[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2013206297A1 - Tuberculosis vaccines comprising antigens expressed during the latent infection phase - Google Patents

Tuberculosis vaccines comprising antigens expressed during the latent infection phase Download PDF

Info

Publication number
AU2013206297A1
AU2013206297A1 AU2013206297A AU2013206297A AU2013206297A1 AU 2013206297 A1 AU2013206297 A1 AU 2013206297A1 AU 2013206297 A AU2013206297 A AU 2013206297A AU 2013206297 A AU2013206297 A AU 2013206297A AU 2013206297 A1 AU2013206297 A1 AU 2013206297A1
Authority
AU
Australia
Prior art keywords
vaccine
pharmaceutical composition
immunogenic
ag85b
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2013206297A
Inventor
Claus Aagaard
Peter Andersen
Carina Vingsbo-Lundberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Statens Serum Institut SSI
Original Assignee
Statens Serum Institut SSI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Statens Serum Institut SSI filed Critical Statens Serum Institut SSI
Priority to AU2013206297A priority Critical patent/AU2013206297A1/en
Publication of AU2013206297A1 publication Critical patent/AU2013206297A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention is related to an immunogenic composition, vaccine or pharmaceutical 5 composition for preventing, boosting or treating infection caused by a species of the tuberculosis complex (M. tuberculosis, M. bovis, M. africanum, M. microti). The immunogenic composition, vaccine or pharmaceutical composition comprise a fusion polypeptide, which comprises one or more starvation antigens from M.tuberculosis, the units of the fusion polypeptide being M. tuberculosis antigens. Further, the invention is related to 10 the use of a vaccine comprising a fusion polypeptide sequence or nucleic acid sequence of the invention given at the same time as BCG, either mixed with BCG or administered separately at different sites or routes for preparing said immunogenic composition, vaccine, or pharmaceutical composition.

