sanitizing film kills one or more of the following: (i) at least 95% of a log 5 population of gram positive methicillin-resistant Staphylococcus aureus (MRS A) bacteria within 30 minutes of contact; (ii) at least 95% of a log 5 population of gram negative Escherichia coli (ATCC 8739) bacteria within 30 minutes of contact; (iii) at least 95% of a log 4 population of influenza A (H1N1) (ATCC CCL-34) enveloped virus within 60 minutes of contact; (iv) at least 95% of a non-enveloped virus within 30 minutes of contact of contact; and/or (v) at least 75% of a log 4 population of Clostridium difficile (ATCC 43598) bacteria within 24 hours of contact of contact.
- 21. The method of claim 20, wherein the non-enveloped virus is MS2 (ATCC 15597-B1).
- 22. A method of killing microbes on a surface comprising applying to the surface an antimicrobial composition comprising high molecular weight polydiallyldialkylammonium salt and a carrier.
- 23. The method of claim 22, wherein the antimicrobial composition further comprises a polyethylenimine-based polymer, chitosan, or a combination thereof.
- 24. The method of claim 22 or claim 23, wherein the antimicrobial composition further comprises organic and/or inorganic particles that are photocatalytically active in visible light.
- 25. The method of any one of claims 22-24, wherein the antimicrobial composition does not contain a germicidal small molecule compound.
- 26. The method of any one of claims 22-25, wherein the carrier evaporates to leave a residual self-sanitizing film on the surface.
- 27. The method of claim 26, wherein the residual self-sanitizing film kills one or more of the following: (i) at least 95% of a log 5 population of gram positive methici 11 in-resistant Staphylococcus aureus (MRSA) bacteria within 30 minutes of contact; (ii) at least 95% of a log 5 population of gram negative Escherichia coli (ATCC 8739) bacteria within 30 minutes of contact; (iii) at least 95% of a log 4 population of influenza A (H1N1) (ATCC CCL-34) enveloped virus within 60 minutes of contact; (iv) at least 95% of a non-enveloped virus within 30 minutes of contact of contact; and/or (v) at least 75% of a log 4 population of Clostridium difficile (ATCC 43598) bacteria within 24 hours of contact of contact.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662368008P | 2016-07-28 | 2016-07-28 | |
US62/368,008 | 2016-07-28 | ||
US201762488421P | 2017-04-21 | 2017-04-21 | |
US62/488,421 | 2017-04-21 | ||
PCT/US2017/044234 WO2018022926A1 (en) | 2016-07-28 | 2017-07-27 | Polymer-based antimicrobial compositions and methods of use thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2017302034A1 true AU2017302034A1 (en) | 2019-03-21 |
AU2017302034B2 AU2017302034B2 (en) | 2020-01-30 |
AU2017302034C1 AU2017302034C1 (en) | 2020-06-25 |
Family
ID=61011855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2017302034A Active AU2017302034C1 (en) | 2016-07-28 | 2017-07-27 | Polymer-based antimicrobial compositions and methods of use thereof |
Country Status (11)
Country | Link |
---|---|
US (3) | US11426343B2 (en) |
EP (1) | EP3493676A4 (en) |
JP (3) | JP7031890B2 (en) |
KR (1) | KR102165235B1 (en) |
CN (1) | CN109714968A (en) |
AU (1) | AU2017302034C1 (en) |
BR (1) | BR112019001440A2 (en) |
CA (2) | CA3097574A1 (en) |
MX (1) | MX2019000968A (en) |
RU (1) | RU2698182C1 (en) |
WO (1) | WO2018022926A1 (en) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018022926A1 (en) * | 2016-07-28 | 2018-02-01 | eXion labs Inc. | Polymer-based antimicrobial compositions and methods of use thereof |
MX2019008145A (en) | 2017-01-11 | 2020-01-14 | Cypher Medical Llc | Method of estimating blood volume. |
