AU2016203191A1 - Cyclosporin compositions - Google Patents
Cyclosporin compositions Download PDFInfo
- Publication number
- AU2016203191A1 AU2016203191A1 AU2016203191A AU2016203191A AU2016203191A1 AU 2016203191 A1 AU2016203191 A1 AU 2016203191A1 AU 2016203191 A AU2016203191 A AU 2016203191A AU 2016203191 A AU2016203191 A AU 2016203191A AU 2016203191 A1 AU2016203191 A1 AU 2016203191A1
- Authority
- AU
- Australia
- Prior art keywords
- composition
- cyclosporin
- drop
- rabbit
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 599
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 title claims abstract description 263
- 108010036949 Cyclosporine Proteins 0.000 title claims abstract description 260
- 229960001265 ciclosporin Drugs 0.000 title claims abstract description 179
- 229930105110 Cyclosporin A Natural products 0.000 title claims description 253
- 229930182912 cyclosporin Natural products 0.000 title abstract description 12
- 210000004087 cornea Anatomy 0.000 claims description 102
- 238000011587 new zealand white rabbit Methods 0.000 claims description 94
- 210000000795 conjunctiva Anatomy 0.000 claims description 78
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 77
- 238000011200 topical administration Methods 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 17
- 241000124008 Mammalia Species 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 15
- 241000283977 Oryctolagus Species 0.000 claims description 14
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 239000003755 preservative agent Substances 0.000 claims description 10
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 8
- 229920000053 polysorbate 80 Polymers 0.000 claims description 8
- 241000282414 Homo sapiens Species 0.000 claims description 6
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 claims description 6
- 229940068968 polysorbate 80 Drugs 0.000 claims description 6
- 208000003556 Dry Eye Syndromes Diseases 0.000 claims description 5
- 210000004561 lacrimal apparatus Anatomy 0.000 claims description 5
- 229920000858 Cyclodextrin Polymers 0.000 claims description 4
- 229920002385 Sodium hyaluronate Polymers 0.000 claims description 4
- 230000002335 preservative effect Effects 0.000 claims description 4
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 claims description 4
- 229940010747 sodium hyaluronate Drugs 0.000 claims description 4
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 claims description 4
- 206010013774 Dry eye Diseases 0.000 claims description 2
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 claims description 2
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 claims description 2
- 230000002950 deficient Effects 0.000 claims description 2
- 230000004489 tear production Effects 0.000 claims description 2
- 239000006196 drop Substances 0.000 claims 7
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims 2
- 229920002674 hyaluronan Polymers 0.000 claims 2
- 229960003160 hyaluronic acid Drugs 0.000 claims 2
- 208000002193 Pain Diseases 0.000 claims 1
- 239000003889 eye drop Substances 0.000 claims 1
- 229940012356 eye drops Drugs 0.000 claims 1
- 239000003814 drug Substances 0.000 abstract description 8
- 238000002560 therapeutic procedure Methods 0.000 abstract 1
- 230000000699 topical effect Effects 0.000 description 71
- 210000001508 eye Anatomy 0.000 description 56
- 230000002146 bilateral effect Effects 0.000 description 41
- 238000009472 formulation Methods 0.000 description 38
- 241001465754 Metazoa Species 0.000 description 28
- 235000014113 dietary fatty acids Nutrition 0.000 description 28
- 239000000194 fatty acid Substances 0.000 description 28
- 229930195729 fatty acid Natural products 0.000 description 28
- 210000004369 blood Anatomy 0.000 description 23
- 239000008280 blood Substances 0.000 description 23
- -1 ethoxylated aryl phenols Chemical class 0.000 description 19
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 18
- 239000003921 oil Substances 0.000 description 18
- 235000019198 oils Nutrition 0.000 description 18
- 150000004665 fatty acids Chemical class 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 14
- 210000000744 eyelid Anatomy 0.000 description 14
- 210000004083 nasolacrimal duct Anatomy 0.000 description 13
- 210000003786 sclera Anatomy 0.000 description 13
- 229920001214 Polysorbate 60 Polymers 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 11
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 8
- 238000011953 bioanalysis Methods 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 239000005720 sucrose Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000011887 Necropsy Methods 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 150000002303 glucose derivatives Chemical class 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- DUIOKRXOKLLURE-UHFFFAOYSA-N 2-octylphenol Chemical compound CCCCCCCCC1=CC=CC=C1O DUIOKRXOKLLURE-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 239000004359 castor oil Substances 0.000 description 5
- 235000019438 castor oil Nutrition 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 239000005695 Ammonium acetate Substances 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical group OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 4
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 4
- 235000019257 ammonium acetate Nutrition 0.000 description 4
- 229940043376 ammonium acetate Drugs 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 235000005687 corn oil Nutrition 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000002194 fatty esters Chemical class 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- GWHCXVQVJPWHRF-KTKRTIGZSA-N (15Z)-tetracosenoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-KTKRTIGZSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- 206010015548 Euthanasia Diseases 0.000 description 3
- 235000021353 Lignoceric acid Nutrition 0.000 description 3
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 description 3
- XJXROGWVRIJYMO-SJDLZYGOSA-N Nervonic acid Natural products O=C(O)[C@@H](/C=C/CCCCCCCC)CCCCCCCCCCCC XJXROGWVRIJYMO-SJDLZYGOSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- 235000021319 Palmitoleic acid Nutrition 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 3
- 229960000686 benzalkonium chloride Drugs 0.000 description 3
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 3
- GWHCXVQVJPWHRF-UHFFFAOYSA-N cis-tetracosenoic acid Natural products CCCCCCCCC=CCCCCCCCCCCCCCC(O)=O GWHCXVQVJPWHRF-UHFFFAOYSA-N 0.000 description 3
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 3
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 3
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 3
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 description 3
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 3
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical class CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- 235000019489 Almond oil Nutrition 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 235000005747 Carum carvi Nutrition 0.000 description 2
- 240000000467 Carum carvi Species 0.000 description 2
- 244000037364 Cinnamomum aromaticum Species 0.000 description 2
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 2
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 235000021360 Myristic acid Nutrition 0.000 description 2
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 239000004147 Sorbitan trioleate Substances 0.000 description 2
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000008168 almond oil Substances 0.000 description 2
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 2
- 239000010617 anise oil Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 2
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000010630 cinnamon oil Substances 0.000 description 2
- 239000010634 clove oil Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 2
- 235000020664 gamma-linolenic acid Nutrition 0.000 description 2
- 229960002733 gamolenic acid Drugs 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 229960004716 idoxuridine Drugs 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 229960003299 ketamine Drugs 0.000 description 2
- 229920005610 lignin Chemical class 0.000 description 2
- 229960004488 linolenic acid Drugs 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 235000019477 peppermint oil Nutrition 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229920001993 poloxamer 188 Polymers 0.000 description 2
- 229940044519 poloxamer 188 Drugs 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229940053174 restasis Drugs 0.000 description 2
- 239000010668 rosemary oil Substances 0.000 description 2
- 229940058206 rosemary oil Drugs 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 239000001570 sorbitan monopalmitate Substances 0.000 description 2
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 2
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- 235000019337 sorbitan trioleate Nutrition 0.000 description 2
- 229960000391 sorbitan trioleate Drugs 0.000 description 2
- 239000001589 sorbitan tristearate Substances 0.000 description 2
- 235000011078 sorbitan tristearate Nutrition 0.000 description 2
- 229960004129 sorbitan tristearate Drugs 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 2
- 229960001600 xylazine Drugs 0.000 description 2
- ZMKGDQSIRSGUDJ-VSROPUKISA-N (3s,6s,9s,12r,15s,18s,21s,24s,30s,33s)-33-[(e,1r,2r)-1-hydroxy-2-methylhex-4-enyl]-1,4,7,10,12,15,19,25,28-nonamethyl-6,9,18,24-tetrakis(2-methylpropyl)-3,21-di(propan-2-yl)-30-propyl-1,4,7,10,13,16,19,22,25,28,31-undecazacyclotritriacontane-2,5,8,11,14,1 Chemical compound CCC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O ZMKGDQSIRSGUDJ-VSROPUKISA-N 0.000 description 1
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical class C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- CRBBOOXGHMTWOC-NPDDRXJXSA-N 1,4-Anhydro-6-O-dodecanoyl-2,3-bis-O-(2-hydroxyethyl)-D-glucitol Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](OCCO)[C@H]1OCCO CRBBOOXGHMTWOC-NPDDRXJXSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- HMFKFHLTUCJZJO-UHFFFAOYSA-N 2-{2-[3,4-bis(2-hydroxyethoxy)oxolan-2-yl]-2-(2-hydroxyethoxy)ethoxy}ethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOCC(OCCO)C1OCC(OCCO)C1OCCO HMFKFHLTUCJZJO-UHFFFAOYSA-N 0.000 description 1
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 235000019501 Lemon oil Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- ZMKGDQSIRSGUDJ-UHFFFAOYSA-N NVa2 cyclosporine Natural products CCCC1NC(=O)C(C(O)C(C)CC=CC)N(C)C(=O)C(C(C)C)N(C)C(=O)C(CC(C)C)N(C)C(=O)C(CC(C)C)N(C)C(=O)C(C)NC(=O)C(C)NC(=O)C(CC(C)C)N(C)C(=O)C(C(C)C)NC(=O)C(CC(C)C)N(C)C(=O)CN(C)C1=O ZMKGDQSIRSGUDJ-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 229920002509 Poloxamer 182 Polymers 0.000 description 1
- 229920002516 Poloxamer 331 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 229920002701 Polyoxyl 40 Stearate Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000593989 Scardinius erythrophthalmus Species 0.000 description 1
- TTZKGYULRVDFJJ-GIVMLJSASA-N [(2r)-2-[(2s,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-[(z)-octadec-9-enoyl]oxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1O TTZKGYULRVDFJJ-GIVMLJSASA-N 0.000 description 1
- PZQBWGFCGIRLBB-NJYHNNHUSA-N [(2r)-2-[(2s,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1O PZQBWGFCGIRLBB-NJYHNNHUSA-N 0.000 description 1
- DNTMJTROKXRBDM-UUWWDYFTSA-N [(2r,3r,4s)-2-[(1r)-1-hexadecanoyloxy-2-hydroxyethyl]-4-hydroxyoxolan-3-yl] hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)O[C@H](CO)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCC DNTMJTROKXRBDM-UUWWDYFTSA-N 0.000 description 1