Description

AUSTRALIA Patents Act 1990 Statens Serum Institut COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Tuberculosis vaccines comprising antigens expressed during the latent infection phase The following statement is a full description of this invention including the best method of performing it known to us: 1 IMPROVED TUBERCULOSIS VACCINES CROSS-REFERENCE TO RELATED APPLICATIONS 5 This application is a divisional application pursuant to section 79B of the Patents Act 1990 of Australian Patent Application No. 2011203012 which is a divisional application of Australian Patent No. 2006261445 which corresponds to International Application No. PCT/DK2006/000356 filed June 20, 2006 in the Australian national phase, which claims priority to Danish Patent Application No. PA200500924 filed June 23, 2005 and Danish 10 Patent Application No. PA200501393 filed October 5, 2005, the contests of which are incorporated herein in their entirety by way of reference. FIELD OF INVENTION 15 The present invention discloses starvation induced antigens or new fusion polypeptides of immunogenic polypeptides based on polypeptides derived from Mycobacterium tuberculosis induced during starvation, the use of one or more of the fusion polypeptides or starvation induced antigens of the invention for the preparation of an immunogenic composition, vaccine or pharmaceutical composition to be used for administration to a person / animal and the 20 immunogenic compositions, vaccines or pharmaceutical compositions as such. GENERAL BACKGROUND Human tuberculosis caused by Mycobacterium tuberculosis (M. tuberculosis) is a severe 25 global health problem, responsible for approx. 3 million deaths annually, according to the WHO. The worldwide incidence of new tuberculosis (TB) cases had been falling during the 1960s and 1970s but during recent years this trend has markedly changed in part due to the advent of AIDS and the appearance of multidrug resistant strains of M. tuberculosis. 30 The only vaccine presently available for clinical use is BCG, a vaccine whose efficacy remains a matter of controversy. BCG generally induces a high level of acquired resistance in animal models of TB, and in humans it is protective against disseminated forms of 2 tuberculosis such as meningitis and miliary tuberculosis. When given to young children it is protective against tuberculosis for years but then the efficacy vanes. Comparison of various controlled trials revealed that the protective efficacy of BCG in adults varied dramatically with an efficacy range from ineffective to 80% protection. This makes the development of a 5 new and improved vaccine against M. tuberculosis an urgent matter, which has been given a very high priority by the WHO. Many attempts to define protective mycobacterial substances have been made, and different investigators have reported increased resistance after experimental vaccination. M. 10 tuberculosis holds, as well as secretes, several proteins of potential relevance for the generation of a new M. tuberculosis vaccine. The search for candidate molecules has primarily focused on proteins released from dividing bacteria. Despite the characterization of a large number of such proteins only a few of these have been demonstrated to induce a protective immune response as subunit vaccines in animal models, most notably ESAT-6 and 15 Ag85B (Brandt et al 2000). However, the demonstration of a specific long-term protective immune response with the potency of BCG or the capability of boosting in a BCG vaccinating person has not yet been achieved. At best, boost of BCG with BCG has no effect [Colditz, 1994]. Boosting of BCG has been done with Ag85a (Brooks et al IAI 2001; WO0204018) in an inbred mouse strain leading to some protection, although compared to BCG alone it was 20 not significantly better. Since BCG needs to divide and secrete proteins in order to induce a protective immune response, the lack of booster effect is primarily due to either sensitisation with environmental mycobacteria or a residual immune response from the primary BCG vaccination. Both events lead to a rapid immune response against BCG and therefore quick inhibition of growth and elimination of BCG. 25 The course of a M. tuberculosis infection runs essentially through 3 phases. During the acute phase, the bacteria proliferate in the organs, until the immune response increases. Specifically sensitized CD4 T lymphocytes mediates controll of the infection, and the most important mediator molecule seems to be interferon gamma (IFN-gamma).The bacterilal loads starts to 30 decline and a latent phase is established where the bacterial load is kept stable at a low level. In this phase M. tuberculosis goes from active multiplication to dormancy, essentially becoming non-replicating and remaining inside the granuloma. In some cases, the infection
I
goes to the reactivation phase, where the dormant bacteria start replicating again. It has been suggested that the transition of M. tuberculosis from primary infection to latency is accompanied by changes in gene expression ( Honer zu Bentrup, 2001). It is also likely that changes in the antigen-specificity of the immune response occur, as the bacteria modulates 5 gene expression during its transition from active replication to dormancy. The full nature of the immune response that controls latent infection and the factors that lead to reactivation are largely unknown. However, there is some evidence for a shift in the dominant cell types responsible. While CD4 T cells are essential and sufficient for control of infection during the acute phase, studies suggest that CD8 T cell responses are more important in the latent phase. 10 In 1998 Cole et al published the complete genome sequence of M. tuberculosis and predicted the presence of approximately 4000 open reading frames (Cole et al 1998) disclosing nucleotide sequences and putative protein sequences. However importantly, this sequence information cannot be used to predict if the DNA is translated and expressed as proteins in 15 vivo. It is known that some genes of M. tuberculosis are upregulated under conditions that mimic latency. However, these are a limited subset of the total gene expression during latent infection. Moreover, as one skilled in the art will readily appreciate, expression of a gene is not sufficient to make it a good vaccine candidate. The only way to determine if a protein is recognized by the immune system during latent infection with M. tuberculosis is to produce 20 the given protein and test it in an appropriate assay as described herein. A number of proteins are of particular importance and have potential for being late antigens (antigens recognized during latent infection) since they are mainly expressed relatively long time after infection where the immune system have mounted the first adaptive defense and the enviroment have turn more hostile for the mycobateria. In vitro hypoxic culture conditions, which mimic the 25 conditions of low oxygen tension have previously been suggested as relevant in this regard and have been used to analyse changes in gene expression. A number of antigens have been found that are induced or markedly upregulated under these conditions eg. the 16 kDa antigen u-crystalin (Sherman 2001), Rv2660c and Rv2659c (Betts, 2002). (our own application) Another environmental stimuli which may be of particular interest is starvation designed to 30 reflect that nutrients are restricted in the granuloma (the location of the latent infection) and that products expressed by genes upregulated under starvation therefore may be of particular interest as antigen targets during the latent stage of infection. 4 Of the more than 200 hundred antigens known to be expressed during primary infection, and tested as vaccines, less than a half dozen have demonstrated significant potential. So far only one antigen has been shown to have any potential as a therapeutic vaccine (Lowrie, 1999). 5 However this vaccine only worked if given as a DNA vaccine and has proved controversial, with other groups claiming that vaccination using this protocol induces either non-specific protection or even worsens disease (Turner, 2000). In contrast, the fusion polypeptides described in the invention may be incorporated in a vaccine that use well-recognized vaccination technology, as demonstrated in provided examples. 10 Further, since TB vaccines do not result in sterilizing immunity but rather control the infection at a subclinical level (thereby resulting in the subsequent establishment of latent infection), a multiphase vaccine which combines components with prophylactic and therapeutic activity is described in this invention. After conventional prophylactic vaccination, the evasion of the 15 primary immune response and the subsequent development of latent disease is probably at least in part due to the change in the antigenic profile of the invading bacteria. Thus, vaccinating with antigens associated with latent TB should prevent or reduce the establishment of latent infection and therefore, a vaccine incorporating antigens expressed by the bacteria both in the first logarithmic growth phase and during latent disease should improve long-term immunity when 20 used as a prophylactic vaccine. Such a multiphase vaccine will obviously also be efficient as a therapeutic vaccine thereby addressing the problem that the majority of the population in the third world who would receive a future TB vaccine would be already latently infected. SUMMARY OF THE INVENTION 25 The invention is related to an immunogenic composition, vaccine or pharmaceutical composition for preventing (including booster vaccination and multiphase vaccines) or/and treating infection caused by a species of the M. tuberculosis complex (M. tuberculosis, M. bovis, M. africanum etc.), the immunogenic composition, the vaccine or pharmaceutical 30 composition comprising starvation induced antigen or a fusion polypeptide which comprises one or more starvation induced M.tuberculosis antigens, the units of the fusion polypeptide being M. tuberculosis antigens. Also, the invention relates to the fusion polypeptides as such 5 and to a nucleic acid sequence encoding such a fusion polypeptide. Further, the invention relates to the use of short or long overlapping or non-overlapping peptide(s) made synthetically or recombinant. Further, the invention relates to the use of a starvation induced antigen or a fusion polypeptide sequence or nucleic acid sequence of the invention for 5 preparing said immunogenic composition, vaccine, or pharmaceutical composition and the vaccine or pharmaceutical composition produced in this way. Further, the invention relates to the use of a vaccine comprising a starvation induced antigen or a fusion polypeptide sequence or nucleic acid sequence of the invention given at the same time as BCG, either mixed with BCG or administered separately at different sites or routes for preparing said immunogenic 10 composition, vaccine, or pharmaceutical composition. Further the invention relates to the use of a vaccine comprising a starvation induced antigen or a fusion polypeptide sequence or nucleic acid sequence given as a BCG booster. Futhermore, by including antigens that are expressed both early and late during a natural infection the vaccine will lead to a two step immune response allowing the immune system to combat the pathogen with whatever 15 epitopes are most efficient at a certain timepoint including during latency. DETAILED DISCLOSURE OF THE INVENTION The present invention discloses immunogenic compositions, a vaccine or a pharmaceutical 20 composition comprising a starvation induced antigen or a fusion polypeptide comprising one or more starvation induced antigens. The amino acid and nucleic acid sequences of these starvation induced (more than 6.5 fold upregulated during starvation or genetically linked to a starvation induced gene) antigens 25 appear from the sequence listing as follows: Starvation induced antigen DNA SEQ ID NO aa SEQ ID NO Rv2655 1 2 Rv2656 3 4 Rv2657 5 6 Rv2658 7 8 Rv2659c 9 10 6 Rv2660c 11 12 Rv2661 13 14 Rv2662 15 16 Rv2663 17 18 Rv0188 19 20 Rv3290c 21 22 Rv3289c 23 24 Rv2034 25 26 Rv2169c 27 28 Rv0116c 29 30 Rv2558 31 32 Rv1152 33 34 Rv3291c 35 36 Rv1284 37 38 Rv1954c 39 40 Rv3810 41 42 Rv2517c 43 44 Rv3288c 45 46 Rv0789c 47 48 Rv1955 49 50 Rv3735 51 52 Rv3675 53 54 Rv2270 55 56 Rv2050 57 58 Rv3287c 59 60 Rv2557 61 62 Rv0122 63 64 Rv2497c 65 66 Rv1250 67 68 Rv1552 69 70 Rv2526 71 72 7 Rv1809 73 74 Rv0918 75 76 Rv0516c 77 78 Rv2745c 79 80 Rv1472 81 82 Rv1660 83 84 Rv2302 85 86 In the present context the individual immunogenic polypeptide based on polypeptides derived from M.tuberculosis is termed a "unit" of the fusion polypeptide. The fusion may comprise 2, 3, 4, 5, 6, 7, 8, 9 or even 10 different units. 5 The order of the units of the fusion polypeptide can be any combination. In order terms, fusion polypeptides of all of the above antigens in any combination are within the scope of the present invention. The fusion polypeptides of the invention are useful for the preparation of an immunogenic composition, vaccine or pharmaceutical composition, in particular a BCG 10 booster vaccine, as will be described in detail in the following. The preferred polypeptides making up units of the fusion polypeptides together with the starvation polypeptides have the following Sanger identity number and amino acid sequences: Trivial name Sanger ID ESAT6 Rv3875 TB 10.4 Rv0288 Ag85A Rv3804c Ag85B Rv1886c ORF2c Rv3871 (c-terminal) TB13.0 Rv1036 TB9.56 Rv0285 TB9.8 Rv0287 15 Polypeptid amino acid sequence ESAT6 MTEQQWNFAG IEAAASAIQG NVTSIHSLLD EGKQSLTKLA AAWGGSGSEA YQGVQQKWDA TATELNNALQ NLARTISEAG QAMASTEGNV TGMFA Ag85A SRGPLP VEYLQVPSPS MGRDIKVQFQ SGGANSPALY LLDGLRAQDD FSGWDINTPA FEWYDQSGLS VVMPVGGQSS FYSDWYQPAC GKAGCQTYKW ETFLTSELPG WLQANRHVKP TGSAVVGLSM AASSALTLAI YHPQQFVYAG AMSGLLDPSQ AMGPTLIGLA MGDAGGYKAS DMWGPKEDPA WQRNDPLLNV GKLIANNTRV WVYCGNGKPS DLGGNNLPAK FLEGFVRTSN IKFQDAYNAG GGHNGVFDFP DSGTHSWEYW GAQLNAMKPD LQRALGATPN TGPAPQGA Ag85B SRPGLPVEY LQVPSPSMGR DIKVQFQSGG NNSPAVYLLD GLRAQDDYNG WDINTPAFEW YYQSGLSIVM PVGGQSSFYS DWYSPACGKA GCQTYKWETF LTSELPQWLS ANRAVKPTGS AAIGLSMAGS SAMILAAYHP QQFIYAGSLS ALLDPSQGMG PSLIGLAMGD AGGYKAADMW GPSSDPAWER NDPTQQIPKL VANNTRLWVY CGNGTPNELG GANIPAEFLE NFVRSSNLKF QDAYNAAGGH NAVFNFPPNG THSWEYWGAQ LNAMKGDLQS SLGAG TB10.4 MSQIMYNYPA MLGHAGDMAG YAGTLQSLGA EIAVEQAALQ SAWQGDTGIT YQAWQAQWNQ AMEDLVRAYH AMSSTHEANT MAMMARDTAE AAKWGG ORF2c MIVGAAGGMP PMAPLAPLLP AAADIGLHII VTCQMSQAYK ATMDKFVGAA FGSGAPTMFL SGEKQEFPSS EFKVKRRPPG QAFLVSPDGK VIQAPYIEPP EEVFAAPPSA G Rv1036 LIPGRMVLNW EDGLNALVAE GIEAIVFRTL GDQCWLWESL LPDEVRRLPE ELARVDALLD DPAFFAPFVP FFDPRRGRPS TPMEVYLQLM FVKFRYRLGY ESLCREVADS IT Rv0285 MTLRVVPEGL AAASAAVEAL TARLAAAHAS AAPVITAVVP PAADPVSLQT AAGFSAQGVE HAVVTAEGVE ELGRAGVGVG 9 ESGASYLAGD AAAAATYGVV GG Rv0287 MSLLDAHIPQ LVASQSAFAA KAGLMRHTIG QAEQAAMSAQ AFHQGESSAA FQAAHARFVA AAAKVNTLLD VAQANLGEAA GTYVAADAAA ASTYTGF Preferred combinations of fusion polypeptides comprise the following polypeptides in various combinations in order of units with one or more starvation induced antigens (X): ESAT6 Ag85A-X, ESAT6-Ag85B-X, Ag8A-X, Ag85B-X, TB1O-Ag85A-X, TB1O-Ag85B-X where 5 X is any of the starvation induced antigens and where the order of the units of antigens can be of any combination e.g. where the order is reversed or X is positioned in the middle etc. But the fusion polypeptide could be constructed from any other combination of one or more starvation induced antigen with one or more M.tuberculosis antigen. 10 Within the scope of the present invention is an analogue of a fusion polypeptide which has an amino acid sequence with a sequence identity of at least 80% to any part of any one of the fusion polypeptides of the invention and which is immunogenic, and a nucleic acid sequence which encodes such polypeptide. Such analogues are comprised within the term "polypeptide 15 of the invention" or "fusion polypeptide of the invention" which terms are used interchangeably throughout the specification and claims. By the term "nucleic acid sequence of the invention" is meant a nucleic acid sequence encoding such a polypeptide. Further within the scope of the present invention are short or long peptide(s) overlapping or non overlapping which has an amino acid sequence with a sequence identity of at least 80% to any 20 one of the fusion polypeptides of the invention and which is immunogenic A presently preferred embodiment of the invention is a vaccine to boost immunity from prior BCG vaccination, i.e. the vaccine is administered to individuals previously vaccinated with BCG. 25 This first aspect of the invention comprises a variant of the above mentioned starvation induced antigen or fusion polypeptide which is lipidated so as to allow a self-adjuvating effect of the polypeptide. 