US11439310B2 (en) | 2017-01-11 | 2022-09-13 | Cypher Medical, Llc | Method of estimating blood volume |
US10967082B2 (en) | 2017-11-08 | 2021-04-06 | Parasol Medical, Llc | Method of limiting the spread of norovirus within a cruise ship |
US10864058B2 (en) | 2018-03-28 | 2020-12-15 | Parasol Medical, Llc | Antimicrobial treatment for a surgical headlamp system |
US20200097936A1 (en) * | 2018-09-25 | 2020-03-26 | Parasol Medical LLC | Antimicrobial treatment for vending machines and gambling gaming machines |
WO2020081247A1 (en) * | 2018-10-18 | 2020-04-23 | The Board Of Regents Of The University Of Oklahoma | Potentiated antibiotic compositions and methods of use for treating bacterial infections and biofilms |
JP6764493B2 (en) * | 2019-01-24 | 2020-09-30 | 日本パーカライジング株式会社 | Metal surface treatment agent, metal material having a film, and its manufacturing method |
CN110195226B (en) * | 2019-05-16 | 2020-04-28 | 西安交通大学 | Preparation method of carbon @ titanium dioxide nanorod coating with controllable antibacterial ability |
CN110845834B (en) * | 2019-11-29 | 2021-08-31 | 扬州大学 | Composite material, breathing machine pipeline made of composite material and application of pipeline |
CA3170988A1 (en) | 2020-02-12 | 2021-08-19 | Benanova Inc. | Colloidal particle formulations with advanced functionality |
CA3076157A1 (en) * | 2020-03-16 | 2021-09-16 | Rodney HERRING | Mask for protecting a user from airborne pathogens |
US11596149B2 (en) * | 2020-05-04 | 2023-03-07 | eXion labs Inc. | Methods of preparing highly charged polyethylenimine and compositions and uses thereof |
CN111760074A (en) * | 2020-07-17 | 2020-10-13 | 华南农业大学 | Preparation method of lignin-chitosan porous scaffold material |
US11612669B2 (en) | 2020-08-21 | 2023-03-28 | University Of Washington | Disinfection method and apparatus |
US11529153B2 (en) | 2020-08-21 | 2022-12-20 | University Of Washington | Vaccine generation |
US20220054667A1 (en) * | 2020-08-21 | 2022-02-24 | University Of Washington | Invisible singlet film |
US11425905B2 (en) | 2020-09-02 | 2022-08-30 | University Of Washington | Antimicrobial preventive netting |
EP4217432A4 (en) | 2020-09-22 | 2024-10-30 | Swimc Llc | Chitosan-containing coating compositions |
US11458220B2 (en) | 2020-11-12 | 2022-10-04 | Singletto Inc. | Microbial disinfection for personal protection equipment |
EP4255994A4 (en) * | 2020-12-01 | 2024-10-02 | Polyamyna Nanotech Inc | Clear coating antimicrobial compositions, methods of preparation, and uses thereof for conferring antimicrobial activity to a surface |
US20220194590A1 (en) * | 2020-12-18 | 2022-06-23 | B/E Aerospace, Inc. | Copper plated touch surfaces |
CN112916044A (en) * | 2021-01-29 | 2021-06-08 | 蚌埠学院 | Method for catalytically synthesizing sec-butyl propionate by using sodium bisulfate doped polyaniline |
CN113583488A (en) * | 2021-08-16 | 2021-11-02 | 几何智慧城市科技(广州)有限公司 | Photovoltaic dustproof hydrophilic self-cleaning material and preparation method thereof |
CN113662011B (en) * | 2021-09-09 | 2022-08-02 | 江苏盛世基业环保科技有限公司 | Surface long-acting antibacterial disinfectant, preparation method and application thereof |
US20230114159A1 (en) * | 2021-10-07 | 2023-04-13 | The Boeing Company | Polymer dispersion having improved adhesion and wettability and methods for the same |
US20230133694A1 (en) * | 2021-10-28 | 2023-05-04 | Kismet Technologies Llc | Electronic device with self-disinfecting touch screen and method of manufacture |
EP4190967A1 (en) * | 2021-12-01 | 2023-06-07 | Fameccanica.Data S.p.A. | A washable make-up remover pad |