- NVANJYGRGNEULT-BDZGGURLSA-N [(3s,4r,5r)-4-hexadecanoyloxy-5-[(1r)-1-hexadecanoyloxy-2-hydroxyethyl]oxolan-3-yl] hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)O[C@H](CO)[C@H]1OC[C@H](OC(=O)CCCCCCCCCCCCCCC)[C@H]1OC(=O)CCCCCCCCCCCCCCC NVANJYGRGNEULT-BDZGGURLSA-N 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 239000010632 citronella oil Substances 0.000 description 1
- 239000010633 clary sage oil Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010636 coriander oil Substances 0.000 description 1
- 108010019249 cyclosporin G Proteins 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 210000003717 douglas' pouch Anatomy 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 229940124274 edetate disodium Drugs 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000010642 eucalyptus oil Substances 0.000 description 1
- 229940044949 eucalyptus oil Drugs 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000000171 lavandula angustifolia l. flower oil Substances 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000010501 lemon oil Substances 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000401 methanolic extract Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- 239000001627 myristica fragrans houtt. fruit oil Substances 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000005430 oxychloro group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229960005278 poloxalene Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229940093426 poloxamer 182 Drugs 0.000 description 1
- 229940099429 polyoxyl 40 stearate Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical class C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 229940001474 sodium thiosulfate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 239000010677 tea tree oil Substances 0.000 description 1
- 229940111630 tea tree oil Drugs 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- DTOSIQBPPRVQHS-UHFFFAOYSA-N α-Linolenic acid Chemical compound CCC=CCC=CCC=CCCCCCCCC(O)=O DTOSIQBPPRVQHS-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Landscapes
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Disclosed herein are therapeutic methods, compositions, and medicaments related to cyclosporine. H:\mdt\Interwoven\NRPortbl\DCC\MDT\10146545 1.DOC - 13/5/16
Description
CYCLOSPORIN COMPOSITIONS RELATED APPLICATION
This application is based, and claims priority under 35 U.S.C. § 120 to U.S. Provisional Application Serial No. 60/820,239, filed July 25, 2006; U.S. Provisional Application Serial No. 60/829,796, filed October 17, 2006; U.S. Provisional Application Serial No. 60/829,808, filed October 17, 2006; U.S. Provisional Application Serial No. 60/883,525, filed January 5, 2007; U.S. Provisional Application Serial No. 60/916,352, filed May 7, 2007; and U.S. Provisional Application Serial No. 60/869,459, filed December 11, 2006; each of which is hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION
Abnormalities associated with the function of the lacrimal gland or with tearing often cause discomfort to mammals who suffer from these abnormalities.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 Mean (±SD) cornea cyclosporine A concentrations (semilog) following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Fig. 2 Mean (±SD) conjunctiva cyclosporine A concentrations (semi-log) following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Fig. 3 Mean (±SD) sclera cyclosporine A concentrations (semilog) following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Fig. 4 Mean (±SD) eyelid margin cyclosporine A (concentrations (semi-log) following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Fig. 5 Mean (±SD) nasolacrimal duct cyclosporine A concentrations (semi-log) following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
DETAILED DESCRIPTION OF THE INVENTION A composition comprising cyclosporin A at a concentration of from about 0.0001% (w/v) to less than about 0.05% (w/v) is disclosed herein.
We have surprisingly discovered that compositions of cyclosporin A at a concentration of less than about 0.05% (w/v) can be prepared that will be therapeutically effective.
In one embodiment, the compositions disclosed herein are administered to an eye of a mammal in need thereof to enhance or restore lacrimal gland tearing.
In another embodiment, the compositions disclosed herein are administered to an eye of a mammal in need thereof to increase tear production in a tear-deficient eye.
In another embodiment, the compositions disclosed herein are administered to an eye of a mammal in need thereof to treat keratoconjunctivitis sicca.
In another embodiment, the compositions disclosed herein are administered to an eye of a mammal in need thereof to treat dry eye disease .
Cyclosporin A
Cyclosporin A is a cyclic peptide with immunosuppressive properties having the structure shown above. It is also known by other names including cyclosporine, cyclosporine A, ciclosporin, and ciclosporin A.
Treatment Methods
One embodiment is a method of treating dry eye disease comprising topically administering to a mammal in need thereof a composition comprising cyclosporin A at a concentration of from 0.0001% (w/v) to less than about 0.05% (w/v).
The treatment generally comprises administering 10-50 pL drops of the compositions disclosed herein topically to the eye or eyes of the mammal or human. Determination of the number of drops administered per day to the person or mammal to provide effective relief is within the skill of the ordinary artisan.
In one embodiment, the composition is administered from 1 to 4 times per day.
In another embodiment, the composition is administered twice a day.
In another embodiment, the composition is administered only once a day.
In another embodiment, less than 14% of patients suffer ocular burning when the composition is administered only once a day for a period of three months.
In another embodiment, less than 10% of patients suffer ocular burning when the composition is administered only once a day for a period of three months.
In another embodiment, less than 8% of patients suffer ocular burning when the composition is administered only once a day for a period of three months.
For the purposes of this disclosure, "treat," "treating," or "treatment" refer to the use of a compound, composition, therapeutically active agent, or drug in the diagnosis, cure, mitigation, treatment, prevention of disease or other undesirable condition, or to affect the structure or any function of the body of man or other animals.
Compositions
The concentration of cyclosporin A is less than about 0.05%. This is intended to mean that the concentration is lower than the concentration in the commercially available 0.05% cyclosporin A emulsion known as Restasis®.
In another embodiment, the concentration of cyclosporin A is from about 0.005% (w/v) to about 0.04% (w/v).
In another embodiment, the concentration of cyclosporin A is from about 0.02% (w/v) to about 0.04% (w/v).
In another embodiment, the concentration of cyclosporine A is about 0.005% (w/v).
In another embodiment, the concentration of cyclosporine A is about 0.015% (w/v).
In another embodiment, the concentration of cyclosporine A is about 0.02% (w/v).
In another embodiment, the concentration of cyclosporine A is about 0.03% (w/v).
In another embodiment, the concentration of cyclosporine A is about 0.04% (w/v). A liquid which is ophthalmically acceptable is formulated such that it can be administered topically to the eye. The comfort should be maximized as much as practicable, although sometimes formulation considerations (e.g. drug stability, bioavailability, etc.) may necessitate less than optimal comfort. In the case that comfort cannot be maximized, the liquid should be formulated such that the liquid is tolerable to the patient for topical ophthalmic use. Additionally, an ophthalmically acceptable liquid should either be packaged for single use, or contain a preservative to prevent contamination over multiple uses.
For ophthalmic application, solutions or medicaments are often prepared using a physiological saline solution as a major vehicle. Ophthalmic solutions are often maintained at a comfortable pH with an appropriate buffer system. The formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants.
Various buffers and means for adjusting pH may be used so long as the resulting preparation is ophthalmically acceptable. Accordingly, buffers include, but are not limited to, acetate buffers, citrate buffers, phosphate buffers and borate buffers.
Acids or bases may be used to adjust the pH of these formulations as needed.
In another embodiment, the composition contains a preservative.
Preservatives that may be used in the pharmaceutical compositions disclosed herein include, but are not limited to, cationic preservatives such as quaternary ammonium compounds including benzalkonium chloride, polyquad, and the like; guanidine-based preservatives including PHMB, chlorhexidine, and the like; chlorobutanol; mercury preservatives such as thimerosal, phenylmercuric acetate and phenylmercuric nitrate; and oxidizing preservatives such as stabilized oxychloro complexes (e.g. Purite®) .
In another embodiment, the composition contains a surfactant. A surfactant may be used for assisting in dissolving an excipient or an active agent, dispersing a solid or liquid in a composition, enhancing wetting, modifying drop size, or a number of other purposes. Useful surfactants include, but are not limited to surfactants of the following classes: alcohols; amine oxides; block polymers; carboxylated alcohol or alkylphenol ethoxylates; carboxylic acids/fatty acids; ethoxylated alcohols; ethoxylated alkylphenols; ethoxylated aryl phenols; ethoxylated fatty acids; ethoxylated; fatty esters or oils (animal & veg.); fatty esters; fatty acid methyl ester ethoxylates; glycerol esters; glycol esters; lanolin-based derivatives; lecithin and lecithin derivatives; lignin and lignin derivatives; methyl esters; monoglycerides and derivatives; polyethylene glycols; polymeric surfactants; propoxylated & ethoxylated fatty acids, alcohols, or alkyl phenols; protein-based surfactants; sarcosine derivatives; sorbitan derivatives; sucrose and glucose esters and derivatives.
In particular, ethoxylate surfactants are useful.
An ethoxylate surfactants is one that comprises the moiety -0 (CH2CH2O) n_0H, wherein n is at least about 1.
In one embodiment n is from about 1 to about 10,000.
In another embodiment, n is from 1 to about 1000.
In another embodiment, n is from about 1 to about 500.
Some ethoxylates contain one ethoxylate moiety. In other words, there is a single ethoxylate chain on each molecule.
Examples of surfactants with one ethoxylate moiety, include, but are not limited to:
Ethoxylated alcohols wherein the alcohol has a single hydroxyl unit; alkylphenol ethoxylates; ethoxylated fatty acids; fatty acid methyl ester ethoxylates; polyethylene glycols; and the like.
Ethoxylates may comprise more than one ethoxylate moiety. In other words, there may be ethoxylate moieties attached to several different parts of the molecule. Examples include, but are not limited to: block polymers; ethoxylated oils; sorbitan derivatives; sucrose and glucose ethoxylates; and the like.
Block Polymers: These are polymers with the structure A-B-A', wherein A and A' are polyethylene chains of 1 or more ethylene units, and B is a polypropylene chain of one or more propylene units. Generally, but not necessarily, A and A' are approximately the same length.
In one embodiment, A and A' contain from about 2 to about 200 ethylene units.
In another embodiment, A and A' contain from about 5 to about 100 ethylene units.
In another embodiment, A and A' contain about 7 to about 15 ethylene units.