10 The immunogenic composition, vaccine or pharmaceutical composition of the invention can be administered by mucosal delivery, e.g. orally, nasally, buccally, or traditionally intramuscularly, intradermally, by subcutaneous injection or transdermally or any other 5 suitable route, e.g rectally. In another embodiment, the invention discloses the use of a starvation induced antigen or a fusion polypeptide as defined above for the preparation of an immunogenic composition, vaccine or pharmaceutical composition which can be used for a prophylactic vaccination 10 together with BCG, a booster vaccine or therapeutical vaccination against an infection caused by a virulent mycobacterium, e.g. by Mycobacteum tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium lepra or Mycobacterium ulcerans. In a second aspect, the invention discloses an immunogenic composition, vaccine or 15 pharmaceutical composition which comprises a nucleotide sequence which encodes a starvation induced antigen or a fusion polypeptide as defined above, or comprises a nucleic acid sequence complementary thereto which is capable of hybridizing to the nucleic acid sequence of the invention under stringent conditions. 20 The nucleic acid fragment is preferably a DNA fragment. The fragment can be used as a pharmaceutical as discussed in the following. In one embodiment, the invention discloses an immunogenic composition, vaccine or pharmaceutical composition comprising a nucleic acid fragment according to the invention, 25 optionally inserted in a vector. The vaccine resulting in vivo expression of antigen by an animal, including a human being, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to tuberculosis caused by virulent mycobacteria, e.g. by Mycobacteum tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium lepra or Mycobacterium ulcerans, in an 30 animal, including a human being. 11 In a further embodiment, the invention discloses the use of an immunogenic composition, vaccine or pharmaceutical composition comprising a nucleic acid fragment according to the invention for therapeutic vaccination against tuberculosis caused by a virulent 5 mycobacterium. In a still further embodiment, the invention discloses an immunogenic composition, vaccine or pharmaceutical composition which can be used for prophylactic vaccination together with BCG or as a booster vaccine to a person previously vaccinated with BCG for immunizing an 10 animal, including a human being, against tuberculosis caused by a virulent mycobacterium, e.g. by Mycobacteum tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium lepra or Mycobacterium ulcerans, comprising as the effective component a non-pathogenic microorganism, such as vaccinia, adenovirus or Mycobacterium bovis BCG, wherein at least one copy of a DNA fragment comprising a DNA sequence encoding a fusion 15 polypeptide as defined above has been incorporated into the microorganism (e.g. placed on a plasmid or in the genome) in a manner allowing the microorganism to express and optionally secrete the fusion polypeptide. In another embodiment, the invention discloses an infectious expression vector, such as 20 vaccinia, adenovirus or Mycobacterium bovis BCG which comprises a nucleic acid fragment according to the invention, and a transformed cell harbouring at least one such vector. In a third aspect, the invention discloses a method for immunising and boosting the immunity of an animal, including a human being, against tuberculosis caused by virulent mycobacteria, 25 e.g. by Mycobacteum tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium lepra or Mycobacterium ulcerans, the method comprising administering to the animal the fusion polypeptide as defined above, the immunogenic composition according to the invention, or the vaccine according to the invention. 30 In a fourth aspect, the invention discloses a method for treating an animal, including a human being, having tuberculosis, active or latent, caused by virulent mycobacteria, e.g. by Mycobacteum tuberculosis, Mycobacterium africanum, Mycobacterium bovis, 12 Mycobacterium lepra or Mycobacterium ulcerans, the method comprising administering to the animal the immunogenic composition, vaccine or pharmaceutical composition as defined above. 5 In a fifth aspect, the invention discloses the use of a starvation induced antigen or a fusion polypeptide or nucleic acid fragment as defined above for the preparation of an immunogenic composition, vaccine or pharmaceutical composition in combination with M. bovis BCG, e.g. for a prophylactic (including boosting) or therapeutical vaccination against an infection caused by a virulent mycobacterium, e.g. by Mycobacteum tuberculosis, Mycobacterium 10 africanum, Mycobacterium bovis, Mycobacterium lepra or Mycobacterium ulcerans. The vaccine, immunogenic composition, vaccine and pharmaceutical composition according to the invention can be used prophylactically in a subject not infected with a virulent mycobacterium or in an individual previously vaccinated with M. tuberculosis BCG or 15 therapeutically in a subject infected with a virulent mycobacterium. It is to be understood that the embodiments of the first aspect of the invention, such as the immunogenic polypeptides described also apply to all other aspects of the invention; and vice versa. 20 Throughout this specification, unless the context requires otherwise, the word "comprise", or variations thereof such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers. 25 DEFINITIONS Starvation 30 By the term "starvation" is understood depriving an organism of its carbon, nitrogen or energy source, any combination of the above or even all of them. 13 Starvation induced proteins By the term "starvation induced proteins" is understood any protein that at the transcriptional or protein level is induced (increased) at least 6.5 fold after stressing the mycobacteria by starvation. 5 Combination with M. bovis BCG By the term "combination with M. bovis BCG" is understood co-administration with any M. bovis BCG strain including, Pasteur, Phipps, Frappier, Connaught, Tice, Denmark, Glaxo, Prague, Birkhaug, Sweden, Japan, Moreau and Russia in quantities that lead either to a 10 significant increased specific immune response or to a significant protection in an animal model or a human either together with one or more of the fusion polypeptides defined above or with one or more of the nucleic acid fragments encoding these, or administered at the same time but at separate sites or routes. 15 Boost of M. bovis BCG By the term" boost of M. bovis BCG" is understood administration of one or more fusion polypeptides as defined above or one or more nucleic acid fragments encoding these at any period after vaccination with any M. bovis BCG strain including, Pasteur, Phipps, Frappier, Connaught, Tice, Denmark, Glaxo, Prague, Birkhaug, Sweden, Japan, Moreau and Russia in 20 quantities that lead either to a significantly increased specific immune response or a significantly increased protection in an animal model or a human. Polypeptide A preferred polypeptide to be used as a unit of the fusion polypeptides of the present 25 invention is an immunogenic polypeptide from M. tuberculosis. Such polypeptide can for example be based on a polypeptide derived from the M. tuberculosis cell and/or M. tuberculosis culture filtrate. The polypeptide will normally be a recombinant or synthetic polypeptide and may consist of the immunogenic polypeptide, an immunogenic portion thereof or may contain additional sequences. The additional sequences may be derived from 30 the native M. tuberculosis antigen or be heterologous and such sequences may, but need not, be immunogenic. 14 By the term "fusion polypeptide" is understood a random order of two or more immunogenic polypeptides from M. tuberculosis or analogues thereof fused together with or without an amino acid spacer(s) of arbitrary length and sequence. 5 The word "polypeptide" in the present invention should have its usual meaning. That is an amino acid chain of any length, including a full-length protein, oligopeptide, short peptide and fragment thereof and fusion polypeptide, wherein the amino acid residues are linked by covalent peptide bonds. 10 The polypeptide may be chemically modified by being glycosylated, by being lipi dated (e.g. by chemical lipidation with palmitoyloxy succinimide as described by Mowat et al. 1991 or with dodecanoyl chloride as described by Lustig et al. 1976), by comprising prosthetic groups, or by containing additional amino acids such as e.g. a his-tag or a signal peptide. 15 Each immunogenic polypeptide will be characterised by specific amino acids and be encoded by specific nucleic acid sequences. Within the scope of the present invention are such sequence and analogues and variants produced by recombinant or synthetic methods wherein such polypeptide sequences have been modified by substitution, insertion, addition or deletion 20 of one or more amino acid residues in the recombinant polypeptide while still being immunogenic in any of the biological assays described herein. Substitutions are preferably "conservative". These are defined according to the following table. Amino acids in the same block in the second column and preferably in the same line in 25 the third column may be substituted for each other. The amino acids in the third column are indicated in one-letter code. 15 ALIPHATIC Non-polar GAP ILV Polar-uncharged CSTM NQ Polar-charged DE KR AROMATIC HFWY Each polypeptide is encoded by a specific nucleic acid sequence. Within the scope of the present invention are analogues and such nucleic acid sequences which have been modified 5 by substitution, insertion, addition or deletion of one or more nucleic acids. Substitutions are preferably silent substitutions in the codon usage which will not lead to any change in the amino acid sequence, but may be introduced to enhance the expression of the protein. Nucleic acid fragment 10 By the terms "nucleic acid fragment" and "nucleic acid sequence" are understood any nucleic acid molecule including DNA, RNA, LNA (locked nucleic acids), PNA, RNA, dsRNA and RNA-DNA-hybrids. Also included are nucleic acid molecules comprising non-naturally occurring nucleosides. The term includes nucleic acid molecules of any length e.g. from 10 to 10000 nucleotides, depending on the use. When the nucleic acid molecule is for use as a 15 pharmaceutical, e.g. in DNA therapy, or for use in a method for producing a polypeptide according to the invention, a molecule encoding at least one epitope is preferably used, having a length from about 18 to about 1000 nucleotides, the molecule being optionally inserted into a vector. When the nucleic acid molecule is used as a probe, as a primer or in antisense therapy, a molecule having a length of 10-100 is preferably used. According to the invention, 20 other molecule lengths can be used, for instance a molecule having at least 12, 15, 21, 24, 27, 30, 33, 36, 39, 42, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 or 1000 nucleotides (or nucleotide derivatives), or a molecule having at most 10000, 5000, 4000, 3000, 2000, 1000, 700, 500, 400, 300, 200, 100, 50, 40, 30 or 20 nucleotides (or nucleotide derivatives). 25 The term "stringent" when used in conjunction with hybridization conditions is as defined in 16 the art, i.e. the hybridization is performed at a temperature not more than 15-20(C under the melting point Tm, cf. Sambrook et al, 1989, pages 11.45-11.49. Preferably, the conditions are "highly stringent", i.e. 5-1O(C under the melting point Tm. 5 Sequence identity The term "sequence identity" indicates a quantitative measure of the degree of homology between two amino acid sequences of substantially equal length or between two nucleic acid sequences of substantially equal length. The two sequences to be compared must be aligned to best possible fit possible with the insertion of gaps or alternatively, truncation at the ends of 10 the protein sequences. The sequence identity can be calculated as (NN, f) , wherein Ndif is the total number of non-identical residues in the two sequences when aligned and wherein Nref is the number of residues in one of the sequences. Hence, the DNA sequence AGTCAGTC will have a sequence identity of 75% with the sequence AATCAATC (Ndif= 2 and Nre=8). A gap is counted as non-identity of the specific residue(s), i.e. the DNA sequence AGTGTC will 15 have a sequence identity of 75% with the DNA sequence AGTCAGTC (Ndif= 2 and Nref-8). Sequence identity can alternatively be calculated by the BLAST program e.g. the BLASTP program (Pearson W.R and D.J. Lipman (1988))(www.ncbi.nlm.nih.gov/cgi-bin/BLAST). In one embodiment of the invention, alignment is performed with the sequence alignment method ClustalW with default parameters as described by Thompson J., et al 1994, available 20 at http://www2.ebi.ac.uk/clustalw/. A preferred minimum percentage of sequence identity is at least 80%, such as at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, and at least 99.5%. Preferably, the numbers of 25 substitutions, insertions, additions or deletions of one or more amino acid residues in the fusion polypeptide is limited, i.e. no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 substitutions, no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 insertions, no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 additions, and no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 deletions compared to the immunogenic polypeptide units based on polypeptides derived from M. tuberculosis. 30 Immunogenic portion The polypeptide of the invention comprises an immunogenic portione, such as an epitope for 17 a B-cell or T-cell. The immunogenic portion of an immunogenic polypeptide is the part of the polypeptide, which elicits an immune response in an animal or a human being, and/or in a biological sample determined by any of the biological assays described herein. The immunogenic 5 portion of a polypeptide may be a T-cell epitope or a B-cell epitope. Immunogenic portions can be related to one or a few relatively small parts of the polypeptide, they can be scattered throughout the polypeptide sequence or be situated in specific parts of the polypeptide. For a few polypeptides epitopes have even been demonstrated to be scattered throughout the polypeptide covering the full sequence (Ravn et al 1999). 10 In order to identify relevant T-cell epitopes which are recognised during an immune response, it is possible to use a "brute force" method: Since T-cell epitopes are linear, deletion mutants of the polypeptide will, if constructed systematically, reveal what regions of the polypeptide are essential in immune recognition, e.g. by subjecting these deletion mutants e.g. to the IFN-( 15 assay described herein. Another method utilises overlapping oligopeptides for the detection of MHC class II epitopes, preferably synthetic, having a length of e.g. 20 amino acid residues derived from the polypeptide. These peptides can be tested in biological assays (e.g. the IFN-( assay as described herein) and some of these will give a positive response (and thereby be immunogenic) as evidence for the presence of a T cell epitope in the peptide. For the 20 detection of MHC class I epitopes it is possible to predict peptides that will bind (Stryhn et al. 1996) and hereafter produce these peptides synthetically and test them in relevant biological assays e.g. the IFN-( assay as described herein. The peptides preferably having a length of e.g. 8 to 11 amino acid residues derived from the polypeptide. B-cell epitopes can be determined by analysing the B cell recognition to overlapping peptides covering the polypeptide of 25 interest as e.g. described in Harboe et al 1998. Immunogenic portions of polypeptides may be recognised by a broad part (high frequency) or by a minor part (low frequency) of the genetically heterogenic human population. In addition some immunogenic portions induce high immunological responses (dominant), whereas 30 others induce lower, but still significant, responses (subdominant). High frequency><low frequency can be related to the immunogenic portion binding to widely distributed MHC molecules (HLA type) or even by multiple MHC molecules (Kilgus et al. 1991, Sinigaglia et 1 R al 1988 ). Analogues A common feature of the fusion polypeptides of the invention is their capability to induce an 5 immunological response as illustrated in the examples. It is understood that within the scope of the present invention are analogues of a fusion polypeptide of the invention produced by substitution, insertion, addition or deletion is also immunogenic determined by any of the assays described herein. 