CN114177928B (en) * | 2021-12-27 | 2023-10-03 | 吉林大学 | Composite photocatalyst Bi@H-TiO with visible light response 2 /B-C 3 N 4 Preparation method and application thereof |
CN114411335A (en) * | 2022-01-27 | 2022-04-29 | 华侨大学 | Preservative film and preparation method and application thereof |
CN114456707B (en) * | 2022-02-21 | 2023-04-07 | 浙江工业大学 | Quaternary ammonium salt antibacterial composite silicone rubber and synthesis method thereof |
WO2023244605A1 (en) * | 2022-06-13 | 2023-12-21 | The Board Of Trustees Of The Leland Stanford Junior University | Novel polyacrylamides for antimicrobial activity |
WO2024034647A1 (en) * | 2022-08-10 | 2024-02-15 | 積水化学工業株式会社 | Antibacterial and antiviral agent, resin composition, and antibacterial and antiviral member |
US12060148B2 (en) | 2022-08-16 | 2024-08-13 | Honeywell International Inc. | Ground resonance detection and warning system and method |
CN117720768A (en) * | 2022-09-09 | 2024-03-19 | 牛津大学(苏州)科技有限公司 | Surface-functionalized material and use thereof |
US20240164460A1 (en) * | 2022-11-18 | 2024-05-23 | Samuel Lenz | Scrubs with liners |
CN116173208B (en) * | 2023-03-06 | 2024-10-01 | 河北工业大学 | Application of cationic conjugated polyelectrolyte PFBT in photodynamic selective antibiosis |
CN116751505A (en) * | 2023-06-28 | 2023-09-15 | 河南心兴化学材料有限公司 | Water-based weather-resistant antibacterial coiled material coating and preparation method thereof |
CN117143378B (en) * | 2023-09-21 | 2024-03-12 | 东北林业大学 | Preparation method of high-barrier antibacterial flame-retardant food packaging film |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3318816A (en) | 1964-11-12 | 1967-05-09 | Colgate Palmolive Co | Detergent composition in solid form containing a synergistic mixture of cmc and pvp |
US3909469A (en) | 1972-10-20 | 1975-09-30 | Adolph Miller | Polyethylenimine adhesive |
DE2748406A1 (en) | 1977-10-28 | 1979-05-03 | Bayer Ag | PROCESS FOR PRODUCING STICKY FABRIC REPELLENT COATING |
DE2942179A1 (en) * | 1979-10-18 | 1981-05-07 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING PVP IOD |
US4692494A (en) | 1980-12-15 | 1987-09-08 | Colgate-Palmolive Company | Water soluble films of polyvinyl alcohol and polyacrylic acid and packages comprising same |
DE3312668A1 (en) | 1983-04-08 | 1984-10-11 | Basf Ag, 6700 Ludwigshafen | WATER-SOLUBLE POLYMERS WITH LOW HYGROSCOPY |
US4600789A (en) | 1984-05-14 | 1986-07-15 | Kenrich Petrochemicals, Inc. | Neoalkoxy organo-titanate useful as coupling and polymer processing agents |
US4614762A (en) | 1984-06-15 | 1986-09-30 | W. R. Grace & Co. | Water soluble linear polyethyleneimine derivative from water-insoluble polyethyleneimine, polyvinyl alcohol and aldehyde |
US4668747A (en) | 1984-09-24 | 1987-05-26 | Allied Corporation | Preparation of water soluble cationic acrylamide polymer and product using weak acid to adjust pH |
CA1329283C (en) | 1986-10-01 | 1994-05-03 | David Farrar | Water soluble polymeric compositions |
US5061485A (en) | 1987-05-12 | 1991-10-29 | Ecolab Inc. | Disinfectant polymeric coatings for hard surfaces |
DE69126972T2 (en) | 1990-11-29 | 1997-11-27 | Iatron Lab | USE OF AN ANTIBACTERIAL ACTIVE SUBSTANCE CONTAINING A POLYELECTROLYTE COMPLEX AND ANTIBACTERIAL MATERIAL |
US5932458A (en) | 1992-03-23 | 1999-08-03 | The United States Of America As Represented By The Secretary Of Agriculture | Method of rapid fat and oil splitting using a lipase catalyst found in seeds |
JPH08165208A (en) | 1994-12-09 | 1996-06-25 | Sintokogio Ltd | Antimicrobial, mildewproofing and deodorizing spraying agent |
JPH08165215A (en) * | 1994-12-09 | 1996-06-25 | Sintokogio Ltd | Antimicrobial, mildewproofing, deodorizing and stain-decomposing spraying agent |
JPH08165214A (en) * | 1994-12-09 | 1996-06-25 | Sintokogio Ltd | Mildewproofing agent for tile joint |
DE19612057A1 (en) | 1996-03-27 | 1997-10-02 | Antiseptica Chem Pharm Prod Gm | Hand disinfectant |
MY118538A (en) | 1997-01-20 | 2004-12-31 | Ciba Spec Chem Water Treat Ltd | Polymeric compositions and their production and uses |
US6017561A (en) | 1997-04-04 | 2000-01-25 | The Clorox Company | Antimicrobial cleaning composition |
US6018063A (en) | 1998-11-13 | 2000-01-25 | The United States Of America As Represented By The Secretary Of Agriculture | Biodegradable oleic estolide ester base stocks and lubricants |
JP2000070728A (en) * | 1998-08-31 | 2000-03-07 | Mitsubishi Materials Corp | Photocatalytic material irradiated with electron beam, its coating material and coating film |
US7820734B2 (en) * | 1998-10-07 | 2010-10-26 | Tyco Healthcare Group Lp | Antimicrobial lubricious coating |
US7709694B2 (en) | 1998-12-08 | 2010-05-04 | Quick-Med Technologies, Inc. | Materials with covalently-bonded, nonleachable, polymeric antimicrobial surfaces |
FR2789591B1 (en) | 1999-02-17 | 2002-10-04 | Rhodia Chimie Sa | USE OF TITANIUM DIOXIDE FILM-FORMING DISPERSIONS FOR HARD SURFACE DISINFECTION, TITANIUM DIOXIDE FILM-FORMING DISPERSIONS AND DISINFECTION METHOD |
US7244797B2 (en) | 2001-02-08 | 2007-07-17 | Asahi Kasei Kabushiki Kaisha | Organic domain/inorganic domain complex materials and use thereof |
US6897168B2 (en) | 2001-03-22 | 2005-05-24 | Kimberly-Clark Worldwide, Inc. | Water-dispersible, cationic polymers, a method of making same and items using same |
JP2003071464A (en) * | 2001-08-31 | 2003-03-11 | Hakuto Co Ltd | Method for suppressing iron bacteria in aqueous system |
DE10211561B4 (en) * | 2002-03-15 | 2006-04-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Water-soluble ionic copolymers |
US6893722B2 (en) | 2002-04-29 | 2005-05-17 | Exxonmobil Oil Corporation | Cationic, amino-functional, adhesion-promoting polymer for curable inks and other plastic film coatings, and plastic film comprising such polymer |
EP1539827A1 (en) | 2002-08-15 | 2005-06-15 | Ciba Specialty Chemicals Water Treatments Limited | High molecular weight cationic polymers obtained by post-polymerisation crosslinking reaction |
US6960371B2 (en) | 2002-09-20 | 2005-11-01 | Kimberly-Clark Worldwide, Inc. | Water-dispersible, cationic polymers, a method of making same and items using same |
JP4320755B2 (en) | 2003-05-20 | 2009-08-26 | パイオトレック株式会社 | Antibacterial / antifungal agent and antibacterial / antifungal resin composition containing the same |
JP5189291B2 (en) | 2003-11-07 | 2013-04-24 | ヴァイラトックス, エルエルシー | Viricidal activity of cetylpyridinium chloride. |
JP4824911B2 (en) * | 2004-01-30 | 2011-11-30 | 一般財団法人川村理化学研究所 | Hydrogel, cross-linked hydrogel and method for producing them |
US20060269493A1 (en) | 2004-02-05 | 2006-11-30 | Quick-Med Technologies, Inc. | Silicate and other oxide powders with bonded anitmicrobial polymers |
CN100372599C (en) | 2004-02-19 | 2008-03-05 | 上海交通大学 | Preparation method of nucleous-shell type nanometer composite particle of magnetic micro particle and quantum point |
WO2007024972A2 (en) | 2005-08-22 | 2007-03-01 | Quick-Med Technologies, Inc. | Non-leaching absorbent wound dressing |
WO2005091755A2 (en) | 2004-03-26 | 2005-10-06 | Florida State University Research Foundation, Inc. | Hydrophobic fluorinated polyelectrolyte complex films and associated methods |
US7316323B2 (en) | 2004-05-06 | 2008-01-08 | The Procter & Gamble Company | Filters having improved permeability and virus removal capabilities |
US20050249791A1 (en) | 2004-05-07 | 2005-11-10 | 3M Innovative Properties Company | Antimicrobial articles |
JP4611722B2 (en) * | 2004-11-30 | 2011-01-12 | ライオン株式会社 | Antibacterial liquid composition and method for producing the same |
MX2007010874A (en) * | 2005-03-11 | 2008-04-10 | Smart Anti Microbial Solutions Llc | Polymer-based antimicrobial agents, methods of making said agents, and products incorporating said agents. |
JP2009506055A (en) | 2005-08-22 | 2009-02-12 | クイック−メッド テクノロジーズ、インク. | Bactericides using quaternary ammonium polymers and copolymers |
US20070048344A1 (en) * | 2005-08-31 | 2007-03-01 | Ali Yahiaoui | Antimicrobial composition |
US20070128121A1 (en) | 2005-12-05 | 2007-06-07 | The Regents Of The University Of California | Polymer hydrogels for controlled release and absorption of biocides |
EP1973587B1 (en) | 2005-12-12 | 2019-02-06 | AllAccem, Inc. | Methods and systems for preparing antimicrobial films and coatings |
US8119115B2 (en) | 2006-02-09 | 2012-02-21 | Gojo Industries, Inc. | Antiviral method |
ES2645681T3 (en) * | 2006-02-28 | 2017-12-07 | Becton, Dickinson And Company | Antimicrobial compositions and methods to block catheters |
CA2653347A1 (en) | 2006-05-31 | 2007-12-13 | The Dial Corporation | Alcohol-containing antimicrobial compositions having improved efficacy |
FR2902670B1 (en) | 2006-06-22 | 2009-04-24 | Gambro Lundia Ab | USE OF A SUSPENSION FOR TREATING MEDICAL MEDIA, MEDICAL MEDIA, EXCHANGER, AND ADSORPTION DEVICE COMPRISING THE MEDIUM |
US7947758B2 (en) | 2006-08-09 | 2011-05-24 | Ethicon, Inc. | Moisture activated latent curing adhesive or sealant |
BRPI0718860A2 (en) | 2006-11-08 | 2016-10-04 | Massachusetts Inst Technology | virucidal composition and method for killing viruses |
CA2824842C (en) * | 2007-02-01 | 2016-10-11 | Sol-Gel Technologies Ltd. | Method for preparing particles comprising metal oxide coating and particles with metal oxide coating |
EP2130542A4 (en) | 2007-02-16 | 2010-06-02 | Taiko Pharmaceutical Co Ltd | Broad-spectrum antiviral composition having excellent storage stability |
EP2247650A1 (en) | 2008-02-18 | 2010-11-10 | DSM IP Assets B.V. | Coating composition comprising an antimicrobial cross-linker |
JP2009263820A (en) * | 2008-04-25 | 2009-11-12 | Kayoko Yamamoto | Stain-proof antibacterial agent for textile product and use thereof |
CN102131527B (en) * | 2008-07-18 | 2014-11-26 | 奎克-麦德技术公司 | Polyelectrolyte complex for imparting antimicrobial properties to a substrate |
GB0815883D0 (en) | 2008-09-01 | 2008-10-08 | Univ Edinburgh | Polymer blends |
BRPI1006008B1 (en) * | 2009-02-18 | 2018-07-31 | Quick-Med Technologies, Inc. | METHOD FOR OBTAINING ANTIMICROBIAN POLYMERIC COMPOSITION, ANTIMICROBIAN POLYMERIC COMPOSITION AND MATERIALS UNDERSTANDING THE SAME |
CN102365101A (en) | 2009-03-27 | 2012-02-29 | 阿克塔马克斯手术器材有限责任公司 | Tissue adhesive and sealant comprising polyglycerol aldehyde |
EP2415793B1 (en) | 2009-03-30 | 2015-01-14 | Piotrek Co., Ltd. | Method of producing fluorinated polymer |
US8106111B2 (en) | 2009-05-15 | 2012-01-31 | Eastman Chemical Company | Antimicrobial effect of cycloaliphatic diol antimicrobial agents in coating compositions |
WO2011017025A2 (en) | 2009-07-27 | 2011-02-10 | California Institute Of Technology | Antimicrobial materials |
US9005662B2 (en) | 2009-08-20 | 2015-04-14 | The Florida State University Research Foundation, Inc. | Biocompatible polyelectrolyte complexes and methods of use |
US20110076312A1 (en) * | 2009-09-29 | 2011-03-31 | Ethicon, Inc. | Antimicrobial/antibacterial medical devices coated with traditional chinese medicines |
CN101669518B (en) | 2009-09-30 | 2013-08-07 | 北京欧凯纳斯科技有限公司 | Germicidal antiviral composite containing chlorine dioxide |
US20110200655A1 (en) | 2010-02-16 | 2011-08-18 | Michael Darryl Black | Systems and methods that kill infectious agents (bacteria) without the use of a systemic anti-biotic |
US20130165525A1 (en) | 2010-03-29 | 2013-06-27 | The Clorox Company | Methods of making and using precursor polyelectrolyte complexes |
US9474269B2 (en) | 2010-03-29 | 2016-10-25 | The Clorox Company | Aqueous compositions comprising associative polyelectrolyte complexes (PEC) |
WO2011126683A2 (en) | 2010-03-30 | 2011-10-13 | Basf Se | Anticorrosion coatings with reactive polyelectrolyte complex system |
WO2011139649A2 (en) * | 2010-04-26 | 2011-11-10 | University Of Georgia Research Foundation, Inc. | Synthesis and application reactive antimicrobial copolymers for textile fibers |
EP2591140A1 (en) | 2010-07-07 | 2013-05-15 | Vlaamse Instelling voor Technologisch Onderzoek (VITO) | Method for depositing a biocidal coating on a substrate |
US8277899B2 (en) | 2010-12-14 | 2012-10-02 | Svaya Nanotechnologies, Inc. | Porous films by backfilling with reactive compounds |
CN102258064A (en) * | 2011-05-12 | 2011-11-30 | 赵正坤 | Antibacterial composition and application thereof |
FI123390B (en) | 2011-08-10 | 2013-03-28 | Kemira Oyj | POLYMER COMPOSITIONS AND MANUFACTURING AND USES THEREOF |
CA2844791C (en) | 2011-08-15 | 2016-12-06 | John J. Matta | Water soluble antimicrobial composition |
JP5812488B2 (en) * | 2011-10-12 | 2015-11-11 | 昭和電工株式会社 | Antibacterial antiviral composition and method for producing the same |
US11647746B2 (en) * | 2012-02-20 | 2023-05-16 | Basf Se | Enhancing the antimicrobial activity of biocides with polymers |
WO2013126550A2 (en) | 2012-02-22 | 2013-08-29 | Kci Licensing, Inc. | New compositions, the preparation and use thereof |
WO2013134269A2 (en) | 2012-03-06 | 2013-09-12 | Kci Licensing, Inc. | New compositions, the preparation and use thereof |
WO2013188630A2 (en) | 2012-06-15 | 2013-12-19 | Nanopaper, Llc | Additives for papermaking |
WO2014076682A1 (en) | 2012-11-19 | 2014-05-22 | Institut Curie | Method for grafting polymers on metallic substrates |
US10023739B2 (en) | 2012-11-21 | 2018-07-17 | Stratasys, Inc. | Semi-crystalline build materials |
CA2906617C (en) * | 2013-03-15 | 2021-11-02 | Richard WOLBERS | Protective water reversible clear coating for substrates |
CN103333571B (en) * | 2013-06-24 | 2015-12-02 | 广州慧谷化学有限公司 | For the waterborne antibacterial mildew-proof hydrophilic coating of heat exchanger fin surfaces process |
WO2015034357A1 (en) | 2013-09-04 | 2015-03-12 | Ceradis B.V. | Paint composition comprising a polyelectrolyte complex |
US9399044B2 (en) | 2014-05-28 | 2016-07-26 | International Business Machines Corporation | Antimicrobial cationic polyamines |
CN105273443A (en) * | 2014-06-05 | 2016-01-27 | 北京中科东亚纳米材料科技有限公司 | Nanometer self-cleaning, anti-fog and sterilization glass coating and preparation method thereof |
US8975220B1 (en) | 2014-08-11 | 2015-03-10 | The Clorox Company | Hypohalite compositions comprising a cationic polymer |
CN104436265A (en) * | 2014-11-13 | 2015-03-25 | 无锡信大气象传感网科技有限公司 | Atmospheric air purification and sound absorption device |
US10842147B2 (en) | 2014-11-26 | 2020-11-24 | Microban Products Company | Surface disinfectant with residual biocidal property |
US11026418B2 (en) | 2014-11-26 | 2021-06-08 | Microban Products Company | Surface disinfectant with residual biocidal property |
CN105901015B (en) | 2016-05-06 | 2018-05-11 | 徐海军 | A kind of antibacterial metal oxide composite and preparation method thereof |
CN106189304A (en) | 2016-07-12 | 2016-12-07 | 志邦厨柜股份有限公司 | A kind of antimicrobial form high-density polyethylene thiazolinyl bamboo blending nano-metallic copper moulds cabinet slab and preparation method thereof |
WO2018022926A1 (en) * | 2016-07-28 | 2018-02-01 | eXion labs Inc. | Polymer-based antimicrobial compositions and methods of use thereof |
-
2017
- 2017-07-27 WO PCT/US2017/044234 patent/WO2018022926A1/en active Application Filing
- 2017-07-27 JP JP2019526199A patent/JP7031890B2/en active Active
- 2017-07-27 RU RU2019105285A patent/RU2698182C1/en active
- 2017-07-27 US US15/662,119 patent/US11426343B2/en active Active
- 2017-07-27 EP EP17835296.9A patent/EP3493676A4/en active Pending
- 2017-07-27 MX MX2019000968A patent/MX2019000968A/en unknown
- 2017-07-27 KR KR1020197005923A patent/KR102165235B1/en active IP Right Grant
- 2017-07-27 CN CN201780052448.XA patent/CN109714968A/en active Pending
- 2017-07-27 AU AU2017302034A patent/AU2017302034C1/en active Active
- 2017-07-27 CA CA3097574A patent/CA3097574A1/en active Pending
- 2017-07-27 CA CA3031822A patent/CA3031822C/en active Active
- 2017-07-27 BR BR112019001440-3A patent/BR112019001440A2/en not_active Application Discontinuation
-
2018
- 2018-09-04 US US16/121,023 patent/US11357718B2/en active Active
-
2022
- 2022-02-16 JP JP2022022138A patent/JP2022070983A/en active Pending
- 2022-07-20 US US17/869,477 patent/US20220401345A1/en active Pending
-
2024
- 2024-01-11 JP JP2024002889A patent/JP2024045218A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
AU2017302034B2 (en) | 2020-01-30 |
CA3031822A1 (en) | 2018-02-01 |
CN109714968A (en) | 2019-05-03 |
CA3031822C (en) | 2021-01-05 |
US11357718B2 (en) | 2022-06-14 |
JP2019527241A (en) | 2019-09-26 |
RU2698182C1 (en) | 2019-08-22 |
EP3493676A4 (en) | 2020-04-29 |
JP2022070983A (en) | 2022-05-13 |
US20190000745A1 (en) | 2019-01-03 |
US20180028431A1 (en) | 2018-02-01 |
JP2024045218A (en) | 2024-04-02 |
US11426343B2 (en) | 2022-08-30 |
BR112019001440A2 (en) | 2019-04-30 |
WO2018022926A1 (en) | 2018-02-01 |
CA3097574A1 (en) | 2018-02-01 |
EP3493676A1 (en) | 2019-06-12 |
MX2019000968A (en) | 2019-07-04 |
US20220401345A1 (en) | 2022-12-22 |
AU2017302034C1 (en) | 2020-06-25 |
KR102165235B1 (en) | 2020-10-13 |
JP7031890B2 (en) | 2022-03-08 |
KR20190059265A (en) | 2019-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220401345A1 (en) | Polymer-based antimicrobial compositions and methods of use thereof | |
US10212932B2 (en) | Antimicrobial photoreactive composition comprising organic and inorganic multijunction composite | |
US20180139959A1 (en) | Antimicrobial Substrates And Methods Of Use Thereof | |
BRPI1009652B1 (en) | process for preparing an antimicrobial article and antimicrobial article | |
Ghedini et al. | Which are the main surface disinfection approaches at the time of SARS-CoV-2? | |
US11596149B2 (en) | Methods of preparing highly charged polyethylenimine and compositions and uses thereof | |
US20170000119A1 (en) | Microbicidal Polymers And Methods Of Use Thereof | |
CN206264529U (en) | A kind of food materials packing sheet | |
JP3187328U (en) | Antibacterial / antiviral hospital bedding and clothing | |
Rajan et al. | Polymeric antibacterial, antifungal, and antiviral coatings | |
Periyasamy et al. | Protection against Microbes: State-of-the-Art | |
CN107412821A (en) | A kind of sterilization method of hen house | |
CZ38028U1 (en) | A disinfectant | |
Periyasamy et al. | Protection against Microbes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 06 MAR 2020 |
|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT FILED 06 MAR 2020 |
|
FGA | Letters patent sealed or granted (standard patent) |