In another embodiment, A and A' contain about 7, about 8, or about 12 ethylene units.
In another embodiment, B contains from about 25 to about 100 propylene units.
In another embodiment, B contains from about 30 to about 55 propylene units.
In another embodiment, B contains about 30, about 34, or about 54 propylene units.
In another embodiment, the molecular weight is from about 1000 to about 20000.
In another embodiment, the molecular weight is from about 2000 to about 10000.
In another embodiment, the molecular weight is about 2500, about 3000, about 3800, or about 8400.
These include but are not limited to:
Poloxalene: wherein A has about 12 ethylene oxide units, B has about 34 propylene oxide units, A' has about 12 ethylene oxide units, and the average molecular weight is about 3000.
Poloxamer 182: wherein A has about 8 ethylene oxide units, B has about 30 propylene oxide units, A' has about 8 ethylene oxide units, and the average molecular weight is about 2500 Poloxamer 188: wherein A has about 75 ethylene oxide units, B has about 30 propylene oxide units, A' has about 75 ethylene oxide units, and the average molecular weight is about 8400.
Poloxamer 331: wherein A has about 7 ethylene oxide units, B has about 54 propylene oxide units, A' has about 7 ethylene oxide units, and the average molecular weight is about 3800/
Ethoxylated Alcohols
These include but are not limited to:
Ethoxylates of linear alcohols having from about 6 to about 20 carbon atoms .
In one embodiment, the linear alcohol has from about 10 to about 16 carbon atoms .
In another embodiment, n is from about 1 to about 100.
In another embodiment, n is from about 1 to about 50.
In another embodiment, n is from about 5 to about 50 ethylene oxide units .
In another embodiment, n is from about 1 to about 20 ethylene oxide units .
In another embodiment, n is from about 30 to about 50 ethylene oxide units.
Ethoxylated Alkylphenols
These are alkylphenols that are ethoxylated, i.e. the phenolic OH is replaced with an ethoxylate moiety.
These include but are not limited to: octylphenol ethoxylate, i.e. C8Hi7Ph (0CH2CH20) nH. nonylphenol ethoxylate, i.e. CgHigPh (0CH2CH20) nH. alkyphenols of the above formula wherein n is from about 1 to about 100. alkyphenols of the above formula wherein n is from about 1 to about 50. alkyphenols of the above formula wherein n is from about 9 to about 15.
Octyl Phenol 1.5 Mole Ethoxylate (i.e. n is an average of about 1.5); Octyl Phenol 5 Mole Ethoxylate;; Octyl Phenol 7 Mole Ethoxylate;Octyl Phenol 9 Mole Ethoxylate; Octyl Phenol 12 Mole Ethoxylate; Octyl Phenol 40 Mole Ethoxylate; Nonyl Phenol 1.5 Mole Ethoxylate; Nonyl Phenol 4 Mole Ethoxylate; Nonyl Phenol 6 Mole Ethoxylate; Nonyl Phenol 9 Mole Ethoxylate; Nonyl Phenol 10 Mole Ethoxylate; Nonyl Phenol 10.5 Mole Ethoxylate; Nonyl Phenol 12 Mole Ethoxylate; Nonyl Phenol 15 Mole Ethoxylate; Nonyl Phenol 15 Mole Ethoxylate; Nonyl Phenol 30 Mole Ethoxylate; and Nonyl Phenol 40 Mole Ethoxylate;
Ethoxylated Fatty Acids,
These include but are not limited to: ethoxylates which are esterified to form either: monoesters, i.e. RC02 (CH2CH20) nOH, where RC02H is a fatty acid; or diesters, i.e. RC02 (CH2CH20) nC (=0) R.
Fatty acids include, but are not limited to:
Saturated fatty acids, which have no C=C moieties and include myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid.
Unsaturated fatty acids, including the following: monounsaturated fatty acids, which have one C=C group such as palmitoleic acid, oleic acid, and nervonic acid; diunsaturated fatty acids, which have two C=C groups, such as linoleic acid; triiunsaturated fatty acids, which have three C=C groups, such as α-linolenic acid and γ-linolenic acid; tetraunsaturated fatty acids, which have four C=C groups, such as arachidonic acid; and pentaunsaturated fatty acids, which have five C=C groups, such as eicosapentaenoic acid.
The following may also be used:
Laurie Acid; 14 carbon fatty acids such as myristic acid; 16 carbon fatty acids such as palmitic and palmitoleic acid; 18 carbon fatty acids such as stearic acid, oleic acid, linoleic acid, a-linolenic acid, and γ-linolenic acid; 20 carbon fatty acids such as eicosapentaenoic acid; 22 carbon fatty acids such as arachidic acid; and 24 carbon carbon fatty acids such as lignoceric acid and nervonic acid.
In one embodiment, n is from about 2 to about 100.
In another embodiment, n is from about 5 to about 50.
In another embodiment, n is from about 30 to 50.
Ethoxylated Fatty Esters or Oils (Animal & Veg.).
These are the products which result from reacting ethylene oxide with a fatty ester or an oil. When a fatty oil is used, the products is a mixture of ethoxylates of the fatty acids present in the oil, ethoxylates of glycerine, ethoxylates of mono and diglycerides, and the like.
Specific examples include, but are not limited to:
Ethoxylates of the following oils: Anise oil, Castor oil, Clove oil, Cassia oil, Cinnamon oil; Almond oil, Corn oil, Arachis oil, Cottonseed oil, Safflower oil, Maize oil, Linseed oil, Rapeseed oil, Soybean oil, Olive oil, Caraway oil, Rosemary oil, Peanut oil, Peppermint oil, Sunflower oil, Eucalyptus oil and Sesame oil; Coriander oil, Lavender oil, Citronella oil, Juniper oil, Lemon oil, Orange oil, Clary sage oil, Nutmeg oil, Tea tree oil, coconut oil, tallow oil, and lard;
In one embodiment, from 1 to about 50 moles of ethylene oxide is used per mole of the oil triglyceride.
In another embodiment, from about 30 to about 40 moles of ethylene oxide is used per mole of the oil triglyceride.
Ethylene oxide may also react with a fatty acid ester with a formula RC02R' to form RC02 (CH2CH20) nR' . Thus, surfactants having the formula RC02 (CH2CH20)nR' , where RC02H is a fatty acid and R' is alkyl having from 1 to 6 carbons are contemplated.
One embodiment is a fatty acid methyl ester ethoxylate, wherein R' is methyl.
In another embodiment, RC02H is Laurie Acid; a 14 carbon fatty acid such as myristic acid; a 16 carbon fatty acid such as palmitic and palmitoleic acid; an 18 carbon fatty acids such as stearic acid, oleic acid, linoleic acid, α-linolenic acid, and y-linolenic acid; a 20 carbon fatty acids such as eicosapentaenoic acid; a 22 carbon fatty acids such as arachidic acid; or a 24 carbon carbon fatty acids such as lignoceric acid and nervonic acid.
Polyethylene Glycols are ethoxylates that are unsubstituted, or terminated with oxygen on both ends, i.e. HO(CH2CH2O) nH,
Sorbitan Derivatives :
These are ethoxylated sorbates having a fatty acid capping one or more of the ethoxylated chains. For example, polysorbate 80 has an oleate cap as shown in the structure below.
Polysorbate 80 (Sum of w, x, y, and z is 20)
These compounds are named as POE (w+x+y+z) sorbitan mono (or di- or tri-) fatty acid.
For example, Polysorbate 80 is POE (20) sorbitan monooleate.
Thus, the number in parenthesis is the total number of ethylene oxide units on the molecule, and the ending is the number of acid caps and the capping acid.
These include but are not limited to:
Sorbitan derivatives wherein the total number of ethylene oxide units is from 3 to 30/
Sorbitan derivatives wherein the total number of ethylene oxide units is 4, 5, or 20/
Sorbitan derivatives wherein the capping acid is laurate, palmitate, stearate, or oleate/
The sorbitan derivative may be a POE sorbitan monolaurate; a POE sorbitan dilaurate/ a POE sorbitan trilaurate/ a POE sorbitan monopalmitate/ a POE sorbitan dipalmitate; a POE sorbitan tripalmitate; a POE sorbitan monostearate; a POE sorbitan distearate; a POE sorbitan tristearate; a POE sorbitan monooleate; a POE sorbitan dioleate; or a POE sorbitan trioleate;
Specific examples include: POE (20) sorbitan monolaurate; POE (4) sorbitan monolaurate; POE (20) sorbitan monopalmitate; POE (20) monostearate; POE (20) sorbitan monostearate; POE (4) sorbitan monostearate; POE (20) sorbitan tristearate; POE (20) sorbitan monoleate; POE (20) sorbitan 15 monoleate; POE (5) sorbitan 10 monoleate; POE (20) sorbitan trioleate; and
Sucrose and Glucose Esters and Derivatives:
Although there are a number of sucrose and glucose based surfactants, some sucrose and glucose esters and derivatives are similar to the sorbate derivatives described above. In other words, one, several, or all of the hydroxyl moieties of the sugar are ethoxylated, and one or more of the ethoxylate chains are capped with a carboxylic acid. Other sucrose and glucose esters are simply ethoxylated, but do not have a capping carboxylic acid. Other sucrose and glucose esters may be ethoxylated and capped with an alkyl group formed by reaction with an alcohol. Other sucrose and glucose esters may be esters or ethers of the sugars with hydrophobic chains and have ethoxylates substituted in other positions on the sugar.
Various useful vehicles may be used in the ophthalmic preparations disclosed herein. These vehicles include, but are not limited to, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose, and acrylates (e.g. Pemulen®).
Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor.
In a similar vein, an ophthalmically acceptable antioxidant includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
Other excipient components which may be included in the ophthalmic preparations are chelating agents. A useful chelating agent is edetate disodium, although other chelating agents may also be used in place or in conjunction with it.
Compositions may be aqueous solutions or emulsions, or some other acceptable liquid form. For an emulsion, one or more oils will be used to form the emulsion, and in some instances one or more surfactants will be required. Suitable oils include, but are not limited to anise oil, castor oil, clove oil, cassia oil, cinnamon oil, almond oil, corn oil, arachis oil, cottonseed oil, safflower oil, maize oil, linseed oil, rapeseed oil, soybean oil, olive oil, caraway oil, rosemary oil, peanut oil, peppermint oil, sunflower oil, eucalpytus oil, sesame oil, and the like.