10 Substantially pure In the present context the term "substantially pure polypeptide" means a polypeptide preparation which contains at most 5% by weight of other polypeptide material with which it is associated natively or during recombinant or synthetic production (lower percentages of other polypeptide material are preferred, e.g. at most 4%, at most 3%, at most 2%, at most 15 1%, and at most %). It is preferred that the substantially pure polypeptide is at least 96% pure, i.e. that the polypeptide constitutes at least 96% by weight of total polypeptide material present in the preparation, and higher percentages are preferred, such as at least 97%, at least 98%, at least 99%, at least 99,25%, at least 99,5%, and at least 99,75%. It is especially preferred that the polypeptide is in "essentially pure form", i.e. that the polypeptide is 20 essentially free of any other antigen with which it is natively associated, i.e. free of any other antigen from bacteria belonging to the tuberculosis complex or a virulent mycobacterium. This can be accomplished by preparing the polypeptide by means of recombinant methods in a non-mycobacterial host cell as will be described in detail below, or by synthesizing the polypeptide by the well-known methods of solid or liquid phase peptide synthesis, e.g. by the 25 method described by Merrifield or variations thereof, and by using appropriate purification procedures well known to the person of ordinary skill in the art. Virulent mycobacterium, individual currently infected and immune individual By the term "virulent mycobacterium" is understood a bacterium capable of causing the 30 tuberculosis disease in an animal or in a human being. Examples of virulent mycobacteria are Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium lepra or Mycobacterium ulcerans. Examples of relevant animals are cattle, 19 possums, badgers, buffaloes, lions, kurus and kangaroos. By "an animal or human currently infected with a virulent mycobacterium" is understood an individual with culture or microscopically proven infection with virulent mycobacteria, and/or 5 an individual clinically diagnosed with TB and who is responsive to anti-TB chemotherapy. Culture, microscopy and clinical diagnosis of TB are well known by any person skilled in the art. An immune individual is defined as a person or an animal, which has cleared or controlled an 10 infection with a virulent mycobacterium or has received a vaccination with M. bovis BCG. Immunogenic An immunogenic polypeptide is defined as a polypeptide that induces an immune response. The immune response may be monitored by one of the following methods: 15 An in vitro cellular response is determined by release of a relevant cytokine such as IFN-(, from lymphocytes withdrawn from an animal or human currently or previously infected with virulent mycobacteria, or by detection of proliferation of these T cells. The induction is performed by addition of the polypeptide or the immunogenic portion to a suspension 20 comprising from IxIO5 cells to 3x105 cells per well. The cells are isolated from either blood, the spleen, the liver or the lung and the addition of the polypeptide or the immunogenic portion of the polypeptide result in a concentration of not more than 20 (g per ml suspension and the stimulation is performed from two to five days. For monitoring cell proliferation the cells are pulsed with radioactive labeled Thymidine and after 16-22 hours of incubation the 25 proliferation is detected by liquid scintillation counting. A positive response is a response more than background plus two standard deviations. The release of IFN-( can be determined by the ELISA method, which is well known to a person skilled in the art. A positive response is a response more than background plus two standard deviations. Other cytokines than IFN-( could be relevant when monitoring an immunological response to the polypeptide, such as IL 30 12, TNF-(, IL-4, IL-5, IL-10, IL-6, TGF-(. Another and more sensitive method for determining the presence of a cytokine (e.g. IFN-() is the ELISPOT method where the cells isolated from either the blood, the spleen, the liver or the lung are diluted to a concentration of 20 preferable of I to 4 x 106 cells /ml and incubated for 18-22 hrs in the presence of the polypeptide or the immunogenic portion of the polypeptide resulting in a concentration of not more than 20 (g per ml. The cell suspensions are hereafter diluted to 1 to 2 x 106/ ml and transferred to Maxisorp plates coated with anti-IFN-( and incubated for preferably 4 to 16 5 hours. The IFN-(producing cells are determined by the use of labelled secondary anti-IFN antibody and a relevant substrate giving rise to spots, which can be enumerated using a dissection microscope. It is also a possibility to determine the presence of mRNA coding for the relevant cytokine by the use of the PCR technique. Usually one or more cytokines will be measured utilizing for example the PCR, ELISPOT or ELISA. It will be appreciated by a 10 person skilled in the art that a significant increase or decrease in the amount of any of these cytokines induced by a specific polypeptide can be used in evaluation of the immunological activity of the polypeptide. An in vitro cellular response may also be determined by the use of T cell lines derived from 15 an immune individual or an M. tuberculosis infected person where the T cell lines have been driven with either live mycobacteria, extracts from the bacterial cell or culture filtrate for 10 to 20 days with the addition of IL-2. The induction is performed by addition of not more than 20 (g polypeptide per ml suspension to the T cell lines containing from IxIO5 cells to 3x105 cells per well and incubation is performed from two to six days. The induction of IFN-( or 20 release of another relevant cytokine is detected by ELISA. The stimulation of T cells can also be monitored by detecting cell proliferation using radioactively labeled Thymidine as described above. For both assays a positive response is a response more than background plus two standard deviations. 25 An in vivo cellular response may be determined as a positive DTH response after intradermal injection or local application patch of at most 100 (g of the polypeptide or the immunogenic portion to an individual who is clinically or subclinically infected with a virulent Mycobacterium, a positive response having a diameter of at least 5 mm 72-96 hours after the injection or application. 30 An in vitro humoral response is determined by a specific antibody response in an immune or infected individual. The presence of antibodies may be determined by an ELISA technique or 21 a Western blot where the polypeptide or the immunogenic portion is absorbed to either a nitrocellulose membrane or a polystyrene surface. The serum is preferably diluted in PBS from 1:10 to 1:100 and added to the absorbed polypeptide and the incubation being performed from 1 to 12 hours. By the use of labeled secondary antibodies the presence of specific 5 antibodies can be determined by measuring the presence or absence of a specific label e.g. by ELISA where a positive response is a response of more than background plus two standard deviations or alternatively a visual response in a Western blot. Another relevant parameter is measurement of the protection in animal models induced after 10 vaccination with the polypeptide in an adjuvant or after DNA vaccination. Suitable animal models include primates, guinea pigs or mice, which are challenged with an infection of a virulent Mycobacterium. Readout for induced protection could be decrease of the bacterial load in target organs compared to non-vaccinated animals, prolonged survival times compared to non-vaccinated animals and diminished weight loss or pathology compared to non 15 vaccinated animals. Preparation methods In general the fusion polypeptides of the invention, and DNA sequences encoding such fusion polypeptides, may be prepared by use of any one of a variety of procedures. 20 The fusion polypeptide may be produced recombinantly using a DNA sequence encoding the polypeptide, which has been inserted into an expression vector and expressed in an appropriate host. Examples of host cells are E. coli. The fusion polypeptides can also be produced synthetically having fewer than about 100 amino acids, and generally fewer than 50 25 amino acids and may be generated using techniques well known to those ordinarily skilled in the art, such as commercially available solid-phase techniques where amino acids are sequentially added to a growing amino acid chain. The fusion polypeptides may also be produced with an additional fusion partner, by which 30 methods superior characteristics of the polypeptide of the invention can be achieved. For instance, fusion partners that facilitate export of the polypeptide when produced recombinantly, fusion partners that facilitate purification of the polypeptide, and fusion 22 partners which enhance the immunogenicity of the polypeptide of the invention are all interesting. The invention in particular pertains to a fusion polypeptide comprising fusions of two or more immunogenic polypeptides based on polypeptides derived from M. tuberculosis. 5 Other fusion partners, which could enhance the immunogenicity of the product, are lymphokines such as IFN-y, IL-2 and IL-12. In order to facilitate expression and/or purification, the fusion partner can e.g. be a bacterial fimbrial protein, e.g. the pilus components pilin and papA; protein A; the ZZ-peptide (ZZ-fusions are marketed by Pharmacia in Sweden); the maltose binding protein; gluthatione S-transferase; (-galactosidase; 10 or poly-histidine. Fusion proteins can be produced recombinantly in a host cell, which could be E. coli, and it is a possibility to induce a linker region between the different fusion partners. The linker region between e.g. the individual immunogenic polypeptide units may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids. 15 Interesting fusion polypeptides are polypeptides of the invention, which are lipidated so that the immunogenic polypeptide is presented in a suitable manner to the immune system. This effect is e.g. known from vaccines based on the Borrelia burgdorferi OspA polypeptide as described in e.g. WO 96/40718 A or vaccines based on the Pseudomonas aeruginosa OprI lipoprotein (Cote-Sierra J 1998). Another possibility is N-terminal fusion of a known signal 20 sequence and an N-terminal cystein to the immunogenic polypeptide. Such a fusion results in lipidation of the immunogenic fusion polypeptide at the N-terminal cystein, when produced in a suitable production host. Vaccine 25 An important aspect of the invention pertains to a vaccine composition comprising a fusion polypeptide according to the invention. In order to ensure optimum performance of such a vaccine composition it is preferred that it comprises an immunologically and pharmacally acceptable carrier, vehicle or adjuvant. 30 An effective vaccine, wherein a fusion polypeptide of the invention is recognized by the animal, will in an animal model be able to decrease bacterial load in target organs, prolong survival times and/or diminish weight loss or pathology after challenge with a virulent 23 Mycobacterium, compared to non-vaccinated animals. Suitable carriers are selected from the group consisting of a polymer to which the polypeptide(s) is/are bound by hydrophobic non-covalent interaction, such as a plastic, e.g. 5 polystyrene, or a polymer to which the polypeptide(s) is/are covalently bound, such as a polysaccharide, or a polypeptide, e.g. bovine serum albumin, ovalbumin or keyhole limpet haemocyanin. Suitable vehicles are selected from the group consisting of a diluent and a suspending agent. The adjuvant is preferably selected from the group consisting of dimethyloctadecylammonium bromide (DDA), dimethyloctadecenylammonium bromide 10 (DODAC), Quil A, poly I:C, aluminium hydroxide, Freund's incomplete adjuvant, IFN-(, IL 2, IL-12, monophosphoryl lipid A (MPL), Treholose Dimycolate (TDM), Trehalose Dibehenate and muramyl dipeptide (MDP) or mycobacterial lipid extract, in particular apolar lipid extracts as disclosed in PCT/DK2004/000488. 15 Preparation of vaccines which contain polypeptides as active ingredients is generally well understood in the art, as exemplified by U.S. Patents 4,608,251; 4,601,903; 4,599,231 and 4,599,230, all incorporated herein by reference. Other methods of achieving adjuvant effect for the vaccine include use of agents such as 20 aluminum hydroxide or phosphate (alum), synthetic polymers of sugars (Carbopol), aggregation of the protein in the vaccine by heat treatment, aggregation by reactivating with pepsin treated (Fab) antibodies to albumin, mixture with bacterial cells such as C. parvum or endotoxins or lipopolycharide components of gram-negative bacteria, emulsion in physiologically acceptable oil vehicles such as mannide mono-oleate (Aracel A) or emulsion 25 with 20 percent solution of a perfluorocarbon (Fluosol-DA) used as a block substitute may also be employed. Other possibilities involve the use of immune modulating substances such as cytokines or synthetic IFN-gamma inducers such as poly I:C in combination with the above-mentioned adjuvants. 30 Another interesting possibility for achieving adjuvant effect is to employ the technique described in Gosselin et al., 1992 (which is hereby incorpoated by reference herein). In brief, a relevant antigen such as an antigen of the present invention can be conjugated to an 24 antibody (or antigen binding antibody fragment) against the Fc -receptors on monocytes/macrophages. To improve the BCG vaccine, one or more relevant antigen(s) such as one or more fusion polypeptides of the present invention can be mixed with a BCG vaccine before 5 administration and injected together with the BCG vaccine thereby obtaining a synergistic effect leading to a better protection. Another interesting possibility for achieving a synergistic effect is to keep the BCG vaccine and the fusion polypeptide(s) of the present invention separate but use them at the same time and administer them at different sites or through different routes. 10 To boost the currently used BCG vaccines a relevant antigen such as one or more of the fusion polypeptides of the present invention can be administrated at the time where the BCG vaccines typically start waning or even before, such as 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 55, 60, 65 or 70 years after BCG vaccination. It could thereafter be given at regular intervals, 15 such as 1, 2, 3, 4, 5 or 10 years, for up to 5 times. The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be prophylactic or therapeutically effective and immunogenic. The quantity to be administered depends on the subject to be treated, including, e.g., the capacity 20 of the individual's immune system to mount an immune response, and the degree of protection desired. Suitable dosage ranges are of the order of several hundred micrograms of the fusion polypeptide of the invention per vaccination with a preferred range from about 0.1 p g to 1000 pg, such as in the range from about 1 pg to 300 pg, and especially in the range from about 10 pg to 100 pg. Suitable regimens for initial administration and booster shots are also variable 25 but are typified by an initial administration followed by subsequent inoculations or other administrations. The manner of application may be varied widely. Any of the conventional methods for administration of a vaccine are applicable. These include oral, nasal or mucosal application in 30 either a solid form containing the active ingredients (such as a pill, suppository or capsule) or in a physiologically acceptable dispersion, such as a spray, powder or liquid, or parenterally, by injection, for example, subcutaneously, intradermally or intramuscularly or transdermally 25 applied. The dosage of the vaccine will depend on the route of administration and will vary according to the age of the person to be vaccinated and, to a lesser degree, the size of the person to be vaccinated. Currently, most vaccines are administered intramuscularly by needle injection and this is likely to continue as the standard route. However, vaccine formulations 5 which induce mucosal immunity have been developed, typically by oral or nasal delivery. One of the most widely studies delivery systems for induction of mucosal immunity contains cholera toxin (CT) or its B subnit. This protein enhances mucosal immune responses and induces IgA production when administered in vaccine formulations. An advantage is the ease of delivery of oral or nasal vaccines. Modified toxins from other microbial species, which 10 have reduced toxicity but retained immunostimulatory capacity, such as modified heat-labile toxin from Gram-negative bacteria or staphylococcal enterotoxins may also be used to generate a similar effect. These molecules are particularly suited to mucosal administration. The vaccines are conventionally administered parenterally, by injection, for example, either 15 subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polyalkalene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1-2%. Oral formulations include such 20 normally employed excipients as, for example, pharmatical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and advantageously contain 10-95% of active ingredient, preferably 25-70%. 25 In many instances, it will be necessary to have multiple administrations of the vaccine. Especially, vaccines can be administered to prevent an infection with virulent mycobacteria and/or to treat established mycobacterial infection or to boost a previous BCG vaccinated person. When administered to prevent an infection, the vaccine is given prophylactically, 30 before definitive clinical signs or symptoms of an infection are present. Due to genetic variation, different individuals may react with immune responses of varying 26 strength to the same polypeptide. Therefore, the vaccine according to the invention may comprise several different fusion polypeptides and/or polypeptides in order to increase the immune response. The vaccine may comprise two or more fusion polypeptides or starvation induced polypeptides or immunogenic portions hereof, where all of the starvation induced 5 antigens or fusion polypeptides are as defined above, or some but not all of the polypeptides may be derived from virulent mycobacteria. In the latter example, the polypeptides not necessarily fulfilling the criteria set forth above for fusion polypeptides may either act due to their own immunogenicity or merely act as adjuvants. 10 The vaccine may comprise 1-20, such as 2-20, or even 3-20 different polypeptides or fusion polypeptides, such as 3-10 different polypeptides or fusion polypeptides. The invention also pertains to a method for immunising an animal, including a human being, against TB caused by virulent mycobacteria, comprising administering to the animal the 15 fusion polypeptide of the invention, or a vaccine composition of the invention as described above, or a live vaccine described above. In a presently preferred embodiment, the animal or human is an immune individual as defined above. The invention also pertains to a method for producing an immunogenic composition 20 according to the invention, the method comprising preparing, synthesising or isolating a fusion polypeptide according to the invention, and solubilizing or dispersing the fusion polypeptide in a medium for a vaccine, and optionally adding other M. tuberculosis antigens and/or a carrier, vehicle and/or adjuvant substance. 25 The nucleic acid fragments of the invention may be used for effecting in vivo expression of immunogenic polypeptides, i.e. the nucleic acid fragments may be used in so-called DNA vaccines as reviewed in Ulmer et al 1993, which is included by reference. In the construction and preparation of plasmid DNA encoding a fusion polypeptide to be used 30 defined for DNA vaccination a host strain such as E. coli can be used. Plasmid DNA can then be prepared from overnight cultures of the host strain carrying the plasmid of interest, and purified using e.g. the Qiagen Giga -Plasmid column kit (Qiagen, Santa Clarita, CA, USA) 27 including an endotoxin removal step. It is essential that plasmid DNA used for DNA vaccination is endotoxin free. Hence, the invention also relates to a vaccine comprising a nucleic acid fragment according to 5 the invention, the vaccine effecting in vivo expression of the immunogenic polypeptide by an animal, including a human being, to whom the vaccine has been administered, the amount of expressed polypeptide being effective to confer substantially increased resistance to infections caused by virulent mycobacteria in an animal, including a human being. 10 The efficacy of such a DNA vaccine can possibly be enhanced by administering the gene encoding the expression product together with a DNA fragment encoding a polypeptide which has the capability of modulating an immune response. One possibility for effectively activating a cellular immune response can be achieved by 15 expressing the relevant immunogenic polypeptide in a non-pathogenic microorganism or virus. Well-known examples of such microorganisms are Mycobacterium bovis BCG, Salmonella and Pseudomona and examples of viruses are Vaccinia Virus and Adenovirus. Therefore, another important aspect of the present invention is an improvement of the live 20 BCG vaccine presently available, wherein one or more copies of a DNA sequence encoding one or more fusion polypeptides as defined above has been incorporated into the genome of the micro-organism in a manner allowing the micro-organism to express and secrete the fusion polypeptide. The incorporation of more than one copy of a nucleic acid sequence of the invention is contemplated to enhance the immune response. 25 Another possibility is to integrate the DNA encoding the fusion polypeptide according to the invention in an attenuated virus such as the vaccinia virus or Adenovirus (Rolph et al 1997). The recombinant vaccinia virus is able to enter within the cytoplasma or nucleus of the infected host cell and the fusion polypeptide of interest can therefore induce an immune 30 response, which is envisioned to induce protection against TB. The invention also relates to the use of a fusion polypeptide or nucleic acid of the invention 2R for use as therapeutic vaccines as have been described in the literature exemplified by D. Lowry (Lowry et al 1999). Antigens with therapeutic properties may be identified based on their ability to diminish the severity of M. tuberculosis infection in experimental animals or prevent reactivation of previous infection, when administered as a vaccine. The composition 5 used for therapeutic vaccines can be prepared as described above for vaccines. FIGURE LEGENDS 10 Figure 1. :Antibody responses to Rv2660c for HIV-negative (TB+/HIV-) and HIV-positive (TB+/HIV+) TB patients from Uganda and healthy controls from Denmark (Controls). The cut-off was based on ROC-curve analysis with a specificity level of 97 %. The observed sensitivity is shown above the graphical presentation of the data. 15 Figure 2. :Immunogenicity of Rv2659c Groups of F1(Balb/cxC57BL/6) mice were subcutaneously vaccinated three times at two week intervals with Rv2659c in DDA/MPL. One week after the final vaccination, PBMCs were analyzed by ELISA for INF-gamma secretion following stimulation with 5 microgram/ml Rv2659c 20 Figure 3. : Rv2659c induce protection against infection with M. tuberculosis Groups of Balb/c-C57BL/6 mice were subcutaneously vaccinated three times at two-week intervals with Rv2659c and protective efficacy was assessed by reduction in CFU counts in lungs and compared to unimmunized and BCG immunized mice 12 weeks after vaccination. 25 Results are expressed as logio colony forming units (CFU) in the lung and are mean results from 6 mice per experimental group. Figure 4: Immunogenicity of Rv2660c F1(Balb/cxC57BL/6) mice were subcutaneously vaccinated three times at two-week intervals 30 with recombinant Rv2660c protein in DDA/MPL. (A) One week after the final vaccination, PBMCs were analyzed by ELISA for IFN-gamma release following stimulation with 0.2, 1 or 5 microgram/ml of Rv2660c. Three weeks after the final vaccination, spleen cells (B) were 29 analyzed by ELISA for INF-gamma secretion following stimulation with 0.2, 1, or 5 microgram/ml recombinant Rv2660c and PBMCs (C) were analyzed for proliferative responses after stimulation with 0.2, 1 or 5 microgram/ml recombinant Rv2660c 5 Figure 5: Protection agains infection with Mycobacterium tuberculosis induced by Rv2660c Groups of Balb/c-C57BL/6 mice were subcutaneously vaccinated three times at two-week intervals with Rv2660c, and protective efficacy was assessed by CFU counts in lungs and compared to unimmunized and BCG immunized mice 6 weeks after aerosol infection. Results are expressed as logo colony forming units (CFU) in the lung and are mean results from 6 10 mice per experimental group. As a positive control, a single dose of BCG Danish 1331 (5x 104 bacilli/mouse) was injected s.c. at the base of the tail at the same time as the first subunit vaccination; no booster injections were administered. Figure 6: Immunogenicity of Hybrid56, HyVac21 and HyVac28. 15 Groups of F1(Balb/cxC57BL/6) mice were subcutaneously vaccinated three times at two week intervals with 5 microgram Ag85b-ESAT6-Rv2660c (H56), Ag85a-TB10.4-Rv2660c (H21) or Ag85b-TB 10.4-Rv2660c (H28) in DDA/TDB (LipoVac). One week after the final vaccination, PBMCs were analyzed by ELISA for IFN-gamma release following stimulation with 1 microgram/ml of the fusion protein used for immunization, Ag85b, TB 10.4 or 20 Rv2660c (figure 6A-C). Three weeks after the final vaccination with Ag85b-ESAT6-Rv2660c, spleen cells (D) were analyzed by ELISA for INF-gamma secretion following stimulation with 0.2, 1, or 5 microgram/ml recombinant Ag85B, ESAT6, or Rv2660c and PBMCs (E) were analyzed for proliferative responses against the same antigens.at 1 microgram/ml 25 Figure 7. : Strong protection against M. tuberculosis infection after immunization with Hybrid56. (A) Groups of Balb/c-C57BL/6 mice were subcutaneously vaccinated three times at two-week intervals with Ag85B-ESAT6-Rv2660c (Hybrid56), and protective efficacy was assessed by 30 CFU counts in lungs and compared to unimmunized and BCG immunized mice 2, 6, 12 and 24 weeks after aerosol infection. (B) Groups of B6 mice were subcutaneously vaccinated three times at two-week intervals with either Ag85b-ESAT6 (Hybrid1) or Ag85b-ESAT6 in Rv203 Ic (Hybrid32) and protective efficacy was assessed by CFU counts in lungs and compared to unimmunized and BCG immunized mice 7, 13, 24, 35 and 44 weeks after aerosol infection Results are expressed as logo colony forming units (CFU) in the lung and are mean results from 6 mice per experimental group. As a positive control, a single dose of 5 BCG Danish 1331 (5x10 4 bacilli/mouse) was injected s.c. at the base of the tail at the same time as the first subunit vaccination; no booster injections were administered. Figure 8. : Kaplan-Meier survival curves (n = 7). Immunization of guinea pigs with Ag85b ESAT6-Rv2660c fusion protein prolongs survival time to the level of BCG immunized 10 animals after low-dose aerosol M. tuberculosis challenge. Figure 9. Figure 9. : Hybrid56 (Ag85b-ESAT6-Rv2660c) induced immunogenicity and protection. F1(Balb/cxC57BL/6) mice were subcutaneously vaccinated three times at two-week intervals 15 with Ag85b-ESAT6-Rv2660c (Hybrid56) in DDA/MPL. Ten weeks after the final vaccination, spleen cells were analyzed by ELISA for INF-gamma secretion following stimulation with 0.2, 1, or 5 ug/ml Ag85B, ESAT6, or Rv2660c (as noted in figure 9A). Protective efficacy was assessed by reduction in CFU counts in lungs compared to adjuvant control immunized mice ten weeks after vaccination. Results are expressed as logio colony 20 forming units (CFU) in the lung from 12 mice per experimental group (figure 9B). EXAMPLES 25 Materials and methods Animals Female specific-pathogen-free C57BL/6xBalb/C F1 or C57BU6 mice, 8 to 16 weeks of age, obtained from Bomholtegaard, Denmark were used for analysis of immune responses and studies of protection as assessed by CFU analysis. Infection studies were performed in the 30 BSL3 facilities at Statens Serum Institute. Animals were housed in isolator cages and fed 1 water and sterile food ad libitum. All animals were allowed a 1-week rest period before initiation of experiments. Recombinant Antigen Preparations 5 Recombinant Ag85B-ESAT6 (Hybrid1) was produced as previously described (Olsen, van Pinxteren et al. 2001). Briefly, the His-tagged protein was expressed in Escherichia coli XL-1 Blue and purified on a Talon column followed by protein anion-exchange chromatography using a HiTrap Q column (Pharmacia, Uppsala, Sweden). The sample was dialyzed against 25 mM HEPES buffer (pH 8.0)-0.15 M NaCl-10% glycerol-0.01% Tween 20 before dilution 10 and storage. Recombinant Rv2660c was produced by the same procedure previously described for other small mycobacterial protein (Skjot, Oettinger et al. 2000). Briefly, the full-length Rv2660c gene was PCR-amplified from M. tuberculosis genomic DNA and subcloned into the 15 expression plasmid pDestl7. The recombinant protein was produced in Escherichia coli B121 blue and purified by metal ion affinity chromatography on a Ni+ column esentially as described previously (Theisen, Vuust et al. 1995) but with phosphate buffers containing 8 M urea, which was removed after the purification. 20 The Hybrid56 (Ag85B-ESAT6-Rv2660c), Hybrid32 (Ag85b-ESAT6-Rv2031c), HyVac21 (Ag85a-TB 10.4-Rv2660c) and HyVac28 (Ag85b-TB 10.4-Rv2660c) fusion proteins were cloned into expression vector pDestl7 (Invitrogen) by site-specific recombination according to the manufacturer. 25 The fusion proteins were expressed in E.coli strain BL21 after induction by IPTG. All four recombinant fusion proteins were collected as inclusion bodies after disruption of the cells by mild dertergent (B-PER, Sigma) and sonication. Washed inclusion bodies were dissolved in 20mM NaOAc + 8 M urea at pH 4.9 and passed over an Q sepharose column to capture endotoxin. The collected run-through was diluted in Bis-tris buffer + 8 M urea pH 6.5 and the 30 pH was adjusted to pH 6.5. The protein was then passed over a CM sepharose to capture impurities and then captured on a Q sepharose column. The column was washed with bis-tris 32 buffer pH 6.5 + 3 M urea. Bound proteins were eluted with NaCl. The protein was then buffer exchanged on af Sephadex column to 25 mM tris-HCl pH 8 and 10 % glycerol. Human recognition - serology 5 All sera were depleted of cross-reactive antibodies prior to use in ELISA by addition of 20 1fl of E. coli extract (S3761, Promega, Madison, WI) to 200 p1 serum sample followed by incubation for 4 hours at room temperature while mixing. After centrifugation (10.000 x g, 10 min), 0.05 % sodium azide was added to the supernatant. The ELISA was performed as folows, 96-well Maxisorp (Nunc, Roskilde, Denmark) microtiter plates were coated over 10 night at 4'C with antigen at 1.0 tg/ml (100 1tl per well) in carbonate-bicarbonate buffer (pH 9.6). Plates were then washed 3 times with PBS containing 0.05 % Tween 20 (PBS-T). Serum samples were diluted 1:100 in PBS containing 0.2 % Tween 20 and 1.0 % (wt/vol) bovine serum albumin (dilution buffer), and 0.1 ml of diluted serum was added to the wells in duplicate, and incubated for one hour at room temperature. After washings 3x with PBS-T, 15 plates were incubated for one hour with 100 ul Peroxidase conjugated rabbit-anti-human Ig (P212, DAKO, Glostrup, Denmark) diluted 1:8000 in dilution buffer. Plates were washed 3 times with PBS-T and incubated with Tetramethylbenzidine substrate (TMB plus, Kem-En Tec, ***, Denmark) for 30 minutes, and the development was stopped by addition of 1 M
H
2
SO
4 . Optical density at 405 nm (OD 40 5 ) was then measured. 20 Vaccine preparation and immunization procedure Mice were immunized with 5 micro g recombinant vaccine (either Rv2659c, Rv2660c, Hybrid56, HyVac2l, HyVac28 or Hybrid32) delivered in 25 pg monophosphoryl lipid A (MPL, Corixa, WA, USA) emulsified in dioctadecylammonium bromide (DDA, 250pg/dose, 25 Eastman Kodak, Inc., Rochester, N.Y.) in a total volume of 200 pl, as recently described (Olsen, van Pinxteren et al. 2001). The vaccines (0.2 ml/mice) were injected three times subcutaneously (s.c.) on the back with 2-week intervals. A single dose of BCG Danish 1331 (5x10 4 bacilli/mouse) was injected s.c. at the base of the tail at the same time as the first subunit vaccination; no booster injections were administered. The prechallenge immunity was 30 typically evaluated with blood lymphocytes 5 and 7 weeks after the first vaccination and splenocytes 7 weeks after first vaccination.
Experimental infections and bacterial enumeration in organs To evaluate the level of protection, mice were challenged 10 weeks after the first immunization either by the aerosol route in a Glas-Col inhalation exposure system, calibrated to deliver approximately 100 CFU of M. tuberculosis Erdman per lung. Mice were sacrificed 5 2, 6, 12 or 24 weeks later (Hybrid56), or 7, 13, 24, 35 or 44 weeks later (Hybrid32), and lungs and spleens were removed for bacterial enumeration. The organs were homogenized separately in sterile saline, and serial dilutions were plated onto Middlebrook 7H1 1 agar supplemented with 2 mg of 2-thiophene-carboxylic acid hydrazide per ml to selectively inhibit the growth of residual BCG in the test organs. Colonies were counted after 2 to 3 10 weeks of incubation at 37 0 C. Lymphocyte Cultures Organs were homogenized by maceration through a fine mesh stainless steel sieve into complete RPMI (GIBCO, Grand Island, NY, including 2 mM glutamine, 100 U/ml each of 15 penicillin 6-potassium and streptomycin sulphate, 10% FCS and 50 mM 2-ME). Blood lymphocytes were purified on a density gradient lympholyte (Cedarlane, Homby, Ontario, Canada). Cells were pooled from five mice in each group and cultured in triplicate in round-bottomed microtiter wells (96 well; Nunc, Roskilde, Denmark) containing 2x10 5 cells in a volume of 200 microl of RPMI 1640 medium supplemented with 5x10- 5 M 2 20 mercaptoethanol, 1 mM glutamine, penicillin-streptomycin 5% (vol/vol) fetal calf serum. The mycobacterial antigens were used in concentrations ranging from 5 to 0.2 mg/ml. Cultures were incubated at 37 0 C in 10% C02 for 3 days, before the removal of 100plI of supernatant for gamma interferon (IFN-gamma determination by enzyme-linked immunosorbent assay (ELISA) as described below. 25 Enzyme-Linked Immunosorbent Assay (ELISA) for IFN-gamma A double sandwich ELISA method was used to quantify the levels of IFN-gamma in duplicate titrations of culture supernatants, using a commercial kit for IFN- gamma assay, in accordance with the manufacturer's instructions (Mabtech, AB. Sweden). Concentrations of IFN- gamma 30 in the samples were calculated using a standard curve generated from recombinant IFN 34 gamma (Life Technologies) and results are expressed in pg/ml. The difference between the duplicate wells was consistently less than 10% of the mean. Experimental infection and vaccine efficacy evaluation in the guinea pig model. 5 Outbred female Hartley guinea pigs purchased from Charles River Laboratories (North Wilmington, Mass.) was given either BCG intradermally at a dose of 10 3 CFU once or 20 pg of either Ag85b-ESAT6 or Ag85b-ESAT6-Rv2660c emusified in DDA/MPL three times with a rest period of 3 weeks between immunizations. Six weeks after third immunization an 10 aerosol MTB challenge was given using a device (Glas-Col, Terre Haute, Ind.) calibrated to deliver approximately 20 bacilli into each guinea pig lung. Survival times for infected guinea pigs were determined by observing animals on a daily basis for changes in food consumption, evidence of labored breathing, and behavioral changes. In addition, animals were weighed on a weekly basis until a sustained drop in weight was observed over several days, indicating 15 illness. 20 Example 1 Human recognition of a starvation induced antigen Rv2660c was evaluated for human recognition in a panel of pulmonary TB patients from Uganda provided by the WHO Tuberculosis Specimen Bank. Both patients with negative and 25 positive HIV infection status were included (N=94 and N=73, respectively). The control group consisted of one hundred healthy, Danish resident donors with an estimated BCG coverage >90 %. Microtiter plates were coated with 1.0 tg/ml (100 tl per well) Rv2660c protein incubated 30 with 100 x diluted serum samples and developed using peroxidase conjugated rabbit-anti human Ig and tetramethylbenzidine as substrate (results in Fig 1). 35 Conclusion In this study, the recognition of a starvation-induced protein was tested. Based upon a cutoff determined from the control group using a sensitivity of 97 % if was possible to confirm the TB infection in 45 % of the HIV- cases and 61 % of the HIV+ cases. Clearly indicating that 5 the RV2660c protein is expressed and recognized by the immune system during a MTB infection. Example 2 10 Immunogenicity and prevention of reactivation by post-exposure administration of a starvation induced antigen (Rv2659c) Mice were infected with M. tuberculosis and treated with antibiotics to reduce the bacterial burden and enter a stage of latent infection with a bacterial burden close to detection level. During the latent stage of infection the mice were vaccinated three times at two-week 15 intervals with Rv2659c in adjuvant (e.g. DDA/MPL). One week after the final vaccination, blood cells are analyzed by ELISA for INF-gamma secretion following stimulation with Rv2659c (figure 2). The ability of the starvation induced protein Rv2659c to induce protection against reactivation 20 of M. tuberculosis Groups of mice with latent M. tuberculosis were subcutaneously vaccinated three times at two-week intervals with Rv2659c formulated in adjuvant (e.g. DDA/MPL) and protective efficacy were assessed by reduction in colony forming units (CFU) from lungs and spleens when compared to non-vaccinated (latently infected) mice. Protection against reactivation was 25 evaluated three months after vaccination. Rv2659c induced a 3 to 90 fold reduction in pulmonary bacterial levels compared to reactivated unimmunized latently infected mice (figure 3). To evaluate the influence of the Rv2659c vaccination on the possible development of pathology in the latently infected mice, lung tissue was taken from latently infected vaccinated mice for histopathological examination. No significant caseous necrosis, fibrosis 30 or mineralisation was detected in the lesions and no enhanced infiltation of inflammatory cells was seen. 36 Conclusion In this study, the potential of a starvation induced protein, Rv2659c as a therapeutic vaccine was tested. When the Rv2659c protein was administered to mice in the adjuvant combination dimethyldioctadecylammonium bromide-monophosphoryl lipid A, a strong immune response 5 was induced / boosted. The immunization resulted in 0.5-1.0 log reduction in the bacterial burden in the lung. Thus our studies suggest that post-exposure vaccination reduces or delays reactivation of M. Tuberculosis without triggering pulmonary immunopathology. 10 Example 3 Immunogenicity and protection against aerosol M. tuberculosis infection by the starvation induced antigen Rv2660c Mice were vaccinated three times at two-week intervals with Rv2660c in adjuvant (e.g. 15 DDA/MPL). One week after the final vaccination, blood cells are analyzed by ELISA for INF-gamma secretion following stimulation with Rv2660c (figure 4A). Three weeks after final vaccination spleen cells are analysed for IFN gamma secretion following stimulation with Rv2660c (figure 4B) and blood cells are analysed for antigen specific proliferative responses (figure 4C) 20 Groups of mice subcutaneously vaccinated three times at two-week intervals with Rv2660c formulated in adjuvant (e.g. DDA/MPL) were challenged by aerosol infection with M. tuberculosis and the protective efficacy was assessed by reduction in colony forming units (CFU) isolated from lungs when compared to non-vaccinated mice. Protection was evaluated 25 12 weeks after vaccination. Rv2660c induced log(10) reduction in pulmonary bacterial levels compared to unimmunized infected mice (figure 5). Conclusion In this study, the potential of a starvation induced protein, Rv2660c as a vaccine antigen was 30 tested. When the Rv2660c protein was administered to mice in the adjuvant combination dimethyldioctadecylammonium bromide-monophosphoryl lipid A, a strong immune response 37 was induced. The immunization resulted in approximately 0.5 log (10) reduction in the bacterial burden in the lung. 5 Example 4 Fusion of starvation induced antigens to preventive vaccines (Multiphase vaccine) Immunological responses after immunization with triple fusion proteins Groups of mice are subcutaneously vaccinated two times at two-week intervals with the 10 fusion polypeptides Hybrid56, HyVac21 or HyVac28 in adjuvant (e.g. DDA/MPL). One week after the final vaccination, blood cells are analyzed for INF-gamma secretion following stimulation with 1 microgram/ml immunisation fusion protein or the single components in the fusion proteins (figure 6A-C). Three weeks after the final vaccination with Hybrid56, spleen cells are analyzed by ELISA for INF-gamma secretion following stimulation with 0.2, 15 1, or 5 microgram/ml of the single components in the fusion protein (figure 6D). Blood cells are analysed for antigen specific proliferative responses three weeks after final vaccination (Figure 6E), The ability of three fusion polypeptides to induce protection against infection with M. 20 tuberculosis in mice Groups of mice are subcutaneously vaccinated three times at two-week intervals with the fusion polypeptides Hybrid1, Hybrid56 and Hybrid32 in adjuvant (DDA/MPL) and protective efficacy are assessed by reduction in colony forming units (CFU) from lungs and spleens when compared to naive (non-vaccinated) mice after aerosol infection. As a positive control 25 for protection, a single dose of BCG Danish 1331 (5x104 bacilli/mouse) is injected s.c. at the base of the tail at the same time as the first subunit vaccination (Figure 7A and B). Protective ability of the polypeptide Hybrid56 (Ag85b-ESAT6-Rv2660c) against an aerosol M. tuberculosis infection in guinea pigs 30 Groups of guinea pigs are subcutaneously vaccinated three times at three-week intervals with the fusion polypeptide in adjuvant (e.g. DDA/MPL) and protective efficacy are primarily assessed by measuring each animals weigh on a weekly basis. As a positive control for protection, a single dose of BCG Danish 1331 (5x104 bacilli/mouse) is injected i.d. at the same time as the first subunit vaccination. Results are presented as survival curves in figure 8. Conclusion 5 In this study the immunological potential of three fusion proteins (Hybrid56, HyVac21 and HyVac28) were investigated. When the fusion proteins were administered to mice in the adjuvant combination dimethyl dioctadecylammonium bromide-monophosphoryl lipid A, a strong dose-dependent immune response was induced to all three single protein components indicating its potential as a multi-phase vaccin. Selecting Hybrid56 as an example the immune 10 responses induced were accompanied by high levels of protective immunity that increase with time, reaching a level that was clearly above the protection level reached with Mycobacterium bovis BCG, the classical MTB vaccine. Further, a similar triple fusion protein containing the classical MTB latency antigen Rv2031c (Ag85b-ESAT6-Rv2O31c) replacing Rv2660c, did not show improved protection over time. Finally, the high level of protection for Hybrid56 15 was confirmed in the much more succeptibel guinea pig model. Example 5 Activity of a fusion of a starvation induced antigen and a preventive vaccine (Multiphase 20 vaccine) administered post exposure (therapeutically). Mice were infected with M. tuberculosis and treated with antibiotics to reduce the bacterial burden and enter a stage of latent infection with a low bacterial burden. During the latent stage of infection the mice were vaccinated three times at two-week intervals with the fusion 25 polypeptide in adjuvant (e.g. DDA/MPL). Fifteen weeks after the final vaccination, blood cells are analyzed by ELISA for INF-gamma secretion following stimulation with 0.2, 1, or 5 ug/ml of single components of the fusion protein. (figure 9A). 39 The ability of the fusion polypeptide to induce protection against reactivation of M. tuberculosis Groups of mice with latent M. tuberculosis were subcutaneously vaccinated three times at 5 two-week intervals with the fusion polypeptide formulated in adjuvant (e.g. DDA/MPL) and protective efficacy were assessed by reduction in colony forming units (CFU) from lungs when compared to non-vaccinated (latently infected) mice. Protection against reactivation was evaluated three months after vaccination. The fusion polypeptide induced a significant reduction of reactivation resulting in reduced pulmonary bacterial levels compared to 10 reactivated unimmunized latently infected mice (figure 9B). Conclusion In this study, the potential of a tuberculosis subunit vaccine based on a fusion protein of the antigens Rv2660c, ESAT6 (Rv3875) and antigen 85B (Rv1886c) as a therapeutic vaccine was 15 investigated. When fusion protein was administered to mice in the adjuvant combination dimethyldioctadecylammonium bromide-monophosphoryl lipid A, a strong immune response was induced / boosted. The immunization resulted in a reduction in the bacterial burden in the lung during reactivation of latent infection. Thus our studies suggest that post-exposure vaccination with fusion of a starvation induced antigen and a preventive vaccine (Multiphase 20 vaccine) reduces or delays reactivation of M. tuberculosis. Any description of prior art documents herein is not an admission that the documents form part of the common general knowledge of the relevant art in Australia. 25 Throughout this specification the word "comprise", or variations such as "comprises" or comprisingg, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. 40 REFERENCES Andersen, P., and Heron, I. 1993 J. Immunol. Methods 161 29-39 Andersen, P. et al 1991. Infect. Immun. 59:1905-1910 5 Betts J. C. et al 2002. Mol Microbiol. 43:717-731 Brandt, L., et al. 2000 Infect.Immun. 68:2; 791-795. Brooks, J.V., Frank, A.A., Keen, M.A., Bellisle, J.T. & Onne, I.M. Infect Immun 2001, 69(4), 2714-2717. Colditz, G.A., Brewer, T.F., Berkey, C.S. et al. JAMA 1994, 271, 698-702 10 Cole, S.T et al 1998 Nature 393: 537-544 Cote-Sierra J, et al 1998, Gene Oct 9;221(1):25-34 Gosselin et al., (1992) J. Immunol. 149: 3477-3481 Harboe, M., et al 1998 Infect. Immun. 66:2; 717-723 Lowry, D.B. et al 1999, Nature 400: 269-71 15 Lyashchenko, K.P., et al 2000. J Immunological Methods 242: 91-100 Nagai et al 1991, Infect. Immun 59:1; 372-382 Danish Patent application PA 2000 00666 " Nucleic acid fragments and polypeptide fragments derived from M. tuberculosis" Danish Patent application PA 1999 01020 (WO 01/23388) "Tuberculosis vaccine and 20 diagnostic based on the Mycobacterium tuberculosis esat-6 gene family". Patent application US 09/0505,739 "Nucleic acid fragments and polypeptide fragments derived from M. tuberculosis" Pollock. J., et al, 2000. The Veterinary record, 146:659-665 Rolph, M.S, and I. A. Ramshaw. 1997. Curr.Opin.Immunol.9:517-24 25 Rosenkrands, I., et al 1998, Infect. Immun 66:6; 2728-2735 Sambrook et al Molecular Cloning; A laboratory manual, Cold Spring Harbor Laboratories, NY, 1989 Sherman, D. R. et al. 2001 Proc Natl Acad Sci U S A 98: 7534-7539 Skjet, R.L.V., et al 2000, Infect. Immun 68:1; 214-220 30 Stryhn, A., et al 1996 Eur. J. Immunol. 26:1911-1918 Thompson J., et al Nucleic Acids Res 1994 22:4673-4680 Ulmer J.B et al 1993, Curr. Opin. Invest. Drugs 2(9): 983-989 41 Olsen A.W et al, Eur J Immunol. 2000 Jun; 30(6):1724-32 Olsen, A. W., L. A. van Pinxteren, et al. (2001) Infect Immun 69(5): 2773-8. Theisen, M., J. Vuust, et al. (1995) Clin Diagn Lab Immunol 2(1): 30-4. Ravn, P. et al 1999. J.Infect.Dis. 179:637-645 5 Kilgus J et al, J Immunol. 1991 Jan 1;146(1):307-15 Sinigaglia F et al. Nature 1988 Dec 22-29;336(6201):778-80 Pearson W.R and D.J. Lipman (1988) PNAS USA 85:2444-2448 Kohler and Milstein, Nature, 256:495 (1975) McCafferty et al, Nature, 348:552-554 (1990) 10 Merrifield, R. B. Fed. Proc. Am. Soc. Ex. Biol. 21: 412, 1962 and J. Am. Chem. Soc. 85: 2149, 1963 Mowat et al 1991, Immunology 72(3):317-22 Lustig et al 1976, Cell Immunol 24(1):164-72 42

Claims (19)

1. An immunogenic composition, a vaccine or a pharmaceutical composition comprising a fusion polypeptide comprising one or more starvation induced antigens or one or more 5 fragments of polypeptides selected from SEQ ID NO. 2, 4, ,6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74, 76, 78, 80, 82, 84 and 86.
2. An immunogenic composition, a vaccine or a pharmaceutical composition comprising 10 a fusion polypeptide according to claim 1, where the starvation induced polypeptides or fragments of polypeptides are fused to ESAT6, Ag85B, TB 10.4 and Ag85A, or analogues thereof, and in any combination and order of position.
3. An immunogenic composition, a vaccine or a pharmaceutical composition as defined 15 in any of claims 1-2 for prophylactic use, therapeutic use, a multiphase vaccine, or to be used to boost immunity from prior BCG vaccination.
4. An immunogenic composition, a vaccine or a pharmaceutical composition as defined in any of claims 1-3 which is to be administered intradermally, transdermally, 20 subcutaneously, intramuscularly or mucosally.
5. An immunogenic composition, a vaccine or a pharmaceutical composition as claimed in claim 2 where the fusion polypeptide comprises 2 different immunogenic polypeptides or analogues thereof. 25
6. An immunogenic composition, a vaccine or a pharmaceutical composition as claimed in claim 2 where the fusion polypeptide comprises 3 different immunogenic polypeptides or analogues thereof. 30
7. An immunogenic composition, a vaccine or a pharmaceutical composition as claimed in claim 2 where the fusion polypeptide comprises 4 different immunogenic polypeptides or analogues thereof. 43
8. An immunogenic composition, a vaccine or a pharmaceutical composition according to any of the preceding claims, comprising fusion polypeptides with combinations of ESAT6 Ag85A-X, ESAT6-Ag85B-X, Ag8A-X, Ag85B-X, TB1O-Ag85A-X, TB1O-Ag85B-X where 5 X is any of the starvation induced antigens and where the order of the units of antigens can be of any combination e.g. where the order is reversed or X is positioned in the middle.
9. An immunogenic composition, a vaccine or a pharmaceutical composition according to claim 9, which comprises an amino acid sequence, selected from the amino acid sequences 10 encoding the following fusion polypeptides: Ag85B-ESAT6-Rv2660c; Ag85B-ESAT6-Rv2659c; Ag85B-TB 10.4-Rv2660c; Ag85B-TB 10.4-Rv2659c; 15 Ag85B-Rv2660c; Ag85B-Rv2659c; Ag85A-Rv2660c; Ag85A-Rv2659c Ag85A-ESAT6-Rv2660c; 20 Ag85A-ESAT6-Rv2659c; Ag85A-TB 10.4-Rv2660c; Ag85A-TB 10.4-Rv2659c; Rv2660c-Rv2659c; Ag85B-ESAT6-Rv2660c-Rv2659c; 25 in any order of the polypeptide units, or analogues thereof.
10. A fusion polypeptide as described in any preceding claim.
11. A vaccine or pharmaceutical composition comprising a nucleic acid fragment, which 30 comprises a nucleotide sequence encoding a fusion polypeptide according to any of the preceding claims. 44
12. A vaccine or pharmaceutical composition according to claim 11 for prophylactic use, therapeutic use or both, a multiphase vaccine, or to be used to boost immunity from prior BCG vaccination. 5
13. A vaccine or pharmaceutical composition comprising a nucleic acid fragment, which comprises a nucleotide sequence encoding a fusion polypeptide according to any of the preceding claims.
14. An immunogenic composition, a vaccine or a pharmaceutical composition comprising 10 one or more starvation induced antigens or one or more fragments of polypeptides selected from SEQ ID NO. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84 and 86.
15. An immunogenic composition, a vaccine or a pharmaceutical composition according 15 to claim 15, for prophylactic use, therapeutic use, a multiphase vaccine, or to be used to boost immunity from prior BCG vaccination.
16. An immunogenic composition, a vaccine or a pharmaceutical composition as defined in any of claims 15-16 which is to be administered intradermally, transdermally, 20 subcutaneously, intramuscularly or mucosally.
17. A vaccine or pharmaceutical composition comprising a nucleic acid fragment, which comprises a nucleotide sequence encoding a starvartion induced antigen or fragment hereof. 25
18. A method for immunising an animal, the method comprising administering to the animal the immunogenic composition, vaccine or pharmaceutical composition according to any of the preceding claims.
19. A method for treating an animal, having active or latent tuberculosis caused by a 30 virulent mycobacterium, the method comprising administering to the animal the immunogenic composition, vaccine or pharmaceutical composition according to any of the preceding claims. 45 DATED this THIRTEENTH day of JUNE, 2013 Statens Serum Institut By patent attorneys for the applicant: 5 FB Rice 46
AU2013206297A 2005-06-23 2013-06-13 Tuberculosis vaccines comprising antigens expressed during the latent infection phase Abandoned AU2013206297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013206297A AU2013206297A1 (en) 2005-06-23 2013-06-13 Tuberculosis vaccines comprising antigens expressed during the latent infection phase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200500924 2005-06-23
DKPA200501393 2005-10-05
AU2011203012A AU2011203012A1 (en) 2005-06-23 2011-06-21 Tuberculosis vaccines comprising antigens expressed during the latent infection phase
AU2013206297A AU2013206297A1 (en) 2005-06-23 2013-06-13 Tuberculosis vaccines comprising antigens expressed during the latent infection phase

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2011203012A Division AU2011203012A1 (en) 2005-06-23 2011-06-21 Tuberculosis vaccines comprising antigens expressed during the latent infection phase

Publications (1)

Publication Number Publication Date
AU2013206297A1 true AU2013206297A1 (en) 2013-07-04

Family

ID=45419856

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2011203012A Abandoned AU2011203012A1 (en) 2005-06-23 2011-06-21 Tuberculosis vaccines comprising antigens expressed during the latent infection phase
AU2013206297A Abandoned AU2013206297A1 (en) 2005-06-23 2013-06-13 Tuberculosis vaccines comprising antigens expressed during the latent infection phase

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2011203012A Abandoned AU2011203012A1 (en) 2005-06-23 2011-06-21 Tuberculosis vaccines comprising antigens expressed during the latent infection phase

Country Status (1)

Country Link
AU (2) AU2011203012A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120411B (en) * 2022-12-07 2024-04-12 中国疾病预防控制中心传染病预防控制所 Mycobacterium tuberculosis protein antigen mixture, multi-antigen fusion protein, encoding gene and application

Also Published As

Publication number Publication date
AU2011203012A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
AU2006261445B2 (en) Tuberculosis vaccines comprising antigens expressed during the latent infection phase
US10519202B2 (en) Tuberculosis TB vaccine to prevent reactivation
EP1523331B1 (en) Therapeutic tb vaccine
US7037510B2 (en) Hybrids of M. tuberculosis antigens
AU779495B2 (en) Tuberculosis vaccine and diagnostics based on the mycobacterium tuberculosis esat-6 gene family
WO2005061534A2 (en) Improved tuberculosis vaccines
CN101248084B (en) Tuberculosis vaccines comprising antigens expressed during the latent infection phase
AU2013206297A1 (en) Tuberculosis vaccines comprising antigens expressed during the latent infection phase
AAGAARD et al. Sommaire du brevet 2612900
CIPO Prophylactic GP studies
AAGAARD et al. Sommaire du brevet 2836319
AAGAARD et al. Patent 2836319 Summary
AAGAARD et al. Patent 2612900 Summary

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted