AU2014200934A1 - Mechanically competent scaffold for ligament and tendon regeneration - Google Patents
Mechanically competent scaffold for ligament and tendon regeneration Download PDFInfo
- Publication number
- AU2014200934A1 AU2014200934A1 AU2014200934A AU2014200934A AU2014200934A1 AU 2014200934 A1 AU2014200934 A1 AU 2014200934A1 AU 2014200934 A AU2014200934 A AU 2014200934A AU 2014200934 A AU2014200934 A AU 2014200934A AU 2014200934 A1 AU2014200934 A1 AU 2014200934A1
- Authority
- AU
- Australia
- Prior art keywords
- ligament
- tissue
- cells
- degradable
- implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000003041 ligament Anatomy 0.000 title claims abstract description 74
- 210000002435 tendon Anatomy 0.000 title claims abstract description 29
- 230000008929 regeneration Effects 0.000 title claims abstract description 13
- 238000011069 regeneration method Methods 0.000 title claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 45
- 210000004027 cell Anatomy 0.000 claims abstract description 39
- 230000008439 repair process Effects 0.000 claims abstract description 29
- 238000002513 implantation Methods 0.000 claims abstract description 19
- 210000001519 tissue Anatomy 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 36
- 210000000988 bone and bone Anatomy 0.000 claims description 31
- 238000009954 braiding Methods 0.000 claims description 20
- 229920001432 poly(L-lactide) Polymers 0.000 claims description 18
- -1 polypropylene fumarates Polymers 0.000 claims description 18
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 13
- 229920006237 degradable polymer Polymers 0.000 claims description 10
- 102000008186 Collagen Human genes 0.000 claims description 8
- 108010035532 Collagen Proteins 0.000 claims description 8
- 229920001436 collagen Polymers 0.000 claims description 8
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 7
- 210000002808 connective tissue Anatomy 0.000 claims description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- 210000002950 fibroblast Anatomy 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 150000004676 glycans Chemical class 0.000 claims description 3
- 229960000448 lactic acid Drugs 0.000 claims description 3
- 210000001778 pluripotent stem cell Anatomy 0.000 claims description 3
- 229920001610 polycaprolactone Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- 239000005017 polysaccharide Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001661 Chitosan Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 229920002732 Polyanhydride Polymers 0.000 claims description 2
- 239000005062 Polybutadiene Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229920001710 Polyorthoester Polymers 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920002857 polybutadiene Polymers 0.000 claims description 2
- 229920001748 polybutylene Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920001299 polypropylene fumarate Polymers 0.000 claims description 2
- 230000000593 degrading effect Effects 0.000 claims 4
- 235000010980 cellulose Nutrition 0.000 claims 1
- 210000002894 multi-fate stem cell Anatomy 0.000 claims 1
- 230000001172 regenerating effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 28
- 210000002449 bone cell Anatomy 0.000 abstract description 4
- 208000037816 tissue injury Diseases 0.000 abstract description 2
- 210000001264 anterior cruciate ligament Anatomy 0.000 description 25
- 210000002303 tibia Anatomy 0.000 description 21
- 230000006378 damage Effects 0.000 description 19
- 241001465754 Metazoa Species 0.000 description 18
- 208000014674 injury Diseases 0.000 description 18
- 208000027418 Wounds and injury Diseases 0.000 description 17
- 210000000689 upper leg Anatomy 0.000 description 15
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 14
- 238000002591 computed tomography Methods 0.000 description 12
- 210000003127 knee Anatomy 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 10
- 238000006731 degradation reaction Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 241001494479 Pecora Species 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000003306 harvesting Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000003416 augmentation Effects 0.000 description 5
- 210000000845 cartilage Anatomy 0.000 description 5
- 238000002224 dissection Methods 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 208000030175 lameness Diseases 0.000 description 5
- 210000001179 synovial fluid Anatomy 0.000 description 5
- 210000004439 collateral ligament Anatomy 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 210000000629 knee joint Anatomy 0.000 description 4
- 210000003141 lower extremity Anatomy 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000004872 soft tissue Anatomy 0.000 description 4
- 229920004934 Dacron® Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000282376 Panthera tigris Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 210000001188 articular cartilage Anatomy 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000003328 fibroblastic effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000010603 microCT Methods 0.000 description 3
- 210000002967 posterior cruciate ligament Anatomy 0.000 description 3
- 230000002980 postoperative effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 206010067484 Adverse reaction Diseases 0.000 description 2
- 206010015548 Euthanasia Diseases 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 101710153363 Fibroblast growth factor 15 Proteins 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Natural products OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 206010061223 Ligament injury Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000006838 adverse reaction Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 230000008105 immune reaction Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000000281 joint capsule Anatomy 0.000 description 2
- 210000004523 ligament cell Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 210000000426 patellar ligament Anatomy 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 238000012335 pathological evaluation Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 210000001835 viscera Anatomy 0.000 description 2
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229920004937 Dexon® Polymers 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 241001653121 Glenoides Species 0.000 description 1
- 229920000544 Gore-Tex Polymers 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000906034 Orthops Species 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001273 Polyhydroxy acid Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 208000021945 Tendon injury Diseases 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 102000013127 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- PUXBGTOOZJQSKH-UHFFFAOYSA-N carprofen Chemical compound C1=C(Cl)C=C2C3=CC=C(C(C(O)=O)C)C=C3NC2=C1 PUXBGTOOZJQSKH-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- XIURVHNZVLADCM-IUODEOHRSA-N cefalotin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CC1=CC=CS1 XIURVHNZVLADCM-IUODEOHRSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 210000003275 diaphysis Anatomy 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000003890 endocrine cell Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 229910052587 fluorapatite Inorganic materials 0.000 description 1
- 229940077441 fluorapatite Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 210000005088 multinucleated cell Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000005804 musculo-skeletal problem Effects 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 229920000071 poly(4-hydroxybutyrate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000002278 reconstructive surgery Methods 0.000 description 1
- 230000009719 regenerative response Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940099315 rimadyl Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000002955 secretory cell Anatomy 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-N sodium;5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,6-trione Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)NC1=O QGMRQYFBGABWDR-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 210000001258 synovial membrane Anatomy 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Prostheses (AREA)
Abstract
A multi-region device for repair, regeneration or reconstruction in articular tissue injury such as torn ligaments and tendons is provided. The device comprises at least one degradable material and biocompatible non-degradable polymeric fiber-based material, in a three-dimensional braided scaffold. The two end sections (14a, b) are designed for attachment of the device at the site of implantation and are designed to allow bone cell ingrowth, and one or more middle regions (12) are designed to allow ligament or tendon cell ingrowth. 14 b t2 14a
Description
1 AUSTRALIA Patents Act 1990 SOFT TISSUE REGENERATION, INC. COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Mechanically competent scaffold for ligament and tendon regeneration The following statement is a full description of this invention including the best method of performing it known to us:- 1A MECHANICALLY COMPETENT SCAFFOLD FOR LIGAMENT AND TENDON REGENERATION CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority under 35 U.S.C. 119 to U.S.S.N. 5 61/180,732 filed May 22, 2009, and U.S.S.N. 61/181,033 filed May 26, 2009. FIELD OF THE INVENTIONfe The present invention is in the field of implantable medical devices and prosthesis, particularly, devices useful as both a structural prosthetic for 10 articular tissue and an in vivo scaffold for the regeneration of articular tissue, including ligaments and tendons, and methods of making and using the devices. BACKGROUND OF THE INVENTION Reconstructive surgery is based upon the principle of replacing 15 defective tissues with viable, functioning alternatives. In orthopaedic reconstruction, surgeons often replace damaged tissue resulting from trauma, pathological degeneration, or congenital deformity with autogenous grafts. The grafting of bone in skeletal reconstruction has become a common task of the orthopaedic surgeon with over 863,200 grafting procedures performed 20 each year in the U.S. There are over 1,000,000 procedures of various types for cartilage repair performed each year and there are approximately 200,000 to 250,000 procedures for ligament repair performed per year (Langer and Vacanti, Science, 260(5110):920-6 (1993)). Currently, autografts (tissue taken from the patient) and allografts (tissue taken from a cadaver) are the 25 most common replacement sources for the treatment of musculoskeletal problems (Friedman, et al. Clin. Ortho., 196:9-14 (1985); Jackson, et al. Amer. J. Sports Med., 18(l):1-10 (1990); Gazdag, et al. J. Amer. Acad Ortho. Surg., 3(1):1-8 (1995); Shino et, al. J. Bone and Joint Surg., 70(4)1:556 (1988) and Jackson, et al. Arthroscopy, 10:442-52 (1994)). In repair of 30 ligament injuries, such as injury of the anterior cruciate ligament (ACL), a segment of the patellar tendon is frequently used (Jackson, et al. Amer. J Sports Med., 18(l):1-10 (1990)). Transplantation of autogenous grafts has been the current treatment of choice for cartilage and bone repair.
2 However, there are various problems associated with these treatments. For example, for autogenous tissue, key limitations are donor site morbidity where the remaining tissue at the harvest site is damaged by removal of the graft, and the limited amount of tissue available for 5 harvesting. Allografts are an attempt to alleviate these problems. However, this type of graft is often rejected by the host body due to an immune response to the tissue. Allografts are also capable of transmitting disease. Although a thorough screening process eliminates most of the disease carrying tissue, this method is not 100% effective. Surgeons have looked to 10 synthetic alternatives as a result of the limitations with conventional reconstructive graft materials. Synthetic ligament grafts or graft supports include carbon fibers, Leeds-Keio@ ligament (polyethylene terephthalate), the Gore Tex@ prosthesis (polytetrafluoroethylene), the Stryker-Dacron® ligament 15 prosthesis made of Dacron® tapes wrapped in a Dacron® sleeve and the Gore-Tex® ligament augmentation device (LAD) made from polypropylene. These grafts have exhibited good short term results but have encountered clinical difficulties in long term studies. Limitations of these synthetic ligament grafts include stretching of the replacement material, weakened 20 mechanical strength compared to the original structure and fragmentation of the replacement material due to wear. Natural ligaments are elongated bundles of collagenous soft tissue that serve, among other things, to hold the component bones of joints together. The desired characteristics for a ligament prosthesis include 25 appropriate size and shape, biological compatibility, capability of being readily attached by the surgeon to the body of the patient, high fatigue resistance and mechanical behavior approximating that of the ligamentous tissue sought to be repaired or replaced. Ligament constructs comprising collagen fibers, biodegradable 30 polymers and composites thereof have been developed. Collagen scaffolds for ACL reconstruction seeded with fibroblasts from ACL and skin are described for example in Bellincampi, et al. J. Orthop. Res. 16:414-420 (1998) and PCT WO 95/2550. A bioengineered ligament model, which 3 includes addition of ACL fibroblasts to the structure, the absence of cross linking agents and the use of bone plugs to anchor the bioengineered tissue, has also been described (Goulet et al. Tendons and Ligaments. In R. P. Lanza, R. Langer, and W. L. Chick (eds), Principles of Tissue Engineering, 5 pp. 639-645, R. G. Landes Company and Academic Press, Inc. 1997). U.S. Patent Application No. 20020123805 by Murray, et al. describes the use of a three-dimensional (three dimensional) scaffold composition which includes an inductive core made of collagen or other material, for repairing a ruptured anterior cruciate ligament (ACL) and a method for attaching the composition 10 to the ruptured anterior cruciate ligament (See also U.S. Patent Application No. 20040059416). WO 2007/087353 discloses three-dimensional scaffolds for repairing torn or ruptured ligaments. The scaffold may be made of protein, and may be pretreated with a repair material such as a hydrogel or collagen. U.S. Patent Application No. 20080031923 by Murray, et al. 15 describes preparation of a collagen gel and a collagen-MATRIGEL T M gel which is applied to a torn ligament for repair of the ligament. These collagen matrices are mostly monocomponent devices. A number of multicomponent ligament prosthesis have been described (see, e.g. U.S. Patent Nos. 3,797,047; 4,187,558; 4,483,023, 20 4,610,688 and 4,792,336). U.S. Patent No. 4,792,336 to Hlavacek, et al. discloses a device with an absorbable component comprising a glycolic or lactic acid ester linkage, and the remainder of the device comprising a non absorbable component. The device includes a plurality of fibers comprising the absorbable component which can be used as a flat braid in the repair of a 25 ligament or tendon. The required tensile strength is obtained by increasing the final braid denier. U.S. Patent No. 5,061,283 to Silvestrini discloses a bicomponent device comprising polyethylene terepthalate and a polyester/polyether block copolymer for use in ligament repair. U.S. Patent No. 5,263,984 to Li, et al, describes prosthetic ligament which is a composite 30 of two densities of bioresorbable filaments. There is still a need for a device for repair of articular tissue such as the ligaments and tendons, with improved strength retention, load bearing capacity and ingrowth of new tissue.
4 It is an object of the present invention to provide a biocompatible device for repair, regeneration or reconstruction in articular injury which provides both mechanical and structure repair as well as forms a scaffold for ingrowth of cells to form new tissue. 5 It is still another object of the present invention to provide a method for producing a device for repair, regeneration or reconstruction of articular injury which results in improved strength retention and ingrowth of new tissue. It is also an object of the present invention to provide a method for 10 repair, regeneration or reconstruction in articular injury which comprises implanting at the damaged area, a biocompatible polymeric device which supports ingrowth of cells and formation of new tissue, while simultaneously providing mechanical and structural support. SUMMARY OF THE INVENTION 15 A device comprising at least three phases for repair or reconstruction of articular tissue injury such as torn ligaments and tendons has been developed. The device includes polymeric fiber-based degradable material and biocompatible non-degradable polymeric fiber-based material, in a three dimensional braided scaffold. In a preferred embodiment the device is 20 composed of three regions; two end sections designed for attachment of the device at the site of implantation, which allow for bone cell ingrowth, and a middle region which serves as a scaffold for ligament or tendon cell ingrowth, resulting in the replacement of a ligament or tendon. In this embodiment, the middle region differs from the two end-regions in size, 25 braiding angle, porosity and/or polymer composition. The degradable material is designed to degrade after a period of about nine to twelve months, to allow for repair or augmentation of the ligament prior to the device losing the structural and mechanical support provided by the degradable material. The device is made using a process of braiding degradable and non 30 degradable polymeric fibers using a three-dimensional rotary braiding method or row and column method. In the preferred embodiment, the degradable material is poly(L-lactic acid) (PLLA) fiber and the non degradable material is a polyester fiber.
5 Damaged articular tissue is repaired, regenerated, reconstructed, and/or augmented by implanting the device at a site of injury either during open surgery or arthroscopically. The two ends are secured into drilled bone tunnels using interference screws, rivets, or other attachment devices such as 5 sutures. Torn or damaged ligament or tendon, or allograft tissue, may be sutured to or placed adjacent to the device to enhance healing or augmentation. The scaffold can also be modified for repair of other connective or articular injury, or other tissues. BRIEF DESCRIPTION OF THE DRAWINGS 10 Figure 1 is a perspective view of the multi-region ligament repair device. Figure 2A is a perspective view of the bone attachment end of the device in Figure 1. Figure 2B is a perspective view of the ligament tissue scaffold center region of the device. 15 Figure 3 is a perspective view of the end of the bone attachment end of the device shown in Figure 2A. Figures 4A and 4B are prospective views of the implantation of the device to replace a torn ACL. DETAILED DESCRIPTION OF THE INVENTION 20 In the preferred embodiment, the device is used in the repair, regeneration, reconstruction or augmentation of articular injuries. Articular injuries include both intra-articular and extra-articular injuries. Intra-articular injuries involve, for instance, injuries to meniscus, ligament and cartilage. Extra-articular injuries include, but are not limited to, injuries to the 25 ligament, tendon or muscle. These include injuries to the Anterior cruciate ligament (ACL), Lateral collateral ligament (LCL), Posterior cruciate ligament (PCL), Medial collateral ligament (MCL), Volar radiocarpal ligament, Dorsal radiocarpal ligament, Ulnar collateral ligament, Radial collateral ligament, meniscus, labrum, for example glenoid labrum and 30 acetabular labrum, cartilage, and other tissues. The injury being treated may be, for instance, a torn or ruptured ligament. A ligament is a short band of tough fibrous connective tissue composed of collagen fibers. Ligaments connect bones to other bones to form a joint. A torn ligament is one where 6 the ligament remains connected but has been damaged causing a tear in the ligament. The tear may be of any length or shape. A ruptured ligament is one where the ligament has been completely severed providing two separate ends of the ligament. A ruptured ligament may provide two ligament ends of 5 similar or different lengths. The rupture may be such that a ligament stump is formed at one end. The repair of the damaged tissue is achieved using the partially degradable polymeric device in combination with mechanical devices, such as interference screws, sutures and anchors L Ligament or Tendon Repair Device 10 A multi-component polymeric device serves as a template for tissue regeneration as well as provides initial structural and mechanical support. The preferred ligament or tendon repair device 10 is shown in Figure 1, based on hierarchical design methodology. The device is made up of degradable polymeric fiber and one or more non-degradable or very slowly 15 degradable polymeric fiber materials. In a preferred embodiment the device is composed of three regions, with two end sections 14a, 14b designated for attachment of the device to the bone (shown in Figures 4A, 411), and a middle region 12 which serves as the replacement articular tissue. In this embodiment, the middle region 12 differs from the two end regions 14a, 14b 20 in size, braiding angle, porosity, and/or polymer composition (Figures 2A, 211). The initial mechanical strength of the middle and end regions is preferably the same except for small differences caused by the extra braiding revolutions in the bony attachment region which slightly reduces strength. Ligament cell ingrowth occurs in the middle region and bone cell ingrowth 25 occurs in the two end regions. Over time, the device begins to degrade. The end regions preferably degrade slower than the middle region due to the higher porosity of the middle region. The middle region may degrade at one rate, or have areas of different rates of degradation. A. Polymeric Materials 30 As used herein, the degradable area is that which is replaced by cells and extracellular matrix as the polymer degrades. As used herein, the non degradable component retains structural and mechanical properties as the degradable component degrades. The degradable region preferably degrades 7 over a period of 9 to 12 months. The non-degradable region does not degrade prior to one to two years following implantation. In some embodiments, the non-degradable material is made of a biocompatible non-degradable polymer. In other embodiments, the non 5 degradable component is a slowly degradable polymer. In still other embodiments, the non-degradable material used is a mixture of one or more non-degradable polymers and slowly degradable polymers. In these embodiments, the slowly degradable polymer is selected such that its rate of degradation is slower than the degradation rate for the polymer selected as 10 the degradable component. In a preferred embodiment, degradation of the slowly degradable polymer occurs at 1-2 years. Complete degradation may not occur. Suitable non-degradable polymers include polyethylene, polystyrene, silicone, polyfluoroethylene, polyacrylic acid, a polyamide (e.g., nylon), 15 polycarbonate, polysulfone, polyurethane, polybutadiene, polybutylene, polyethersulfone, polyetherimide, polyphenylene oxide, polymethylpentene, polyvinylchloride, polyvinylidene chloride, polyphthalamide, polyphenylene sulfide, polyetheretherketone ("PEEK"), polyimide, polymethylmethacylate and/or polypropylene. In some cases, the polymer may include a ceramic 20 such as tricalcium phosphate, hydroxyapatite, fluorapatite, aluminum oxide, or zirconium oxide. Suitable degradable polymers include polyhydroxy acids such as polylactic and polyglycolic acids and copolymers thereof, polyanhydrides, polyorthoesters, polyphosphazenes, polycaprolactones, biodegradable 25 polyurethanes, polyanhydride-co-imides, polypropylene fumarates, polydiaxonane polycaprolactone, and polyhydroxyalkanoates such as poly4 hydroxy butyrate, and/or combinations of these. Natural biodegradable polymers such asproteins and polysaccharides, for example, extracellular matrix components, collagen, fibrin, polysaccharide, a cellulose, silk, or 30 chitosan, may also be used. Preferred biodegradable polymers are lactic acid polymers such as poly(L-lactic acid (PLLA), poly(DL-lactic acid (PLA), and poly(DL-lactic co-glycolic acid)(PLGA). The co-monomer (lactide-glycolide) ratios of the 8 poly(DL-lactic-co-glycolic acid) are preferably between 100:0 and 50:50. Most preferably, the co-monomer ratios are between 85:15 (PLGA 85:15) and 50:50 (PLGA 50:50). Blends of PLLA with PLGA, preferably PLGA 85:15 and PLGA 50:50 can also be used. The preferred polymer for the non 5 degradable region is a polyester and the preferred polymer for the degradable region is poly(L-lactic acid (PLLA). The proportion of the degradable to non-degradable component is selected such that the non-degradable component provides retained strength following degradation of the degradable component. In a preferred 10 embodiment, the non-degradable component is less than 30% of the device. In a more preferred embodiment, the non-degradable component forms 10 30% of the device. B. Cell Seeding The devices can optionally be seeded with cells, preferably 15 mammalian cells, more preferably human cells. Alternatively, they are implanted and cells may attach to and proliferate on and within the devices. Various cell types can be used for seeding. In a preferred embodiment, for ligament and tendon replacement, the cells are either mesenchymal in origin or capable of generating mesenchymal cells. Accordingly, preferred cell 20 types are those of the connective tissue, as well as multipotent or pluripotent adult or embryonic stem cells, preferably pluripotent stem cells. For repair, regeneration or reconstruction of the ACL ligament, it may be preferable to seed the scaffold with ACL host cells, leaving stubs of the native ACL and implanting the device next to or into the stubs. However, the scaffolds can 25 be seeded with any cell type which exhibits attachment and ingrowth and is suitable for the intended purpose of the braided scaffold. Some exemplary cell types which can be seeded into these scaffolds when used for repair, regeneration or augmentation of connective tissue or other tissue types such as parenchymal tissues, include, but are not limited to, osteoblast and 30 osteoblast-like cells, endocrine cells, fibroblasts, endothelial cells, genitourinary cells, lymphatic vessel cells, pancreatic islet cells, hepatocytes, muscle cells, intestinal cells, kidney cells, blood vessel cells, thyroid cells, parathyroid cells, cells of the adrenal-hypothalamic pituitary axis, bile duct 9 cells, ovarian or testicular cells, salivary secretory cells, renal cells, chondrocytes, epithelial cells, nerve cells and progenitor cells such as myoblast or stem cells, particularly pluripotent stem cells. Cells used are first harvested, grown and passaged in tissue cultures. 5 The cultured cells are then seeded onto the three dimensional braided scaffold to produce a graft material composed of living cells and partially degradable matrix. Each region of the scaffold can be seeded. Osteoblasts or mesenchymal stem cells in the end region help regenerate bone, ligament. Mesenchymal stem cells in the middle region regenerate the ligament. This 10 graft material can then be surgically implanted into a patient at the site of ligament or tendon injury to promote healing and repair of the damaged ligament or tendon. Growth factors and other bioactive agents may be added to the graft material. In a preferred embodiment, these include fibroblast growth factor 15 (FGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and bone morphogenic proteins (BMPs). Adhesive materials such as fibronectin and vimentin can also be added. These are preferably added in amount ranging from 0.1 nanogram to 1 micrograms. Cell isolates (for example, from marrow cells) or biological factors isolated from blood can 20 also be added to the graft or placed with the graft. I. Methods of Manufacture The device is prepared using standard equipment and techniques, modified to create multiple regions (two ends for attachment and at least one, two, three or more regions). The device is braided such that the middle 25 region has adequate interfibrillar space and minimized thickness to promote the in-growth of tissue. In the preferred embodiment, PLLA and polyester fibers are braided to form the three-dimensional braided devices. The device is braided, woven or knitted so that the structure has the desired strength and stiffness 30 throughout the length of the device. In a preferred embodiment, a three dimensional rotary braiding method or row and column method is used. Three-dimensional rotary braiding is similar to traditional two-dimensional braiding technique except that it allows for greater flexibility of fiber 10 placement in the braided structure by allowing for the movement of fiber bobbins independently and selectively in a flat array of horngears. This enables the production of fiber structures specifically designed for an intended end use. However, as will be understood by those of skill in the art 5 upon reading this disclosure, other techniques for preparing three dimensional braided scaffolds, including row and column methods, as disclosed can also be used. The geometric parameters which determine the shape and fiber architecture of three-dimensional braids includes braiding angle distribution, 10 yarn volume fraction, number of carriers, and braiding yam width. The braiding pattern in turn depends on braiding machinery/technique used. A front view of the attachment end is shown in Figure 3. The side view is shown in Figure 2A. This contrasts with the looser braid of the middle region shown in Figure 2B. 15 The device peak load strength range is from 500 to 3200 N, with an initial stiffness range of 200 to 700 N/mm. The number of fibers per bundle is in the range of 10 to 60 and the number of bundles per braid is in the range of 36, but it could be as low as 16 to as great as 64. The key to the technology is the inclusion of at least three different 20 regions, each with the specific pore size of the matrix to promote specific cell ingrowth. The typical range of porosity is between 50 and 70%, and pore size between 177 m and 250 pm. In the two ends for attachment to bone, the pore size is designed to allow bone cell in-growth and the middle region is specifically designed to allow ligament cell in-growth. 25 The device is in contrast with prior art devices such as that in U.S. Patent No. 4,792,336 which do not have regions for attachment at each end to provide both strength and bone in-growth, and a region in the middle which allows for ligament or tendon cell growth and retention of structural function until this can be replaced by the new tissue. 30 The devices are typically provided in a sterile kit, such as a foil or TYVEX@ package. In a preferred embodiment, the device will include sutures or whip stitching in the graft, to facilitate placement. The kit will typically include screws, sutures, or other means for attachment.
11 1I. Methods of Use The device is used for repair, regeneration or reconstruction of articular injury, by implanting the multi-region polymeric device at a site in need of articular repair or reconstruction. 5 Implantation is performed using standard arthroscopic technique with two or three portals. A guide is drilled through the tibia with overdrill using a reamer on the tibia to tibial footprint area of the ACL, followed by insertion of the guide pin to the isometric point position over the femur near insertion of femoral insertion of the ACL. This is followed by an overdrill using a 10 standard reamer on the femoral side. A Beath pin is then often used to complete drilling and the graft is then passed through the tibia and the femur. The graft is then secured using interference screws, or through the ENDOBUTTON@ type technique. Visualization can be assisted using an arthrotomy. Preferably the graft is placed without an arthrotomy for a 15 completely arthroscopically based technique. The ends 14a, 14b are placed in bone tunnels and secured with interference screws, rivets, sutures 16 or other techniques, as shown in Figures 4A and 4B. The device is intended to be implanted using the same techniques currently used by surgeons to implant patella tendon grafts. 20 In use, an appropriate number of the devices are implanted to match the biomechanical properties of the tissue being repaired. This permits an early return to normal function post-operatively. The implanted device bears applied loads and tissue in-growth commences. The mechanical properties of the biodegradable material of the implant slowly decay following 25 implantation, to permit a gradual transfer of load to the ingrown fibrous tissue. In a preferred embodiment, the degradation of the biodegradable material occurs after about 9-12 months. Additional in-growth continues into the space provided by the biodegradable material of the implant as it is absorbed. This process continues until the biodegradable material is 30 completely absorbed and only the newly formed tissue remains. The biocompatible non-absorbable material which is left following degradation of the degradable material provides long-term support for the newly formed tissue.
12 The following non-limiting examples are provided to further illustrate the present invention. Examples Example 1: Preparation of L-C ligament braid for sheep study. 5 Materials and Methods A one-meter length of L-C Ligament braid was prepared using a manual braiding machine to create a single fiber bundle until a total of 36 fiber bundles (each containing 24 fibers) have been created. Tie off the fiber bundle to the tie-off point located at the bottom of the braiding machine. 10 Reduce the tension in the 36 fiber bundles. Fabricate 5-cm long section of "tight" braid. Tie-off end of the 5cm long section of "tight" braid using a small piece of PLLA fiber that is two fibers measuring about 18 inches, doubled over to be 4 fibers 9 inches long. Fabricate 3-cm long section of "open" braid with one complete braiding revolution over the 3-cm long 15 section. Tie-off end of the 3cm long section of "open" braid using a small piece of PLLA fiber that is two fibers measuring about 18 inches, doubled over to be 4 fibers 9 inches long. Tighten. Cut off excess fiber leaving strands 1 inch long. Repeat until the braiding of the fiber bundles is complete at the top of the braiding machine. This yields 1 meter of braid containing 20 13 to 14 individual 8 cm Tiger Ligaments. Example 2: Large Animal Study A pilot large animal study involving 16 sheep was conducted at the University of New South Wales near Sydney Australia. The study was designed to evaluate, in a large animal model, the in vivo response of the L-C 25 Ligament for use in tendon-bone reconstruction of an anterior cruciate ligament. The study evaluated the in vivo performance in terms of gross reaction in the knee joint, immunological reaction, radiographic evaluation in the bony tunnels, analysis of synovial fluid for polymeric debris, mechanical performance of the synthetic ligament, histological and pathological 30 evaluation of the synthetic ligament in the bony tunnels and in the intra articular space of the knee compared to a standard doubled over autograft tendon control at 12 weeks following implantation.
13 Materials and Methods Animals: Sixteen sheep were divided into four groups: four autografts (controls), four L-C ligaments, four tigers, and four autografts augmented with a L-C ligament. 5 Implants: The autograft group consists of a doubled over extensor tendon. L-C ligament is 100% PLLA, braided, measuring 8 cm in length, 2.5 x 2.5 cm, 4 mm cross-section. Tiger is 83% PLLA and 17% polyester, braided, measuring 8 cm in 10 length, 2.5 x 3 x 2.5 cm, 4 mm cross-section. Method of implantation: ACL reconstruction was performed in the right hind limb of the sheep. 7 mm tunnerls were drilled in the femors and tibias. Titanium RCI screws (7 x 25 mm with an 8 mm head, Smith & Nephew) were used for 15 fixation of the femoral and tibial tunnels. Animals were inducted with an IM injection of Zoletil@ for sedation. Anesthesia was achieved using Isoflurane and oxygen inhalation. All animals received 1 g of Cephalothin intravenously and 5mls of Benacillin intramuscularly after induction as antibiotic prophylaxis. They also received 20 buprenorphine (Temgesic, 0.006 mg/Kg, SC) and 4mls of Carprofin (Rimadyl, SC) for pain relief prior to commencement of the surgical procedure. Twenty millilitres of blood were taken for routine pre-operative blood work. Autograft harvest 25 A 0.5cm incision was made on the dorso-lateral aspect over the distal part of the metacarpals. Once the lateral extensor was completely free of the other extensors a modified Krachow stitch was inserted into the distal free end with #2 suture. The tendon was divided proximally using a tendon stripper, which cuts the tendon at the wrist where it exits a fibro-osseous 30 tunnel laterally. The tendon grafts were removed and wrapped in saline soaked gauze. The harvest incision sites were closed with a resorbable 3-0 suture (Davis & Geck, North Ryde, Australia). The grafts will be kept moist with saline at all times during preparation. A Krackow stitch was placed at 14 the other end of the grafts using #2 suture (Ethibond, Johnson and Johnson, North Ryde, NSW Australia). Reconstruction An infero-medial para-patellar incision was made. Dissection was 5 continued down to the joint capsule, which was divided longitudinally. The skin edges and joint capsule were detracted to reveal the intra-articular fat pad typical of the ovine knee. The fat pad was partially excised to reveal the cruciate ligaments. The ACL was excised by division at its insertion into the tibia and femur, taking care not to damage the PCL. Cutting diathermy was 10 used to excise the fat pad, but the ACL was excised with a knife to minimize intra-articular thermal injury. The attachment sites of the ACL to the tibia and femurweare noted and marked at this point. The bone tunnels were made with a 4.5mm cannulated drill bit over a guide followed by a 7 mm canulated drill. The tibial side was drilled from 15 the medial border of the tibia, just distal to the tibial tuberosity. The guide was drilled first, exiting in the joint at the center of the tibial insertion of the ACL. The femoral side was drilled from the intra-articular surface outward. The tunnel was made from the posterior part of the femoral ACL insertion with the drill guide and cannulated drill as above. The tunnel exits 20 proximally on the lateral surface of the lateral femoral condyle. The joint was thoroughly irrigated with saline. The graft was placed through the tibial tunnel into the knee joint and then into the femoral tunnel. Tension (-40N) was applied to the grafts during placement of the screws adjacent to the bone. The surgical sites were closed in layers with 3-0 Vicryl (Johnson and 25 Johnson, North Ryde, Australia) and the skin closed with 3-0 Dexon (Davis & Geck, North Ryde, Australia). The sites were cleaned and sprayed with Op-site spray. Post-operative monitoring and recovery Sheep were free to mobilize in their pen and fully weight bear. No 30 splints were used at any time. The sheep were monitored daily in the first week and weekly thereafter for signs of swelling, infection, bleeding, haematoma or general ill health.
15 Assessments of clinical function Clinical assessment of laxity and lameness at the time of surgery were qualitatively assessed based on a lameness score. A score of 0 represents a lame animal that cannot load bare; 1 slight load bearing; 2 5 partial load bearing and 3 full load bearing. Clinical assessments were made on weeks 1, 4, and 8 weeks as well as before euthanasia at 12, 26 and 52 weeks. A functional test of anterior draw was performed at the time of sacrifice to assess overall laxity in the same manner as the post operative 10 evaluation. Animals were killed via lethal injection using Lethobarb at the designated time point. The right hindlimbs were harvested for experimental endpoints. The left distal femur was harvested for testing of the contralateral limb. Twenty mls of blood was taken for routine blood work at euthanasia. 15 This blood work was used to confirm overall animal health status. A post-mortem analysis was performed on the internal organs (heart, liver, kidney) as well as lymph nodes. These tissues were photographed and a portion sharply dissected and placed into phosphate buffered formalin for routine histology. Paraffin sections were stained with H&E and examined 20 under normal and polarized light for histological appearance and the presence of any polymeric wear debris. An anterior draw test was performed after sacrifice to examine overall knee stability with the knee in 30 degrees of flexion. The knees were graded as lax or stable. 25 Mechanical testing Mechanical testing was performed at 12, 26 and 52 weeks as well as at time zero on cadaver knees with new devices using the reported technique of (Rogers et al., 1990; Walsh et al., 2007). Mechanical testing was performed on the femur - graft - tibia complex. The right and left hind limbs 30 were tested using a calibrated servo-hydraulic testing machine (MTS 858 Bionix, MTS Corporation, MN). The femur and tibia with the knee capsule intact were placed into a drill template jig for preparation for mounting. This is done to avoid any rotation of the femur or tibia during drilling and provide 16 a reproducible test set-up. Two drill holes are placed in the diaphysis of the femur and tibia based on the mounting template to ensure reproducible placement of the samples. The mounting template oriented the samples at 45 degrees of flexion to enable the load and displacement properties to be 5 measured in an anterior draw loading profile. The knees were dissected following drilling of the mounting holes. The capsule was carefully reflected using an anteromedial incision and placed in formalin for histological analysis described in the histology section. The medial and lateral menisci were removed with meticulous dissection 10 taking care not to damage the intra-articular graft. The menisci were placed in formalin for subsequent histology. The status of the articular cartilage on the femur and tibia were noted and photographed. The dissection was completed after the mounting holes were drilled. This enabled reproducible orientation of the femur and tibia without any rotation or translation. 15 The samples were tested in anterior draw orientation (45 degrees) using a preconditioning profile of 10 cycles followed by a stress relaxation period prior to testing to failure at 50 mm/minute. The peak load, energy to pull out and linear stiffness and failure mode and site were determined for all samples. Mechanical data was analyzed using analysis of variance followed 20 by a Games Howell Post Hoc test with SPSS for Windows. Synovial Fluid Analysis Synovial fluid in the synthetic ligament group was analyzed for evidence of polymeric debris at the time of harvest. The fluid present was collected with an 18 gauge needle and a 20 ml syringe. The fluid within the 25 syringe was photographed and the color noted. A sample of the fluid was placed on a microscope slide and examined under polarized light for the presence of any polymeric debris. Computed tomography Computed tomography (CT) was performed on the right femur and 30 tibia (tendon-bone reconstruction side). CT scans were performed perpendicular to the long axis of the femur and tibia using a Toshiba Scanner (Tokyo, Japan). Slice thickness was set to 0.5 mm for all scans. CT scans was stored in DICOM format. The DICOM images was viewed using 17 MIMICS (Materialise, Belgium). Three dimensional models was reconstructed based and examined in the axial, sagittal and coronal planes. Micro Computed tomography Micro Computed tomography (CT) was performed on the right femur 5 and tibia (tendon-bone reconstruction side). CT scans was performed perpendicular to the long axis of the femur and tibia using a Inveon Scanner (Siemens, USA). Slice thickness was set to 50 microns for all scans. CT scans was stored in DICOM format. The DICOM images was viewed using MIMICS (Materialise, Belgium). Three dimensional models was 10 reconstructed based and examined in the axial, sagittal and coronal planes. JPEG images of the DICOM images was provided in the report. Screw, tendon-bone and screw-bone interactions was qualitatively addressed in a more detailed fashion through the use of micro CT. Magnetic Resonance Imaging 15 MRI was performed on the animals dedicated for histology. The right and left hind-limbs was scanned using a 3T MRI intact prior to dissection. MR images was analyzed for signal intensity of the intra-articular portion of the graft to assess for overall status of healing compared to the contralateral side using T2 weighted images. 20 Histology Right tibia andfemur The right tibias were processed for histology by fixation in cold phosphate buffered formalin for a minimum of 72 hours with 2 changes of formalin. Following adequate fixation, the tibias were roughly cut back with a hack saw to isolate the tibial tunnels and the surrounding bone. The 25 isolated bone tunnels will be dehydrated in ethanol and embedded in PMMA. Polymerized blocks were cut perpendicular to the long axis of the bone tunnel in 5 mm blocks using a Buelher saw. The blocks were Faxitroned, polished and examined for bone ingrowth and integration with the synthetic ligament using an environmental electron microscope (Hitachi TM1000). 30 The screw-graft and graft - bone interface were examined for evidence of ingrowth and interaction as well as adverse events such as bone resorption. A final section from each block were cut for routine light histology using a Leica SP 1600 Microtome. The histological interface between the 18 graft, screw and tunnel will be evaluated in terms of bony response or adverse reactions in any. The intra-articular portion of the right and left knees were harvested and the femoral insertion marked with 7-0 suture. These samples were 5 processed in PMMA following alcohol dehydration. The blocks were sectioned using a Leica microtome. Sections were stained with H&E and Tetrachrome to evaluate the new tissue infiltration. The cellular population and degree of infiltration were compared versus time. The histology was compared to the intact left non-operated sides at each time point. 10 The medial and lateral capsular tissues from the right and left knees were processed for routine paraffin histology and H&E staining. These sections were compared to determine if the presence of the graft or the surgical procedure resulted in a change in the synovium. A sample of the articular cartilage from the medial femoral condyle 15 and medial tibial will be harvested. The cartilage samples will be fixed in formalin and decalcified in formic acid. Sagittal sections will be embedded in paraffin and sections stained with H&E and Saf 0 to examine any changes in the articular cartilage due to surgery or the presence of the synthetic graft. A sample of the medial menisci from the right and left knees were 20 harvested. The samples were fixed in formalin and processed for paraffin histology. The sections were stained with H&E to examine any changes in the menisci due to surgery or the presence of the synthetic graft. Results A key objective of the study was to examine the initial response of a 25 traditional ACL autograft repair compared to an ACL reconstruction using the L-C Ligament T M , a 100% biodegradable synthetic graft. Using an adult sheep model, the study examines numerous in vivo performance factors at various time horizons. The endpoints evaluated in the study include post operative recovery, clinical assessment of animal laxity and lameness, gross 30 reaction in the knee joint, immunological reaction, radiographic evaluation in the bony tunnels, analysis of synovial fluid, as well as histological and pathological evaluation of the L-C LigamentTM, in the bony tunnels and in the intra-articular space of the knee compared to a standard doubled over (four 19 stranded) autograft tendon control at various time points following implantation. Following initial implantations, the test animals were clinically assessed and monitored for lameness and load bearing ability on a fixed 5 schedule. All subjects treated with synthetic grafts showed superior recoveries as compared to those treated with autografts. This is, in part, due to the lack of harvest site morbidity as seen in the autograft model. Study animals experienced partial load bearing during the first I to 3 days and had increased load bearing thereafter. When the initial sacrifices occurred, all 10 animals had a normal gait based on a qualitative lameness score. Approximately 12 weeks after implantation, several study animals were sacrificed for a macroscopic examination as well as histological, radiographic and pathological evaluation. A post-mortem analysis was performed on the key internal organs as well as the lymph nodes. There was 15 no indication of any adverse events. Radiographic imaging analysis of the reconstructed limbs, which included x-rays and magnetic resonance imaging (MRI), confirmed the placement of the fixation screws after 12 weeks. A coronal view of the micro computed tomography (micro CT) at 12 weeks displayed two titanium 20 interference screws and the L-C LigamentTM synthetic graft. The screws were well placed in the femora and tibial tunnels, and a new interface along the margins of the tunnels were noted on the CT scans, suggesting a healing bone-tunnel interface was in progress at 12 weeks following surgery. The micro CT images also demonstrated that there was no widening of the 25 femoral or tibial bone tunnels. This was a positive and important finding. Macro dissection of the L-C LigamentTM study animals showed no sign of adverse reaction in the knee joint and the synovial fluid was clean and free of debris. Furthermore, at 12 weeks, animals implanted with the synthetic ligaments had fibrous tissue completely encompassing the graft at 30 the intra-articular zone. Cross-sections of the synthetic grafts also revealed visible tissue inside the L-C LigamentTM, both in the intra-articular area and on the tibial surface. These macro findings are all significant signs of healing and are indicative of a strong regenerative response.
20 A detailed histology of the animals sacrificed at 12 weeks confirmed the macroscopic findings. The intra-articular portion of the L-C LigamentTM graft, and distal and proximal tibia were harvested, dehydrated and embedded in poly methylmethacrylate (PMMA), stained with methylene 5 blue/fuschin, and analyzed by light microscope. Sections were cut perpendicular to the long axis of the screw through the femoral tunnel. The intra-articular portion was sectioned perpendicular to the long axis of the graft, and the tibial tunnels were sectioned in the proximal as well as mid portion of the tunnel perpendicular to the long axis of the screw. 10 The histological study of the L-C Ligament TM animals all showed strong evidence of ligamentization in the intra intra-articular area as well as fibrous tissue integration in the entrance of the tibial bone tunnel (the fixation point). The process of ligamentization was characterized by integration and remodeling new tissue into the intra-articular portion of the 15 graft. Historically, tissue infiltration at the point of fixation has been the major shortfall of many similar research efforts. The synthetic graft was easily seen in sections perpendicular to the long axis of the screw through the femoral tunnel, when viewed under polarized light at the 12 week time point. The graft appeared intact with no 20 macroscopic evidence of degradation. The graft was well fixed in the femoral tunnel and thickening of the cancellous bone at the margins of the drill and graft was evident. New fibrous tissue was found integrating into the graft. Multinucleated cells were present along the soft tissue - bone interface. Under higher magnification, plump fibroblastic cells and new 25 connective tissue were seen in the new soft tissue integrating into the device. No evidence of resorption on the PLLA was found at 12 weeks, and the PLLA fibers appeared intact. The intra-articular portion, sectioned perpendicular to the long axis of the graft, revealed the presence of the PLLA fibers with new fibrous tissue 30 integrating into the spaces present between the fibers. Higher magnification demonstrated similar fibrous tissue integration into the graft and the presence of fibroblastic cells as noted in the bone tunnels.
21 Sections of the proximal portion of the tibial tunnels were also analyzed at the 12 week time point. These sections were in the bone tunnel, however, the screw was not present in these sections, indicating the sections were above the screw. The synthetic graft was surrounded by bone when 5 viewed under polarized light. The graft appeared intact with no macroscopic evidence of degradation and new fibrous tissue was seen infiltrating into the graft. Under higher magnifications, the PLLA fibers appeared intact and new fibrous tissue and collagenous tissue were found integrating into the PLLA fibers. 10 Sections in the graft-screw interface in the middle of the tibial tunnel were analyzed. In these sections, the whip stitching on the graft can be seen with the screw compressing the graft against the tunnel. A closer examination of the interface within the tibial tunnel where the screw is compressing the graft reveals integration at the margins and stable fixation of 15 the graft. The interface is fibrous in nature with fibroblastic cells as newly formed connective tissues.
Claims (17)
1. A device for replacement or regeneration of articular tissue comprising polymeric fibers degrading at between nine and twelve months following implantation, and polymeric fibers not degrading following implantation in less than one year, wherein the polymeric fibers are braided into a three-dimensional braided scaffold to form two end sections for attachment of the device at a site of implantation and at least one middle sections between the end sections, wherein the polymer of the middle section degrades more rapidly or the middle section is more porous than the end sections, wherein the device provides articular tissue function at the site of implantation as tissue integrates into the device.
2. The device of claim 1 for ligament or tendon repair, wherein the end sections are attachable to bone and allow for ingrowth of bony tissue.
3. The device of claim 2 wherein the porosity of the middle section allows in-growth of connective tissue.
4. The device of claim 1 produced by a three-dimensional rotary braiding method or row and column method.
5. The device of claim 1 having a peak load strength range from 500 to 3200 N, with an initial stiffness range of 200 to 700 N/mm.
6. The device of claim 1 wherein the number of fibers per bundle is in the range of 10 to 60 and the number of bundles per braid is in the range of 16 to 64.
7. The device of claim 1 having a range of porosity between 50 and 70%, and pore size between 177am and 250 pm.
8. The device of claim 1, wherein the middle section differs from the endsections in size, braiding angle, or porosity.
9. The device of claim I wherein at least 70% of the polymeric fibers are degradable in less than one year.
10. The device of claim 9, wherein between 70 and 90% of the polymeric fibers are degradable in less than one year. 23
11. The device of claim 1 wherein the degradable polymer fibers are made up of polymers selected from the group consisting of poly(L-lactic acid (PLLA), poly(DL-lactic acid (PLA), poly(DL-lactic-co-glycolic acid)(PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, polycaprolactones, polyhydroxyalkanoates, biodegradable polyurethanes, polyanhydride-co-imides, polypropylene fumarates, polydiaxonane, polysaccharides, collagen, silk, chitosan, and celluloses.
12. The device of claim I wherein the non-degradable polymer fibers are made up of polymers selected from the group consisting of polyethylene terephthalate (PET), polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyester, polyethylene, polyamide, polyimide, polyurethane, polybutadiene, polybutylene, and polypropylene
13. The device of claim 1, wherein the device is seeded with cells, ingrowth of which is supported by the scaffold.
14. The device of claim 13 wherein the cells are selected from the group consisting of mesenchymal cells, cells generating mesenchymal cells, fibroblasts, pluripotent stem cells, and multipotent stem cells.
15. A method for repairing, regenerating, replacing or reconstructing a damaged tendon or ligament in a patient comprising implanting at a site of a damaged tendon or ligament the device of any of claims 1-14.
16. A kit comprising the device of any of claims 1-14 and means for attachment.
17. A method of making the device of any of claims 1-14 comprising braiding a three-dimensional scaffold comprising polymeric fibers degrading at between nine and twelve months following implantation, and polymeric fibers not degrading following implantation in less than one year, wherein the polymeric fibers are braided into a three-dimensional braided scaffold to form two end sections for attachment of the device at a site of implantation and at least one middle sections between the end sections, wherein the polymer of the middle section degrades more rapidly or the middle section is more porous than the end sections, 24 wherein the device provides articular tissue function at the site of implantation as tissue integrates into the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014200934A AU2014200934B2 (en) | 2009-05-22 | 2014-02-21 | Mechanically competent scaffold for ligament and tendon regeneration |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/180,732 | 2009-05-22 | ||
US61/181,033 | 2009-05-26 | ||
AU2009346396A AU2009346396B2 (en) | 2009-05-22 | 2009-12-30 | Mechanically competent scaffold for ligament and tendon regeneration |
AU2014200934A AU2014200934B2 (en) | 2009-05-22 | 2014-02-21 | Mechanically competent scaffold for ligament and tendon regeneration |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2009346396A Division AU2009346396B2 (en) | 2009-05-22 | 2009-12-30 | Mechanically competent scaffold for ligament and tendon regeneration |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2014200934A1 true AU2014200934A1 (en) | 2014-03-13 |
AU2014200934B2 AU2014200934B2 (en) | 2014-12-11 |
Family
ID=50238764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2014200934A Active AU2014200934B2 (en) | 2009-05-22 | 2014-02-21 | Mechanically competent scaffold for ligament and tendon regeneration |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2014200934B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3432940A2 (en) * | 2016-03-25 | 2019-01-30 | Biorez, Inc. | Complex braided scaffolds for improved tissue regeneration |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE109987T1 (en) * | 1988-03-22 | 1994-09-15 | American Cyanamid Co | PROSTHETIC ARTICLE. |
-
2014
- 2014-02-21 AU AU2014200934A patent/AU2014200934B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
AU2014200934B2 (en) | 2014-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2762903C (en) | Mechanically competent scaffold for ligament and tendon regeneration | |
Aiken et al. | Small intestinal submucosa as an intra-articular ligamentous graft material: a pilot study in dogs | |
Blickenstaff et al. | Analysis of a semitendinosus autograft in a rabbit model | |
US8226715B2 (en) | Scaffold for connective tissue repair | |
Shino et al. | Maturation of allograft tendons transplanted into the knee. An arthroscopic and histological study | |
Marlovits et al. | Cartilage repair: generations of autologous chondrocyte transplantation | |
US9078756B2 (en) | Implantable device and method to replace the meniscus of the knee and other body structures | |
US7309356B2 (en) | Bone-tendon- bone assembly with cancellous allograft bone block | |
AU777374B2 (en) | Tissue repair | |
JP2003500162A (en) | Connective tissue reconstruction implant | |
Liu et al. | Bridging repair of large rotator cuff tears using a multilayer decellularized tendon slices graft in a rabbit model | |
Hashimoto et al. | ACL reconstruction using bone‐tendon‐bone graft engineered from the semitendinosus tendon by injection of recombinant BMP‐2 in a rabbit model | |
Schindhelm et al. | Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament. | |
Grassman et al. | Early healing processes of free tendon grafts within bone tunnels is bone-specific: a morphological study in a rabbit model | |
AU2014200934B2 (en) | Mechanically competent scaffold for ligament and tendon regeneration | |
Wang et al. | Effect of nano-biomaterials silk-collagen sponge scaffold on the tendon and ligament healing of patients with anterior cruciate ligament injuries | |
Brittberg | Chondrocyte implantation | |
de la Garza-Castro et al. | JABFM | |
CA2536547C (en) | Improved bone-tendon-bone assembly with cancellous allograft bone block | |
Daly | Ligament reconstruction: a biomechanical cadaveric test of autogenous repairs and the in vivo evaluation of synthetic scaffold materials | |
Simon et al. | Tissue Engineered Anterior Cruciate Ligament Graft | |
Brittberg | Cartilage tissue repair: autologous chondrocyte implantation | |
Vanlauwe et al. | Second-Generation Autologous Chondrocyte Implantation: What to Expect… |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
HB | Alteration of name in register |
Owner name: BIOREZ, INC. Free format text: FORMER NAME(S): SOFT TISSUE REGENERATION, INC. |