In one embodiment, the composition is an aqueous solution.
In another embodiment, the composition contains no ethanol.
In another embodiment, the composition contains no hyauronic acid.
In another embodiment, the composition contains no vitamin E TPGS .
In another embodiment, the composition contains no cyclodextrin A.
In another embodiment, the composition contains no cyclodextrin.
Example 1
Ingredients Percent Amount needed (g)
Ingredients for a 1 liter batch (% w/v)
Compositions P, A, B and C, are prepared according to the following procedure. 1. Measure Purified Water to about 90% of the batch size and place in an appropriate beaker or container. 2. Begin mixing the water with a strong mixer (Rotosolver) to obtain a strong vortex. 3. Add the pre-weighed carboxymethylcellulose sodium into the strong vortex. Continue strong mixing for at least 1 hour. 4. Slow mixer to a slow speed. 5. Add and dissolve the pre-weighed polysorbate 80. 6. Add and dissolve the pre-weighed glycerin. 7. Add and dissolve the pre-weighed mannitol. 8. Add and dissolve the pre-weighed sodium citrate dehydrate. 9. Add and dissolve the pre-weighed boric acid. 10. Add and dissolve the pre-weighed sodium borate decahydrate. 11. Add and dissolve the pre-weighed potassium chloride. 12. Check pH and adjust if necessary. Target pH is 7.5 +/- 0.1. 13. Add and dissolve the pre-weighed Purite. 14. Add sufficient quantity of Purified Water to attain the final batch volume. This will provide the finished placebo formulation (P) ·
Procedure for either 0.03% (A), 0.04% (B), 0.05% (C) 15. Measure the exact amount of Placebo (9815X) needed to satisfy the batch size requirements and place in a media bottle that contains a magnetic stir bar. 16. Add and dissolve the pre-weighed cyclosporine. Stir at a slow speed to avoid foaming. It will usually take overnight mixing to completely dissolve the cyclosporine. 17. After overnight mixing is completed, pump the cyclosporine solution through a Millipore Milligard pre-filter and a Pall Suporlife sterilizing filter and collect the filtrate aseptically. 18. The sterile filtrate can then be aseptically dispensed into multidose dropper bottles suitable for ophthalmic purpose. 19. The finished product should be tested for cyclosporine assay, pH, osmolality, viscosity, Purite, sterility, and antimicrobial effectiveness . 20. The finished product should be store at room temperature and protected from light.
Example 2
The following formulations were prepared. D and E were prepared by standard methods known in the art. F was prepared as described above for A-C except that Pemulen TR-2 was substituted for carboxymethylcellulose sodium, and the addition of the citrate and borate buffers were omitted.
Bioavailability
The compositions disclosed and used herein provide a therapeutically effective amount of cyclosporin A to a mammal. However, while not intending to limit the scope of the invention in any way, concentrations of cyclosporin A in the compositions may be significantly lower than those normally associated with a therapeutically effective concentration. For example, one commercial preparation, marketed as Restasis® by Allergan, Inc., is a 0.05% cyclosporin A castor oil emulsion. Other compositions currently in development have concentrations of 0.1% or higher.
Reported herein are pharmacokinetic data for in vivo experiments on rabbits. However, the rabbit experiments are believed to be useful models for bioavailability in other mammals including humans. Thus, although bioavailability parameters are disclosed and featured in the claims, they should not be construed as limiting the treatment to rabbits only, but the compositions characterized and defined by bioavailability in rabbits are also contemplated for use in treatment in other mammals, particularly humans .
In one embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition AA.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition BB.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition CC.
In one embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition DD.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition EE.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition FF.
In one embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition GG.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition HH.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition II.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition JJ.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition KK.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition LL.
In another embodiment, the composition provides more cyclosporin A to the cornea of a person than Composition MM.
In one embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition AA.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition BB.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition CC.
In one embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition DD.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition EE.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition FF.
In one embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition GG.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition HH.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition II.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition JJ.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition KK.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition LL.
In another embodiment, the composition provides more cyclosporin A to the conjunctiva of a person than Composition MM.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 500 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 1000 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 1400 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 2000 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 2400 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 17000 ng of cyclosporin A per gram of cornea of said rabbit over a period of 24 hours after said topical administration.
In another embodiment, said composition is an aqueous solution containing from 0.005% to about 0.04% cyclosporin A, wherein topical administration of one 35 pL drop of said composition to each eye of a New Zealand rabbit provides at least about 17000 ng of cyclosporin A per gram of cornea to the corneas of said rabbit as determined by: topically administering said composition to each eye of each of 15 female New Zealand white rabbit test subjects; and determining the amount of cyclosporin A in the corneas of three subjects at times of about 0.5 hours, about 2 hours, about 6 hours, about 12 hours, and about 24 after administration to said subj ect; wherein the amount of cyclosporin A in the cornea is determined only once for each subject.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 30000 ng of cyclosporin A per gram of cornea to the corneas of said rabbit.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 45000 ng of cyclosporin A per gram of cornea to the corneas of said rabbit.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 95000 ng of cyclosporin A per gram of cornea to the corneas of said rabbit.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 155000 ng of cyclosporin A per gram of cornea to the corneas of said rabbit.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the conjunctivas of said rabbit at least about 6000 ng of cyclosporin A per gram of conjunctiva of said rabbit over a period of 24 hours after said topical administration.
In another embodiment, said composition is an aqueous solution containing from 0.005% to about 0.04% cyclosporin A, wherein topical administration of one 35 pL drop of said composition to each eye of a New Zealand rabbit provides at least about 6000 ng of cyclosporin A per gram of conjunctiva to the conjunctivas of said rabbit as determined by: topically administering said composition to each eye of each of 15 female New Zealand white rabbit test subjects; and determining the amount of cyclosporin A in the conjunctivas of three subjects at times of about 0.5 hours, about 2 hours, about 6 hours, about 12 hours, and about 24 after administration to said subject; wherein the amount of cyclosporin A in the conjunctiva is determined only a single time for each subject.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 5000 ng of cyclosporin A per gram of conjunctiva to the conjunctiva of said rabbit.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 7000 ng of cyclosporin A per gram of conjunctiva to the conjunctiva of said rabbit.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 10000 ng of cyclosporin A per gram of conjunctiva to the conjunctiva of said rabbit.
In another embodiment said composition to each eye of a New Zealand rabbit provides at least about 17000 ng of cyclosporin A per gram of conjunctiva to the conjunctiva of said rabbit.
In another embodiment, the blood level of cyclosporin A is less than 0.1 mg/mL for a person for whom the composition has been administered twice a day topically to both eyes in 35 microliter drops for twelve months.
Pharmacokinetic Study 1 A 35 yL aliquot of one of three test formulations was topically administered to each eye of a female New Zealand White rabbit (n=3 rabbits/time point). At 0.5, 2, 6, 12, 24, 48 and 144 hours post-dose, cornea, conjunctiva, sclera, eyelid margin, nasolacrimal duct, and blood samples were collected. Samples collected from naive rabbits (n=2) served as pre-dose samples. The quantitation ranges were 0.2-40 ng/mL in blood, 0.1-200 ng in cornea and conjunctiva, 0.1-100 ng in eyelid margin and nasolacrimal duct, and 0.1-20 ng in sclera and lacrimal gland.
The pharmacokinetic parameters of cyclosporine A in ocular tissues following a single ophthalmic instillation of one of three 0.05% cyclosporine A formulations are summarized in Table 1 below: Table 1
NC = Not calculable BLQ = Below the limit of quantitation
Briefly summarizing, following a single ocular instillation of a 0.05% cyclosporine A formulation, the highest cyclosporine A ocular tissue exposure levels were observed from Composition F, followed by the Composition E, followed by Composition D.
Materials Test Articles
Compositions D, E, and F, as described above, were used for these experiments.
Chemicals, Reagents and Supplies
All other chemicals were reagent grade or better.
Animals
Species, Strain, Sex, Age, Size, Source, and Identification
Female New Zealand White rabbits weighing 1.8 to 2.6 kg were purchased from Charles River (St. Constant, Quebec, Canada). A permanent ear tag was used to identify animals.
Justification
Similarities between the ocular anatomies of rabbits and humans make the rabbit an attractive animal model.
Animal Husbandry
All animals were housed in environmentally-controlled facility with a time-controlled fluorescent lighting system providing a daily 12-hour light/12-hour dark period. Room temperature was maintained between 61 and 72°F, and relative humidity between 30 and 70%. Airflow ranged from 10 to 30 air changes per hour. Temperature, humidity, and airflow were monitored by the Edstrom Watchdog system version 4.0.
The animals were provided Certified Hi-Fiber Rabbit Diet.
Diet certification and analysis were provided by the vendor. No analysis outside those provided by the manufacturer was performed. Drinking water that was purified by a reverse osmosis process was offered ad libitum. Water was periodically analyzed for any contaminants that may interfere with the conduct of this study.
The manufacturer conducted analysis of animal feed.
Animal Acclimation
During the acclimatization period at Allergan, animals were kept under daily observation for any change in general health or behavior. Rabbits were quarantined for at least five days prior to the start of the study. All animals appeared healthy prior to and for the duration of the study.
Animal Termination and Disposal
Animals were euthanized via injection of at least 1 mL of sodium pentobarbital into a marginal ear vein.
Study Design and Experimental Procedures Study Design
Table 1 Study design
Single bilateral dose, 3 rabbits (6 eyes and 3 blood samples) per time point. Two animals in group 4 were not dosed and were used as bioanalytical controls. Prior to dosing, 65 animals were weighed and assigned to 4 study groups. The study design is presented in Table 1. The four study groups are presented in the Table 2 below:
Table 2
n = Number of animals per group F = Female
Pretreatment Examinations
Prior to placement on study, a physical examination was performed on each animal. Gross observations were recorded prior to drug administration and immediately after ocular dose using a standardized data collection sheet.
Randomi z a ti on
Prior to dosing, 65 animals were weighed and randomly assigned to four study groups.
Dosing Procedure:
Animals were dosed once by ocular instillation bilaterally at Hour 0 of the study. Immediately prior to dosing, the eye was inspected for any abnormalities, such as infection, red eye, or visible damage. Only animals without visible abnormalities were used. The lower eyelid was gently pulled out and away from the eye. Using a Gilson precision pipette, 35 μ]1 of dosing solution was instilled into the lower cul-de-sac of each eye. The time of dose administration was recorded. The eye was gently held closed for approximately 5 seconds to ensure even dose distribution around the eye. Gross ocular observations were performed following dosing. The animal, including the dosed eyes, were subjectively evaluated for signs of irritation. Observations were recorded.
Mortality/Morbidity
Animals were observed for mortality/morbidity during the study.
Body Weights
Animals were weighed the day before dose administration and subsequently randomized.
Pre-necropsy Blood Collection
Blood was collected from each rabbit prior to euthanasia/necropsy. Animals were anesthetized with an intravenous injection of a ketamine/xylazine cocktail (87 mg/mL ketamine, 13 mg/mL xylazine) at a volume of 0.1 mL/kg. Blood was collected via cardiac puncture. Approximately 5 mL of blood was collected into 10 mL lavender top (K3 EDTA) tubes. Blood samples were stored at or below approximately -15°C until bioanalysis.
Euthanasia
Animals were euthanized with an intravenous injection of commercial euthanasia solution following blood collection.
Necropsy and Collection of Ocular Tissues
Ocular samples were collected from both eyes, blotted dry where applicable, weighed and placed in separate, appropriately labeled, silanized vials, at the time of necropsy. Both eyes were rinsed with LENS PLUS® in order to clear residual surface formulation remaining on the ocular surface.
Conj unctiva
The upper and lower conjunctiva from each eye were removed and pooled, weight recorded, placed into separate screw-cap glass 13x100 silanized test tubes and immediately placed on ice. Samples were stored at or below -15°C until bioanalysis.
Cornea
The entire cornea was removed from each eye; weight recorded, placed into separate screw-cap glass 13x100 silanized test tubes and immediately placed on ice. Samples were stored at or below -15°C until bioanalysis.
Sclera
The sclera was removed from each eye; weight recorded, placed into separate screw-cap glass 13x100 silanized test tubes and immediately placed on ice. Samples were stored at or below -15°C until bioanalysis.
Nasolacrimal Duct
Tissue containing the nasolacrimal duct associated with each eye was removed; weight recorded, placed into screw-cap glass 13x100 silanized test tubes and immediately placed on ice. Samples were stored at or below -15°C until bioanalysis.
Eyelid Margin
The eyelid margins were removed from each eye; weight recorded, placed into separate screw-cap glass 13x100 silanized test tubes and immediately placed on ice. Samples were stored at or below -15°C until bioanalysis.
Sample Storage
Blood and ocular tissue samples were stored at or below -15°C until bioanalysis.
Bioanalysis
Ocular tissue and blood concentrations were quantified using the following method.
Ocular tissue samples were extracted by soaking over night with 2.0 mL methanol at 4°C. This was followed by a second soak with 2.0 mL methanol and shaking for approximately one hour at room temperature. An aliquot of 1 mL from a total of 4 mL organic extract was removed (all 4 mL were analyzed for lacrimal gland samples), and internal standard added (20 pL of 500 ng/mL of CsG). The methanolic extract was evaporated to dryness and reconstituted with 200 pL of 2 mM ammonium acetate/0.4% formic acid in 50:50 acetonitrile: water for LC MS/MS analysis. The bioanalytical procedure for analysis of blood samples involved addition of internal standard, CsG (10 pL of 500 ng/mL) to 0.5 mL aliquots of K3 EDTA-treated rabbit blood.
Following incubation of blood sample for 30 minutes at 37°C, the samples were acidified with 0.1 N HCL (2 mL). Methyl t-butyl ether (4 mL) was added to each sample and mixed for 15 minutes. The organic layer was removed and made basic by addition of 0.1 N NaOH (2 mL). The organic extract was separated from the aqueous layer, evaporated to dryness and reconstituted with 200 pL of 2 mM ammonium acetate/0.4% formic acid in 50:50 acetonitrile: water for LC MS/MS analysis. Aliquots (50 pL) of the reconstituted samples were analyzed by LC-MS/MS using a PE Sciex API 3000 mass spectrometer (Applied Biosystems, Foster City, CA) , Leap autosampler (Carrboro, NC), and HPLC pumps (Shimadzu Scientific Instruments, Columbia, MD) . Reverse-phase HPLC was performed on a Keystone BDS C8 column (3 pm, 2.1 x 50 mm, 65 °C) with solvent gradient elution (A=2mM ammonium acetate/0.4% formic acid in water and B=2mM ammonium acetate/0.4% formic acid in acetonitrile) at a flow rate of 0.3 mL/min. The precursor-product ion pairs used in MRM analysis were: 1203 (MH) +—> 425.5 for CsA and m/z 1217 (MH)+—» 425.5 for IS(Cyclosporin G). The total analysis time was 5 min, with retention times of CsA and CsG at approximately 1.82 and 1.86 minutes, respectively.
Data Treatment
Data Collection • Pre and post treatment gross ocular examinations • Body Weights: Randomization at Day -1 • Dosing Notes • Mortality/Morbidity • Blood Samples: Pre-necropsy • Ocular Tissue Samples: Post-necropsy
Data Calculation and Outlier Analysis
All data was used in calculations unless omitted for reasons justified in the raw data.
Pharmacokinetic Analysis
Thermo Electron Watson™ (Philadelphia, PA) and Microsoft®
Excel (Redmond, Washington) were used for pharmacokinetic calculations. The pharmacokinetic parameters listed below were calculated using a known non-compartmental approach (see Tang-Lui, et. al. Pharmaceutical Research, Vol 5, No. 4, 1988, 238-241). The pharmacokinetic data was described using descriptive statistics such as mean and standard deviation whenever possible. Area under the concentration-time profile (AUC) values were reported as a composite AUC and whenever possible, ± standard error of the mean (SEM).
Values below the Limit of Quantitation and Number Rounding
If more than half of the concentration values contributing to a calculation of the mean were below limit of quantitation (BLQ), then the statistics were reported as non-calculable (NC). If half or more of the values were quantifiable, then any BLQ values were replaced with a value of "0", and the mean and its standard deviation (SD) were calculated with these replaced values. The mean and standard deviation of the mean were calculated at each sampling time point within each treatment group. Whenever the sample size was less than or equal to 2, only mean values were listed. All mean values were reported to 3 significant figures and standard deviations were reported to the same decimal place as their respective mean values.
Protocol Deviations o Prior to collection of ocular tissue samples at the 6 hour time point, the eyes were not rinsed with Lens Plus® to clear any residual surface formulation remaining on the ocular surface. It is believed that this deviation will have minimal impact on the results derived from this study since in general this drug is rapidly absorbed from the ocular surface. In addition, blinking by the rabbits over 6 hours should also act to clear any residual surface formulation. o Abbreviations
Note: Not all abbreviations listed may appear in this report. > Results and Discussion Cornea
The mean concentrations and pharmacokinetic parameters are summarized in Tables 3 and 4. The concentration-time profiles of cyclosporine A in cornea following a single bilateral ocular ) administration of one of three 0.05% cyclosporine A formulations to rabbits are presented in Figure 1.
Table 3 Mean cornea concentrations of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
) Mean values represent an average of n=6 a Concentration time points used to calculate t ^ 37
Table 4 Pharmacokinetic parameters in cornea of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
a An AUC interval of 0-144 hours was used for calculations for the three formulations
Composition F
Following a single bilateral ocular instillation of Composition F, cyclosporine A was rapidly absorbed into the cornea with a peak corneal concentration (Cmax) of 4050 ± 1220 ng/g, occurring 0.500 hours post-dose. The area under the concentrationtime curve (AUCo-t) value through the last quantifiable time point was 163000 ± 7000 ng*hr/g and the AUC0-24 value was 59000 ng*hr/g.
The terminal half-life (ti/2) was 41.3 hours and the mean residence time (MRT) was 50.3 hours.
Composition E
Following a single bilateral ocular instillation of Composition E, cyclosporine A was absorbed into the cornea with Cmax value of 1100 ± 190 ng/g, occurring 2.00 hours post-dose. The AUCo-t value was 76200 ± 3300 ng-hr/g and the AUC0-24 value was 22100 ng-hr/g. The terminal ti/2 was 41.7 hours and the MRT was 56.5 hours .
Composition D
Following a single bilateral ocular instillation of Composition D, cyclosporine A was absorbed into the cornea with a Cmax value of 536 ± 138 ng/g, occurring 6.00 hours post-dose. The AUCo-t value was 29300 ± 2000 ng-hr/g and the AUC0-24 value was 9450 ng-hr/g. The terminal ti/2 was 49.8 hours and the MRT was 61.6 hours .
Conjunctiva
The mean concentrations and pharmacokinetic parameters are summarized in Tables 5 and 6. The concentration-time profiles of cyclosporine A in conjunctiva following a single bilateral ocular administration of one of three 0.05% cyclosporine A formulations to rabbits are presented in Figure 2.
Table 5 Mean conjunctiva concentrations of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Mean values represent an average of n=6 BLQ=Below the limit of quantitation a Concentration time points used to calculate t 1/2
Table 6 Pharmacokinetic parameters in conjunctiva of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
An AUC interval of 0-48 hours was used for calculations b An AUC interval of 0-24 hours was used for calculations
Composition F
Following a single bilateral ocular instillation of Composition F, cyclosporine A was rapidly absorbed into the conjunctiva with a Cmax value of 4460 ± 650 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 18100 ± 800 ng-hr/g and the AUCo-24 value was 17100 ng-hr/g. The terminal ti/2 was 11.3 hours and the MRT was 7.37 hours.
Composition E
Following a single bilateral ocular instillation of Composition E, cyclosporine A was rapidly absorbed into the conjunctiva with a Cmax value of 2560 ± 1070 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 11600 ± 700 ng-hr/g. The terminal ti/2 was 5.57 hours and the MRT was 5.93 hours.
Composition D
Following a single bilateral ocular instillation of Composition D, cyclosporine A was rapidly absorbed into the conjunctiva with a Cmax value of 694 ± 410 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 5290 ± 480 ng-hr/g. The terminal ti/2 was 4.55 hours and the MRT was 6.07 hours.
Sclera
The mean concentrations and pharmacokinetic parameters are summarized in Tables 7 and 8. The concentration-time profiles of cyclosporine A in sclera following a single bilateral ocular administration of one of three 0.05% cyclosporine A formulations to rabbits are presented in Figure 3.
Table 7 Mean sclera concentrations of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Mean values represent an average of n=6 BLQ=Below the limit of quantitation a Concentration time points used to calculate t i/2
Table 8 Pharmacokinetic parameters in sclera of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
a An AUC interval of 0-144 hours was used for calculations b An AUC interval of 0-48 hours was used for calculations
Composition F
Following a single bilateral ocular instillation of Composition F, cyclosporine A was rapidly absorbed into the sclera with a Cmax value of 545 ± 98 ng/g, occurring 0.500 hours post-dose. The AUCo-t value was 6110 ± 260 ng-hr/g and the AUC0-24 value was 3900 ng-hr/g. The terminal ti/2 was 29.7 hours and the MRT was 25.3 hours .
Composition E
Following a single bilateral ocular instillation of Composition E, cyclosporine A was rapidly absorbed into the sclera with a Cmax value of 136 ± 43 ng/g, occurring 0.500 hours post-dose. The AUCo-t value was 2840 ± 150 ng-hr/g and the AUC0-24 value was 1560 ng-hr/g. The terminal ti/2 was 24.8 hours and the MRT was 26.7 hours .
Composition D
Following a single bilateral ocular instillation of Composition D, cyclosporine A was absorbed into the sclera with a Cmax value of 53.0 ± 10.9 ng/g, occurring 6.00 hours post-dose. The AUCo-t value was 1040 ± 50 ng-hr/g and the AUC0-24 value was 792 ng-hr/g. The terminal ti/2 was 18.7 hours and the MRT was 23.8 hours .
Eyelid Margin
The mean concentrations and pharmacokinetic parameters are summarized in Tables 9 and 10. The concentration-time profiles of cyclosporine A in the eyelid margin following a single bilateral ocular administration of one of three 0.05% cyclosporine A formulations to rabbits are presented in Figure 4.
Table 9 Mean eyelid margin concentrations of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits .
Mean values represent an average of n=6 a Concentration time points used to calculate t 1/2
Table 10 Pharmacokinetic parameters in eyelid margin of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits .
An AUC interval of 0-144 hours was used for calculations for the three formulations
Composition F
Following a single bilateral ocular instillation of Composition F, cyclosporine A was rapidly absorbed into the eyelid margin with a Cmax value of 3120 ± 1040 ng/g, occurring 0.500 hours post-dose. The AUCo-t value was 38300 ± 5300 ng-hr/g and the AUC0-24 value was 19900 ng-hr/g. The terminal ti/2 was 42.5 hours and the MRT was 40.5 hours.
Composition E
Following a single bilateral ocular instillation of Composition E, cyclosporine A was rapidly absorbed into the eyelid margin with a Cmax value of 2020 ± 980 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 42200 ± 10800 ng-hr/g and the AUC0-24 value was 17600 ng-hr/g. The terminal ti/2 was 38.1 hours and the MRT was 38.4 hours.
Composition D
Following a single bilateral ocular instillation of Composition D, cyclosporine A was absorbed into the eyelid margin with a Cmax value of 2450 ± 970 ng/g, occurring 2.00 hours postdose. The AUCo-t value was 27700 ± 3300 ng-hr/g and the AUC0-24 value was 18000 ng-hr/g. The terminal ti/2 was 24.4 hours and the MRT was 21.9 hours.
Nasolacrimal Duct
The mean concentrations and pharmacokinetic parameters are summarized in Tables 11 and 12. The concentration-time profiles of cyclosporine A in nasolacrimal duct tissue following a single bilateral ocular administration of one of three 0.05% cyclosporine A formulations to rabbits are presented in Figure 5.
Table 11 Mean nasolacrimal duct concentrations of cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits .
Mean values represent an average of n=6 BLQ=Below the limit of quantitation
Table 12 Pharmacokinetic parameters in nasolacrimal duct of
Cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits .
NC=Not calculable a An AUC interval of 0-144 hours was used for calculations b An AUC interval of 0-48 hours was used for calculations c An AUC interval of 0-12 hours was used for calculations d A time interval of 0-12 hours was used for calculations
Composition F
Following a single bilateral ocular instillation of Composition F, cyclosporine A rapidly drained into and was then absorbed into the nasolacrimal duct tissue with a Cmax value of 195 ± 201 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 2190 ± 350 ng*hr/g and the AUC0-12 value was 478 ± 86 ng-hr/g. The MRT was 17.6 hours.
Composition E
Following a single bilateral ocular instillation of Composition E, cyclosporine A rapidly drained into and was then absorbed into the nasolacrimal duct tissue with a Cmax value of 74.4 ±20.9 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 1190 ± 210 ng-hr/g and the AUC0-12 value was 465 ± 106 ng-hr/g. The MRT was 24.7 hours.
Composition D
Following a single bilateral ocular instillation of Composition D, cyclosporine A rapidly drained into and was then absorbed into the nasolacrimal duct tissue with a Cmax value of 72.0 ± 91.7 ng/g, occurring 0.500 hours post-dose. The AUC0-t value was 279 ± 39 ng-hr/g. The MRT was 12.1 hours.
Blood
The mean concentrations of cyclosporine A in blood are summarized in Table 13.
Table 13 Mean blood concentrations of Cyclosporine A following a single bilateral topical ocular instillation of one of three 0.05% cyclosporine A formulations to New Zealand White rabbits.
Mean values represent an average of n=3 BLQ=Below the limit of quantitation
Composition F
Following a single bilateral ocular instillation of Composition F, cyclosporine A was detected at 0.5 and 2 hours postdose in the blood at concentrations of 2.21 ± 0.33 ng/mL and 0.463 ± 0.021 ng/mL, respectively. Cyclosporine A levels were below the limit of quantitation at all subsequent time points.
Composition E
Following a single bilateral ocular instillation of Composition E, cyclosporine A was detected at 0.5 hours post-dose in the blood at a concentration of 0.441 ± 0.126 ng/mL.
Cyclosporine A levels were below the limit of quantitation at all subsequent time points.
Composition D
Following a single bilateral ocular instillation of Composition D, cyclosporine A levels were below the limit of quantitation at all time points.
Administration of Composition F to rabbits generally delivered the highest levels of cyclosporine A to ocular tissues, on average a 5-fold increase in area under the concentration-time profile (AUC) was observed when compared to Composition D. Administration of Composition E to rabbits resulted on average in a 2-fold increase in AUC when compared to Composition D. The pharmacokinetic profile observed following Composition D administration to New Zealand White rabbits in this study was in good agreement with previously reported data.
In general, the terminal half-life and mean residence time observed were greatest for Composition F, followed by the Composition E, followed by Composition D. Thus, AUC values were reported to the last quantifiable time point, in addition to AUC through 24 hours for cornea, conjunctiva, sclera and eyelid margin and AUC through 12 hours for nasolacrimal duct to make an assessment over the same interval as to the drug levels achieved following once a day dosing. Overall, the trends observed when comparing AUCo-t values were consistent with the trends observed when comparing AUC0-24 or AUC0-12.
In conclusion, following a single ocular instillation of a 0.05% cyclosporine A formulation, the highest cyclosporine A ocular tissue exposure levels were observed when drug was formulated as an aqueous Composition F, followed by the Composition E followed by
Composition D. A concomitant trend was observed in blood drug exposure .
While not intending to limit the scope of the invention, it is believed that these pharmacokinetic results suggest that significantly lower concentrations of cyclosporin A may be used in topical ophthalmic compositions than previously known and still achieve a therapeutically effective amount cyclosporin A.
Pharmacokinetic Study 2
The compositions below were prepared in an analogous manner to compositions D, E, and F.
A pharmacokinetic study was carried out using similar analytical methods to those already described. The parameters are shown below.
• Test Formulations: G,H, and D
• Animal species/strain: Rabbit NZW • Gender: Female • Number: 2 rabbits/timepoint (2 rabbits blanks) • Dosing Route: Topical ocular
• Dosing Regimen: Bilateral,QD(Aqueous)/BID (Composition D)-5days
• Dose Volume: 35 yL • Time points: Day 1 and Day 5-0.5, 2, 6, 12, 24 hr post dose
• Assay Method: LC-MS/MS
• Analyte: Cyclosporine A • Data Analysis: Cmax, AUCo-24/· AUC dose normalized
The results in cornea, tear, and blood are shown in the tables below.
Table 14. Cyclosporin bioavailability in the cornea.
Table 15. Cyclosporin bioavailability in the blood. n=2 rabbits/timepoint
BLQ-Below the limit of detection (0.2 ng/mL)
Table 16. Cyclosporin bioavailability in the tears.
Standard Compositions
These compositions (AA-MM) are particularly contemplated for use as standards for comparison for characterization of the compositions disclosed herein.
The following compositions are intended to mean those identical to those disclosed in Kanai et. al., Transplantation Proceedings, Vol 21, No 1 (February), 1989: 3150-3152, which is incorporated by reference herein:
Composition AA: a solution consisting of 0.025% cyclosporin A, 40 mg/mL alpha cyclodextrin, and water;
Composition BB: a solution consisting of 0.009% cyclosporin A, 20 mg/mL alpha cyclodextrin, and water; and
Composition CC: a solution consisting of 0.003% cyclosporin A, 10 mg/mL alpha cyclodextrin, and water.
The following composition is intended to mean those identical to that disclosed in Cheeks et. al., Current Eye Research, Vol 11, No 7 (1992), 641-649, which is incorporated by reference herein: Composition DD: an alpha cyclodextrin solution at 40 mg/mL containing 0.025% cyclosporin A.
The following composition is intended to mean that identical that disclosed in Tamilvanan, Stp Pharma Sci Νον-Dec; 11(6):421-426, which is incorporated by reference herein, except that the concentration of cyclosporin A is different.
Composition EE: an emulsion consisting of cyclosporin A (0.05 w/w%) , castor oil (2.5 w/w%) , stearylamine (0.12 w/w%) , of-tocopherol (0.01 w/w%), benzalkonium chloride (0.01 w/w%) and water up to 100 w/w%.
The following compositions are intended to mean those identical to Samples C-E disclosed in United States Patent No. 5,051,402 (column 7). The entire disclosure is incorporated herein by reference.
Composition FF: 0.25 mL/mL of cyclosporin A, 40 mg/mL of a-cyclodextrin, and 7.79 mg/mL of sodium chloride;
Composition GG: 0.10 mL/mL of cyclosporin A, 20 mg/mL of a-cyclodextrin, and 8.40 mg/mL of sodium chloride; and Composition HH: 0.05 mL/mL of cyclosporin A, 10 mg/mL of a-cyclodextrin, and 8.70 mg/mL of sodium chloride.
The following composition is intended to mean that identical that disclosed in Abdulrizak, Stp Pharma Sci Νον-Dec; 11(6):427-432, which is incorporated by reference herein, except that the concentration of cyclosporin A is different.
Composition II: an emulsion consisting of cyclosporin A (0.05 w/w%), castor oil (2.5 w/w%), Poloxamer 188, (0.425 w/w%), glycerol (2.25 w/w%), Lipoid E-80 (0.5 w/w%), stearylamine (0.12 w/w%), tocopherol (0.01 w/w%), benzalkonium chloride (0.01 w/w%), and water.
The following composition is intended to mean that identical to that disclosed in Kuwano Mitsuaki et al. Pharm Res 2002 Aug;19(1) : 108-111.
Composition JJ: a solution consisting of cyclosporine A (0.0865%), ethanol (0.1%), MYS-40 (2%), HPMC (0.3 w/v%), sodium dihydrogen phosphate (0.2 w/v%), and disodium EDTA (0.01% w/v%), sodium chloride to adjust the tonicity to 287 mOsm, and water.
Composition KK is intended to mean that disclosed in US20010041671, incorporated by reference herein, as Formulation 1, on Table 1. Composition LL is that disclosed in US20010041671 as Formulation 3, except that the concentration of cyclosporine is reduced.
Composition KK: cyclosporine A (0.02%), sodium hyaluronate (0.05%), Tween 80 (0.05%), Na2HP04 · 12H20 (0.08%), sorbitol (5.46%), purified water added to 100 mL, pH 7.0-7.4, and mosm/L = 295-305.
Composition LL: cyclosporine A (0.2%), sodium hyaluronate (0.10%), Tween 80 (5.00%), Na2HP04 · 12H20 (0.08%), sorbitol (5.16%), purified water added to 100 mL, pH 7.0-7.4, and mosm/L = 295-305.
The following composition is intended to mean that disclosed in Example 2 of US 5,951,971, incorporated herein by reference. Composition MM: cyclosporine A (0.025 g), polyoxyl 40 stearate (0.5g), hydroxypropyl methylcellulose (0.2g), butylated hydroxytoluene (0.0005 g) , ethanol (0.1 g), sodium chloride (0.73 g), sodium dihydrogen phosphate (0.2 g), sodium edethate (0.1 g), sodium hydroxide to adjust pH to 6.0, and water to make 100 mL.
In another embodiment the composition provides more cyclosporin A than Composition AA provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition AA, wherein the drop of said composition and the drop of Composition AA are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition BB provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition BB, wherein the drop of said composition and the drop of Composition BB are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition CC provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition CC, wherein the drop of said composition and the drop of Composition CC are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition DD provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition DD, wherein the drop of said composition and the drop of Composition DD are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition EE provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition EE, wherein the drop of said composition and the drop of Composition EE are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition FF provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition FF, wherein the drop of said composition and the drop of composition FF are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition GG provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition GG, wherein the drop of said composition and the drop of composition GG are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition HH provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition HH, wherein the drop of said composition and the drop of composition HH are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition II provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition II, wherein the drop of said composition and the drop of composition II are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition JJ provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition JJ, wherein the drop of said composition and the drop of composition JJ are the same volume .
In another embodiment the composition provides more cyclosporin A than Composition KK provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition KK, wherein the drop of said composition and the drop of composition KK are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition LL provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition LL, wherein the drop of said composition and the drop of composition LL are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition MM provides to the cornea of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition MM, wherein the drop of said composition and the drop of composition MM are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition AA provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition AA, wherein the drop of said composition and the drop of Composition AA are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition BB provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition BB, wherein the drop of said composition and the drop of Composition BB are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition CC provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition CC, wherein the drop of said composition and the drop of Composition CC are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition DD provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition DD, wherein the drop of said composition and the drop of Composition DD are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition EE provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition EE, wherein the drop of said composition and the drop of Composition EE are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition FF provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition FF, wherein the drop of said composition and the drop of composition FF are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition GG provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition GG, wherein the drop of said composition and the drop of composition GG are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition HH provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition HH, wherein the drop of said composition and the drop of composition HH are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition II provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition II, wherein the drop of said composition and the drop of composition II are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition JJ provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition JJ, wherein the drop of said composition and the drop of composition JJ are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition KK provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition KK, wherein the drop of said composition and the drop of composition KK are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition LL provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition LL, wherein the drop of said composition and the drop of composition LL are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition MM provides to the conjunctiva of a female New Zealand white rabbit 30 minutes after topical ocular administration of one drop of said composition or Composition MM, wherein the drop of said composition and the drop of composition MM are the same volume.
Comparison of two compositions in a person or animal can be carried out by, among other means, administering the claimed composition to one eye and the second composition to the second eye .
In another embodiment the composition provides more cyclosporin A than Composition AA provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition AA, wherein the drop of said composition and the drop of Composition AA are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition BB provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition BB, wherein the drop of said composition and the drop of Composition BB are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition CC provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition CC, wherein the drop of said composition and the drop of Composition CC are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition DD provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition DD, wherein the drop of said composition and the drop of Composition DD are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition EE provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or
Composition EE, wherein the drop of said composition and the drop of Composition EE are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition FF provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition FF, wherein the drop of said composition and the drop of composition FF are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition GG provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition GG, wherein the drop of said composition and the drop of composition GG are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition HH provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition HH, wherein the drop of said composition and the drop of composition HH are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition II provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition II, wherein the drop of said composition and the drop of composition II are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition JJ provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition JJ, wherein the drop of said composition and the drop of composition JJ are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition KK provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition KK, wherein the drop of said composition and the drop of composition KK are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition LL provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition LL, wherein the drop of said composition and the drop of composition LL are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition MM provides to the cornea of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition MM, wherein the drop of said composition and the drop of composition MM are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition AA provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition AA, wherein the drop of said composition and the drop of Composition AA are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition BB provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition BB, wherein the drop of said composition and the drop of Composition BB are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition CC provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition CC, wherein the drop of said composition and the drop of Composition CC are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition DD provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition DD, wherein the drop of said composition and the drop of Composition DD are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition EE provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition EE, wherein the drop of said composition and the drop of Composition EE are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition FF provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition FF, wherein the drop of said composition and the drop of composition FF are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition GG provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition GG, wherein the drop of said composition and the drop of composition GG are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition HH provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition HH, wherein the drop of said composition and the drop of composition HH are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition II provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition II, wherein the drop of said composition and the drop of composition II are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition JJ provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition JJ, wherein the drop of said composition and the drop of composition JJ are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition KK provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or
Composition KK, wherein the drop of said composition and the drop of composition KK are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition LL provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition LL, wherein the drop of said composition and the drop of composition LL are the same volume.
In another embodiment the composition provides more cyclosporin A than Composition MM provides to the conjunctiva of a female New Zealand white rabbit over a period of 24 hours after topical ocular administration of one drop of said composition or Composition MM, wherein the drop of said composition and the drop of composition MM are the same volume.
In one embodiment, wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 500 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 2000 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 2400 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 17000 ng of cyclosporin A per gram of cornea of said rabbit over a period of 24 hours after said topical administration.
In another embodiment, topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the conjunctivas of said rabbit at least about 3300 ng of cyclosporin A per gram of conjunctiva of said rabbit over a period of 24 hours after said topical administration.
In another embodiment, said composition is an aqueous solution containing from 0.005% to about 0.04% cyclosporin A, wherein topical administration of one 35 pL drop of said composition to each eye of a New Zealand rabbit provides at least about 17000 ng of cyclosporin A per gram of cornea to the corneas of said rabbit as determined by: topically administering said composition to each eye of each of 15 female New Zealand white rabbit test subjects, and determining the amount of cyclosporin A in the corneas of three subjects at times of about 0.5 hours, about 2 hours, about 6 hours, about 12 hours, and about 24 after administration to said subj ect, wherein the amount of cyclosporin A in the cornea is determined only once for each subject.
In another embodiment, said composition is an aqueous solution containing from 0.005% to about 0.04% cyclosporin A, wherein topical administration of one 35 pL drop of said composition to each eye of a New Zealand rabbit provides at least about 17000 ng of cyclosporin A per gram of conjunctiva to the conjunctivas of said rabbit as determined by: topically administering said composition to each eye of each of 15 female New Zealand white rabbit test subjects, and determining the amount of cyclosporin A in the conjunctivas of three subjects at times of about 0.5 hours, about 2 hours, about 6 hours, about 12 hours, and about 24 after administration to said subject, wherein the amount of cyclosporin A in the conjunctiva is determined only a single time for each subject.
As mentioned above, these compositions are suitable for use in other mammals other than rabbits, including humans. Thus, any composition in the claims or elsewhere which is characterized by in vivo rabbit bioavailability testing is contemplated for use in a person or in another mammal. Defining a composition in terms of bioavailability in rabbits should not be construed to limit a method of treatment using the composition to use on rabbits, but treatment with the composition should be construed to include treatment on humans and other mammals.
The foregoing description details specific methods and compositions that can be employed to practice the present invention, and represents the best mode contemplated. However, it is apparent for one of ordinary skill in the art that further compositions with the desired pharmacological properties can be prepared in an analogous manner. Thus, however detailed the foregoing may appear in text, it should not be construed as limiting the overall scope hereof; rather, the ambit of the present invention is to be governed only by the lawful construction of the claims.
Claims (39)
- What is claimed is:1. A composition comprising cyclosporin A at a concentration of from about 0.0001% (w/v) to less than about 0.05% (w/v).
- 2. The composition of claim 1 which is an aqueous solution.
- 3. The concentration of claim 1 wherein the concentration of cyclosporin A is from about 0.02% (w/v) to about 0.04% (w/v).
- 4. The composition of claim 2 wherein the concentration of cyclosporin A is from about 0.02% (w/v) to about 0.04% (w/v).
- 5. The composition of claim 2 containing no ethanol.
- 6. The composition of claim 2 containing no hyaluronic acid.
- 7. The composition of claim 2 containing no cyclodextrin A.
- 8. The composition of claim 6 containing no cyclodextrin.
- 9. The composition of claim 8 containing no ethanol.
- 10. The composition of claim 9 containing no vitamin E TPGS.
- 11. The composition of claim 9 containing no hyaluronic acid.
- 12. The composition claim 1 wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 500 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
- 13. The composition of claim 1 wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 1000 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
- 14. The composition of claim 1 wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 1400 ng of cyclosporin A per gram of cornea of said rabbit at 30 minutes after said topical administration.
- 15. The compositon of claim 1 wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the corneas of said rabbit at least about 17000 ng*hr of cyclosporin A per gram of cornea of said rabbit over a period of 24 hours after said topical administration.
- 16. The composition of claim 2 wherein topical administration of one 35 pL drop of said composition to each eye of a female New Zealand white rabbit provides to the conjunctivas of said rabbit at least about 3300 ng*hr of cyclosporin A per gram of conjunctiva of said rabbit over a period of 24 hours after said topical administration.
- 17. The composition of claim 2 wherein said composition is an aqueous solution containing from 0.005% (w/v) to about 0.04% (w/v) cyclosporin A, wherein topical administration of one 35 pL drop of said composition to each eye of a New Zealand rabbit provides at least about 17000 ng*hr of cyclosporin A per gram of cornea to the corneas of said rabbit as determined by: topically administering said composition to each eye of each of 15 female New Zealand white rabbit test subjects; and determining the amount of cyclosporin A in the corneas of three subjects at times of about 0.5 hours, about 2 hours, about 6 hours, about 12 hours, and about 24 after administration to said subject; wherein the amount of cyclosporin A in the cornea is determined only once for each subject.
- 18. The composition of claim 2 wherein said composition is an aqueous solution containing from 0.005% (w/v) to about 0.04% (w/v) cyclosporin A, wherein topical administration of one 35 pL drop of said composition to each eye of a New Zealand rabbit provides at least about 6000 ng of cyclosporin A per gram of conjunctiva to the conjunctivas of said rabbit as determined by: topically administering said composition to each eye of each of 15 female New Zealand white rabbit test subjects; and determining the amount of cyclosporin A in the conjunctivas of three subjects at times of about 0.5 hours, about 2 hours, about 6 hours, about 12 hours, and about 24 after administration to said subject; wherein the amount of cyclosporin A in the conjunctiva is determined only a single time for each subject.
- 19. The composition of claim 1 further comprising a surfactant.
- 20. The composition of claim 1 further comprising a preservative .
- 21. A method comprising topically administering a composition according to claim 1 to an eye of a mammal in need thereof to enhance or restore lacrimal gland tearing.
- 22. The method of claim 21, wherein said method increases tear production in a tear-deficient eye.
- 23. The method of claim 21, wherein said method is effective in treating keratoconjunctivitis sicca.
- 24. The method of claim 21, wherein said method is effective in treating dry eye disease.
- 25. The method of claim 21 wherein the mammal is a human patient, and wherein less than 10% of human patients suffer burning or stinging when said composition is administered only once a day for a period of three months.
- 26. The method of claim 21 wherein the mammal is a human patient, and wherein less than 10% of human patients suffer ocular burning when said composition is administered only once a day for a period of three months.
- 27. The method of claim 21 wherein the composition is administered only once a day.
- 28. An aqueous solution comprising cyclosporin A at a concentration of from 0.01% (w/v) to 0.019% (w/v).
- 29. The composition of claim 28 wherein the concentration of cyclosporin A is about 0.015% (w/v).
- 30. An aqueous solution comprising cyclosporin A at a concentration of from 0.01% (w/v) to 0.02% (w/v) and more than 95% (w/w) water.
- 31. An aqueous solution comprising cyclosporin A at a concentration of from 0.01% (w/v) to 0.02% (w/v) and does not contain sodium hyaluronate at a concentration of 0.05% (w/v).
- 32. The aqueous solution of claim 31 which contains no sodium hyaluronate.
- 33. An aqueous solution comprising cyclosporin A at a concentration of from 0.01% (w/v) to 0.02% (w/v) and does not contain polysorbate 80 at a concentration of 0.05% (w/v).
- 34. The aqueous solution of claim 31 which contains from 0.1% to 1% polysorbate 80.
- 35. An kit comprising a container comprising an aqueous solution comprising cyclosporin A at a concentration of from 0.005% (w/v) to 0.03% (w/v), wherein said container is capable of dispensing eye drops, and wherein said composition has been stored in said container for at least two months.
- 36. A composition comprising cyclosporin A at a concentration of from 0.01% (w/v) to 0.02% (w/v) and a preservative.
- 37. The composition of claim 36 wherein the concentration of cyclosporin A is about 0.015% (w/v).
- 38. The composition of claim 2 wherein the cyclosporin A concentration is about 0.04% (w/v).
- 39. The composition of claim 2 wherein the cyclosporin A concentration is about 0.005% (w/v).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2016203191A AU2016203191B2 (en) | 2006-07-25 | 2016-05-17 | Cyclosporin compositions |
AU2018203825A AU2018203825A1 (en) | 2006-07-25 | 2018-05-31 | Cyclosporin compositions |
AU2020202459A AU2020202459A1 (en) | 2006-07-25 | 2020-04-09 | Cyclosporin compositions |
AU2022202326A AU2022202326A1 (en) | 2006-07-25 | 2022-04-07 | Cyclosporin compositions |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/820,239 | 2006-07-25 | ||
US60/829,808 | 2006-10-17 | ||
US60/829,796 | 2006-10-17 | ||
US60/869,459 | 2006-12-11 | ||
US60/883,525 | 2007-01-05 | ||
US60/916,352 | 2007-05-07 | ||
AU2007276815A AU2007276815B2 (en) | 2006-07-25 | 2007-07-23 | Cyclosporin compositions |
AU2013213743A AU2013213743A1 (en) | 2006-07-25 | 2013-08-09 | Cyclosporin compositions |
AU2016203191A AU2016203191B2 (en) | 2006-07-25 | 2016-05-17 | Cyclosporin compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013213743A Division AU2013213743A1 (en) | 2006-07-25 | 2013-08-09 | Cyclosporin compositions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2018203825A Division AU2018203825A1 (en) | 2006-07-25 | 2018-05-31 | Cyclosporin compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2016203191A1 true AU2016203191A1 (en) | 2016-06-09 |
AU2016203191B2 AU2016203191B2 (en) | 2018-03-01 |
Family
ID=56113128
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016203191A Ceased AU2016203191B2 (en) | 2006-07-25 | 2016-05-17 | Cyclosporin compositions |
AU2018203825A Abandoned AU2018203825A1 (en) | 2006-07-25 | 2018-05-31 | Cyclosporin compositions |
AU2020202459A Abandoned AU2020202459A1 (en) | 2006-07-25 | 2020-04-09 | Cyclosporin compositions |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2018203825A Abandoned AU2018203825A1 (en) | 2006-07-25 | 2018-05-31 | Cyclosporin compositions |
AU2020202459A Abandoned AU2020202459A1 (en) | 2006-07-25 | 2020-04-09 | Cyclosporin compositions |
Country Status (1)
Country | Link |
---|---|
AU (3) | AU2016203191B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2577049B2 (en) * | 1987-06-04 | 1997-01-29 | 三共株式会社 | Cyclosporine preparation |
ES2098739T3 (en) * | 1992-05-13 | 1997-05-01 | Sandoz Ltd | OPHTHALMIC COMPOSITIONS CONTAINING A CYCLOSPORIN. |
DK1142566T3 (en) * | 2000-04-07 | 2004-02-09 | Medidom Lab | Ophthalmological formulations based on cyclosporine, hyaluronic acid and polysorbate |
KR20020050135A (en) * | 2000-12-20 | 2002-06-26 | 조명재 | Compositions for prevention and alleviation of skin wrinkles |
WO2006050837A2 (en) * | 2004-11-09 | 2006-05-18 | Novagali Pharma Sa | Ophthalmic emulsions containing an immunosuppressive agent |
US7288520B2 (en) * | 2005-07-13 | 2007-10-30 | Allergan, Inc. | Cyclosporin compositions |
US9561178B2 (en) * | 2006-07-25 | 2017-02-07 | Allergan, Inc. | Cyclosporin compositions |
-
2016
- 2016-05-17 AU AU2016203191A patent/AU2016203191B2/en not_active Ceased
-
2018
- 2018-05-31 AU AU2018203825A patent/AU2018203825A1/en not_active Abandoned
-
2020
- 2020-04-09 AU AU2020202459A patent/AU2020202459A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2018203825A1 (en) | 2018-06-21 |
AU2016203191B2 (en) | 2018-03-01 |
AU2020202459A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220409693A1 (en) | Cyclosporin compositions | |
EP2190407B1 (en) | Cyclosporin compositions | |
US20230241030A1 (en) | Macrogol 15 hydroxystearate formulations | |
US20150366799A1 (en) | Method of treating allergic conjunctivitis with cyclosporin compositions | |
AU2016203191B2 (en) | Cyclosporin compositions | |
AU2022202326A1 (en) | Cyclosporin compositions | |
CN101896160A (en) | Cyclosporin compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |