AU2013200435A1 - Process for the production of fine chemicals - Google Patents
Process for the production of fine chemicals Download PDFInfo
- Publication number
- AU2013200435A1 AU2013200435A1 AU2013200435A AU2013200435A AU2013200435A1 AU 2013200435 A1 AU2013200435 A1 AU 2013200435A1 AU 2013200435 A AU2013200435 A AU 2013200435A AU 2013200435 A AU2013200435 A AU 2013200435A AU 2013200435 A1 AU2013200435 A1 AU 2013200435A1
- Authority
- AU
- Australia
- Prior art keywords
- nucleic acid
- acid molecule
- protein
- organism
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Abstract The present invention relates to a process for the production of the fine chemical in a micro organism, a plant cell, a plant, a plant tissue or in one or more parts thereof, preferably in plastids. The invention furthermore relates to nucleic acid molecules, polypeptides, nucleic acid constructs, vectors, antibodies, host cells, plant tissue, propagation material, harvested material, plants, micro-organisms as well as agricultural compositions and to their use.
Description
EDITORIAL NOTE 2013200435 There are 2848 pages of Description of which pages 1711 to 2848 are tables and these are available from our office on request.
Process for the production of fine chemicals [0001.0.0.0] The present invention relates to a process for the production of the fine chemical in a microorganism, a plant cell, a plant, a plant tissue or in one or more parts thereof, preferably in plastids. The invention furthermore relates to nucleic acid mole 5 cules, polypeptides, nucleic acid constructs, vectors, antibodies, host cells, plant tissue, propagation material, harvested material, plants, microorganisms as well as agricultural compositions and to their use. [0002.0.0.0] Amino acids are used in many branches of industry, including the food, animal feed, cosmetics, pharmaceutical and chemical industries. Amino acids such as 10 D,L-methionine, L-lysine or L-threonine are used in the animal feed industry. The es sential amino acids valine, leucine, isoleucine, lysine, threonine, methionine, tyrosine, phenylalanine and tryptophan are particularly important for the nutrition of humans and a number of livestock species. Glycine, L-methionine and tryptophan are all used in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, 15 proline, serine and alanine are used in the pharmaceutical and cosmetics industries. Threonine, tryptophan and D,L-methionine are widely used feed additives (Leuchten berger, W. (1996) Amino acids - technical production and use, pp. 466-502 in Rehm et al., (Ed.) Biotechnology vol. 6, chapter 14a, VCH Weinheim). Moreover, amino acids are suitable for the chemical industry as precursors for the synthesis of synthetic amino 20 acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5 hydroxytryptophan and other subtances described in Ullmann's Encyclopedia of Indus trial Chemistry, vol. A2, pp. 57-97, VCH Weinheim, 1985. [0003.0.0.0] Over one million tonnes of amino acids are currently produced annually; their market value amounts to over 2.5 billion US dollars. They are currently produced 25 by four competing processes: Extraction from protein hydrolysates, for example L cystine, L-leucine or L-tyrosine, chemical synthesis, for example of D,L-methionine, conversion of chemical precursors in an enzyme or cell reactor, for example L phenylalanine, and fermentative production by growing, on an industrial scale, bacteria which have been developed to produce and secrete large amounts of the desired 30 molecule in question. An organism, which is particularly suitable for this purpose is Corynebacterium glutamicum, which is used for example for the production of L-lysine or L-glutamic acid. Other amino acids which are produced by fermentation are, for ex ample, L-threonine, L-tryptophan, L-aspartic acid and L-phenylalanine.
2 [0004.0.0.0] The biosynthesis of the natural amino acids in organisms capable of producing them, for example bacteria, has been characterizied thoroughly; for a review of the bacterial amino acid biosynthesis and its regulation, see Umbarger, H.E. (1978) Ann. Rev. Biochem. 47: 533 - 606]. 5 [0005.0.0.0] It is known that amino acids are produced by fermentation of strains of coryneform bacteria, in particular Corynebacterium glutamicum. Due to their great im portance, the production processes are constantly being improved. Process improve ments can relate to measures regarding technical aspects of the fermentation, such as, for example, stirring and oxygen supply, or the nutrient media composition, such as, for 10 example, the sugar concentration during fermentation, or to the work-up to give the product, for example by ion exchange chromatography, or to the intrinsic performance properties of the microorganism itself. Bacteria from other genera such as Escherichia or Bacillus are also used for the production of amino acids. A number of mutant strains, which produce an assortment of desirable compounds from the group of the sulfur 15 containing fine chemicals, have been developed via strain selection. The performance properties of said microorganisms are improved with respect to the production of a par ticular molecule by applying methods of mutagenesis, selection and mutant selection. Methods for the production of methionine have also been developed. In this manner, strains are obtained which are, for example, resistant to antimetabolites, such as, for 20 example, the methionine analogues a-methylmethionine, ethionine, norleucine, N acetylnorleucine, S-trifluoromethylhomocysteine, 2-amino-5-heprenoitic acid, se lenomethionine, methionine sulfoximine, methoxine, 1-aminocyclopentanecarboxylic acid or which are auxotrophic for metabolites with regulatory importance and which produce sulfur-containing fine chemicals such as, for example, L-methionine. However, 25 such processes developed for the production of methionine have the disadvantage that their yields are too low for being economically exploitable and that they are therefore not yet competitive with regard to chemical synthesis. [0006.0.0.0] Zeh (Plant Physiol., Vol. 127, 2001: 792-802) describes increasing the methionine content in potato plants by inhibiting threonine synthase by what is known 30 as antisense technology. This leads to a reduced threonine synthase activity without the threonine content in the plant being reduced. This technology is highly complex; the enzymatic activity must be inhibited in a very differentiated manner since otherwise auxotrophism for the amino acid occurs and the plant will no longer grow. [0007.0.0.0] US 5,589,616 teaches the production of higher amounts of amino acids 35 in plants by overexpressing a monocot storage protein in dicots. WO 96/38574, 3 WO 97/07665, WO 97/28247, US 4,886,878, US 5,082,993 and US 5,670,635 are fol lowing this approach. That means in all the aforementioned intellectual property rights different proteins or polypeptides are expressed in plants. Said proteins or polypeptides should function as amino acid sinks. Other methods for increasing amino acids such as 5 lysine are disclosed in WO 95/15392, WO 96/38574, WO 89/11789 or WO 93/19190. In this cases speziell enzymes in the amino acid biosynthetic pathway such as the diphydrodipicolinic acid synthase are deregulated. This leads to an increase in the pro duction of lysine in the different plants. Another approach to increase the level of amino acids in plants is disclosed in EP-A-0 271 408. EP-A-0 271 408 teaches the 10 mutagenensis of plant and selection afterwards with inhibitors of certain enzymes of amino acid biosynthetic pathway. [0008.0.0.0] Methods of recombinant DNA technology have also been used for some years to improve Corynebacterium strains producing L-amino acids by amplifying indi vidual amino acid biosynthesis genes and investigating the effect on amino acid pro 15 duction. [0009.0.0.0] As described above, the essential amino acids are necessary for hu mans and many mammals, for example for livestock. L-methionine is important as methyl group donor for the biosynthesis of, for example, choline, creatine, adrenaline, bases and RNA and DNA, histidine, and for the transmethylation following the forma 20 tion of S-adenosylmethionine or as a sulfhydryl group donor for the formation of cys teine. Moreover, L-methionine appears to have a positive effect in depression. [0010.0.0.0] Improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. This is necessary since, for example, certain amino ac ids, which occur in plants are limited with regard to the supply of mammals. Especially 25 advantageous for the quality of foodstuffs and animal feeds is as balanced as possible an amino acid profile since a great excess of an amino acid above a specific concen tration in the food has no further positive effect on the utilization of the food since other amino acids suddenly become limiting. A further increase in quality is only possible via addition of further amino acids, which are limiting under these conditions. The targeted 30 addition of the limiting amino acid in the form of synthetic products must be carried out with extreme caution in order to avoid amino acid imbalance. For example, the addition of an essential amino acid stimulates protein digestion, which may cause deficiency situations for the second or third limiting amino acid, in particular. In feeding experi ments, for example casein feeding experiments, the additional provision of methionine, 4 which is limiting in casein, has revealed the fatty degeneration of liver, which could only be alleviated after the additional provision of tryptophan. [0011.0.0.0] To ensure a high quality of foods and animal feeds, it is therefore nec essary to add a plurality of amino acids in a balanced manner to suit the organism. 5 Accordingly, there is still a great demand for new and more suitable genes, which en code enzymes or regulators, which participate in the biosynthesis of amino acids and make it possible to produce certain amino acids specifically on an industrial scale with out unwanted byproducts forming. In the selection of genes for biosynthesis or regula tion two characteristics above all are particularly important. On the one hand, there is 10 as ever a need for improved processes for obtaining the highest possible contents of amino acids on the other hand as less as possible byproducts should be produced in the production process. [0012.0.0.0] It is an object of the present invention to develop an inexpensive proc ess for the synthesis of L-methionine. L-Methionine is with Lysin or threonine (depend 15 ing on the organism) one of the two amino acids, which are most frequently limiting. [0013.0.0.0] It was now found that this object is achieved by providing the process according to the invention described herein and the embodiments characterized in the claims. [0014.0.0.0] Accordingly, in a first embodiment, the invention relates to a process for 20 the production of a fine chemical, whereby the fine chemical is methionine. Accord ingly, in the present invention, the term "the fine chemical" as used herein relates to "methione". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising methionine. [0015.0.0.0] In one embodiment, the term "the fine chemical" means L-methionine. 25 Throughout the specification the term "the fine chemical" means L-methionine, its salts, ester or amids in free form or bound to proteins. In a preferred embodiment, the term "the fine chemical" means L-methionine in free form or its salts or bound to proteins. [0016.0.0.0] Accordingly, the present invention relates to a process for the production of methionine, which comprises 30 (a) increasing or generating the activity of a protein as shown in table 1l, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 1, column 5, in an organelle of a microorganism or plant, or 5 (b) increasing or generating the activity of a protein as shown in table II, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 1, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 5 (b) growing the organism under conditions which permit the production of the fine chemical, thus, methionine or fine chemicals comprising methionine, in said or ganism or in the culture medium surrounding the organism. [0017.0.0.0] In another embodiment the present invention is related to a process for the production of methionine, which comprises 10 (a) increasing or generating the activity of a protein as shown in table II, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 1, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table I, ap 15 plication no. 1, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 1, column 5, which are joined to a nucleic acid sequence encoding 20 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of methionine in said organism. [0017.1.0.0] In another embodiment, the present invention relates to a process for 25 the production of methionine, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 1, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or 30 (b) increasing or generating the activity of a protein as shown in table II, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table I, ap- 6 plication no. 1, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, methionine or fine chemicals comprising methionine, in said or 5 ganism or in the culture medium surrounding the organism. [0018.0.0.0] Advantagously the activity of the protein as shown in table 1l, application no. 1, column 3 encoded by the nucleic acid sequences as shown in table 1, application no. 1, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. 10 [0019.0.0.0] In principle the nucleic acid sequence encoding a transit peptide can be isolated from every organism such as microorganisms such as algae or plants con taining plastids preferably chloroplasts. A "transit peptide" is an amino acid sequence, whose encoding nucleic acid sequence is translated together with the corresponding structural gene. That means the transit peptide is an integral part of the translated pro 15 tein and forms an amino terminal extension of the protein. Both are translated as so called "preprotein". In general the transit peptide is cleaved off from the preprotein dur ing or just after import of the protein into the correct cell organelle such as a plastid to yield the mature protein. The transit peptide ensures correct localization of the mature protein by facilitating the transport of proteins through intracellular membranes. Pre 20 ferred nucleic acid sequences encoding a transit peptide are derived from a nucleic acid sequence encoding a protein finally resided in the plastid and stemming from an organism selected from the group consisting of the genera [0020.0.0.0] Acetabularia, Arabidopsis, Brassica, Capsicum, Chlamydomonas, Cururbita, Dunaliella, Euglena, Flaveria, Glycine, Helianthus, Hordeum, Lemna, Lolium, 25 Lycopersion, Malus, Medicago, Mesembryanthemum, Nicotiana, Oenotherea, Oryza, Petunia, Phaseolus, Physcomitrella, Pinus, Pisum, Raphanus, Silene, Sinapis, So lanum, Spinacea, Stevia, Synechococcus, Triticum and Zea. [0021.0.0.0] Advantageously such transit peptides, which are beneficially used in the inventive process, are derived from the nucleic acid sequence encoding a protein 30 selected from the group consisting of [0022.0.0.0] ribulose bisphosphate carboxylase/oxygenase, 5-enolpyruvyl shikimate-3-phosphate synthase, acetolactate synthase, chloroplast ribosomal protein CS17, Cs protein, ferredoxin, plastocyanin, ribulose bisphosphate carboxylase acti- 7 vase, tryptophan synthase, acyl carrier protein, plastid chaperonin-60, cytochrome c 55 2 , 22-kDA heat shock protein, 33-kDa Oxygen-evolving enhancer protein 1, ATP syn thase y subunit, ATP synthase 6 subunit, chlorophyll-a/b-binding proteinll-1, Oxygen evolving enhancer protein 2, Oxygen-evolving enhancer protein 3, photosystem I: P21, 5 photosystem I: P28, photosystem I: P30, photosystem I: P35, photosystem I: P37, glycerol-3-phosphate acyltransferases, chlorophyll a/b binding protein, CAB2 protein, hydroxymethyl-bi lane synthase, pyruvate-orthophosphate dikinase, CAB3 protein, plas tid ferritin, ferritin, early light-inducible protein, glutamate-1-semialdehyde aminotrans ferase, protochlorophyllide reductase, starch-granule-bound amylase synthase, light 10 harvesting chlorophyll a/b-binding protein of photosystem II, major pollen allergen Lol p 5a, plastid ClpB ATP-dependent protease, superoxide dismutase, ferredoxin NADP oxidoreductase, 28-kDa ribonucleoprotein, 31-kDa ribonucleoprotein, 33-kDa ribonu cleoprotein, acetolactate synthase, ATP synthase CFo subunit 1, ATP synthase CFO subunit 2, ATP synthase CFO subunit 3, ATP synthase CFO subunit 4, cytochrome f, 15 ADP-glucose pyrophosphorylase, glutamine synthase, glutamine synthase 2, carbonic anhydrase, GapA protein, heat-shock-protein hsp2l, phosphate translocator, plastid ClpA ATP-dependent protease, plastid ribosomal protein CL24, plastid ribosomal pro tein CL9, plastid ribosomal protein PsCL18, plastid ribosomal protein PsCL25, DAHP synthase, starch phosphorylase, root acyl carrier protein II, betaine-aldehyde dehydro 20 genase, GapB protein, glutamine synthetase 2, phosphoribulokinase, nitrite reductase, ribosomal protein L12, ribosomal protein L13, ribosomal protein L21, ribosomal protein L35, ribosomal protein L40, triose phosphate-3-phosphoglyerate-phosphate transloca tor, ferredoxin-dependent glutamate synthase, glyceraldehyde-3-phosphate dehydro genase, NADP-dependent malic enzyme and NADP-malate dehydrogenase. 25 [0023.0.0.0] More preferred the nucleic acid sequence encoding a transit peptide is derived from a nucleic acid sequence encoding a protein finally resided in the plastid and stemming from an organism selected from the group consisting of the species: [0024.0.0.0] Acetabularia mediterranea, Arabidopsis thaliana, Brassica campes tris, Brassica napus, Capsicum annuum, Chlamydomonas reinhardtii, Cururbita mo 30 schata, Dunaliella salina, Dunaliella tertiolecta, Euglena gracilis, Flaveria trinervia, Gly cine max, Helianthus annuus, Hordeum vulgare, Lemna gibba, Lolium perenne, Ly copersion esculentum, Malus domestica, Medicago falcata, Medicago sativa, Mesem bryanthemum crystallinum, Nicotiana plumbaginifolia, Nicotiana sylvestris, Nicotiana tabacum, Oenotherea hooker, Oryza sativa, Petunia hybrida, Phaseolus vulgaris, Phy 35 scomitrella patens, Pinus tunbergii, Pisum sativum, Raphanus sativus, Silene praten- 8 sis, Sinapis alba, Solanum tuberosum, Spinacea oleracea, Stevia rebaudiana, Synechococcus, Synechocystis, Triticum aestivum and Zea mays. [0025.0.0.0] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 5 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 1, columns 5 and 7. Most preferred nucleic 10 acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid 15 sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are 20 typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct 25 molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported 30 protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. 35 structural flexible amino acids such as glycine or alanine.
9 [0026.0.0.0] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 1, column 3 and its homologs as disclosed in table 1, application no. 1, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures 5 transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table 1l, application no. 1, column 3 and its homologs as disclosed in table 1, application no. 1, columns 5 and 7. 10 [0027.0.0.0] The term "organelle" according to the invention shall mean for exam ple "mitochondria" or preferably "plastid" (throughout the specification the "plural" shall comprise the "singular" and vice versa). The term "plastid" according to the invention are intended to include various forms of plastids including proplastids, chloroplasts, chromoplasts, gerontoplasts, leucoplasts, amyloplasts, elaioplasts and etioplasts pref 15 erably chloroplasts. They all have as a common ancestor the aforementioned pro plasts. [0028.0.0.0] Other transit peptides are disclosed by Schmidt et al. [J. Biol. Chem., Vol. 268, No. 36, 1993: 27447 - 27457], Della-Cioppa et al. [Plant. Physiol. 84, 1987: 965 - 968], de Castro Silva Filho et al. [Plant Mol. Biol., 30, 1996: 769 - 780], Zhao et 20 al. [J. Biol. Chem. Vol. 270, No. 11, 1995: 6081 - 6087], Rbmer et al. [Biochem. Biophys. Res. Commun., Vol. 196, No. 3, 1993 : 1414 - 1421], Keegstra et al. [Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 1989: 471 - 501], Lubben et al. [Photosynthesis Res., 17, 1988: 173 - 194] and Lawrence et al. [J. Biol. Chem., Vol. 272, No. 33, 1997: 20357 - 20363]. A general review about targeting is disclosed by Kermode Allison R. in 25 Critical Reviews in Plant Science 15 (4): 285 - 423 (1996) under the title "Mechanisms of Intracellular Protein Transport and Targeting in Plant Cells." [0029.0.0.0] Favored transit peptide sequences, which are used in the inventive process and which forms part of the inventive nucleic acid sequences are generally enriched in hydroxylated amino acid residues (serine and threonine), with these two 30 residues generally constituting 20 - 35 % of the total. They often have an amino terminal region empty of Gly, Pro, and charged residues. Furthermore they have a number of small hydrophobic amino acids such as valine and alanine and generally acidic amino acids are lacking. In addition they generally have a middle region rich in Ser, Thr, Lys and Arg. Overall they have very often a net positive charge.
10 [0030.0.0.0] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a 5 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences 10 derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more 15 preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, golgi complex, glyoxysomes, peroxisomes or mitochondria may be 20 also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 1, columns 5 and 7. The person skilled in the art is able to join 25 said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 1, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 30 protein metioned in table II, application no. 1, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 1, col umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in 35 front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino 11 acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 1, columns 5 and 7. Furthermore the 5 skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.0.0] Table V: Examples of transit peptides disclosed by von Heijne et al. Trans Organism Transit Peptide SEQ ID Reference Pep NO: 1 Acetabularia MASIMMNKSVVLSKECAKPLATPK 14590 Mol. Gen. mediterranea VTLNKRGFATTIATKNREMMVWQP Genet. FNNKMFETFSFLPP 218:445 452(1989) 2 Arabidopsis MAASLQSTATFLQSAKIATAPSRG 14601 EMBO J. thaliana SSHLRSTQAVGKSFGLETSSARLT 8:3187 CSFQSDFKDFTGKCSDAVKIAGFA 3194(1989) LATSALVVSGASAEGAPK 3 Arabidopsis MAQVSRICNGVQNPSLICNLSKSS 14602 Mol. Gen. thaliana QRKSPLSVSLKTQQHPRAYPISSS Genet. 210: WGLKKSGMTLIGSELRPLKVMSSV 437 - 442 STAEKASEIVLQPIREISGLIKLP (1987) 4 Arabidopsis MAAATTTTTTSSSISFSTKPSPSS 14603 Plant thaliana SKSPLPISRFSLPFSLNPNKSSSS Physiol. SRRRGIKSSSP SS ISAVLNTTTNV 85:1110 TTTPSPTKPTKPETF ISRFAPDQP 1117 RKGA (1987) 5 Arabidopsis MITSSLTCSLQALKLSSPFAHGST 14604 J. Biol. thaliana PLSSLSKPNSFPNHRMPALVPV Chem. 2652763 2767 (1990) 12 Trans Organism Transit Peptide SEQ ID Reference Pep NO: 6 Arabidopsis MASLLGTSSSAIWASPSLSSPSSK 14605 EMBO J. thaliana PSSSPICFRPGKLFGSKLNAGIQI 9:1337 RPKKNRSRYHVSVMNVATEINSTE 1346 QVVGKFDSKKSARPVYPFAAI (1990) 7 Arabidopsis MASTALSSAIVGTSFIRRSPAPISL 14606 Plant thaliana RSLPSANTQSLFGLKSGTARGG Physiol. 93: RVVAM 572-577 (1990) 8 Arabidopsis MAASTMALSSPAFAGKAVNLSPAA 14607 Nucl. Acids thaliana SEVLGSGRVTNRKTV Res. 14: 4051 4064 (1986) 9 Arabidopsis MAAITSATVTIPSFTGLKLAVSSK 14608 Gene 65: thaliana PKTLSTISRSSSATRAPPKLALKS 59-69 SLKDFGVIAVATAASIVLAGNAMA (1988) MEVLLGSDDGSLAFVPSEFT 10 Arabidopsis MAAAVSTVGAINRAPLSLNGSGSG 14591 Nucl. Acids thaliana AVSAPASTFLGKKVVTVSRFAQSN Res. 17: KKSNGSFKVLAVKEDKQTDGDRWR 2871 GLAYDTSDDQIDI (1989) 11 Arabidopsis MkSSMLSSTAWTSPAQATMVAPF 14592 Plant Mol. thaliana TGLKSSASFPVTRKANNDITSITS Biol. 11: NGGRVSC 745-759 (1988) 12 Arabidopsis MAASGTSATFRASVSSAPSSSSQL 14593 Proc. Nati. thaliana THLKSPFKAVKY TPLPS SRSKSSS Acad. Sci. FSVSCTIAKDPPVLMAAGSDPALW USA, 86: QRPDSFGRFGKFGGKYVPE 4604 4608 (1989) 13 Brassica MSTTFCSSVCMQATSLAATTRISF 14594 Nucl. Acids campestris QKPALVSTTNLSFNLRRSIPTRFS Res. 15: ISCAAKPETVEKVSKIVKKQLSLK 7197 DDQKVVAE (1987) 13 Trans Organism Transit Peptide SEQ ID Reference Pep NO: 14 Brassica MATTFSASVSMQATSLATTTRISF 14595 Eur. J. napus QKPVLVSNHGRTNLSFNLSRTRLSISC Biochem. 174: 287 295 (1988) 15 Chlamydomon MQALSSRVNIAAKPQRAQRLVVRA 14596 Plant Mol. as reinhardtii EEVKAAPKKEVGPKRGSLVK Biol. 12: 463 - 474 (1989) 16 Cucurbita mo- MAELIQDKESAQSAATAAAASSGY 14597 FEBS Lett. schata ERRNEPAHSRKFLEVRSEEELLSCIKK 238: 424 430 (1988) 17 Spinacea ol- MSTINGCLTSISPSRTQLKNTSTL 14598 J. Biol. eracea RPTFIANSRVNPSSSVPPSLIRNQ Chem. 265: PVFAAPAPIITPTL 105414 5417 (1990) 18 Spinacea ol- MTTAVTAAVSFPSTKTTSLSARCS 14599 Curr. eracea SVISPDKISYKKVPLYYRNVSATG Genet. 13: KMGPIRAQIASDVEAPPPAPAKVEKMS 517 - 522 (1988) 19 Spinacea ol- MTTAVTAAVSFPSTKTTSLSARSS 14600 eracea SVISPDKISYKKVPLYYRNVSATG KMGPIRA [0030.1.0.0] Alternatively to the targeting of the sequences shown in table II, ap plication no. 1, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 5 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 1, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 10 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation".
14 A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA 5 making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.0] For expression a person skilled in the art is familiar with different 10 methods to introduce the nucleic acid sequences into different organelles such as the preferred plastids. Such methods are for example disclosed by Pal Maiga (Annu. Rev. Plant Biol., 2004, 55: 289 - 313), Thomas Evans (WO 2004/040973), Kevin E. McBride et al. (US 5,455,818), Henry Daniell et al. (US 5,932,479 and US 5,693,507) and Jef frey M. Straub et al. (US 6,781,033). A preferred method is the transformation of micro 15 spore-derived hypocotyl or cotyledonary tissue (which are green and thus contain nu merous plastids) leaf tissue and afterwards the regeneration of shoots from said trans formed plant material on selective medium. As methods for the transformation bom barding of the plant material or the use of independently replicating shuttle vectors are well known by the skilled worker. But also a PEG-mediated transformation of the plas 20 tids or Agrobacterium transformation with binary vectors are possible. Useful markers for the transformation of plastids are positive selection markers for example the chloramphenicol-, streptomycin-, kanamycin-, neomycin-, amikamycin-, spectinomycin , triazine- and/or lincomycin-resistance genes. As additional markers named in the lit erature often as secondary markers, genes coding for the resistence against herbicides 25 such as phosphinothricin (= glufosinate, BASTA T M , Liberty T M , encoded by the bar gene), glyphosate (= N-(phosphonomethyl)glycine, Roundup Ready T M , encoded by the 5-enolpyruvylshikimaete-3-phosphate synthase gene = epsps), sulfonylurea (= Sta pleTM, encoded by the acetolactate synthase gene), imidazolinone [= IMI, imazethapyr, imazamox, Clearfield T M , encoded by the acetohydroxyacid synthase (AHAS) gene, also 30 known as acetolactate synthase (ALS) gene] or bromoxynil (= BuctrilTM, encoded by the oxy gene) or genes coding for antibiotics such as hygromycin or G418 are useful for further selection. Such secondary markers are useful in the case when most genome copies are transformed. In addition negative selection markers such as the bacterial cytosine deaminase (encoded by the codA gene) are also useful for the transformation 35 of plastids.
15 [0030.3.0.0] To increase the possibility of identification of transformants it is also diserable to use reporter genes other then the aforementioned resistance genes or in addition to said genes. Reporter genes are for example p-galactosidase-, p glucuronidase- (GUS), alkaline phosphatase- and/or green-fluorescent protein-genes 5 (GFP). [0030.4.0.0] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 1, columns 5 and 7 or active 10 fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 15 scribed from the sequences depicted in table I, application no. 1, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 1, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal 20 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10):943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of viroids that contain chloroplast localization signals include but are not limeted to ASBVd, 25 PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 1, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 1, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 1 columns 5 and 7 or a sequence encoding a pro 30 tein as depicted in table II, application no. 1 columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1;268(1):218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no.1, columns 5 and 7 are encoded by different 35 nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be incorpo- 16 rated by reference. WO 2004/040973 teaches a method, which relates to the transloca tion of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be expressed in the plant or plants cells, are split into nucleic acid fragments, which are introduced 5 into different compartments in the plant e.g. the nucleus, the plastids and/or mitochon dria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic 10 acid fragments to an intact mRNA encoding a functional protein for example as dis closed in table II, application no. 1, columns 5 and 7. [0030.5.0.0] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 1, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids 15 should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.0.0] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 1, columns 5 and 7 are introduced into an expression 20 cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.0] Comprises/comprising and grammatical variations thereof when used in 25 this specification are to be taken to specify the presence of stated features, integers, steps or components or groups thereof, but not to preclude the presence or addition of one or more other features, integers, steps, components or groups thereof. The term "Table I" used in this specification is to be taken to specify the content of Ta ble I A and Table I B. The term "Table II" used in this specification is to be taken to 30 specify the content of Table II A and Table II B. The term "Table I A" used in this speci fication is to be taken to specify the content of Table I A. The term "Table I B" used in this specification is to be taken to specify the content of Table I B. The term "Table II A" used in this specification is to be taken to specify the content of Table II A. The term "Table II B" used in this specification is to be taken to specify the content of Table II B.
17 In one preferred embodiment, the term "Table I" means Table I B. In one preferred em bodiment, the term "Table II" means Table II B. [0032.0.0.0] Preferably, this process further comprises the step of recovering the fine chemical, which is synthesized by the organism from the organism and/or from the cul 5 ture medium used for the growth or maintenance of the organism. The term "recover ing" means the isolation of the fine chemical in different purities, that means on the one hand harvesting of the biological material, which contains the fine chemical without further purification and on the other hand purities of the fine chemical between 5% and 100% purity, preferred purities are in the range of 10% and 99%. In one embodiment, 10 the purities are 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99%. [0033.0.0.0] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro 15 duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 1, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 1, column 3 or their combination can be achieved by joining the protein to a transit peptide. 20 [0034.0.0.0] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table II, application no. 1, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. 25 [0035.0.0.0] In accordance with the invention, the term "organism" as understood herein relates always to a non-human organism, in particular to an animal or plant or ganism or to a microorganism. Further, the term "animal" as understood herein relates always to a non-human animal. Preferably the term "organism" shall mean a non human organism such as a microorganism containing plastids such as algae or a plant. 30 [0036.0.0.0] The sequence of b2827 (Accession number PIR:SYECT) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "thymidylate synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "thymidylate 18 synthetase" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of methionine, in particular for increasing the amount of methionine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2827 protein is increased or gen 5 erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2827 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of YELO46C from Saccharomyces cerevisiae has been published in Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "L-threonine aldolase (Glyip) that catalyzes cleavage of L-allo-threonine and L-threonine to glycine. Accordingly, in one embodiment, the process of the present invention comprises the use of a "L 15 threonine aldolase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of methionine, in particular for increasing the amount of methionine in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a YELO46C protein is in creased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, pref 20 erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YELO46c protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR255C from Saccharomyces cerevisiae has been published in 25 Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "putative flavin-dependent monooxygenase" (Coq6p), which is involved in ubiquinone (Coenzyme Q) biosynthe sis; located on the matrix side of the mitochondrial inner membrane. Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative 30 flavin-dependent monooxygenase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of methionine, in particular for increasing the amount of methionine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a pu tative flavin-dependent monooxygenase is increased or generated, e.g. from Sac 35 charomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 19 YGR255C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR289C from Saccharomyces cerevisiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 5 (5287), 546-547, 1996, and its activity is being defined as a "maltose permease" (Mal 11p). Accordingly, in one embodiment, the process of the present invention com prises the use of a "maltose permease" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of methionine, in particular for increasing the amount of methionine in free or bound form in an organism or a part thereof, as men 10 tioned. In one embodiment, in the process of the present invention the activity of a mal tose permease is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a 15 YGR289C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YKR043C from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547 (1996) and Dujon et al., Nature 369 (6479), 371-378 (1994), and its activity has not being defined, It is a hypothetical ORF 20 (Ykr043cp). Accordingly, in one embodiment, the process of the present invention comprises the use of a YKR043C protein or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of methionine, in particular for increasing the amount of methionine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a 25 YKR043C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a YKR043C protein is increased or generated in a subcellular compartment of the organ 30 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR1 53C from Saccharomyces cerevisiae has been published in Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "acetyl-CoA synthetase" (Acs2p), which is involved in fatty acid biosynthesis. Accordingly, in one embodiment, 35 the process of the present invention comprises the use of a "acetyl-CoA synthetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of methionine, in particular for increasing the amount of methionine in free or bound form 20 in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a acetyl-CoA synthetase is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a YLR1 53C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.0.0] In one embodiment, the homolog of the b2827 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the 10 b2827 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b2827 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the b2827 is a homolog having said acitivity and being derived from Enterobacteriales. In one em bodiment, the homolog of the b2827 is a homolog having said acitivity and being de 15 rived from Enterobacteriaceae. In one embodiment, the homolog of the b2827 is a ho molog having said acitivity and being derived from Escherichia, preferably from Es cherichia coli. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR153C is a homolog having said activity and being derived from an eu 20 karyotic. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR1 53C is a homolog having said activity and being derived from Fungi. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR1 53C is a homolog having said activity and being derived from Ascomyceta. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, 25 YKR043C and/or YLR1 53C is a homolog having said activity and being derived from Saccharomycotina. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR1 53C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR1 53C is a homolog having said activity 30 and being derived from Saccharomycetales. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR153C is a homolog having said activity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YELO46C, YGR255C, YGR289C, YKR043C and/or YLR153C is a homolog hav ing said activity and being derived from Saccharomycetes.
21 [0038.0.0.0] Further homologs of the aforementioned proteins are described herein below. [0039.0.0.0] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 1, column 3" if its de novo activity, 5 or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 1, column 3, preferably in the event the nucleic acid sequences encoding said pro 10 teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 1, column 3, or which has at least 10% of the original 15 enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table II, application no. 1, column 3 of Saccharomyces cerevisiae. [0040.0.0.0] The terms "increased", "rised", "extended", "enhanced", "improved" or "amplified" relate to a corresponding change of a property in an organism, a part of an 20 organism such as a tissue, seed, root, leave, flower etc. or in a cell and are inter changeable. Preferrably, the overall activity in the volume is increased or enhanced in cases if the increase or enhancement is related to the increase or enhancement of an activity of a gene product, independent whether the amount of gene product or the specific activity of the gene product or both is increased or enhanced or whether the 25 amount, stability or translation efficacy of the nucleic acid sequence or gene encoding for the gene product is increased or enhanced. [0041.0.0.0] The terms "increase" relate to a corresponding change of a property an organism or in a part of an organism, such as a tissue, seed, root, leave, flower etc. or in a cell. Preferably, the overall activity in the volume is increased in cases the increase 30 relates to the increase of an activity of a gene product, independent whether the amount of gene product or the specific activity of the gene product or both is increased or generated or whether the amount, stability or translation efficacy of the nucleic acid sequence or gene encoding for the gene product is increased.
22 [0042.0.0.0] Under "change of a property" it is understood that the activity, expres sion level or amount of a gene product or the metabolite content is changed in a spe cific volume relative to a corresponding volume of a control, reference or wild type, in cluding the de novo creation of the activity or expression. 5 [0043.0.0.0] The terms "increase" include the change of said property in only parts of the subject of the present invention, for example, the modification can be found in compartment of a cell, like a organelle, or in a part of a plant, like tissue, seed, root, leave, flower etc. but is not detectable if the overall subject, i.e. complete cell or plant, is tested. Preferably, the increase is found cellular, thus the term "increase of an acitiv 10 ity" or "increase of a metabolite content" relates to the cellular increase compared to the wild typ cell. [0044.0.0.0] Accordingly, the term "increase" means that the specific activity of an enzyme as well as the amount of a compound or metabolite, e.g. of a polypeptide, a nucleic acid molelcule or of the fine chemical of the invention or an encoding mRNA or 15 DNA, can be increased in a volume. [0045.0.0.0] The terms "wild type", "control" or "reference" are exchangeable and can be a cell or a part of organisms such as an organelle like a chloroplast or a tissue, or an organism, in particular a microorganism or a plant, which was not modified or treated according to the herein described process according to the invention. Accord 20 ingly, the cell or a part of organisms such as an organelle like a chloroplast or a tissue, or an organism, in particular a microorganism or a plant used as wild typ, control or reference corresponds to the cell, organism or part thereof as much as possible and is in any other property but in the result of the process of the invention as identical to the subject matter of the invention as possible. Thus, the wild type, control or reference is 25 treated identically or as identical as possible, saying that only conditions or properties might be different which do not influence the quality of the tested property. [0046.0.0.0] Preferably, any comparison is carried out under analogous conditions. The term "analogous conditions" means that all conditions such as, for example, cul ture or growing conditions, assay conditions (such as buffer composition, temperature, 30 substrates, pathogen strain, concentrations and the like) are kept identical between the experiments to be compared. [0047.0.0.0] The "reference", "control", or "wild type" is preferably a subject, e.g. an organelle, a cell, a tissue, an organism, in particular a plant or a microorganism, which 23 was not modified or treated according to the herein described process of the invention and is in any other property as similar to the subject matter of the invention as possible. The reference, control or wild type is in its genome, transcriptome, proteome or meta bolome as similar as possible to the subject of the present invention. Preferably, the 5 term "reference-" "control-" or "wild type-"-organelle, -cell, -tissue or -organism, in par ticular plant or microorganism, relates to an organelle, cell, tissue or organism, in par ticular plant or micororganism, which is nearly genetically identical to the organelle, cell, tissue or organism, in particular microorganism or plant, of the present invention or a part thereof preferably 95%, more peferred are 98%, even more preferred are 10 99,00%, in particular 99,10%, 99,30%, 99,50%, 99,70%, 99,90%, 99,99%, 99,999% or more. Most preferable the "reference", "control", or "wild type" is a subject, e.g. an or ganelle, a cell, a tissue, an organism, which is genetically identical to the organism, cell or organelle used according to the process of the invention except that the responsible or acvitivity conferring nucleic acid molecules or the gene product encoded by them are 15 amended, manipulated, exchanged or indtroduced according to the inventive process. [0048.0.0.0] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 20 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 1, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.0] In case, a control, reference or wild type differing from the subject of the present invention only by not being subject of the process of the invention can not be 25 provided, a control, reference or wild type can be an organism in which the cause for the modulation of an activity conferring the increase of the fine chemical or expression of the nucleic acid molecule of the invention as described herein has been switched back or off, e.g. by knocking out the expression of responsible gene product, e.g. by antisense inhibition, by inactivation of an activator or agonist, by activation of an inhibi 30 tor or antagonist, by inhibition through adding inhibitory antibodies, by adding active compounds as e.g. hormones, by introducing negative dominant mutants, etc. A gene production can for example be knocked out by introducing inactivating point mutations, which lead to an enzymatic activity inhibition or a destabilization or an inhibition of the ability to bind to cofactors etc.
24 [0050.0.0.0] Accordingly, preferred reference subject is the starting subject of the present process of the invention. Preferably, the reference and the subject matter of the invention are compared after standardization and normalization, e.g. to the amount of total RNA, DNA, or Protein or activity or expression of reference genes, like house 5 keeping genes, such as ubiquitin, actin or ribosomal proteins. [0051.0.0.0] A series of mechanisms exists via which a modification of the a protein, e.g. the polypeptide of the invention can directly or indirectly affect the yield, production and/or production efficiency of the fine chemical. [0052.0.0.0] For example, the molecule number or the specific activity of the poly 10 peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 1, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V 15 or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, 20 which is directed for example to the plastids. [0053.0.0.0] This also applies analogously to the combined increased expression of the nucleic acid molecule of the present invention or its gene product with that of fur ther enzymes or regulators of the amino acid biosynthesis pathways, e.g. which are useful for the synthesis of the fine chemicals. 25 [0054.0.0.0] The increase or modulation according to this invention can be constitu tive, e.g. due to a stable permanent transgenic expression or to a stable mutation in the corresponding endogenous gene encoding the nucleic acid molecule of the invention or to a modulation of the expression or of the behaviour of a gene conferring the expres sion of the polypeptide of the invention, or transient, e.g. due to an transient transfor 30 mation or temporary addition of a modulator such as a agonist or antagonist or induc ible, e.g. after transformation with a inducible construct carrying the nucleic acid mole cule of the invention under control of a induceable promoter and adding the inducer, e.g. tetracycline or as described herein below.
25 [0055.0.0.0] The increase in activity of the polypeptide amounts in a cell, a tissue, a organelle, an organ or an organism or a part thereof preferably to at least 5%, prefera bly to at least 20% or at to least 50%, especially preferably to at least 70%, 80%, 90% or more, very especially preferably are to at least 200%, 300% or 400%, most prefera 5 bly are to at least 500% or more in comparison to the control, reference or wild type. Preferably the increase in activity of the polypeptide amounts in an organelle such as a plastid. [0056.0.0.0] The specific activity of a polypeptide encoded by a nucleic acid molecule of the present invention or of the polypeptide of the present invention can be tested as 10 described in the examples. In particular, the expression of a protein in question in a cell, e.g. a plant cell or a microorganism and the detection of an increase the fine chemical level in comparison to a control is an easy test and can be performed as de scribed in the state of the art. [0057.0.0.0] The term "increase" includes, that a compound or an activity is intro 15 duced into a cell or a subcellular compartment or organelle de novo or that the com pound or the activity has not been detectable before, in other words it is "generated". [0058.0.0.0] Accordingly, in the following, the term "increasing" also comprises the term "generating" or "stimulating". The increased activity manifests itself in an increase of the fine chemical. 20 [0059.0.0.0] In case the activity of the Escherichia coli protein b2827 or its homologs, e.g. a "thymidylate synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of methionine between 47% and 51% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YELO46C or its homologs, 25 e.g. a "L-threonine aldolase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of methionine between 70% and 328% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR255C or its ho mologs, e.g. a "putative flavin-dependent monooxygenase" is increased advanta 30 geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of methionine between 36% and 292% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGR289C or its homologs, e.g. a "maltose permease" is increased advantageously in an organelle such as a plas- 26 tid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of methionine between 24% and 36% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YKR043C or its homologs, e.g. a "YKR043C protein activity" is increased, preferably, in one embodment the in 5 crease of the fine chemical, preferably of methionine between 37% and 58% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YLR153C or its homologs, e.g. a "acetyl-CoA synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi 10 cal, preferably of methionine between 29% and 117% or more is conferred. [0060.0.0.0] In case the activity of the Escherichia coli proteins b2827 or its ho mologs," are increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical methionine is conferred. In case the activity of the Saccaromyces cerevisiae protein YELO46C or its homologs 15 e.g. a "L-threonine aldolase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining methionine is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR255C or its ho mologs, e.g. a putative flavin-dependent monooxygenase is increased advantageously 20 in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing methionine is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR289C or its homologs e.g. a "maltose permease" is increased advantageously in an organelle such as a plas tid or mitochondria, preferably an increase of the fine chemical and of proteins contain 25 ing methionine is conferred. In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs e.g. a "YKR043C protein" is increased advantageously in an organelle such as a plas tid or mitochondria, preferably an increase of the fine chemical and of proteins contain ing methionine is conferred. 30 In case the activity of the Saccharomyces cerevisiae protein YLR153C or its homologs e.g. a "acetyl-CoA synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining methionine is conferred. [0061.0.0.0] In this context, the fine chemical amount in a cell, preferably in a tissue, 35 more preferred in a organism as a plant or a microorganim or part thereof, is increased 27 by 3% or more, especially preferably are 10% or more, very especially preferably are more than 30% and most preferably are 70% or more, such as 100%, 300% or 500%. [0062.0.0.0] The fine chemical can be contained in the organism either in its free form and/or bound to proteins or polypeptids or mixtures thereof. Accordingly, in one 5 embodiment, the amount of the free form in a cell, preferably in a tissue, more pre ferred in a organism as a plant or a microorganim or part thereof, is increased by 3% or more, especially preferably are 10% or more, very especially preferably are more than 30% and most preferably are 70% or more, such as 100%, 300% or 500%. Accord ingly, in an other embodiment, the amount of the bound the fine chemical in a cell, 10 preferably in a tissue, more preferred in a organism as a plant or a microorganim or part thereof, is increased by 3% or more, especially preferably are 10% or more, very especially preferably are more than 30% and most preferably are 70% or more, such as 100%, 300% or 500%. [0063.0.0.0] A protein having an activity conferring an increase in the amount or level 15 of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 1, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 1, columns 5 and 7 or the functional homologues thereof as described herein, or is 20 encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 1, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.0.0] For the purposes of the present invention, the terms "L-methionine", 25 "methionine", "homocysteine", "S-adenosylmethionine" and "threonine" also encom pass the corresponding salts, such as, for example, methionine hydrochloride or me thionine sulfate. Preferably the terms methionine is intended to encompass the term L methionine. [0065.0.0.0] Owing to the biological activity of the proteins which are used in the 30 process according to the invention and which are encoded by nucleic acid molecules according to the invention, it is possible to produce compositions comprising the fine chemical, i.e. an increased amount of the free chemical free or bound, e.g amino acid compositions. Depending on the choice of the organism used for the process according 28 to the present invention, for example a microorganism or a plant, compositions or mix tures of various amino acids can be produced. [0066.0.0.0] The term "expression" refers to the transcription and/or translation of a codogenic gene segment or gene. As a rule, the resulting product is an mRNA or a 5 protein. However, expression products can also include functional RNAs such as, for example, antisense, nucleic acids, tRNAs, snRNAs, rRNAs, RNAi, siRNA, ribozymes etc. Expression may be systemic, local or temporal, for example limited to certain cell types, tissues organs or organelles or time periods. [0067.0.0.0] In one embodiment, the process of the present invention comprises one 10 or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, appli cation no. 1, columns 5 and 7 or its homologs activity having herein-mentioned 15 methionine increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table 1, application no. 1, columns 5 and 7, e.g. a nucleic 20 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table 1l, application no. 1, columns 5 and 7 or its homologs or of a mRNA encoding the polypeptide of the present invention having herein-mentioned me thionine increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 25 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned methionine increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 1, columns 5 and 7 or its homologs activity, or decreasing the in hibitiory regulation of the polypeptide of the invention; and/or 30 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned methionine increasing ac- 29 tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 1, columns 5 and 7 or its homologs; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 5 the present invention having herein-mentioned methionine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 1, columns 5 and 7 or its homologs activity, by adding one or more ex ogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 10 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned me thionine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 1, columns 5 and 7 or its homologs activ ity, and/or 15 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned methionine increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table II, application no. 1, columns 5 and 7 or its homologs 20 activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 1, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous 25 recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 30 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby enhanced; and/or 30 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of 5 heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 10 k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned methionine in creasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 1, columns 5 and 7 or its homologs activity, to the plas tids by the addition of a plastidial targeting sequence; and/or 15 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned methionine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 1, columns 5 and 7 or its ho mologs activity in plastids by the stable or transient transformation advanta 20 geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of of the nucleic acids or poly peptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of 25 the invention or of the polypeptide of the present invention having herein mentioned methionine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 1, columns 5 and 7 or its ho mologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. 30 [0068.0.0.0] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the 31 herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table 1l, application no. 1, column 3 or its homologs. Preferably the in 5 crease of the fine chemical takes place in plastids. [0069.0.0.0] In general, the amount of mRNA or polypeptide in a cell or a compart ment of an organism correlates with the amount of encoded protein and thus with the overall activity of the encoded protein in said volume. Said correlation is not always linear, the activity in the volume is dependent on the stability of the molecules or the 10 presence of activating or inhibiting co-factors. Further, product and educt inhibitions of enzymes are well known and described in Textbooks, e.g. Stryer, Biochemistry. [0070.0.0.0] In general, the amount of mRNA, polynucleotide or nucleic acid mole cule in a cell or a compartment of an organism correlates with the amount of encoded protein and thus with the overall activity of the encoded protein in said volume. Said 15 correlation is not always linear, the activity in the volume is dependent on the stability of the molecules, the degradation of the molecules or the presence of activating or in hibiting co-factors. Further, product and educt inhibitions of enzymes are well known, e.g. Zinser et al. "Enzyminhibitoren"/Enzyme inhibitors". [0071.0.0.0] The activity of the abovementioned proteins and/or poylpeptide encoded 20 by the nucleic acid molecule of the present invention can be increased in various ways. For example, the activity in an organism or in a part thereof, like a cell or in an organ elle of the cell, is increased for example via targeting of the nucleic acid sequence or the encoded gene product to an organelle preferentially to plastids and/or increasing the gene product number, e.g. by increasing the expression rate, like introducing a 25 stronger promoter, or by increasing the stability of the mRNA expressed, thus increas ing the translation rate, and/or increasing the stability of the gene product, thus reduc ing the proteins decayed. Further, the activity or turnover of enzymes can be influenced in such a way that a reduction or increase of the reaction rate or a modification (reduc tion or increase) of the affinity to the substrate results, is reached. A mutation in the 30 catalytic centre of an polypeptide of the invention, e.g.as enzyme, can modulate the turn over rate of the enzyme, e.g. an exchange of an amino acid in the catalytic center can lead to an increased activity of the enzyme, or the deletion of regulator binding sites can reduce a negative regulation like a feedback inhibition (or a substrate inhibi tion, if the substrate level is also increased). The specific activity of an enzyme of the 35 present invention can be increased such that the turn over rate is increased or the 32 binding of a co-factor is improved. Improving the stability of the encoding mRNA or the protein can also increase the activity of a gene product. The stimulation of the activity is also under the scope of the term "increased activity". [0072.0.0.0] Moreover, the regulation of the abovementioned nucleic acid sequences 5 may be modified so that gene expression is increased. This can be achieved advanta geously by means of heterologous regulatory sequences or by modifying, for example mutating, the natural regulatory sequences which are present. The advantageous methods may also be combined with each other. [0073.0.0.0] In general, an activity of a gene product in an organism or part thereof, 10 in particular in a plant cell or organelle of a plant cell, a plant, or a plant tissue or a part thereof or in a microorganism can be increased by increasing the amount of the spe cific encoding mRNA or the corresponding protein in said organism or part thereof. "Amount of protein or mRNA" is understood as meaning the molecule number of poly peptides or mRNA molecules in an organism, a tissue, a cell or a cell compartment. 15 "Increase" in the amount of a protein means the quantitative increase of the molecule number of said protein in an organism, a tissue, a cell or a cell compartment such as an organelle like a plastid or mitochondria or part thereof - for example by one of the methods described herein below - in comparison to a wild type, control or reference. [0074.0.0.0] The increase in molecule number amounts preferably to at least 1%, 20 preferably to more than 10%, more preferably to 30% or more, especially preferably to 50%, 70% or more, very especially preferably to 100%, most preferably to 500% or more. However, a de novo expression is also regarded as subject of the present inven tion. [0075.0.0.0] A modification, i.e. an increase, can be caused by endogenous or ex 25 ogenous factors. For example, an increase in activity in an organism or a part thereof can be caused by adding a gene product or a precursor or an activator or an agonist to the media or nutrition or can be caused by introducing said subjects into a organism, transient or stable. Furthermore such an increase can be reached by the introduction of the inventive nucleic acid sequence or the encoded protein in the correct cell com 30 partement for example into plastids either by transformation and/or targeting. [0076.0.0.0] In one embodiment the increase in the amount of the fine chemical in the organism or a part thereof, e.g. in a cell, a tissue, an organ, an organelle etc., is achived by increasing the endogenous level of the polypeptide of the invention. Accord- 33 ingly, in an embodiment of the present invention, the present invention relates to a process wherein the gene copy number of a gene encoding the polynucleotide or nu cleic acid molecule of the invention is increased. Further, the endogenous level of the polypeptide of the invention can for example be increased by modifiying the transcrip 5 tional or translational regulation of the polypeptide. [0077.0.0.0] In one embodiment the amount of the fine chemical in the organism or part thereof can be increase by targeted or random mutagenesis of the endogenous genes of the invention. For example homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the pro 10 moter or to remove repressor elements form regulatory regions. In addition gene con version like methods described by Kochevenko and Willmitzer (Plant Physiol. 2003 May; 132(1): 174-84) and citations therein can be used to disrupt repressor elements or to enhance to acitivty of positive regulatory elements. Furthermore positive elements can be randomly introduced in (plant) genomes by T 15 DNA or transposon mutagenesis and lines can be screened for, in which the positive elements has be integrated near to a gene of the invention, the expression of which is thereby enhanced. The activation of plant genes by random integrations of enhancer elements has been described by Hayashi et al., 1992 (Science 258:1350-1353) or Weigel et al., 2000 (Plant Physiol. 122, 1003-1013) and others citated therein. 20 Reverse genetic strategies to identify insertions (which eventually carrying the activa tion elements) near in genes of interest have been described for various cases eg. Krysan et al., 1999 (Plant Cell 1999, 11, 2283-2290); Sessions et al., 2002 (Plant Cell 2002, 14, 2985-2994); Young et al., 2001, (Plant Physiol. 2001, 125, 513-518); Koprek et al., 2000 (Plant J. 2000, 24, 253-263) ; Jeon et al., 2000 (Plant J. 2000, 22, 561 25 570) ; Tissier et al., 1999 (Plant Cell 1999, 11, 1841-1852); Speulmann et al., 1999 (Plant Cell 1999 ,11 , 1853-1866). Briefly material from all plants of a large T-DNA or transposon mutagenized plant population is harvested and genomic DNA prepared. Then the genomic DNA is pooled following specific architectures as described for ex ample in Krysan et al., 1999 (Plant Cell 1999, 11, 2283-2290). Pools of genomics 30 DNAs are then screened by specific multiplex PCR reactions detecting the combination of the insertional mutagen (eg T-DNA or Transposon) and the gene of interest. There fore PCR reactions are run on the DNA pools with specific combinations of T-DNA or transposon border primers and gene specific primers. General rules for primer design can again be taken from Krysan et al., 1999 (Plant Cell 1999, 11, 2283-2290) Re 35 screening of lower levels DNA pools lead to the identifcation of individual plants in which the gene of interest is disrupted by the insertional mutagen.
34 The enhancement of positive regulatory elements or the disruption or weaking of nega tive regulatory elements can also be achieved through common mutagenesis tech niques: The production of chemically or radiation mutated populations is a common technique and known to the skilled worker. Methods for plants are described by Koorn 5 eef et al. 1982 and the citations therein and by Lightner and Caspar in "Methods in Mo lecular Biology" Vol 82. These techniques usually induce pointmutations that can be identified in any known gene using methods such as TILLING (Colbert et al. 2001). One can also envisage to introduce nucleic acids sequences, encoding plastidal target ing signals, like for example present in table V, by homologous recombination or other 10 methods of site specific integration, into the genome in that way, that an endogenous gene is functionally fused to the targeting sequence and the protein is redirected to to the plastids. Eventually the integration can also occur randomly and the desired fusion event is selected for. [0078.0.0.0] Accordingly, the expression level can be increased if the endogenous 15 genes encoding a polypeptide conferring an increased expression of the polypeptide of the present invention, in particular genes comprising the nucleic acid molecule of the present invention, are modified via homologous recombination, Tilling approaches or gene conversion. It also possible to add as mentioned herein targeting sequences to the inventive nucleic acid sequences. 20 [0079.0.0.0] Regulatory sequences preferably in addition to a target sequence or part thereof can be operatively linked to the coding region of an endogenous protein and control its transcription and translation or the stability or decay of the encoding mRNA or the expressed protein. In order to modify and control the expression, promoter, UTRs, splicing sites, processing signals, polyadenylation sites, terminators, enhancers, 25 repressors, post transcriptional or posttranslational modification sites can be changed, added or amended. For example, the activation of plant genes by random integrations of enhancer elements has been described by Hayashi et al., 1992 (Science 258:1350 1353) or Weigel et al., 2000 (Plant Physiol. 122, 1003-1013) and others citated therein. For example, the expression level of the endogenous protein can be modulated by re 30 placing the endogenous promoter with a stronger transgenic promoter or by replacing the endogenous 3'UTR with a 3'UTR, which provides more stablitiy without amending the coding region. Further, the transcriptional regulation can be modulated by introduc tion of an artifical transcription factor as described in the examples. Alternative promot ers, terminators and UTR are described below.
35 [0080.0.0.0] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 1, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like 5 a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 1, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex 10 virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 1, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 1, column 3, see e.g. in W001/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. 15 NatI. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.0] In one further embodiment of the process according to the invention, organisms are used in which one of the abovementioned genes, or one of the above mentioned nucleic acids, is mutated in a way that the activity of the encoded gene products is less influenced by cellular factors, or not at all, in comparison with the un 20 mutated proteins. For example, well known regulation mechanism of enzymic activity are substrate inhibition or feed back regulation mechanisms. Ways and techniques for the introduction of substitution, deletions and additions of one or more bases, nucleo tides or amino acids of a corresponding sequence are described herein below in the corresponding paragraphs and the references listed there, e.g. in Sambrook et al., Mo 25 lecular Cloning, Cold Spring Habour, NY, 1989. The person skilled in the art will be able to identify regulation domains and binding sites of regulators by comparing the sequence of the nucleic acid molecule of the present invention or the expression prod uct thereof with the state of the art by computer software means which comprise algo rithms for the identifying of binding sites and regulation domains or by introducing into a 30 nucleic acid molecule or in a protein systematically mutations and assaying for those mutations which will lead to an increased specifiy activity or an increased activity per volume, in particular per cell. [0082.0.0.0] It is therefore adavantageously to express in an organism a nucleic acid molecule of the invention or a polypeptide of the invention derived from a evolutionary 35 distantly related organism, as e.g. using a prokaryotic gene in a eukaryotic host, as in 36 these cases the regulation mechanism of the host cell may not weaken the activity (cel lular or specific) of the gene or its expression product [0083.0.0.0] The mutation is introduced in such a way that the production of the fine chemical is not adversely affected. 5 [0084.0.0.0] Less influence on the regulation of a gene or its gene product is under stood as meaning a reduced regulation of the enzymatic activity leading to an in creased specific or cellular activity of the gene or its product. An increase of the enzy matic activity is understood as meaning an enzymatic activity, which is increased by at least 10%, advantageously at least 20, 30 or 40%, especially advantageously by at 10 least 50, 60 or 70% in comparison with the starting organism. This leads to an in creased productivity of the desired fine chemical(s). [0085.0.0.0] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the polypeptide of the inven tion, for example the nucleic acid construct mentioned below, or encoding the protein 15 as shown in table 1l, application no. 1, column 3 into an organism alone or in combina tion with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, pref erably novel metabolites composition in the organism, e.g. an advantageous amino acid composition comprising a higher content of (from a viewpoint of nutrional physiol 20 ogy limited) amino acids, like methionine, lysine or threonine alone or in combination in free or bound form. [0086.0.0.0] Preferably the composition comprises further higher amounts of metabo lites positively affecting or lower amounts of metabolites negatively affecting the nutri tion or health of animals or humans provided with said compositions or organisms of 25 the invention or parts thereof. Likewise, the number or activity of further genes which are required for the import or export of nutrients or metabolites, including amino acids, fatty acids, vitamins etc. or its precursors, required for the cell's biosynthesis of the fine chemical may be increased so that the concentration of necessary or relevant precur sors, cofactors or intermediates within the cell(s) or within the corresponding storage 30 compartments is increased. Owing to the increased or novel generated activity of the polypeptide of the invention or owing to the increased number of nucleic acid se quences of the invention and/or to the modulation of further genes which are involved in the biosynthesis of the fine chemical, e.g. by increasing the acitivty of enzymes syn thizing precursors or by destroying the activity of one or more genes which are involved 37 in the breakdown of the fine chemical, it is possible to increase the yield, production and/or production efficiency of the fine chemical in the host organism, such as plants or the microorganims. [0087.0.0.0] By influencing the metabolism thus, it is possible to produce, in the 5 process according to the invention, further advantageous sulfur-containing compounds, which contain at least one sulfur atom bound covalently. Examples of such compounds are, in addition to methionine, homocysteine, S-adenosylmethionine, cysteine, advan tageously methionine and S-adenosylmethionine. [0088.0.0.0] Accordingly, in one embodiment, the process according to the invention 10 relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a mi croorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 1, column 3 15 or of a polypeptide being encoded by the nucleic acid molecule of the present in vention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microorgan ism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the 20 plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 25 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.0.0] The organism, in particular the microorganism, non-human animal, the 30 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to 38 produce, recover and, if desired isolate, other free or/and bound amino acids, in par ticular methionine. [0090.0.0.0] After the above-described increasing (which as defined above also en compasses the generating of an activity in an organism, i.e. a de novo activity), for ex 5 ample after the introduction and the expression of the nucleic acid molecules of the invention or described in the methods or processes according to the invention, the or ganism according to the invention, advantageously, a microorganism, a non-human animal, a plant, plant or animal tissue or plant or animal cell, is grown and subse quently harvested. 10 [0091.0.0.0] Suitable organisms or host organisms (transgenic organism) for the nucleic acid molecule used according to the invention and for the inventive process, the nucleic acid construct or the vector (both as described below) are, in principle, all organisms which are capable of synthesizing the fine chemical, and which are suitable for the activation, introduction or stimulation of recombinant genes. Examples which 15 may be mentioned are transgenic plants, transgenic microorganisms such as fungi, bacteria, yeasts, alga or diatom preferably alga. Preferred organisms are those which are naturally capable of synthesizing the fine chemical in substantial amounts, like fungi, yeasts, bactria or plants preferably alga and plants. [0092.0.0.0] In the event that the transgenic organism is a microorganism, such as a 20 eukaryotic organism, for example a fungus, an alga, diatom or a yeast in particular a fungus, alga, diatom or yeast selected from the families Tuberculariaceae, Adelotheciaceae, Dinophyceae, Ditrichaceae or Prasinophyceae. Preferred organisms are microorganisms such as green algae or plants. After the growing phase, the organisms can be harvested. 25 [0093.0.0.0] The organism, in particular the microorganism, plant or plant tissue is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound amino acids, in particular threonine and/or.lysine. Galili et al., Transgenic Res., 30 200, 9, 2, 137-144 describes that the heterologous expression of a bacterial gene for the amino acid biosynthesis confers the increase of free as well as of protein-bound amino acids.
39 [0094.0.0.0] Preferred microorganisms are selected from the group consisting of Charophyceae such as the genera Chara, Nitella e.g. the species Chara globularis, Chara vulgaris, Nitella flexilis, Chlorophyceae such as the genera Acrosiphonia, Spon gomorpha, Urospora, Bryopsis, Pseudobryopsis, Trichosolen, Dichotomosiphon, Caul 5 erpa, Rhipilia, Blastophysa, Avrainvillea, Chlorodesmis, Codium, Espera, Halicystis, Halimeda, Penicillus, Pseudocodium, Rhipiliopsis, Rhipocephalus, Tydemania, Udotea, Derbesia, Acrochaete, Aphanochaete, Bolbocoleon, Chaetobolus, Chaetonema, Chaetophora, Chlorotylium, Desmococcus, Draparnaldia, Draparnaldiopsis, Ecto chaete, Endophyton, Entocladia, Epicladia, Internoretia, Microthamnion, Ochlochaete, 10 Phaeophila, Pilinella, Pringsheimiella, Protoderma, Pseudendoclonium, Pseudodictyon, Pseudopringsheimia, Pseudulvella, Schizomeris, Stigeoclonium, Thamniochaete, UI vella, Pilinia, Tellamia, Helicodictyon, Actidesmium, Ankyra, Characium, Codiolum, Sykidion, Keratococcus, Prototheca, Bracteacoccus Chlorococcum, Excentrosphaera, Hormidium, Oophila, Schroederia, Tetraedron, Trebouxia Chlorosarcinopsis, Gom 15 phonitzschia, Coccomyxa, Dactylothece, Di6genes, Dispor6, Gloeocystis, Mycantho coccus, Ourococcus, Coelastrum, Dicranochaete, Botryococcus, Dictyosphaerium, Dimorphococcus, Chlorochytrium, Kentrosphaera, Phyllobium, Gomontia, Hormotila, Euastropsis, Hydrodictyon, Pectodictyon, Pediastrum, Sorastrum, Tetrapedia, Acan thosphaera, Echinosphaerella, Echinosphaeridium, Errerella, Gloeoactinium, Golen 20 keniopsis Golenkinia, Micractinium, Ankistrodesmus, Chlorella, Chodatella, Closte riopsis, Cryocystis, Dactylococcus, Dematractum, Eremosphaera, Eutetramorus, Franceia, Glaucocystis, Gloeotaenium, Kirchneriella, Lagerheimiella, Monoraphidium, Nannochloris, Nephrochlamys, Nephrocytium, Oocystis, Oonephris, Pachycladon, Palmellococcus, Planktosphaeria, Polyedriopsis, Pseudoraciborskia, Quadrigula, Ra 25 diococcus, Rochiscia, Scotiella, Selanastrum, Thorakochloris, Treubaria, Trochiscia, Westella, Zoochlorella, Ostreobium, Phyllosiphon, Protosiphon, Rhodochytrium, Acti nastrum, Coronastrum, Crucigenia, Dictymocystis, Enallax, Scenedesmus, Sele nastrum, Tetradesmus, Tetrallantos, Tetrastrum, Chlorosarcina, Anadyomene, Valo niopsis, Ventricaria, Basicladia, Chaetomorpha, Cladophora, LolaPithophoraRhizoclo 30 nium Chaetosphaeridium, Conochaete, Coleochaete, Oligochaetophora, Polychaeto phora, Cylindrocapsa, Gongrosira, Protococcus, Acetabularia, Batophora, Bornetella, Dasycladus, Halicoryne, Neomeris, Elakatothrix, Raphidonema, Microspora, Bulbo chaete, Oedocladium, Oedogonium, Prasiola, Rosenvingiella, Schizogonium, Apjohnia, Chamaedoris, Cladophoropsis, Siphonocladus, Spongocladia, Boergesenia, Boodlea, 35 Cystodictyon, Dictyosphaeria, Ernodesmis, Microdictyon, Struvea, Valonia, Sphaeroplea, Malleochloris, Stylosphaeridium, Gloeococcus, Palmella, Palmodictyon, Palmophyllum, Pseudospherocystis, Sphaerocystis, Urococcus, Apiocystis, 40 Chaetopeltis, Gemellicystis, Paulschulzia, Phacomyxa, Pseudotetraspora, Schizochla mys, Tetraspora, Cephaleuros, Ctenocladus, Epibolium, Leptosira, Trentepohlia, Diplo chaete, Monostroma, Binuclearia, Geminella, Klebsormidium, Planetonema, Ra diofilum, Stichococcus, Ulothrix, Uronema, Blidingia, Capsosiphon, Chloropelta, En 5 teromorpha, Percursaria, Ulva, Ulvaria, Brachiomonas, Carteria, Chlainomonas, Chla mydomonas, Chlamydonephris, Chlorangium, Chlorogonium, Cyanidium, Fortiella, Glenomonas, Gloeomonas, Hyalogonium, Lobomonas Polytoma, Pyramichlamys, Scourfieldia, Smithsonimonas, Sphaerellopsis, Sphenochloris, Spirogonium, Collodic tyon, Dunaliella, Haematococcus, Stephanosphaera, Coccomonas, Dysmorphococcus, 10 Phacotus, Pteromonas, Thoracomonas, Wislouchiella, Mascherina, Pyrobotrys, Spondylomorum, Eudorina, Gonium, Oltmannsiella, Pandorina, Platydorina, Pleodorina, Stephanoon, Volvox, Volvulina, Actinotaenium, Arthrodesmus, Bambusina Closterium, Cosmarium, Desmidium, Euastrum, Groenbladia, Hyalotheca, Micrasterias, Penium, Phymatodocis, Pleurotaenium, Sphaerozosma, Spinoclosterium, Spinocos 15 marium, Spondylosium, Staurastrum, Tetmemorus, Triploceras, Xanthidium, Cylindro cystis, Genicularia, Gonatozygon, Mesotaenium, Netrium, Roya, Spirotaenia, Cosmo cladium, Debarya, Docidium, Euastridium, Hallasia, Mougeotia, Mougeotiopsis, Si rogonium, Spirogyra, Staurodesmus, Teilingia, Zygnema, Zygogonium, e.g. the species Caulerpa taxifolia, Prototheca wickerhamii, Ankistrodesmus falcatus, Chlorella ellip 20 soidea, Chlorella pyrenoidosa, Clorella sorokiniana, Chlorella vulgaris, Scenedesmus obliquus, Scenedesmus quadricauda, Selenastrum capricornutum, Selenastrum un decimnotata, Cladophora glomerata, Chlamydomonas eugametos, Chlamydomonas reinhardtii, Cyanidium caldarium, Dunaliella salina, Dunaliella tertiolecta, Euglena gracilis, Haematococcus pluvialis,, Coniugatophyceae, Prasinophyceae Trebouxiophy 25 ceae, Ulvophyceae, Chlorodendraceae, Pedinomonadales, Halosphaeraceae, Pterospermataceae, Monomastigaceae, Pyramimonadaceae, Chlorodendraceae such as the genera Prasinocladus e.g. the species Prasinocladus ascus, Halosphaeraceae, Pedinomonadales, Pedinomonadaceae such as the genera Pedinomonas, Pterospermataceae such as the genera Pachysphaera, Pterosperma, Halosphaera, 30 Pyramimonas, Bacillariophyceae, Chrysophyceae, Craspedophyceae, Euglenophy ceae, Prymnesiophyceae, Phaeophyceae, Dinophyceae, Rhodophyceae, Xanthophy ceae, Prasinophyceae such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus e.g. the species Nephroselmis olivacea, Prasi nococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Man 35 toniella squamata or Ostreococcus tauri;.
41 [0095.0.0.0] Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium e.g. the species Pistacia vera [pistachios, Pistazie], Mangifer indica [Mango] or Anacardium occidentale [Cashew]; Asteraceae such as the genera Calendula, Carthamus, Centau rea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana e.g. the spe 5 cies Calendula officinalis [Marigold], Carthamus tinctorius [safflower], Centaurea cyanus [cornflower], Cichorium intybus [blue daisy], Cynara scolymus [Artichoke], Heli anthus annus [sunflower], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. in tegrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [let 10 tuce], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [Marigold]; Apiaceae such as the genera Daucus e.g. the species Daucus carota [carrot]; Betulaceae such as the genera Corylus e.g. the species Corylus avellana or Corylus colurna [hazelnut]; Bo raginaceae such as the genera Borago e.g. the species Borago officinalis [borage]; Brassicaceae such as the genera Brassica, Melanosinapis, Sinapis, Arabadopsis e.g. 15 the species Brassica napus, Brassica rapa ssp. [canola, oilseed rape, turnip rape], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Melanos inapis communis [mustard], Brassica oleracea [fodder beet] or Arabidopsis thaliana; Bromeliaceae such as the genera Anana, Bromelia e.g. the species Anana comosus, 20 Ananas ananas or Bromelia comosa [pineapple]; Caricaceae such as the genera Carica e.g. the species Carica papaya [papaya]; Cannabaceae such as the genera Cannabis e.g. the species Cannabis sative [hemp], Convolvulaceae such as the gen era Ipomea, Convolvulus e.g. the species Ipomoea batatus, Ipomoea pandurata, Con volvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea 25 triloba or Convolvulus panduratus [sweet potato, Man of the Earth, wild potato], Chenopodiaceae such as the genera Beta, i.e. the species Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva or Beta vulgaris var. esculenta [sugar beet]; Cucurbitaceae such as the genera Cucubita e.g. the species Cucurbita maxima, Cucurbita mixta, Cu 30 curbita pepo or Cucurbita moschata [pumpkin, squash]; Elaeagnaceae such as the genera Elaeagnus e.g. the species Olea europaea [olive]; Ericaceae such as the gen era Kalmia e.g. the species Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros or Kalmia lucida [American laurel, broad-leafed laurel, calico bush, spoon wood, sheep laurel, alpine 35 laurel, bog laurel, western bog-laurel, swamp-laurel]; Euphorbiaceae such as the gen era Manihot, Janipha, Jatropha, Ricinus e.g. the species Manihot utilissima, Janipha manihot,, Jatropha manihot., Manihot aipil, Manihot dulcis, Manihot manihot, Manihot 42 melanobasis, Manihot esculenta [manihot, arrowroot, tapioca, cassava] or Ricinus communis [castor bean, Castor Oil Bush, Castor Oil Plant, Palma Christi, Wonder Tree]; Fabaceae such as the genera Pisum, Albizia, Cathormion, Feuillea, Inga, Pithe colobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja e.g. the spe 5 cies Pisum sativum, Pisum arvense, Pisum humile [pea], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albiz zia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecello bium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa 10 julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macro phylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [bastard logwood, silk tree, East Indian Walnut], Medicago sativa, Medicago falcata, Medicago varia [alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida or Soja max [soybean]; Geraniaceae such as the genera Pelargo 15 nium, Cocos, Oleum e.g. the species Cocos nucifera, Pelargonium grossularioides or Oleum cocois [coconut]; Gramineae such as the genera Saccharum e.g. the species Saccharum officinarum; Juglandaceae such as the genera Juglans, Wallia e.g. the species Juglans regia, Juglans allanthifolia, Juglans sieboldiana, Juglans cinerea, Wal lia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, 20 Juglansjamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [walnut, black walnut, common walnut, persian walnut, white walnut, butternut, black walnut]; Lauraceae such as the genera Persea, Laurus e.g. the species laurel Laurus nobilis [bay, laurel, bay laurel, sweet bay], Persea americana Persea americana, Per sea gratissima or Persea persea [avocado]; Leguminosae such as the genera Arachis 25 e.g. the species Arachis hypogaea [peanut]; Linaceae such as the genera Linum, Ade nolinum e.g. the species Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense or Linum trigynum [flax, linseed]; Lythrarieae such 30 as the genera Punica e.g. the species Punica granatum [pomegranate]; Malvaceae such as the genera Gossypium e.g. the species Gossypium hirsutum, Gossypium ar boreum, Gossypium barbadense, Gossypium herbaceum or Gossypium thurberi [cot ton]; Musaceae such as the genera Musa e.g. the species Musa nana, Musa acumi nata, Musa paradisiaca, Musa spp. [banana]; Onagraceae such as the genera Camis 35 sonia, Oenothera e.g. the species Oenothera biennis or Camissonia brevipes [prim rose, evening primrose]; Palmae such as the genera Elacis e.g. the species Elaeis guineensis [oil plam]; Papaveraceae such as the genera Papaver e.g. the species Pa- 43 paver orientale, Papaver rhoeas, Papaver dubium [poppy, oriental poppy, corn poppy, field poppy, shirley poppies, field poppy, long-headed poppy, long-pod poppy]; Pedali aceae such as the genera Sesamum e.g. the species Sesamum indicum [sesame]; Piperaceae such as the genera Piper, Artanthe, Peperomia, Steffensia e.g. the species 5 Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata. [Cayenne pep per, wild pepper]; Poaceae such as the genera Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea, Triticum e.g. the species Hordeum vulgare, 10 Hordeumjubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hor deum aegiceras, Hordeum hexastichon., Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [barley, pearl barley, foxtail barley, wall barley, meadow barley], Secale cereale [rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [oat], Sorghum bicolor, Sorghum halepense, 15 Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sor ghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, 20 Sorghum miliaceum millet, Panicum militaceum [Sorghum, millet], Oryza sativa, Oryza latifolia [rice], Zea mays [corn, maize] Triticum aestivum, Triticum durum, Triticum tur gidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat, bread wheat, common wheat], Proteaceae such as the genera Macadamia e.g. the species Macadamia intergrifolia [macadamia]; Rubiaceae such as the genera Cof 25 fea e.g. the species Cofea spp., Coffea arabica, Coffea canephora or Coffea liberica [coffee]; Scrophulariaceae such as the genera Verbascum e.g. the species Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbas cum phlomoides, Verbascum phoenicum, Verbascum pulverulentum or Verbascum 30 thapsus [mullein, white moth mullein, nettle-leaved mullein, dense-flowered mullein, silver mullein, long-leaved mullein, white mullein, dark mullein, greek mullein, orange mullein, purple mullein, hoary mullein, great mullein]; Solanaceae such as the genera Capsicum, Nicotiana, Solanum, Lycopersicon e.g. the species Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [pepper], Capsicum an 35 nuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], 44 Solanum melongena [egg-plant] (Lycopersicon esculentum, Lycopersicon lycopersi cum., Lycopersicon pyriforme, Solanum integrifolium or Solanum lycopersicum [to mato]; Sterculiaceae such as the genera Theobroma e.g. the species Theobroma ca cao [cacao]; Theaceae such as the genera Camellia e.g. the species Camellia sinen 5 sis) [tea]. All abovementioned organisms can be used as donor organism for the inventive nu cleic acid sequences and/or can in princible also function as host organisms. [0096.0.0.0] Particular preferred plants are plants selected from the group consisting of Asteraceae such as the genera Helianthus, Tagetes e.g. the species Helianthus an 10 nus [sunflower], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [Marigold], Bras sicaceae such as the genera Brassica, Arabadopsis e.g. the species Brassica napus, Brassica rapa ssp. [canola, oilseed rape, turnip rape] or Arabidopsis thaliana. Fa baceae such as the genera Glycine e.g. the species Glycine max, Soja hispida or Soja max [soybean] (wobei ich nicht sicher bin, ob es Soja max Oberhaupt gibt, die heiRt 15 eigentlich Glycine max). Linaceae such as the genera Linum e.g. the species Linum usitatissimum, [flax, linseed]; Poaceae such as the genera Hordeum, Secale, Avena, Sorghum, Oryza, Zea, Triticum e.g. the species Hordeum vulgare [barley]; Secale ce reale [rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [oat], Sorghum bicolor [Sorghum, millet], Oryza sativa, Oryza latifolia 20 [rice], Zea mays [corn, maize] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat, bread wheat, common wheat]; Solanaceae such as the genera Solanum, Lycopersicon e.g. the species Solanum tuberosum [potato], Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium or Solanum lycopersi 25 cum [tomato]. [0097.0.0.0] All abovementioned organisms can in princible also function as host organisms. [0098.0.0.0] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 30 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table I A and/or I B, application no. 1, columns 5 and 7 or a derivative thereof, or 45 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table I A and/or I B, application no. 1, columns 5 and 7 or a derivative thereof, or c) (a) and (b) 5 is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic 10 library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.0.0] The use of the nucleic acid sequence according to the invention or of 15 the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 1, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu 20 cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 1, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se quences as depicted in the sequence protocol and disclosed in table 1, application no. 1, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable 25 integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. [0100.0.0.0] The fine chemical, which is synthesized in the organism, in particular the microorganism, the cell, the tissue or the plant, of the invention can be isolated if de 30 sired. Depending on the use of the fine chemical, different purities resulting from the purification may be advantageous as will be described herein below. [0101.0.0.0] In an advantageous embodiment of the invention, the organism takes the form of a plant whose amino acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant 46 breeders since, for example, the nutritional value of plants for monogastric animals is limited by a few essential amino acids such as lysine, threonine or methionine. After the activity of the protein as shown in table 1l, application no. 1, column 3 has been increased or generated in the cytsol or plastids, preferentially in the plastids, or after 5 the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.0] The plants or parts thereof, e.g. the leaves, roots, flowers, and/or stems and/or other harvestable material as described below, can then be used directly as 10 foodstuffs or animal feeds or else be further processed. Again, the amino acids can be purified further in the customary manner via extraction and precipitation or via ion exchangers and other methods known to the person skilled in the art and described herein below. Products which are suitable for various applications and which result from these different processing procedures are amino acids or amino acid 15 compositions which can still comprise further plant components in different amounts, advantageously in the range of from 0 to 99% by weight, preferably from below 90% by weight, especially preferably below 80% by weight. The plants can also advantageously be used directly without further processing, e.g. as feed or for extraction. 20 [0103.0.0.0] The chemically pure fine chemical or chemically pure compositions comprising the fine chemical may also be produced by the process described above. To this end, the fine chemical or the compositions are isolated in the known manner from an organism according to the invention, such as the microorganisms, non-human animal or the plants, and/or their culture medium in which or on which the organisms 25 had been grown. These chemically pure fine chemical or said compositions are advan tageous for applications in the field of the food industry, the cosmetics industry or the pharmaceutical industry. [0104.0.0.0] Thus, the content of plant components and preferably also further impu rities is as low as possible, and the abovementioned fine chemical is obtained in as 30 pure form as possible. In these applications, the content of plant components advanta geously amounts to less than 10%, preferably 1%, more preferably 0.1%, very espe cially preferably 0.01% or less. [0105.0.0.0] Accordingly, the fine chemical produced by the present invention is at least 0,1% by weight pure, preferably more than 1% by weight pure, more preferred 47 10% by weight pure, even more preferred are more than 50, 60, 70 or 80% by weight puritiy, even more preferred are more than 90 weight-% purity, most preferred are 95% by weight, 99% by weight or more. [0106.0.0.0] In this context, the amount of the fine chemical in a cell of the invention 5 may be increased according to the process of the invention by at least a factor of 1.1, preferably at least a factor of 1.5; 2; or 5, especially preferably by at least a factor of 10 or 30, very especially preferably by at least a factor of 50, in comparison with the wild type, control or reference. Preferrably, said increase is found a tissue, more preferred in an organism or in a harvestable part thereof. 10 [0107.0.0.0] In principle, the fine chemicals produced can be increased in two ways by the process according to the invention. The pool of free fine chemicals, in particular of the free fine chemical, and/or the content of protein-bound fine chemicals, in particu lar of the protein-bound fine chemical may advantageously be increased. [0108.0.0.0] It may be advantageous to increase the pool of free amino acids in the 15 transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0109.0.0.0] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a protein or polypeptid, which functions as a sink for 20 the desired amino acid for example methionine, lysine or threonine in the organism is useful to increase the production of the fine chemical (see US 5,589,616, WO 96/38574, WO 97/07665, WO 97/28247, US 4,886,878, US 5,082,993 and US 5,670,635). Galili et al., Transgenic Res. 2000 showed, that enhancing the synthe sis of threonine by a feed back insensitive aspertate kinase didnot lead only to in in 25 crease in free threonine but also in protein bound threonine. [0110.0.0.0] In may also be advantageous to increase the content of the protein bound fine chemical. [0111.0.0.0] In a preferred embodiment, the fine chemical (methionine) is produced in accordance with the invention and, if desired, is isolated. The production of further 30 amino acids such as lysine, threonine etc. and of amino acid mixtures by the process according to the invention is advantageous.
48 [0112.0.0.0] In the case of the fermentation of microorganisms, the abovementioned fine chemical may accumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, the fermentation broth can be proc essed after the cultivation. Depending on the requirement, all or some of the biomass 5 can be removed from the fermentation broth by separation methods such as, for exam ple, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, ro tary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by 10 nanofiltration. This concentrated fermentation broth can subsequently be processed by lyophilization, spray drying, spray granulation or by other methods. [0113.0.0.0] To purify an amino acid, a product-containing fermentation broth from which the biomass has been separated may be subjected to chromatography with a suitable resin such as ion exchange resin for example anion or cation exchange resin, 15 hydrophobic resin or hydrophilic resin for example epoxy resin, polyurethane resin or polyacrylamid resin, or resin for separation according to the molecular weight of the compounds for example polyvinyl chloride homopolymer resin or resins composed for example of polymers of acrylic acid, crosslinked with polyalkenyl ethers or divinyl glycol such as Carbopol@, Pemulen@ and Noveon@. If necessary these chromatography 20 steps may be repeated using the same or other chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most ef fective use. The purified product may be concentrated by filtration or ultrafiltration and stored at a temperature, which ensures the maximum stability of the product. [0114.0.0.0] The identity and purity of the compound(s) isolated can be determined 25 by prior-art techniques. They encompass high-performance liquid chromatography (HPLC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbiological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Biopro 30 cess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 35 17.
49 [0115.0.0.0] Amino acids can for excample be detected advantageously via HPLC separation in ethanolic extract as described by Geigenberger et al. (Plant Cell & Envi ron, 19, 1996: 43-55). Amino acids can be extracted with hot water. After filtration the extracts are diluted with water containing 20 mg/mL sodium acide. The separation and 5 detection of the amino acids is performed using an anion exchange column and an electrochemical detector. Technical details can be taken from Y. Ding et al., 2002, Di rect determination of free amino acids and sugars in green tea by anion-exchange chromatography with integrated pulsed amperometric detection, J Chromatogr A, (2002) 982; 237-244, or e.g. from Karchi et al., 1993 , Plant J. 3: 721-727; Matthews 10 MJ, 1997 (Lysine, threonine and methionine biosynthesis. In BK Singh, ed, Plant Amino Acids: Biochemistry and Biotechnology. Dekker, New York, pp 205-225; H Hesse and R Hoefgen. (2003) Molecular aspects of methionine biosynthesis. TIPS 8(259-262. [0116.0.0.0] In a preferred embodiment, the present invention relates to a process for 15 the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 20 peptide shown in table 1l, application no. 1, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 1, columns 5 and 7; 25 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity 30 with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 50 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 5 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 10 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 15 the primers shown in table III, application no. 1, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 20 and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 1, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; 25 k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 1, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under 30 stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole- 51 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.0.0.] In one embodiment, the nucleic acid molecule used in the process of the 5 invention distinguishes over the sequence indicated in table I A, application no. 1, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 1, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 10 99,99%, 99,9% or 99% identical to a sequence indicated in Table I A, application no. 1, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 1, columns 5 and 7. [0116.2.0.0.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 1, 15 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 1, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 1, 20 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 1, columns 5 and 7. [0117.0.0.0] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 1, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica 25 tion no. 1, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 1, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 1, columns 5 and 7. 30 [0118.0.0.0] Unless otherwise specified, the terms "polynucleotides", "nucleic acid" and "nucleic acid molecule" as used herein are interchangeably. Unless otherwise specified, the terms "peptide", "polypeptide" and "protein" are interchangeably in the present context. The term "sequence" may relate to polynucleotides, nucleic acids, nucleic acid molecules, peptides, polypeptides and proteins, depending on the context 52 in which the term "sequence" is used. The terms "gene(s)", "polynucleotide", "nucleic acid sequence", "nucleotide sequence", or "nucleic acid molecule(s)" as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxy ribonucleotides. The terms refer only to the primary structure of the molecule. 5 [0119.0.0.0] Thus, the terms "gene(s)", "polynucleotide", "nucleic acid sequence", "nucleotide sequence", or "nucleic acid molecule(s)" as used herein include double and single-stranded DNA and RNA. They also include known types of modifications, for example, methylation, "caps", substitutions of one or more of the naturally occurring nucleotides with an analog. Preferably, the DNA or RNA sequence of the invention 10 comprises a coding sequence encoding the herein defined polypeptide. [0120.0.0.0] A "coding sequence" is a nucleotide sequence, which is transcribed into mRNA and/or translated into a polypeptide when placed under the control of appropri ate regulatory sequences. The boundaries of the coding sequence are determined by a translation start codon at the 5'-terminus and a translation stop codon at the 3' 15 terminus. A coding sequence can include, but is not limited to mRNA, cDNA, recombi nant nucleotide sequences or genomic DNA, while introns may be present as well un der certain circumstances. [0121.0.0.0] Nucleic acid molecules with the sequence shown in table 1, application no. 1, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 20 sequences shown in table 1l, application no. 1, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 1, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table 1l, application no. 1, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously 25 increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.0] In one embodiment, said sequences are cloned into nucleic acid con structs, either individually or in combination. These nucleic acid constructs enable an optimal synthesis of the fine chemical produced in the process according to the inven 30 tion. [0123.0.0.0] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as 53 shown in table II, application no. 1, column 3 can be determined from generally acces sible databases. [0124.0.0.0] Those, which must be mentioned in particular in this context are general gene databases such as the EMBL database (Stoesser G. et al., Nucleic Acids Res 5 2001, Vol. 29, 17-21), the GenBank database (Benson D.A. et al., Nucleic Acids Res 2000, Vol. 28,15-18), or the PIR database (Barker W. C. et al., Nucleic Acids Res. 1999, Vol. 27, 39-43). It is furthermore possible to use organism-specific gene data bases for determining advantageous sequences, in the case of yeast for example ad vantageously the SGD database (Cherry J. M. et al., Nucleic Acids Res. 1998, Vol. 26, 10 73-80) or the MIPS database (Mewes H.W. et al., Nucleic Acids Res. 1999, Vol. 27, 44 48), in the case of E. coli the GenProtEC database (http://web.bham.ac.uk/bcm4ght6/res.html), and in the case of Arabidopsis the TAIR database (Huala, E. et al., Nucleic Acids Res. 2001 Vol. 29(1), 102-5) or the MIPS da tabase. 15 [0125.0.0.0] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 1, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0126.0.0.0] The nucleic acid sequence(s) used in the process for the production of the fine chemical in transgenic organisms originate advantageously from an eukaryote but may also originate from a prokaryote or an archebacterium, thus it can derived from e.g. a microorganism, an animal or a plant such as the genera Saccharomyces, Nostoc, Brucella, Yersinia, Salmonella, Escherichia, Caulobacter, Vibrio, Pseudomo 25 nas, Neisseria, Rickettsia, Xylella, Synechocystis, Schizosaccharomyces, Paramecium, Debaryomyces, Kluyveromyces, Erwinia, Acinetobacter, Candida, Bartonella, Yarrowia, Photobacterium, Rhodopseudomonas, Ashbya, Shigella, Photorhabdus, Chromobacte rium, Rickettsia, Neurospora, Haemophilus, Nitrosomonas, Coxiella, Oryza, Xylella, Bradyrhizobium, Wigglesworthia, Synechococcus, Shewanella, Xanthomonas, Pas 30 teurella, Gamma, Arabidopsis, Caenorhabditis, Drosophila, Homo sapiens, Mus mus culus, Bacillus, Clostridium, Emericella, Aspergillus, Beta vulgaris, Amanita, Tet ragenococcus, Pichia, Trichoderma, Equus caballus, Plantago, Mycobacterium, Oro banche, Prunus, Malus, Bacteroides, Staphylococcus, Zymomonas, Apium, Spinacia oleracea, Canis, Ovis. The nucleic acid sequence encoding the transit peptide part of 54 the inventive nucleic acid originates advantageously from a eukaryote such as a micro organism or a plant. [0127.0.0.0] For the purposes of the invention, as a rule the plural is intended to en compass the singular and vice versa. 5 [0128.0.0.0] In order to improve the introduction of the nucleic acid sequences and the expression of the sequences in the transgenic organisms, which are used in the process, the nucleic acid sequences are incorporated into a nucleic acid construct and/or a vector. In addition to the herein described sequences which are used in the process according to the invention, further nucleic acid sequences, advantageously of 10 biosynthesis genes of the fine chemical produced in the process according to the in vention, may additionally be present in the nucleic acid construct or in the vector and may be introduced into the organism together. However, these additional sequences may also be introduced into the organisms via other, separate nucleic acid constructs or vectors. 15 [0129.0.0.0] Using the herein mentioned cloning vectors and transformation methods - such as those which are published and cited in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), chapter 6/7, pp. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, 15-38; 20 B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineer ing and Utilization, Ed.: Kung and R. Wu, Academic Press (1993), 128-143; Pot rykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)) and further cited below, the nucleic acids may be used for the recombinant modification of a wide range of organisms, in particular prokaryotic or eukaryotic microorganisms or plants, so 25 that they become a better and more efficient producer of the fine chemical produced in the process according to the invention. This improved production, or production effi ciency, of the fine chemical or products derived there from, such as modified proteins, can be brought about by a direct effect of the manipulation or by an indirect effect of this manipulation. 30 [0130.0.0.0] In one embodiment, the nucleic acid molecule according to the invention originates from a plant, such as a plant selected from the families Aceraceae, Anacar diaceae, Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Euphor biaceae, Fabaceae, Malvaceae, Nymphaeaceae, Papaveraceae, Rosaceae, Salica ceae, Solanaceae, Arecaceae, Bromeliaceae, Cyperaceae, Iridaceae, Liliaceae, Orchi- 55 daceae, Gentianaceae, Labiaceae, Magnoliaceae, Ranunculaceae, Carifolaceae, Rubiaceae, Scrophulariaceae, Caryophyllaceae, Ericaceae, Polygonaceae, Violaceae, Juncaceae or Poaceae and preferably from a plant selected from the group of the fami lies Apiaceae, Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, Papaveraceae, 5 Rosaceae, Solanaceae, Liliaceae or Poaceae. Preferred are crop plants and in particu lar plants mentioned herein above as host plants such as the families and genera men tioned above for example preferred the species Anacardium occidentale, Calendula officinalis, Carthamus tinctorius, Cichorium intybus, Cynara scolymus, Helianthus an nus, Tagetes lucida, Tagetes erecta, Tagetes tenuifolia; Daucus carota; Corylus avel 10 lana, Corylus colurna, Borago officinalis; Brassica napus, Brassica rapa ssp., Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Melanosinapis communis, Brassica oleracea, Arabidopsis thaliana, Anana comosus, Ananas ananas, Bromelia comosa, Carica papaya, Cannabis sative, Ipomoea batatus, Ipomoea pandu 15 rata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba, Convolvulus panduratus, Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva, Beta vulgaris var. esculenta, Cucurbita maxima, Cucurbita mixta, Cucur bita pepo, Cucurbita moschata, Olea europaea, Manihot utilissima, Janipha manihot,, 20 Jatropha manihot., Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melano basis, Manihot esculenta, Ricinus communis, Pisum sativum, Pisum arvense, Pisum humile, Medicago sativa, Medicago falcata, Medicago varia, Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida, Soja max, Cocos nucifera, Pelargonium grossularioides, Oleum cocoas, Laurus nobilis, Persea ameri 25 cana, Arachis hypogaea, Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense, Linum trigynum, Punica granatum, Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum, 30 Gossypium thurberi, Musa nana, Musa acuminata, Musa paradisiaca, Musa spp., Elaeis guineensis, Papaver orientale, Papaver rhoeas, Papaver dubium, Sesamum indicum, Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper be tel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata, , Hor 35 deum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon., Hordeum hexastichum, Hor deum irregulare, Hordeum sativum, Hordeum secalinum, Avena sativa, Avena fatua, 56 Avena byzantina, Avena fatua var. sativa, Avena hybrida, Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum 5 durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum sac charatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Hol cus halepensis, Sorghum miliaceum millet, Panicum militaceum, Zea mays, Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triti cum sativum or Triticum vulgare, Cofea spp., Coffea arabica, Coffea canephora, Coffea 10 liberica, Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutes cens, Capsicum annuum, Nicotiana tabacum, Solanum tuberosum, Solanum melon gena, Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium, Solanum lycopersicum Theobroma cacao or Camellia sinensis. [0131.0.0.0] In one embodiment, the nucleic acid molecule sequence originates ad 15 vantageously from a microorganism as mentioned above under host organism such as a fungus for example the genera Aspergillus, Penicillium or Claviceps or from yeasts such as the genera Pichia, Torulopsis, Hansenula, Schizosaccharomyces, Candida, Rhodotorula or Saccharomyces, very especially advantageously from the yeast of the family Saccharomycetaceae, such as the advantageous genus Saccharomyces and 20 the very advantageous genus and species Saccharomyces cerevisiae for the produc tion of the fine chemical in microorganims. [0132.0.0.0] The skilled worker knows other suitable sources for the production of fine chemicals, which present also useful nucleic acid molecule sources. They include in general all prokaryotic or eukaryotic cells, preferably unicellular microorganisms, 25 such as fungi like the genus Claviceps or Aspergillus or gram-positive bacteria such as the genera Bacillus, Corynebacterium, Micrococcus, Brevibacterium, Rhodococcus, Nocardia, Caseobacter or Arthrobacter or gram-negative bacteria such as the genera Escherichia, Flavobacterium or Salmonella, or yeasts such as the genera Rhodotorula, Hansenula or Candida. In addition advantageously algae or plants are used as source 30 organism. The nucleic acid sequence encoding the transit peptide part of the inventive nucleic acid originates advantageously from a eukaryote such as a microorganism such as algae like for example Charophyceae, Chlorophyceae or Prasinophyceae or a plant. [0133.0.0.0] Production strains which are especially advantageously selected in the 35 process according to the invention are microorganisms such as algae selected from the 57 group of the families Bacillariophyceae, Charophyceae, Chlorophyceae, Chrysophy ceae, Craspedophyceae, Euglenophyceae, Prymnesiophyceae, Phaeophyceae, Dino phyceae, Rhodophyceae, Xanthophyceae, Prasinophyceae and its described species and strains. 5 [0134.0.0.0] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table 1l, application no. 1, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring 10 above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table 1l, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. [0135.0.0.0] In the process according to the invention nucleic acid sequences can be 15 used, which, if appropriate, contain synthetic, non-natural or modified nucleotide bases, which can be incorporated into DNA or RNA. Said synthetic, non-natural or modified bases can for example increase the stability of the nucleic acid molecule outside or inside a cell. The nucleic acid molecules of the invention can contain the same modifi cations as aforementioned. 20 [0136.0.0.0] As used in the present context the term "nucleic acid molecule" may also encompass the untranslated sequence located at the 3' and at the 5' end of the coding gene region, for example at least 500, preferably 200, especially preferably 100, nucleotides of the sequence upstream of the 5' end of the coding region and at least 100, preferably 50, especially preferably 20, nucleotides of the sequence downstream 25 of the 3' end of the coding gene region. It is often advantageous only to choose the coding region for cloning and expression purposes. [0137.0.0.0] Preferably, the nucleic acid molecule used in the process according to the invention or the nucleic acid molecule of the invention is an isolated nucleic acid molecule. 30 [0138.0.0.0] An "isolated" polynucleotide or nucleic acid molecule is separated from other polynucleotides or nucleic acid molecules, which are present in the natural source of the nucleic acid molecule. An isolated nucleic acid molecule may be a chro mosomal fragment of several kb, or preferably, a molecule only comprising the coding 58 region of the gene. Accordingly, an isolated nucleic acid molecule of the invention may comprise chromosomal regions, which are adjacent 5' and 3' or further adjacent chro mosomal regions, but preferably comprises no such sequences which naturally flank the nucleic acid molecule sequence in the genomic or chromosomal context in the or 5 ganism from which the nucleic acid molecule originates (for example sequences which are adjacent to the regions encoding the 5'- and 3'-UTRs of the nucleic acid molecule). In various embodiments, the isolated nucleic acid molecule used in the process accord ing to the invention may, for example comprise less than approximately 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb nucleotide sequences which naturally flank the nucleic 10 acid molecule in the genomic DNA of the cell from which the nucleic acid molecule originates. [0139.0.0.0] The nucleic acid molecules used in the process, for example the polynucleotide of the invention or of a part thereof can be isolated using molecular biological standard techniques and the sequence information provided herein. Also, for 15 example a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level can be identified with the aid of comparison algorithms. The former can be used as hybridization probes under standard hybridization techniques (for example those described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory 20 Press, Cold Spring Harbor, NY, 1989) for isolating further nucleic acid sequences use ful in this process. [0140.0.0.0] A nucleic acid molecule encompassing a complete sequence of the nu cleic acid molecules used in the process, for example the polynucleotide of the inven tion, or a part thereof may additionally be isolated by polymerase chain reaction, oli 25 gonucleotide primers based on this sequence or on parts thereof being used. For ex ample, a nucleic acid molecule comprising the complete sequence or part thereof can be isolated by polymerase chain reaction using oligonucleotide primers which have been generated on the basis of this very sequence. For example, mRNA can be iso lated from cells (for example by means of the guanidinium thiocyanate extraction 30 method of Chirgwin et al. (1979) Biochemistry 18:5294-5299) and cDNA can be gener ated by means of reverse transcriptase (for example Moloney MLV reverse transcrip tase, available from Gibco/BRL, Bethesda, MD, or AMV reverse transcriptase, obtain able from Seikagaku America, Inc., St.Petersburg, FL). [0141.0.0.0] Synthetic oligonucleotide primers for the amplification, e.g. as shown in 35 table Ill, application no. 1, column 7, by means of polymerase chain reaction can be 59 generated on the basis of a sequence shown herein, for example the sequence shown in table 1, application no. 1, columns 5 and 7 or the sequences derived from table 1l, application no. 1, columns 5 and 7. [0142.0.0.0] Moreover, it is possible to identify conserved regions from various or 5 ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence 10 shown in table IV, application no. 1, column 7 is derived from said aligments. [0143.0.0.0] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table 1l, application no. 1, column 3 or further functional 15 homologs of the polypeptide of the invention from other organisms. [0144.0.0.0] These fragments can then be utilized as hybridization probe for isolating the complete gene sequence. As an alternative, the missing 5' and 3' sequences can be isolated by means of RACE-PCR. A nucleic acid molecule according to the inven tion can be amplified using cDNA or, as an alternative, genomic DNA as template and 20 suitable oligonucleotide primers, following standard PCR amplification techniques. The nucleic acid molecule amplified thus can be cloned into a suitable vector and character ized by means of DNA sequence analysis. Oligonucleotides, which correspond to one of the nucleic acid molecules used in the process can be generated by standard syn thesis methods, for example using an automatic DNA synthesizer. 25 [0145.0.0.0] Nucleic acid molecules which are advantageously for the process ac cording to the invention can be isolated based on their homology to the nucleic acid molecules disclosed herein using the sequences or part thereof as hybridization probe and following standard hybridization techniques under stringent hybridization condi tions. In this context, it is possible to use, for example, isolated nucleic acid molecules 30 of at least 15, 20, 25, 30, 35, 40, 50, 60 or more nucleotides, preferably of at least 15, 20 or 25 nucleotides in length which hybridize under stringent conditions with the above-described nucleic acid molecules, in particular with those which encompass a nucleotide sequence ofthe nucleic acid molecule used in the process of the invention or encoding a protein used in the invention or of the nucleic acid molecule of the inven- 60 tion. Nucleic acid molecules with 30, 50, 100, 250 or more nucleotides may also be used. [0146.0.0.0] The term "homology" means that the respective nucleic acid molecules or encoded proteins are functionally and/or structurally equivalent. The nucleic acid 5 molecules that are homologous to the nucleic acid molecules described above and that are derivatives of said nucleic acid molecules are, for example, variations of said nu cleic acid molecules which represent modifications having the same biological function, in particular encoding proteins with the same or substantially the same biological func tion. They may be naturally occurring variations, such as sequences from other plant 10 varieties or species, or mutations. These mutations may occur naturally or may be ob tained by mutagenesis techniques. The allelic variations may be naturally occurring allelic variants as well as synthetically produced or genetically engineered variants. Structurally equivalents can, for example, be identified by testing the binding of said polypeptide to antibodies or computer based predictions. Structurally equivalent have 15 the similar immunological characteristic, e.g. comprise similar epitopes. [0147.0.0.0] By "hybridizing" it is meant that such nucleic acid molecules hybridize under conventional hybridization conditions, preferably under stringent conditions such as described by, e.g., Sambrook (Molecular Cloning; A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989)) or in Current 20 Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6. [0148.0.0.0] According to the invention, DNA as well as RNA molecules of the nu cleic acid of the invention can be used as probes. Further, as template for the identifi cation of functional homologues Northern blot assays as well as Southern blot assays can be performed. The Northern blot assay advantageously provides further informa 25 tions about the expressed gene product: e.g. expression pattern, occurance of proc essing steps, like splicing and capping, etc. The Southern blot assay provides addi tional information about the chromosomal localization and organization of the gene encoding the nucleic acid molecule of the invention. [0149.0.0.0] A preferred, nonlimiting example of stringent hydridization conditions are 30 hybridizations in 6 x sodium chloride/sodium citrate (= SSC) at approximately 45'C, followed by one or more wash steps in 0.2 x SSC, 0.1% SDS at 50 to 65'C, for exam ple at 50'C, 55'C or 60'C. The skilled worker knows that these hybridization conditions differ as a function of the type of the nucleic acid and, for example when organic sol vents are present, with regard to the temperature and concentration of the buffer. The 61 temperature under "standard hybridization conditions" differs for example as a function of the type of the nucleic acid between 42'C and 58'C, preferably between 45'C and 50'C in an aqueous buffer with a concentration of 0.1 x 0.5 x, 1 x, 2x, 3x, 4x or 5 x SSC (pH 7.2). If organic solvent(s) is/are present in the abovementioned buffer, for example 5 50% formamide, the temperature under standard conditions is approximately 40'C, 42'C or 45'C. The hybridization conditions for DNA:DNA hybrids are preferably for example 0.1 x SSC and 20'C, 25'C, 30'C, 35'C, 40'C or 45'C, preferably between 30'C and 45'C. The hybridization conditions for DNA:RNA hybrids are preferably for example 0.1 x SSC and 30'C, 35'C, 40'C, 45'C, 50'C or 55'C, preferably between 10 45'C and 55'C. The abovementioned hybridization temperatures are determined for example for a nucleic acid approximately 100 bp (= base pairs) in length and a G + C content of 50% in the absence of formamide. The skilled worker knows to determine the hybridization conditions required with the aid of textbooks, for example the ones mentioned above, or from the following textbooks: Sambrook et al., "Molecular Clon 15 ing", Cold Spring Harbor Laboratory, 1989; Hames and Higgins (Ed.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Ox ford; Brown (Ed.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford. [0150.0.0.0] A further example of one such stringent hybridization condition is hy 20 bridization at 4XSSC at 65'C, followed by a washing in 0.1XSSC at 65'C for one hour. Alternatively, an exemplary stringent hybridization condition is in 50 % formamide, 4XSSC at 42'C. Further, the conditions during the wash step can be selected from the range of conditions delimited by low-stringency conditions (approximately 2X SSC at 50'C) and high-stringency conditions (approximately 0.2X SSC at 50'C, preferably at 25 65'C) (20X SSC: 0.3M sodium citrate, 3M NaCl, pH 7.0). In addition, the temperature during the wash step can be raised from low-stringency conditions at room tempera ture, approximately 22'C, to higher-stringency conditions at approximately 65'C. Both of the parameters salt concentration and temperature can be varied simultaneously, or else one of the two parameters can be kept constant while only the other is varied. De 30 naturants, for example formamide or SDS, may also be employed during the hybridiza tion. In the presence of 50% formamide, hybridization is preferably effected at 42'C. Relevant factors like i) length of treatment, ii) salt conditions, iii) detergent conditions, iv) competitor DNAs, v) temperature and vi) probe selection can be combined case by case so that not all possibilities can be mentioned herein. 35 Thus, in a preferred embodiment, Northern blots are prehybridized with Rothi-Hybri Quick buffer (Roth, Karlsruhe) at 68'C for 2h. Hybridzation with radioactive labelled 62 probe is done overnight at 68'C. Subsequent washing steps are performed at 68'C with 1xSSC. For Southern blot assays the membrane is prehybridized with Rothi-Hybri-Quick buffer (Roth, Karlsruhe) at 68'C for 2h. The hybridzation with radioactive labelled probe is 5 conducted over night at 68'C. Subsequently the hybridization buffer is discarded and the filter shortly washed using 2xSSC; 0,1% SDS. After discarding the washing buffer new 2xSSC; 0,1% SDS buffer is added and incubated at 68'C for 15 minutes. This washing step is performed twice followed by an additional washing step using 1xSSC; 0,1% SDS at 68'C for 10 min. 10 [0151.0.0.0] Some examples of conditions for DNA hybridization (Southern blot as says) and wash step are shown hereinbelow: 63 (1) Hybridization conditions can be selected, for example, from the following condi tions: a) 4X SSC at 65'C, b) 6X SSC at 45'C, 5 c) 6X SSC, 100 mg/ml denatured fragmented fish sperm DNA at 68'C, d) 6X SSC, 0.5% SDS, 100 mg/ml denatured salmon sperm DNA at 68'C, e) 6X SSC, 0.5% SDS, 100 mg/ml denatured fragmented salmon sperm DNA, 50% formamide at 42'C, f) 50% formamide, 4X SSC at 42'C, 10 g) 50% (vol/vol) formamide, 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer pH 6.5, 750 mM NaCl, 75 mM sodium citrate at 42'C, h) 2X or 4X SSC at 50'C (low-stringency condition), or i) 30 to 40% formamide, 2X or 4X SSC at 42'C (low-stringency condition). 15 (2) Wash steps can be selected, for example, from the following conditions: a) 0.015 M NaCI/0.0015 M sodium citrate/0.1% SDS at 500C. b) 0.1X SSC at 65'C. c) 0.1X SSC, 0.5 % SDS at 68'C. 20 d) 0.1X SSC, 0.5% SDS, 50% formamide at 42'C. e) 0.2X SSC, 0.1% SDS at 42'C. f) 2X SSC at 65'C (low-stringency condition). [0152.0.0.0] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se 25 quences which hybridize to the sequences shown in table 1, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the me thionine increasing activity. [0153.0.0.0] Further, some applications have to be performed at low stringency hy 30 bridisation conditions, without any consequences for the specificity of the hybridisation. For example, a Southern blot analysis of total DNA could be probed with a nucleic acid molecule of the present invention and washed at low stringency (55'C in 2xSSPE, 0,1% SDS). The hybridisation analysis could reveal a simple pattern of only genes en coding polypeptides of the present invention or used in the process of the invention, 35 e.g. having herein-mentioned activity of increasing the fine chemical. A further example 64 of such low-stringent hybridization conditions is 4XSSC at 50'C or hybridization with 30 to 40% formamide at 42'C. Such molecules comprise those which are fragments, ana logues or derivatives of the polypeptide of the invention or used in the process of the invention and differ, for example, by way of amino acid and/or nucleotide deletion(s), 5 insertion(s), substitution (s), addition(s) and/or recombination (s) or any other modifica tion(s) known in the art either alone or in combination from the above-described amino acid sequences or their underlying nucleotide sequence(s). However, it is preferred to use high stringency hybridisation conditions. [0154.0.0.0] Hybridization should advantageously be carried out with fragments of at 10 least 5, 10, 15, 20, 25, 30, 35 or 40 bp, advantageously at least 50, 60, 70 or 80 bp, preferably at least 90, 100 or 110 bp. Most preferably are fragments of at least 15, 20, 25 or 30 bp. Preferably are also hybridizations with at least 100 bp or 200, very espe cially preferably at least 400 bp in length. In an especially preferred embodiment, the hybridization should be carried out with the entire nucleic acid sequence with condi 15 tions described above. [0155.0.0.0] The terms "fragment", "fragment of a sequence" or "part of a sequence" mean a truncated sequence of the original sequence referred to. The truncated se quence (nucleic acid or protein sequence) can vary widely in length; the minimum size being a sequence of sufficient size to provide a sequence with at least a comparable 20 function and/or activity of the original sequence referred to or hybidizing with the nu cleic acid molecule of the invention or used in the process of the invention under strin gend conditions, while the maximum size is not critical. In some applications, the maximum size usually is not substantially greater than that required to provide the de sired activity and/or function(s) of the original sequence. 25 [0156.0.0.0] Typically, the truncated amino acid sequence will range from about 5 to about 310 amino acids in length. More typically, however, the sequence will be a maximum of about 250 amino acids in length, preferably a maximum of about 200 or 100 amino acids. It is usually desirable to select sequences of at least about 10, 12 or 15 amino acids, up to a maximum of about 20 or 25 amino acids. 30 [0157.0.0.0] The term "epitope" relates to specific immunoreactive sites within an antigen, also known as antigenic determinates. These epitopes can be a linear array of monomers in a polymeric composition - such as amino acids in a protein - or consist of or comprise a more complex secondary or tertiary structure. Those of skill will rec ognize that immunogens (i.e., substances capable of eliciting an immune response) are 65 antigens; however, some antigen, such as haptens, are not immunogens but may be made immunogenic by coupling to a carrier molecule. The term "antigen" includes ref erences to a substance to which an antibody can be generated and/or to which the antibody is specifically immunoreactive. 5 [0158.0.0.0] In one embodiment the present invention relates to a epitope of the polypeptide of the present invention or used in the process of the present invention and conferring above mentioned activity, preferably conferring an increase in the fine chemical. [0159.0.0.0] The term "one or several amino acids" relates to at least one amino acid 10 but not more than that number of amino acids, which would result in a homology of below 50% identity. Preferably, the identity is more than 70% or 80%, more preferred are 85%, 90%, 91%, 92%, 93%, 94% or 95%, even more preferred are 96%, 97%, 98%, or 99% identity. [0160.0.0.0] Further, the nucleic acid molecule of the invention comprises a nucleic 15 acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table 1, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in 20 table 1, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table 1, application no. 1, columns 5 and 7, preferably shown in Table I B, application no. 1, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple 25 ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. 30 [0161.0.0.0] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table 1, application no. 1, columns 5 and 7, preferably shown in 66 table I B, application no. 1, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 1, column 3 by for example expression either in the cytsol or in an organelle such 5 as a plastid or mitochondria or both, preferably in plastids. [0162.0.0.0] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7, or a portion 10 thereof and encodes a protein having above-mentioned activity, e.g. conferring of a methionine increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the ac tivity of YEL046C, YGR255C, YGR289C, YKR043C and/or YLR153C. [0163.0.0.0] Moreover, the nucleic acid molecule of the invention can comprise only 15 a portion of the coding region of one of the sequences shown in table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly peptide used in the process of the present invention, i.e. having above-mentioned ac 20 tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its 25 homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 30 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention 35 or of the polypeptide used in the process of the invention, e.g. as the primers described 67 in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 1, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.0] Primer sets are interchangable. The person skilled in the art knows to 5 combine said primers to result in the desired product, e.g. in a full length clone or a partial sequence. Probes based on the sequences of the nucleic acid molecule of the invention or used in the process of the present invention can be used to detect tran scripts or genomic sequences encoding the same or homologous proteins. The probe can further comprise a label group attached thereto, e.g. the label group can be a ra 10 dioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a genomic marker test kit for identifying cells which express an polypepetide of the invention or used in the process of the present invention, such as by measuring a level of an encoding nucleic acid molecule in a sample of cells, e.g., detecting mRNA levels or determining, whether a genomic gene comprising the se 15 quence of the polynucleotide of the invention or used in the processs of the present invention has been mutated or deleted. [0165.0.0.0] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 1, columns 5 and 7 20 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a methionine increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.0.0] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum 25 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 1, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity 30 of a protein as shown in table II, column 3 and as described herein. [0167.0.0.0] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 68 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 1, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an 5 organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.0] Portions of proteins encoded by the nucleic acid molecule of the inven tion are preferably biologically active, preferably having above-mentioned annotated activity, e.g. conferring an increase the fine chemical after increase of activity. [0169.0.0.0] As mentioned herein, the term "biologically active portion" is intended to 10 include a portion, e.g., a domain/motif, that confers increase of the fine chemical or has an immunological activity such that it is binds to an antibody binding specifially to the polypeptide of the present invention or a polypeptide used in the process of the present invention for producing the fine chemical. [0170.0.0.0] The invention further relates to nucleic acid molecules that differ from 15 one of the nucleotide sequences shown in table I, application no. 1, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 1, columns 5 20 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 1, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length 25 protein which is substantially homologous to an amino acid sequence shown in table II, application no. 1, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 1, columns 5 and 7, preferably as in dicated in table I A, application no. 1, columns 5 and 7. Preferably the nucleic acid 30 molecule of the invention is a functional homologue or identical to a nucleic acid mole cule indicated in table I B, application no. 1, columns 5 and 7. [0171.0.0.0] In addition, it will be appreciated by those skilled in the art that DNA se quence polymorphisms that lead to changes in the amino acid sequences may exist within a population. Such genetic polymorphism in the gene encoding the polypeptide 69 of the invention or comprising the nucleic acid molecule of the invention may exist among individuals within a population due to natural variation. [0172.0.0.0] As used herein, the terms "gene" and "recombinant gene" refer to nu cleic acid molecules comprising an open reading frame encoding the polypeptide of the 5 invention or comprising the nucleic acid molecule of the invention or encoding the poly peptide used in the process of the present invention, preferably from a crop plant or from a microorgansim useful for the production of fine chemicals, in particular for the production of the fine chemical. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the gene. Any and all such nucleotide variations 10 and resulting amino acid polymorphisms in genes encoding a polypeptide of the inven tion or comprising a the nucleic acid molecule of the invention that are the result of natural variation and that do not alter the functional activity as described are intended to be within the scope of the invention. [0173.0.0.0] Nucleic acid molecules corresponding to natural variants homologues of 15 a nucleic acid molecule of the invention, which can also be a cDNA, can be isolated based on their homology to the nucleic acid molecules disclosed herein using the nu cleic acid molecule of the invention, or a portion thereof, as a hybridization probe ac cording to standard hybridization techniques under stringent hybridization conditions. [0174.0.0.0] Accordingly, in another embodiment, a nucleic acid molecule of the in 20 vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 1, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more 25 nucleotides in length. [0175.0.0.0] The term "hybridizes under stringent conditions" is defined above. In one embodiment, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 30 %, 40 %, 50 % or 65% identical to each other typically remain hybridized to each 30 other. Preferably, the conditions are such that sequences at least about 70%, more preferably at least about 75% or 80%, and even more preferably at least about 85%, 90% or 95% or more identical to each other typically remain hybridized to each other.
70 [0176.0.0.0] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 1, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 5 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 10 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.0] In addition to naturally-occurring variants of the sequences of the poly peptide or nucleic acid molecule of the invention as well as of the polypeptide or nu cleic acid molecule used in the process of the invention that may exist in the popula 15 tion, the skilled artisan will further appreciate that changes can be introduced by muta tion into a nucleotide sequence of the nucleic acid molecule encoding the polypeptide of the invention or used in the process of the present invention, thereby leading to changes in the amino acid sequence of the encoded said polypeptide, without altering the functional ability of the polypeptide, preferably not decreasing said activity. 20 [0178.0.0.0] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 1, columns 5 and 7. [0179.0.0.0] A"non-essential" amino acid residue is a residue that can be altered 25 from the wild-type sequence of one without altering the activity of said polypeptide, whereas an "essential" amino acid residue is required for an activity as mentioned above, e.g. leading to an increase in the fine chemical in an organism after an increase of activity of the polypeptide. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having said activity) may not be 30 essential for activity and thus are likely to be amenable to alteration without altering said activity. [0180.0.0.0] Further, a person skilled in the art knows that the codon usage between organisms can differ. Therefore, he may adapt the codon usage in the nucleic acid molecule of the present invention to the usage of the organism or the cell compartment 71 for example of the plastid or mitochondria in which the polynuclestide or polypeptide is expressed. [0181.0.0.0] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine 5 chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 1, columns 5 and 7, preferably shown in ta 10 ble II A, application no. 1, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence which is at least about 50% identical to an amino acid sequence shown in table II, application no. 1, columns 5 and 7, preferably shown in table II A, application no. 1, columns 5 and 7 and is capable 15 of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se quence shown in table II, application no. 1, columns 5 and 7, preferably shown in table 20 II A, application no. 1, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 1, columns 5 and 7, preferably shown in table II A, application no. 1, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 1, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical 25 to the sequence shown in table II, application no. 1, columns 5 and 7, preferably shown in table II A, application no. 1, columns 5 and 7. [0182.0.0.0] To determine the percentage homology (= identity, herein used inter changeably) of two amino acid sequences or of two nucleic acid molecules, the se quences are written one underneath the other for an optimal comparison (for example 30 gaps may be inserted into the sequence of a protein or of a nucleic acid in order to generate an optimal alignment with the other protein or the other nucleic acid). [0183.0.0.0] The amino acid residues or nucleic acid molecules at the corresponding amino acid positions or nucleotide positions are then compared. If a position in one sequence is occupied by the same amino acid residue or the same nucleic acid mole 35 cule as the corresponding position in the other sequence, the molecules are homolo- 72 gous at this position (i.e. amino acid or nucleic acid "homology" as used in the present context corresponds to amino acid or nucleic acid "identity". The percentage homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e. % homology = number of identical positions/total number of posi 5 tions x 100). The terms "homology" and "identity" are thus to be considered as syno nyms. [0184.0.0.0] For the determination of the percentage homology (=identity) of two or more amino acids or of two or more nucleotide sequences several computer software programs have been developed. The homology of two or more sequences can be cal 10 culated with for example the software fasta, which presently has been used in the ver sion fasta 3 (W. R. Pearson and D. J. Lipman (1988), Improved Tools for Biological Sequence Comparison.PNAS 85:2444- 2448; W. R. Pearson (1990) Rapid and Sensi tive Sequence Comparison with FASTP and FASTA, Methods in Enzymology 183:63 98; W. R. Pearson and D. J. Lipman (1988) Improved Tools for Biological Sequence 15 Comparison.PNAS 85:2444- 2448; W. R. Pearson (1990); Rapid and Sensitive Se quence Comparison with FASTP and FASTAMethods in Enzymology 183:63 - 98). Another useful program for the calculation of homologies of different sequences is the standard blast program, which is included in the Biomax pedant software (Biomax, Mu nich, Federal Republic of Germany). This leads unfortunately sometimes to suboptimal 20 results since blast does not always include complete sequences of the subject and the querry. Nevertheless as this program is very efficient it can be used for the comparison of a huge number of sequences. The following settings are typically used for such a comparisons of sequences: -p Program Name [String]; -d Database [String]; default = nr; -i Query File [File In]; 25 default = stdin; -e Expectation value (E) [Real]; default = 10.0; -m alignment view op tions: 0 = pairwise; 1 = query-anchored showing identities; 2 = query-anchored no iden tities; 3 = flat query-anchored, show identities; 4 = flat query-anchored, no identities; 5 = query-anchored no identities and blunt ends; 6 = flat query-anchored, no identities and blunt ends; 7 = XML Blast output; 8 = tabular; 9 tabular with comment lines [Inte 30 ger]; default = 0; -o BLAST report Output File [File Out] Optional; default = stdout; -F Filter query sequence (DUST with blastn, SEG with others) [String]; default = T; -G Cost to open a gap (zero invokes default behavior) [Integer]; default = 0; -E Cost to extend a gap (zero invokes default behavior) [Integer]; default = 0; -X X dropoff value for gapped alignment (in bits) (zero invokes default behavior); blastn 30, megablast 20, 35 tblastx 0, all others 15 [Integer]; default = 0; -1 Show GI's in deflines [T/F]; default = F; q Penalty for a nucleotide mismatch (blastn only) [Integer]; default = -3; -r Reward for 73 a nucleotide match (blastn only) [Integer]; default = 1; -v Number of database se quences to show one-line descriptions for (V) [Integer]; default = 500; -b Number of database sequence to show alignments for (B) [Integer]; default = 250; -f Threshold for extending hits, default if zero; blastp 11, blastn 0, blastx 12, tblastn 13; tblastx 13, 5 megablast 0 [Integer]; default = 0; -g Perfom gapped alignment (not available with tblastx) [T/F]; default = T; -Q Query Genetic code to use [Integer]; default = 1; -D DB Genetic code (for tblast[nx] only) [Integer]; default = 1; -a Number of processors to use [Integer]; default = 1; -O SeqAlign file [File Out] Optional; -J Believe the query defline [T/F]; default = F; -M Matrix [String]; default = BLOSUM62; -W Word size, default if 10 zero (blastn 11, megablast 28, all others 3) [Integer]; default = 0; -z Effective length of the database (use zero for the real size) [Real]; default = 0; -K Number of best hits from a region to keep (off by default, if used a value of 100 is recommended) [Integer]; default = 0; -P 0 for multiple hit, 1 for single hit [Integer]; default = 0; -Y Effective length of the search space (use zero for the real size) [Real]; default = 0; -S Query 15 strands to search against database (for blast[nx], and tblastx); 3 is both, 1 is top, 2 is bottom [Integer]; default = 3; -T Produce HTML output [T/F]; default = F; -1 Restrict search of database to list of GI's [String] Optional; -U Use lower case filtering of FASTA sequence [T/F] Optional; default = F; -y X dropoff value for ungapped exten sions in bits (0.0 invokes default behavior); blastn 20, megablast 10, all others 7 [Real]; 20 default = 0.0; -Z X dropoff value for final gapped alignment in bits (0.0 invokes default behavior); blastn/megablast 50, tblastx 0, all others 25 [Integer]; default = 0; -R PSI TBLASTN checkpoint file [File In] Optional; -n MegaBlast search [T/F]; default = F; -L Location on query sequence [String] Optional; -A Multiple Hits window size, default if zero (blastn/megablast 0, all others 40 [Integer]; default = 0; -w Frame shift penalty 25 (OOF algorithm for blastx) [Integer]; default = 0; -t Length of the largest intron allowed in tblastn for linking HSPs (0 disables linking) [Integer]; default = 0. [0185.0.0.0] Results of high quality are reached by using the algorithm of Needleman and Wunsch or Smith and Waterman. Therefore programs based on said algorithms are preferred. Advantageously the comparisons of sequences can be done with the 30 program PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or preferably with the programs Gap and BestFit, which are respectively based on the algorithms of Needleman and Wunsch [J. Mol. Biol. 48; 443-453 (1970)] and Smith and Waterman [Adv. Apple. Math. 2; 482-489 (1981)]. Both programs are part of the GCG software-package [Genetics Computer Group, 575 Science Drive, Madi 35 son, Wisconsin, USA 53711 (1991); Altschul et al. (1997) Nucleic Acids Res. 25:3389 et seq.]. Therefore preferably the calculations to determine the perentages of sequence 74 homology are done with the program Gap over the whole range of the sequences. The following standard adjustments for the comparison of nucleic acid sequences were used: gap weight: 50, length weight: 3, average match: 10.000, average mismatch: 0.000. 5 [0186.0.0.0] For example a sequence, which has 80% homology with sequence SEQ ID NO: 1 at the nucleic acid level is understood as meaning a sequence which, upon comparison with the sequence SEQ ID NO: 1 by the above Gap program algorithm with the above parameter set, has a 80% homology. [0187.0.0.0] Homology between two polypeptides is understood as meaning the 10 identity of the amino acid sequence over in each case the entire sequence length which is calculated by comparison with the aid of the program algorithm GAP (Wiscon sin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA), setting the following parameters: Gap weight: 8 Length weight: 2 15 Average match: 2,912 Average mismatch: -2,003 [0188.0.0.0] For example a sequence which has a 80% homology with sequence SEQ ID NO: 1 at the protein level is understood as meaning a sequence which, upon comparison with the sequence SEQ ID NO: 1 by the above program algorithm with the above parameter set, has a 80% homology. 20 [0189.0.0.0] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 1, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 25 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 1, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 1, columns 5 and 7, preferably shown 30 in table II B, application no. 1, columns 5 and 7. [0190.0.0.0] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7 resp., according to the invention by substitution, insertion or 75 deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 1, columns 5 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 1, columns 5 and 7, pref erably shown in table II B, application no. 1, columns 5 and 7. [0191.0.0.0] "Essentially the same properties" of a functional equivalent is above all 10 understood as meaning that the functional equivalen has above mentioned acitivty, e.g conferring an increasing in the fine chemical amount by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids while increasing the amount of protein, activity or function of said functional equivalent in an organism, e.g. a microorgansim, a plant or plant or animal tissue, plant 15 or animal cells or a part of the same. [0192.0.0.0] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 1, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid 20 molecule of the present invention, in particular of table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, 25 columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.0] Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substi tution" is one in which the amino acid residue is replaced with an amino acid residue 30 having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, 35 proline, phenylalanine, methionine, tryptophane), beta-branched side chains (e.g., 76 threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophane, histidine). [0194.0.0.0] Thus, a predicted nonessential amino acid residue in a polypeptide of the invention or a polypeptide used in the process of the invention is preferably re 5 placed with another amino acid residue from the same family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a coding se quence of a nucleic acid molecule of the invention or used in the process of the inven tion, such as by saturation mutagenesis, and the resultant mutants can be screened for activity described herein to identify mutants that retain or even have increased above 10 mentioned activity, e.g. conferring an increase in content of the fine chemical. [0195.0.0.0] Following mutagenesis of one of the sequences of shown herein, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Examples). [0196.0.0.0] The highest homology of the nucleic acid molecule used in the process 15 according to the invention was found for the following database entries by Gap search. [0197.0.0.0] Homologues of the nucleic acid sequences used, with the sequence shown in table 1, application no. 1, columns 5 and 7, preferably shown in table I B, ap plication no. 1, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 20 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by 25 deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table 1, application no. 1, columns 5 and 7, preferably shown in table I B, applica tion no. 1, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. 30 [0198.0.0.0] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table 1, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7. It is preferred that the nucleic acid molecule com- 77 prises as little as possible other nucleotides not shown in any one of table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu 5 cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 1, columns 5 and 7, preferably shown in table I B, application no. 1, columns 5 and 7. [0199.0.0.0] Also preferred is that the nucleic acid molecule used in the process of 10 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 1, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one 15 embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 1, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7. [0200.0.0.0] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica 20 tion no. 1, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 1, columns 5 and 7, preferably shown in table 25 I B, application no. 1, columns 5 and 7. [0201.0.0.0] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very 30 especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 1, columns 5 and 7 expressed under identical conditions.
78 [0202.0.0.0] Homologues of table 1, application no. 1, columns 5 and 7 or of the de rived sequences of table 1l, application no. 1, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 5 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 10 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 15 [0203.0.0.0] In a further embodiment, the process according to the present invention comprises the following steps: (a) selecting an organism or a part thereof expressing the polypeptide of this invention in the cytsol and/or in an organelle such as a plastid or mitochon dria, preferably in a plastid; 20 (b) mutagenizing the selected organism or the part thereof; (c) comparing the activity or the expression level of said polypeptide in the mutagenized organism or the part thereof with the activity or the expression of said polypeptide in the selected organisms or the part thereof; (d) selecting the mutagenized organisms or parts thereof, which comprise an 25 increased activity or expression level of said polypeptide compared to the selected organism (a) or the part thereof; (e) optionally, growing and cultivating the organisms or the parts thereof; and (f) recovering, and optionally isolating, the free or bound the fine chemical produced by the selected mutated organisms or parts thereof.
79 [0204.0.0.0] The organisms or part thereof produce according to the herein men tioned process of the invention an increased level of free and/or bound fine chemical compared to said control or selected organisms or parts thereof. [0205.0.0.0] Advantageously the seclected organisms are mutagenized according to 5 the invention. According to the invention mutagenesis is any change of the genetic in formation in the genom of an organism, that means any structural or compositional change in the nucleic acid preferably DNA of an organism that is not caused by normal segregation or genetic recombiantion processes. Such mutations may occur spontane ously, or may be induced by mutagens as described below. Such change can be in 10 duced either randomly or selectivly. In both cases the genetic information of the organ ism is modified. In general this lead to the situation that the activity of the gene product of the relevant genes inside the cells or inside the organism is increased. [0206.0.0.0] In case of the specific or so called site directed mutagenesis a distinct gen is mutated and thereby its activity and/or the activity or the encoded gene product 15 is repressed, reduced or increased, preferably increased. In the event of a random mutagenesis one or more genes are mutated by chance and their activities and/or the activities of their gen productes are repressed, reduced or increased, preferably in creased. [0207.0.0.0] For the purpose of a mutagenesis of a huge population of organisms, 20 such population can be transformed with a DNA construct, which is useful for the acti vation of as much as possible genes of an organism, preferably all genes. For example the construct can contain a strong promoter or one or more enhancers, which are ca pable of transcriptionally activate genes in the vicinity of their integration side. With this method it is possible to statistically mutagenize, eg activate nearly all genes of an or 25 ganism by the random integration of an activation construct. Afterwards the skilled worker can identify those mutagenized lines in which a gene of the invention has been activated, which in turns leads to the desired increase in the fine chemical production. [0208.0.0.0] The genes of the invention can also be activated by mutagensis, either of regulatory or coding regions. In the event of a random mutagenesis a huge number 30 of organisms are treated with a mutagenic agent. The amount of said agent and the intensity of the treatment would be chosen in such a manner that statistically nearly every gene be mutated once. The process for the random mutagensis as well as the respective agens is well known by the skilled person. Such methods are disclosed for example by A.M. van Harten [(1998), "Mutation breeding: theory and practical applica- 80 tions", Cambridge University Press, Cambridge, UK], E Friedberg, G Walker, W Siede [(1995), ,,DNA Repair and Mutagenesis", Blackwell Publishing], or K. Sankaranaraya nan, J. M. Gentile, L. R. Ferguson [(2000) ,Protocols in Mutagenesis", Elsevier Health Sciences]. As the skilled worker knows the spontaneous mutation rate in the cells of an 5 organism is very low and that a large numer of chemical, physical or biological agents are available for the mutagenesis of organisms. These agents are named as mutagens or mutagenic agents. As mentioned before three different kinds of mutagens (chemical, physical or biological agents) are available. [0209.0.0.0] There are different classes of chemical mutagens, which can be sepa 10 rated by their mode of action. For example base analogues such as 5-bromouracil, 2 amino purin. Other chemical mutagens are interacting with the DNA such as sulphuric acid, nitrous acid, hydroxylamine; or other alkylating agents such as monofunctional agents like ethyl methanesulfonate, dimethylsulfate, methyl methanesulfonate), bifunc tional like dichloroethyl sulphide, Mitomycin, Nitrosoguanidine - dialkylnitrosamine, N 15 Nitrosoguanidin derivatives, N-alkyl-N-nitro-N-nitroso-guanidine-), intercalating dyes like Acridine, ethidium bromide). [0210.0.0.0] Physical mutagens are for example ionizing irradiation (X ray), UV irra diation. Different forms of irradiation are available and they are strong mutagens. Two main classes of irradiation can be distinguished: a) non-ionizing irradiation such as UV 20 light or ionizing irradiation such as X ray. Biological mutagens are for example trans posable elements for example IS elements such as IS100, transposons such as Tn5, Tn10, Tn916 or Tn1000 or phages like Muamplac, P1, T5, Aplac etc. Methods for intro ducing this phage DNA into the appropriate microorganism are well known to the skilled worker (see Microbiology, Third Edition, Eds. Davis, B.D., Dulbecco, R., Eisen, 25 H.N. and Ginsberg, H.S., Harper International Edition, 1980). The common procedure of a transposon mutagenesis is the insertion of a transposable element within a gene or nearby for example in the promotor or terminator region and thereby leading to a loss of the gene function. Procedures to localize the transposon within the genome of the organisms are well known by a person skilled in the art. 30 [0211.0.0.0] Preferably a chemical or biochemical procedure is used for the mutagenesis of the organisms. A preferred chemical method is the mutagensis with N methyl-N-nitro-nitrosoguanidine. [0212.0.0.0] Other biological methods are disclosed by Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777 - 778). Spee et al. teaches a PCR method using 81 dITP for the random mutagenesis. This method described by Spee et al. was further improved by Rellos et al. (Protein Expr. Purif., 5, 1994 : 270 - 277). The use of an in vitro recombination technique for molecular mutagenesis is described by Stemmer (Proc. Nati. Acad. Sci. USA, Vol. 91, 1994: 10747 - 10751). Moore et al. (Nature Bio 5 technology Vol. 14, 1996: 458 - 467) describe the combination of the PCR and recom bination methods for increasing the enzymatic activity of an esterase toward a para nitrobenzyl ester. Another route to the mutagenesis of enzymes is described by Greener et al. in Methods in Molecular Biology (Vol. 57, 1996: 375 - 385). Greener et al. use the specific Escherichia coli strain XL1-Red to generate Escherichia coli mu 10 tants which have increased antibiotic resistance. [0213.0.0.0] In one embodiment, the protein according to the invention or the nucleic acid molecule characterized herein originates from a eukaryotic or prokaryotic organ ism such as a non-human animal, a plant, a microorganism such as a fungus, yeast, an alga, a diatom or a bacterium. Nucleic acid molecules, which advantageously can be 15 used in the process of the invention originate from yeasts, for example the family Sac charomycetaceae, in particular the genus Saccharomyces, or yeast genera such as Candida, Hansenula, Pichia, Yarrowia, Rhodotorula or Schizosaccharomyces and the especially advantageous from the species Saccharomyces cerevisiae. [0214.0.0.0] If, in the process according to the invention, plants are selected as the 20 donor organism, this plant may, in principle, be in any phylogenetic relation of the re cipient plant. Donor and recipient plant may belong to the same family, genus, species, variety or line, resulting in an increasing homology between the nucleic acids to be in tegrated and corresponding parts of the genome of the recipient plant. This also ap plies analogously to microorganisms as donor and recipient organism. 25 It might also be advantageously to use nuclei acids molecules from very distinct spe cies, since these might exhibit reduced sensitivity against endogenous regulatory mechanisms and such sequences might not be recognized by endogenous silencing mechanisms. [0215.0.0.0] Accordingly, one embodiment of the application relates to the use of 30 nucleic acid molecules in the process of the invention from algae or plants, e.g. crop plants, e.g. from: B. napus; Glycine max; Oryza sativa, sunflower linseed or maize or their homologues.
82 [0216.0.0.0] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 5 peptide shown in table 1l, application no. 1, columns 5 and 7, preferably shown in table || B, application no. 1, columns 5 and 7; or a fragment thereof conferring an increase in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 1, columns 5 and 7, prefera 10 bly shown in table I B, application no. 1, columns 5 and 7 or a fragment thereof conferring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener 15 acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine 20 chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 25 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 30 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; 83 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 1, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 10 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 1, columns 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 1, columns 5 15 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 20 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 1, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 1, columns 5 and 7, and conferring an increase in the amount of the fine 25 chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 1, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention 30 does not consist of the sequence shown in table I A and/or I B, application no. 1, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 1, columns 84 5 and 7. In a further embodiment the nucleic acid molecule does not encode the poly peptide sequence shown in table II A and/or II B, application no. 1, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present invention encodes in one embodiment a polypeptide which differs at least in one or more amino 5 acids from the polypeptide shown in table II, application no. 1, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, application no. 1, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 1, columns 5 and 7. In a further embodiment, the protein 10 of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 1, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 1, columns 5 and 7. 15 [0217.0.0.0] The nucleic acid sequence according to the invention mentioned above is advantageously functionally joined to a nucleic acid sequence encoding a transit peptide, in such a manner that a preprotein is translated, which is able to direct the polypeptide to the organelle such as to the plastid. In another preferred embodiment the nucleic acids according to the invention mentioned above is advantageously func 20 tionally joined to a promotor region functional in plastids like for example the RNA op eron promoter fused to the 5'UTR of the rbcL gene and in another preferred embodi ment joined to a plastome sequences homologous to the integration sites. Example for useful integration sites are the trnV-rps12/7 (Skidar et al., Plant Cell Rep. 1998, 18: 20 24 and other reports), thr rbvL-aacD site (Svab et al. 1993, Proc. NatI. Acad. Sci. USA 25 90: 913-917), the trnl-trnA site (De Cosa et al., 2001, Nat. Biotech. 19, 71-74) the rps7 ndhB site (Hou et al., 2003, Transgenic Res. 12, 111-114) and the ndhF-trnL site Zhang et al., 2001c, Plant Physiol. 127, 131-141) [0218.0.0.0] The nucleic acid sequence coding for the transit peptide is advanta geously derived from a nucleic acid sequence encoding a protein finally resided in the 30 plastid and is stemming from an organism selected from the group consisting of the Genera Acetabularia, Arabidopsis, Brassica, Chlamydomonas, Cururbita, Dunaliella, Euglena, Flaveria, Glycine, Helianthus, Hordeum, Lemna, Lolium, Lycopersion, Malus, Mesem bryanthemum, Nicotiana, Oenotherea, Oryza, PetOnia, Phaseolus, Physcomitrella, 35 Pinus, Pisum Raphanus, Silene, Sinapis, Solanum, Spinacea, Triticum and Zea.
85 Preferably the transit peptide is derived from a protein selected from the group consist ing of ribulose bisphosphate carboxylase/oxygenase, 5-enolpyruvyl-shikimate-3-phosphate synthase, acetolactate synthase, chloroplast ribosomal protein CS17, Cs protein, ferre 5 doxin, plastocyanin, ribulose bisphosphate carboxylase activase, tryptophan synthase, acyl carrier protein, plastid chaperonin-60, cytochrome c 552 , 22-kDA heat shock protein, 33-kDa Oxygen-evolving enhancer protein 1, ATP synthase y subunit, ATP synthase 6 subunit, chlorophyll-a/b-binding proteinll-1, Oxygen-evolving enhancer protein 2, Oxy gen-evolving enhancer protein 3, photosystem I: P21, photosystem I: P28, photosys 10 tem I: P30, photosystem I: P35, photosystem I: P37, glycerol-3-phosphate acyltrans ferases, chlorophyll a/b binding protein, CAB2 protein, hydroxymethyl-bilane synthase, pyruvate-orthophosphate dikinase, CAB3 protein, plastid ferritin, ferritin, early light inducible protein, glutamate-1-semialdehyde aminotransferase, protochlorophyllide reductase, starch-granule-bound amylase synthase, light-harvesting chlorophyll a/b 15 binding protein of photosystem II, major pollen allergen Lol p 5a, plastid ClpB ATP dependent protease, superoxide dismutase, ferredoxin NADP oxidoreductase, 28-kDa ribonucleoprotein, 31-kDa ribonucleoprotein, 33-kDa ribonucleoprotein, acetolactate synthase, ATP synthase CFO subunit 1, ATP synthase CFO subunit 2, ATP synthase CFO subunit 3, ATP synthase CFO subunit 4, cytochrome f, ADP-glucose pyrophos 20 phorylase, glutamine synthase, glutamine synthase 2, carbonic anhydrase, GapA pro tein, heat-shock-protein hsp2l, phosphate translocator, plastid ClpA ATP-dependent protease, plastid ribosomal protein CL24, plastid ribosomal protein CL9, plastid ribo somal protein PsCL18, plastid ribosomal protein PsCL25, DAHP synthase, starch phosphorylase, root acyl carrier protein II, betaine-aldehyde dehydrogenase, GapB 25 protein, glutamine synthetase 2, phosphoribulokinase, nitrite reductase, ribosomal pro tein L12, ribosomal protein L13, ribosomal protein L21, ribosomal protein L35, ribo somal protein L40, triose phosphate-3-phosphog lyerate-phosphate translocator, ferre doxin-dependent glutamate synthase, glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent malic enzyme and NADP-malate dehydrogenase. The plastome se 30 quences are preferential derived from the plastome of the target organisms themselves and are advantegously derived from one of the following intergration sites: trnV-rps12/7 (Skidar et al., Plant Cell Rep. 1998, 18: 20-24 and other reports), rbvL-aacD (Svab et al.1993 , Proc. Natl. Acad. Sci. USA 90: 913-917), trnl-trnA (De Cosa et al., 2001, Nat. Biotech. 19, 71-74) rps7-ndhB (Hou et al., 2003, Transgenic Res. 12, 111-114) or 35 ndhF-trnL site Zhang et al., 2001c, Plant Physiol. 127, 131-141).
86 [0219.0.0.0] The nucleic acid sequences used in the process are advantageously introduced in a nucleic acid construct, preferably an expression cassette, which makes possible the expression of the nucleic acid molecules in an organism, advantageously a plant or a microorganism such as an algae, advantegously in the plastids of those 5 organisms. [0220.0.0.0] Accordingly, the invention also relates to a nucleic acid construct, pref erably to an expression construct, comprising the nucleic acid molecule of the present invention functionally linked to one or more regulatory elements or signals. [0221.0.0.0] As described herein, the nucleic acid construct can also comprise fur 10 ther genes, which are to be introduced into the organisms or cells. It is possible and advantageous to introduce into, and express in, the host organisms regulatory genes such as genes for inductors, repressors or enzymes, which, owing to their enzymatic activity, engage in the regulation of one or more genes of a biosynthetic pathway. These genes can be of heterologous or homologous origin. Moreover, further biosyn 15 thesis genes may advantageously be present, or else these genes may be located on one or more further nucleic acid constructs. Genes, which are advantageously em ployed as biosynthesis genes are genes of the fatty acid metabolism, amino acid me tabolism, of glycolysis, of the tricarboxylic acid metabolism or their combinations. As described herein, regulator sequences or factors can have a positive effect on prefera 20 bly the gene expression of the genes introduced, thus increasing it. Thus, an en hancement of the regulator elements may advantageously take place at the transcrip tional level by using strong transcription signals such as promoters and/or enhancers. In addition, however, an enhancement of translation is also possible, for example by increasing mRNA stability or by inserting a translation enhancer sequence. 25 [0222.0.0.0] In principle, the nucleic acid construct can comprise the herein de scribed regulator sequences and further sequences relevant for the expression of the comprised genes. Thus, the nucleic acid construct of the invention can be used as ex pression cassette and thus can be used directly for introduction into the plant, or else they may be introduced into a vector. Accordingly in one embodiment the nucleic acid 30 construct is an expression cassette comprising a microorganism promoter or a micro organism terminator or both. In another embodiment the expression cassette encom passes a plant promoter or a plant terminator or both. In another embodiment the ex pression cassette encompasses sequences for transcription by plastid RNA poly merases.
87 [0223.0.0.0] Accordingly, in one embodiment, the process according to the invention comprises the following steps: (a) introducing of a nucleic acid construct comprising the nucleic acid molecule of the invention or used in the process of the invention or encoding the polypeptide 5 of the present invention or used in the process of the invention; or (b) introducing of a nucleic acid molecule, including regulatory sequences or factors, which expression increases the expression of the nucleic acid molecule of the in vention or used in the process of the invention or encoding the polypeptide of the present invention or used in the process of the invention; 10 in a cell, or an organism or a part thereof, preferably in a plant, plant cell or a mi croorganism preferably in the organelles such as the plastids thereof, and (c) expressing of the gene product encoded by the nucleic acid construct or the nu cleic acid molecule mentioned under (a) or (b) in the cell or the organism or part thereof. 15 [0224.0.0.0] After the introduction and expression of the nucleic acid construct the transgenic organism or cell is advantageously cultured and subsequently harvested. The transgenic organism or cell is advantageously a eukaryotic organism such as a microorganism, a non-human animal or plant preferably a microorganism such as an algae or a plant such as a plant selected from the families Aceraceae, Anacardiaceae, 20 Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Euphorbiaceae, Fa baceae, Malvaceae, Nymphaeaceae, Papaveraceae, Rosaceae, Salicaceae, Solana ceae, Arecaceae, Bromeliaceae, Cyperaceae, Iridaceae, Liliaceae, Orchidaceae, Gen tianaceae, Labiaceae, Magnoliaceae, Ranunculaceae, Carifolaceae, Rubiaceae, Scro phulariaceae, Caryophyllaceae, Ericaceae, Polygonaceae, Violaceae, Juncaceae or 25 Poaceae and preferably from a plant selected from the group of the families Apiaceae, Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, Papaveraceae, Rosaceae, So lanaceae, Liliaceae or Poaceae, preferably a crop or oilseed crop plant, or a part thereof. [0225.0.0.0] To introduce a nucleic acid molecule into a nucleic acid construct, e.g. 30 as part of an expression cassette, the codogenic gene segment is advantageously sub jected to an amplification and ligation reaction in the manner known by a skilled person. It is preferred to follow a procedure similar to the protocol for the Pfu DNA polymerase or a Pfu/Taq DNA polymerase mixture. The primers are selected according to the se- 88 quence to be amplified. The primers should expediently be chosen in such a way that the amplificate comprise the codogenic sequence from the start to the stop codon. Af ter the amplification, the amplificate is expediently analyzed. For example, the analysis may consider quality and quantity and be carried out following separation by gel elec 5 trophoresis. Thereafter, the amplificate can be purified following a standard protocol (for example Qiagen). An aliquot of the purified amplificate is then available for the subsequent cloning step. The skilled worker generally knows suitable cloning vectors. [0226.0.0.0] They include, in particular, vectors which are capable of replication in easy to handle cloning systems like as bacterial yeast or insect cell based (e.g. bacu 10 lovirus expression) systems, that is to say especially vectors which ensure efficient cloning in E. coli, and which make possible the stable transformation of plants. Vectors, which must be mentioned, in particular are various binary and cointegrated vector sys tems, which are suitable for the T-DNA-mediated transformation. Such vector systems are generally characterized in that they contain at least the vir genes, which are re 15 quired for the Agrobacterium-mediated transformation, and the T-DNA border se quences. [0227.0.0.0] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and 20 T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from 25 the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic 30 acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table 1l, application no. 1, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.0] For a vector preparation, vectors may first be linearized using restriction 35 endonuclease(s) and then be modified enzymatically in a suitable manner. Thereafter, 89 the vector is purified, and an aliquot is employed in the cloning step. In the cloning step, the enzyme-cleaved and, if required, purified amplificate is cloned together with similarly prepared vector fragments, using ligase. In this context, a specific nucleic acid construct, or vector or plasmid construct, may have one or else more codogenic gene 5 segments. The codogenic gene segments in these constructs are preferably linked operably to regulatory sequences. The regulatory sequences include, in particular, plant sequences like the above-described promoters and terminators. The constructs can advantageously be propagated stably in microorganisms, in particular Escherichia coli and/or Agrobacterium tumefaciens, under selective conditions and enable the 10 transfer of heterologous DNA into plants or other microorganisms. In accordance with a particular embodiment, the constructs are based on binary vectors (overview of a bi nary vector: Hellens et al., 2000). As a rule, they contain prokaryotic regulatory se quences, such as replication origin and selection markers, for the multiplication in mi croorganisms such as Escherichia coli and Agrobacterium tumefaciens. Vectors can 15 further contain agrobacterial T-DNA sequences for the transfer of DNA into plant ge nomes or other eukaryotic regulatory sequences for transfer into other eukaryotic cells, e.g. Saccharomyces sp. or other prokaryotic regulatory sequences for the transfer into other prokaryotic cells, e.g. Corynebacterium sp. or Bacillus sp. For the transformation of plants, the right border sequence, which comprises approximately 25 base pairs, of 20 the total agrobacterial T-DNA sequence is advantageously included. Usually, the plant transformation vector constructs according to the invention contain T-DNA sequences both from the right and from the left border region, which contain expedient recognition sites for site-specific acting enzymes, which, in turn, are encoded by some of the vir genes. 25 [0228.0.0.0] Alternatively the nuleic acids of the invention are cloned into vectors, which are designed for the direct transformation of organelles such as plastids. Gener ally such vectors additionally carry a specific resistance gene (as mentioned above), like the spectomycin resistance gene (aad) under control of a plastid regulatory se quence and two adjacent plastome sequences of the target organism, which mediated 30 the directed insertion of the sequences of interest, eg the resistance gene and the ex pression cassette, into the plastidal genome through homologous recombination. As transformation can be achieved by particle bombardment or other physical or chemical methods e.g. PEG treatment or microinjection, the vectors do not need to contain the elements necessary for agrobacterial T-DNA transfer (see below).
90 [0229.0.0.0] Suitable host organisms are known to the skilled worker. Advantageous organisms are described further above in the present application. They include in par ticular eukaryotes such as microorganisms and plants. Other useful organisms are pro karyotic host organisms, which may be useful for the cloning of desired nucleic acid 5 constructs or vectors such as the genera Escherichia for example the species Es cherichia coli, specifically Escherichia coli K12 and its described strains or Agrobacte rium for example the species Agrobacterium tumefaciens. [0230.0.0.0] Advantageously preferred in accordance with the invention are host or ganisms of the genus Agrobacterium tumefaciens or plants. Preferred plants are se 10 lected from among the families Aceraceae, Anacardiaceae, Apiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Cactaceae, Car caceae, Caryophyllaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Elaeag naceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Cucurbitaceae, Cyperaceae, Euphorbiaceae, Fabaceae, Malvaceae, Nymphaeaceae, 15 Papaveraceae, Rosaceae, Salicaceae, Solanaceae, Arecaceae, Iridaceae, Liliaceae, Orchidaceae, Gentianaceae, Labiaceae, Magnoliaceae, Ranunculaceae, Carifolaceae, Rubiaceae, Scrophulariaceae, Ericaceae, Polygonaceae, Violaceae, Juncaceae, Poaceae, perennial grass, fodder crops, vegetables and ornamentals. [0231.0.0.0] Especially preferred are plants selected from the groups of the families 20 Apiaceae, Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, Papaveraceae, Rosaceae, Solanaceae, Liliaceae or Poaceae. Especially advantageous are, in particu lar, crop plants. Accordingly, an advantageous plant preferably belongs to the group of the genus peanut, oilseed rape, canola, sunflower, safflower, olive, sesame, hazelnut, almond, avocado, bay, pumpkin/squash, linseed, soya, pistachio, borage, maize, 25 wheat, rye, oats, sorghum and millet, triticale, rice, barley, cassava, potato, sugarbeet, fodder beet, egg plant, and perennial grasses and forage plants, oil palm, vegetables (brassicas, root vegetables, tuber vegetables, pod vegetables, fruiting vegetables, on ion vegetables, leafy vegetables and stem vegetables), buckwheat, Jerusalem arti choke, broad bean, vetches, lentil, alfalfa, dwarf bean, lupin, clover and lucerne. 30 [0232.0.0.0] In order to introduce, into a plant, the nucleic acid molecule of the inven tion or used in the process according to the invention, it has proved advantageous first to transfer them into an intermediate host, for example a bacterium or a eukaryotic uni cellular cell. The transformation into E. coli, which can be carried out in a manner known per se, for example by means of heat shock or electroporation, has proved itself 35 expedient in this context. Thus, the transformed E. coli colonies can be analysed for 91 their cloning efficiency. This can be carried out with the aid of a PCR. Here, not only the identity, but also the integrity, of the plasmid construct can be verified with the aid of a defined colony number by subjecting an aliquot of the colonies to said PCR. As a rule, universal primers which are derived from vector sequences are used for this pur 5 pose, it being possible, for example, for a forward primer to be arranged upstream of the start ATG and a reverse primer to be arranged downstream of the stop codon of the codogenic gene segment. The amplificates are separated by electrophoresis and assessed with regard to quantity and quality. [0233.0.0.0] The nucleic acid constructs, which are optionally verified, are subse 10 quently used for the transformation of the plants or other hosts, e.g. other eukaryotic cells or other prokaryotic cells. To this end, it may first be necessary to obtain the con structs from the intermediate host. For example, the constructs may be obtained as plasmids from bacterial hosts by a method similar to conventional plasmid isolation. [0234.0.0.0] The nucleic acid molecule of the invention or used in the process ac 15 cording to the invention can also be introduced into modified viral vectors like baculovi rus vectors for expression in insect cells or plant viral vectors like tobacco mosaic virus or potato virus X-based vectors. Approaches leading to the expression of proteins from the modified viral genome including the the nucleic acid molecule of the invention or used in the process according to the invention involve for example the inoculation of 20 tobacco plants with infectious RNA transcribed in vitro from a cDNA copy of the recom binant viral genome. Another approach utilizes the transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA copies of recom binant plus-sense RNA viruses. Different vectors and virus are known to the skilled worker for expression in different target eg. production plants. 25 [0235.0.0.0] A large number of methods for the transformation of plants are known. Since, in accordance with the invention, a stable integration of heterologous DNA into the genome of plants is advantageous, the T-DNA-mediated transformation has proved expedient in particular. For this purpose, it is first necessary to transform suitable vehi cles, in particular agrobacteria, with a codogenic gene segment or the corresponding 30 plasmid construct comprising the nucleic acid molecule of the invention. This can be carried out in a manner known per se. For example, said nucleic acid construct of the invention, or said expression construct or said plasmid construct, which has been gen erated in accordance with what has been detailed above, can be transformed into competent agrobacteria by means of electroporation or heat shock. In principle, one 35 must differentiate between the formation of cointegrated vectors on the one hand and 92 the transformation with binary vectors on the other hand. In the case of the first alterna tive, the constructs, which comprise the codogenic gene segment or the nucleic acid molecule of the invention have no T-DNA sequences, but the formation of the cointe grated vectors or constructs takes place in the agrobacteria by homologous recombina 5 tion of the construct with T-DNA. The T-DNA is present in the agrobacteria in the form of Ti or Ri plasmids in which exogenous DNA has expediently replaced the oncogenes. If binary vectors are used, they can be transferred to agrobacteria either by bacterial conjugation or by direct transfer. These agrobacteria expediently already comprise the vector bearing the vir genes (currently referred to as helper Ti(Ri) plasmid). As men 10 tioned before the stable integration of the heterologous nucleic acids into the plastidial genome may also be advantegously. [0236.0.0.0] One or more markers may expediently also be used together with the nucleic acid construct, or the vector of the invention and, if plants or plant cells shall be transformed together with the T-DNA, with the aid of which the isolation or selection of 15 transformed organisms, such as agrobacteria or transformed plant cells, is possible. These marker genes enable the identification of a successful transfer of the nucleic acid molecules according to the invention via a series of different principles, for exam ple via visual identification with the aid of fluorescence, luminescence or in the wave length range of light which is discernible for the human eye, by a resistance to herbi 20 cides or antibiotics, via what are known as nutritive markers (auxotrophism markers) or antinutritive markers, via enzyme assays or via phytohormones. Examples of such markers which may be mentioned are GFP (= green fluorescent protein); the luci ferin/luceferase system, the p-galactosidase with its colored substrates, for example X Gal, the herbicide resistances to, for example, imidazolinone, glyphosate, phosphi 25 nothricin or sulfonylurea, the antibiotic resistances to, for example, bleomycin, hygro mycin, streptomycin, kanamycin, tetracyclin, chloramphenicol, ampicillin, gentamycin, geneticin (G418), spectinomycin or blasticidin, to mention only a few, nutritive markers such as the utilization of mannose or xylose, or antinutritive markers such as the resis tance to 2-deoxyglucose. This list is a small number of possible markers. The skilled 30 worker is very familiar with such markers. Different markers are preferred, depending on the organism and the selection method. In case of plastidal transformation methods other markers genes, like the ones mentioned above like spectomycin resistance gene (aadA) are preferably used. [0237.0.0.0] As a rule, it is desired that the plant nucleic acid constructs are flanked 35 by T-DNA at one or both sides of the codogenic gene segment. This is particularly use- 93 ful when bacteria of the species Agrobacterium tumefaciens or Agrobacterium rhizogenes are used for the transformation. A method, which is preferred in accordance with the invention, is the transformation with the aid of Agrobacterium tumefaciens. However, biolistic methods may also be used advantageously for introducing the se 5 quences in the process according to the invention, and the introduction by means of PEG is also possible. The transformed agrobacteria can be grown in the manner known per se and are thus available for the expedient transformation of the plants. The plants or plant parts to be transformed are grown or provided in the customary manner. The transformed agrobacteria are subsequently allowed to act on the plants or plant 10 parts until a sufficient transformation rate is reached. Allowing the agrobacteria to act on the plants or plant parts can take different forms. For example, a culture of morpho genic plant cells or tissue may be used. After the T-DNA transfer, the bacteria are, as a rule, eliminated by antibiotics, and the regeneration of plant tissue is induced. This is done in particular using suitable plant hormones in order to initially induce callus forma 15 tion and then to promote shoot development. [0238.0.0.0] The transfer of foreign genes into the genome of a plant is called trans formation. In doing this the methods described for the transformation and regeneration of plants from plant tissues or plant cells are utilized for transient or stable transforma tion. An advantageous transformation method is the transformation in planta. To this 20 end, it is possible, for example, to allow the agrobacteria to act on plant seeds or to inoculate the plant meristem with agrobacteria. It has proved particularly expedient in accordance with the invention to allow a suspension of transformed agrobacteria to act on the intact plant or at least the flower primordia. The plant is subsequently grown on until the seeds of the treated plant are obtained (Clough and Bent, Plant J. (1998) 16, 25 735-743). To select transformed plants, the plant material obtained in the transforma tion is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility consists in growing the seeds, if 30 appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Further advantageous transformation methods, in particular for plants, are known to the skilled worker and are described hereinbelow. [0239.0.0.0] Further advantageous and suitable methods are protoplast transforma 35 tion by poly(ethylene glycol)-induced DNA uptake, the ,,biolistic" method using the gene 94 cannon - referred to as the particle bombardment method, electroporation, the incuba tion of dry embryos in DNA solution, microinjection and gene transfer mediated by Agrobacterium. Said methods are described by way of example in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering 5 and Utilization, eds. S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225). The nucleic acids or the construct to be expressed is preferably cloned into a vector, which is suit able for transforming Agrobacterium tumefaciens, for example pBin1 9 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed by such a vector can then 10 be used in known manner for the transformation of plants, in particular of crop plants such as by way of example tobacco plants, for example by bathing bruised leaves or chopped leaves in an agrobacterial solution and then culturing them in suitable media. The transformation of plants by means of Agrobacterium tumefaciens is described, for example, by Hbfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or is known inter 15 alia from F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38. For the transformation of plastids physical methods like PEG-treatment (O'Neil et al., 1993 Plant Journal. 3, 729-738, Golds et al., 1993 BioTechnology 11, 95 97) microinjection (Knoblauch et al., 1999, Nat. Biotech. 17, 906-910) or biolistics 20 (Svab et al., 1990, Proc. NatI. Acad. Sci. USA 90, 8526-8530) are preferred. Such transformation methods are especially useful for the direct transformation of plastids and are well known to the skilled worker. [0240.0.0.0] The abovementioned nucleic acid molecules can be cloned into the nu cleic acid constructs or vectors according to the invention in combination together with 25 further genes, or else different genes are introduced by transforming several nucleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in table 1, application no. 1, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in 30 the organisms. Especially advantageously, additionally at least one further gene of the amino acid biosynthetic pathway such as for L-lysine, L-threonine and/or L-methionine is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist 35 in the organisms. This leads to an increased synthesis of the amino acids desired 95 since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the nucleic acids sequences of the invention containing the sequences shown in table 1, application no. 1, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target 5 organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.0.0] In a further embodiment of the process of the invention, therefore, or ganisms are grown, in which there is simultaneous expression of at least one nucleic acid or one of the genes which code for proteins involved in the amino acid metabo 10 lism, in particular in amino acid synthesis especially genes selected from the group of gene products consisting of aspartate kinase (lysC), of aspartate-semialdehyde dehy drogenase (asd), of glyceraldehyde-3-phosphate dehydrogenase (gap), of 3 phosphoglycerate kinase (pgk), of pyruvate carboxylase (pyc), of triosephosphate isomerase (tpi), of homoserine 0-acetyltransferase (metA), of cystathionine y-synthase 15 (metB), of cystathionine gamma-lyase (metC), cystathionine p-lyase, of methionine synthase (metH), of serine hydroxymethyltransferase (glyA), of 0-acetylhomoserine sulfhydrylase (metY), of methylenetetrahydrofolate reductase (metF), of phosphoserine aminotransferase (serC), of phosphoserine phosphatase (serB), of serine acetyltrans ferase (cysE), of cysteine synthase (cysK), of homoserine dehydrogenase (hom) and 20 S-adenosylmethionine synthase (metX) in the cytsol or in the plastids. [0242.0.0.0] A further advantageous nucleic acid sequence which can be expressed in combination with the sequences used in the process and/or the abovementioned biosynthesis genes is the sequence of the ATP/ADP translocator as described in WO 01/20009. This ATP/ADP translocator leads to an increased synthesis of the es 25 sential amino acids lysine and/or methionine. [0243.0.0.0] In a further advantageous embodiment of the process of the inven tion, the organisms used in the process are those in which simultaneously at least one of the aforementioned genes or one of the aforementioned nucleic acids is mutated so that the activity of the corresponding proteins is influenced by metabolites to a smaller 30 extent compared with the unmutated proteins, or not at all, and that in particular the production according to the invention of the fine chemical is not impaired, or so that their specific enzymatic activity is increased. Less influence means in this connection that the regulation of the enzymic activity is less by at least 10%, advantageously at least 20, 30 or 40%, particularly advantageously by at least 50, 60 or 70%, compared 35 with the starting organism, and thus the activity of the enzyme is increased by these 96 figures mentioned compared with the starting organism. An increase in the enzymatic activity means an enzymatic activity which is increased by at least 10%, advanta geously at least 20, 30 or 40%, particularly advantageously by at least 50, 60 or 70%, compared with the starting organism. This leads to an increased productivity of the 5 desired fine chemical or of the desired fine chemicals [0244.0.0.0] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a the fine chemi cal degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene. 10 [0245.0.0.0] In another embodiment of the process of the invention, the organisms used in the process are those in which simultaneously at least one of the aforemen tioned nucleic acids or of the aforementioned genes is mutated in such a way that the enzymatic activity of the corresponding protein is partially reduced or completely blocked. A reduction in the enzymatic activity means an enzymatic activity, which is 15 reduced by at least 10%, advantageously at least 20, 30 or 40%, particularly advanta geously by at least 50, 60 or 70%, preferably more, compared with the starting organ ism. [0246.0.0.0] If it is intended to transform the host cell, in particular the plant cell, with several constructs or vectors, the marker of a preceding transformation must be re 20 moved or a further marker employed in a following transformation. The markers can be removed from the host cell, in particular the plant cell, as described hereinbelow via methods with which the skilled worker is familiar. In particular plants without a marker, in particular without resistance to antibiotics, are an especially preferred embodiment of the present invention. 25 [0247.0.0.0] In the process according to the invention, the nucleic acid sequences used in the process according to the invention are advantageously linked operably to one or more regulatory signals in order to increase gene expression. These regulatory sequences are intended to enable the specific expression of the genes and the expres sion of protein. Depending on the host organism for example plant or microorganism, 30 this may mean, for example, that the gene is expressed and/or overexpressed after induction only, or that it is expressed and/or overexpressed constitutively. These regu latory sequences are, for example, sequences to which the inductors or repressors bind and which thus regulate the expression of the nucleic acid. In addition to these novel regulatory sequences, or instead of these sequences, the natural regulation of 97 these sequences may still be present before the actual structural genes and, if appro priate, may have been genetically modified so that the natural regulation has been switched off and gene expression has been increased. However, the nucleic acid con struct of the invention suitable as expression cassette (= expression construct = gene 5 construct) can also be simpler in construction, that is to say no additional regulatory signals have been inserted before the nucleic acid sequence or its derivatives, and the natural promoter together with its regulation has not been removed. Instead, the natural regulatory sequence has been mutated in such a way that regulation no longer takes place and/or gene expression is increased. These modified promoters can also be in 10 troduced on their own before the natural gene in the form of part sequences (= pro moter with parts of the nucleic acid sequences according to the invention) in order to increase the activity. Moreover, the gene construct can advantageously also comprise one or more of what are known as enhancer sequences in operable linkage with the promoter, and these enable an increased expression of the nucleic acid sequence. 15 Also, it is possible to insert additional advantageous sequences at the 3' end of the DNA sequences, such as, for example, further regulatory elements or terminators. In another preferred embodiment, the natural or created expression cassette is further modified in such a manner, that a nucleic acid sequence encoding a transitpeptide is functionally introduced between the regulatory and the coding region such, that a func 20 tionally preprotein is expressed, which is targeted to the plastids. [0248.0.0.0] The nucleic acid molecules, which encode proteins according to the invention and nucleic acid molecules, which encode other polypeptides may be present in one nucleic acid construct or vector or in several ones. Advantageously, only one copy of the nucleic acid molecule of the invention or its encoding genes is present in 25 the nucleic acid construct or vector. Several vectors or nucleic acid construct or vector can be expressed together in the host organism. The nucleic acid molecule or the nu cleic acid construct or vector according to the invention can be inserted in a vector and be present in the cell in a free form. If a stable transformation is preferred, a vector is used, which is stably duplicated over several generations or which is else be inserted 30 into the genome. In the case of plants, integration into the plastid genome or, in particu lar, into the nuclear genome may have taken place. For the insertion of more than one gene in the host genome the genes to be expressed are present together in one gene construct, for example in above-described vectors bearing a plurality of genes. [0249.0.0.0] As a rule, regulatory sequences for the expression rate of a gene are 35 located upstream (5'), within, and/or downstream (3') relative to to the coding sequence 98 of the nucleic acid molecule of the invention or another codogenic gene segment. They control in particular transcription and/or translation and/or the transcript stability. The expression level is dependent on the conjunction of further cellular regulatory systems, such as the protein biosynthesis and degradation systems of the cell. 5 [0250.0.0.0] Regulatory sequences include transcription and translation regulating sequences or signals, e.g. sequences located upstream (5'), which concern in particu lar the regulation of transcription or translation initiation, such as promoters or start codons, and sequences located downstream (3'), which concern in particular the regu lation of transcription or translation termination and transcript stability, such as 10 polyadenylation signals or stop codons. Regulatory sequences can also be present in transcribed coding regions as well in transcribed non-coding regions, e.g. in introns, as for example splicing sites, promoters for the regulation of expression of the nucleic acid molecule according to the invention in a cell and which can be employed are, in princi ple, all those which are capable of stimulating the transcription of genes in the organ 15 isms in question, such as microorganisms or plants. Suitable promoters, which are functional in these organisms are generally known. They may take the form of constitu tive or inducible promoters. Suitable promoters can enable the development- and/or tissue-specific expression in multi-celled eukaryotes; thus, leaf-, root-, flower-, seed-, stomata-, tuber- or fruit-specific promoters may advantageously be used in plants. Fur 20 thermore in case of direct transformation of oranelles such as plastids, promoters rec ognized by the plastid RNA-polymerases such as the plastid encoded Escherichia coli like RNA polymerase or the nuclear encoded plastid RNA polymerase my advanta geously be used. [0251.0.0.0] The regulatory sequences or factors can, as described above, have a 25 positive effect on, the expression of the genes introduced, thus increasing their expres sion. Thus, an enhancement of the expression can advantageously take place at the transcriptional level by using strong transcription signals such as strong promoters and/or strong enhancers. In addition, enhancement of expression on the translational level is also possible, for example by introducing translation enhancer sequences, e.g., 30 the Qenhancer e.g. improving the ribosomal binding to the transcript, or by increasing the stability of the mRNA, e.g. by replacing the 3'UTR coding region by a region encod ing a 3'UTR known as conferring an high stability of the transcript or by stabilization of the transcript through the elimination of transcript instability, so that the mRNA mole cule is translated more often than the wild type. For example in plants AU-rich ele 35 ments (AREs) and DST (downstream) elements destabilized transcripts. Mutagenesis 99 studies have demonstrated that residues within two of the conserved domains, the ATAGAT and the GTA regions, are necessary for instability function. Therefore removal or mutation of such elements would obviously lead to more stable transcripts, higher transcript rates and higher protein acitivity. Translation enhancers are also the "over 5 drive sequence", which comprises the tobacco mosaic virus 5-untranslated leader se quence and which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Re search 15:8693-8711) [0252.0.0.0] Enhancers are generally defined as cis active elements, which can stimulate gene transcription independent of position and orientation. Different enhan 10 cers have been identified in plants, which can either stimulate transcription constitu tively or tissue or stimuli specific. Well known examples for constitutive enhancers are the enhancer from the 35S promoter (Odell et al., 1985, Nature 313:810-812) or the ocs enhancer (Fromm et al., 1989, Plant Cell 1: 977:984) Another examples are the G Box motif tetramer which confers high-level constitutive expression in dicot and mono 15 cot plants (Ishige et al., 1999, Plant Journal, 18, 443-448) or the petE, a A/T-rich se quence which act as quantitative enhancers of gene expression in transgenic tobacco and potato plants (Sandhu et al., 1998; Plant Mol Biol. 37(5):885-96). Beside that, a large variety of cis-active elements have been described which contribute to specific expression pattern, like organ specific expression or induced expression in response to 20 biotic or abiotic stress. Examples are elements, which provide pathogen or wound induced expression (Rushton, 2002, Plant Cell, 14, 749-762) or guard cell-specific ex pression (Plesch, 2001, Plant Journal 28, 455-464). [0253.0.0.0] Advantageous regulatory sequences for the expression of the nucleic acid molecule according to the invention in microorganisms are present for example in 25 promoters such as the cos, tac, rha, trp, tet, trp-tet, Ipp, lac, Ipp-lac, lacl-' T7, T5, T3, gal, trc, ara, SP6, A-PR or A-PL promoter, which are advantageously used in Gram negative bacteria. Further advantageous regulatory sequences are present for example in the Gram-positive promoters amy, dnaK, xylS and SPO2, in the yeast or fungal pro moters ADC1, MFa, AC, P-60, UASH, MCB, PHO, CYC1, GAPDH, TEF, rp28, ADH. 30 Promoters, which are particularly advantageous, are constitutive, tissue or compart ment specific and inducible promoters. In general, "promoter" is understood as mean ing, in the present context, a regulatory sequence in a nucleic acid molecule, which mediates the expression of a coding sequence segment of a nucleic acid molecule. In general, the promoter is located upstream to the coding sequence segment. Some 100 elements, for example expression-enhancing elements such as enhancer may, how ever, also be located downstream or even in the transcribed region. [0254.0.0.0] In principle, it is possible to use natural promoters together with their regulatory sequences, such as those mentioned above, for the novel process. It is also 5 possible advantageously to use synthetic promoters, either additionally or alone, in particular when they mediate seed-specific expression such as described in, for exam ple, WO 99/16890. [0255.0.0.0] The expression of the nucleic acid molecules used in the process may be desired alone or in combination with other genes or nucleic acids. Multiple nucleic 10 acid molecules conferring the expression of advantageous genes can be introduced via the simultaneous transformation of several individual suitable nucleic acid constructs, i.e. expression constructs, or, preferably, by combining several expression cassettes on one construct. It is also possible to transform several vectors with in each case sev eral expression cassettes stepwise into the recipient organismen 15 [0256.0.0.0] As described above, the transcription of the genes introduced should advantageously be terminated by suitable terminators at the 3' end of the biosynthesis genes introduced (behind the stop codon). A terminator, which may be used for this purpose is, for example, the OCS1 terminator, the nos3 terminator or the 35S termina tor. As is the case with the promoters, different terminator sequences should be used 20 for each gene. Terminators, which are useful in microorganism are for example the fimA terminator, txn terminator or trp terminator. Such terminators can be rho dependent or rho-independent. [0257.0.0.0] Different plant promoters such as, for example, the USP, the LegB4-, the DC3 promoter or the ubiquitin promoter from parsley or other herein mentioned 25 promoter and different terminators may advantageously be used in the nucleic acid construct. [0258.0.0.0] In order to ensure the stable integration, into the transgenic plant, of nucleic acid molecules used in the process according to the invention in combination with further biosynthesis genes over a plurality of generations, each of the coding re 30 gions used in the process should be expressed under the control of its own, preferably unique, promoter since repeating sequence motifs may lead to recombination events or to silencing or, in plants, to instability of the T-DNA.
101 [0259.0.0.0] The nucleic acid construct is advantageously constructed in such a way that a promoter is followed by a suitable cleavage site for insertion of the nucleic acid to be expressed, advantageously in a polylinker, followed, if appropriate, by a terminator located behind the polylinker. If appropriate, this order is repeated several times so that 5 several genes are combined in one construct and thus can be introduced into the transgenic plant in order to be expressed. The sequence is advantageously repeated up to three times. For the expression, the nucleic acid sequences are inserted via the suitable cleavage site, for example in the polylinker behind the promoter. It is advanta geous for each nucleic acid sequence to have its own promoter and, if appropriate, its 10 own terminator, as mentioned above. However, it is also possible to insert several nu cleic acid sequences behind a promoter and, if appropriate, before a terminator if a polycistronic transcription is possible in the host or target cells. In this context, the in sertion site, or the sequence of the nucleic acid molecules inserted, in the nucleic acid construct is not decisive, that is to say a nucleic acid molecule can be inserted in the 15 first or last position in the cassette without this having a substantial effect on the ex pression. However, it is also possible to use only one promoter type in the construct. However, this may lead to undesired recombination events or silencing effects, as said. [0260.0.0.0] Accordingly, in a preferred embodiment, the nucleic acid construct ac cording to the invention confers expression of the nucleic acid molecule of the inven 20 tion, and, optionally further genes, in a plant and comprises one or more plant regula tory elements. Said nucleic acid construct according to the invention advantageously encompasses a plant promoter or a plant terminator or a plant promoter and a plant terminator. [0261.0.0.0] A "plant" promoter comprises regulatory elements, which mediate the 25 expression of a coding sequence segment in plant cells. Accordingly, a plant promoter need not be of plant origin, but may originate from viruses or microorganisms, in par ticular for example from viruses which attack plant cells. The term plant promotor also shall also encompass plastidal promoters. [0262.0.0.0] The plant promoter can also originates from a plant cell, e.g. from the 30 plant, which is transformed with the nucleic acid construct or vector as described herein. This also applies to other "plant" regulatory signals, for example in "plant" terminators. [0263.0.0.0] A nucleic acid construct suitable for plant expression preferably com prises regulatory elements which are capable of controlling the expression of genes in 102 plant cells and which are operably linked so that each sequence can fulfill its function. Accordingly, the nucleic acid construct can also comprise transcription terminators. Examples for transcriptional termination are polyadenylation signals. Preferred polyadenylation signals are those which originate from Agrobacterium tumefaciens T 5 DNA, such as the gene 3 of the Ti plasmid pTiACH5, which is known as octopine syn thase (Gielen et al., EMBO J. 3 (1984) 835 et seq.) or functional equivalents thereof, but all the other terminators which are functionally active in plants are also suitable. [0264.0.0.0] The nucleic acid construct suitable for plant expression preferably also comprises other operably linked regulatory elements such as translation enhancers, for 10 example the overdrive sequence, which comprises the tobacco mosaic virus 5' untranslated leader sequence, which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711). [0265.0.0.0] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 15 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 20 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 25 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 1, columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.0] For expression in plants, the nucleic acid molecule must, as described 30 above, be linked operably to or comprise a suitable promoter which expresses the gene at the right point in time and in a cell- or tissue-specific manner. Usable promot ers are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those which originate from plant viruses, such as 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US 5352605 and WO 84/02913), 34S FMV 35 (Sanger et al., Plant. Mol. Biol., 14, 1990: 433-443), the parsley ubiquitin promoter, or 103 plant promoters such as the Rubisco small subunit promoter described in US 4,962,028 or the plant promoters PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, PGEL1, OCS [Leisner (1988) Proc Natl Acad Sci USA 85(5):2553-2557], lib4, usp, mas [Comai (1990) Plant Mol Biol 15 (3):373-381], STLS1, ScBV (Schenk (1999) Plant Mol 5 Biol 39(6):1221-1230), B33, SAD1 or SAD2 (flax promoters, Jain et al., Crop Science, 39 (6), 1999: 1696-1701) or nos [Shaw et al. (1984) Nucleic Acids Res. 12(20):7831 7846]. Stable, constitutive expression of the proteins according to the invention a plant can be advantageous. However, inducible expression of the polypeptide of the inven tion is advantageous, if a late expression before the harvest is of advantage, as meta 10 bolic manipulation may lead to plant growth retardation. [0267.0.0.0] The expression of plant genes can also be facilitated as described above via a chemical inducible promoter (for a review, see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are particu larly suitable when it is desired to express the gene in a time-specific manner. Exam 15 ples of such promoters are a salicylic acid inducible promoter (WO 95/19443), and ab scisic acid-inducible promoter (EP 335 528), a tetracyclin-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404), a cyclohexanol- or ethanol-inducible promoter (WO 93/21334) or others as described herein. [0268.0.0.0] Other suitable promoters are those which react to biotic or abiotic stress 20 conditions, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the tomato heat-inducible hsp80 promoter (US 5,187,267), the potato chill-inducible alpha-amylase promoter (WO 96/12814) or the wound-inducible pinli promoter (EP-A-0 375 091) or others as described herein. [0269.0.0.0] Preferred promoters are in particular those which bring about gene ex 25 pression in tissues and organs in which the biosynthesis of amino acids takes place, in seed cells, such as endosperm cells and cells of the developing embryo. Suitable pro moters are the oilseed rape napin gene promoter (US 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), the Arabidopsis oleosin promoter (WO 98/45461), the Phaseolus vulgaris phaseolin promoter (US 30 5,504,200), the Brassica Bce4 promoter (WO 91/13980), the bean arc5 promoter, the carrot DcG3 promoter, or the Legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seed-specific expres sion in monocotyledonous plants such as maize, barley, wheat, rye, rice and the like. Advantageous seed-specific promoters are the sucrose binding protein promoter (WO 35 00/26388), the phaseolin promoter and the napin promoter. Suitable promoters which 104 must be considered are the barley Ipt2 or Ipt1 gene promoter (WO 95/15389 and WO 95/23230), and the promoters described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, the wheat glutelin gene, the maize zein gene, the oat glutelin gene, 5 the sorghum kasirin gene and the rye secalin gene). Further suitable promoters are Amy32b, Amy 6-6 and Aleurain [US 5,677,474], Bce4 (oilseed rape) [US 5,530,149], glycinin (soya) [EP 571 741], phosphoenolpyruvate carboxylase (soya) [JP 06/62870], ADR12-2 (soya) [WO 98/08962], isocitrate lyase (oilseed rape) [US 5,689,040] or a-amylase (barley) [EP 781 849]. Other promoters which are available for the expres 10 sion of genes in plants are leaf-specific promoters such as those described in DE-A 19644478 or light-regulated promoters such as, for example, the pea petE promoter. [0270.0.0.0] Further suitable plant promoters are the cytosolic FBPase promoter or the potato ST-LSI promoter (Stockhaus et al., EMBO J. 8, 1989, 2445), the Glycine max phosphoribosylpyrophosphate amidotransferase promoter (GenBank Accession 15 No. U87999) or the node-specific promoter described in EP-A-0 249 676. [0271.0.0.0] Other promoters, which are particularly suitable, are those which bring about plastid-specific expression. Advantageously such promoters are used. Suitable promoters such as the viral RNA polymerase promoter are described in WO 95/16783 and WO 97/06250, and the Arabidopsis clpP promoter, which is described in WO 20 99/46394. [0272.0.0.0] Other promoters, which are used for the strong expression of heterolo gous sequences in as many tissues as possible, in particular also in leaves, are, in addition to several of the abovementioned viral and bacterial promoters, preferably, plant promoters of actin or ubiquitin genes such as, for example, the rice acting pro 25 moter. Further examples of constitutive plant promoters are the sugarbeet V-ATPase promoters (WO 01/14572). Examples of synthetic constitutive promoters are the Super promoter (WO 95/14098) and promoters derived from G-boxes (WO 94/12015). If ap propriate, chemical inducible promoters may furthermore also be used, compare EP A 388186, EP-A 335528, WO 97/06268. 30 [0273.0.0.0] As already mentioned herein, further regulatory sequences, which may be expedient, if appropriate, also include sequences, which target the transport and/or the localization of the expression products. Sequences, which must be mentioned in this context are, in particular, the signal-peptide- or transit-peptide-encoding sequences 105 which are known per se. For example, plastid-transit-peptide-encoding sequences en able the targeting of the expression product into the plastids of a plant cell. [0274.0.0.0] Preferred recipient plants are, as described above, in particular those plants, which can be transformed in a suitable manner. These include monocotyledon 5 ous and dicotyledonous plants. Plants which must be mentioned in particular are agri culturally useful plants such as cereals and grasses, for example Triticum spp., Zea mays, Hordeum vulgare, oats, Secale cereale, Oryza sativa, Pennisetum glaucum, Sorghum bicolor, Triticale, Agrostis spp., Cenchrus ciliaris, Dactylis glomerata, Festuca arundinacea, Lolium spp., Medicago spp. and Saccharum spp., legumes and oil crops, 10 for example Brassica juncea, Brassica napus, Glycine max, Arachis hypogaea, Gos sypium hirsutum, Cicer arietinum, Helianthus annuus, Lens culinaris, Linum usitatis simum, Sinapis alba, Trifolium repens and Vicia narbonensis, vegetables and fruits, for example bananas, grapes, Lycopersicon esculentum, asparagus, cabbage, watermel ons, kiwi fruit, Solanum tuberosum, Beta vulgaris, cassava and chicory, trees, for ex 15 ample Coffea species, Citrus spp., Eucalyptus spp., Picea spp., Pinus spp. and Popu lus spp., medicinal plants and trees, and flowers.. [0275.0.0.0] One embodiment of the present invention also relates to a method for generating a vector, which comprises the insertion, into a vector, of the nucleic acid molecule characterized herein, the nucleic acid molecule according to the invention or 20 the expression cassette according to the invention. The vector can, for example, be introduced in to a cell, e.g. a microorganism or a plant cell, as described herein for the nucleic acid construct, or below under transformation or transfection or shown in the examples. A transient or stable transformation of the host or target cell is possible, however, a stable transformation is preferred. The vector according to the invention is 25 preferably a vector, which is suitable for expressing the polypeptide according to the invention in a plant. The method can thus also encompass one or more steps for inte grating regulatory signals into the vector, in particular signals, which mediate the ex pression in microorganisms or plants. [0276.0.0.0] Accordingly, the present invention also relates to a vector comprising 30 the nucleic acid molecule characterized herein as part of a nucleic acid construct suit able for plant expression or the nucleic acid molecule according to the invention. [0277.0.0.0] The advantageous vectors of the invention comprise the nucleic acid molecules which encode proteins according to the invention, nucleic acid molecules which are used in the process, or nucleic acid construct suitable for plant expression 106 comprising the nucleic acid molecules used, either alone or in combination with further genes such as the biosynthesis or regulatory genes of the fine chemical metabolism e.g. with the genes mentioned herein above. In accordance with the invention, the term "vector" refers to a nucleic acid molecule, which is capable of transporting another nu 5 cleic acid to which it is linked. One type of vector is a "plasmid", which means a circular double-stranded DNA loop into which additional DNA segments can be ligated. A fur ther type of vector is a viral vector, it being possible to ligate additional nucleic acids segments into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they have been introduced (for example bacterial vectors with 10 bacterial replication origin). Other preferred vectors are advantageously completely or partly integrated into the genome of a host cell when they are introduced into the host cell and thus replicate together with the host genome. Moreover, certain vectors are capable of controlling the expression of genes with which they are in operable linkage. In the present context, these vectors are referred to as "expression vectors". As men 15 tioned above, they are capable of autonomous replication or may be integrated partly or completely into the host genome. Expression vectors, which are suitable for DNA recombination techniques usually take the form of plasmids. In the present description, "plasmid" and "vector" can be used interchangeably since the plasmid is the most fre quently used form of a vector. However, the invention is also intended to encompass 20 these other forms of expression vectors, such as viral vectors, which exert similar func tions. The term vector is furthermore also to encompass other vectors which are known to the skilled worker, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, and linear or circular DNA. [0278.0.0.0] The recombinant expression vectors which are advantageously used in 25 the process comprise the nucleic acid molecules according to the invention or the nu cleic acid construct according to the invention in a form which is suitable for express ing, in a host cell, the nucleic acid molecules according to the invention or described herein. Accordingly, the the recombinant expression vectors comprise one or more regulatory signals selected on the basis of the host cells to be used for the expression, 30 in operable linkage with the nucleic acid sequence to be expressed. Furthermore the vector can comprise plastome sequences of the recipient organism to facilitate integra tion into the plastidal genome by homologous recombination as mentioned above. [0279.0.0.0] In a recombinant expression vector, "operable linkage" means that the nucleic acid molecule of interest is linked to the regulatory signals in such a way that 35 expression of the nucleic acid molecule is possible: they are linked to one another in 107 such a way that the two sequences fulfill the predicted function assigned to the se quence (for example in an in-vitro transcription/translation system, or in a host cell if the vector is introduced into the host cell). [0280.0.0.0] The term "regulatory sequence" is intended to comprise promoters, 5 enhancers and other expression control elements (for example polyadenylation sig nals). These regulatory sequences are described, for example, in Goeddel: Gene Ex pression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Bio technolgy, CRC Press, Boca Raton, Florida, Ed.: Glick and Thompson, chapter 7, 89 10 108, including the references cited therein. Regulatory sequences encompass those, which control the constitutive expression of a nucleotide sequence in many types of host cells and those which control the direct expression of the nucleotide sequence in specific host cells only, and under specific conditions. The skilled worker knows that the design of the expression vector may depend on factors such as the selection of the 15 host cell to be transformed, the extent to which the desired protein is expressed, and the like. A preferred selection of regulatory sequences is described above, for example promoters, terminators, enhancers and the like. The term regulatory sequence is to be considered as being encompassed by the term regulatory signal. Several advanta geous regulatory sequences, in particular promoters and terminators are described 20 above. In general, the regulatory sequences described as advantageous for nucleic acid construct suitable for expression are also applicable for vectors. [0281.0.0.0] The recombinant expression vectors used can be designed specifically for the expression, in prokaryotic and/or eukaryotic cells, of nucleic acid molecules used in the process. This is advantageous since intermediate steps of the vector con 25 struction are frequently carried out in microorganisms for the sake of simplicity. For example, the genes according to the invention and other genes can be expressed in bacterial cells, insect cells (using baculovirus expression vectors), yeast cells and other fungal cells [Romanos (1992) , Yeast 8:423-488; van den Hondel, (1991), in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Ed., pp. 396-428: Academic 30 Press: San Diego; and van den Hondel, C.A.M.J.J. (1991), in: Applied Molecular Ge netics of Fungi, Peberdy, J.F., et al., Ed., pp. 1-28, Cambridge University Press: Cam bridge], algae [Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251] using vec tors and following a transformation method as described in WO 98/01572, and prefera bly in cells of multi-celled plants [see Schmidt, R. and Willmitzer, L. (1988) Plant Cell 35 Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Flor- 108 ida, chapter 6/7, pp.71-119 (1993); F.F. White, in: Transgenic Plants, Bd. 1, Engineer ing and Utilization, Ed.: Kung and R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (and references cited therein)]. Suitable host cells are furthermore discussed in Goeddel, Gene Expression 5 Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). As an alternative, the sequence of the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promotor-regulatory sequences and T7 polymerase. [0282.0.0.0] In the event it is necessary proteins can be expressed in prokaryotes 10 using vectors comprising constitutive or inducible promoters, which control the expres sion of fusion proteins or nonfusion proteins. Typical fusion expression vectors are, inter alia, pGEX (Pharmacia Biotech Inc; Smith, D.B., and Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Pis cataway, NJ), in which glutathione-S-transferase (GST), maltose-E-binding protein or 15 protein A is fused with the recombinant target protein. Examples of suitable inducible nonfusion E. coli expression vectors are, inter alia, pTrc (Amann et al. (1988) Gene 69:301-315) and pET 11d [Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89]. The target gene expression of the pTrc vector is based on the transcription of a hybrid trp-lac fu 20 sion promoter by the host RNA polymerase. The target gene expression from the pET 1ld vector is based on the transcription of a T7-gnl0-lac fusion promoter, which is me diated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is pro vided by the host strains BL21 (DE3) or HMS174 (DE3) by a resident A-prophage, which harbors a T7 gnl gene under the transcriptional control of the lacUV 5 promoter. 25 [0283.0.0.0] Other vectors which are suitable in prokaryotic organisms are known to the skilled worker; these vectors are for example in E. coli pLG338, pACYC184, the pBR series, such as pBR322, the pUC series such as pUC18 or pUC19, the M113mp series, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-Ill 1
_
13 B1, gtl1 or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 or pIJ361, in Bacillus 30 pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667. [0284.0.0.0] In a further embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in the yeasts S. cerevisiae encompass pY eDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan and Hersko witz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) and 35 pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construc- 109 tion of vectors which are suitable for use in other fungi, such as the filamentous fungi, encompass those which are described in detail in: van den Hondel, C.A.M.J.J. [(1991), J.F. Peberdy, Ed., pp. 1-28, Cambridge University Press: Cambridge; or in: More Gene Manipulations in Fungi; J.W. Bennet & L.L. Lasure, Ed., pp. 396-428: Academic Press: 5 San Diego]. Examples of other suitable yeast vectors are 2aM, pAG-1, YEp6, YEp13 or pEMBLYe23. [0285.0.0.0] Further vectors, which may be mentioned by way of example, are pALS1, pIL2 or pBB1 16 in fungi or pLGV23, pGHlac*, pBIN 19, pAK2004 or pDH51 in plants. 10 [0286.0.0.0] As an alternative, the nucleic acid sequences can be expressed in in sect cells using baculovirus expression vectors. Baculovirus vectors, which are avail able for expressing proteins in cultured insect cells (for example Sf9 cells) encompass the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39). 15 [0287.0.0.0] The abovementioned vectors are only a small overview of potentially suitable vectors. Further plasmids are known to the skilled worker and are described, for example, in: Cloning Vectors (Ed. Pouwels, P.H., et al., Elsevier, Amsterdam New York-Oxford, 1985, ISBN 0 444 904018). Further suitable expression systems for prokaryotic and eukaryotic cells, see the chapters 16 and 17 by Sambrook, J., Fritsch, 20 E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. [0288.0.0.0] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory 25 sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 1, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 30 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 1, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids.
110 [0289.0.0.0] Accordingly, one embodiment of the invention relates to a host cell, which has been transformed stably or transiently with the vector according to the inven tion or the nucleic acid molecule according to the invention or the nucleic acid construct according to the invention. 5 [0290.0.0.0] Depending on the host organism, the organisms used in the process according to the invention are cultured or grown in a manner with which the skilled worker is familiar. As a rule, microorganisms are grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, 10 trace elements such as iron salts, manganese salts, magnesium salts, and, if appropri ate, vitamins, at temperatures between 0 C and 100 C, preferably between 10 C and 60'C, while passing in oxygen. In the event the microorganism is anaerobe, no oxygen is blown through the culture medium. The pH value of the liquid nutrient medium may be kept constant, that is to say regulated during the culturing phase, or not. The organ 15 isms may be cultured batchwise, semibatchwise or continuously. Nutrients may be pro vided at the beginning of the fermentation or fed in semicontinuously or continuously. Advantageously microorganisms such as algae are grown under sunlight in open ponds or in fermentors illuminated with a light intensity between 10 to 2000 pmol/m 2 x sec, peferred between 100 to 1000 pmol/m 2 x sec, more preferred between 20 200 to 800 pmol/m 2 x sec, most preferred between 300 to 600 pmol/m 2 x sec. The cells are grown between several hours for example 3 to 48 h and several days 1 to 20 days, preferably 2 to 10 days. Algae as autotrophic organisms grow well in the presence of light as energy source, anorganic hydrogen donors and C02 as sole carbon source. [0291.0.0.0] The amino acids produced can be isolated from the organism by meth 25 ods with which the skilled worker is familiar. For example via extraction, salt precipita tion and/or ion-exchange chromatography. To this end, the organisms may be dis rupted beforehand. The process according to the invention can be conducted batch wise, semibatchwise or continuously. A summary of known culture and isolation tech niques can be found in the textbook by Chmiel [BioprozeRtechnik 1, Einfuhrung in die 30 Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)], Demain et al. (Indus trial Microbiology and Biotechnology, second edition, ASM Press, Washington, D.C., 1999, ISBN 1-55581-128-0] or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)). [0292.0.0.0] In one embodiment, the present invention relates to a polypeptide en 35 coded by the nucleic acid molecule according to the present invention, preferably con- 111 ferring an increase in the fine chemical content in an organism or cell after increasing the expression or activity in the cytsol and/or the organelles such as the plastids or mitochondria, preferentially in the plastids. [0293.0.0.0] The present invention also relates to a process for the production of a 5 polypeptide according to the present invention, the polypeptide being expressed in a host cell according to the invention, preferably in a microorganism or a transgenic plant cell. [0294.0.0.0] In one embodiment, the nucleic acid molecule used in the process for the production of the polypeptide is derived from a microorganism such as a eukaryotic 10 or prokaryotic cell, preferably from a eukaryotic cell such as an algae e.g., in one em bodiment the polypeptide is produced in a plant cell or plant with a nucleic acid mole cule derived from an alga or an other microorganismus but not from plant. [0295.0.0.0] The skilled worker knows that protein and DNA expressed in different organisms differ in many respects and properties,eg. DNA modulation and imprinting, 15 such as. methylation or post-translational modification, as for example glucosylation, phosphorylation, acetylation, myristoylation, ADP-ribosylation, farnesylation, carboxyla tion, sulfation, ubiquination, etc. though having the same coding sequence. Preferably, the cellular expression control of the corresponding protein differs accordingly in the control mechanisms controlling the activity and expression of an endogenous protein or 20 another eukaryotic protein. One major difference between proteins expressed in pro karyotic or eukaryotic organisms is the amount and pattern of glycosylation. For exam ple in E. coli there are no glycosylated proteins. Proteins expressed in yeasts have a high mannose content in the glycosylated proteins, whereas in plants the glycosylation pattern is complex. 25 [0296.0.0.0] The polypeptide of the present invention is preferably produced by re combinant DNA techniques. For example, a nucleic acid molecule encoding the pro tein is cloned into an vector (as described above), the vector is introduced into a host cell (as described above) and said polypeptide is expressed in the host cell. Said poly peptide can then be isolated from the cells by an appropriate purification scheme using 30 standard protein purification techniques. Alternative to recombinant expression, the polypeptide or peptide of the present invention can be synthesized chemically using standard peptide synthesis techniques.
112 [0297.0.0.0] Moreover, native polypeptide conferring the increase of the fine chemi cal in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b2827, anti-YEL046C, YGR255C, YGR289C, YKR043C and/or YLR1 53C pro 5 tein antibody or an antibody against polypeptides as shown in table II, application no. 1, columns 5 and 7, which can be produced by standard techniques utilizing the polypep tid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. [0298.0.0.0] In one embodiment, the present invention relates to a polypeptide hav 10 ing the amino acid sequence encoded by a nucleic acid molecule of the invention or obtainable by a process of the invention. Said polypeptide confers preferably the aforementioned activity, in particular, the polypeptide confers the increase of the fine chemical in a cell or an organsim or a part thereof after increasing the cellular activity, e.g. by increasing the expression or the specific activity of the polypeptide. 15 [0299.0.0.0] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 1, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 1, columns 5 and 7 or func tional homologues thereof. [0300.0.0.0] In one advantageous embodiment, in the method of the present inven 20 tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 1, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 1, columns 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre 25 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.0] In one embodiment not more than 15%, preferably 10%, even more pre ferred 5%, 4%, 3%, or 2%, most preferred 1% or 0% of the amino acid position indi cated by a letter are/is replaced another amino acid. 30 [0302.0.0.0] In one embodiment 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more preferred 3, even more preferred 2, even more preferred 1, most preferred 0 amino acids are inserted into the consensus sequence.
113 [0303.0.0.0] The consensus sequence was derived from a multiple alignment of the sequences as listed in table II. The letters represent the one letter amino acid code and indicate that the amino acids are conserved in all aligned proteins. The letter X stands for amino acids, which are not conserved in all sequences. 5 In one example, in the cases where only a small selected subset of amino acids are possible at a certain position these amino acids are given in brackets. The number of given X indicates the distances between conserved amino acid residues, e.g. Y-X (21,23)-F means that conserved tyrosine and phenylalanine residues are separated from each other by minimum 21 and maximum 23 amino acid residues in all investi 10 gated sequences. Conserved domains were identified from multiple alignment of all sequences and are described using a subset of the standard Prosite notation, e.g the pattern Y-X-(21,23) [FW] means that a conserved tyrosine is separated by minimum 21 and maximum 23 amino acid residues from either a phenylalanine or tryptophane. 15 Prosite patterns for conserved domains were generated with the software tool Pratt version 2.1 or manually. Pratt was developed by Inge Jonassen, Dept. of Informatics, University of Bergen, Norway and is described by Jonassen et al. [I.Jonassen, J.F.Collins and D.G.Higgins, Finding flexible patterns in unaligned protein sequences, Protein Science 4 (1995), pp. 1587-1595; I.Jonassen, Efficient discovery of conserved 20 patterns using a pattern graph, Submitted to CABIOS Febr. 1997]. The source code (ANSI C) for the stand-alone program is public available, e.g. at establisched Bioinfor matic centers like EBI (European Bioinformatics Institute). For generating patterns with the software tool Pratt, following settings were used: PL (max Pattern Length): 100, PN (max Nr of Pattern Symbols): 100, PX (max Nr of con 25 secutive x's): 30, FN (max Nr of flexible spacers): 5, FL (max Flexibility): 30, FP (max Flex.Product): 10, ON (max number patterns): 50. Input sequences for Pratt were dis tinct regions of the protein sequences exhibiting high similarity as identified from multi ple alignments and provided to the program as multiple FASTA files. The minimum nummber of sequences, which have to match the generated patterns (CM, min Nr of 30 Seqs to Match) was set to at least 80% of the provided sequences. Parameters not mentioned here were used in their default settings. The Prosite patterns of the conserved domains can be used to search for protein se quences matching this pattern. Various establisched Bioinformatic centers provide pub lic internet portals for using those patterns in data base searches (e.g. PIR [Protein 114 Information Resource, located at Georgetown University Medical Center] or ExPASy [Expert Protein Analysis System]). Alternatively, stand-alone software is available, like the program Fuzzpro, which is part of the EMBOSS software package. For example, the program Fuzzpro not only allows to search for an exact pattern-protein match but 5 also allows to set various ambiguities in the performed search. [0304.0.0.0] The alignment was performed with the Software AlignX (sept 25, 2002) a component of Vector NTI Suite 8.0 , InforMax
TM
Invitrogen T M life science software, U.S. Main Office, 7305 Executive Way,Frederick, MD 21704,USA with the following settings: For pairwise alignments: gap opening penality: 10,0; gap extension penality 10 0,1. For multiple alignments: Gap opening penalty: 10,0; Gap extension penalty: 0,1; Gap separation penalty range: 8; Residue substitution matrix: blosum62; Hydrophilic residues: G P S N D Q E K R; Transition weighting: 0,5; Consensus calculation op tions: Residue fraction for consensus: 0,9. Presettings were selected to allow also for the alignment of conserved aminoacids. 15 [0305.0.0.0] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 1, columns 5 and 7 by one or more 20 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 1, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 25 II B, application no. 1, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 1, columns 5 and 7. 30 [0306.0.0.0] In one embodiment, the polypeptide of the invention comprises any one of the sequences not known to the public before. In one embodiment, the polypeptide of the invention orginates from a non-plant cell, in particular from a microorganism, and was expressed in a plant cell. In one embodiment, the present invention relates to a polypeptide encoded by the nucleic acid molecule of the invention or used in the proc 35 ess of the invention for which an activity has not been described yet.
115 [0307.0.0.0] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli 5 cation no. 1, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 1, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded 10 by the nucleic acid molecules shown in table I A and/or II B, application no. 1, columns 5 and 7. [0308.0.0.0] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 1, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli 15 cation no. 1, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred 20 are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. 25 [0309.0.0.0] The terms "protein" and "polypeptide" used in this application are inter changeable. "Polypeptide" refers to a polymer of amino acids (amino acid sequence) and does not refer to a specific length of the molecule. Thus peptides and oligopep tides are included within the definition of polypeptide. This term does also refer to or include post-translational modifications of the polypeptide, for example, glycosylations, 30 acetylations, phosphorylations and the like. Included within the definition are, for exam ple, polypeptides containing one or more analogs of an amino acid (including, for ex ample, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occur ring.
116 [0310.0.0.0] Preferably, the polypeptide is isolated. An "isolated" or "purified" protein or nucleic acid molecule or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques or chemical precur sors or other chemicals when chemically synthesized. 5 [0311.0.0.0] The language "substantially free of cellular material" includes prepara tions of the polypeptide of the invention in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one em bodiment, the language "substantially free of cellular material" includes preparations having less than about 30% (by dry weight) of "contaminating protein", more preferably 10 less than about 20% of "contaminating protein", still more preferably less than about 10% of "contaminating protein", and most preferably less than about 5% "contaminating protein". The term "Contaminating protein" relates to polypeptides, which are not poly peptides of the present invention. When the polypeptide of the present invention or biologically active portion thereof is recombinantly produced, it is also preferably sub 15 stantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precur sors or other chemicals" includes preparations in which the polypeptide of the present invention is separated from chemical precursors or other chemicals, which are involved 20 in the synthesis of the protein. The language "substantially free of chemical precursors or other chemicals" includes preparations having less than about 30% (by dry weight) of chemical precursors, other chemicals or other proteins, which are not identical to the proteins as shown in table II A and/or II B, column 3, 5 or 7. Other chemical precursors, other chemicals or other proteins, which are not identical to the proteins as shown in 25 table II, column 3, 5 or 7 are all collectevly named as impurities. The term "chemical precursors" shall mean in the sense of the specification chemical substances, which are intermediates of the biochemical pathway within the organism or within the cell(s) of the organism for example glucose-6-phoshat, citrate, fumarate, homoserine etc. The term "other chemicals" shall mean in the sense of the specification chemical sub 30 stances, which are endproducts of the biochemical pathway within the organism or within the cell(s) of the organism for example amino acids such as lysine, alanine etc; fatty acids such as linolenic acid, eicosapantaenoic acid etc, sugars such as glucose, mannose, ribose, desoxy ribose etc, vitamins such as vitamin C, vitamin B2 etc.and all other chemical substances of the cell. The term "other proteins" shall mean in the 35 sense of the specification all other proteins, which are not identical to the proteins men tioned in table II, columns 2, 5 and 7. The fine chemical preparations advantageously 117 shall have less than about 25 % impurities, preferably less than about 20% impurities, still more preferably less than about 10% impurities, and most preferably less than about 5% impurities. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the 5 polypeptide of the present invention is derived. Typically, such proteins are produced by recombinant techniques. [0312.0.0.0] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table 10 II A and/or II B, application no. 1, columns 5 and 7. [0313.0.0.0] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence 15 which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 1, columns 5 and 7. The 20 preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or II B, application no. 1, columns 5 and 7 or which is 25 homologous thereto, as defined above. [0314.0.0.0] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 1, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 30 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 1, columns 5 and 7.
118 [0315.0.0.0] For the comparison of amino acid sequences the same algorithms as described above or nucleic acid sequences can be used. Results of high quality are reached by using the algorithm of Needleman and Wunsch or Smith and Waterman. Therefore programs based on said algorithms are preferred. Advantageously the com 5 parisons of sequences can be done with the program PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or preferably with the pro grams Gap and BestFit, which are respectively based on the algorithms of Needleman and Wunsch [J. Mol. Biol. 48; 443-453 (1970)] and Smith and Waterman [Adv. Appl. Math. 2; 482-489 (1981)]. Both programs are part of the GCG software-package [Ge 10 netics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991); Altschul et al. (1997) Nucleic Acids Res. 25:3389 et seq.]. Therefore preferably the calculations to determine the perentages of sequence homology are done with the pro gram Gap over the whole range of the sequences. The following standard adjustments for the comparison of amino acid sequences were used: gap weight: 8, length weight: 15 2, average match: 2.912, average mismatch: -2.003. [0316.0.0.0] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table 1l, application no. 1, columns 5 20 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 25 or used in the process of the present invention. [0317.0.0.0] Typically, biologically (or immunologically) active portions i.e. peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length comprise a domain or motif with at least one activity or epitope of a polypeptide of the present invention or used in the process of the present 30 invention. Moreover, other biologically active portions, in which other regions of the polypeptide are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. [0318.0.0.0] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in 35 table 1l, application no. 1, column 3. Differences shall mean at least one amino acid 119 different from the sequences as shown in table II, application no. 1, column 3, prefera bly at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap plication no. 1, column 3. These proteins may be improved in efficiency or activity, may 5 be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. [0319.0.0.0] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily 10 apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 1, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the 15 yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.0] This desired compound may be any natural product of plants, which includes the final products of biosynthesis pathways and intermediates of naturally occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of said cells, but which are produced by a said cells of the invention. 20 Preferrably, the compound is a composition of amino acids or a recovered amino acid, in particular, the fine chemical, free or in protein-bound form. [0321.0.0.0] The invention also provides chimeric or fusion proteins. [0322.0.0.0] As used herein, an "chimeric protein" or "fusion protein" comprises an polypeptide operatively linked to a polypeptide which does not confer above-mentioned 25 activity, in particular, which does not confer an increase of content of the fine chemical in a cell or an organism or a part thereof, if its activity is increased. [0323.0.0.0] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 1, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, 30 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 1, 120 column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.0] Within the fusion protein, the term "operatively linked" is intended to in dicate that the polypeptide of the invention or a polypeptide used in the process of the 5 invention and the "other polypeptide" or a part thereof are fused to each other so that both sequences fulfil the proposed function addicted to the sequence used. The "other polypeptide" can be fused to the N-terminus or C-terminus preferable to the C-terminus of the polypeptide of the invention or used in the process of the invention. For example, in one embodiment the fusion protein is a GST-LMRP fusion protein in which the se 10 quences of the polypeptide of the invention or the polypeptide used in the process of the invention are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant polypeptides of the invention or a poylpep tide usefull in the process of the invention. [0325.0.0.0] In another preferred embodiment, the fusion protein is a polypeptide of 15 the invention or a polypeptide used in the process of the invention containing a het erologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a polypeptide of the invention or a poylpep tide used in the process of the invention can be increased through use of a heterolo gous signal sequence. As already mentioned above, targeting sequences, are required 20 for targeting the gene product into specific cell compartment (for a review, see Ker mode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for ex ample into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloro plasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticu lum, elaioplasts, peroxisomes, glycosomes, and other compartments of cells or ex 25 tracellular. Sequences, which must be mentioned in this context are, in particular, the signal-peptide- or transit-peptide-encoding sequences which are known per se. For example, plastid-transit-peptide-encoding sequences enable the targeting of the ex pression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously 30 be operable linked with the nucleic acid molecule of the present invention to achieve an expression in one of said compartments or extracellular. [0326.0.0.0] Preferably, a chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with con 35 ventional techniques, for example by employing blunt-ended or stagger-ended termini 121 for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. The fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of 5 gene fragments can be carried out using anchor primers, which give rise to comple mentary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a 10 fusion moiety (e.g., a GST polypeptide). The nucleic acid molecule of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the encoded protein. [0327.0.0.0] Furthermore, folding simulations and computer redesign of structural motifs of the protein of the invention can be performed using appropriate computer 15 programs (Olszewski, Proteins 25 (1996), 286-299; Hoffman, Comput. Apple. Biosci. 11 (1995), 675-679). Computer modeling of protein folding can be used for the conforma tional and energetic analysis of detailed peptide and protein models (Monge, J. Mol. Biol. 247 (1995), 995-1012; Renouf, Adv. Exp. Med. Biol. 376 (1995), 37-45). The ap propriate programs can be used for the identification of interactive sites the polypeptide 20 of the invention or polypeptides used in the process of the invention and its substrates or binding factors or other interacting proteins by computer assistant searches for com plementary peptide sequences (Fassina, Immunomethods (1994), 114-120). Further appropriate computer systems for the design of protein and peptides are described in the prior art, for example in Berry, Biochem. Soc. Trans. 22 (1994), 1033-1036; Wodak, 25 Ann. N. Y. Acad. Sci. 501 (1987), 1-13; Pabo, Biochemistry 25 (1986), 5987-5991. The results obtained from the above-described computer analysis can be used for, e.g., the preparation of peptidomimetics of the protein of the invention or fragments thereof. Such pseudopeptide analogues of the, natural amino acid sequence of the protein may very efficiently mimic the parent protein (Benkirane, J. Biol. Chem. 271 (1996), 33218 30 33224). For example, incorporation of easily available achiral Q-amino acid residues into a protein of the invention or a fragment thereof results in the substitution of amide bonds by polymethylene units of an aliphatic chain, thereby providing a convenient strategy for constructing a peptidomimetic (Banerjee, Biopolymers 39 (1996), 769-777). [0328.0.0.0] Furthermore, a three-dimensional and/or crystallographic structure of 35 the protein of the invention and the identification of interactive sites the polypeptide of 122 the invention and its substrates or binding factors can be used for design of mutants with modulated binding or turn over activities. For example, the active center of the polypeptide of the present invention can be modelled and amino acid residues partici pating in the catalytic reaction can be modulated to increase or decrease the binding of 5 the substrate to activate or improve the polypeptide. The identification of the active center and the amino acids involved in the catalytic reaction facilitates the screening for mutants having an increased activity. [0329.0.0.0] The sequences shown herein have also been described under its pro tein name as desribed in table I or II, column 3. 10 [0330.0.0.0] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins which are encoded by the sequences shown in table 1l, application no. 1, columns 5 and 7. [0331.0.0.0] One embodiment of the invention also relates to an antibody, which binds specifically to the polypeptide according to the invention or parts, i.e. specific 15 fragments or epitopes of such a protein. [0332.0.0.0] The antibodies of the invention can be used to identify and isolate the polypeptide according to the invention and encoding genes in any organism, preferably plants, prepared in plants described herein. These antibodies can be monoclonal anti bodies, polyclonal antibodies or synthetic antibodies as well as fragments of antibodies, 20 such as Fab, Fv or scFv fragments etc. Monoclonal antibodies can be prepared, for example, by the techniques as originally described in Kbhler and Milstein, Nature 256 (1975), 495, and Galfr6, Meth. Enzymol. 73 (1981), 3, which comprise the fusion of mouse myeloma cells to spleen cells derived from immunized mammals. [0333.0.0.0] Furthermore, antibodies or fragments thereof to the aforementioned 25 peptides can be obtained by using methods, which are described, e.g., in Harlow and Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, 1988. These antibodies can be used, for example, for the immunoprecipitation and immunolocaliza tion of proteins according to the invention as well as for the monitoring of the synthesis of such proteins, for example, in recombinant organisms, and for the identification of 30 compounds interacting with the protein according to the invention. For example, sur face plasmon resonance as employed in the BlAcore system can be used to increase the efficiency of phage antibodies selections, yielding a high increment of affinity from a single library of phage antibodies, which bind to an epitope of the protein of the inven- 123 tion (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13). In many cases, the binding phenomena of antibodies to antigens are equivalent to other ligand/anti-ligand binding. [0334.0.0.0] A further embodiment of the invention also relates to a method for the 5 generation of a transgenic host or host cell, e.g. a eukaryotic or prokaryotic cell, pref erably a transgenic microorganism, a transgenic plant cell or a transgenic plant tissue or a transgenic plant, which comprises introducing, into the plant, the plant cell or the plant tissue, the nucleic acid construct according to the invention, the vector according to the invention, or the nucleic acid molecule according to the invention. 10 [0335.0.0.0] A further embodiment of the invention also relates to a method for the transient generation of a host or host cell, prokaryotic or eukaryotic cell, preferably a transgenic microorganism such as a transgenic algae, a transgenic plant cell or a transgenic plant tissue or a transgenic plant, which comprises introducing, into the plant, the plant cell or the plant tissue, the nucleic acid construct according to the in 15 vention, the vector according to the invention, the nucleic acid molecule characterized herein as being contained in the nucleic acid construct of the invention or the nucleic acid molecule according to the invention, whereby the introduced nucleic acid mole cules, nucleic acid construct and/or vector is not integrated into the genome of the host or host cell. Therefore the transformants are not stable during the propagation of the 20 host in respect of the introduced nucleic acid molecules, nucleic acid construct and/or vector. [0336.0.0.0] In the process according to the invention, transgenic organisms are also to be understood as meaning - if they take the form of plants - plant cells, plant tissues, plant organs such as root, shoot, stem, seed, flower, tuber or leaf, or intact plants 25 which are grown for the production of the fine chemical. [0337.0.0.0] Growing is to be understood as meaning for example culturing the transgenic plant cells, plant tissue or plant organs on or in a nutrient medium or the intact plant on or in a substrate, for example in hydroponic culture, potting compost or on a field soil. 30 [0338.0.0.0] In a further advantageous embodiment of the process, the nucleic acid molecules can be expressed in single-celled plant cells (such as algae), see Falciatore et al., 1999, Marine Biotechnology 1 (3): 239-251 and references cited therein, and plant cells from higher plants (for example spermatophytes such as crops). Examples 124 of plant expression vectors encompass those which are described in detail herein or in: Becker, D. [(1992) Plant Mol. Biol. 20:1195-1197] and Bevan, M.W. [(1984), Nucl. Ac ids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 5 1993, pp. 15-38]. An overview of binary vectors and their use is also found in Hellens, R. [(2000), Trends in Plant Science, Vol. 5 No.10, 446-451. [0339.0.0.0] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. The terms "transformation" and "transfection" include conjugation and transduction and, as used in the present context, 10 are intended to encompass a multiplicity of prior-art methods for introducing foreign nucleic acid molecules (for example DNA) into a host cell, including calcium phosphate coprecipitation or calcium chloride coprecipitation, DEAE-dextran-mediated transfec tion, PEG-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transforma 15 tion or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and in other laboratory handbooks such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacte rium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, New Jersey. 20 [0340.0.0.0] The above-described methods for the transformation and regeneration of plants from plant tissues or plant cells are exploited for transient or stable transfor mation of plants. Suitable methods are the transformation of protoplasts by polyethyl ene-glycol-induced DNA uptake, the biolistic method with the gene gun - known as the particle bombardment method -, electroporation, the incubation of dry embryos in DNA 25 containing solution, microinjection and the Agrobacterium-mediated gene transfer. The abovementioned methods are described for example in B. Jenes, Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225. The construct to be expressed is preferably 30 cloned into a vector, which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan, Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed with such a vector can then be used in the known manner for the transformation of plants, in particular crop plants, such as, for example, tobacco plants, for example by bathing scarified leaves or leaf segments in an agrobacterial solution and subsequently 35 culturing them in suitable media. The transformation of plants with Agrobacterium tu- 125 mefaciens is described for example by Hbfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or known from, inter alia, F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press, 1993, pp. 15-38. Alternatively the construct to be ex 5 pressed can be cloned into vectors suitable for plastid transformation, as for example described in W02004029256, W02004004445 or Dufourmantel et al., 2004, Plant Mol. Biol. 55, 479-489. [0341.0.0.0] To select for the successful transfer of the nucleic acid molecule, vector or nucleic acid construct of the invention according to the invention into a host organ 10 ism, it is advantageous to use marker genes as have already been described above in detail. It is known of the stable or transient integration of nucleic acids into plant cells that only a minority of the cells takes up the foreign DNA and, if desired, integrates it into its genome, depending on the expression vector used and the transfection tech nique used. To identify and select these integrants, a gene encoding for a selectable 15 marker (as described above, for example resistance to antibiotics) is usually introduced into the host cells together with the gene of interest. Preferred selectable markers in plants comprise those, which confer resistance to an herbicide such as glyphosate or gluphosinate. Other suitable markers are, for example, markers, which encode genes involved in biosynthetic pathways of, for example, sugars or amino acids, such as 20 R-galactosidase, ura3 or ilv2. Markers, which encode genes such as luciferase, gfp or other fluorescence genes, are likewise suitable. These markers and the aforemen tioned markers can be used in mutants in whom these genes are not functional since, for example, they have been deleted by conventional methods. Furthermore, nucleic acid molecules, which encode a selectable marker, can be introduced into a host cell 25 on the same vector as those, which encode the polypeptides of the invention or used in the process or else in a separate vector. Cells which have been transfected stably with the nucleic acid introduced can be identified for example by selection (for example, cells which have integrated the selectable marker survive whereas the other cells die). [0342.0.0.0] Since the marker genes, as a rule specifically the gene for resistance to 30 antibiotics and herbicides, are no longer required or are undesired in the transgenic host cell once the nucleic acids have been introduced successfully, the process ac cording to the invention for introducing the nucleic acids advantageously employs tech niques which enable the removal, or excision, of these marker genes. One such a method is what is known as cotransformation. The cotransformation method employs 35 two vectors simultaneously for the transformation, one vector bearing the nucleic acid 126 according to the invention and a second bearing the marker gene(s). A large proportion of transformants receives or, in the case of plants, comprises (up to 40% of the trans formants and above), both vectors. In case of transformation with Agrobacteria, the transformants usually receive only a part of the vector, the sequence flanked by the T 5 DNA, which usually represents the expression cassette. The marker genes can subse quently be removed from the transformed plant by performing crosses. In another method, marker genes integrated into a transposon are used for the transformation together with desired nucleic acid (known as the Ac/Ds technology). The transformants can be crossed with a transposase resource or the transformants are transformed with 10 a nucleic acid construct conferring expression of a transposase, transiently or stable. In some cases (approx. 10%), the transposon jumps out of the genome of the host cell once transformation has taken place successfully and is lost. In a further number of cases, the transposon jumps to a different location. In these cases, the marker gene must be eliminated by performing crosses. In microbiology, techniques were developed 15 which make possible, or facilitate, the detection of such events. A further advantageous method relies on what are known as recombination systems, whose advantage is that elimination by crossing can be dispensed with. The best-known system of this type is what is known as the Cre/lox system. Crel is a recombinase, which removes the se quences located between the loxP sequences. If the marker gene is integrated be 20 tween the loxP sequences, it is removed, once transformation has taken place suc cessfully, by expression of the recombinase. Further recombination systems are the HIN/HIX, FLP/FRT and REP/STB system (Tribble et al., J. Biol. Chem., 275, 2000: 22255-22267; Velmurugan et al., J. Cell Biol., 149, 2000: 553-566). A site-specific inte gration into the plant genome of the nucleic acid sequences according to the invention 25 is possible. Naturally, these methods can also be applied to microorganisms such as yeast, fungi or bacteria. Also methods for the production of marker-free plastid trans formants using a transiently cointegrated selection gene have been described for ex ample by Koop et al., Nature Biotechology, (2004) 22, 2, 225-229. [0343.0.0.0] Agrobacteria transformed with an expression vector according to the 30 invention may also be used in the manner known per se for the transformation of plants such as experimental plants like Arabidopsis or crop plants, such as, for example, ce reals, maize, oats, rye, barley, wheat, soya, rice, cotton, sugarbeet, canola, sunflower, flax, hemp, potato, tobacco, tomato, carrot, bell peppers, oilseed rape, tapioca, cas sava, arrow root, tagetes, alfalfa, lettuce and the various tree, nut, and grapevine spe 35 cies, in particular oil-containing crop plants such as soya, peanut, castor-oil plant, sun flower, maize, cotton, flax, oilseed rape, coconut, oil palm, safflower (Carthamus tincto- 127 rius) or cocoa beans, for example by bathing scarified leaves or leaf segments in an agrobacterial solution and subsequently growing them in suitable media. [0344.0.0.0] In addition to the transformation of somatic cells, which then has to be regenerated into intact plants, it is also possible to transform the cells of plant meris 5 tems and in particular those cells which develop into gametes. In this case, the trans formed gametes follow the natural plant development, giving rise to transgenic plants. Thus, for example, seeds of Arabidopsis are treated with agrobacteria and seeds are obtained from the developing plants of which a certain proportion is transformed and thus transgenic (Feldman, KA and Marks MD (1987). Mol Gen Genet 208:274-289; 10 Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-289). Alternative methods are based on the repeated removal of the influorescences and incubation of the excision site in the center of the rosette with transformed agrobacteria, whereby transformed seeds can likewise be obtained at a later point in time (Chang (1994). Plant J. 5: 551-558; Katavic 15 (1994). Mol Gen Genet, 245: 363-370). However, an especially effective method is the vacuum infiltration method with its modifications such as the "floral dip" method. In the case of vacuum infiltration of Arabidopsis, intact plants under reduced pressure are treated with an agrobacterial suspension (Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-1199), while in the case of the"floral dip" method the developing floral 20 tissue is incubated briefly with a surfactant-treated agrobacterial suspension (Clough, SJ und Bent, AF (1998). The Plant J. 16, 735-743). A certain proportion of transgenic seeds are harvested in both cases, and these seeds can be distinguished from non transgenic seeds by growing under the above-described selective conditions. In addi tion the stable transformation of plastids is of advantages because plastids are inher 25 ited maternally is most crops reducing or eliminating the risk of transgene flow through pollen. The transformation of the chloroplast genome is generally achieved by a proc ess, which has been schematically displayed in Klaus et al., 2004 (Nature Biotechnol ogy 22(2), 225-229). Briefly the sequences to be transformed are cloned together with a selectable marker gene between flanking sequences homologous to the chloroplast 30 genome. These homologous flanking sequences direct site specific integration into the plastome. Plastidal transformation has been described for many different plant species and an overview can be taken from Bock (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001 Sep 21; 312 (3):425-38 or Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Bio 35 technol. 21, 20-28. Further biotechnological progress has recently been reported in 128 form of marker free plastid transformants, which can be produced by a transient coin tegrated maker gene (Klaus et al., 2004, Nature Biotechnology 22(2), 225-229). [0345.0.0.0] The genetically modified plant cells can be regenerated via all methods with which the skilled worker is familiar. Suitable methods can be found in the above 5 mentioned publications by S.D. Kung and R. Wu, Potrykus or Hbfgen and Willmitzer. [0346.0.0.0] Accordingly, the present invention thus also relates to a plant cell com prising the nucleic acid construct according to the invention, the nucleic acid molecule according to the invention or the vector according to the invention. [0347.0.0.0] Accordingly the present invention relates to any cell transgenic for any 10 nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as 15 shown in table 1l, application no. 1, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part 20 thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table 1l, application no. 1, col umn 3 or a protein as shown in table 1l, application no. 1, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids 25 or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.0] "Transgenic", for example regarding a nucleic acid molecule, an nucleic acid construct or a vector comprising said nucleic acid molecule or an organism trans formed with said nucleic acid molecule, nucleic acid construct or vector, refers to all 30 those subjects originating by recombinant methods in which either a) the nucleic acid sequence, or b) a genetic control sequence linked operably to the nucleic acid sequence, for ex ample a promoter, or 129 c) (a) and (b) are not located in their natural genetic environment or have been modified by recombi nant methods, an example of a modification being a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. Natural genetic environment 5 refers to the natural chromosomal locus in the organism of origin, or to the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least at one side and has a sequence of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000 bp, very especially 10 preferably at least 5000 bp, in length. [0349.0.0.0] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 1, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 15 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.0] Further, the plant cell, plant tissue or plant can also be transformed such that further enzymes and proteins are (over)expressed which expression supports an increase of the fine chemical. 20 [0351.0.0.0] However, transgenic also means that the nucleic acids according to the invention are located at their natural position in the genome of an organism, but that the sequence has been modified in comparison with the natural sequence and/or that the regulatory sequences of the natural sequences have been modified. Preferably, transgenic/recombinant is to be understood as meaning the transcription of the nucleic 25 acids used in the process according to the invention occurs at a non-natural position in the genome, that is to say the expression of the nucleic acids is homologous or, pref erably, heterologous. This expression can be transiently or of a sequence integrated stably into the genome. [0352.0.0.0] The term "transgenic plants" used in accordance with the invention also 30 refers to the progeny of a transgenic plant, for example the T 1 , T 2 , T 3 and subsequent plant generations or the BC 1 , BC 2 , BC 3 and subsequent plant generations. Thus, the transgenic plants according to the invention can be raised and selfed or crossed with other individuals in order to obtain further transgenic plants according to the invention.
130 Transgenic plants may also be obtained by propagating transgenic plant cells vegeta tively. The present invention also relates to transgenic plant material, which can be derived from a transgenic plant population according to the invention. Such material includes plant cells and certain tissues, organs and parts of plants in all their manifesta 5 tions, such as seeds, leaves, anthers, fibers, tubers, roots, root hairs, stems, embryo, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures, which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. [0353.0.0.0] Any transformed plant obtained according to the invention can be used 10 in a conventional breeding scheme or in in vitro plant propagation to produce more transformed plants with the same characteristics and/or can be used to introduce the same characteristic in other varieties of the same or related species. Such plants are also part of the invention. Seeds obtained from the transformed plants genetically also contain the same characteristic and are part of the invention. As mentioned before, the 15 present invention is in principle applicable to any plant and crop that can be trans formed with any of the transformation method known to those skilled in the art. [0354.0.0.0] In an especially preferred embodiment, the organism, the host cell, plant cell, plant, microorganism or plant tissue according to the invention is transgenic. [0355.0.0.0] Accordingly, the invention therefore relates to transgenic organisms 20 transformed with at least one nucleic acid molecule, nucleic acid construct or vector according to the invention, and to cells, cell cultures, tissues, parts - such as, for exam ple, in the case of plant organisms, plant tissue, for example leaves, roots and the like or propagation material derived from such organisms, or intact plants. The terms "re combinant (host)", and "transgenic (host)" are used interchangeably in this context. 25 Naturally, these terms refer not only to the host organism or target cell in question, but also to the progeny, or potential progeny, of these organisms or cells. Since certain modifications may occur in subsequent generations owing to mutation or environmental effects, such progeny is not necessarily identical with the parental cell, but still comes within the scope of the term as used herein. 30 [0356.0.0.0] Suitable organisms for the process according to the invention or as hosts are all these eukaryotic organisms, which are capable of synthesizing the fine chemcial. The organisms used as hosts are microorganisms, such as algae or plants, such as dictotyledonous or monocotyledonous plants.
131 [0357.0.0.0] In principle all plants can be used as host organism, especially the plants mentioned above as source organism. Preferred transgenic plants are, for ex ample, selected from the families Aceraceae, Anacardiaceae, Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Euphorbiaceae, Fabaceae, Malvaceae, 5 Nymphaeaceae, Papaveraceae, Rosaceae, Salicaceae, Solanaceae, Arecaceae, Bro meliaceae, Cyperaceae, Iridaceae, Liliaceae, Orchidaceae, Gentianaceae, Labiaceae, Magnoliaceae, Ranunculaceae, Carifolaceae, Rubiaceae, Scrophulariaceae, Caryo phyllaceae, Ericaceae, Polygonaceae, Violaceae, Juncaceae or Poaceae and prefera bly from a plant selected from the group of the families Apiaceae, Asteraceae, Brassi 10 caceae, Cucurbitaceae, Fabaceae, Papaveraceae, Rosaceae, Solanaceae, Liliaceae or Poaceae. Preferred are crop plants such as plants advantageously selected from the group of the genus peanut, oilseed rape, canola, sunflower, safflower, olive, sesame, hazelnut, almond, avocado, bay, pumpkin/squash, linseed, soya, pistachio, borage, maize, wheat, rye, oats, sorghum and millet, triticale, rice, barley, cassava, potato, 15 sugarbeet, egg plant, alfalfa, and perennial grasses and forage plants, oil palm, vege tables (brassicas, root vegetables, tuber vegetables, pod vegetables, fruiting vegeta bles, onion vegetables, leafy vegetables and stem vegetables), buckwheat, Jerusalem artichoke, broad bean, vetches, lentil, dwarf bean, lupin, clover and Lucerne for men tioning only some of them. 20 [0358.0.0.0] Preferred plant cells, plant organs, plant tissues or parts of plants origi nate from the under source organism mentioned plant families, preferably from the abovementioned plant genus, more preferred from abovementioned plants species. [0359.0.0.0] Transgenic plants comprising the amino acids synthesized in the proc ess according to the invention can be marketed directly without isolation of the com 25 pounds synthesized. In the process according to the invention, plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The amino acids produced in the process according to 30 the invention may, however, also be isolated from the plant in the form of their free amino acids or bound in proteins. Amino acids produced by this process can be har vested by harvesting the organisms either from the culture in which they grow or from the field. This can be done via expressing, grinding and/or extraction, salt precipitation and/or ion-exchange chromatography of the plant parts, preferably the plant seeds, 35 plant fruits, plant tubers and the like.
132 [0360.0.0.0] In a further embodiment, the present invention relates to a process for the generation of a microorganism, comprising the introduction, into the microorganism or parts thereof, of the nucleic acid construct of the invention, or the vector of the inven tion or the nucleic acid molecule of the invention. 5 [0361.0.0.0] In another embodiment, the present invention relates also to a trans genic microorganism comprising the nucleic acid molecule of the invention, the nucleic acid construct of the invention or the vector as of the invention. Appropriate microor ganisms have been described herein before under source organism, preferred are in particular aforementioned strains suitable for the production of fine chemicals. 10 [0362.0.0.0] Accordingly, the present invention relates also to a process according to the present invention whereby the produced amino acid composition or the produced the fine chemical is isolated. [0363.0.0.0] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 15 80% by weight, very especially preferably more than 90% by weight, of the amino acids produced in the process can be isolated. The resulting amino acids can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, for mulated. 20 [0364.0.0.0] In one embodiment, the amino acid is the fine chemical. [0365.0.0.0] The amino acids obtained in the process are suitable as starting mate rial for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the production of pharmaceuticals, foodstuffs, animal feeds or cosmetics. Accordingly, the present invention relates a method for the 25 production of a pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics com prising the steps of the process according to the invention, including the isolation of the amino acid composition produced or the fine chemical produced if desired and formu lating the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to 30 the invention is the use of the amino acids produced in the process or of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals.
133 [0366.0.0.0] In principle all microorganisms can be used as host organism especially the ones mentioned under source organism above. It is advantageous to use in the process of the invention transgenic microorganisms such as algae selected from the group of the families Bacillariophyceae, Charophyceae, Chlorophyceae, Chrysophy 5 ceae, Craspedophyceae, Euglenophyceae, Prymnesiophyceae, Phaeophyceae, Dino phyceae, Rhodophyceae, Xanthophyceae, Prasinophyceae and its described species and strains. Examples for such algae are the following species Isochrysis galbana, Chaetoceros gracilis, Chaetoceros calcitrans, Tetraselmis suecica, Thalassiosira pseu donana, Pavlova lutheri, Isochrysis sp., Skeletonema costatum, Chroomonas salina, 10 Dunaliella tertiolecta, Chaetoceros simplex, Chaetoceros muelleri, Nannochloropsis sp., Cyclotella sp., Phaeodactylum tricornutum, Tetraselmis chui, Pavlova salina, Di cruteria sp., Tetraselmis levis, Dunaliella perva, Thalassiosira weissfloggii, Chlamydo monas sp., Chlorella vulgaris, Neochloris oleoabundans or Chlorella sp, which are only smahl overview. 15 [0367.0.0.0] The process of the invention is, when the host organisms are microor ganisms, advantageously carried out at a temperature between 0 C and 95'C, pref erably between 10 C and 85'C, particularly preferably between 15'C and 75'C, very particularly preferably between 15'C and 45'C. The pH is advantageously kept at be tween pH 4 and 12, preferably between pH 6 and 9, particularly preferably between pH 20 7 and 8, during this. The process of the invention can be operated batchwise, semi batchwise or continuously. A summary of known cultivation methods is to be found in the textbook by Chmiel (BioprozeRtechnik 1. Einfuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)). The 25 culture medium to be used must meet the requirements of the respective strains in a suitable manner. Descriptions of culture media for various microorganisms are present in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D. C., USA, 1981) and for algae in McLellan et al. [(1991): Maintenance of algae and protozoa. - A. Doyle and B. Kirsop (eds.) Mainte 30 nance of Microorganisms London: 183-208]; Provasoli et al. [(1960): Artificial media for freshwater algae: problems and suggestions. - R. T. Hartman (eds.) The Ecology of Algae. Pymatunig Laboratory of Field Biology Special publication 2, University of Pitts burgh: 84-96] or Starr, R. C. [(1971): Algal cultures-sources and methods of cultivation . - A. San Pietro (eds.) Photosynthesis Part A, Methods in Enzymology 23, N. Y.: 29 35 53]. These media, which can be employed according to the invention include, as de scribed above, usually one or more carbon sources, nitrogen sources, inorganic salts, 134 vitamins and/or trace elements. Preferred carbon sources are sugars such as mono-, di- or polysaccharides. Examples of very good carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugars can also be added to the media via complex compounds 5 such as molasses, or other byproducts of sugar refining. It may also be advantageous to add mixtures of various carbon sources. Other possible carbon sources are oils and fats such as, for example, soybean oil, sunflower oil, peanut oil and/or coconut fat, fatty acids such as, for example, palmitic acid, stearic acid and/or linoleic acid, alcohols and/or polyalcohols such as, for example, glycerol, methanol and/or ethanol and/or 10 organic acids such as, for example, acetic acid and/or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds or materials, which contain these compounds. Examples of nitrogen sources include ammonia in liquid or gaseous form or ammonium salts such as ammonium sulfate, ammonium chloride, ammonium phos phate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or com 15 plex nitrogen sources such as corn steep liquor, soybean meal, soybean protein, yeast extract, meat extract and others. The nitrogen sources may be used singly or as a mix ture. Inorganic salt compounds, which may be present in the media include the chlo ride, phosphorus or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. For the cultivation of algae the so called 20 soilwater media are preferred. Such media are composed of soil extract, trace element solutions, filtered seawater, a nitrogen source and a buffer substance. Such culture media are well known by the skilled person and are available for example from culture collections such as the culture collection of algae (SAG) at the University of Gbttingen, the Culture collection of algae in Coimbra, Portugal (ACOI) or the culture collection of 25 algae (UTEX) in Texas, USA. [0368.0.0.0] For preparing sulfur-containing fine chemicals, in particular the fine chemical, it is possible to use as sulfur source inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides or else organic sulfur compounds such as mercaptans and thiols. 30 [0369.0.0.0] It is possible to use as phosphorus source phosphoric acid, potassium dihydrogenphosphate or dipotassium hydrogenphosphate or the corresponding so dium-containing salts. Chelating agents can be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents include dihydroxyphe nols such as catechol or protocatechuate, or organic acids such as citric acid. The fer 35 mentation media employed according to the invention for cultivating microorganisms 135 normally also contain other growth factors such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate and pyridoxine. All media components are sterilized either by heat (1.5 bar and 121'C for 20 min) or by sterilizing filtration. The components can be sterilized either together 5 or, if necessary, separately. All media components can be present at the start of the cultivation or optionally be added continuously or batchwise. The temperature of the culture is normally between 0 C and 55'C, preferably at 100C to 30'C, and can be kept constant or changed during the experiment. The pH of the medium should be in the range from 3,5 to 8.5, preferably in the range between 5 to 7. The pH for the cultivation 10 can be controlled during the cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia or acidic compounds such as phosphoric acid or sulfuric acid. Foaming can be controlled by employing anti foams such as, for example, fatty acid polyglycol esters. The stability of plasmids can be maintained by adding to the medium suitable substances having a selective effect, 15 for example antibiotics. Aerobic conditions are maintained by introducing oxygen or oxygen-containing gas mixtures such as, for example, ambient air into the culture. The temperature of the culture is normally from 20'C to 45'C and preferably from 25'C to 40'C. The culture is continued until formation of the desired product is at a maximum. This aim is normally achieved within 10 hours to 160 hours. 20 [0370.0.0.0] The fermentation broths obtained in this way, containing in particular L methionine, L-threonine and/or L-lysine preferably L-methionine, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be removed entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation or a 25 combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evapo rator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other proc 30 esses. [0371.0.0.0] However, it is also possible to purify the amino acid produced further. For this purpose, the product-containing composition is subjected to a chromatography on a suitable resin, in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be 35 repeated if necessary, using the same or different chromatography resins. The skilled 136 worker is familiar with the choice of suitable chromatography resins and their most ef fective use. The purified product can be concentrated by filtration or ultrafiltration and stored at a temperature at which the stability of the product is a maximum. [0372.0.0.0] The identity and purity of the isolated compound(s) can be determined 5 by prior art techniques. These include high performance liquid chromatography (HPLC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assay or microbiological assays. These analytical methods are summarized in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Biopro 10 cess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 15 17. [0373.0.0.0] In yet another aspect, the invention also relates to harvestable parts and to propagation material of the transgenic plants according to the invention which either contain transgenic plant cells expressing a nucleic acid molecule according to the in vention or which contains cells which show an increased cellular activity of the polypep 20 tide of the invention, e.g. an increased expression level or higher activity of the de scribed protein. [0374.0.0.0] Harvestable parts can be in principle any useful parts of a plant, for ex ample, flowers, pollen, seedlings, tubers, leaves, stems, fruit, seeds, roots etc. Propa gation material includes, for example, seeds, fruits, cuttings, seedlings, tubers, root 25 stocks etc. Preferred are seeds, fruits, seedlings or tubers as harvestable or propaga tion material. [0375.0.0.0] The invention furthermore relates to the use of the transgenic organisms according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves and the like as mentioned above in the case of transgenic plant organ 30 isms - derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, pharmaceuticals or fine chemicals.
137 [0376.0.0.0] Accordingly in another embodiment, the present invention relates to the use of the nucleic acid molecule, the organism, e.g. the microorganism, the plant, plant cell or plant tissue, the vector, or the polypeptide of the present invention for making fatty acids, carotenoids, isoprenoids, vitamins, lipids, wax esters, (poly)saccharides 5 and/or polyhydroxyalkanoates, and/or its metabolism products, in particular, steroid hormones, cholesterol, prostaglandin, triacylglycerols, bile acids and/or ketone bodies producing cells, tissues and/or plants. There are a number of mechanisms by which the yield, production, and/or efficiency of production of fatty acids, carotenoids, isopre noids, vitamins, wax esters, lipids, (poly)saccharides and/or polyhydroxyalkanoates, 10 and/or its metabolism products, in particular, steroid hormones, cholesterol, triacylglyc erols, prostaglandin, bile acids and/or ketone bodies or further of above defined fine chemicals incorporating such an altered protein can be affected. In the case of plants, by e.g. increasing the expression of acetyl-CoA which is the basis for many products, e.g., fatty acids, carotenoids, isoprenoids, vitamines, lipids, (poly)saccharides, wax 15 esters, and/or polyhydroxyalkanoates, and/or its metabolism products, in particular, prostaglandin, steroid hormones, cholesterol, triacylglycerols, bile acids and/or ketone bodies in a cell, it may be possible to increase the amount of the produced said com pounds thus permitting greater ease of harvesting and purification or in case of plants more efficient partitioning. Further, one or more of said metabolism products, increased 20 amounts of the cofactors, precursor molecules, and intermediate compounds for the appropriate biosynthetic pathways maybe required. Therefore, by increasing the num ber and/or activity of transporter proteins involved in the import of nutrients, such as carbon sources (i.e., sugars), nitrogen sources (i.e., amino acids, ammonium salts), phosphate, and sulfur, it may be possible to improve the production of acetyl CoA and 25 its metabolism products as mentioned above, due to the removal of any nutrient supply limitations on the biosynthetic process. In particular, it may be possible to increase the yield, production, and/or efficiency of production of said compounds, e.g. fatty acids, carotenoids, isoprenoids, vitamins, was esters, lipids, (poly)saccharides, and/or poly hydroxyalkanoates, and/or its metabolism products, in particular, steroid hormones, 30 cholesterol, prostaglandin, triacylglycerols, bile acids and/or ketone bodies molecules etc. in plants. [0376.1.0.0] Further in another embodiment, the present invention relates to the use of the nucleic acid molecule of the invention or used in the method of the invention alone or in combination with other genes of the respective fine chemical synthesis for 35 example of the amino acid biosynthesis, the polypeptide of the invention or used in the method of the invention, the nucleic acid construct of the invention, the vector of the 138 invention, the plant or plant tissue or the host cell of the invention, for the production of plant resistant to a herbicide inhibiting the production of leucine, isoleucine and/or valine. [0377.0.0.0] Furthermore preferred is a method for the recombinant production of 5 pharmaceuticals or fine chemicals in host organisms, wherein a host organism is trans formed with one of the above-described nucleic acid constructs comprising one or more structural genes which encode the desired fine chemical or catalyze the biosyn thesis of the desired fine chemical, the transformed host organism is cultured, and the desired fine chemical is isolated from the culture medium. This method can be applied 10 widely to fine chemicals such as enzymes, vitamins, amino acids, sugars, fatty acids, and natural and synthetic flavorings, aroma substances and colorants or compositions comprising these. Especially preferred is the additional production of further amino ac ids, tocopherols and tocotrienols and carotenoids or compositions comprising said compounds. The transformed host organisms are cultured and the products are recov 15 ered from the host organisms or the culture medium by methods known to the skilled worker or the organism itself servers as food or feed supplement. The production of pharmaceuticals such as, for example, antibodies or vaccines, is described by Hood EE, Jilka JM. Curr Opin Biotechnol. 1999 Aug; 10(4):382-6; Ma JK, Vine ND. Curr Top Microbiol Immunol. 1999; 236:275-92. 20 [0378.0.0.0] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a 25 candidate gene encoding a gene product conferring an increase in the fine chemi cal after expression, with the nucleic acid molecule of the present invention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 1, columns 5 30 and 7, preferably in table I B, application no. 1, columns 5 and 7, and, optionally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 139 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 5 compared to the wild type. [0379.0.0.0] Relaxed hybridisation conditions are: After standard hybridisation pro cedures washing steps can be performed at low to medium stringency conditions usu ally with washing conditions of 40'-55'C and salt conditions between 2xSSC and 0,2x SSC with 0,1% SDS in comparison to stringent washing conditions as e.g. 60'-68'C 10 with 0,1% SDS. Further examples can be found in the references listed above for the stringend hybridization conditions. Usually washing steps are repeated with increasing stringency and length until a useful signal to noise ratio is detected and depend on many factors as the target, e.g. its purity, GC-content, size etc, the probe, e.g.its length, is it a RNA or a DNA probe, salt conditions, washing or hybridisation tempera 15 ture, washing or hybridisation time etc. [0380.0.0.0] In another embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) identifiying nucleic acid molecules of an organism; which can contain a candidate 20 gene encoding a gene product conferring an increase in the fine chemical after expression, which are at least 20%, preferably 25%, more preferably 30%, even more preferred are 35%. 40% or 50%, even more preferred are 60%, 70% or 80%, most preferred are 90% or 95% or more homology to the nucleic acid mole cule of the present invention, for example via homology search in a data bank; 25 (b) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cells or microorganisms, appropriate for producing the fine chemical; (c) expressing the identified nucleic acid molecules in the host cells; (d) assaying the the fine chemcial level in the host cells; and (e) identifying the nucleic acid molecule and its gene product which expression con 30 fers an increase in the the fine chemical level in the host cell after expression compared to the wild type.
140 [0381.0.0.0] The nucleic acid molecules identified can then be used for the produc tion of the fine chemical in the same way as the nucleic acid molecule of the present invention. Accordingly, in one embodiment, the present invention relates to a process for the production of the fine chemical, comprising (a) identifying a nucleic acid mole 5 cule according to aforementioned steps (a) to (f) or (a) to (e) and recovering the free or bound fine chemical from a organism having an increased cellular activity of a polypep tide encoded by the isolated nucleic acid molecule compared to a wild type. [0382.0.0.0] Furthermore, in one embodiment, the present invention relates to a method for the identification of a compound stimulating production of the fine chemical 10 to said plant comprising: a) contacting cells which express the polypeptide of the present invention or its mRNA with a candidate compound under cell cultivation conditions; b) assaying an increase in expression of said polypeptide or said mRNA; c) comparing the expression level to a standard response made in the absence of 15 said candidate compound; whereby, an increased expression over the standard indicates that the compound is stimulating production of the fine chemical. [0383.0.0.0] Furthermore, in one embodiment, the present invention relates to proc ess for the identification of a compound conferring increased the fine chemical produc tion in a plant or microorganism, comprising the steps: 20 (a) culturing a cell or tissue or microorganism or maintaining a plant expressing the polypeptide according to the invention or a nucleic acid molecule encoding said polypeptide and a readout system capable of interacting with the polypeptide un der suitable conditions which permit the interaction of the polypeptide with said readout system in the presence of a compound or a sample comprising a plurality 25 of compounds and capable of providing a detectable signal in response to the binding of a compound to said polypeptide under conditions which permit the ex pression of said readout system and the polypeptide of the present invention or used in the process of the invention; and (b) identifying if the compound is an effective agonist by detecting the presence or 30 absence or increase of a signal produced by said readout system.
141 [0384.0.0.0] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in 5 comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 1, column 3, eg comparing 10 near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 1, column 3. [0385.0.0.0] Said compound may be chemically synthesized or microbiologically produced and/or comprised in, for example, samples, e.g., cell extracts from, e.g., plants, animals or microorganisms, e.g. pathogens. Furthermore, said compound(s) 15 may be known in the art but hitherto not known to be capable of suppressing or activat ing the polypeptide of the present invention. The reaction mixture may be a cell free extract or may comprise a cell or tissue culture. Suitable set ups for the method of the invention are known to the person skilled in the art and are, for example, generally de scribed in Alberts et al., Molecular Biology of the Cell, third edition (1994), in particular 20 Chapter 17. The compounds may be, e.g., added to the reaction mixture, culture me dium, injected into the cell or sprayed onto the plant. [0386.0.0.0] If a sample containing a compound is identified in the method of the invention, then it is either possible to isolate the compound from the original sample identified as containing the compound capable of activating or increasing the content of 25 the fine chemical in an organism or part thereof, or one can further subdivide the origi nal sample, for example, if it consists of a plurality of different compounds, so as to reduce the number of different substances per sample and repeat the method with the subdivisions of the original sample. Depending on the complexity of the samples, the steps described above can be performed several times, preferably until the sample 30 identified according to the method of the invention only comprises a limited number of or only one substance(s). Preferably said sample comprises substances of similar chemical and/or physical properties, and most preferably said substances are identical. Preferably, the compound identified according to the above-described method or its derivative is further formulated in a form suitable for the application in plant breeding or 35 plant cell and tissue culture.
142 [0387.0.0.0] The compounds which can be tested and identified according to a method of the invention may be expression libraries, e.g., cDNA expression libraries, peptides, proteins, nucleic acids, antibodies, small organic compounds, hormones, peptidomimetics, PNAs or the like (Milner, Nature Medicine 1 (1995), 879-880; Hupp, 5 Cell 83 (1995), 237-245; Gibbs, Cell 79 (1994), 193-198 and references cited supra). Said compounds can also be functional derivatives or analogues of known inhibitors or activators. Methods for the preparation of chemical derivatives and analogues are well known to those skilled in the art and are described in, for example, Beilstein, Handbook of Organic Chemistry, Springer edition New York Inc., 175 Fifth Avenue, New York, 10 N.Y. 10010 U.S.A. and Organic Synthesis, Wiley, New York, USA. Furthermore, said derivatives and analogues can be tested for their effects according to methods known in the art. Furthermore, peptidomimetics and/or computer aided design of appropriate derivatives and analogues can be used, for example, according to the methods de scribed above. The cell or tissue that may be employed in the method of the invention 15 preferably is a host cell, plant cell or plant tissue of the invention described in the em bodiments hereinbefore. [0388.0.0.0] Thus, in a further embodiment the invention relates to a compound ob tained or identified according to the method for identifiying an agonist of the invention said compound being an agonist of the polypeptide of the present invention or used in 20 the process of the present invention. [0389.0.0.0] Accordingly, in one embodiment, the present invention further relates to a compound identified by the method for identifying a compound of the present inven tion. [0390.0.0.0] Said compound is, for example, a homologous of the polypeptide of the 25 present invention. Homologues of the polypeptid of the present invention can be gen erated by mutagenesis, e.g., discrete point mutation or truncation of the polypeptide of the present invenion. As used herein, the term "homologue" refers to a variant form of the protein, which acts as an agonist of the activity of the polypeptide of the present invention. An agonist of said protein can retain substantially the same, or a subset, of 30 the biological activities of the polypeptide of the present invention. In particular, said agonist confers the increase of the expression level of the polypeptide of the present invention and/or the expression of said agonist in an organisms or part thereof confers the increase of free and/or bound the fine chemical in the organism or part thereof.
143 [0391.0.0.0] In one embodiment, the invention relates to an antibody specifically rec ognizing the compound or agonist of the present invention. [0392.0.0.0] In a further embodiment, the present invention relates to a method for the production of a agricultural composition providing the nucleic acid molecule, the 5 vector or the polypeptide of the invention or comprising the steps of the method accord ing to the invention for the identification of said compound, agonist; and formulating the nucleic acid molecule, the vector or the polypeptide of the invention or the agonist, or compound identified according to the methods or processes of the present invention or with use of the subject matters of the present invention in a form applicable as plant 10 agricultural composition. [0393.0.0.0] In another embodiment, the present invention relates to a method for the production of a "the fine chemical"-production supporting plant culture composition comprising the steps of the method for of the present invention; and formulating the compound identified in a form acceptable as agricultural composition. 15 [0394.0.0.0] Under "acceptable as agricultural composition" is understood, that such a composition is in agreement with the laws regulating the content of fungicides, plant nutrients, herbizides, etc. Preferably such a composition is without any harm for the protected plants and the animals (humans included) fed therewith. [0395.0.0.0] The present invention also pertains to several embodiments relating to 20 further uses and methods. The nucleic acid molecule, polypeptide, protein homo logues, fusion proteins, primers, vectors, host cells, described herein can be used in one or more of the following methods: identification of plants useful for the fine chemi cal production as mentioned and related organisms; mapping of genomes; identifica tion and localization of sequences of interest; evolutionary studies; determination of 25 regions required for function; modulation of an activity. [0396.0.0.0] The nucleic acid molecule of the invention, the vector of the invention or the nucleic acid construct of the invention may also be useful for the production of or ganisms resistant to inhibitors of the amino acid production biosynthesis pathways. In particular, the overexpression of the polypeptide of the present invention in the cytsol 30 or more preferred in the plastids may protect plants against herbicides, which block the amino acid, in particular the fine chemical, synthesis in said plant. Examples of herbi cides blocking the amino acid synthesis in plants are for example sulfonylurea and imi- 144 dazolinone herbicides, which catalyze the first step in branched-chain amino acid bio synthesis. [0397.0.0.0] Accordingly, the nucleic acid molecules of the present invention have a variety of uses. First, they may be used to identify an organism or a close relative 5 thereof. Also, they may be used to identify the presence thereof or a relative thereof in a mixed population of microorganisms or plants. By probing the extracted genomic DNA of a culture of a unique or mixed population of plants under stringent conditions with a probe spanning a region of the gene of the present invention which is unique to this, one can ascertain whether the present invention has been used or whether it or a 10 close relative is present. [0398.0.0.0] Further, the nucleic acid molecule of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid mole cules may serve as markers for the construction of a genomic map in related organism. [0399.0.0.0] Accordingly, the present invention relates to a method for breeding 15 plants for the production of the fine chemical, comprising (a) providing a first plant variety produced according to the process of the invention preferably (over)expressing the nucleic acid molecule of the invention; (b) crossing the first plant variety with a second plant variety; and (c) selecting the offspring plants which overproduce the fine chemical by means of 20 analysis the distribution of a molecular marker in the offspring representing the first plant variety and its capability to (over)produce the fine chemical. [0400.0.0.0] Details about the use of molecular markers in breeding can be found in Kumar et al., 1999 (Biotech Adv., 17:143-182) and Peleman and van der Voort 2003 (Trends Plant Sci. 2003 Jul;8(7):330-334) 25 [0401.0.0.0] The molecular marker can e.g. relate to the nucleic acid molecule of the invention and/or its expression level. Accordingly, the molecular marker can be a probe or a PCR primer set useful for identification of the genomic existence or genomic local isation of the nucleic acid molecule of the invention, e.g. in a Southern blot analysis or a PCR or its expression level, i.g. in a Northern Blot analysis or a quantitative PCR. 30 Accordingly, in one embodiment, the present invention relates to the use of the nucleic 145 acid molecule of the present invention or encoding the polypeptide of the present in vention as molecular marker for breeding. [0402.0.0.0] The nucleic acid molecules of the invention are also useful for evolu tionary and protein structural studies. By comparing the sequences of the invention or 5 used in the process of the invention to those encoding similar enzymes from other or ganisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are con served and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of 10 value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function. [0403.0.0.0] Accordingly, the nucleic acid molecule of the invention can be used for the identification of other nucleic acids conferring an increase of the fine chemical after expression. 15 [0404.0.0.0] Further, the nucleic acid molecule of the invention or a fragment of a gene conferring the expression of the polypeptide of the invention, preferably compris ing the nucleic acid molecule of the invention, can be used for marker assisted breed ing or association mapping of the fine chemical derived traits. [0405.0.0.0] Accordingly, the nucleic acid of the invention, the polypeptide of the in 20 vention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other 25 amino acids, in particular Threonine, Alanine, Glutamin, Glutamic acid, Valine, Aspar gine, Phenylalanine, Leucine, Proline , Tryptophan Tyrosine, Valine, Isoleucine and Arginine. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the 30 polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the fine chemical in a organism or part thereof, e.g. in a cell.
146 [0406.0.0.0] Further, the nucleic acid of the invention, the polypeptide of the inven tion, the nucleic acid construct of the invention, the organisms, the host cell, the micro organsims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the anti 5 body of the presen invention or the nucleic acid molecule identified with the method of the present invention, can be used for the preparation of an agricultural composition. [0407.0.0.0] Furthermore, the nucleic acid of the invention, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, 10 the vector of the invention or the agonist identified with the method of the invention, the antibody of the presen invention or the nucleic acid molecule identified with the method of the present invention, can be used for the identification and production of com pounds capapble of conferring a modulation of the fine chemical levels in an organism or parts thereof, preferably to identify and produce compounds conferring an increase 15 of the fine chemical levels in an organism or parts thereof, if said identified compound is applied to the organism or part thereof, i.e. as part of its food, or in the growing or culture media. [0408.0.0.0] These and other embodiments are disclosed and encompassed by the description and examples of the present invention. Further literature concerning any 20 one of the methods, uses and compounds to be employed in accordance with the pre sent invention may be retrieved from public libraries, using for example electronic de vices. For example the public database "Medline" may be utilized which is available on the Internet, for example under hftp://www.ncbi.nlm.nih.gov/PubMed/medline.html. Fur ther databases and addresses, such as hftp://www.ncbi.nlm.nih.gov/, 25 hftp://www.infobiogen. fr/, hftp://www.fmi.ch/biology/research-tools.html, hftp://www.tigr.org/, are known to the person skilled in the art and can also be obtained using, e.g., hftp://www.lycos.com. An overview of patent information in biotechnology and a survey of relevant sources of patent information useful for retrospective search ing and for current awareness is given in Berks, TIBTECH 12 (1994), 352-364. 30 [0409.0.0.0] Table 1 gives an overview about the sequences disclosed in the present invention. 1) Increase of the metabolites: Max: maximal x-fold (normalised to wild type) Min: minimal x-fold (normalised to wild type) 147 2) Decrease of the metabolites: Max: maximal x-fold (normalised to wild type) (minimal decrease) Min: minimal x-fold (normalised to wild type) (maximal decrease) 5 [0410.0.0.0] The present invention is illustrated by the examples, which follow. The present examples illustrate the basic invention without being intended as limiting the subject of the invention. The content of all of the references, patent applications, pat ents and published patent applications cited in the present patent application is here with incorporated by reference. 10 [0411.0.0.0] Examples [0412.0.0.0] Example 1: Cloning of the inventive sequences as shown in table 1, column 5 and 7 in Escherichia coli [0413.0.0.0] The inventive sequences as shown in table 1, column 5 and 7 were cloned into the plasmids pBR322 (Sutcliffe, J.G. (1979) Proc. Natl Acad. Sci. USA, 75: 15 3737-3741); pACYC177 (Change & Cohen (1978) J. Bacteriol. 134: 1141-1156); plas mids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA) or cosmids such as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J. Rosenthal, A., and Waterson, R.H. (1987) Gene 53: 283-286) for expression in E. coli using known, well-established procedures (see, for example, Sambrook, J. et al. (1989) 20 "Molecular Cloning: A Laboratory Manual". Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons). [0414.0.0.0] Example 2: DNA sequencing and computerized functional analysis [0415.0.0.0] The DNA was sequenced by standard procedures, in particular the 25 chain determination method, using AB1377 sequencers (see, for example, Fleischman, R.D. et al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., Science 269; 496-512)". [0416.0.0.0] Example 3: In-vivo and in-vitro mutagenesis [0417.0.0.0] An in vivo mutagenesis of organisms such as Saccharomyces, Mor 30 tierella, Escherichia and others mentioned above, which are beneficial for the produc tion of fatty acids can be carried out by passing a plasmid DNA (or another vector 148 DNA) containing the desired nucleic acid sequence or nucleic acid sequences through E. coli and other microorganisms (for example Bacillus spp. or yeasts such as Sac charomyces cerevisiae) which are not capable of maintaining the integrity of its genetic information. Usual mutator strains have mutations in the genes for the DNA repair sys 5 tem [for example mutHLS, mutD, mutT and the like; for comparison, see Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strategies 7; 32-34. In-vitro mutation methods such as increasing the spontaneous mutation rates by 10 chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran dom in-vitro mutagensis. The most common physical method for mutagensis is the treatment with UV irradiation. Another random mutagenesis technique is the error 15 prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized DNA sequences are cloned into expression vectors and the resulting mutant libraries screened for altered or improved protein activity as described below. 20 Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic acid sequence of the invention into an M13 or phagemid vector, which permits recovery of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide 25 primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather than the original. The mutagenic oligonucleotide is then allowed to prime new DNA synthesis to create a complementary full-length sequence containing the desired muta 30 tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known and used in common practice. 35 Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical.
149 [0418.0.0.0] Example 4: DNA transfer between Escherichia coli, Saccharomyces cerevisiae and Mortierella alpina [0419.0.0.0] Shuttle vectors such as pYE22m, pPAC-ResQ, pClasper, pAUR224, pAMH10, pAML10, pAMT10, pAMU10, pGMH10, pGML10, pGMT10, pGMU10, 5 pPGAL1, pPADH1, pTADH1, pTAex3, pNGA142, pHT3101 and derivatives thereof which alow the transfer of nucleic acid sequences between Escherichia coli, Sac charomyces cerevisiae and/or Mortierella alpina are available to the skilled worker. An easy method to isolate such shuttle vectors is disclosed by Soni R. and Murray J.A.H. [Nucleic Acid Research, vol. 20 no. 21, 1992: 5852]: If necessary such shuttle vectors 10 can be constructed easily using standard vectors for E. coli (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) and/or the aforementioned vectors, which have a replication origin for, and suitable marker from, Escherichia coli, Saccharomyces cerevisiae or Mortierella 15 alpina added. Such replication origins are preferably taken from endogenous plasmids, which have been isolated from species used in the inventive process. Genes, which are used in particular as transformation markers for these species are genes for kana mycin resistance (such as those which originate from the Tn5 or Tn-903 transposon) or for chloramphenicol resistance (Winnacker, E.L. (1987) "From Genes to Clones - Intro 20 duction to Gene Technology, VCH, Weinheim) or for other antibiotic resistance genes such as for G418, gentamycin, neomycin, hygromycin or tetracycline resistance. [0420.0.0.0] Using standard methods, it is possible to clone a gene of interest into one of the above-described shuttle vectors and to introduce such hybrid vectors into the microorganism strains used in the inventive process. The transformation of Sac 25 charomyces can be achieved for example by LiCI or sheroplast transformation (Bishop et al., Mol. Cell. Biol., 6, 1986: 3401 - 3409; Sherman et al., Methods in Yeasts in Ge netics, [Cold Spring Harbor Lab. Cold Spring Harbor, N. Y.] 1982, Agatep et al., Tech nical Tips Online 1998,1:51: P01525 or Gietz et al., Methods Mol. Cell. Biol. 5, 1995: 255-269) or electroporation (Delorme E., Appl. Environ. Microbiol., vol. 55, no. 9, 30 1989: 2242 - 2246). [0421.0.0.0] If the transformed sequence(s) is/are to be integrated advantageously into the genome of the microorganism used in the inventive process for example into the yeast or fungi genome, standard techniques known to the skilled worker also exist for this purpose. Solinger et al. (Proc Natl Acad Sci U S A., 2001 (15): 8447-8453) and 35 Freedman et al. (Genetics, Vol. 162, 15-27, September 2002,) teaches a homolog re- 150 combination system dependent on rad 50, rad5l, rad54 and rad59 in yeasts. Vectors using this system for homologous recombination are vectors derived from the Ylp se ries. Plasmid vectors derived for example from the 2p-Vector are known by the skilled worker and used for the expression in yeasts. Other preferred vectors are for example 5 part, pCHY21 or pEVP1 1 as they have been described by McLeod et al. (EMBO J. 1987, 6:729-736) and Hoffman et al. (Genes Dev. 5, 1991: 561-571.) or Russell et al. (J. Biol. Chem. 258, 1983: 143-149.). Other beneficial yeast vectors are plasmids of the REP, REP-X, pYZ or RIP series. [0422.0.0.0] Example 5: Determining the expression of the mutant/transgenic 10 protein [0423.0.0.0] The observations of the acivity of a mutated, or transgenic, protein in a transformed host cell are based on the fact that the protein is expressed in a similar manner and in a similar quantity as the wild-type protein. A suitable method for deter mining the transcription quantity of the mutant, or transgenic, gene (a sign for the 15 amount of mRNA which is available for the translation of the gene product) is to carry out a Northern blot (see, for example, Ausubel et al., (1988) Current Protocols in Mo lecular Biology, Wiley: New York), where a primer which is designed in such a way that it binds to the gene of interest is provided with a detectable marker (usually a radioac tive or chemiluminescent marker) so that, when the total RNA of a culture of the organ 20 ism is extracted, separated on a gel, applied to a stable matrix and incubated with this probe, the binding and quantity of the binding of the probe indicates the presence and also the amount of mRNA for this gene. Another method is a quantitative PCR. This information detects the extent to which the gene has been transcribed. Total cell RNA can be isolated for example from yeasts or E. coli by a variety of methods, which are 25 known in the art, for example with the Ambion kit according to the instructions of the manufacturer or as described in Edgington et al., Promega Notes Magazine Number 41,1993, p. 14. [0424.0.0.0] Standard techniques, such as Western blot, may be employed to deter mine the presence or relative amount of protein translated from this mRNA (see, for 30 example, Ausubel et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York). In this method, total cell proteins are extracted, separated by gel electrophore sis, transferred to a matrix such as nitrocellulose and incubated with a probe, such as an antibody, which binds specifically to the desired protein. This probe is usually pro vided directly or indirectly with a chemiluminescent or colorimetric marker, which can 35 be detected readily. The presence and the observed amount of marker indicate the 151 presence and the amount of the sought mutant protein in the cell. However, other methods are also known. [0425.0.0.0] Example 6: Growth of genetically modified organism: media and cul ture conditions 5 [0426.0.0.0] Genetically modified Yeast, Mortierella or Escherichia coli are grown in synthetic or natural growth media known by the skilled worker. A number of different growth media for Yeast, Mortierella or Escherichia coli are well known and widely available. A method for clulturing Mortierella is disclosed by Jang et al. [Bot. Bull. Acad. Sin. (2000) 41: 41-48]. Mortierella can be grown at 20'C in a culture medium 10 containing: 10 g/I glucose, 5 g/I yeast extract at pH 6.5. Futhermore Jang et al. teaches a submerged basal medium containing 20 g/I soluble starch, 5 g/I Bacto yeast extract, 10 g/I KN0 3 , 1 g/I KH 2
PO
4 , and 0.5 g/I MgSO 4 .7H 2 O, pH 6.5. [0427.0.0.0] Said media, which can be used according to the invention usually con sist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and 15 trace elements. Preferred carbon sources are sugars such as mono-, di- or polysac charides. Examples of very good carbon sources are glucose, fructose, mannose, ga lactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellu lose. Sugars may also be added to the media via complex compounds such as molas ses or other by-products of sugar refining. It may also be advantageous to add mix 20 tures of various carbon sources. Other possible carbon sources are alcohols and/or organic acids such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing said com pounds. Examples of nitrogen sources include ammonia gas, aqueous ammonia solu tions or ammonium salts such as NH 4 CI, or (NH 4
)
2
SO
4 , NH 4 OH, nitrates, urea, amino 25 acids or complex nitrogen sources such as cornsteep liquor, soybean flour, soybean protein, yeast extract, meat extract and others. Mixtures of the above nitrogen sources may be used advantageously. [0428.0.0.0] Inorganic salt compounds, which may be included in the media com prise the chloride, phosphorus or sulfate salts of calcium, magnesium, sodium, cobalt, 30 molybdenum, potassium, manganese, zinc, copper and iron. Chelating agents may be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents include dihydroxyphenols such as catechol or protocatechulate or organic acids such as citric acid. The media usually also contain other growth factors such as vitamins or growth promoters, which include, for example, biotin, riboflavin, 152 thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine. Growth factors and salts are frequently derived from complex media components such as yeast extract, molasses, cornsteep liquor and the like. The exact composition of the compounds used in the media depends heavily on the particular experiment and is decided upon indi 5 vidually for each specific case. Information on the optimization of media can be found in the textbook "Applied Microbiol. Physiology, A Practical Approach" (Ed. P.M. Rho des, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, for example Standard 1 (Merck) or BHI (Brain heart infusion, DIFCO) and the like. 10 [0429.0.0.0] All media components are sterilized, either by heat (20 min at 1.5 bar und 121 C) or by filter sterilization. The components may be sterilized either together or, if required, separately. All media components may be present at the start of the cul tivation or added continuously or batchwise, as desired. [0430.0.0.0] The culture conditions are defined separately for each experiment. The 15 temperature is normally between 15'C and 45'C and may be kept constant or may be altered during the experiment. The pH of the medium should be in the range from 5 to 8.5, preferably around 7.0, and can be maintained by adding buffers to the media. An example of a buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and the like may be used as an alternative or simulta 20 neously. The culture pH value may also be kept constant during the culture period by addition of, for example, NaOH or NH 4 OH. If complex media components such as yeast extract are used, additional buffers are required less since many complex com pounds have a high buffer capacity. When using a fermenter for the culture of microor ganisms, the pH value can also be regulated using gaseous ammonia. 25 [0431.0.0.0] The incubation period is generally in a range of from several hours to several days. This time period is selected in such a way that the maximum amount of product accumulates in the fermentation broth. The growth experiments, which are disclosed can be carried out in a multiplicity of containers such as microtiter plates, glass tubes, glass flasks or glass or metal fermenters of various sizes. To screen a 30 large number of clones, the microorganisms should be grown in microtiter plates, glass tubes or shake flasks, either using simple flasks or baffle flasks. 100 ml shake flasks filled with 10% (based on the volume) of the growth medium required are preferably used. The flasks should be shaken on an orbital shaker (amplitude 25 mm) at a rate ranging from 100 to 300 rpm. Evaporation losses can be reduced by maintaining a hu- 153 mid atmosphere; as an alternative, a mathematical correction should be carried out for the evaporation losses. [0432.0.0.0] If genetically modified clones are examined, an unmodified control clone, or a control clone, which contains the basic plasmid without insertion, should 5 also be included in the tests. If a transgenic sequence is expressed, a control clone should advantageously again be included in these tests. The medium is advanta geously inoculated to an OD600 of 0.5 to 1.5 using cells which have been grown on agar plates, such as CM plates (10 g/l glucose, 2.5 g/I NaCl, 2 g/I urea, 10 g/I polypep tone, 5 g/I yeast extract, 5 g/I meat extract, 22 g/I agar, pH value 6.8 established with 10 2M NaOH), which have been incubated at 30 0 C. The media are inoculated for example by addition of a liquid preculture of seed organism such as E. coli or S. cerevisiae. [0433.0.0.0] Example 7: Growth of genetically modified algae: media and culture conditions [0434.0.0.0] Growing Chlamydomonas 15 Chlamydomonas reinhardtii is able to grow under various growth conditions. It is a unicellular algae. The cells of Chlamydomonas reinhardtii can be normally cultured autotrophically in the media mentioned below. Cells of Chlamydomonas reinhardtii can be cultivated at 25'C under cool-white fluorescence light at 10,000 lux (120 pE m 2 s 1 photosynthetically active radiation) as described by Ghirardi et al., Appl. Biochem. 20 Biotechnol. 63, 1997: 141-151 or Semin et al., Plant. Physiol., Vol. 131, 2003: 1756 1764.
154 Chlamvdomonas growth medium: 1 1 growth medium is prepared by adding the following volumes of the stock solutions as mentioned below: 1 ml solution A 5 5 ml solution B 1 ml solution C 1 ml solution D 3 ml solution E 3 ml solution F 10 1 ml solution G 1 ml solution H A) Trace elements solution: 1 g/I H 3 B0 3 1 g/I ZnSO 4 x 7 H 2 0 0,3 g/I MnSO 4 x H 2 0 15 0,2 g/ CoC12 x 6 H 2 0 0,2 g/I Na 2 MoO 4 x 2 H 2 0 0,04 g/ CuSO 4 B) Na Citrate solution: 10 % w/v Na citrate x 2 H 2 0 C) Iron solution: 1 % w/v FeC1 3 x 6 H 2 0 20 D) Calcium solution: 5,3 % w/v CaC1 2 x H 2 0 E) Magnesium solution: 10 % w/v MgSO 4 x 7 H 2 0 F) Ammonium solution: 10 % w/v NH 4
NO
3 G) Potassium solution: 10 % w/v KH 2 PO4 H) Dipotassium solution 10 % w/v K 2 HP0 4 25 Bristol's soil extract medium: Soil extract medium can generally be used for the growth of axenic and xenic algae cultures. The soil extract is prepared by adding a teaspoon of dry garden soil and a pinch of CaCO 3 to 200 ml distilled water and steaming said solution for approximately 2 h on two consecutive days. Afterwards the supernatant is decanted and added to the 30 desired medium.
155 To 940 ml bristol's solution 40 ml of soil extract medium is added. Bristol's solution: To 940 ml of distilled water, the following stock solutions are added: 10 ml NaNO 3 (25 g/I) 5 10 ml CaCl 2 x 2 H 2 O (2,5 g/1) 10 ml MgSO 4 x 7 H 2 O (7,5 g/l) 10 ml K 2
HPO
4 (7,5 g/l) 10 ml KH 2
PO
4 (17,5 g/1) 10 ml NaCl (2,5 g/l) 10 [0435.0.0.0] Amplification and cloning of DNA from Chlamydomonas reinhardtii The DNA can be amplified by the polymerase chain reaction (PCR) from Chlamydo monas reinhardtii by the method of Crispin A. Howitt (Howitt CA (1996) BioTechniques 21:32-34). [0436.0.0.0] Methionine production in Chlamydomonas reinhardtii 15 The amino acid production can be analysed as mentioned above. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.0] Example 8: In-vitro analysis of the function of the proteins encoded by the transformed sequences [0438.0.0.0] The determination of the activities and kinetic parameters of enzymes is 20 well known in the art. Experiments for determining the activity of a specific modified enzyme must be adapted to the specific activity of the wild-enzyme type, which is well within the capabilities of the skilled worker. Overviews of enzymes in general and spe cific details regarding the structure, kinetics, principles, methods, applications and ex amples for the determination of many enzyme activities can be found for example in 25 the following literature: Dixon, M., and Webb, E.C: (1979) Enzymes, Longmans, Lon don; Fersht (1985) Enzyme Structure and Mechanism, Freeman, New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman, San Francisco; Price, N.C., Ste vens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D: Ed. (1983) The Enzymes, 3rd Ed. Academic Press, New York; Bisswanger, H. (1994) 30 Enzymkinetik, 2nd Ed. VCH, Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., GraBI, M. Ed. (1983-1986) Methods of Enzymatic Analysis, 3rd Ed. Vol.
156 I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) Vol. A9, "Enzymes", VCH, Weinheim, pp. 352-363. [0439.0.0.0] Example 9: Analysis of the effect of the nucleic acid molecule on the production of the amino acids 5 [0440.0.0.0] The effect of the genetic modification in plants, fungi, algae, ciliates on the production of an amino acid can be determined by growing the modified microor ganisms for example Chlamydomonas reinhardtii under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the increased production of the amino acid. Such analytical techniques are well known 10 to the skilled worker and encompass spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and pp. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC 15 in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", pp. 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and 20 Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical Separations, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; chapter 11, pp. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). [0441.0.0.0] In addition to the determination of the fermentation end product, other 25 components of the metabolic pathways which are used for the production of the de sired compound, such as intermediates and by-products, may also be analyzed in or der to determine the total productivity of the organism, the yield and/or production effi ciency of the compound. The analytical methods encompass determining the amounts of nutrients in the medium (for example sugars, hydrocarbons, nitrogen sources, phos 30 phate and other ions), determining biomass composition and growth, analyzing the production of ordinary metabolites from biosynthetic pathways and measuring gases generated during the fermentation. Standard methods for these are described in Ap plied Microbial Physiology; A Practical Approach, P.M. Rhodes and P.F. Stanbury, Ed. IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and the references 35 cited therein.
157 [0442.0.0.0] Example 10: Purification of the amino acid [0443.0.0.0] The amino acid can be recovered from cells or from the supernatant of the above-described culture by a variety of methods known in the art. For example, the culture supernatant is recovered first. To this end, the cells are harvested from the cul 5 ture by slow centrifugation. Cells can generally be disrupted or lysed by standard tech niques such as mechanical force or sonication. The cell debris is removed by centrifu gation and the supernatant fraction, if appropriate together with the culture supernatant, is used for the further purification of the amino acid. However, it is also possible to process the supernatant alone if the amino acid is present in the supernatant in suffi 10 ciently high a concentration. In this case, the amino acid, or the amino acid mixture, can be purified further for example via extraction and/or salt precipitation or via ion exchange chromatography. [0444.0.0.0] If required and desired, further chromatography steps with a suitable resin may follow, the amino acid, but not many contaminants in the sample, being re 15 tained on the chromatography resin or the contaminants, but not the sample with the product (amino acid), being retained on the resin. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most ef fective use for a particular molecule to be purified. The purified product can be concen 20 trated by filtration or ultrafiltration and stored at a temperature at which maximum prod uct stability is ensured. Many purification methods, which are not limited to the above purification method are known in the art. They are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986). 25 [0445.0.0.0] Identity and purity of the amino acid isolated can be determined by standard techniques of the art. They encompass high-performance liquid chromatogra phy (HPLC), spectroscopic methods, mass spectrometry (MS), staining methods, thin layer chromatography, NIRS, enzyme assay or microbiological assays. These analyti cal methods are compiled in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; 30 Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Biopro cess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC 158 in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17. [0446.0.0.0] Example 11: Cloning of the inventive sequences as shown in table 1, column 5 and 7 for the expression in plants 5 [0447.0.0.0] Unless otherwise specified, standard methods as described in Sam brook et al., Molecular Cloning: A laboratory manual, Cold Spring Harbor 1989, Cold Spring Harbor Laboratory Press are used. [0448.0.0.0] The inventive sequences as shown in table 1, column 5 and 7 were am plified by PCR as described in the protocol of the Pfu Turbo or Herculase DNA poly 10 merase (Stratagene). [0449.0.0.0] The composition for the protocol of the Pfu Turbo or Herculase DNA polymerase was as follows: 1x PCR buffer (Stratagene), 0.2 mM of each dNTP, 100 ng genomic DNA of Saccharomyces cerevisiae (strain S288C; Research Genetics, Inc., now Invitrogen) or Escherichia coli (strain MG1 655; E.coli Genetic Stock Center), 15 50 pmol forward primer, 50 pmol reverse primer, 2.5 u Pfu Turbo or Herculase DNA polymerase. The amplification cycles were as follows: [0450.0.0.0] 1 cycle of 3 minutes at 94-95'C, followed by 25-36 cycles of in each case 1 minute at 95'C or 30 seconds at 94'C, 45 seconds at 50'C, 30 seconds at 50'C or 30 seconds at 55'C and 210-480 seconds at 72'C, followed by 1 cycle of 8 minutes 20 at 72'C, then 4'C. [0451.0.0.0] 1 cycle of 2-3 minutes at 94'C, followed by 25-30 cycles of in each case 30 seconds at 94'C, 30 seconds at 55-60'C and 5-10 minutes at 72'C, followed by 1 cycle of 10 minutes at 72'C, then 4'C. [0452.0.0.0] The following adapter sequences were added to Saccharomyces cere 25 visiae ORF specific primers (see table IV) for cloning purposes: i) foward primer: 5'-GGAATTCCAGCTGACCACC-3' SEQ ID NO: 14615 ii) reverse primer: 5'-GATCCCCGGGAATTGCCATG-3' SEQ ID NO: 14616 159 The following adapter sequences were added to Escherichia coli ORF specific primers for cloning purposes: iii) forward primer: 5'-TTGCTCTTCC- 3' SEQ ID NO: 14609 iiii) reverse primer: 5'-TTGCTCTTCG-3' SEQ ID NO: 14610: 5 Therefore for amplification and cloning of Saccharomyces cerevisiae SEQ ID NO: 1, a primer consisting of the adaptor sequence i) and the ORF specific sequence SEQ ID NO: 159 and a second primer consisting of the adaptor sequence ii) and the ORF specific sequence SEQ ID NO: 160 were used. 10 Following this example every sequence disclosed in table I, column 5 can be cloned by fusing the adaptor sequences to the respective specific primers sequences as disclosed in table III, column 7. [0453.0.0.0] Construction of binary vectors for targeting of expressed proteins to the plastids. 15 The binary vectors used for cloning the targeting sequence were 1 bxSuperResgen SEQ ID NO: 14586 (figure 4), and 1bxSuperCoi SEQ ID NO: 14585 (figure 3). Other useful binary vectors are known to the skilled worker; an overview of binary vectors and their use can be found in Hellens, R., Mullineaux, P. and Klee H., [(2000) "A guide to Agrobacterium binary vectors", Trends in Plant Science, Vol. 5 No.10, 446-451. Such 20 vectors have to be equally equipped with appropriate promoters and targeting se quences. [0454.0.0.0] Amplification of the targeting sequence of the gene FNR from Spinacia oleracea In order to amplify the targeting sequence of the FNR gene from S. oleracea, genomic 25 DNA was extracted from leaves of 4 weeks old S. oleracea plants (DNeasy Plant Mini Kit, Qiagen, Hilden). The gDNA was used as the template for a PCR. To enable cloning of the transit sequence into the vector 1bxSuperResgen an EcoRI restriction enzyme recognition sequence was added to both the forward and reverse primers, whereas for cloning in the vectors 1bxSuperCoi a Pmel restriction enzyme 30 recognition sequence was added to the forward primer and a Ncol site was added to the reverse primer.
160 FNR5EcoResgen ATA GAA TTC GCA TAA ACT TAT CTT CAT AGT TGC C SEQ ID NO: 14613 FNR3EcoResgen ATA GAA TTC AGA GGC GAT CTG GGC CCT SEQ ID NO: 14611 5 FNR5PmeColic ATA GTT TAA ACG CAT AAA CTT ATC TTC ATA GTT GCC SEQ ID NO: 14614 FNR3NcoColic ATA CCA TGG AAG AGC AAG AGG CGA TCT GGG CCC T SEQ ID NO: 14612 10 The sequence amplified from spinach SEQ ID NO: 14589 comprised a 5'UTR (bpl 167), and the coding region (bp 168-275 and 353-419). The coding sequence is inter rupted by an intronic sequence from bp 276 to-bp 352. Gcataaacttatcttcatagttgccactccaatttgctccttgaatctcctccacccaatacataatccactcctccatcaccc acttcactactaaatcaaacttaactctgtttttctctctcctcctttcatttcttattcttccaatcatcgtactccgccatgaccacc 15 gctgtcaccgccgctgtttctttcccctctaccaaaaccacctctctctccgcccgaagctcctccgtcatttcccctgacaaa atcagctacaaaaaggtgattcccaatttcactgtgttttttattaataatttgttattttgatgatgagatgattaatttgggtgctg caggttcctttgtactacaggaatgtatctgcaactgggaaaatgggacccatcagggcccagatcgcctct (see SEQ ID NO: 14589) The PCR fragment derived with the primers FNR5EcoResgen and FNR3EcoResgen 20 was digested with EcoRI and ligated in the vector 1 bxSuperResgen SeqlDxx that had also been digested with EcoRI. The correct orientation of the FNR targeting sequence was tested by sequencing. The vector generated in this ligation step was 1 bxSuperTPFNRResgen. The PCR fragment derived with the primers FNR5PmeColi and FNR3NcoColi was di 25 gested with Pmel and Ncol and ligated in the vector 1bxSuperColic (figure 3) SEQ ID NO: 14585 that had also been digested with Pmel and Ncol. The vector generated in this ligation step was 1 bxSuperTPFNRColi. [0455.0.0.0] For cloning the ORF of SEQ ID NO: 1, from S. cerevisiae the vector DNA was treated with the restriction enzyme Ncol. For cloning of ORFs from E. coli 30 the vector DNA was treated with the restriction enzymes Pac and Ncol following the standard protocol (MBI Fermentas). The reaction was stopped by inactivation at 70'C for 20 minutes and purified over QiAquick columns following the standard protocol (Qiagen).
161 Then the PCR-product representing the amplified ORF and the vector DNA was treated with T4 DNA polymerase according to the standard protocol (MBI Fermentas) to pro duce single stranded overhangs with the parameters 1 unit T4 DNA polymerase at 37'C for 2-10 minutes for the vector and 1 u T4 DNA polymerase at 15'C for 10-60 5 minutes for the PCR product representing SEQ ID NO: 1. The reaction was stopped by addition of high-salt buffer and purified over QiAquick columns following the standard protocol (Qiagen). According to this example the skilled person is able to clone all sequences disclosed in table 1, column 5. 10 [0456.0.0.0] Approximately 30 ng of prepared vector and a defined amount of pre pared amplificate were mixed and hybridized at 650C for 15 minutes followed by 370C 0,1 OC/1 seconds, followed by 370C 10 minutes, followed by 0,1 0C/1 seconds, then 4 0C. [0457.0.0.0] The ligated constructs were transformed in the same reaction vessel by 15 addition of competent E. coli cells (strain DH5alpha) and incubation for 20 minutes at 1 C followed by a heat shock for 90 seconds at 420C and cooling to 40C. Then, com plete medium (SOC) was added and the mixture was incubated for 45 minutes at 370C. The entire mixture was subsequently plated onto an agar plate with 0.05 mg/ml kana mycine and incubated overnight at 370C. 20 [0458.0.0.0] The outcome of the cloning step was verified by amplification with the aid of primers which bind upstream and downstream of the integration site, thus allow ing the amplification of the insertion. The amplifications were carried as described in the protocol of Taq DNA polymerase (Gibco-BRL). [0459.0.0.0] The amplification cycles were as follows: 1 cycle of 5 minutes at 940C, 25 followed by 35 cycles of in each case 15 seconds at 940C, 15 seconds at 50-660C and 5 minutes at 720C, followed by 1 cycle of 10 minutes at 720C, then 40C. [0460.0.0.0] Several colonies were checked, but only one colony for which a PCR product of the expected size was detected was used in the following steps. [0461.0.0.0] A portion of this positive colony was transferred into a reaction vessel 30 filled with complete medium (LB) supplemented with kanamycin () and incubated over night at 370C.
162 [0462.0.0.0] The plasmid preparation was carried out as specified in the Qiaprep standard protocol (Qiagen). [0463.0.0.0] Example 12: Generation of transgenic plants which express SEQ ID NO: 1 or any other sequence disclosed in 5 table 1, column 5 [0464.0.0.0] 1-5 ng of the plasmid DNA isolated was transformed by electroporation into competent cells of Agrobacterium tumefaciens, of strain GV 3101 pMP90 (Koncz and Schell, Mol. Gen. Gent. 204, 383-396, 1986). Thereafter, complete medium (YEP) was added and the mixture was transferred into a fresh reaction vessel for 3 hours at 10 28'C. Thereafter, all of the reaction mixture was plated onto YEP agar plates supple mented with the respective antibiotics, e.g. rifampicine (0.1 mg/ml), gentamycine (0.025 mg/ml and kanamycine (0.05 mg/ml) and incubated for 48 hours at 28'C. [0465.0.0.0] The agrobacteria that contains the plasmid construct were then used for the transformation of plants. 15 [0466.0.0.0] A colony was picked from the agar plate with the aid of a pipette tip and taken up in 3 ml of liquid TB medium, which also contained suitable antibiotics as de scribed above. The preculture was grown for 48 hours at 28'C and 120 rpm. [0467.0.0.0] 400 ml of LB medium containing the same antibiotics as above were used for the main culture. The preculture was transferred into the main culture. It was 20 grown for 18 hours at 28'C and 120 rpm. After centrifugation at 4 000 rpm, the pellet was resuspended in infiltration medium (MS medium, 10% sucrose). [0468.0.0.0] In order to grow the plants for the transformation, dishes (Piki Saat 80, green, provided with a screen bottom, 30 x 20 x 4.5 cm, from Wiesauplast, Kunststofftechnik, Germany) were half-filled with a GS 90 substrate (standard soil, 25 Werkverband E.V., Germany). The dishes were watered overnight with 0.05% Proplant solution (Chimac-Apriphar, Belgium). Arabidopsis thaliana C24 seeds (Nottingham Arabidopsis Stock Centre, UK; NASC Stock N906) were scattered over the dish, ap proximately 1 000 seeds per dish. The dishes were covered with a hood and placed in the stratification facility (8 h, 110 pmol/m 2 /s- 1 , 22'C; 16 h, dark, 6'C). After 5 days, the 30 dishes were placed into the short-day controlled environment chamber (8 h 130 pmol/m 2 /s- 1 , 22'C; 16 h, dark 20'C), where they remained for approximately 10 days until the first true leaves had formed.
163 [0469.0.0.0] The seedlings were transferred into pots containing the same substrate (Teku pots, 7 cm, LC series, manufactured by Pbppelmann GmbH & Co, Germany). Five plants were pricked out into each pot. The pots were then returned into the short day controlled environment chamber for the plant to continue growing. 5 [0470.0.0.0] After 10 days, the plants were transferred into the greenhouse cabinet (supplementary illumination, 16 h, 340 pE, 22'C; 8 h, dark, 20'C), where they were allowed to grow for further 17 days. [0471.0.0.0] For the transformation, 6-week-old Arabidopsis plants, which had just started flowering were immersed for 10 seconds into the above-described agrobacterial 10 suspension which had previously been treated with 10 pl Silwett L77 (Crompton S.A., Osi Specialties, Switzerland). The method in question is described in Clough and Bent, 1998 (Clough, JC and Bent, AF. 1998 Floral dip: a simplified method for Agrobacte rium-mediated transformation of Arabidopsis thaliana, Plant J. 16:735-743. [0472.0.0.0] The plants were subsequently placed for 18 hours into a humid cham 15 ber. Thereafter, the pots were returned to the greenhouse for the plants to continue growing. The plants remained in the greenhouse for another 10 weeks until the seeds were ready for harvesting. [0473.0.0.0] Depending on the resistance marker used for the selection of the trans formed plants the harvested seeds were planted in the greenhouse and subjected to a 20 spray selection or else first sterilized and then grown on agar plates supplemented with the respective selection agent. Since the vector contained the bar gene as the resis tance marker,, plantlets were sprayed four times at an interval of 2 to 3 days with 0.02 % BASTA@ and transformed plants were allowed to set seeds. The seeds of the transgenic A. thaliana plants were stored in the freezer (at -20'C). 25 [0474.0.0.0] Example 13: Plant culture (Arabidopsis) for bioanalytical analyses [0475.0.0.0] For the bioanalytical analyses of the transgenic plants, the latter were grown uniformly a specific culture facility. To this end the GS-90 substrate as the com post mixture was introduced into the potting machine (Laible System GmbH, Singen, Germany) and filled into the pots. Thereafter, 35 pots were combined in one dish and 30 treated with Previcur. For the treatment, 25 ml of Previcur were taken up in 10 I of tap water. This amount was sufficient for the treatment of approximately 200 pots. The pots were placed into the Previcur solution and additionally irrigated overhead with tap water without Previcur. They were used within four days.
164 [0476.0.0.0] For the sowing, the seeds, which had been stored in the refrigerator (at 20'C), were removed from the Eppendorf tubes with the aid of a toothpick and trans ferred into the pots with the compost. In total, approximately 5 to 12 seeds were dis tributed in the middle of the pot. 5 [0477.0.0.0] After the seeds had been sown, the dishes with the pots were covered with matching plastic hood and placed into the stratification chamber for 4 days in the dark at 4'C. The humidity was approximately 90%. After the stratification, the test plants were grown for 22 to 23 days at a 16-h-light, 8-h-dark rhythm at 20'C, an at mospheric humidity of 60% and a C02 concentration of approximately 400 ppm. The 10 light sources used were Powerstar HQI-T 250 W/D Daylight lamps from Osram, which generate a light resembling the solar color spectrum with a light intensity of approxi mately 220 pE/m2/s-1. [0478.0.0.0] When the plants were 8, 9 and 10 days old, they were subjected to se lection for the resistance marker. Approximately pots with transgenic plants were 15 treated with 11 0,015% vol/vol of Basta* (Glufosinate-ammonium) solution in water (Aventis Cropsience, Germany). After a further 3 to 4 days, the transgenic, resistant seedlings (plantlets in the 4-leaf stage) could be distinguished clearly from the untrans formed plantlets. The nontransgenic seedlings were bleached or dead. The transgenic resistance plants were thinned when they had reached the age of 14 days. The plants, 20 which had grown best in the center of the pot were considered the target plants. All the remaining plants were removed carefully with the aid of metal tweezers and discarded. [0479.0.0.0] During their growth, the plants received overhead irrigation with distilled water (onto the compost) and bottom irrigation into the placement grooves. Once the grown plants had reached the age of 23 days, they were harvested. 25 [0480.0.0.0] Example 14: Metabolic analysis of transformed plants [0481.0.0.0] The modifications identified in accordance with the invention, in the con tent of above-described metabolites, were identified by the following procedure. a) sampling and storage of the samples [0482.0.0.0] Sampling was performed directly in the controlled-environment cham 30 ber. The plants were cut using small laboratory scissors, rapidly weighed on laboratory scales, transferred into a pre-cooled extraction sleeve and placed into an aluminum rack cooled by liquid nitrogen. If required, the extraction sleeves can be stored in the 165 freezer at -80'C. The time elapsing between cutting the plant to freezing it in liquid ni trogen amounted to not more than 10 to 20 seconds. b) Lyophilization [0483.0.0.0] During the experiment, care was taken that the plants either remained in 5 the deep-frozen state (temperatures < -40'C) or were freed from water by lyophiliza tion until the first contact with solvents. [0484.0.0.0] The aluminum rack with the plant samples in the extraction sleeves was placed into the pre-cooled (-40'C) lyophilization facility. The initial temperature during the main drying phase was-35C and the pressure was 0.120 mbar. During the drying 10 phase, the parameters were altered following a pressure and temperature program. The final temperature after 12 hours was +30'C and the final pressure was 0.001 to 0.004 mbar. After the vacuum pump and the refrigerating machine had been switched off, the system was flushed with air (dried via a drying tube) or argon. c) Extraction 15 [0485.0.0.0] Immediately after the lyophilization apparatus had been flushed, the extraction sleeves with the lyophilized plant material were transferred into the 5 ml ex traction cartridges of the ASE device (Accelerated Solvent Extractor ASE 200 with Sol vent Controller and AutoASE software (DIONEX)). [0486.0.0.0] The 24 sample positions of an ASE device (Accelerated Solvent Extrac 20 tor ASE 200 with Solvent Controller and AutoASE software (DIONEX)) were filled with plant samples, including some samples for testing quality control. [0487.0.0.0] The polar substances were extracted with approximately 10 ml of methanol/water (80/20, v/v) at T = 70'C and p = 140 bar, 5 minutes heating-up phase, 1 minute static extraction. The more lipophilic substances were extracted with approxi 25 mately 10 ml of methanol/dichloromethane (40/60, v/v) at T = 70'C and p = 140 bar, 5 minute heating-up phase, 1 minute static extraction. The two solvent mixtures were extracted into the same glass tubes (centrifuge tubes, 50 ml, equipped with screw cap and pierceable septum for the ASE (DIONEX)). [0488.0.0.0] The solution was treated with internal standards: ribitol, L-glycine-2,2-d 2 , 30 L-alanine-2,3,3,3-d 4 , methionine-methyl-d 3 , and a-methylglucopyranoside and methyl 166 nonadecanoate, methyl undecanoate, methyl tridecanoate, methyl pentadecanoate, methyl nonacosanoate. [0489.0.0.0] The total extract was treated with 8 ml of water. The solid residue of the plant sample and the extraction sleeve were discarded. 5 [0490.0.0.0] The extract was shaken and then centrifuged for 5 to 10 minutes at at least 1 400 g in order to accelerate phase separation. 1 ml of the supernatant metha nol/water phase ("polar phase", colorless) was removed for the further GC analysis, and 1 ml was removed for the LC analysis. The remainder of the methanol/water phase was discarded. 0.5 ml of the organic phase ("lipid phase", dark green) was removed for 10 the further GC analysis and 0.5 ml was removed for the LC analysis. All the portions removed were evaporated to dryness using the IR Dancer infrared vacuum evaporator (Hettich). The maximum temperature during the evaporation process did not exceed 40'C. Pressure in the apparatus was not less than 10 mbar. d) Processing the lipid phase for the LC/MS or LC/MS/MS analysis 15 [0491.0.0.0] The lipid extract, which had been evaporated to dryness was taken up in mobile phase. The HPLC was run with gradient elution. [0492.0.0.0] The polar extract, which had been evaporated to dryness was taken up in mobile phase. The HPLC was run with gradient elution. e) Derivatization of the lipid phase for the GC/MS analysis 20 [0493.0.0.0] For the transmethanolysis, a mixture of 140 pl of chloroform, 37 pl of hydrochloric acid (37% by weight HCI in water), 320 pl of methanol and 20 pl of toluene was added to the evaporated extract. The vessel was sealed tightly and heated for 2 hours at 100'C, with shaking. The solution was subsequently evaporated to dryness. The residue was dried completely. 25 [0494.0.0.0] The methoximation of the carbonyl groups was carried out by reaction with methoxyamine hydrochloride (5 mg/ml in pyridine, 100 pl for 1.5 hours at 60'C) in a tightly sealed vessel. 20 pl of a solution of odd-numbered, straight-chain fatty acids (solution of each 0.3 mg/mL of fatty acids from 7 to 25 carbon atoms and each 0.6 mg/mL of fatty acids with 27, 29 and 31 carbon atoms in 3/7 (v/v) pyridine/toluene) 30 were added as time standards. Finally, the derivatization with 100 pl of N-methyl-N (trimethylsilyl)-2,2,2-trifluoroacetamide (MSTFA) was carried out for 30 minutes at 167 600C, again in the tightly sealed vessel. The final volume before injection into the GC was 220 pl. f) Derivatization of the polar phase for the GC/MS analysis [0495.0.0.0] The methoximation of the carbonyl groups was carried out by reaction 5 with methoxyamine hydrochloride (5 mg/ml in pyridine, 50 pl for 1.5 hours at 600C) in a tightly sealed vessel. 10 pl of a solution of odd-numbered, straight-chain fatty acids (solution of each 0.3 mg/mL of fatty acids from 7 to 25 carbon atoms and each 0.6 mg/mL of fatty acids with 27, 29 and 31 carbon atoms in 3/7 (v/v) pyridine/toluene) were added as time standards. Finally, the derivatization with 50 pl of N-methyl-N 10 (trimethylsilyl)-2,2,2-trifluoroacetamide (MSTFA) was carried out for 30 minutes at 600C, again in the tightly sealed vessel. The final volume before injection into the GC was 110 pl. g) Analysis of the various plant samples [0496.0.0.0] The samples were measured in individual series of 20 plant samples 15 each (also referred to as sequences), each sequence containing at least 5 wild-type plants as controls. The peak area of each analyte was divided by the peak area of the respective internal standard. The data were standardized for the fresh weight estab lished for the plant. The values calculated thus were related to the wild-type control group by being divided by the mean of the corresponding data of the wild-type control 20 group of the same sequence. The values obtained were referred to as ratio by_WT, they are comparable between sequences and indicate how much the analyte concen tration in the mutant differs in relation to the wild-type control. Appropriate controls were done before to proof that the vector and transformation procedure itself has no significant influence on the metabolic composition of the plants. Therefore the de 25 scribed changes in comparison with wildtypes were caused by the introduced genes. [0497.0.0.0] As an alternative, the amino acids can be detected advantageously via HPLC separation in ethanolic extract as described by Geigenberger et al. (Plant Cell & Environ, 19, 1996: 43-55). [0498.0.0.0] The results of the different plant analyses can be seen from the table, 30 which follows: Table VI 168 ORF Metabolite Method Min Max b2827 methionine LC 1.47 1.51 YEL046c methionine GC + LC 1.70 4.28 YGR255C methionine GC 1.36 3.92 YGR289C methionine GC 1.24 1.36 YKR043C methionine LC 1.37 1.58 YLR153C methionine GC 1.29 2.17 [0499.0.0.0] Column 1 shows the identified ORF, Column 2 shows the metabolite analyzed. Columns 4 and 5 show the ratio of the analyzed metabolite such as the amino acid between the transgenic plants and the wild type; Increase of the metabo 5 lites: Max: maximal x-fold (normalized to wild type)-Min: minimal x-fold (normalized to wild type). Decrease of the metabolites: Max: maximal x-fold (normalized to wild type) (minimal decrease), Min: minimal x-fold (normalized to wild type) (maximal decrease). Column 3 indicates the analytical method. [0500.0.0.0] When the analyses were repeated independently, all results proved to 10 be significant. [0501.0.0.0] Example 15a: Engineering ryegrass plants by over-expressing YGR255c from Saccharomyces cerevisiae or homologs of YGR255c from other organisms. [0502.0.0.0] Seeds of several different ryegrass varieties can be used as explant 15 sources for transformation, including the commercial variety Gunne available from Svalof Weibull seed company or the variety Affinity. Seeds are surface-sterilized se quentially with 1% Tween-20 for 1 minute, 100 % bleach for 60 minutes, 3 rinses with 5 minutes each with de-ionized and distilled H 2 0, and then germinated for 3-4 days on moist, sterile filter paper in the dark. Seedlings are further sterilized for 1 minute with 20 1% Tween-20, 5 minutes with 75% bleach, and rinsed 3 times with ddH 2 O, 5 minutes each. [0503.0.0.0] Surface-sterilized seeds are placed on the callus induction medium con taining Murashige and Skoog basal salts and vitamins, 20 g/I sucrose, 150 mg/I aspar agine, 500 mg/I casein hydrolysate, 3 g/I Phytagel, 10 mg/I BAP, and 5 mg/I dicamba.
169 Plates are incubated in the dark at 25'C for 4 weeks for seed germination and embryo genic callus induction. [0504.0.0.0] After 4 weeks on the callus induction medium, the shoots and roots of the seedlings are trimmed away, the callus is transferred to fresh media, is maintained 5 in culture for another 4 weeks, and is then transferred to MSO medium in light for 2 weeks. Several pieces of callus (11-17 weeks old) are either strained through a 10 mesh sieve and put onto callus induction medium, or are cultured in 100 ml of liquid ryegrass callus induction media (same medium as for callus induction with agar) in a 250 ml flask. The flask is wrapped in foil and shaken at 175 rpm in the dark at 23'C for 10 1 week. Sieving the liquid culture with a 40-mesh sieve is collected the cells. The frac tion collected on the sieve is plated and is cultured on solid ryegrass callus induction medium for 1 week in the dark at 25'C. The callus is then transferred to and is cultured on MS medium containing 1% sucrose for 2 weeks. [0505.0.0.0] Transformation can be accomplished with either Agrobacterium or with 15 particle bombardment methods. An expression vector is created containing a constitu tive plant promoter a appropriate targeting sequence and the cDNA of the gene in a pUC vector. The plasmid DNA is prepared from E. coli cells using with Qiagen kit ac cording to manufacturer's instruction. Approximately 2 g of embryogenic callus is spread in the center of a sterile filter paper in a Petri dish. An aliquot of liquid MSO with 20 10 g/I sucrose is added to the filter paper. Gold particles (1.0 pm in size) are coated with plasmid DNA according to method of Sanford et al., 1993 and are delivered to the embryogenic callus with the following parameters: 500 pg particles and 2 pg DNA per shot, 1300 psi and a target distance of 8.5 cm from stopping plate to plate of callus and 1 shot per plate of callus. 25 [0506.0.0.0] After the bombardment, calli are transferred back to the fresh callus de velopment medium and maintained in the dark at room temperature for a 1-week pe riod. The callus is then transferred to growth conditions in the light at 25 'C to initiate embryo differentiation with the appropriate selection agent, e.g. 250 nM Arsenal, 5 mg/I PPT or 50 mg/L Kanamycin. Shoots resistant to the selection agent are appearing and 30 once rooted are transferred to soil. [0507.0.0.0] Samples of the primary transgenic plants (TO) are analyzed by PCR to confirm the presence of T-DNA. These results are confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit 170 (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer. [0508.0.0.0] Transgenic TO ryegrass plants are propagated vegetatively by excising tillers. The transplanted tillers are maintained in the greenhouse for 2 months until well 5 established. The shoots are defoliated and allowed to grow for 2 weeks. [0509.0.0.0] Example 15b: Engineering soybean plants by over-expressing YGR255c from Saccharomyces cerevisiae or homologs of YGR255c from other organisms. [0510.0.0.0] Soybean can be transformed according to the following modification of 10 the method described in the Texas A&M patent US 5,164,310. Several commercial soybean varieties are amenable to transformation by this method. The cultivar Jack (available from the Illinois Seed Foundation) is commonly used for transformation. Seeds are sterilized by immersion in 70% (v/v) ethanol for 6 min and in 25 % commer cial bleach (NaOCI) supplemented with 0.1% (v/v) Tween for 20 min, followed by rins 15 ing 4 times with sterile double distilled water. Removing the radicle, hypocotyl and one cotyledon from each seedling propagates seven-day seedlings. Then, the epicotyl with one cotyledon is transferred to fresh germination media in petri dishes and incubated at 25 'C under a 16-hr photoperiod (approx. 100 pE-m-2s-1) for three weeks. Axillary nodes (approx. 4 mm in length) are cut from 3 - 4 week-old plants. Axillary nodes are 20 excised and incubated in Agrobacterium LBA4404 culture. [0511.0.0.0] Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, New Jer sey). Many are based on the vector pBIN19 described by Bevan (Nucleic Acid Re 25 search. 1984. 12:8711-8721) that includes a plant gene expression cassette flanked by the left and right border sequences from the Ti plasmid of Agrobacterium tumefaciens. A plant gene expression cassette consists of at least two genes - a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene. Various selection marker genes can be used as described above, includ 30 ing the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) en zyme (US patents 57673666 and 6225105). Similarly, various promoters can be used to regulate the trait gene to provide constitutive, developmental, tissue or environ mental regulation of gene transcription as described above. In this example, the 34S promoter (GenBank Accession numbers M59930 and X1 6673) is used to provide con- 171 stitutive expression of the trait gene. For plastidal expression a nucleic acid encoding an appropiate targeting sequence (see for example SEQ ID NO: 14590 to 14608) need to be inserted 5' to ORF in a way similar as described in example 11 in order to ex press a functional preprotein which is directed to the plastids. 5 [0512.0.0.0] After the co-cultivation treatment, the explants are washed and trans ferred to selection media supplemented with 500 mg/L timentin. Shoots are excised and placed on a shoot elongation medium. Shoots longer than 1 cm are placed on root ing medium for two to four weeks prior to transplanting to soil. [0513.0.0.0] The primary transgenic plants (TO) are analyzed by PCR to confirm the 10 presence of T-DNA. These results are confirmed by Southern hybridization in which DNA is electrophoresed on a 1 % agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Di agnostics) is used to prepare a digoxigenin-labelled probe by PCR, and is used as rec ommended by the manufacturer. 15 [0514.0.0.0] Example 15c: Engineering corn plants by over-expressing YGR255c from Saccharomyces cerevisiae or homologs of YGR255c from other organisms. [0515.0.0.0] Amplification of SEQ ID NO: 1 was achieved as desribed in example 11 except that the upstream primer SEQ ID NO: 159 and the reverse primerr SEQ ID NO: 20 160 contained the following 5'extensions: i) forward primer: 5'- GGGTCGCTCCTACGCG-3' SEQ ID NO: 14619 ii) reverse primer 5'- CTCGGGCTCGGCGTCC-3' SEQ ID NO: 14620 The maize transformation vector for plastidial targeting was constructed as follows. In 25 order to amplify the targeting sequence of the rbcS gene from Z.maize, total RNA was extracted from leaves of 4 weeks old Z.maize plants (RNeasy Plant Mini Kit, Qiagen, Hilden). The RNA was transcribed in cDNA using SuperScript III First Strand Synthesis System from Invitrogen (Karlsruhe). The cDNA was used as template for a PCR. To enable cloning of the nucleic acid encoding the transitpeptide into the vector 30 EG065PoccLic (SEQ ID NO: 14587, figure 1) and subsequently in EG073qcz (SEQ ID NO: 14588, Figure 2) Xmal restriction enzyme recognition sequence were added to both the forward and reverse primer.
172 ZmTPrbcs5xma ATACCCGGGATGGCGCCCACCGTGATGATG SEQ ID NO: 14618 ZmTPrbcs3xma ATACCCGGGCACCGGATCCTTCCGCCGTTG SEQ ID NO: 14617 5 The PCR fragment was digested with Xmal and ligated in the vector EG065PoccLic (figure 1) that had also been digested with Xmal. The correct orientation of the rbcS targeting sequence was tested by sequencing. The vector generated in this ligation step was EG065PoccLicTPrbcS. From the vector EG065PoccLicTPrbcS the expression cassette comprising the ScBV 10 promoter, transit sequence and NOS terminator was cut out with the restriction en zymes Asci and Pac and ligated into the vector EG073qcz (figure 2) that had also been digested with Asci and Pac yielding the vector pMTX0584. Cloning of the ORF SEQ ID NO: 1 into vector pMTX0584 was achieved as desribed in example 11 except the restriction enzymes Mlul and Sacli were used to open the vec 15 tor. According to the disclosure of this example a person skilled in the art is able to clone all other sequences mentioned in table I, column 5. [0516.0.0.0] Corn Transformation The preparation of the immature embryos and Agrobacterium were basically as stated 20 in US 5,591,616. In brief, the Agrobacterium strain LBA4404 transformed with the plasmid by a standard method, such as the triple cross method or the electroporation, was grown on LB plates for 2 days prior to cocultivation. A loop of cells was resus pended in liquid infection media at an O.D. of approximately 1.0. Immature Embryos of about 1.5mm in size were incubated in the soln of agrobacterium for around 30 min 25 utes. Excised embryos were removed from liquid and then co- cultivated in the dark at 22'C with Agrobacterium tumefacians on solid MS-based callus induction medium con taining 2 mg/I 2,4-D, 1 Oum AgNO3, and 200um Acetosyringone. After several days of co-cultivation, embryos were transferred to MS-based media containing 2mg/I 2,4, 1Oum AgNO3 and 200mg/I Timentin the dark at 27'C for 1 week. Embryos were trans 30 ferred to MS-based selection media containing imidazoline herbicide (500nM Pursuit) as a selection agent in the dark for 3 weeks. After 3 weeks putative transgenic events were transferred to an MS-based media containing 2mg/L Kinetin 500nM Pursuit, 200mg/I Timentin and incubated under cool white fluorescent light (100 uE/m2/s-1 with 173 photoperiod of 16hrs) at 25 'Cfor 2-3 weeks, or until shoots develop. The shoots were transferred to MS-based rooting medium and incubated under light at 25 'C for 2 weeks. The rooted shoots were transplanted to 4 inch pots containing artificial soil mix. Metro-Mix@ 360 in and grown in an environmental chamber for 1-2 weeks. The envi 5 ronmental chamber maintained 16-h-light, 8-h-dark cycles at 27'C day and 22 'C re spectively. Light was supplied by a mixture of incandescent and cool white fluorescent bulbs with an intensity of - 400 uE/m2/s-1. After plants were grown to 4-6 leaf stage they were moved to 14 inch pots containing Metro-Mix@ 360. Supplemental metal halide lamps were used to maintain >800uE/m2/s-1 with a 16-h-light, 8-h-dark cycles at 10 28'C day and 22 'C. Transplantation occurs weekly on Tuesday. Peters 20-20-20 plus micronutrients (200ppm) is used to fertilize plants 2x weekly on Monday and Thursday after sampling of TO's is performed. T1 seeds were produced from plants that exhibit tolerance to the imidazolinone herbicides and which are PCR positive for the trans genes. TO plants with single locus insertions of the T-DNA (self-pollinated) produced T1 15 generation that segregated for the transgene in a 3:1 ratio. Progeny containing copies of the transgene were tolerant of imidazolinone herbicides and could be detected by PCR analysis. [0517.0.0.0] TO plants with single locus insertions of the T-DNA (self-pollinated) pro duce T1 generation that can segregate for the transgene in a 3:1 ratio. Progeny con 20 taining copies of the transgene are tolerant of imidazolinone herbicides and can be detected by PCR analysis. [0518.0.0.0] Growth of TO corn plants for metabolic analysis Plants are grown under the following standardized conditions to properly stage them for TO sampling. TO plantlets are transferred to 14" pots in the greenhouse after they grow 25 to 4-6 leaf stage (1-3 weeks). pBSMM232 containing plants are produced carried along with each experiment to serve as controls for TO samples. Plantlets are moved to 14" die Zeichen besser ausschreiben pots on Tuesday of each week. Plants are grown for 9 days until the 7-13 leaf stage is reached. On Thursday between 10am and 2 pm leaf sampling is performed on the 3rd youngest (1s fully elongated). Within 30 seconds 30 250-500mg of leaf material (without midrib), are removed weighed and placed into pre extracted glass thimbles in liquid nitrogen. A second sample (opposite side of the mid rib) from each plant is sampled as described above for qPCR analysis. [0519.0.0.0] Growth of T1 corn plant for metabolic analysis For the bioanalytical analyses of the transgenic plants, the latter were grown uniformly 35 in a specific culture facility. To this end the GS-90 substrate as the compost mixture 174 was introduced into the potting machine (Laible System GmbH, Singen, Germany) and filled into the pots. Thereafter, 26 pots were combined in one dish and treated with Previcur. For the treatment, 25 ml of Previcur were taken up in 10 I of tap water. This amount was sufficient for the treatment of approximately 150 pots. The pots were 5 placed into the Previcur solution and additionally irrigated overhead with tap water without Previcur. They were used within four days. [0520.0.0.0] For the sowing, the seeds, which had been stored at room temperature were removed from the paper-bag and transferred into the pots with the soil. In total, approximately 1 to 3 seeds were distributed in the middle of the pot. 10 [0521.0.0.0] After the seeds had been sown, the dishes with the pots were covered with matching plastic hood and placed into growth chambers for 2 days. After this time the plastic hood was removed and plants were placed on the growth table and culti vated for 22 to 24 days under following growth conditions: 16-h-light, 8-h-dark rhythm at 20'C, an atmospheric humidity of 60% and a C02 concentration of approximately 15 400 ppm. The light sources used were Powerstar HQI-T 250 W/D Daylight lamps from Osram, which generate a light resembling the solar color spectrum with a light intensity of approximately 220 pE/m2/s-1. [0522.0.0.0] When the plants were 7 days old, they were subjected to select trans genic plants. For this purposes pieces of plant leaves were sampled and a PCR reac 20 tion with the respective primers for the transgene were performed. Plants exhibiting the transgen were used for the metabolic analysis. The nontransgenic seedlings were re moved. The transgenic plants were thinned when they had reached the age of 18 days. The transgenic plants, which had grown best in the center of the pot were considered the target plants. All the remaining plants were removed carefully with the aid of metal 25 tweezers and discarded. [0523.0.0.0] During their growth, the plants received overhead irrigation with distilled water (onto the compost) and bottom irrigation into the placement grooves. Once the grown plants had reached the age of 24 days, they were harvested. [0524.0.0.0] Metabolic analysis of maize leaves. 30 The modifications identified in accordance with the invention, in the content of above described metabolites, were identified by the following procedure. a) Sampling and storage of the samples 175 [0525.0.0.0] Sampling was performed in corridor next to the green house. The leaves were incised twice using small laboratory scissors and this part of the leave was re moved manually from the middle rib. The sample was rapidly weighed on laboratory scales, transferred into a pre-cooled extraction sleeve and placed into kryo-box cooled 5 by liquid nitrogen. The time elapsing between cutting the leave to freezing it in liquid nitrogen amounted to not more than 30 seconds. The boxes were stored in a freezer at -80 C, an shipped on dry ice. b) Lyophilization [0526.0.0.0] During the experiment, care was taken that the plants either remained in 10 the deep-frozen state (temperatures < -40'C) or were freed from water by lyophiliza tion until the first contact with solvents. Before entering the analytical process the ex traction sleeves with the samples were transferred to a pre-cooled aluminium rack. [0527.0.0.0] The aluminum rack with the plant samples in the extraction sleeves was placed into the pre-cooled (-40'C) lyophilization facility. The initial temperature during 15 the main drying phase was-35C and the pressure was 0.120 mbar. During the drying phase, the parameters were altered following a pressure and temperature program. The final temperature after 12 hours was +30'C and the final pressure was 0.001 to 0.004 mbar. After the vacuum pump and the refrigerating machine had been switched off, the system was flushed with air (dried via a drying tube) or argon. 20 c) Extraction [0528.0.0.0] Immediately after the lyophilization apparatus had been flushed, the extraction sleeves with the lyophilized plant material were transferred into the 5 ml ex traction cartridges of the ASE device (Accelerated Solvent Extractor ASE 200 with Sol vent Controller and AutoASE software (DIONEX)). 25 [0529.0.0.0] Immediately after the lyophilization apparatus had been flushed, the extraction sleeves with the lyophilized plant material were transferred into the 5 ml ex traction cartridges of the ASE device (Accelerated Solvent Extractor ASE 200 with Sol vent Controller and AutoASE software (DIONEX)). [0530.0.0.0] The 24 sample positions of an ASE device (Accelerated Solvent Extrac 30 tor ASE 200 with Solvent Controller and AutoASE software (DIONEX)) were filled with plant samples, including some samples for testing quality control.
176 [0531.0.0.0] The polar substances were extracted with approximately 10 ml of methanol/water (80/20, v/v) at T = 70'C and p = 140 bar, 5 minutes heating-up phase, 1 minute static extraction. The more lipophilic substances were extracted with approxi mately 10 ml of methanol/dichloromethane (40/60, v/v) at T = 70'C and p = 140 bar, 5 5 minute heating-up phase, 1 minute static extraction. The two solvent mixtures were extracted into the same glass tubes (centrifuge tubes, 50 ml, equipped with screw cap and pierceable septum for the ASE (DIONEX)). [0532.0.0.0] The solution was treated with internal standards: ribitol, L-glycine-2,2-d 2 , L-alanine-2,3,3,3-d 4 , methionine-methyl-d 3 , and a-methylglucopyranoside and methyl 10 nona-decanoate, methyl undecanoate, methyl tridecanoate, methyl pentadecanoate, methyl nonacosanoate. [0533.0.0.0] The total extract was treated with 8 ml of water. The solid residue of the plant sample and the extraction sleeve were discarded. [0534.0.0.0] The extract was shaken and then centrifuged for 5 to 10 minutes at at 15 least 1 400 g in order to accelerate phase separation. 0.5 ml of the supernatant metha nol/water phase ("polar phase", colorless) was removed for the further GC analysis, and 0.5 ml was removed for the LC analysis. The remainder of the methanol/water phase of all samples was used for additional quality controls. 0.5 ml of the organic phase ("lipid phase", dark green) was removed for the further GC analysis and 0.5 ml 20 was removed for the LC analysis. All the portions removed were evaporated to dryness using the IR Dancer infrared vacuum evaporator (Hettich). The maximum temperature during the evaporation process did not exceed 40'C. Pressure in the apparatus was not less than 10 mbar. d) Processing the lipid phase for the LC/MS or LC/MS/MS analysis 25 [0535.0.0.0] The lipid extract, which had been evaporated to dryness was taken up in mobile phase. The HPLC was run with gradient elution. [0536.0.0.0] The polar extract, which had been evaporated to dryness was taken up in mobile phase. The HPLC was run with gradient elution. e) Derivatization of the lipid phase for the GC/MS analysis 30 [0537.0.0.0] For the transmethanolysis, a mixture of 140 pl of chloroform, 37 pl of hydrochloric acid (37% by weight HCI in water), 320 pl of methanol and 20 pl of toluene was added to the evaporated extract. The vessel was sealed tightly and heated for 2 177 hours at 1000C, with shaking. The solution was subsequently evaporated to dryness. The residue was dried completely. [0538.0.0.0] The methoximation of the carbonyl groups was carried out by reaction with methoxyamine hydrochloride (20 mg/ml in pyridine, 100 pl for 1.5 hours at 600C) in 5 a tightly sealed vessel. 20 pl of a solution of odd-numbered, straight-chain fatty acids (solution of each 0.3 mg/mL of fatty acids from 7 to 25 carbon atoms and each 0.6 mg/mL of fatty acids with 27, 29 and 31 carbon atoms in 3/7 (v/v) pyridine/toluene) were added as time standards. Finally, the derivatization with 100 pl of N-methyl-N (trimethylsilyl)-2,2,2-trifluoroacetamide (MSTFA) was carried out for 30 minutes at 10 600C, again in the tightly sealed vessel. The final volume before injection into the GC was 220 pl. f) Derivatization of the polar phase for the GC/MS analysis [0539.0.0.0] The methoximation of the carbonyl groups was carried out by reaction with methoxyamine hydrochloride (20 mg/ml in pyridine, 50 pl for 1.5 hours at 600C) in 15 a tightly sealed vessel. 10 pl of a solution of odd-numbered, straight-chain fatty acids (solution of each 0.3 mg/mL of fatty acids from 7 to 25 carbon atoms and each 0.6 mg/mL of fatty acids with 27, 29 and 31 carbon atoms in 3/7 (v/v) pyridine/toluene) were added as time standards. Finally, the derivatization with 50 pl of N-methyl-N (trimethylsilyl)-2,2,2-trifluoroacetamide (MSTFA) was carried out for 30 minutes at 20 600C, again in the tightly sealed vessel. The final volume before injection into the GC was 110 pl. g) Analysis of the various plant samples [0540.0.0.0] The samples were measured in individual series of 20 plant (leaf) sam ples each (also referred to as sequences), each sequence containing at least 5 sam 25 ples from individual control plants containing GUS. The peak area of each analyte was divided by the peak area of the respective internal standard. The data were standard ized for the fresh weight established for the respective harvested sample. The values calculated were then related to the GUS-containing control group by being divided by the mean of the corresponding data of the control group of the same sequence. The 30 values obtained were referred to as ratio byWT, they are comparable between se quences and indicate how much the analyte concentration in the mutant differs in rela tion to the control. The GUS-containing plants were chosen in order to assure that the vector and transformation procedure itself has no significant influence on the metabolic 178 composition of the plants. Therefore the desribed changes in comparison with the con trols were caused by the introduced genes. [0541.0.0.0] Example 15d: Engineering wheat plants by over-expressing YGR255c from Saccharomyces cerevisiae or homologs 5 of YGR255c from other organisms. [0542.0.0.0] Transformation of wheat is performed with the method described by Ishida et al. (1996 Nature Biotech. 14745-50). The cultivar Bobwhite (available from CYMMIT, Mexico) is commonly used in transformation. Immature embryos are co cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and trans 10 genic plants are recovered through organogenesis. The super binary vector system of Japan Tobacco is described in WO patents W094/00977 and W095/06722. Vectors were constructed as described. Various selection marker genes can be used including the maize gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (US patent 6025541). Similarly, various promoters can be used to regulate the trait gene to 15 provide constitutive, developmental, tissue or environmental regulation of gene tran scription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X1 6673) can be used to provide constitutive expression of the trait gene. For plas tidal expression a nucleic acid encoding an appropiate targeting sequence) need to be inserted 5' to ORF in a way similar as described in example 15c in order to express a 20 functional preprotein which is directed to the plastids. [0543.0.0.0] After incubation with Agrobacterium, the embryos are grown on callus induction medium, then regeneration medium, containing imidazolinone as a selection agent. The Petri plates are incubated in the light at 25 'C for 2-3 weeks, or until shoots develop. The green shoots are transferred from each embryo to rooting medium and 25 incubated at 25 'C for 2-3 weeks, until roots develop. The rooted shoots are trans planted to soil in the greenhouse. T1 seeds are produced from plants that exhibit toler ance to the imidazolinone herbicides and which are PCR positive for the transgenes. [0544.0.0.0] The T1 generation of single locus insertions of the T-DNA can segregate for the transgene in a 3:1 ratio. Those progeny containing one or two copies of the 30 transgene are tolerant of the imidazolinone herbicide. Homozygous T2 plants exhibited similar phenotypes.
179 [0545.0.0.0] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YGR255c from Saccharomyces cerevisiae or homologs of YGR255c from other organisms. [0546.0.0.0] Cotyledonary petioles and hypocotyls of 5-6 day-old young seedlings 5 are used as explants for tissue culture and transformed according to Babic et al.(1 998, Plant Cell Rep 17: 183-188). The commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can be used. [0547.0.0.0] Agrobacterium tumefaciens LBA4404 containing a binary vector are used for canola transformation. Many different binary vector systems have been de 10 scribed for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, New Jersey). Many are based on the vector pBIN19 described by Bevan (Nu cleic Acid Research. 1984. 12:8711-8721) that includes a plant gene expression cas sette flanked by the left and right border sequences from the Ti plasmid of Agrobacte 15 rium tumefaciens. A plant gene expression cassette consists of at least two genes - a selection marker gene and a plant promoter regulating the transcription of the cDNA or genomic DNA of the trait gene. Various selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (US patents 57673666 and 6225105). Similarly, various promoters can be used to 20 regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription. In this example, the 34S promoter (GenBank Acces sion numbers M59930 and X16673) can be used to provide constitutive expression of the trait gene. For plastidal expression a nucleic acid encoding an appropiate targeting sequence (see for example SEQ ID NO: 14590 to 14608) need to be inserted 5' to 25 ORF in a way similar as described in example 11 in order to express a functional pre protein which is directed to the plastids. [0548.0.0.0] Canola seeds are surface-sterilized in 70% ethanol for 2 min., and then in 30% Clorox with a drop of Tween-20 for 10 min, followed by three rinses with steril ized distilled water. Seeds are then germinated in vitro 5 days on half strength MS me 30 dium without hormones, 1% sucrose, 0.7% Phytagar at 23oC, 16 hr. light. The cotyle don petiole explants with the cotyledon attached are excised from the in vitro seedlings, and are inoculated with Agrobacterium by dipping the cut end of the petiole explant into the bacterial suspension. The explants are then cultured for 2 days on MSBAP-3 me dium containing 3 mg/I BAP, 3 % sucrose, 0.7 % Phytagar at 23 'C, 16 hr light. After 35 two days of co-cultivation with Agrobacterium, the petiole explants are transferred to 180 MSBAP-3 medium containing 3 mg/I BAP, cefotaxime, carbenicillin, or timentin (300 mg/I) for 7 days, and then cultured on MSBAP-3 medium with cefotaxime, carbenicillin, or timentin and selection agent until shoot regeneration. When the shoots are 5 - 10 mm in length, they are cut and transferred to shoot elongation medium (MSBAP-0.5, 5 containing 0.5 mg/I BAP). Shoots of about 2 cm in length are transferred to the rooting medium (MSO) for root induction. [0549.0.0.0] Samples of the primary transgenic plants (TO) are analyzed by PCR to confirm the presence of T-DNA. These results are confirmed by Southern hybridization in which DNA is electrophoresed on a 1 % agarose gel and are transferred to a posi 10 tively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer. [0550.0.0.0] Example 15f: Engineering alfalfa plants by over-expressing YGR255c from Saccharomyces cerevisiae or homologs of 15 YGR255c from other organisms. [0551.0.0.0] A regenerating clone of alfalfa (Medicago sativa) is transformed using the method of (McKersie et al., 1999 Plant Physiol 119: 839-847). Regeneration and transformation of alfalfa is genotype dependent and therefore a regenerating plant is required. Methods to obtain regenerating plants have been described. For example, 20 these can be selected from the cultivar Rangelander (Agriculture Canada) or any other commercial alfalfa variety as described by Brown DCW and A Atanassov (1985. Plant Cell Tissue Organ Culture 4: 111-112). Alternatively, the RA3 variety (University of Wisconsin) has been selected for use in tissue culture (Walker et al., 1978 Am J Bot 65:654-659). 25 [0552.0.0.0] Petiole explants are cocultivated with an overnight culture of Agrobacte rium tumefaciens C58C1 pMP90 (McKersie et al., 1999 Plant Physiol 119: 839-847) or LBA4404 containing a binary vector. Many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols. Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, 30 Totowa, New Jersey). Many are based on the vector pBIN19 described by Bevan (Nu cleic Acid Research. 1984. 12:8711-8721) that includes a plant gene expression cas sette flanked by the left and right border sequences from the Ti plasmid of Agrobacte rium tumefaciens. A plant gene expression cassette consists of at least two genes - a selection marker gene and a plant promoter regulating the transcription of the cDNA or 181 genomic DNA of the trait gene. Various selection marker genes can be used including the Arabidopsis gene encoding a mutated acetohydroxy acid synthase (AHAS) enzyme (US patents 57673666 and 6225105). Similarly, various promoters can be used to regulate the trait gene that provides constitutive, developmental, tissue or environ 5 mental regulation of gene transcription. In this example, the 34S promoter (GenBank Accession numbers M59930 and X1 6673) can be used to provide constitutive expres sion of the trait gene. For plastidal expression a nucleic acid encoding an appropiate targeting sequence (see for example SEQ ID NO: 14590 to 14608) need to be inserted 5' to ORF in a way similar as described in example 11 in order to express a functional 10 preprotein which is directed to the plastids. [0553.0.0.0] The explants are cocultivated for 3 d in the dark on SH induction me dium containing 288 mg/ L Pro, 53 mg/ L thioproline, 4.35 g/ L K2SO4, and 100 pm acetosyringinone. The explants are washed in half-strength Murashige-Skoog medium (Murashige and Skoog, 1962) and plated on the same SH induction medium without 15 acetosyringinone but with a suitable selection agent and suitable antibiotic to inhibit Agrobacterium growth. After several weeks, somatic embryos are transferred to BOi2Y development medium containing no growth regulators, no antibiotics, and 50 g/ L su crose. Somatic embryos are subsequently germinated on half-strength Murashige Skoog medium. Rooted seedlings are transplanted into pots and grown in a green 20 house. [0554.0.0.0] The TO transgenic plants are propagated by node cuttings and rooted in Turface growth medium. The plants are defoliated and grown to a height of about 10 cm (approximately 2 weeks after defoliation). [0554.1.0.0] Example 16: Metabolite Profiling Info from Zea mays 25 Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII Table VII ORFNAME Metabolite MIN MAX YELO46C Methionine 1,48 2,10 YGR255C Methionine 1,49 1,90 182 YKR043C Methionine 2,78 3,67 Table VII shows the increase in methionine in genetically modified corn plants express ing the Saccharomyces cerevisiae nucleic acid sequences YEL046C, YGR255C and YKR043C. 5 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YEL046C or its homologs, e.g. a "L-threonine aldolase", is increased in corn plants, preferably, an increase of the fine chemical methionine between 48% and 110% is con ferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein 10 YGR255C or its homologs, e.g. a "putative flavin-dependent monooxygenase", is in creased in corn plants, preferably, an increase of the fine chemical methionine between 49% and 90% is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "unknown ORF", is increased in corn plants, prefera 15 bly, an increase of the fine chemicals methionine between 178% and 267% or more is conferred. [0554.2.0.0] Example 16: Preparation of homologous sequences from plants Different plants can be grown under standard or varying conditions in the greehouse. RNA can be extracted following the protocol of Jones, Dunsmuir and Bedbrook (1985) 20 EMBO J. 4: 2411-2418. Approx. 1 gram of tissue material from various organs is grounded in liquid nitrogen. The powder is transferred to a 13 ml Falcon tube contain ing 4.5 ml NTES buffer (100 mM NaCl, 10 mM Tris/HCI pH 7.5, 1 mM EDTA, 1 % SDS; in RNase-free water) and 3 ml phenol/chloroform/isoamylalcohol (25/24/1), immediately mixed and stored on ice. The mixture is spun for 10 minutes at 7000 rpm using a cen 25 trifuge (Sorval; SM24 or SS34 rotor). The supernatant is transferred to a new tube, 1/10th volume of 3 M NaAcetate (pH 5.2; in RNase-free water) and 1 volume of isopro panol is added, mixed at stored for 1 hour or overnight at -20 'C. The mixture is spun for 10 minutes at 7000 rpm. The supernatant is discarded and the pellet washed with 70 % ethanol (v/v). The mixture is spun for 5 minutes at 7000 rpm, the supernatant is 30 discarded and the pellet is air-dried. 1 ml RNase-free water is added and allows the DNA/RNA pellet to dissolve on ice at 4 C. The nucleic acid solution is transferred to a 2 ml Eppendorf tube and 1 ml of 4 M LiAcetate is added. After mixing the solution is kept 183 for at least 3 hours, or overnight, at 4 C. The mixture is spun for 10 minutes at 14000 rpm, the supernatant discarded, the pellet washed with 70 % Ethanol, air-dried and dissolved in 200 pl of RNase-free water. Total RNA can be used to construct a cDNA-library according to the manufacturer's 5 protocol (for example using the ZAP-cDNA synthesis and cloning kit of Stratagene, La Jolla, USA). Basically, messenger RNA (mRNA) is primed in the first strand synthesis with a oligo(dT) linker-primer and is reverse-transcribed using reverse transcriptase. After second strand cDNA synthesis, the double-stranded cDNA is ligated into the Uni ZAP XR vector. The Uni-ZAP XR vector allows in vivo excision of the pBluescript 10 phagemid. The polylinker of the pBluescript phagemid has 21 unique cloning sites flanked by T3 and T7 promoters and a choice of 6 different primer sites for DNA se quencing. Systematic single run sequencing of the expected 5 prime end of the clones can allow preliminary annotation of the sequences for example with the help of the pedant pro Software package (Biomax, Munchen, Germany). Clones for the nucleic 15 acids of the invention or used in the process according to the invention can be identi fied based on homology search with standard algorithms like blastp or gap. Identified putative full length clones with identity or high homology can be subjected to further sequencing in order to obtain the complete sequence. Additional new homologous sequences can be identified in a similar manner by prepar 20 ing respective cDNA libraries from various plant sources as described above. Libraries can then be screened with available sequences of the invention under low stringency conditions for example as described in Sambrook et al., Molecular Cloning: A labora tory manual, Cold Spring Harbor 1989, Cold Spring Harbor Laboratory Press. Purified positive clones can be subjected to the in vivo excision and complete sequencing. A 25 pairwise sequence alignment of the original and the new sequence using the blastp or gap program allows the identification of orthologs, meaning homologous sequences from different organisms, which should have a sequence identity of at least 30%. Fur thermore the conservation of functionally important amino acid residues or domains, which can be identified by the alignment of several already available paralogs, can 30 identify a new sequence as a new orthologs. Alternatively libraries can be subjected to mass sequencing and obtained sequences can be stored in a sequence database, which then can be screened for putative orthologs by different search algorithms, for example the tbastn algorithm to search the obtained nucleic acid sequences with a amino acid sequence of the invention. Clones 184 with the highest sequence identity are used for a complete sequence determination and orthologs can be identified as described above. [0555.0.0.0] Equivalents Those skilled in the art will recognize, or will be able to ascertain using no more than 5 routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the claims.
185 [0001.0.0.1] to [0007.0.0.1] for the disclosure of the paragraphs [0001.0.0.1] to [0007.0.0.1] see paragraphs [0001.0.0.0] to [0007.0.0.0] above. [0007.1.0.1] Following the aproach of deregulating specific enzymes in the amino acid biosynthetic pathway an increase of the levels of free threonine is disclosed in US 5 5,942,660 which is achieved by overexpression of either a wild-type or deregulated aspartate kinase, homoserine dehydrogenase or threonine synthase. [0008.0.0.1] for the disclosure of this paragraph see [0008.0.0.0] above. [0009.0.1.1] As described above, the essential amino acids are necessary for hu mans and many mammals, for example for livestock. Threonine is an important con 10 stituent in many body proteins and is necessary for the formation of tooth enamel pro tein, collagen and elastin, which both needed for healthy skin and wound healing. It is a precursor to the amino acids glycine and serine. It acts as a lipotropic in controlling fat build-up in the liver. Threonine is an immune stimulant becouse it promotes thymus growth and activity. It is a component of digestive enzymes and immune secretions 15 from the gut, particularly mucins. It has been used as a supplement to help alleviate anxiety and some cases of depression. In animal production, as an important essential amino acid, threonine is normally the second limiting amino acid for pigs and the third limiting amino acid for chicken (Gallus gallus f. domestica), e.g. laying hen or broiler. [0010.0.0.1] and [0011.0.0.1] for the disclosure of the paragraphs [0010.0.0.1] 20 and [0011.0.0.1] see paragraphs [0010.0.0.0] and [0011.0.0.0] above. [0012.0.1.1] It is an object of the present invention to develop an inexpensive proc ess for the synthesis of threonine, preferably L-threonine. Threonine is with lysin and methionine (depending on the organism) one of the amino acids, which are most fre quently limiting 25 [0013.0.0.1] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.1.1] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is threonine, preferably L threonine. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "threonine". Further, the term "the fine chemicals" as used herein also 30 relates to fine chemicals comprising threonine.
186 [0015.0.1.1] In one embodiment, the term "the fine chemical" means threonine, pref erably L-threonine. Throughout the specification the term "the fine chemical" means threonine, preferably L-threonine, its salts, ester or amids in free form or bound to pro teins. In a preferred embodiment, the term "the fine chemical" means threonine, pref 5 erably L-threonine in free form or its salts or bound to proteins. [0016.0.1.1] Accordingly, the present invention relates to a process for the production of threonine, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 2, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 2, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 15 (b) growing the organism under conditions which permit the production of the fine chemical, thus, threonine or fine chemicals comprising threonine, in said organ ism or in the culture medium surrounding the organism. [0017.0.1.1] In another embodiment the present invention is related to a process for the production of threonine, which comprises 20 a) increasing or generating the activity of a protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 2, column 5, in an organelle of a non-human organism, or b) increasing or generating the activity of a protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, ap 25 plication no. 2, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or c) increasing or generating the activity of a protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 2, column 5, which are joined to a nucleic acid sequence encoding 30 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 187 d) growing the organism under conditions which permit the production of threonine in said organism. [0017.1.1.1] In another embodiment, the present invention relates to a process for the production of threonine, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 2, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 2, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, threonine or fine chemicals comprising threonine, in said organism 15 or in the culture medium surrounding the organism. [0018.0.1.1] Advantagously the activity of the protein as shown in table II, application no. 2, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 2, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. 20 [0019.0.0.1] to [0024.0.0.1] for the disclosure of the paragraphs [0019.0.0.1] to [0024.0.0.1] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.1.1] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some 25 examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 2, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as 30 chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 188 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 5 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 10 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 15 ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 20 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.1.1] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 2, column 3 and its homologs as disclosed in 25 table 1, application no. 2, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 30 ing for proteins as shown in table 1l, application no. 2, column 3 and its homologs as disclosed in table 1, application no. 2, columns 5 and 7. [0027.0.0.1] to [0029.0.0.1] for the disclosure of the paragraphs [0027.0.0.1] to [0029.0.0.1] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.1.1] Alternatively, nucleic acid sequences coding for the transit peptides 35 may be chemically synthesized either in part or wholly according to structure of transit 189 peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 5 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 10 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 15 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 20 acid sequences encoding the transit peptide for example the ones shown in table V , preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 2, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 2, columns 5 and 7 25 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 2, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more 30 preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 2, col umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres 35 sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes.
190 The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 2, columns 5 and 7. Furthermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 5 [0030.2.1.1] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.1.1] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 2, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 10 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 2, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 15 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 20 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. 25 [0030.2.0.1] and [0030.3.0.1] for the disclosure of the paragraphs [0030.2.0.1] and [0030.3.0.1] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.1.1] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By 30 placing the genes specified in table 1, application no. 2, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro- 191 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 2, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 2, columns 5 and 5 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 10 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 2, columns 5 and 7 or a sequence 15 encoding a protein, as depicted in table II, application no. 2, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 2 columns 5 and 7 or a sequence encoding a pro tein as depicted in table II, application no. 2 columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 20 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 2, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 25 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 30 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 2, columns 5 and 7.
192 [0030.5.1.1] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 2, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.1.1] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 2, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.1] and [0032.0.0.1] for the disclosure of the paragraphs [0031.0.0.1] and [0032.0.0.1] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.1.1] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 2, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 2, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.1.1] Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 2, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.1] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.1.1] The sequence of b0760 from Escherichia coli (Acession PIR:JC6038) has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ATP-binding component of molybdate transport system". Accordingly, in one embodiment, the process of the present inven- 193 tion comprises the use of a "ATP-binding component of molybdate transport system" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 5 present invention the activity of a b0760 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0760 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1062 from Escherichia coli (Acession PIR:DEECOO) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "dihydro-orotase". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "dihydro-orotase" or its homolog, e.g. as shown 15 herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1062 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 20 ample in table V. In another embodiment, in the process of the present invention the activity of a b1062 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1 131 (Accession number NP_415649) from Escherichia coli has 25 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "adenylosuccinate lyase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "adenylosuccinate lyase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in 30 an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 131 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1 131 35 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1264 (Accession number NP_415780) from Escherichia coli has 194 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "anthranilate synthase component I". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "anthranilate syn thase component I" or its homolog, e.g. as shown herein, for the production of the fine 5 chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1264 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 10 In another embodiment, in the process of the present invention the activity of a b1264 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1277 from Escherichia coli (Acession PIR:A40654) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 15 defined as "GTP cyclohydrolase II". Accordingly, in one embodiment, the process of the present invention comprises the use of a "GTP cyclohydrolase II" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in par ticular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention 20 the activity of a b1277 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1277 protein is increased or generated in a subcellular compartment of the organism or or 25 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2040 from Escherichia coli (Acession PIR:G64969) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "TDP-rhamnose synthetase, NAD(P)-binding". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "TDP-rhamnose syn 30 thetase, NAD(P)-binding" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a b2040 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least 35 to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2040 protein is increased or generated in a subcellular compartment of the organism or or- 195 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2066 (Accession number NP_416570) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "uridine/cytidine kinase". Accordingly, in one embodiment, the proc 5 ess of the present invention comprises the use of a "uridine/cytidine kinase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2066 protein is increased or generated, e.g. from 10 Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2066 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b2388 from Escherichia coli (Acession PIR:A65013) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glucokinase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glucokinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing 20 the amount of threonine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b2388 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b2388 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2779 (Accession number NP_417259) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 30 is being defined as "enolase". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "enolase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a 35 b2779 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V.
196 In another embodiment, in the process of the present invention the activity of a b2779 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3213 (Accession number NP_417680) from Escherichia coli has 5 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glutamate synthase" (small subunit, nucleotide-binding, 4Fe-4S protein). Accordingly, in one embodiment, the process of the present invention com prises the use of a "glutamate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the 10 amount of threonine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b3213 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a b3213 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3429 (Accession number NP_417887) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 20 is being defined as "glycogen synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glycogen synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in 25 vention the activity of a b3429 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3429 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3443 from Escherichia coli (Acession NP_417900) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as a "uncharacterized ORF". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized ORF" or its homolog, 35 e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in- 197 vention the activity of a b3443 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3443 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4039 (Accession number PIR:S25660) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "4-hydroxybenzoate synthetase". Accordingly, in one embodiment, 10 the process of the present invention comprises the use of a "4-hydroxybenzoate syn thetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b4039 protein is increased or gener 15 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4039 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of YDR430C from Saccharomyces cerevisiae (Accession PIR:S6971 1) has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 and Goffeau, Science 274 (5287), 546-547, 1996, and its activity is being defined as "metalloprotease". Accordingly, in one embodiment, the process of the present inven tion comprises the use of a "metalloprotease" or its homolog, e.g. as shown herein, for 25 the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a YDR430C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 30 ample in table V. In another embodiment, in the process of the present invention the activity of a YDR430C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YMR262W from Saccharomyces cerevisiae (Accession PIR:S54474) 35 has been published in published in Bowman et al., Nature 387:90-93 (1997), and its activity is being defined as a "uncharacterized ORF". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized ORF" or 198 its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YMR262W protein is increased or generated, e.g. 5 from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YMR262W protein is increased or generated in a subcellular compartment of the or ganism or organism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of YOR350C (Accession number PIR|S67259) from Saccharomyces cerevisiae has been published in Dujon et al., Nature 387:98-102(1997), and its activity is being defined as "a protein, which is similar to Lucilia illustris mitochondria cyto chrome oxidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein, which is similar to Lucilia illustris mitochondria cyto 15 chrome oxidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YOR350C protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least 20 to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YOR350C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YBL082C (Accession number NP_009471) from Saccharomyces cer 25 evisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Feldmann et al. EMBO J. 13 (24), 5795-5809 (1994), and its activity is being defined as "Dol-P-Man dependent alpha(1-3) mannosyl-transferase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "Dol-P-Man depend ent alpha(1-3) mannosyl-transferase" or its homolog, e.g. as shown herein, for the pro 30 duction of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a YBL082C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 35 ample in table V. In another embodiment, in the process of the present invention the activity of an YBL082C protein is increased or generated in a subcellular compartment of the organ- 199 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR204W (Accession number NP_010490) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined 5 as a "putative protein" with a role in ubiquinone (Coenzyme Q) biosynthesis, possibly functioning in stabilization of Coq7p; located on the matrix face of the mitochondrial inner membrane; Coq4p". Accordingly, in one embodiment, the process of the present invention comprises the use of said putative protein or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for 10 increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR204W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a YDR204W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 20 and Dujon et al., Nature 369 (6479), 371-378 (1994) and itsactivity is beeing defined as a phosphoglycerate mutase like protein. Accordingly, in one embodiment, the process of the present invention comprises the use of said "phosphoglycerate mutase like pro tein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or 25 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YKR043C protein is increased or gen erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 30 YKR043C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR1 53C (Accession number NP_013254) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997), and its activity is being 35 defined as a "acetyl-CoA synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of said "acetyl-CoA synthetase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of 200 threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR1 53C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one tran 5 sit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 53C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR174W (Accession number NP_013275) from Saccharomyces 10 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997), and its activity is being defined as "cytosolic NADP-specific isocitrate dehydrogenase", which catalyzes oxida tion of isocitrate to alpha-ketoglutarate (Idp2p). Accordingly, in one embodiment, the process of the present invention comprises the use of said "NADP-specific isocitrate 15 dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR1 74W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably 20 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 74W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YNL241C (Accession number NP_014158) from Saccharomyces 25 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as "glucose-6-phosphate dehydrogenase (Zwfl p)". Accordingly, in one em bodiment, the process of the present invention comprises the use of said "glucose-6 phosphate dehydrogenase" or its homolog, e.g. as shown herein, for the production of 30 the fine chemical, meaning of threonine, in particular for increasing the amount of threonine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 35 In another embodiment, in the process of the present invention the activity of an YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria.
201 [0037.0.1.1] In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR174W and/or YNL241C, is a homolog having said acitivity and being derived from Eukaryot. In one embodi ment, the homolog of the b0760, b1062, b1277, b2040, b2388, b3443, b4039, b1131, 5 b1264, b2066, b2779, b3213 and/or b3429_is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of the b0760, b1062, b1277, b2040, b2388, b3443, b4039, b1131, b1264, 10 b2066, b2779, b3213 and/or b3429_is a homolog having said acitivity and being de rived from Proteobacteria. In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b0760, b1062, b1277, b2040, b2388, b3443, 15 b4039, b1 131, b1 264, b2066, b2779, b3213 and/or b3429_is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the ho molog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b0760, 20 b1062, b1277, b2040, b2388, b3443, b4039, b1131, b1264, b2066, b2779, b3213 and/or b3429_is a homolog having said acitivity and being derived from Enterobacteria les. In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR1 74W and/or YNL241 C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the 25 homolog of the b0760, b1062, b1277, b2040, b2388, b3443, b4039, b1131, b1264, b2066, b2779, b3213 and/or b3429_is a homolog having said acitivity and being de rived from Enterobacteriaceae. In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomy 30 cetales. In one embodiment, the homolog of the b0760, b1062, b1277, b2040, b2388, b3443, b4039, b1131, b1264, b2066, b2779, b3213 and/or b3429_is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, YLR1 53C, YLR174W and/or YNL241C is a homolog having 35 said acitivity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YDR430C, YMR262W, YOR350C, YBL082C, YDR204W, YKR043C, 202 YLR1 53C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae. [0038.0.0.1] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.1.1] In accordance with the invention, a protein or polypeptide has the "activ 5 ity of an protein as shown in table II, application no. 2, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application 10 no. 2, column 3, preferably in the event the nucleic acid sequences encoding said pro teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as 15 shown in table II, application no. 2, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table II, application no. 2, column 3 of Saccharomyces cerevisiae. [0040.0.0.1] to [0047.0.0.1] for the disclosure of the paragraphs [0040.0.0.1] to 20 [0047.0.0.1] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.1.1] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 25 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 2, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.1] to [0051.0.0.1] for the disclosure of the paragraphs [0049.0.0.1] to [0051.0.0.1] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 30 [0052.0.1.1] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu- 203 cleic acid molecules as mentioned in table I, application no. 2, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos 5 sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.1] to [0058.0.0.1] for the disclosure of the paragraphs [0053.0.0.1] to 10 [0058.0.0.1] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.1.1] In case the activity of the Escherichia coli protein b0760 or its homologs, e.g. an "ATP-binding component of molybdate transport system" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of threonine between 18% and 33% 15 or more is conferred. In case the activity of the Escherichia coli protein b1062 or its homologs, e.g. a "dihy dro-orotase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 23% and 42% or more is conferred. 20 In case the activity of the Escherichia coli protein b1 131 or its homologs, e.g. a "adeny losuccinate lyase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of threonine between 17% and 41 % or more is conferred. In case the activity of the Escherichia coli protein b1264 or its homologs, e.g. an "an 25 thranilate synthase component I" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of threonine between 17o% and 15% or more is conferred. In case the activity of the Escherichia coli protein b1277 or its homologs, e.g. a "GTP cyclohydrolase II" is increased advantageously in an organelle such as a plastid or mi 30 tochondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 17% and 28% or more is conferred. In case the activity of the Escherichia coli protein b2040 or its homologs, e.g. a "TDP rhamnose synthetase, NAD(P)-binding" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 35 fine chemical, preferably of threonine between 19% and 67% or more is conferred.
204 In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. an "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of threonine between 25% and 93% or more is conferred. 5 In case the activity of the Escherichia coli protein b2388 or its homologs, e.g. a "glu cokinase" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 24% and 56% or more is conferred. In case the activity of the Escherichia coli protein b2779 or its homologs, e.g. an 10 "enolase" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 18% and 33% or more is conferred. In case the activity of the Escherichia coli protein b3213 or its homologs, e.g. a "gluta mate synthase (small subunit)" is increased advantageously in an organelle such as a 15 plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of threonine between 24% and 77% or more is conferred. In case the activity of the Escherichia coli protein b3429 or its homologs, e.g. a "glyco gen synthase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of 20 threonine between 18% and 55% or more is conferred. In case the activity of the Escherichia coli protein b3443 or its homologs, e.g. a "un known ORF" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 41% and 45% or more is conferred. 25 In case the activity of the Escherichia coli protein b4039 or its homologs, e.g. a "4 hydroxybenzoate synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of threonine between 18% and 38% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR430C or its homologs, 30 e.g. a "metalloprotease" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of threonine between 67% and 155% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YMR262W or its ho mologs, e.g. a "unknown ORF" is increased advantageously in an organelle such as a 35 plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of threonine between 26% and 51% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YOR350c or its homologs, 205 e.g. a "protein similar to Lucilia illustris mitochondria cytochrome oxidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 17% and 70% or more is conferred. 5 In case the activity of the Saccharomyces cerevisiae protein YBL082C or its homologs, e.g. a "Dol-P-Man dependent alpha(1-3) mannosyl-transferase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of threonine between 16% and 55% or more is conferred. 10 In case the activity of the Saccharomyces cerevisiae protein YDR204W or its ho mologs, e.g. a "protein which encodes component of the coenzyme Q biosynthetic path way" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 21% and 36% or more is conferred. 15 In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 25% and 335% or more is con ferred. 20 In case the activity of the Saccharomyces cerevisiae protein YLR153C or its homologs, e.g. an "acetyl-CoA synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of threonine between 23% and 32% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR174W or its ho 25 mologs, e.g. a "cytosolic NADP-specific isocitrate dehydrogenase" is increased advan tageously in an organelle such as a plastid or mitochondria, preferably, in one em bodiment an increase of the fine chemical, preferably of threonine between 23% and 31% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, 30 e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of threonine between 17% and 56% or more is con ferred. [0060.0.1.1] In case the activity of the Escherichia coli protein b0760 or its ho 35 mologs, e.g. an "ATP-binding component of molybdate transport system" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an in- 206 crease of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Escherichia coli protein b1062 or its homologs, e.g. a "dihy dro-orotase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably an increase of the fine chemical and of proteins containing 5 threonine is conferred. In case the activity of the Escherichia coli protein b1 131 or its homologs, e.g. a "adeny losuccinate lyase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. 10 In case the activity of the Escherichia coli protein b1264 or its homologs, e.g. an "an thranilate synthase component I" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Escherichia coli protein b1277 or its homologs, e.g. a "GTP 15 cyclohydrolase II" is increased advantageously in an organelle such as a plastid or mi tochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Escherichia coli protein b2040 or its homologs, e.g. a "TDP rhamnose synthetase, NAD(P)-binding" is increased advantageously in an organelle 20 such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. an "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing 25 threonine is conferred. In case the activity of the Escherichia coli protein b2388 or its homologs, e.g. a "glu cokinase" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. 30 In case the activity of the Escherichia coli protein b2779 or its homologs, e.g. an "enolase" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Escherichia coli protein b3213 or its homologs, e.g. a "gluta 35 mate synthase (small subunit)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining threonine is conferred.
207 In case the activity of the Escherichia coli protein b3429 or its homologs, e.g. a "glyco gen synthase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. 5 In case the activity of the Escherichia coli protein b3443 or its homologs, e.g. a "un known ORF" is increased advantageously in an organelle such as a plastid or mito chondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Escherichia coli protein b4039 or its homologs, e.g. a "4 10 hydroxybenzoate synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining threonine is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR430C or its homologs, e.g. a "metalloprotease" is increased advantageously in an organelle such as a plastid 15 or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Saccharomyces cerevisiae protein YMR262W or its ho mologs, e.g. a "unknown ORF" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con 20 taining threonine is conferred. In case the activity of the Saccharomyces cerevisiae protein YOR350C or its ho mologs, e.g. a "protein similar to Lucilia illustris mitochondria cytochrome oxidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. 25 In case the activity of the Saccharomyces cerevisiae protein YBL082C or its homologs, e.g. a "Dol-P-Man dependent alpha(1-3) mannosyl-transferase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR204W or its ho 30 mologs, e.g. a " protein which encodes component of the coenzyme Q biosynthetic pathway" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, 35 e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred.
208 In case the activity of the Saccharomyces cerevisiae protein YLR153C or its homologs, e.g. an "acetyl-CoA synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining threonine is conferred. 5 In case the activity of the Saccharomyces cerevisiae protein YLR174W or its ho mologs, e.g. a "cytosolic NADP-specific isocitrate dehydrogenase" is increased advan tageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, 10 e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing threonine is conferred. [0061.0.0.1] and [0062.0.0.1] for the disclosure of the paragraphs [0061.0.0.1] and [0062.0.0.1] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. 15 [0063.0.1.1] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 2, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 20 2, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 2, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. 25 [0064.0.1.1] For the purposes of the present invention, the terms "L-threonine" and "threonine also encompass the corresponding salts, such as, for example, threonine hydrochloride or threonine sulfate. Preferably the terms threonine is intended to en compass the term L-threonine. [0065.0.0.1] and [0066.0.0.1] for the disclosure of the paragraphs [0065.0.0.1] and 30 [0066.0.0.1] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.1.1] In one embodiment, the process of the present invention comprises one or more of the following steps 209 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 2, columns 5 and 7 or its homologs activity having herein-mentioned 5 threonine increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 2, columns 5 and 7, e.g. a nucleic 10 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 2, columns 5 and 7 or its homologs or of a mRNA encoding the polypeptide of the present invention having herein-mentioned threonine increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 15 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned threonine increasing activ ity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 2, columns 5 and 7 or its homologs activity, or decreasing the in hibitiory regulation of the polypeptide of the invention; and/or 20 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned threonine increasing activ ity, e.g. of a polypeptide having the activity of a protein as indicated in table II, 25 application no. 2, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned threonine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application 30 no. 2, columns 5 and 7 or its homologs activity, by adding one or more exoge nous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present 210 invention or a polypeptide of the present invention, having herein-mentioned threonine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 2, columns 5 and 7 or its homologs, and/or g) increasing the copy number of a gene conferring the increased expression of a 5 nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned threonine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 2, columns 5 and 7 or its homologs; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of 10 the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 2, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements 15 form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en 20 hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of 25 heat shock proteins, which can lead an enhanced fine chemical production; and/or (j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 30 (k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned threonine increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in 211 table II, application no. 2, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or (1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 5 mentioned threonine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 2, columns 5 and 7 or its ho mologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing 10 said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or (m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned threonine increasing activity, e.g. of a polypeptide having the activity 15 of a protein as indicated in table II, application no. 2, columns 5 and 7 or its ho mologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.1.1] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the 20 nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein 25 as shown in table II, application no. 2, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. [0069.0.0.1] to [0079.0.0.1] for the disclosure of the paragraphs [0069.0.0.1] to [0079.0.0.1] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.1.1] The activation of an endogenous polypeptide having above-mentioned 30 activity, e.g. having the activity of a protein as shown in table II, application no. 2, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic 212 transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table 1l, application no. 2, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex 5 virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 2, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 2, column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. 10 Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.1] to [0084.0.0.1] for the disclosure of the paragraphs [0081.0.0.1] to [0084.0.0.1] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.1.1] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the polypeptide of the inven 15 tion, for example the nucleic acid construct mentioned below, or encoding the protein as shown in table 1l, application no. 2, column 3 into an organism alone or in combina tion with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, pref erably novel metabolites composition in the organism, e.g. an advantageous amino 20 acid composition comprising a higher content of (from a viewpoint of nutrional physiol ogy limited) amino acids, like methionine, lysine or threonine alone or in combination in free or bound form. [0086.0.0.1] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.1.1] By influencing the metabolism thus, it is possible to produce, in the 25 process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to threonine for example compounds like amino acids such as methionine or lycine or other desirable compounds. [0088.0.1.1] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 30 a) providing a non-human organism, preferably a microorganism, a non-human animal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 213 b) increasing the activity of a protein as shown in table 1l, application no. 2, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant 5 or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 10 permit the production of the fine chemical in the organism, preferably the micro organism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the 15 plant or animal tissue or the plant. [0089.0.1.1] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to 20 produce, recover and, if desired isolate, other free or/and bound amino acids, in par ticular threonine. [0090.0.0.1] to [0097.0.0.1] for the disclosure of the paragraphs [0090.0.0.1] to [0097.0.0.1] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.1.1] With regard to the nucleic acid sequence as depicted a nucleic acid 25 construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 2, columns 5 and 7 30 or a derivative thereof, or 214 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 2, columns 5 and 7 or a derivative thereof, or c) (a) and (b) 5 is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic 10 library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.1.1] The use of the nucleic acid sequence according to the invention or of 15 the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 2, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu 20 cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 2, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se quences as depicted in the sequence protocol and disclosed in table 1, application no. 2, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable 25 integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. [0100.0.0.1] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.1.1] In an advantageous embodiment of the invention, the organism takes 30 the form of a plant whose amino acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for monogastric animals is limited by a few essential amino acids such as lysine, threonine or methionine. After 215 the activity of the protein as shown in table 1l, application no. 2, column 3 has been increased or generated in the cytsol or plastids, preferentially in the plastids, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a 5 nutrient medium or else in the soil and subsequently harvested. [0102.0.0.1] to [0110.0.0.1] for the disclosure of the paragraphs [0102.0.0.1] to [0110.0.0.1] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.1.1] In a preferred embodiment, the fine chemical (threonine) is produced in accordance with the invention and, if desired, is isolated. The production of further 10 amino acids such as lysine, methionine etc. and of amino acid mixtures by the process according to the invention is advantageous. [0112.0.0.1] to [0115.0.0.1] for the disclosure of the paragraphs [0112.0.0.1] to [0115.0.0.1] see paragraphs [0112.0.0.0] to [0115.0.0.0] above. [0116.0.1.1] In a preferred embodiment, the present invention relates to a process for 15 the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 20 peptide shown in table 1l, application no. 2, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 2, columns 5 and 7; 25 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity 30 with the amino acid sequence of the polypeptide encoded by the nucleic acid 216 molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 5 amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine 10 chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; 15 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 2, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex 20 pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus 25 sequence shown in table IV, application no. 2, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 2, columns 5 and 7 and conferring an 30 increase in the amount of the fine chemical in an organism or a part thereof; and 217 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole 5 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.1.1.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 2, 10 columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 2, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 2, 15 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 2, columns 5 and 7. [0116.2.1.1.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 2, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid 20 molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 2, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 2, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a 25 polypeptide of a sequence indicated in table II B, application no. 2, columns 5 and 7. [0117.0.1.1] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 2, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 2, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre 30 sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 2, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 2, columns 5 and 7.
218 [0118.0.0.1] to [0120.0.0.1] for the disclosure of the paragraphs [0118.0.0.1] to [0120.0.0.1] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.1.1] Nucleic acid molecules with the sequence shown in table I, application no. 2, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 5 sequences shown in table II, application no. 2, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 2, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 2, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously 10 increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.1] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.1.1] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as 15 shown in table II, application no. 2, column 3 can be determined from generally acces sible databases. [0124.0.0.1] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.1.1] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with 20 the activity of the proteins as shown in table II, application no. 2, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.1] to [0133.0.0.1] for the disclosure of the paragraphs [0126.0.0.1] to [0133.0.0.1] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. 25 [0134.0.1.1] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 2, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring 30 above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, column 3 by 219 for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. [0135.0.0.1] to [0140.0.0.1] for the disclosure of the paragraphs [0135.0.0.1] to [0140.0.0.1] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. 5 [0141.0.1.1] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 2, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 2, columns 5 and 7 or the sequences derived from table II, application no. 2, columns 5 and 7. 10 [0142.0.1.1] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 15 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 2, column 7 is derived from said aligments. [0143.0.1.1] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac 20 tivity of a protein as shown in table II, application no. 2, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.1] to [0151.0.0.1] for the disclosure of the paragraphs [0144.0.0.1] to [0151.0.0.1] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.1.1] Polypeptides having above-mentioned activity, i.e. conferring the fine 25 chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the threonine increasing activity. 30 [0153.0.0.1] to [0159.0.0.1] for the disclosure of the paragraphs [0153.0.0.1] to [0159.0.0.1] see paragraphs [0153.0.0.0] to [0159.0.0.0] above.
220 [0160.0.1.1] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 2, 5 columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, ap 10 plication no. 2, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or 15 C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner. [0161.0.1.1] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more 20 preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application 25 no. 2, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.1.1] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 2, columns 30 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. conferring of a threonine increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the ac tivity of a protein as shown in table II, application no. 2, column 3.
221 [0163.0.1.1] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod 5 ing a biologically active portion of the polypeptide of the present invention or of a poly peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the 10 cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 2, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleo 20 tide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the exam ples. A PCR with the primers shown in table III, application no. 2, column 7 will result in a fragment of the gene product as shown in table II, column 3. 25 [0164.0.0.1] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.1.1] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 2, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine 30 chemical production, in particular a threonine increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.1.1] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 35 which has a similar side chain as an amino acid residue in one of the sequences of the 222 polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 2, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. 5 [0167.0.1.1] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or 10 more homologous to an entire amino acid sequence of table II, application no. 2, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.1] and [0169.0.0.1] for the disclosure of the paragraphs [0168.0.0.1] and 15 [0169.0.0.1] see paragraphs [0168.0.0.0] to [0169.0.0.0] above. [0170.0.1.1] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 2, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned 20 activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 2, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence 25 shown in table II, application no. 2, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 2, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist 30 of the sequence shown in table I, application no. 2, columns 5 and 7, preferably as in dicated in table I A, application no. 2, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole cule indicated in table I B, application no. 2, columns 5 and 7.
223 [0171.0.0.1] to [0173.0.0.1] for the disclosure of the paragraphs [0171.0.0.1] to [0173.0.0.1] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.1.1] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under 5 stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 2, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 10 [0175.0.0.1] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.1.1] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 2, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 15 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 20 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.1] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.1.1] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid 25 molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 2, columns 5 and 7. [0179.0.0.1] and [0180.0.0.1] for the disclosure of the paragraphs [0179.0.0.1] and [0180.0.0.1] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.1.1] Accordingly, the invention relates to nucleic acid molecules encoding a 30 polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that 224 contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 2, columns 5 and 7, preferably shown in ta ble II A, application no. 2, columns 5 and 7 yet retain said activity described herein. The 5 nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 2, columns 5 and 7, preferably shown in table II A, application no. 2, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activ 10 ity, e.g. its expression by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 2, columns 5 and 7, preferably shown in table II A, application no. 2, columns 5 and 7, more preferably at least about 70% identical to one 15 of the sequences shown in table II, application no. 2, columns 5 and 7, preferably shown in table II A, application no. 2, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 2, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 2, columns 5 and 7, preferably shown 20 in table II A, application no. 2, columns 5 and 7. [0182.0.0.1] to [0188.0.0.1] for the disclosure of the paragraphs [0182.0.0.1] to [0188.0.0.1] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.1.1] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 2, columns 5 and 7, preferably shown in table II B, application 25 no. 2, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 2, columns 30 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 2, columns 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7. [0190.0.1.1] Functional equivalents derived from the nucleic acid sequence as shown 35 in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application 225 no. 2, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 5 homology with one of the polypeptides as shown in table II, application no. 2, columns 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 2, columns 5 and 7, pref erably shown in table II B, application no. 2, columns 5 and 7. 10 [0191.0.0.1] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.1.1] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 2, columns 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid 15 molecule of the present invention, in particular of table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, 20 columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.1] to [0196.0.0.1] for the disclosure of the paragraphs [0193.0.0.1] to [0196.0.0.1] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.1.1] Homologues of the nucleic acid sequences used, with the sequence 25 shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, ap plication no. 2, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 30 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 2, columns 5 and 7, preferably shown in table I B, applica- 226 tion no. 2, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.1.1] In one embodiment of the present invention, the nucleic acid molecule of 5 the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 10 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 2, columns 5 and 7, preferably shown 15 in table I B, application no. 2, columns 5 and 7. [0199.0.1.1] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 2, columns 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 20 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 2, columns 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7. 25 [0200.0.1.1] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 2, columns 5 and 7, preferably shown in table II B, application no. 2, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the 30 nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 2, columns 5 and 7, preferably shown in table I B, application no. 2, columns 5 and 7. [0201.0.1.1] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the 227 fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the 5 activity of a polypeptide shown in table II, application no. 2, columns 5 and 7 expressed under identical conditions. [0202.0.1.1] Homologues of table I, application no. 2, columns 5 and 7 or of the de rived sequences of table II, application no. 2, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA 10 sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the 15 promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person 20 skilled in the art and are mentioned herein below. [0203.0.0.1] to [0215.0.0.1] for the disclosure of the paragraphs [0203.0.0.1] to [0215.0.0.1] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.1.1] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting 25 of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 2, columns 5 and 7; preferably shown in Table II B application no. 2, columns 5 and 7, or a fragment thereof conferring an increase in the amount of the fine chemical in an organism or a part thereof 30 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 2, columns 5 and 7 prefera bly shown in Table I B application no. 2, columns 5 and 7, or a fragment thereof conferring an increase in the amount of the fine chemical in an organism or a part thereof; 228 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) 10 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 15 preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism 20 or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 2, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 25 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 2, columns 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 229 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 2, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and 5 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 10 1, application no. 2, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 2, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 15 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 2, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 2, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present 20 invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 2, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the poly peptide sequence shown in table II A and/or II B, application no. 2, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present invention 25 encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 2, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 2, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence 30 shown in table I A and/or I B, application no. 2, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 2, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, 35 application no. 2, columns 5 and 7.
230 [0217.0.0.1] to [0226.0.0.1] for the disclosure of the paragraphs [0217.0.0.1] to [0226.0.0.1] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.1.1] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by 5 means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of 10 replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that 15 they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 2, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. 20 [0228.0.0.1] to [0239.0.0.1] for the disclosure of the paragraphs [0228.0.0.1] to [0239.0.0.1] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.1.1] In addition to the sequence mentioned in table I, application no. 2, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least 25 one further gene of the amino acid biosynthetic pathway such as for L-lysine, L threonine and/or L-methionine is expressed in the organisms such as plants or micro organisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased syn 30 thesis of the amino acids desired since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the nucleic acids sequences of the invention containing the sequences shown in table I, application no. 2, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster 231 growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.0.1] to [0264.0.0.1] for the disclosure of the paragraphs [0241.0.0.1] to [0264.0.0.1] see paragraphs [0241.0.0.0] to [0264.0.0.0] above. 5 [0265.0.1.1] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the 10 extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid 15 transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 2, columns 5 and 7 and described herein to achieve an expression in one of said com 20 partments or extracellular. [0266.0.0.1] to [0287.0.0.1] for the disclosure of the paragraphs [0266.0.0.1] to [0287.0.0.1] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.1.1] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory 25 sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 2, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 30 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 2, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids.
232 [0289.0.0.1] to [0296.0.0.1] for the disclosure of the paragraphs [0289.0.0.1] to [0296.0.0.1] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.1.1] Moreover, native polypeptide conferring the increase of the fine chemi cal in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for 5 example using the antibody of the present invention as described below, in particular, an anti-b0760, anti-b1062, anti-b1277, anti-b2040, anti-b2388, anti-b3443, anti-b4039, anti-b1 131, anti-b1264, anti-b2066, anti-b2779, anti-b3213, anti-b3429, anti-YDR430C, anti-YMR262W, anti-YOR350C, anti-YBL082C, anti-YDR204W, anti-YKRO43C, anti YLR1 53C, anti-YLR174W and/or anti-YNL241C protein antibody or an antibody against 10 polypeptides as shown in table II, application no. 2, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal anti bodies. [0298.0.0.1] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. 15 [0299.0.1.1] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 2, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 2, columns 5 and 7 or func tional homologues thereof. [0300.0.1.1] In one advantageous embodiment, in the method of the present inven 20 tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 2, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 2, columns 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre 25 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.1] to [0304.0.0.1] for the disclosure of the paragraphs [0301.0.0.1] to [0304.0.0.1] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.1.1] In one advantageous embodiment, the method of the present invention 30 comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 2, columns 5 and 7 by one or more 233 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 2, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the 5 polypeptide of the invention distinguishes from the sequence shown in table II, applica tion no. 2, columns 5 and 7 by not more than 80% or 70% of the amino acids, prefera bly not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II, application no. 2, columns 10 5 and 7. [0306.0.0.1] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.1.1] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se 15 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 2, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 2, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden 20 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 2, columns 5 and 7. [0308.0.1.1] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 2, col 25 umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 2, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre 30 ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into 35 the organelle for example into the plastid or mitochondria.
234 [0309.0.0.1] to [0311.0.0.1] for the disclosure of the paragraphs [0309.0.0.1] to [0311.0.0.1] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.1.1] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid 5 sequence, which is sufficiently homologous to an amino acid sequence shown in table II A and/or II B, application no. 2, columns 5 and 7. [0313.0.1.1] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole 10 cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se 15 quences as shown in table II A and/or II B, application no. 2, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo 20 tide sequence of table I A and/or I B, application no. 2, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.1.1] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 2, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. 25 Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 2, columns 5 and 7. 30 [0315.0.0.1] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.1.1] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present 235 invention, e.g., the amino acid sequence shown in table II, application no. 2, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an 5 polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.1] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.1.1] Manipulation of the nucleic acid molecule of the invention may result in 10 the production of a protein having differences from the wild-type protein as shown in table II, application no. 2, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 2, column 3, prefera bly at least 2, 3, 4, 5, ,6 ,7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap 15 plication no. 2, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. [0319.0.1.1] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing 20 said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 2, column 3. The nucleic 25 acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.1] to [0322.0.0.1] for the disclosure of the paragraphs [0320.0.0.1] to [0322.0.0.1] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.1.1] In one embodiment, a protein (= polypeptide) as shown in table II, appli 30 cation no. 2, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not 236 substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 2, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. 5 [0324.0.0.1] to [0329.0.0.1] for the disclosure of the paragraphs [0324.0.0.1] to [0329.0.0.1] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.1.1] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins which are encoded by the sequences shown in table II, application no. 2, columns 5 and 7. 10 [0331.0.0.1] to [0346.0.0.1] for the disclosure of the paragraphs [0331.0.0.1] to [0346.0.0.1] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.1.1] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of 15 the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 2, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu 20 lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu 25 lation of the genome, the activity of protein as shown in table II, application no. 2, col umn 3 or a protein as shown in table II, application no. 2, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. 30 [0348.0.0.1] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.1.1] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 2, column 3 with the corresponding encoding gene - becomes a 237 transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.1] to [0369.0.0.1] for the disclosure of the paragraphs [0350.0.0.1] to 5 [0369.0.0.1] see paragraphs [0350.0.0.0] to [0369.0.0.0] above. [0370.0.1.1] The fermentation broths obtained in this way, containing in particular L methionine, L-threonine and/or L-lysine preferably L-threonine, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be removed entirely or partly by 10 separation methods, such as, for example, centrifugation, filtration, decantation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evapo rator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can 15 then be worked up by freeze-drying, spray drying, spray granulation or by other proc esses. [0371.0.0.1] to [0376.0.0.1], [0376.1.0.1] and [0377.0.0.1] for the disclosure of the paragraphs [0371.0.0.1] to [0376.0.0.1], [0376.1.0.1] and [0377.0.0.1] see paragraphs [0371.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. 20 [0378.0.1.1] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a 25 candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 30 the nucleic acid molecule sequence shown in table 1, application no. 2, columns 5 and 7, preferably in table I B, application no. 2, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; 238 (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and 5 (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. [0379.0.0.1] to [0383.0.0.1] for the disclosure of the paragraphs [0379.0.0.1] to [0383.0.0.1] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. 10 [0384.0.1.1] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product 15 or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 2, column 3, eg comparing near identical organisms with low and high acitivity of the proteins as shown in table 1l, 20 application no. 2, column 3. [0385.0.0.1] to [0435.0.0.1] for the disclosure of the paragraphs [0385.0.0.1] to [0435.0.0.1] see paragraphs [0385.0.0.0] to [0435.0.0.0] above. [0436.0.1.1] Threonine production in Chlamydomonas reinhardtii The amino acid production can be analysed as mentioned above. The proteins and 25 nucleic acids can be analysed as mentioned below. [0437.0.0.1] to [0497.0.0.1] for the disclosure of the paragraphs [0437.0.0.1] to [0497.0.0.1] see paragraphs [0437.0.0.0] to [0497.0.0.0] above. [0498.0.1.1] The results of the different plant analyses can be seen from the table, which follows: 30 Table VI 239 ORF Metabolite Method Min Max YBL082C Threonine GC 1.16 1.55 YDR204W Threonine GC 1.21 1.36 YKR043C Threonine GC 1.25 4.35 YLR153C Threonine GC 1.23 1.32 YLR174W Threonine GC 1.23 1.31 YNL241C Threonine GC 1.17 1.56 b2066 Threonine GC 1.25 1.93 b2779 Threonine GC 1.18 1.33 b3429 Threonine GC 1.18 1.55 b1131 Threonine GC 1.17 1.41 B1264 Threonine GC 1.17 1.55 B3213 Threonine GC 1.24 1.77 B0760 Threonine GC 1.18 1.33 B1062 Threonine GC 1.23 1.42 B1277 Threonine GC 1.17 1.28 B2040 Threonine GC 1.19 1.67 B2388 Threonine GC 1.24 1.56 B3443 Threonine LC 1.41 1.45 B4039 Threonine GC 1.18 1.38 YDR430C Threonine LC 1.67 2.55 YMR262W Threonine LC 1.26 1.51 YOR350C Threonine GC 1.17 1.70 [0499.0.0.1] and [0500.0.0.1] for the disclosure of the paragraphs [0499.0.0.1] and [0500.0.0.1] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.1.1] Example 15a: Engineering ryegrass plants by over-expressing 5 YBL082C from Saccharomyces cerevisiae or homologs of YBL082C from other organisms. [0502.0.0.1] to [0508.0.0.1] for the disclosure of the paragraphs [0502.0.0.1] to [0508.0.0.1] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.1.1] Example 15b: Engineering soybean plants by over-expressing 10 YBL082C from Saccharomyces cerevisiae or homologs of YBL082C from other organisms.
240 [0510.0.0.1] to [0513.0.0.1] for the disclosure of the paragraphs [0510.0.0.1] to [0513.0.0.1] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.1] Example 15c: Engineering corn plants by over-expressing YBL082C from Saccharomyces cerevisiae or homologs of 5 YBL082C from other organisms. [0515.0.0.1] to [0540.0.0.1] for the disclosure of the paragraphs [0515.0.0.1] to [0540.0.0.1] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.1.1] Example 15d: Engineering wheat plants by over-expressing YBL082C from Saccharomyces cerevisiae or homologs 10 of YBL082C from other organisms. [0542.0.0.1] to [0544.0.0.1] for the disclosure of the paragraphs [0542.0.0.1] to [0544.0.0.1] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.1.1] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YBL082C from Saccharomyces cerevisiae or homologs 15 of YBL082C from other organisms. [0546.0.0.1] to [0549.0.0.1] for the disclosure of the paragraphs [0546.0.0.1] to [0549.0.0.1] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.1.1] Example 15f: Engineering alfalfa plants by over-expressing YBL082C from Saccharomyces cerevisiae or homologs of 20 YBL082C from other organisms. [0551.0.0.1] to [0554.0.0.1] for the disclosure of the paragraphs [0551.0.0.1] to [0554.0.0.1] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.0.1] Example 16: Metabolite Profiling Info from Zea mays 25 Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII Table VII 241 ORF_NAME Metabolite MIN MAX b2066 Threonine 1,55 2,33 b3429 Threonine 1,43 1,82 YKR043C Threonine 1,44 10,55 Table VII shows the increase in methionine in genetically modified corn plants express ing the Escherichia coli nucleic acid sequences b2066 and b3429 or the Saccharomy ces cerevisiae nucleic acid sequence YKR043C. 5 In one embodiment, in case the activity of the Escherichia coli protein b2066 or its ho mologs, e.g. a "uridine/cytidine kinase", is increased in corn plants, preferably, an in crease of the fine chemical threonine between 55% and 133% or more is conferred. In one embodiment, in case the activity of the Escherichia coli protein b3429 or its ho mologs, e.g. a "glycogen synthase", is increased in corn plants, preferably, an increase 10 of the fine chemical threonine between 43% and 82% or more is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "unknown ORF", is increased in corn plants, prefera bly, an increase of the fine chemicals threonine between 44% and 955% or more is conferred. 15 [0554.2.0.1] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.1] for the disclosure of this paragraph see [0555.0.0.0] above.
242 [0001.0.0.2] to [0007.0.0.2] for the disclosure of the paragraphs [0001.0.0.2] to [0007.0.0.2] see paragraphs [0001.0.0.0] to [0007.0.0.0] above. [0007.1.0.2] and [0008.0.0.2] for the disclosure of the paragraphs [0007.1.0.2] and [0008.0.0.2] see paragraphs [0007.1.0.0] and [0008.0.0.0] above. 5 [0009.0.2.2] As described above, the essential amino acids are necessary for hu mans and many mammals, for example for livestock. Tryptophane (L-tryptophane) is one of the most reactive amino acids. At pH 4.0-6.0 tryptophane's amino group reacts with aldehydes producing Schiff-bases. On the other hand if the amino group is blocked by acetylation, tryptophane reacts with aldehydes yielding carboline derivatives 10 (carboline 1,2,3,4-tetrahydro-carboline-3-carboxylic acid). Tryptophane plays a unique role in defense against infection because of its relative scarcity compared to other amino acids. During infection, the body induces tryptophane-catabolizing enzymes, which increase tryptophane's scarcity in an attempt to starve the infecting organisms [R. R. Brown, Y. Ozaki, S. P. Datta, et al., Implications of interferon-induced trypto 15 phane catabolism in cancer, autoimmune diseases and AIDS. In: Kynurenine and Se rotonin Pathways, R. Schwarcz, et al., (Eds.), Plenum Press, New York, 1991]. In most proteins, tryptophane is the least abundant essential amino acid, comprising approxi mately 1% of plant proteins and 1.5% of animal proteins. Although the minimum daily requirement for tryptophane is 160 mg for women and 250 mg for men, 500-700 mg 20 are recommended to ensure high-quality protein intake. Actual tryptophane utilization is substantially higher. Men use approximately 3.5 grams of tryptophane to make one days's worth of protein [J. C. Peters, Tryptophane Nutrition and Metabolism: an Over view. In: Kynurenine and Serotonin Pathways, R. Schwarcz, et al., (Eds.), Plenum Press, New York, 1991]. The balance is obtained by hepatic recycling of tryptophane 25 from used (catabolized) proteins. Dietary tryptophane is well absorbed intestinally. About 10% of the tryptophane circu lating in the bloodstream is free, and 90% is bound to the protein albumin. The trypto phane binding site on albumin also has afinity for free fatty acids (FFAs), so trypto phane is displaced when FFAs rise, as when fasting. 30 Although tryptophane is not usually the limiting amino acid in protein synthesis, trypto phane may become insufficient for the normal functioning of other tryptophane dependent pathways. Numerous lines of research point to tryptophane's central role in regulation of feeding and other behaviors. Tryptophane is not only typically the least abundant amino acid in the liver's free amino acid pool, but liver tryptophane-tRNA lev 35 els fall faster during food deprivation than other indispensable amino acids [Q. R.
243 Rogers, The nutritional and metabolic effects of amino acid imbalances. In: Protein Metabolism and Nutrition, D. J. A. Cole (Ed.), Butterworths, London, 1976]. Under fast ing conditions, and possibly in wasting syndromes, tryptophane may become the rate limiting amino acid for protein synthesis [Peters, 1991]. 5 [0010.0.0.2] and [0011.0.0.2] for the disclosure of the paragraphs [0010.0.0.2] and [0011.0.0.2] see paragraphs [0010.0.0.0] and [0011.0.0.0] above. [0012.0.2.2] It is an object of the present invention to develop an inexpensive proc ess for the synthesis of tryptophane, preferably L-tryptophane. Tryptophane is together with methionine, lysine and threonine (depending on the organism) one of the amino 10 acids, which are most frequently limiting. [0013.0.0.2] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.2.2] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is tryptophane, preferably L- tryptophane. Accordingly, in the present invention, the term "the fine chemical" as 15 used herein relates to "tryptophane". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising tryptophane. [0015.0.2.2] In one embodiment, the term "the fine chemical" means tryptophane, preferably L- tryptophane. Throughout the specification the term "the fine chemical" means tryptophane, preferably L- tryptophane, its salts, ester or amids in free form or 20 bound to proteins. In a preferred embodiment, the term "the fine chemical" means tryp tophane, preferably L- tryptophane in free form or its salts or bound to proteins. [0016.0.2.2] Accordingly, the present invention relates to a process for the production of tryptophane, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 25 no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 3, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 3, column 5 in the plastid of a microorganism or plant, or in one or 30 more parts thereof; and 244 (c) growing the organism under conditions which permit the production of the fine chemical, thus, tryptophane or fine chemicals comprising tryptophane, in said or ganism or in the culture medium surrounding the organism. [0017.0.2.2] In another embodiment the present invention is related to a process for 5 the production of tryptophane, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 3, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 3, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, appli 15 cation no. 3, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of tryptophane in said organism. 20 [0017.1.2.2] In another embodiment, the present invention relates to a process for the production of tryptophane, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 3, column 5, in an organelle of a microorganism or plant through the 25 transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 3, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 3, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 245 (c) growing the organism under conditions which permit the production of the fine chemical, thus, tryptophane or fine chemicals comprising tryptophane, in said or ganism or in the culture medium surrounding the organism. [0018.0.2.2] Advantagously the activity of the protein as shown in table 1l, application 5 no. 3, column 3 encoded by the nucleic acid sequences as shown in table 1, application no. 3, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.2] to [0024.0.0.2] for the disclosure of the paragraphs [0019.0.0.2] to [0024.0.0.2] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. 10 [0025.0.2.2] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to 15 link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 3, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin 20 NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 25 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 30 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 35 ful for the molecular joining of the different nucleic acid molecules. This procedure 246 might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 5 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.2.2] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 3, column 3 and its homologs as disclosed in 10 table I, application no. 3, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 15 ing for proteins as shown in table II, application no. 3, column 3 and its homologs as disclosed in table I, application no. 3, columns 5 and 7. [0027.0.0.2] to [0029.0.0.2] for the disclosure of the paragraphs [0027.0.0.2] to [0029.0.0.2] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.2.2] Alternatively, nucleic acid sequences coding for the transit peptides 20 may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 25 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 30 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 35 shorter or longer stretches are also possible. In addition target sequences, which facili- 247 tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 5 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 3, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 3, columns 5 and 7 10 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 3, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more 15 preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 3, col umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres 20 sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 3, columns 5 and 7. Furthermore the 25 skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.2.2] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.2.2] Alternatively to the targeting of the sequences shown in table II, ap 30 plication no. 3, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 35 3, columns 5 and 7 are directly introduced and expressed in plastids.
248 The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 5 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 10 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.2] and [0030.3.0.2] for the disclosure of the paragraphs [0030.2.0.2] and [0030.3.0.2] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.2.2] For the inventive process it is of great advantage that by transforming 15 the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 3, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. 20 A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 3, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 3, columns 5 and 25 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 30 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 3, columns 5 and 7 or a sequence 35 encoding a protein, as depicted in table II, application no. 3, columns 5 and 7 in such a 249 manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 3 columns 5 and 7 or a sequence encoding a pro tein as depicted in table II, application no. 3 columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 5 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 3, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 10 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 15 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 3, columns 5 and 7. 20 [0030.5.2.2] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 3, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle 25 dons or in seeds. [0030.6.2.2] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 3, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro 30 moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.2] and [0032.0.0.2] for the disclosure of the paragraphs [0031.0.0.2] and [0032.0.0.2] see paragraphs [0031.0.0.0] and [0032.0.0.0] above.
250 [0033.0.2.2] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro 5 duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table 1l, application no. 3, column 3. Preferably the modification of the activity of a protein as shown in table 1l, application no. 3, column 3 or their combination can be achieved by joining the protein to a transit peptide. 10 [0034.0.2.2] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table 1l, application no. 3, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. 15 [0035.0.0.2] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.2.2] The sequence of b1223 (Accession number NP_415741) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nitrite extrusion protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "nitrite extru 20 sion protein" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of tryptophane, in particular for increasing the amount of tryptophane in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to 25 one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1704 (Accession number NP_416219) from Escherichia coli has 30 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase, tryptophan repressible)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase" or its homolog, e.g. as shown herein, for the production of the fine 35 chemical, meaning of tryptophane, in particular for increasing the amount of trypto- 251 phane in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2601 (Accession number NP_417092) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 10 is being defined as a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase, tyrosine-repressible)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "-deoxy-D-arabinoheptulosonate-7-phosphate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of tryptophane, in particular for increasing the amount of tryptophane in free 15 or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2601 protein is increased or gen erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2601 20 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the 25 process of the present invention comprises the use of a "ornithine decarboxylase isozyme" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of tryptophane, in particular for increasing the amount of tryptophane in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 protein is increased or gen 30 erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 35 The sequence of b3390 (Accession number YP_026215) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as a "shikimate kinase I". Accordingly, in one embodiment, the process 252 of the present invention comprises the use of a "shikimate kinase I" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of tryptophane, in particular for increasing the amount of tryptophane in free or bound form in an organ ism or a part thereof, as mentioned. In one embodiment, in the process of the present 5 invention the activity of a b3390 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3390 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YOR353C (Accession number NP_014998) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dujon et al., Nature 387 (6632 Suppl), 98-102 (1997), and its activity is being de fined as a "protein required for cell morphogenesis and cell separation after mitosis; 15 Sog2p". Accordingly, in one embodiment, the process of the present invention com prises the use of a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of tryptophane in free or bound form, in particular for increasing the amount of tryptophane in free or bound form in an organism or a part thereof, as men 20 tioned. In one embodiment, in the process of the present invention the activity of a YOR353C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of an 25 YOR353C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined 30 as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase" which cata lyzes the first step in aromatic amino acid biosynthesis and is feedback-inhibited by phenylalanine (Aro3p). Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabino-heptulosonate-7-phosphate syn thase" or its homolog, e.g. as shown herein, for the production of the fine chemical, 35 meaning of tryptophane, in particular for increasing the amount of tryptophane in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased or 253 generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR035W protein is increased or generated in a subcellular compartment of the organ 5 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YER024W (Accession number NP_010941) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997) and its activity is being de fined as carnithine actyltransferase. Accordingly, in one embodiment, the process of 10 the present invention comprises the use of a carnithine actyltransferase or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of tryptophane, in particular for increasing the amount of tryptophane in free or bound form in an organ ism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YER024W protein is increased or generated, e.g. from Sac 15 charomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YER024W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of YNL241C (Accession number NP_014158) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as a "glucose-6-phosphate dehydrogenase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glucose-6-phosphate de 25 hydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of tryptophane, in particular for increasing the amount of trypto phane in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, 30 preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.2.2] In one embodiment, the homolog of the YOR353C, YDR035W, 35 YER024W and/or YNL241C, is a homolog having said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b1223, b1704, b2601, b2965 and/or 254 b3390_is a homolog having said acitivity and being derived from bacteria. In one em bodiment, the homolog of the YOR353C, YDR035W, YER024W and/or YNL241 C is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of the b1223, b1704, b2601, b2965 and/or b3390_is a homolog having said 5 acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YOR353C, YDR035W, YER024W and/or YNL241C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b1223, b1704, b2601, b2965 and/or b3390_is a homolog having said acitivity and being de rived from Gammaproteobacteria. In one embodiment, the homolog of the YOR353C, 10 YDR035W, YER024W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b1223, b1704, b2601, b2965 and/or b3390_is a homolog having said acitivity and being de rived from Enterobacteriales. In one embodiment, the homolog of the YOR353C, YDR035W, YER024W and/or YNL241C is a homolog having said acitivity and being 15 derived from Saccharomycetes. In one embodiment, the homolog of the b1223, b1704, b2601, b2965 and/or b3390_is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YOR353C, YDR035W, YER024W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetales. In one embodiment, the homolog of the b1223, b1704, b2601, 20 b2965 and/or b3390_is a homolog having said acitivity and being derived from Es cherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YOR353C, YDR035W, YER024W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YOR353C, YDR035W, YER024W and/or YNL241C is a homolog having said acitivity 25 and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae. [0038.0.0.2] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.2.2] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 3, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemi 30 cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 3, column 3, preferably in the event the nucleic acid sequences encoding said pro teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout 35 the specification the activity or preferably the biological activity of such a protein or 255 polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table 1l, application no. 3, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref 5 erably 40% in comparison to a protein as shown in table 1l, application no. 3, column 3 of Saccharomyces cerevisiae. [0040.0.0.2] to [0047.0.0.2] for the disclosure of the paragraphs [0040.0.0.2] to [0047.0.0.2] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.2.2] Preferably, the reference, control or wild type differs form the subject of 10 the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 3, column 3 its bio 15 chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.2] to [0051.0.0.2] for the disclosure of the paragraphs [0049.0.0.2] to [0051.0.0.2] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.2.2] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 20 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 3, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle 25 such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 30 [0053.0.0.2] to [0058.0.0.2] for the disclosure of the paragraphs [0053.0.0.2] to [0058.0.0.2] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.2.2] In case the activity of the Escherichia coli protein b1223 or its homologs, e.g. a "nitrite extrusion protein" is increased advantageously in an organelle such as a 256 plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of tryptophane between 40% and 147% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase" is increased advantageously in 5 an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of tryptophane between 305% and 1711% or more is conferred. In case the activity of the Escherichia coli protein b2601 or its homologs, e.g. an "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase" is increased advantageously in 10 an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of tryptophane between 54% and 292% or more is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. an "or nithine decarboxylase isozyme" is increased advantageously in an organelle such as a 15 plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of tryptophane between 33% and 357% or more is conferred. In case the activity of the Escherichia coli protein b3390 or its homologs, e.g. an "shikimate kinase I" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 20 bly of tryptophane between 31% and 356% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YOR353C or its ho mologs, e.g. a "protein required for cell morphogenesis and cell separation after mito sis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of tryp 25 tophane between 30% and 129% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of tryptophane between 39% 30 and 144% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YER024W or its ho mologs, e.g. a "putative homolog of the carnitine acetyltransferase" with a role in ubiquinone is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of tryp 35 tophane between 27% and 38% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. an "glucose-6-phosphate dehydrogenase" is increased advantageously in an or- 257 ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of tryptophane between 30% and 43% or more is con ferred. [0060.0.2.2] In case the activity of the Escherichia coli protein b1223 or its ho 5 mologs, e.g. a "nitrite extrusion protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing tryptophane is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase" is increased advantageously in 10 an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing tryptophane is conferred. In case the activity of the Escherichia coli protein b2601 or its homologs, e.g. an "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine 15 chemical and of proteins containing tryptophane is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. an "or nithine decarboxylase isozyme" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining tryptophane is conferred. 20 In case the activity of the Escherichia coli protein b3390 or its homologs, e.g. an "shikimate kinase I" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing tryptophane is conferred. In case the activity of the Saccharomyces cerevisiae protein YOR353C or its ho 25 mologs, e.g. a "protein required for cell morphogenesis and cell separation after mito sis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical and of proteins containing tryptophane is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho 30 mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an in crease of the fine chemical and of proteins containing tryptophane is conferred. In case the activity of the Saccharomyces cerevisiae protein YER024W or its ho mologs, e.g. a "putative homolog of the carnitine acetyltransferase" is increased advan 35 tageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing tryptophane is conferred.
258 In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. an "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing tryptophane is conferred. 5 [0061.0.0.2] and [0062.0.0.2] for the disclosure of the paragraphs [0061.0.0.2] and [0062.0.0.2] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.2.2] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising 10 the consensus sequence shown in table IV, application no. 3, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 3, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 15 1, application no. 3, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.2.2] For the purposes of the present invention, the terms "L- tryptophane" and "tryptophane" also encompass the corresponding salts, such as, for example, tryp tophane hydrochloride or tryptophane sulfate. Preferably the terms tryptophane is in 20 tended to encompass the term L- tryptophane. [0065.0.0.2] and [0066.0.0.2] for the disclosure of the paragraphs [0065.0.0.2] and [0066.0.0.2] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.2.2] In one embodiment, the process of the present invention comprises one or more of the following steps 25 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having a Table 1l, application no. 3, columns 5 and 7 protein activity or its homologs activity having herein-mentioned tryptophane increasing activity; and/or 30 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid 259 sequence as shown in table I, application no. 3, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having a Table II, application no. 3, col umns 5 and 7 protein activity or its homologs or of a mRNA encoding the poly peptide of the present invention having herein-mentioned tryptophane increasing 5 activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned tryptophane increasing ac tivity, e.g. of a polypeptide having a Table II, application no. 3, columns 5 and 7 10 protein or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 15 polypeptide of the invention having herein-mentioned tryptophane increasing ac tivity, e.g. of a polypeptide having the Table II, application no. 3, columns 5 and 7 protein or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 20 the present invention having herein-mentioned tryptophane increasing activity, e.g. of a polypeptide having the Table II, application no. 3, columns 5 and 7 pro tein or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 25 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned tryp tophane increasing activity, e.g. of a polypeptide having the Table II, application no. 3, columns 5 and 7 protein or its homologs, and/or g) increasing the copy number of a gene conferring the increased expression of a 30 nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned tryptophane increasing activity, e.g. of a polypeptide having the Table II, applica tion no. 3, columns 5 and 7 protein or its homologs; and/or 260 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the Table 1l, application no. 3, columns 5 and 7 protein or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to 5 either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to en hance to acitivty of positive elements. Positive elements can be randomly intro duced in plants by T-DNA or transposon mutagenesis and lines can be identified 10 in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby enhanced; and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam 15 ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target 20 organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned tryptophane in creasing activity, e.g. of a polypeptide having a Table 1l, application no. 3, col umns 5 and 7 protein or its homologs activity, to the plastids by the addition of a 25 plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned tryptophane increasing activity, e.g. of a polypeptide having a Table 1l, application no. 3, columns 5 and 7 protein or its homologs activity in plastids by 30 the stable or transient transformation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plas tidial expression of the nucleic acids or polypeptides of the invention; and/or 261 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned tryptophane increasing activity, e.g. of a polypeptide having a Table II, application no. 3, columns 5 and 7 protein or its homologs activity in plastids by 5 integration of a nucleic acid of the invention into the plastidal genome under con trol of preferable a plastidial promoter. [0068.0.2.2] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se 10 quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 3, column 3 or its homologs. Preferably the in 15 crease of the fine chemical takes place in plastids. [0069.0.0.2] to [0079.0.0.2] for the disclosure of the paragraphs [0069.0.0.2] to [0079.0.0.2] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.2.2] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 3, col 20 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 3, column 3 and activates its transcription. 25 A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 3, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific 30 expression of the protein as shown in table II, application no. 3, column 3, see e.g. in WOO1/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.2] to [0084.0.0.2] for the disclosure of the paragraphs [0081.0.0.2] to [0084.0.0.2] see paragraphs [0081.0.0.0] to [0084.0.0.0] above.
262 [0085.0.2.2] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the polypeptide of the inven tion, for example the nucleic acid construct mentioned below, or encoding the protein as shown in table 1l, application no. 3, column 3 into an organism alone or in combina 5 tion with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, pref erably novel metabolites composition in the organism, e.g. an advantageous amino acid composition comprising a higher content of (from a viewpoint of nutrional physiol ogy limited) amino acids, like methionine, lysine or threonine alone or in combination in 10 free or bound form. [0086.0.0.2] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.2.2] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to tryptophane for example compounds like amino 15 acids such as methionine, threonine or lysine or other desirable compounds. [0088.0.2.2] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a mi 20 croorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 3, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present in vention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or 25 animal cell, the plant or animal tissue or the plant, more preferably a microorgan ism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 30 permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 263 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. 5 [0089.0.2.2] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound amino acids, in par 10 ticular tryptophane. [0090.0.0.2] to [0097.0.0.2] for the disclosure of the paragraphs [0090.0.0.2] to [0097.0.0.2] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.2.2] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 15 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 3, columns 5 and 7 or a derivative thereof, or 20 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 3, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 25 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 30 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
264 [0099.0.2.2] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 5 depicted in the sequence protocol and disclosed in table 1, application no. 3, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 3, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se 10 quences as depicted in the sequence protocol and disclosed in table 1, application no. 3, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. 15 [0100.0.0.2] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.2.2] In an advantageous embodiment of the invention, the organism takes the form of a plant whose amino acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for monogastric animals is 20 limited by a few essential amino acids such as lysine, threonine or methionine. After the activity of the protein as shown in table 1l, application no. 3, column 3 has been increased or generated in the cytsol or plastids, preferentially in the plastids, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a 25 nutrient medium or else in the soil and subsequently harvested. [0102.0.0.2] to [0110.0.0.2] for the disclosure of the paragraphs [0102.0.0.2] to [0110.0.0.2] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.2.2] In a preferred embodiment, the fine chemical (tryptophane) is produced in accordance with the invention and, if desired, is isolated. The production of further 30 amino acids such as lysine, tryptophane etc. and of amino acid mixtures by the process according to the invention is advantageous. [0112.0.0.2] to [0115.0.0.2] for the disclosure of the paragraphs [0112.0.0.2] to [0115.0.0.2] see paragraphs [0112.0.0.0] to [0115.0.0.0] above.
265 [0116.0.2.2] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected 5 from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 3, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; 10 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 3, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine 15 chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 20 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 25 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 30 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; 266 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 3, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 5 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 10 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 3, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly 15 peptide shown in table II, application no. 3, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 20 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.2.2.] In one embodiment, the nucleic acid molecule used in the process of the 25 invention distinguishes over the sequence indicated in table I A, application no. 3, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 3, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 30 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 3, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 3, columns 5 and 7.
267 [0116.2.2.2.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 3, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 5 cated in table I B, application no. 3, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 3, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 3, columns 5 and 7. 10 [0117.0.2.2] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 3, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 3, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se 15 quence shown in table I, application no. 3, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 3, columns 5 and 7. [0118.0.0.2] to [0120.0.0.2] for the disclosure of the paragraphs [0118.0.0.2] to [0120.0.0.2] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. 20 [0121.0.2.2] Nucleic acid molecules with the sequence shown in table I, application no. 3, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 3, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 3, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological 25 activity of a protein as shown in table II, application no. 3, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.2] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. 30 [0123.0.2.2] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 3, column 3 can be determined from generally acces sible databases.
268 [0124.0.0.2] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.2.2] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 3, column 3 and confer 5 ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.2] to [0133.0.0.2] for the disclosure of the paragraphs [0126.0.0.2] to [0133.0.0.2] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.2.2] However, it is also possible to use artificial sequences, which differ in 10 one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 3, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its 15 activity, e.g. after increasing the activity of a protein as shown in table II, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. [0135.0.0.2] to [0140.0.0.2] for the disclosure of the paragraphs [0135.0.0.2] to [0140.0.0.2] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. 20 [0141.0.2.2] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 3, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 3, columns 5 and 7 or the sequences derived from table II, application no. 3, columns 5 and 7. 25 [0142.0.2.2] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 30 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 3, column 7 is derived from said aligments.
269 [0143.0.2.2] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 3, column 3 or further functional 5 homologs of the polypeptide of the invention from other organisms. [0144.0.0.2] to [0151.0.0.2] for the disclosure of the paragraphs [0144.0.0.2] to [0151.0.0.2] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.2.2] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se 10 quences which hybridize to the sequences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the me thionine increasing activity. [0153.0.0.2] to [0159.0.0.2] for the disclosure of the paragraphs [0153.0.0.2] to 15 [0159.0.0.2] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.2.2] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 3, 20 columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, ap 25 plication no. 3, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or 30 C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner. [0161.0.2.2] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 270 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7, or a portion thereof and preferably has 5 above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 3, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.2.2] The nucleic acid molecule of the invention comprises a nucleotide se 10 quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. conferring of a tryptophane increase by for example expression either in the cytsol or in an organelle 15 such as a plastid or mitochondria or both, preferably in plastids, and optionally, the ac tivity of a protein as shown in table II, application no. 3, column 3. [0163.0.2.2] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7, 20 for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito 25 chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region 30 of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application 35 no. 3, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a 271 nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 3, column 7 will 5 result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.2] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.2.2] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 3, columns 5 and 7 10 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a tryptophane increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.2.2] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum 15 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 3, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity 20 of a protein as shown in table II, column 3 and as described herein. [0167.0.2.2] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 25 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 3, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 30 [0168.0.0.2] and [0169.0.0.2] for the disclosure of the paragraphs [0168.0.0.2] and [0169.0.0.2] see paragraphs [0168.0.0.0] to [0169.0.0.0] above. [0170.0.2.2] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 3, columns 5 and 7 272 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 3, columns 5 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 3, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length 10 protein which is substantially homologous to an amino acid sequence shown in table II, application no. 3, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 3, columns 5 and 7, preferably as in dicated in table I A, application no. 3, columns 5 and 7. Preferably the nucleic acid 15 molecule of the invention is a functional homologue or identical to a nucleic acid mole cule indicated in table I B, application no. 3, columns 5 and 7. [0171.0.0.2] to [0173.0.0.2] for the disclosure of the paragraphs [0171.0.0.2] to [0173.0.0.2] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.2.2] Accordingly, in another embodiment, a nucleic acid molecule of the in 20 vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 3, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more 25 nucleotides in length. [0175.0.0.2] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.2.2] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 3, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used 30 herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the 273 process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.2] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. 5 [0178.0.2.2] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 3, columns 5 and 7. [0179.0.0.2] and [0180.0.0.2] for the disclosure of the paragraphs [0179.0.0.2] and 10 [0180.0.0.2] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.2.2] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that 15 contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 3, columns 5 and 7, preferably shown in ta ble II A, application no. 3, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, 20 wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 3, columns 5 and 7, preferably shown in table II A, application no. 3, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activ ity, e.g. its expression by for example expression either in the cytsol or in an organelle 25 such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 3, columns 5 and 7, preferably shown in table II A, application no. 3, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 3, columns 5 and 7, preferably 30 shown in table II A, application no. 3, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 3, columns 5 and 7, preferably shown in table II A, application no. 3, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence 274 shown in table II, application no. 3, columns 5 and 7, preferably shown in table II A, application no. 3, columns 5 and 7. [0182.0.0.2] to [0188.0.0.2] for the disclosure of the paragraphs [0182.0.0.2] to [0188.0.0.2] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 5 [0189.0.2.2] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 3, columns 5 and 7, preferably shown in table II B, application no. 3, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 10 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 3, columns 5 and 7, preferably shown in table II B, application no. 3, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 3, columns 5 and 7, preferably shown 15 in table II B, application no. 3, columns 5 and 7. [0190.0.2.2] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 20 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 3, columns 5 and 7, preferably shown in table II B, application no. 3, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper 25 ties as the polypeptide as shown in table II, application no. 3, columns 5 and 7, pref erably shown in table II B, application no. 3, columns 5 and 7. [0191.0.0.2] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.2.2] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 3, columns 5 and 7, preferably shown in table II B, application 30 no. 3, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7 resp., such that 275 one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and 5 PCR-mediated mutagenesis. [0193.0.0.2] to [0196.0.0.2] for the disclosure of the paragraphs [0193.0.0.2] to [0196.0.0.2] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.2.2] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, ap 10 plication no. 3, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 15 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 3, columns 5 and 7, preferably shown in table I B, applica tion no. 3, columns 5 and 7, or from the derived nucleic acid sequences, the intention 20 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.2.2] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 3, columns 5 and 7, preferably shown in table I B, 25 application no. 3, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu 30 cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7.
276 [0199.0.2.2] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 3, columns 5 and 7, preferably shown in table II B, application no. 3, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 5 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 3, columns 5 and 7, preferably shown in table II B, application no. 3, columns 5 and 7. 10 [0200.0.2.2] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 3, columns 5 and 7, preferably shown in table II B, application no. 3, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the 15 nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 3, columns 5 and 7, preferably shown in table I B, application no. 3, columns 5 and 7. [0201.0.2.2] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the 20 fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 3, columns 5 and 7 expressed 25 under identical conditions. [0202.0.2.2] Homologues of table I, application no. 3, columns 5 and 7 or of the de rived sequences of table II, application no. 3, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 30 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 35 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur- 277 thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 5 [0203.0.0.2] to [0215.0.0.2] for the disclosure of the paragraphs [0203.0.0.2] to [0215.0.0.2] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.2.2] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 10 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 3, columns 5 and 7, preferably in Table || B, application no. 3, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 15 cleic acid molecule shown in table 1, application no. 3, columns 5 and 7, prefera bly in Table I B, application no. 3, columns 5 and 7 or a fragment thereof confer ring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 20 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic 25 acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 278 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 5 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 10 cation no. 3, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) 15 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 3, columns 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 20 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 3, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid 25 library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 3, columns 5 and 7 or a nucleic acid molecule encoding, pref 30 erably at least the mature form of, the polypeptide shown in table II, application no. 3, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 279 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 3, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 3, 5 columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 3, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the poly peptide sequence shown in table II A and/or II B, application no. 3, columns 5 and 7. 10 Accordingly, in one embodiment, the nucleic acid molecule of the present invention encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 3, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 3, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by 15 a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 3, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 3, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 20 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 3, columns 5 and 7. [0217.0.0.2] to [0226.0.0.2] for the disclosure of the paragraphs [0217.0.0.2] to [0226.0.0.2] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.2.2] In general, vector systems preferably also comprise further cis 25 regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this 30 fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci 35 ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that 280 they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table 1l, application no. 3, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed 5 to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.2] to [0239.0.0.2] for the disclosure of the paragraphs [0228.0.0.2] to [0239.0.0.2] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.2.2] In addition to the sequence mentioned in table 1, application no. 3, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or 10 mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the amino acid biosynthetic pathway such as for L-lysine, L threonine, L-trptophane and/or L-methionine is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer 15 subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the amino acids desired since, for example, feedback regula tions no longer exist to the same extent or not at all. In addition it might be advanta geously to combine the nucleic acids sequences of the invention containing the se quences shown in table 1, application no. 3, columns 5 and 7 with genes which gener 20 ally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.0.2] to [0264.0.0.2] for the disclosure of the paragraphs [0241.0.0.2] to [0264.0.0.2] see paragraphs [0241.0.0.0] to [0264.0.0.0] above. 25 [0265.0.2.2] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the 30 extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid- 281 transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table I, application no. 3, 5 columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.2] to [0287.0.0.2] for the disclosure of the paragraphs [0266.0.0.2] to [0287.0.0.2] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.2.2] Accordingly, one embodiment of the invention relates to a vector where 10 the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 3, columns 5 and 7 or their homologs is functionally linked to a 15 plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 3, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.2] to [0296.0.0.2] for the disclosure of the paragraphs [0289.0.0.2] to 20 [0296.0.0.2] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.2.2] Moreover, native polypeptide conferring the increase of the fine chemi cal in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b1223, anti-b1704, anti-b2601, anti-b2965, anti-b3390, anti-YOR353C, anti 25 YDR035W, anti-YER024 and/or anti-YNL241 C protein antibody or an antibody against polypeptides as shown in table II, application no. 3, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal anti bodies. 30 [0298.0.0.2] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.2.2] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 3, columns 5 and 7 or as coded by 282 the nucleic acid molecule shown in table I, application no. 3, columns 5 and 7 or func tional homologues thereof. [0300.0.2.2] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus 5 sequence shown in table IV, application no. 3, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 3, columns 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino 10 acids positions indicated can be replaced by any amino acid. [0301.0.0.2] to [0304.0.0.2] for the disclosure of the paragraphs [0301.0.0.2] to [0304.0.0.2] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.2.2] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor 15 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 3, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 3, columns 5 and 7 by more than 5, 6, 7, 8 or 9 20 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 3, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 25 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 3, columns 5 and 7. [0306.0.0.2] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.2.2] In one embodiment, the invention relates to polypeptide conferring an 30 increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 3, columns 5 and 7 by one or more amino acids. In another embodiment, 283 said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 3, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded 5 by the nucleic acid molecules shown in table I A and/or I B, application no. 3, columns 5 and 7. [0308.0.2.2] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 3, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli 10 cation no. 3, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred 15 are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. 20 [0309.0.0.2] to [0311.0.0.2] for the disclosure of the paragraphs [0309.0.0.2] to [0311.0.0.2] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.2.2] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table 25 II A and/or II B, application no. 3, columns 5 and 7. [0313.0.2.2] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence 30 which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 3, columns 5 and 7. The 284 preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo 5 tide sequence of table I A and/or I B, application no. 3, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.2.2] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 3, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. 10 Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 3, columns 5 and 7. 15 [0315.0.0.2] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.2.2] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 3, columns 5 20 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 25 or used in the process of the present invention. [0317.0.0.2] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.2.2] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 3, column 3. Differences shall mean at least one amino acid 30 different from the sequences as shown in table II, application no. 3, column 3, prefera bly at least 2, 3, 4, 5, ,6 ,7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap plication no. 3, column 3. These proteins may be improved in efficiency or activity, may 285 be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. [0319.0.2.2] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing 5 said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 3, column 3. The nucleic 10 acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.2] to [0322.0.0.2] for the disclosure of the paragraphs [0320.0.0.2] to [0322.0.0.2] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.2.2] In one embodiment, a protein (= polypeptide) as shown in table II, appli 15 cation no. 3, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub 20 stantially homologous to a polypeptide or protein as shown in table II, application no. 3, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.2] to [0329.0.0.2] for the disclosure of the paragraphs [0324.0.0.2] to [0329.0.0.2] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 25 [0330.0.2.2] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins which are encoded by the sequences shown in table II, application no. 3, columns 5 and 7. [0331.0.0.2] to [0346.0.0.2] for the disclosure of the paragraphs [0331.0.0.2] to [0346.0.0.2] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 30 [0347.0.2.2] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of 286 the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table 1l, application no. 3, column 3. Due to the above mentioned activity the 5 fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a 10 polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table 1l, application no. 3, col umn 3 or a protein as shown in table 1l, application no. 3, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in 15 vention. [0348.0.0.2] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.2.2] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 3, column 3 with the corresponding encoding gene - becomes a 20 transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.2] to [0369.0.0.2] for the disclosure of the paragraphs [0350.0.0.2] to [0369.0.0.2] see paragraphs [0350.0.0.0] to [0369.0.0.0] above. 25 [0370.0.2.2] The fermentation broths obtained in this way, containing in particular L phenylalanine, L-tyrosine and/or L-tryptophane preferably L- tryptophane, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be removed entirely or partly by separation methods, such as, for example, centrifugation, filtration, decan 30 tation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation 287 broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.0.2] to [0376.0.0.2], [0376.1.0.2] and [0377.0.0.2] for the disclosure of the paragraphs [0371.0.0.2] to [0376.0.0.2], [0376.1.0.2] and [0377.0.0.2] see paragraphs 5 [0371.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.2.2] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 10 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemi cal after expression, with the nucleic acid molecule of the present invention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 15 the nucleic acid molecule sequence shown in table 1, application no. 3, columns 5 and 7, preferably in table I B, application no. 3, columns 5 and 7, and, optionally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 20 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. 25 [0379.0.0.2] to [0383.0.0.2] for the disclosure of the paragraphs [0379.0.0.2] to [0383.0.0.2] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.2.2] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 30 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in 288 comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de 5 pendent on the proteins as shown in table 1l, application no. 3, column 3, eg comparing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 3, column 3. [0385.0.0.2] to [0435.0.0.2] for the disclosure of the paragraphs [0385.0.0.2] to [0435.0.0.2] see paragraphs [0385.0.0.0] to [0435.0.0.0] above. 10 [0436.0.2.2] Trytophane production in Chlamydomonas reinhardtii The amino acid production can be analysed as mentioned above. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.2] to [0497.0.0.2] for the disclosure of the paragraphs [0437.0.0.2] to [0497.0.0.2] see paragraphs [0437.0.0.0] to [0497.0.0.0] above. 15 [0498.0.2.2] The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max YOR353C Tryptophane LC 1.30 2.29 YDR035W Tryptophane LC 1.39 2.44 YER024W Tryptophane LC 1.27 1.38 YNL241C Tryptophane LC 1.30 1.43 b1223 Tryptophane LC 1.40 2.47 b3390 Tryptophane LC + GC 1.31 4.56 b1704 Tryptophane LC 4.05 18.11 b2601 Tryptophane LC 1.54 3.92 b2965 Tryptophane LC 1.33 4.57 20 [0499.0.0.2] and [0500.0.0.2] for the disclosure of the paragraphs [0499.0.0.2] and [0500.0.0.2] see paragraphs [0499.0.0.0] and [0500.0.0.0] above.
289 [0501.0.2.2] Example 15a: Engineering ryegrass plants by over-expressing YDR03W from Saccharomyces cerevisiae or homologs of YDR03W from other organisms. [0502.0.0.2] to [0508.0.0.2] for the disclosure of the paragraphs [0502.0.0.2] to 5 [0508.0.0.2] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.2.2] Example 15b: Engineering soybean plants by over-expressing YDR03W from Saccharomyces cerevisiae or homologs of YDR03W from other organisms. [0510.0.0.2] to [0513.0.0.2] for the disclosure of the paragraphs [0510.0.0.2] to 10 [0513.0.0.2] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.2] Example 15c: Engineering corn plants by over-expressing YDR03W from Saccharomyces cerevisiae or homologs of YDR03W from other organisms. [0515.0.0.2] to [0540.0.0.2] for the disclosure of the paragraphs [0515.0.0.2] to 15 [0540.0.0.2] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.2.2] Example 15d: Engineering wheat plants by over-expressing YDR03W from Saccharomyces cerevisiae or homologs of YDR03W from other organisms. [0542.0.0.2] to [0544.0.0.2] for the disclosure of the paragraphs [0542.0.0.2] to 20 [0544.0.0.2] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.2.2] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YDR03W from Saccharomyces cerevisiae or homologs of YDR03W from other organisms. [0546.0.0.2] to [0549.0.0.2] for the disclosure of the paragraphs [0546.0.0.2] to 25 [0549.0.0.2] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.2.2] Example 15f: Engineering alfalfa plants by over-expressing YDR03W from Saccharomyces cerevisiae or homologs of YDR03W from other organisms. [0551.0.0.2] to [0554.0.0.2] for the disclosure of the paragraphs [0551.0.0.2] to 30 [0554.0.0.2] see paragraphs [0551.0.0.0] to [0554.0.0.0] above.
290 [0554.1.0.2] Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. 5 The results are shown in table VII Table VII ORF_NAME Metabolite MIN MAX b2601 Tryptophane 1,67 8,26 YDR035W Tryptophane 1,39 3,19 Table VII shows the increase in methionine in genetically modified corn plants express ing the Escherichia coli nucleic acid sequence b2601 or the Saccharomyces cerevisiae 10 nucleic acid sequence YDR035W. In one embodiment, in case the activity of the Escherichia coli protein b2601 or its ho mologs, e.g. a 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase, tyrosine-repressible)", is increased in corn plants, preferably, an increase of the fine chemical tryptophane between 67% and 726% or more is conferred. 15 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YDR035W or its homologs, e.g. a "3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase", is increased in corn plants, preferably, an increase of the fine chemical tryptophane between 39% and 219% or more is conferred. [0554.2.0.2] for the disclosure of this paragraph see [0554.2.0.0] above. 20 [0555.0.0.2] for the disclosure of this paragraph see [0555.0.0.0] above.
291 [0001.0.0.3] to [0007.0.0.3] for the disclosure of the paragraphs [0001.0.0.3] to [0007.0.0.3] see paragraphs [0001.0.0.0] to [0007.0.0.0] above. [0007.1.0.3] and [0008.0.0.3] for the disclosure of the paragraphs [0007.1.0.3] and [0008.0.0.3] see paragraphs [0007.1.0.0] and [0008.0.0.0] above. 5 [0009.0.3.3] As described above, the essential amino acids are necessary for hu mans and many mammals, for example for livestock. The branched-chain amino acids (BCAA) leucine, isoleucine and valine are among the nine dietary indispensable amino acids for humans. BCAA accounts for 35-40% of the dietary indispensable amino acids in body protein and 14% of the total amino acids in skeletal muscle (Ferrando et al., 10 (1995) Oral branched chain amino acids decrease whole-body proteolysis. J. Parenter. Enteral Nutr. 19: 47-54.13). They share a common membrane transport system and enzymes for their transamination and irreversible oxidation (Block, K. P. (1989) Interac tions among leucine, isoleucine, and valine with special reference to the branched chain amino acid antagonism. In: Absorption and Utilization of Amino Acids (Friedman, 15 M., ed.), pp. 229-244, CRC Press, Boca Raton, FL. and Champe, P. C. & Harvey, R. A. (1987) Amino acids: metabolism of carbon atoms. In: Biochemistry (Champ, P. C. & Harvery, P. A., eds.), pp.242-252, J. B. Lippincott, Philadelphia, PA.). Further, for pa tient suffering from Maple Syrup Urine Disease (MSUD) a reduced uptake of those branched-chain amino acids is essential. 20 Dietary sources of the branched-chain amino acids are principally derived from animal and vegetable proteins. The branched-chain amino acids (BCAA) leucine, isoleucine and valine are marginal or limiting for many mammals. Furthermore the adverse bal ance of leucine to isoleucine and valine for the production of proteins in mammals. Therefor the branched-chain amino acids are supplemented in broiler, leg hens, turkey, 25 swine or cattle diets. [0010.0.0.3] and [0011.0.0.3] for the disclosure of the paragraphs [0010.0.0.3] and [0011.0.0.3] see paragraphs [0010.0.0.0] and [0011.0.0.0] above. [0012.0.3.3] It is an object of the present invention to develop an inexpensive proc ess for the synthesis of leucine, isoleucine and/or valine, preferably L-leucine, L 30 isoleucine and/or L-valine. [0013.0.0.3] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.3.3] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is leucine, isoleucine 292 and/or valine, preferably L-leucine, L-isoleucine and/or L-valine. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "leucine, iso leucine and/or valine". Further, the term "the fine chemicals" as used herein also re lates to fine chemicals comprising leucine, isoleucine and/or valine. 5 [0015.0.3.3] In one embodiment, the term "the fine chemical" means leucine, isoleu cine and/or valine. Throughout the specification the term "the fine chemical" means leucine, isoleucine and/or valine, preferably L-leucine, L-isoleucine and/or L-valine, its salts, ester or amids in free form or bound to proteins. In a preferred embodiment, the term "the fine chemical" means leucine, isoleucine and/or valine, preferably L-leucine, 10 L-isoleucine and/or L-valine in free form or its salts or bound to proteins. [0016.0.3.3] Accordingly, the present invention relates to a process for the production of leucine, isoleucine and/or valine, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap 15 plication no. 4, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 4, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 20 (b) growing the organism under conditions which permit the production of the fine chemical, thus, leucine, isoleucine and/or valine or fine chemicals comprising leucine, isoleucine and/or valine, in said organism or in the culture medium sur rounding the organism. [0017.0.3.3] In another embodiment the present invention is related to a process for 25 the production of leucine, isoleucine and/or valine, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 4, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application 30 no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap- 293 plication no. 4, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap 5 plication no. 4, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of leucine, isoleucine and/or valine in said organism. 10 [0017.1.3.3] In another embodiment, the present invention relates to a process for the production of leucine, isoleucine and/or valine, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 4, column 5, in an organelle of a microorganism or plant through the 15 transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 4, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 20 (c) growing the organism under conditions which permit the production of the fine chemical, thus, leucine, isoleucine and/or valine or fine chemicals comprising leucine, isoleucine and/or valine, in said organism or in the culture medium sur rounding the organism. [0018.0.3.3] Advantagously the activity of the protein as shown in table II, application 25 no. 4, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 4, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.3] to [0024.0.0.3] for the disclosure of the paragraphs [0019.0.0.3] to [0024.0.0.3] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. 30 [0025.0.3.3] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 294 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se 5 quences shown in table I, application no. 4, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 10 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive 15 process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local 20 ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure 25 might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein 30 folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.3.3] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 4, column 3 and its homologs as disclosed in table I, application no. 4, columns 5 and 7 are joined to a nucleic acid sequence encod 35 ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex- 295 pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 4, column 3 and its homologs as disclosed in table I, application no. 4, columns 5 and 7. 5 [0027.0.0.3] to [0029.0.0.3] for the disclosure of the paragraphs [0027.0.0.3] to [0029.0.0.3] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.3.3] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized 10 sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore 15 favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 20 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo 25 plasmic reticulum, golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V , preferably the last one of the table are joint to the nucleic acid sequences shown in 30 table I, application no. 4, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 4, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal 35 amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 296 protein metioned in table II, application no. 4, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 4, col 5 umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short 10 amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 4, columns 5 and 7. Furthermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 15 [0030.2.3.3] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.3.3] Alternatively to the targeting of the sequences shown in table II, ap plication no. 4, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 20 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 4, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 25 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 30 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny.
297 [0030.2.0.3] and [0030.3.0.3] for the disclosure of the paragraphs [0030.2.0.3] and [0030.3.0.3] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.3.3] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 5 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 4, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 10 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 4, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 4, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In 15 one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain 20 about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 4, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 4, columns 5 and 7 in such a 25 manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 4 columns 5 and 7 or a sequence encoding a pro tein as depicted in table II, application no. 4 columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). 30 In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 4, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast 35 by means of a chloroplast localization sequence. The genes, which should be ex- 298 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the 5 inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 4, columns 5 and 7. [0030.5.3.3] In a preferred embodiment of the invention the nucleic acid se 10 quences as shown in table I, application no. 4, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. 15 [0030.6.3.3] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 4, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter 20 from corn. [0031.0.0.3] and [0032.0.0.3] for the disclosure of the paragraphs [0031.0.0.3] and [0032.0.0.3] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.3.3] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in 25 crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 4, column 3. Preferably the 30 modification of the activity of a protein as shown in table II, application no. 4, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.3.3] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table II, application no. 4, column 3 in plas- 299 tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.3] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 5 [0036.0.3.3] The sequence of b0342 (Accession number PIR:XXECTG) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "thiogalactoside acetyltransferase". Accord ingly, in one embodiment, the process of the present invention comprises the use of a "thiogalactoside acetyltransferase" or its homolog, e.g. as shown herein, for the produc 10 tion of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide 15 as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1223 (Accession number NP_415741) from Escherichia coli has 20 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nitrite extrusion protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "nitrite extrusion protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leu cine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleu 25 cine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1223 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1223 30 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1704 (Accession number NP_416219) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP 35 synthetase, tryptophan repressible)". Accordingly, in one embodiment, the process of 300 the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a 5 part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1704 10 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2066 (Accession number NP_416570) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "uridine/cytidine kinase". Accordingly, in one embodiment, the proc 15 ess of the present invention comprises the use of a "uridine/cytidine kinase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of leu cine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleu cine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2066 pro 20 tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2066 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leu 30 cine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleu cine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. 35 In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria.
301 The sequence of b3770 (Accession number YP_026247) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "branched-chain amino-acid aminotransferase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "branched 5 chain amino-acid aminotransferase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3770 protein is increased or generated, e.g. from 10 Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3770 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b3117 (Accession number PIR:DWECTD) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "threonine dehydratase, catabolic, PLP-dependent". Accordingly, in one embodiment, the process of the present invention comprises the use of a "threonine dehydratase, catabolic, PLP-dependent" or its homolog, e.g. as shown 20 herein, for the production of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3117 protein is increased or gen erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one 25 transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3117 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YOR353C (Accession number NP_014998) from Saccharomyces 30 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as " Protein required for cell morphogenesis and cell separation after mitosis; Sog2p". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Protein required for cell morphogenesis and cell separation after mitosis; Sog2p" or its homolog, e.g. as shown herein, for the pro 35 duction of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 302 present invention the activity of a YOR353C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 5 YOR353C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YAL038W (Accession number NP_009362) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Bussey et al., Proc. NatI. Acad. Sci. U.S.A. 92 (9), 3809-3813 (1995), and its activ 10 ity is being defined as "pyruvate kinase", which functions as a homotetramer in glycoly sis to convert phosphoenolpyruvate to pyruvate (Cdc 9p). Pyruvate is the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration. Accordingly, in one embodiment, the process of the present invention comprises the use of a "pyruvate kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, 15 meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YAL038W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for 20 example in table V. In another embodiment, in the process of the present invention the activity of an YAL038W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR497C (Accession number NP_010785) from Saccharomyces 25 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a "myo-inositol transporter". Accordingly, in one embodiment, the process of the present invention comprises the use of a "myo-inositol transporter" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leucine, isoleucine 30 and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a YDR497C protein is in creased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. 35 In another embodiment, in the process of the present invention the activity of an YDR497C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria.
303 The sequence of YEL046C (Accession number NP_010868) from Saccharomyces cer evisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997), and its activity is being defined as a "L-threonine aldolase", which catalyzes cleavage of L-allo-threonine and L 5 threonine to Glycine (Glyl p). Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "L-threonine aldolase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodi 10 ment, in the process of the present invention the activity of a YEL046C protein is in creased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YEL046C protein is increased or generated in a subcellular compartment of the organ 15 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YER024W (Accession number NP_010941) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997) and its activity is being de fined as a "carnitine acetyltransferase". Accordingly, in one embodiment, the process of 20 the present invention comprises the use of a carnitine acetyltransferase or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leucine, iso leucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YER024W 25 protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YER024W protein is increased or generated in a subcellular compartment of the organ 30 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dujon et al., Nature 369 (6479), 371-378 (1994), and its activity is being defined as a "phosphoglycerate mutase like protein". Accordingly, in one embodiment, the process 35 of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, 304 isoleucine and/or valine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a YKR043C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 5 ample in table V. In another embodiment, in the process of the present invention the activity of an YKR043C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR174W (Accession number NP_013275) from Saccharomyces 10 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997), and its activity is being defined as a "NADP-dependent isocitrate dehydrogenase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "NADP dependent isocitrate dehydrogenase" or its homolog, e.g. as shown herein, for the pro 15 duction of the fine chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR174W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one 20 transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 74W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YNL241C (Accession number NP_014158) from Saccharomyces 25 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as "glucose-6-phosphate dehydrogenase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glucose-6-phosphate de hydrogenase" or its homolog, e.g. as shown herein, for the production of the fine 30 chemical, meaning of leucine, isoleucine and/or valine, in particular for increasing the amount of leucine, isoleucine and/or valine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as 35 mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 305 YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.3.3] In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C, is a homolog 5 having said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b0342, b1223, b3117,b1704, b2066, b2965 and/or b3770_is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C-is a homolog having said acitivity and being derived from Fungi. In one em 10 bodiment, the homolog of the b0342, b1223, b3117,b1704, b2066, b2965 and/or b3770 is a homolog having said acitivity and being derived from Proteobacteria. In one em bodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b0342, b1223, 15 b3117,b1704, b2066, b2965 and/or b3770_is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b0342, b1223, b3117,b1704, b2066, b2965 20 and/or b3770_is a homolog having said acitivity and being derived from Enterobacteria les. In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the b0342, b1223, b3117,b1704, b2066, b2965 and/or b3770_is a homolog having said 25 acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR1 74W and/or YNL241C is a homolog having said acitivity and being derived from Saccharo mycetales. In one embodiment, the homolog of the b0342, b1223, b3117,b1704, b2066, b2965 and/or b3770_is a homolog having said acitivity and being derived from 30 Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C is a homolog having said acitivity and being derived from Saccharomyceta ceae. In one embodiment, the homolog of the YOR353C, YAL038W, YDR497C, YEL046C, YER024W, YKR043C, YLR174W and/or YNL241C is a homolog having said 35 acitivity and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae.
306 [0038.0.0.3] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.3.3] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 4, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemi 5 cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 4, column 3, preferably in the event the nucleic acid sequences encoding said pro teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout 10 the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 4, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref 15 erably 40% in comparison to a protein as shown in table II, application no. 4, column 3 of Saccharomyces cerevisiae. [0040.0.0.3] to [0047.0.0.3] for the disclosure of the paragraphs [0040.0.0.3] to [0047.0.0.3] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.3.3] Preferably, the reference, control or wild type differs form the subject of 20 the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 4, column 3 its bio 25 chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.3] to [0051.0.0.3] for the disclosure of the paragraphs [0049.0.0.3] to [0051.0.0.3] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.3.3] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 30 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table I, application no. 4, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V 307 or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 5 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.3] to [0058.0.0.3] for the disclosure of the paragraphs [0053.0.0.3] to [0058.0.0.3] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.3.3] In case the activity of the Escherichia coli protein b0342 or its homologs, 10 e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of valine between 21% and 68% or more is conferred. In case the activity of the Escherichia coli protein b1223 or its homologs, e.g. a "nitrite extrusion protein" is increased advantageously in an organelle such as a plastid or mi 15 tochondria, preferably, in one embodiment an increase of the fine chemical, preferably of valine between 30% and 157% or more is conferred. In case the activity of the Escherichia coli protein b3117 or its homologs, e.g. a "threonine dehydratase, catabolic, PLP-dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase 20 of the fine chemical, preferably of leucine between 209% and 703% or more and/or isoleucine between 233% and 36031% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in 25 crease of the fine chemical, preferably of leucine between 40% and 541% or more and/or valine between 24% and 287% or more is conferred. In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. a "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref 30 erably of isoleucine between 58% and 199% or more and/or valine between 30% and 99% or more is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. an "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 35 bly of valine between 20% and 299% or more is conferred.
308 In case the activity of the Escherichia coli protein b3770 or its homologs, e.g. a "branched-chain amino-acid aminotransferase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of valine between 53% and 128% or more is conferred. 5 In case the activity of the Saccharomyces cerevisiae protein YAL038W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of leucine between 58% and 261 % or more or isoleucine between 33% and 97% or more and/or valine between 21 % and 206% or more is conferred. 10 In case the activity of the Saccharomyces cerevisiae protein YOR353C or its ho mologs, e.g. a "protein required for cell morphogenesis and cell separation after mito sis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of leu cine between 54% and 172% or more and/or isoleucine between 34% and 132% or 15 more and/or valine between 20% and 77% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of leucine between 46% and 87% and/or isoleucine between 34% and 20 43% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YEL046C or its ho mologs, e.g. a "L-threonine aldolase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of leucine between 117% and 144% or more is conferred. 25 In case the activity of the Saccharomyces cerevisiae protein YER024W or its ho mologs, e.g. a "carnitine acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of leucine between 50% and 68% and/or isoleucine between 40% and 43% or more is conferred. 30 In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of valine between 20% and 260% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR174W or its ho 35 mologs, e.g. a "NADP-dependent isocitrate dehydrogenase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of valine between 19% and 30% or 309 more is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. an "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase 5 of the fine chemical, preferably of valine between 57% and 88% and/or isoleucine be tween 30% and 33% or more is conferred. [0060.0.3.3] In case the activity of the Escherichia coli protein b0342 or its ho mologs, e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical 10 and of proteins containing valine is conferred. In case the activity of the Escherichia coli protein b1223 or its homologs, e.g. a "nitrite extrusion protein" is increased advantageously in an organelle such as a plastid or mi tochondria, preferably an increase of the fine chemical and of proteins containing valine is conferred. 15 In case the activity of the Escherichia coli protein b3117 or its homologs, e.g. a "threonine dehydratase, catabolic, PLP-dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing leucine and/or isoleucine is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 20 deoxy-D-arabinoheptu losonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing leucine and/or valine is conferred. In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. a "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid 25 or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably an increase of the fine chemical and of proteins containing isoleucine and/or valine is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. an "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or 30 mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly an increase of the fine chemical and of proteins containing valine is conferred. In case the activity of the Escherichia coli protein b3770 or its homologs, e.g. a "branched-chain amino-acid aminotransferase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase 35 of the fine chemical, preferably an increase of the fine chemical and of proteins con taining valine is conferred.
310 In case the activity of the Saccharomyces cerevisiae protein YOR353C or its ho mologs, e.g. a "protein required for cell morphogenesis and cell separation after mito sis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably an 5 increase of the fine chemical and of proteins containing isoleucine, leucine and/or valine is conferred. In case the activity of the Saccharomyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref 10 erably an increase of the fine chemical and of proteins containing isoleucine, leucine and/or valine is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 15 cal, preferably an increase of the fine chemical and of proteins containing leucine and/or isoleucine is conferred. In case the activity of the Saccharomyces cerevisiae protein YELO46C or its ho mologs, e.g. a "L-threonine aldolase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine 20 chemical, preferably an increase of the fine chemical and of proteins containing leucine is conferred. In case the activity of the Saccharomyces cerevisiae protein YER024W or its ho mologs, e.g. a "carnitine acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 25 fine chemical, preferably an increase of the fine chemical and of proteins containing leucine and/or isleucine is conferred. In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase 30 of the fine chemical, preferably an increase of the fine chemical and of proteins con taining valine is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR174W or its ho mologs, e.g. a "NADP-dependent isocitrate dehydrogenase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi 35 ment an increase of the fine chemical, preferably an increase of the fine chemical and of proteins containing valine is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241 C or its homologs, 311 e.g. an "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably an increase of the fine chemical and of proteins con taining isoleucine and/or valine is conferred. 5 [0061.0.0.3] and [0062.0.0.3] for the disclosure of the paragraphs [0061.0.0.3] and [0062.0.0.3] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.3.3] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising 10 the consensus sequence shown in table IV, application no. 4, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 4, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 15 1, application no. 4, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.3.3] For the purposes of the present invention, the terms "L-leucine, L isoleucine and/or L-valine" and "leucine, isoleucine and/or valine" also encompass the corresponding salts, such as, for example, leucine, isoleucine and/or valine hydrochlo 20 ride or leucine, isoleucine and/or valine sulfate. Preferably the terms leucine, isoleucine and/or valine is intended to encompass the term L-leucine, L-isoleucine and/or L valine. [0065.0.0.3] and [0066.0.0.3] for the disclosure of the paragraphs [0065.0.0.3] and [0066.0.0.3] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. 25 [0067.0.3.3] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having a polypeptide having the activity of a protein as indi 30 cated in table 1l, application no. 4, columns 5 and 7 or its homologs activity hav ing herein-mentioned leucine, isoleucine and/or valine increasing activity; and/or 312 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 4, columns 5 and 7, e.g. a nucleic 5 acid sequence encoding a polypeptide having a polypeptide having the activity of a protein as indicated in table II, application no. 4, columns 5 and 7 or its ho mologs activity or of a mRNA encoding the polypeptide of the present invention having herein-mentioned leucine, isoleucine and/or valine increasing activity; and/or 10 c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned leucine, isoleucine and/or valine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 4, columns 5 and 7 or its homologs activity, or 15 decreasing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned leucine, isoleucine and/or 20 valine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 4, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 25 the present invention having herein-mentioned leucine, isoleucine and/or valine increasing activity, e.g. of a polypeptide having the activity of a protein as indi cated in table II, application no. 4, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or 30 f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned leu cine, isoleucine and/or valine increasing activity, e.g. of a polypeptide having the 313 activity of a protein as indicated in table 1l, application no. 4, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole 5 cule of the invention or the polypeptide of the invention having herein-mentioned leucine, isoleucine and/or valine increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 4, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of 10 the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 4, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements 15 form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en 20 hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of 25 heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 30 k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned leucine, isoleucine and/or valine increasing activity, e.g. of a polypeptide having the activity of a pro- 314 tein as indicated in table II, application no. 4, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 5 mentioned leucine, isoleucine and/or valine increasing activity, e.g. of a polypep tide having the activity of a protein as indicated in table II, application no. 4, col umns 5 and 7 or its homologs activity in plastids by the stable or transient trans formation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cas 10 sette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned leucine, isoleucine and/or valine increasing activity, e.g. of a polypep 15 tide having the activity of a protein as indicated in table II, application no. 4, col umns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.3.3] Preferably, said mRNA is the nucleic acid molecule of the present inven 20 tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles 25 such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 4, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. [0069.0.0.3] to [0079.0.0.3] for the disclosure of the paragraphs [0069.0.0.3] to [0079.0.0.3] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. 30 [0080.0.3.3] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 4, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like 315 a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table 1l, application no. 4, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA 5 binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 4, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 4, column 3, see e.g. in 10 WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.3] to [0084.0.0.3] for the disclosure of the paragraphs [0081.0.0.3] to [0084.0.0.3] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.3.3] Owing to the introduction of a gene or a plurality of genes conferring the 15 expression of the nucleic acid molecule of the invention or the polypeptide of the inven tion, for example the nucleic acid construct mentioned below, or encoding the protein as shown in table 1l, application no. 4, column 3 into an organism alone or in combina tion with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, pref 20 erably novel metabolites composition in the organism, e.g. an advantageous amino acid composition comprising a higher content of (from a viewpoint of nutrional physiol ogy limited) amino acids, like methionine, lysine or threonine alone or in combination in free or bound form. [0086.0.0.3] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 25 [0087.0.3.3] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to leucine, isoleucine and/or valine for example com pounds like amino acids such as methionine, threonine or lysine or other desirable compounds. 30 [0088.0.3.3] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 316 a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a mi croorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 4, column 3 5 or of a polypeptide being encoded by the nucleic acid molecule of the present in vention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microorgan ism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the 10 plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 15 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.3.3] The organism, in particular the microorganism, non-human animal, the 20 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound amino acids, in par ticular leucine, isoleucine and/or valine. 25 [0090.0.0.3] to [0097.0.0.3] for the disclosure of the paragraphs [0090.0.0.3] to [0097.0.0.3] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.3.3] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 30 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either 317 a) the nucleic acid sequence as shown in table 1, application no. 4, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 4, columns 5 and 7 5 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 10 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 15 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.3.3] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 20 depicted in the sequence protocol and disclosed in table 1, application no. 4, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 4, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se 25 quences as depicted in the sequence protocol and disclosed in table 1, application no. 4, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. 30 [0100.0.0.3] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.3.3] In an advantageous embodiment of the invention, the organism takes the form of a plant whose amino acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant 318 breeders since, for example, the nutritional value of plants for monogastric animals is limited by a few essential amino acids such as lysine, threonine or methionine. After the activity of the protein as shown in table 1l, application no. 4, column 3 has been increased or generated in the cytsol or plastids, preferentially in the plastids, or after 5 the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.3] to [0110.0.0.3] for the disclosure of the paragraphs [0102.0.0.3] to [0110.0.0.3] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. 10 [0111.0.3.3] In a preferred embodiment, the fine chemical (leucine, isoleucine and/or valine) is produced in accordance with the invention and, if desired, is isolated. The production of further amino acids such as lysine, methionine, threonine, tryptophane etc. and of amino acid mixtures by the process according to the invention is advanta geous. 15 [0112.0.0.3] to [0115.0.0.3] for the disclosure of the paragraphs [0112.0.0.3] to [0115.0.0.3] see paragraphs [0112.0.0.0] to [0115.0.0.0] above. [0116.0.3.3] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres 20 sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 4, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or 25 ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 4, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen 30 eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 319 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 5 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 10 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 15 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 4, column 7 and conferring an in 20 crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism 25 or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 4, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 30 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 4, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 320 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole 5 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.3.3.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 4, 10 columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 4, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 4, 15 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 4, columns 5 and 7. [0116.2.3.3.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 4, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid 20 molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 4, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 4, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a 25 polypeptide of a sequence indicated in table II B, application no. 4, columns 5 and 7. [0117.0.3.3] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 4, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 4, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre 30 sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 4, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 4, columns 5 and 7.
321 [0118.0.0.3] to [0120.0.0.3] for the disclosure of the paragraphs [0118.0.0.3] to [0120.0.0.3] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.3.3] Nucleic acid molecules with the sequence shown in table I, application no. 4, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 5 sequences shown in table II, application no. 4, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 4, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 4, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously 10 increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.3] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.3.3] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as 15 shown in table II, application no. 4, column 3 can be determined from generally acces sible databases. [0124.0.0.3] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.3.3] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with 20 the activity of the proteins as shown in table II, application no. 4, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.3] to [0133.0.0.3] for the disclosure of the paragraphs [0126.0.0.3] to [0133.0.0.3] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. 25 [0134.0.3.3] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 4, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring 30 above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, column 3 by 322 for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. [0135.0.0.3] to [0140.0.0.3] for the disclosure of the paragraphs [0135.0.0.3] to [0140.0.0.3] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. 5 [0141.0.3.3] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 4, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 4, columns 5 and 7 or the sequences derived from table II, application no. 4, columns 5 and 7. 10 [0142.0.3.3] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 15 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 4, column 7 is derived from said aligments. [0143.0.3.3] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac 20 tivity of a protein as shown in table II, application no. 4, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.3] to [0151.0.0.3] for the disclosure of the paragraphs [0144.0.0.3] to [0151.0.0.3] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.3.3] Polypeptides having above-mentioned activity, i.e. conferring the fine 25 chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the me thionine increasing activity. 30 [0153.0.0.3] to [0159.0.0.3] for the disclosure of the paragraphs [0153.0.0.3] to [0159.0.0.3] see paragraphs [0153.0.0.0] to [0159.0.0.0] above.
323 [0160.0.3.3] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 4, 5 columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, ap 10 plication no. 4, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or 15 C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner. [0161.0.3.3] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more 20 preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application 25 no. 4, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.3.3] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 4, columns 30 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. conferring of a leucine, isoleucine and/or valine increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 4, column 3.
324 [0163.0.3.3] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod 5 ing a biologically active portion of the polypeptide of the present invention or of a poly peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the 10 cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 20 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 4, column 7 will result in a fragment of the 25 gene product as shown in table II, column 3. [0164.0.0.3] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.3.3] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 4, columns 5 and 7 30 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a leucine, isoleucine and/or valine increasing the ac tivity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.3.3] As used herein, the language "sufficiently homologous" refers to pro 35 teins or portions thereof which have amino acid sequences which include a minimum 325 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 4, columns 5 and 7 such that the protein or portion thereof is able to par 5 ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.3.3] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 10 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 4, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an 15 organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.3] and [0169.0.0.3] for the disclosure of the paragraphs [0168.0.0.3] and [0169.0.0.3] see paragraphs [0168.0.0.0] to [0169.0.0.0] above. [0170.0.3.3] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 4, columns 5 and 7 20 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 4, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the 25 invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 4, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, 30 application no. 4, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 4, columns 5 and 7, preferably as in dicated in table I A, application no. 4, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole 35 cule indicated in table I B, application no. 4, columns 5 and 7.
326 [0171.0.0.3] to [0173.0.0.3] for the disclosure of the paragraphs [0171.0.0.3] to [0173.0.0.3] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.3.3] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under 5 stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 4, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 10 [0175.0.0.3] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.3.3] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 4, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 15 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 20 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.3] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.3.3] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid 25 molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 4, columns 5 and 7. [0179.0.0.3] and [0180.0.0.3] for the disclosure of the paragraphs [0179.0.0.3] and [0180.0.0.3] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.3.3] Accordingly, the invention relates to nucleic acid molecules encoding a 30 polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that 327 contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 4, columns 5 and 7, preferably shown in ta ble II A, application no. 4, columns 5 and 7 yet retain said activity described herein. The 5 nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 4, columns 5 and 7, preferably shown in table II A, application no. 4, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activ 10 ity, e.g. its expression by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 4, columns 5 and 7, preferably shown in table II A, application no. 4, columns 5 and 7, more preferably at least about 70% identical to one 15 of the sequences shown in table II, application no. 4, columns 5 and 7, preferably shown in table II A, application no. 4, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 4, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 4, columns 5 and 7, preferably shown 20 in table II A, application no. 4, columns 5 and 7. [0182.0.0.3] to [0188.0.0.3] for the disclosure of the paragraphs [0182.0.0.3] to [0188.0.0.3] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.3.3] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 4, columns 5 and 7, preferably shown in table II B, application 25 no. 4, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 4, columns 30 5 and 7, preferably shown in table II B, application no. 4, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 4, columns 5 and 7, preferably shown in table II B, application no. 1, columns 5 and 7. [0190.0.3.3] Functional equivalents derived from the nucleic acid sequence as shown 35 in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application 328 no. 4, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 5 homology with one of the polypeptides as shown in table II, application no. 4, columns 5 and 7, preferably shown in table II B, application no. 4, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 4, columns 5 and 7, pref erably shown in table II B, application no. 4, columns 5 and 7. 10 [0191.0.0.3] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.3.3] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 4, columns 5 and 7, preferably shown in table II B, application no. 4, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid 15 molecule of the present invention, in particular of table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, 20 columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.3] to [0196.0.0.3] for the disclosure of the paragraphs [0193.0.0.3] to [0196.0.0.3] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.3.3] Homologues of the nucleic acid sequences used, with the sequence 25 shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, ap plication no. 4, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 30 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 4, columns 5 and 7, preferably shown in table I B, applica- 329 tion no. 4, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.3.3] In one embodiment of the present invention, the nucleic acid molecule of 5 the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 10 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 4, columns 5 and 7, preferably shown 15 in table I B, application no. 4, columns 5 and 7. [0199.0.3.3] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 4, columns 5 and 7, preferably shown in table II B, application no. 4, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 20 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 4, columns 5 and 7, preferably shown in table II B, application no. 4, columns 5 and 7. 25 [0200.0.3.3] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 4, columns 5 and 7, preferably shown in table II B, application no. 4, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the 30 nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 4, columns 5 and 7, preferably shown in table I B, application no. 4, columns 5 and 7. [0201.0.3.3] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the 330 fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the 5 activity of a polypeptide shown in table II, application no. 4, columns 5 and 7 expressed under identical conditions. [0202.0.3.3] Homologues of table I, application no. 4, columns 5 and 7 or of the de rived sequences of table II, application no. 4, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA 10 sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the 15 promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person 20 skilled in the art and are mentioned herein below. [0203.0.0.3] to [0215.0.0.3] for the disclosure of the paragraphs [0203.0.0.3] to [0215.0.0.3] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.3.3] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting 25 of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 4, columns 5 and 7, preferably in Table II B, application no. 4, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof 30 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 4, columns 5 and 7, prefera bly in Table I B, application no. 4, columns 5 and 7, or a fragment thereof confer- 331 ring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener 5 acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine 10 chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 15 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 20 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 25 cation no. 4, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) 30 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 332 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 4, columns 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod 5 ing a domaine of the polypeptide shown in table II, application no. 4, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the 10 sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 4, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application 15 no. 4, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 4, columns 5 and 7 by 20 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 4, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 4, columns 25 5 and 7. In a further embodiment the nucleic acid molecule does not encode the poly peptide sequence shown in table II A and/or II B, application no. 4, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present invention encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 4, columns 5 30 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 4, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 4, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence 35 depicted in table II A and/or II B, application no. 4, columns 5 and 7 and less than 333 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 4, columns 5 and 7. [0217.0.0.3] to [0226.0.0.3] for the disclosure of the paragraphs [0217.0.0.3] to 5 [0226.0.0.3] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.3.3] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 10 systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac 15 cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep 20 tides shown in table II, application no. 4, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.3] to [0239.0.0.3] for the disclosure of the paragraphs [0228.0.0.3] to [0239.0.0.3] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. 25 [0240.0.3.3] In addition to the sequence mentioned in table I, application no. 4, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the amino acid biosynthetic pathway such as for L-lysine, L threonine and/or L-methionine is expressed in the organisms such as plants or micro 30 organisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased syn thesis of the amino acids desired since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine 334 the nucleic acids sequences of the invention containing the sequences shown in table 1, application no. 4, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide 5 resistant plants. [0241.0.0.3] to [0264.0.0.3] for the disclosure of the paragraphs [0241.0.0.3] to [0264.0.0.3] see paragraphs [0241.0.0.0] to [0264.0.0.0] above. [0265.0.3.3] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 10 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 15 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 20 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 4, columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.3] to [0287.0.0.3] for the disclosure of the paragraphs [0266.0.0.3] to 25 [0287.0.0.3] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.3.3] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a 30 vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 4, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in 335 table II, application no. 4, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.3] to [0296.0.0.3] for the disclosure of the paragraphs [0289.0.0.3] to [0296.0.0.3] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. 5 [0297.0.3.3] Moreover, native polypeptide conferring the increase of the fine chemi cal in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b0342, anti-b1223, anti-b3117, anti-b1704, anti-b2066, anti-b2965, anti-b3770, anti-YOR353C, anti-YALO38W, anti-YDR497C, anti-YELO46C, anti-YER024, anti 10 YKR043C, anti-YLR174W and/or anti-YNL241C protein antibody or an antibody against polypeptides as shown in table II, application no. 4, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present inven tion or fragment thereof, i.e., the polypeptide of this invention. Preferred are mono clonal antibodies. 15 [0298.0.0.3] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.3.3] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 4, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 4, columns 5 and 7 or func tional homologues thereof. 20 [0300.0.3.3] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 4, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 4, columns 7 whereby 20 or 25 less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.3] to [0304.0.0.3] for the disclosure of the paragraphs [0301.0.0.3] to [0304.0.0.3] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 30 [0305.0.3.3] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences.
336 In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 4, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II, application no. 4, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, 5 preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, appli cation no. 4, columns 5 and 7 by not more than 80% or 70% of the amino acids, pref erably not more than 60% or 50%, more preferred not more than 40% or 30%, even 10 more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, appli cation no. 4, columns 5 and 7. [0306.0.0.3] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.3.3] In one embodiment, the invention relates to polypeptide conferring an 15 increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 4, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A 20 and/or II B, application no. 4, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 4, columns 5 and 7. 25 [0308.0.3.3] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 4, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 4, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, 30 evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep 35 tide having the activity of the protein as shown in table II A and/or II B, column 3, from 337 which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.3] to [0311.0.0.3] for the disclosure of the paragraphs [0309.0.0.3] to [0311.0.0.3] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. 5 [0312.0.3.3] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II A and/or II B, application no. 4, columns 5 and 7. [0313.0.3.3] Further, the polypeptide can have an amino acid sequence which is en 10 coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and 15 more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 4, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of 20 the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 4, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.3.3] Accordingly the polypeptide of the present invention can vary from the 25 sequences shown in table II A and/or II B, application no. 4, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most 30 preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 4, columns 5 and 7. [0315.0.0.3] for the disclosure of this paragraph see paragraph [0315.0.0.0] above.
338 [0316.0.3.3] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 4, columns 5 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 10 or used in the process of the present invention. [0317.0.0.3] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.3.3] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 4, column 3. Differences shall mean at least one amino acid 15 different from the sequences as shown in table II, application no. 4, column 3, prefera bly at least 2, 3, 4, 5, ,6 ,7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap plication no. 4, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi 20 ciency or activity in relation to the wild type protein. [0319.0.3.3] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha 25 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 4, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. 30 [0320.0.0.3] to [0322.0.0.3] for the disclosure of the paragraphs [0320.0.0.3] to [0322.0.0.3] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.3.3] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 4, column 3 refers to a polypeptide having an amino acid sequence corre- 339 sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub 5 stantially homologous to a polypeptide or protein as shown in table II, application no. 4, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.3] to [0329.0.0.3] for the disclosure of the paragraphs [0324.0.0.3] to [0329.0.0.3] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 10 [0330.0.3.3] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins which are encoded by the sequences shown in table II, application no. 4, columns 5 and 7. [0331.0.0.3] to [0346.0.0.3] for the disclosure of the paragraphs [0331.0.0.3] to [0346.0.0.3] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 15 [0347.0.3.3] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep 20 tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 4, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe 25 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 4, col umn 3 or a protein as shown in table II, application no. 4, column 3-like activity is in 30 creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.3] for the disclosure of this paragraph see paragraph [0348.0.0.0] above.
340 [0349.0.3.3] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 4, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 5 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.3] to [0369.0.0.3] for the disclosure of the paragraphs [0350.0.0.3] to [0369.0.0.3] see paragraphs [0350.0.0.0] to [0369.0.0.0] above. [0370.0.3.3] The fermentation broths obtained in this way, containing in particular L 10 valine, L-leucine and/or L-isoleucine preferably L-leucine and/or L-valine, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be removed entirely or partly by separation methods, such as, for example, centrifugation, filtration, decan tation or a combination of these methods, from the fermentation broth or left completely 15 in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. 20 [0371.0.0.3] to [0376.0.0.3], [0376.1.0.3] and [0377.0.0.3] for the disclosure of the paragraphs [0371.0.0.3] to [0376.0.0.3], [0376.1.0.3] and [0377.0.0.3] see paragraphs [0371.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.3.3] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in 25 a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemi cal after expression, with the nucleic acid molecule of the present invention; 30 (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 4, columns 5 341 and 7, preferably in table I B, application no. 4, columns 5 and 7, and, optionally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 5 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. 10 [0379.0.0.3] to [0383.0.0.3] for the disclosure of the paragraphs [0379.0.0.3] to [0383.0.0.3] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.3.3] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 15 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de 20 pendent on the proteins as shown in table 1l, application no. 4, column 3, eg comparing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 4, column 3. [0385.0.0.3] to [0435.0.0.3] for the disclosure of the paragraphs [0385.0.0.3] to [0435.0.0.3] see paragraphs [0385.0.0.0] to [0435.0.0.0] above. 25 [0436.0.3.3] Leucine, isoleucine and/or valine production in Chlamydomonas reinhardtii The amino acid production can be analysed as mentioned above. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.3] to [0497.0.0.3] for the disclosure of the paragraphs [0437.0.0.3] to 30 [0497.0.0.3] see paragraphs [0437.0.0.0] to [0497.0.0.0] above.
342 [0498.0.3.3] The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max YOR353C Leucine GC 1.54 2.72 YOR353C Isoleucine GC 1.34 2.32 YOR353C Valine GC 1.20 1.77 YAL038W Valine GC 1.21 3.06 YAL038W Isoleucine GC 1.33 1.97 YAL038W Leucine GC 1.58 3.61 YDR497C Isoleucine GC 1.34 1.43 YDR497C Leucine GC 1.46 1.87 YEL046C Leucine GC 2.17 2.44 YER024W Isoleucine GC 1.40 1.43 YER024W Leucine GC 1.50 1.68 YKR043C Valine GC 1.20 3.60 YLR174W Valine GC 1.19 1.30 YNL241C Valine GC 1.57 1.88 YNL241C Isoleucine GC 1.30 1.33 b2066 Valine GC 1.30 1.99 b2066 Isoleucine GC 1.58 2.99 b1704 Leucine GC 1.40 6.41 b1704 Valine GC 1.24 3.87 b2965 Valine GC 1.20 3.99 b3770 Valine GC 1.53 2.28 b0342 Valine GC 1.21 1.68 b1223 Valine GC 1.30 2.57 b3117 Isoleucine GC 3.33 361.31 b3117 Leucine GC 3.09 8.03 5 [0499.0.0.3] and [0500.0.0.3] for the disclosure of the paragraphs [0499.0.0.3] and [0500.0.0.3] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.3.3] Example 15a: Engineering ryegrass plants by over-expressing YER024W from Saccharomyces cerevisiae or homologs of YER024W from other organisms.
343 [0502.0.0.3] to [0508.0.0.3] for the disclosure of the paragraphs [0502.0.0.3] to [0508.0.0.3] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.3.3] Example 15b: Engineering soybean plants by over-expressing YER024W from Saccharomyces cerevisiae or homologs 5 of YER024W from other organisms. [0510.0.0.3] to [0513.0.0.3] for the disclosure of the paragraphs [0510.0.0.3] to [0513.0.0.3] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.3] Example 15c: Engineering corn plants by over-expressing YER024W from Saccharomyces cerevisiae or homologs of 10 YER024W from other organisms. [0515.0.0.3] to [0540.0.0.3] for the disclosure of the paragraphs [0515.0.0.3] to [0540.0.0.3] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.3.3] Example 15d: Engineering wheat plants by over-expressing YER024W from Saccharomyces cerevisiae or homologs 15 of YER024W from other organisms. [0542.0.0.3] to [0544.0.0.3] for the disclosure of the paragraphs [0542.0.0.3] to [0544.0.0.3] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.3.3] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YER024W from Saccharomyces cerevisiae or homologs 20 of YER024W from other organisms. [0546.0.0.3] to [0549.0.0.3] for the disclosure of the paragraphs [0546.0.0.3] to [0549.0.0.3] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.3.3] Example 15f: Engineering alfalfa plants by over-expressing YER024W from Saccharomyces cerevisiae or homologs of 25 YER024W from other organisms. [0551.0.0.3] to [0554.0.0.3] for the disclosure of the paragraphs [0551.0.0.3] to [0554.0.0.3] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.0.3] Example 16: Metabolite Profiling Info from Zea mays 30 Zea mays plants were engineered as described in Example 15c.
344 Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII Table VII ORFNAME Metabolite MIN MAX b1704 Valine 1,58 2,21 b1704 Leucine 1,49 2,23 YALO38W Valine 1,36 1,74 YALO38W Isoleucine 1,49 7,52 YDR497C Isoleucine 1,27 1,91 YDR497C Leucine 1,79 2,12 YELO46C Leucine 1,32 1,75 YKR043C Valine 2,79 9,34 YNL241C Isoleucine 1,35 1,74 5 Table VII shows the increase in valine, leucine, or isoleucine in genetically modified corn plants expressing the Escherichia coli nucleic acid sequence b1704 or the Sac charomyces cerevisiae nucleic acid sequences YALO38W, YDR497C, YELO46C, YKRO43C and YNL241C. 10 In one embodiment, in case the activity of the Escherichia coli protein b1704 or its ho mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase, tryptophan repressible)", is increased in corn plants, preferably, an increase of the fine chemical valine between 58% and 121% or more is conferred. In one embodiment, in case the activity of the Escherichia coli protein b1 704 or its ho 15 mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase, tryptophan repressible)", is increased in corn plants, preferably, an increase of the fine chemical leucine between 49% and 123% is conferred. In one embodiment, in case the activity of the Escherichia coli protein b1704 or its ho mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn 20 thetase, tryptophan repressible)", is increased in corn plants, preferably, an increase of the fine chemical leucine between 49% and 123% or more and of the fine chemical valine between 58% and 121% or more is conferred.
345 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical valine between 36% and 74% or more is con ferred. 5 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical isoleucine between 49% and 652 or more % is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein 10 YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical isoleucine between 49% and 652% and of the fine chemical valine between 36% and 74% or more is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter", is increased in corn plants, 15 preferably, an increase of the fine chemical isoleucine between 27% and 91% or more is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter", is increased in corn plants, preferably, an increase of the fine chemical leucine between 79% and 121% or more is 20 conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter", is increased in corn plants, preferably, an increase of the fine chemical leucine between 79% and 121 % or more and of the fine chemical isoleucine between 27% and 91 % or more is conferred. 25 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YELO46C or its homologs, e.g. a "L-threonine aldolase", is increased in corn plants, preferably, an increase of the fine chemical leucine between 32% and 75% or more is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein 30 YKR043C or its homologs, e.g. a "unknown ORF", is increased in corn plants, prefera bly, an increase of the fine chemical valine between 179% and 834% or more is con ferred.
346 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase", is increased in corn plants, preferably, an increase of the fine chemical isoleucine between 35% and 74% or more is conferred. 5 [0554.2.0.3] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.3] for the disclosure of this paragraph see [0555.0.0.0] above.
347 [0001.0.0.4] to [0007.0.0.4] for the disclosure of the paragraphs [0001.0.0.4] to [0007.0.0.4] see paragraphs [0001.0.0.0] to [0007.0.0.0] above. [0007.1.0.4] and [0008.0.0.4] for the disclosure of the paragraphs [0007.1.0.4] and [0008.0.0.4] see paragraphs [0007.1.0.0] and [0008.0.0.0] above. 5 [0009.0.4.4] As described above, the essential amino acids are necessary for hu mans and many mammals, for example for livestock. Arginine is a semi-essential amino acid involved in multiple areas of human physiology and metabolism. It is not considered essential because humans can synthesize it de novo from glutamine, glu tamate, and proline. However, dietary intake remains the primary determinant of 10 plasma arginine levels, since the rate of arginine biosynthesis does not increase to compensate for depletion or inadequate supply. Dietary arginine intake regulates whole body arginine synthesis from proline in the neonatal piglet. The maximal rate of argin ine synthesis (0.68g/kg/d) is not enough to supply the whole body metabolic require ment for arginine in the young pig. In animals, glutamate functions as a neurotransmit 15 ter and activates glutamate receptor cation channels (iGluRs), which trigger electrical or Ca 2 signal cascades. In plants, amino acids are involved in signalling of both plant nitrogen status and plant nitrogen : carbon ratios. Endogenous glutamine has been implicated in feedback inhibition of root N uptake, via the suppression of transcription of genes encoding inorganic nitrogen transporters (Rawat et al., Plant Journal 19: 143 20 152, 1999; Zhuo et al., Plant Journal 17: 563-568, 1999). The nonessential amino acid, proline, is synthesized from L-ornithine or L-glutamate. The proline from L-ornithine is linked to protein metabolism in the urea cycle and the proline from L-glutamate is linked to carbohydrate metabolism. Collagen is the major reservoir for proline in the body. Vitamin C should be used with proline for collagen problems. 25 [0010.0.0.4] and [0011.0.0.4] for the disclosure of the paragraphs [0010.0.0.4] and [0011.0.0.4] see paragraphs [0010.0.0.0] and [0011.0.0.0] above. [0012.0.4.4] It is an object of the present invention to develop an inexpensive proc ess for the synthesis of arginine and/or glutamate and/or glutamine and/or proline, preferably L-arginine and/or L- glutamate and/or L-glutamine and/or L- proline. 30 [0013.0.0.4] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.4.4] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is arginine, glutamate, glutamine and/or proline, preferably arginine, glutamate, glutamine and/or proline. Ac- 348 cordingly, in the present invention, the term "the fine chemical" as used herein relates to "arginine, glutamate, glutamine and/or proline". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising arginine, glutamate, glutamine and/or proline. 5 [0015.0.4.4] In one embodiment, the term "the fine chemical" means arginine, gluta mate, glutamine and/or proline. Throughout the specification the term "the fine chemi cal" means arginine, glutamate, glutamine and/or proline, preferably L- arginine, L glutamate, L-glutamine and/or L-proline, its salts, ester or amids in free form or bound to proteins. In a preferred embodiment, the term "the fine chemical" means arginine, 10 glutamate, glutamine and/or proline, preferably L- arginine, L-glutamate, L-glutamine and/or L-proline in free form or its salts or bound to proteins. [0016.0.4.4] Accordingly, the present invention relates to a process for the production of arginine, glutamate, glutamine and/or proline, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 15 no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 5, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 5, column 5 in the plastid of a microorganism or plant, or in one or 20 more parts thereof; and (b) growing the organism under conditions which permit the production of the fine chemical, thus, arginine, glutamate, glutamine and/or proline or fine chemicals comprising arginine, glutamate, glutamine and/or proline, in said organism or in the culture medium surrounding the organism. 25 [0016.1.4.4] Accordingly, the term "the fine chemical" means in one embodiment "arginine" in relation to all sequences listed in Table I to IV, application no. 5, lines 38, 40, 46 and 52 or homologs thereof and means in one embodiment "glutamate" in rela tion to all sequences listed in Tables I to IV, application no. 5, line 44 or homologs thereof and means in one embodiment "proline" in relation to all sequences listed in 30 Table I to IV, application no. 5, lines 37, 39, 41, 42, 44, 45, 47 to 51 or homologs thereof and means in one embodiment "glutamine" in relation to all sequences listed in Tables I to IV, application no. 5, lines 36 and 43 or homologs thereof.
349 Accordingly, in one embodiment the term "the fine chemical" means "glutamate" and "proline" in relation to all sequences listed in Table I to IV, application no. 5, lines 37, 39, 41, 42, 44, 45, 47 to 51, in one embodiment the term "the fine chemical" means "arginine" and "glutamine" in relation to all sequences listed in Table I to IV, application 5 no. 5, lines 36, 38, 40, 43, 46 and 52, in one embodiment the term "the fine chemical" means "glutamine" and "proline" in relation to all sequences listed in Table I to IV, ap plication no. 5, lines 36, 37, 39, 41 to 45 and 47 to 51, in one embodiment the term "the fine chemical" means "arginine" and "glutamine" in relation to all sequences listed in Table I to IV, application no. 5, lines 36, 38, 40, 43, 46 and 52, in one embodiment the 10 term "the fine chemical" means "arginine", "proline" and "glutamine" or "arginine", "proline", glutamate and "glutamine" in relation to all sequences listed in Table I to IV, application no. 5, lines 36 to 52. Accordingly, the term "the fine chemical" can mean "arginine" and/or "glutamate" and/or "glutamine" and/or "proline", owing to circumstances and the context. In order to illus 15 trate that the meaning of the term "the fine chemical" means "arginine", and/or "gluta mate" and/or "glutamine" and/or "proline" the term "the respective fine chemical" is also used. [0017.0.4.4] In another embodiment the present invention is related to a process for the production of arginine, glutamate, glutamine and/or proline, which comprises 20 (a) increasing or generating the activity of a protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 5, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, appli 25 cation no. 5, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 5, column 5, which are joined to a nucleic acid sequence encoding 30 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of arginine, glutamate, glutamine and/or proline in said organism.
350 [0017.1.4.4] In another embodiment, the present invention relates to a process for the production of arginine, glutamate, glutamine and/or proline, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, appli 5 cation no. 5, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, appli cation no. 5, column 5 in the plastid of a microorganism or plant, or in one or more 10 parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, arginine, glutamate, glutamine and/or proline or fine chemicals comprising arginine, glutamate, glutamine and/or proline, in said organism or in the culture medium surrounding the organism. 15 [0018.0.4.4] Advantagously the activity of the protein as shown in table II, application no. 5, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 5, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.4] to [0024.0.0.4] for the disclosure of the paragraphs [0019.0.0.4] to 20 [0024.0.0.4] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.4.4] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to 25 the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 5, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 30 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro- 351 teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are 5 typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct 10 molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported 15 protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. 20 structural flexible amino acids such as glycine or alanine. [0026.0.4.4] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 5, column 3 and its homologs as disclosed in table 1, application no. 5, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures 25 transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table 1l, application no. 5, column 3 and its homologs as disclosed in table 1, application no. 5, columns 5 and 7. 30 [0027.0.0.4] to [0029.0.0.4] for the disclosure of the paragraphs [0027.0.0.4] to [0029.0.0.4] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.4.4] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized 35 sequences can be directly linked to the sequences encoding the mature protein or via a 352 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore 5 favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 10 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo 15 plasmic reticulum, golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V , preferably the last one of the table are joint to the nucleic acid sequences shown in 20 table I, application no. 5, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 5, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal 25 amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 5, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 5, col 30 umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short 35 amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 5, columns 5 and 7. Furthermore the 353 skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.4.4] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. 5 [0030.1.4.4] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 5, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore 10 in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 5, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". 15 A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a 20 chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.4] and [0030.3.0.4] for the disclosure of the paragraphs [0030.2.0.4] and [0030.3.0.4] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. 25 [0030.4.4.4] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 5, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 30 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran- 354 scribed from the sequences depicted in table I, application no. 5, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 5, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple 5 mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi 10 roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 5, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 5, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence 15 as depicted in table I, application no. 5 columns 5 and 7 or a sequence encoding a pro tein as depicted in table II, application no. 5 columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the 20 proteins depicted in table II, application no.5, columns 5 and 7 are encoded by different nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be incorpo rated by reference. WO 2004/040973 teaches a method, which relates to the transloca tion of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be expressed 25 in the plant or plants cells, are split into nucleic acid fragments, which are introduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochon dria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the 30 RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as dis closed in table II, application no. 5, columns 5 and 7. [0030.5.4.4] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 5, columns 5 and 7 used in the inventive 35 process are transformed into plastids, which are metabolical active. Those plastids 355 should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.4.4] For a good expression in the plastids the nucleic acid sequences as 5 shown in table 1, application no. 5, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. 10 [0031.0.0.4] and [0032.0.0.4] for the disclosure of the paragraphs [0031.0.0.4] and [0032.0.0.4] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.4.4] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 15 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table 1l, application no. 5, column 3. Preferably the modification of the activity of a protein as shown in table 1l, application no. 5, column 3 20 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.4.4] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table 1l, application no. 5, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in 25 the fine chemical content of the transformed plants. [0035.0.0.4] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.4.4] The sequence of b0342 (Accession number PIR:XXECTG) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "thiogalactoside acetyltransferase". Accord 30 ingly, in one embodiment, the process of the present invention comprises the use of a "thiogalactoside acetyltransferase" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in 356 free or bound form, preferably glutamate and/or glutamine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide 5 as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0855 (Accession number NP_415376) from Escherichia coli has 10 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ATP-binding component of putrescine transport system". Accord ingly, in one embodiment, the process of the present invention comprises the use of a "ATP-binding component of putrescine transport system" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, gluta 15 mine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, preferably arginine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a b0855 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit 20 peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0855 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1062 (Accession number DEECOO) from Escherichia coli has been 25 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "dihydro-orotase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "dihydro-orotase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, 30 glutamine and/or proline in free or bound form, preferably proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 062 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. 35 In another embodiment, in the process of the present invention the activity of a b1062 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria.
357 The sequence of b1 184 (Accession number NP_415702) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "SOS mutagenesis and repair". Accordingly, in one embodiment, the process of the present invention comprises the use of a "SOS mutagenesis and 5 repair" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, pref erably proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 184 protein 10 is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1 184 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b1223 (Accession number NP_415741) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nitrite extrusion protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "nitrite extrusion protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of ar 20 ginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, preferably proline in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a b1223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least 25 to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1264 (Accession number NP_415780) from Escherichia coli has 30 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "anthranilate synthase component I". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "anthranilate syn thase component I" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for 35 increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a b1264 protein is increased or generated, 358 e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1264 protein is increased or generated in a subcellular compartment of the organism or or 5 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown 10 herein, for the production of the fine chemical, meaning of arginine, glutamate, gluta mine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, preferably proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 556 protein is increased or generated, e.g. 15 from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of b1758 (Accession number NP_416272) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative cytochrome oxidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative cytochrome oxi dase" or its homolog, e.g. as shown herein, for the production of the fine chemical, 25 meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, pref erably glutamate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 758 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref 30 erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1758 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1852 (Accession number NP_416366) from Escherichia coli has 35 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glucose-6-phosphate dehydrogenase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "glucose-6- 359 phosphate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particu lar for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the 5 process of the present invention the activity of a b1 852 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1852 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1907 (Accession number NP_416420) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "tyrosine-specific transport protein" (HAAAP family). Accordingly, in one embodiment, the process of the present invention comprises the use of a "tyrosine 15 specific transport protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particu lar for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 907 protein is increased or gener 20 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1907 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of b2025 (Accession number NP_416529) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "imidazole glycerol phosphate synthase subunit", which is in a het erodimer with HisH = imidazole glycerol phsphate synthase holoenzyme. Accordingly, in one embodiment, the process of the present invention comprises the use of a "imi 30 dazole glycerol phosphate synthase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a b2025 protein is increased 35 or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2025 360 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2040 (Accession number G64969) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 5 being defined as "TDP-rhamnose synthetase, NAD(P)-binding". Accordingly, in one embodiment, the process of the present invention comprises the use of a "TDP rhamnose synthetase, NAD(P)-binding" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or 10 proline in free or bound form, preferably glutamine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b2040 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a b2040 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2818 (Accession number NP_417295) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 20 is being defined as "N-acetylglutamate synthase (amino acid N-acetyltransferase)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "N-acetylglutamate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or 25 proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2818 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2818 30 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2926 (Accession number NP_417401) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "phosphoglycerate kinase". Accordingly, in one embodiment, the 35 process of the present invention comprises the use of a "phosphoglycerate kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of 361 arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2926 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 5 ample in table V. In another embodiment, in the process of the present invention the activity of a b2926 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2965 (Accession number NP_417440) from Escherichia coli has 10 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of ar ginine, glutamate, glutamine and/or proline, in particular for increasing the amount of 15 arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. 20 In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3443 (Accession number NP_417900) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 25 is being defined as "conserved unknown protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "conserved unknown protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, preferably 30 glutamine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3443 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3443 35 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4072 (Accession number C57987) from Escherichia coli has been 362 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "formate-dependent nitrite reductase NrfC". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "formate dependent nitrite reductase NrfC" or its homolog, e.g. as shown herein, for the produc 5 tion of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, preferably glutamine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b4072 protein is increased or generated, e.g. from Escherichia coli or a 10 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b4072 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b4074 (Accession number E57987) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "formate-dependent nitrite reductase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "formate-dependent nitrite reductase" or its homolog, e.g. as shown herein, for the production of the fine 20 chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form, preferably proline in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b4074 protein is increased or generated, e.g. from Escherichia coli or a homolog 25 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4074 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of b4139 (Accession number NP_418562) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "aspartate ammonia-lyase (aspartase)". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "aspartate am monia-lyase" or its homolog, e.g. as shown herein, for the production of the fine chemi 35 cal, meaning of arginine, glutamate, glutamine and/or proline, in particular for increas ing the amount of arginine, glutamate, glutamine and/or proline in free or bound form preferably glutamine and/or arginine in free or bound form in an organism or a part 363 thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b4139 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. 5 In another embodiment, in the process of the present invention the activity of a b4139 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR262C (Accession number S64595) from Saccharomyces cere visiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and 10 Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as " protein involved in bud-site selection". Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein involved in bud-site selection" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of 15 arginine, glutamate, glutamine and/or proline in free or bound form preferably gluta mate in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a YGR262C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of an YGR262C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YHR202W (Accession number NP_012072) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, 25 and its activity is being defined as "uncharacterized protein". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "conserved pro tein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form pref 30 erably glutamate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YHR202W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 35 In another embodiment, in the process of the present invention the activity of an YHR202W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria.
364 The sequence of YMR262W (Accession number S54474) from Saccharomyces cere visiae has been published in Bowman et al., Nature 387:90-93,(1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "uncharac terized ORF". Accordingly, in one embodiment, the process of the present invention 5 comprises the use of a "uncharacterized ORF" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form preferably glutamate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in 10 vention the activity of a YMR262W protein is increased or generated, e.g. from Sac charomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YMR262W protein is increased or generated in a subcellular compartment of the or 15 ganism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YPL162C (Accession number S65173) from Saccharomyces cere visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Bussey et al., Nature 387 (6632 Suppl), 103-105 (1997) and its activity is being de fined as " probable membrane protein". Accordingly, in one embodiment, the process of 20 the present invention comprises the use of a "probable membrane protein" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of argin ine, glutamate, glutamine and/or proline, in particular for increasing the amount of ar ginine, glutamate, glutamine and/or proline in free or bound form preferably glutamine in free or bound form in an organism or a part thereof, as mentioned. In one embodi 25 ment, in the process of the present invention the activity of a YPL162C protein is in creased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YPL1 62C protein is increased or generated in a subcellular compartment of the organ 30 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YAL038W (Accession number NP_009362) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Bussey et al., Proc. NatI. Acad. Sci. U.S.A. 92 (9), 3809-3813 (1995), and its activ ity is being defined as "pyruvate kinase", which functions as a homotetramer in glycoly 35 sis to convert phosphoenolpyruvate to pyruvate (Cdc 9p). Pyruvate is the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration. Accordingly, in one embodiment, the process of the present invention comprises the use of a "pyruvate 365 kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 5 present invention the activity of a YAL038W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YAL038W protein is increased or generated in a subcellular compartment of the organ 10 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YBR001 C (Accession number NP_009555) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Feldmann et al., EMBO J. 13 (24), 5795-5809 (1994), and its activity is being de fined as "neutral trehalase" which degrades trehalose and which is required for thermo 15 tolerance and may mediate resistance to other cellular stresses (Nth2p). Accordingly, in one embodiment, the process of the present invention comprises the use of a "neu tral trehalase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound 20 form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a YBR001C protein is increased or gener ated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 25 YBR001 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YER024W (Accession number NP_010941) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997). The activity of the protein is 30 unclear. The protein shows significant homology with the known carnitine acetyltrans ferase associated with the outer-mitochondrial membrane (Yati p), and might also func tions as a carnitine acetyltransferase. Accordingly, in one embodiment, the process of the present invention comprises the use of said putative carnitine acetyltransferase or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 35 arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention 366 the activity of a YER024W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 5 YER024W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR256W (Accession number NP_011772) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and its activity is being de 10 fined as "6-phosphogluconate dehydrogenase", which has a decarboxylating activity and converts 6-phosphogluconate + NADP to ribulose-5-phosphate + NADPH + C02 (Gnd2p). Accordingly, in one embodiment, the process of the present invention com prises the use of a "6-phosphogluconate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, gluta 15 mine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGR256W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 20 ample in table V. In another embodiment, in the process of the present invention the activity of an YGR256W protein is increased or generated in a subcellular compartment of the or ganism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR289C (Accession number NP_011805) from Saccharomyces 25 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and its activity is being de fined as "general alpha-glucoside permease". Accordingly, in one embodiment, the process of the present invention comprises the use of a "general alpha-glucoside per mease" or its homolog, e.g. as shown herein, for the production of the fine chemical, 30 meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGR289C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one 35 transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YGR289C protein is increased or generated in a subcellular compartment of the organ- 367 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YHR037W (Accession number NP_011902) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Science 265 (5181), 2077-2082 (1994), and its activity is being 5 defined as "delta-1-pyrroline-5-carboxylate dehydrogenase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "delta-1 pyrroline-5-carboxylate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or 10 proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YHR037W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 15 YHR037W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dujon et al., Nature 369 (6479), 371-378 (1994), and its activity is being defined as 20 "phosphoglycerate mutase like protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particular for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or 25 a part thereof, as mentioned. In one embodiment, in the process of the present inven tion the activity of a YKR043C protein is increased or generated, e.g. from Saccharo myces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 30 YKR043C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR027C (Accession number NP_013127) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Science 265 (5181), 2077-2082 (1994), and its activity is being 35 defined as "aspartate aminotransferase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "aspartate aminotransferase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of argin- 368 ine, glutamate, glutamine and/or proline, in particular for increasing the amount of ar ginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR027C protein is increased or generated, e.g. from Saccharomyces 5 cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR027C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of YNL241C (Accession number NP_014158) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as "glucose-6-phosphate dehydrogenase" (Zwflp). Accordingly, in one em bodiment, the process of the present invention comprises the use of a "glucose-6 15 phosphate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of arginine, glutamate, glutamine and/or proline, in particu lar for increasing the amount of arginine, glutamate, glutamine and/or proline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or gen 20 erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 25 [0037.0.4.4] In one embodiment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, YLR027C and/or YNL241C, is a homolog having said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b0342, b0855, b1062, b1184, b1223, b1556, b1758, b2040, b3443, b4072, b4074, b1264, 30 b1852, b1907, b2025, b2818, b2926, b2965 and/or b4139 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, YLR027C and/or YNL241C is a ho molog having said acitivity and being derived from Fungi. In one embodiment, the ho 35 molog of the b0342, b0855, b1062, b1184, b1223, b1556, b1758, b2040, b3443, b4072, b4074, b1264, b1852, b1907, b2025, b2818, b2926, b2965 and/or b4139 is a 369 homolog having said acitivity and being derived from Proteobacteria. In one embodi ment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, YLR027C and/or YNL241C is a homolog having said acitivity and being derived from Ascomycota. In 5 one embodiment, the homolog of the b0342, b0855, b1062, b1 184, b1223, b1556, b1758, b2040, b3443, b4072, b4074, b1264, b1852, b1907, b2025, b2818, b2926, b2965 and/or b4139 is a homolog having said acitivity and being derived from Gam maproteobacteria. In one embodiment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, 10 YHR037W, YKR043C, YLR027C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b0342, b0855, b1062, b1184, b1223, b1556, b1758, b2040, b3443, b4072, b4074, b1264, b1852, b1907, b2025, b2818, b2926, b2965 and/or b4139 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the ho 15 molog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, YLR027C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the b0342, b0855, b1062, b1184, b1223, b1556, b1758, b2040, b3443, b4072, b4074, b1264, b1852, b1907, b2025, b2818, b2926, b2965 20 and/or b4139 is a homolog having said acitivity and being derived from Enterobacteri aceae. In one embodiment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, YLR027C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetales. In one embodiment, the homolog of the b0342, 25 b0855, b1062, b1184, b1223, b1556, b1758, b2040, b3443, b4072, b4074, b1264, b1852, b1907, b2025, b2818, b2926, b2965 and/or b4139 is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, 30 YLR027C and/or YNL241 C is a homolog having said acitivity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YGR262C, YHR202W, YMR262W, YPL162C, YALO38W, YBRO01C, YER024W, YGR256W, YGR289C, YHR037W, YKR043C, YLR027C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae. 35 [0038.0.0.4] for the disclosure of this paragraph see paragraph [0038.0.0.0] above.
370 [0039.0.4.4] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 5, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more 5 preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 5, column 3, preferably in the event the nucleic acid sequences encoding said pro teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or 10 polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 5, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table II, application no. 5, column 3 15 of Saccharomyces cerevisiae. [0040.0.0.4] to [0047.0.0.4] for the disclosure of the paragraphs [0040.0.0.4] to [0047.0.0.4] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.4.4] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of 20 the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 5, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. 25 [0049.0.0.4] to [0051.0.0.4] for the disclosure of the paragraphs [0049.0.0.4] to [0051.0.0.4] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.4.4] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex 30 pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table I, application no. 5, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos- 371 sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 5 [0053.0.0.4] to [0058.0.0.4] for the disclosure of the paragraphs [0053.0.0.4] to [0058.0.0.4] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.4.4] In case the activity of the Escherichia coli protein b0342 or its homologs, e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 10 fine chemical, preferably of glutamine between 29% and 81% and/or glutamate be tween 33% and 85% or more is conferred. In case the activity of the Escherichia coli protein b0855 or its homologs, e.g. a "ATP binding component of putrescine transport system" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase 15 of the fine chemical, preferably of arginine between 46% and 113% or more is con ferred. In case the activity of the Escherichia coli protein b1062 or its homologs, e.g. a "dihy dro-orotase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of 20 proline between 43% and 145% or more is conferred. In case the activity of the Escherichia coli protein b1 184 or its homologs, e.g. a "SOS mutagenesis and repair" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of proline between 34% and 130% or more is conferred. 25 In case the activity of the Escherichia coli protein b1223 or its homologs, e.g. a "nitrite extrusion protein" is increased advantageously in an organelle such as a plastid or mi tochondria, preferably, in one embodiment an increase of the fine chemical, preferably of proline between 44% and 501% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin 30 prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of proline between 45% and 229% or more is conferred. In case the activity of the Escherichia coli protein b1758 or its homologs, e.g. a "puta tive cytochrome oxidase" is increased advantageously in an organelle such as a plastid 35 or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref- 372 erably of glutamate between 36% and 38% or more is conferred. In case the activity of the Escherichia coli protein b2040 or its homologs, e.g. a "TDP rhamnose synthetase, NAD(P)-binding" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 5 fine chemical, preferably of glutamine between 32% and 49% or more is conferred. In case the activity of the Escherichia coli protein b3443 or its homologs, e.g. a "con served unknown protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of glutamine between 30% and 36% or more is conferred. 10 In case the activity of the Escherichia coli protein b4072 or its homologs, e.g. a "for mate-dependent nitrite reductase NrfC" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glutamine between 33% and 451% or more is conferred. In case the activity of the Escherichia coli protein b4074 or its homologs, e.g. a "for 15 mate-dependent nitrite reductase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of proline between 45% and 62% or more is conferred. In case the activity of the Escherichia coli protein b1264 or its homologs, e.g. a "an thranilate synthase (component 1)" is increased advantageously in an organelle such as 20 a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of glutamine between 27% and 75% or more is conferred. In case the activity of the Escherichia coli protein b1852 or its homologs, e.g. a "glu cose-6-phosphate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine 25 chemical, preferably of proline between 45% and 62% or more is conferred. In case the activity of the Escherichia coli protein b1907 or its homologs, e.g. a "tyro sine-specific transport protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of arginine between 46% and 113% or more is conferred. 30 In case the activity of the Escherichia coli protein b2025 or its homologs, e.g. a "imida zole glycerol phosphate synthase subunit" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of proline between 38% and 353% or more is conferred. In case the activity of the Escherichia coli protein b2818 or its homologs, e.g. a "N 35 acetylglutamate synthase" is increased advantageously in an organelle such as a plas tid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of arginine between 333% and 1336% or more is conferred.
373 In case the activity of the Escherichia coli protein b2926 or its homologs, e.g. a "phos pho-glycerate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of proline between 34% and 130% or more is conferred. 5 In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of proline between 60% and 855% or more is conferred. In case the activity of the Escherichia coli protein b4139 or its homologs, e.g. a "aspar 10 tate ammonia-lyase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of glutamine between 38% and 100% and/or arginine between 106% and 1038% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR262C or its ho 15 mologs, e.g. a "protein involved in bud-site selection" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of glutamate between 33% and 48% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YHR202W or its ho 20 mologs, e.g. a "uncharacterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glutamate between 33% and 34% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YMR262W or its ho mologs, e.g. a "uncharacterized ORF" is increased advantageously in an organelle 25 such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glutamate between 35% and 128% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YPL1 62C or its homologs, e.g. a "probable membrane protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine 30 chemical, preferably of glutamine between 28% and 59% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of proline between 41 % and 101 % or more or and/or glutamate between 58% 35 and 120% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YBRO01C or its homologs, e.g. a "neutral trehalase" is increased advantageously in an organelle such as a plastid 374 or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of proline between 33% and 66% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YER024W or its ho mologs, e.g. a "carnitine acetyltransferase" is increased advantageously in an organelle 5 such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of arginine between 24% and 39% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR256W or its ho mologs, e.g. a "6-phospho-gluconate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in 10 crease of the fine chemical, preferably of proline between 54% and 122% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR289C or its ho mologs, e.g. a "general alpha-glucoside permease" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase 15 of the fine chemical, preferably of proline between 37% and 82% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YHR037W or its ho mologs, e.g. a "delta-1-pyrroline-5-carboxylate dehydrogenase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of proline between 71 % and 117% or 20 more is conferred. In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of proline between 34% and 330% or more is conferred. 25 In case the activity of the Saccharomyces cerevisiae protein YLR027C or its homologs, e.g. a "aspartate aminotransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of proline between 52% and 182% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241 C or its homologs, 30 e.g. an "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of arginine between 48% and 274% or more is con ferred. [0060.0.4.4] In case the activity of the Escherichia coli protein b0342 or its ho 35 mologs, e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical 375 and of proteins containing glutamine and/or glutamate is conferred. In case the activity of the Escherichia coli protein b0855 or its homologs, e.g. a "ATP binding component of putrescine transport system" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical 5 and of proteins containing arginine is conferred. In case the activity of the Escherichia coli protein b1062 or its homologs, e.g. a "dihy dro-orotase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. 10 In case the activity of the Escherichia coli protein b1 184 or its homologs, e.g. a "SOS mutagenesis and repair" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Escherichia coli protein b1223 or its homologs, e.g. a "nitrite 15 extrusion protein" is increased advantageously in an organelle such as a plastid or mi tochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon 20 dria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Escherichia coli protein b1758 or its homologs, e.g. a "puta tive cytochrome oxidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing 25 glutamate is conferred. In case the activity of the Escherichia coli protein b2040 or its homologs, e.g. a "TDP rhamnose synthetase, NAD(P)-binding" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamine is conferred. 30 In case the activity of the Escherichia coli protein b3443 or its homologs, e.g. a "con served unknown protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamine is conferred. In case the activity of the Escherichia coli protein b4072 or its homologs, e.g. a "for 35 mate-dependent nitrite reductase NrfC" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamine is conferred.
376 In case the activity of the Escherichia coli protein b4074 or its homologs, e.g. a "for mate-dependent nitrite reductase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. 5 In case the activity of the Escherichia coli protein b1264 or its homologs, e.g. a "an thranilate synthase (component 1)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamine is conferred. In case the activity of the Escherichia coli protein b1852 or its homologs, e.g. a "glu 10 cose-6-phosphate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Escherichia coli protein b1907 or its homologs, e.g. a "tyro sine-specific transport protein" is increased advantageously in an organelle such as a 15 plastid or mitochondria, preferably an increase of the fine chemical and of proteins con taining arginine is conferred. In case the activity of the Escherichia coli protein b2025 or its homologs, e.g. a "imida zole glycerol phosphate synthase subunit" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of 20 proteins containing proline is conferred. In case the activity of the Escherichia coli protein b2818 or its homologs, e.g. a "N acetylglutamate synthase" is increased advantageously in an organelle such as a plas tid or mitochondria, preferably an increase of the fine chemical and of proteins contain ing arginine is conferred. 25 In case the activity of the Escherichia coli protein b2926 or its homologs, e.g. a "phos pho-glycerate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or 30 nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Escherichia coli protein b4139 or its homologs, e.g. a "aspar tate ammonia-lyase" is increased advantageously in an organelle such as a plastid or 35 mitochondria, preferably an increase of the fine chemical and of proteins containing glutamine and/or arginine is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR262C or its ho- 377 mologs, e.g. a "protein involved in bud-site selection" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamate is conferred. In case the activity of the Saccharomyces cerevisiae protein YHR202W or its ho 5 mologs, e.g. a "uncharacterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamate is conferred. In case the activity of the Saccharomyces cerevisiae protein YMR262W or its ho mologs, e.g. a "uncharacterized ORF" is increased advantageously in an organelle 10 such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing glutamate is conferred. In case the activity of the Saccharomyces cerevisiae protein YPL162C or its homologs, e.g. a "probable membrane protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins 15 containing glutamine is conferred. In case the activity of the Saccharomyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline and/or glutamate is conferred. 20 In case the activity of the Saccharomyces cerevisiae protein YBRO01C or its homologs, e.g. a "neutral trehalase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Saccharomyces cerevisiae protein YER024W or its ho 25 mologs, e.g. a "carnitine acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing arginine is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR256W or its ho mologs, e.g. a "6-phospho-gluconate dehydrogenase" is increased advantageously in 30 an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Saccharomyces cerevisiae protein YGR289C or its ho mologs, e.g. a "general alpha-glucoside permease" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical 35 and of proteins containing proline is conferred. In case the activity of the Saccharomyces cerevisiae protein YHR037W or its ho mologs, e.g. a "delta-1-pyrroline-5-carboxylate dehydrogenase" is increased advanta- 378 geously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or 5 ganelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins containing proline is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR027C or its homologs, e.g. a "aspartate aminotransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical and of proteins 10 containing proline is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. an "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably an increase of the fine chemical and of proteins con 15 taining arginine is conferred. [0061.0.0.4] and [0062.0.0.4] for the disclosure of the paragraphs [0061.0.0.4] and [0062.0.0.4] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.4.4] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc 20 ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 5, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 5, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule 25 according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 5, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.4.4] For the purposes of the present invention, the terms "L-arginine, L glutamate, L-glutamine and/or L-proline " and "arginine, glutamate, glutamine and/or 30 proline" also encompass the corresponding salts, such as, for example, arginine, glu tamate, glutamine and/or proline hydrochloride or arginine, glutamate, glutamine and/or proline sulfate. Preferably the terms arginine, glutamate, glutamine and/or proline is intended to encompass the term L-arginine, L-glutamate, L-glutamine and/or L-proline.
379 [0065.0.0.4] and [0066.0.0.4] for the disclosure of the paragraphs [0065.0.0.4] and [0066.0.0.4] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.4.4] In one embodiment, the process of the present invention comprises one or more of the following steps 5 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 5, columns 5 and 7 or its homologs activity having herein-mentioned arginine, glutamate, glutamine and/or proline increasing activity; and/or 10 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 5, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi 15 cated in table II, application no. 5, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned arginine, glutamate, glutamine and/or proline increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 20 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned arginine, glutamate, gluta mine and/or proline increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 5, columns 5 and 7 or its ho mologs activity, or decreasing the inhibitiory regulation of the polypeptide of the 25 invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned arginine, glutamate, 30 glutamine and/or proline increasing activity, e.g. of a polypeptide having the ac tivity of a protein as indicated in table II, application no. 5, columns 5 and 7 or its homologs activity; and/or 380 e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned arginine, glutamate, glutamine and/or proline increasing activity, e.g. of a polypeptide having the activity of a 5 protein as indicated in table 1l, application no. 5, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present 10 invention or a polypeptide of the present invention, having herein-mentioned ar ginine, glutamate, glutamine and/or proline increasing activity, e.g. of a polypep tide having the activity of a protein as indicated in table 1l, application no. 5, col umns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a 15 nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned arginine, glutamate, glutamine and/or proline increasing activity, e.g. of a poly peptide having the activity of a protein as indicated in table 1l, application no. 5, columns 5 and 7 or its homologs activity; and/or 20 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 5, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like 25 for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated 30 near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam- 381 ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention 5 from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned arginine, gluta mate, glutamine and/or proline increasing activity, e.g. of a polypeptide having 10 the activity of a protein as indicated in table 1l, application no. 5, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting se quence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 15 mentioned arginine, glutamate, glutamine and/or proline increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 5, columns 5 and 7 or its homologs activity in plastids by the stable or tran sient transformation advantageously stable transformation of organelles prefera bly plastids with an inventive nucleic acid sequence preferably in form of an ex 20 pression cassette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned arginine, glutamate, glutamine and/or proline increasing activity, e.g. 25 of a polypeptide having the activity of a protein as indicated in table 1l, application no. 5, columns 5 and 7 or its homologs activity in plastids by integration of a nu cleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.4.4] Preferably, said mRNA is the nucleic acid molecule of the present inven 30 tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in- 382 creasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 5, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. 5 [0069.0.0.4] to [0079.0.0.4] for the disclosure of the paragraphs [0069.0.0.4] to [0079.0.0.4] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.4.4] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 5, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine 10 chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 5, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA 15 binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 5, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 5, column 3, see e.g. in 20 WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.4] to [0084.0.0.4] for the disclosure of the paragraphs [0081.0.0.4] to [0084.0.0.4] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.4.4] Owing to the introduction of a gene or a plurality of genes conferring the 25 expression of the nucleic acid molecule of the invention or the polypeptide of the inven tion, for example the nucleic acid construct mentioned below, or encoding the protein as shown in table II, application no. 5, column 3 into an organism alone or in combina tion with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, pref 30 erably novel metabolites composition in the organism, e.g. an advantageous amino acid composition comprising a higher content of (from a viewpoint of nutrional physiol ogy limited) amino acids, like methionine, lysine or threonine alone or in combination in free or bound form.
383 [0086.0.0.4] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.4.4] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to arginine, glutamate, glutamine and/or proline for 5 example compounds like amino acids such as methionine, threonine or lysine or other desirable compounds. [0088.0.4.4] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani 10 mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a mi croorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 5, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present in vention and described below, e.g. conferring an increase of the fine chemical in the 15 organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microorgan ism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the 20 plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organism, 25 the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.4.4] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the 30 fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound amino acids, in par ticular arginine, glutamate, glutamine and/or proline.
384 [0090.0.0.4] to [0097.0.0.4] for the disclosure of the paragraphs [0090.0.0.4] to [0097.0.0.4] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.4.4] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 5 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 5, columns 5 and 7 or a derivative thereof, or 10 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 5, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 15 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 20 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.4.4] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic 25 plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 5, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap 30 plication no. 5, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se quences as depicted in the sequence protocol and disclosed in table 1, application no. 5, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable 385 integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. [0100.0.0.4] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. 5 [0101.0.4.4] In an advantageous embodiment of the invention, the organism takes the form of a plant whose amino acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for monogastric animals is limited by a few essential amino acids such as lysine, threonine or methionine. After 10 the activity of the protein as shown in table 1l, application no. 5, column 3 has been increased or generated in the cytsol or plastids, preferentially in the plastids, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. 15 [0102.0.0.4] to [0110.0.0.4] for the disclosure of the paragraphs [0102.0.0.4] to [0110.0.0.4] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.4.4] In a preferred embodiment, the fine chemical (arginine, glutamate, glutamine and/or proline) is produced in accordance with the invention and, if desired, is isolated. The production of further amino acids such as lysine, methionine, threonine, 20 tryptophane etc. and of amino acid mixtures by the process according to the invention is advantageous. [0112.0.0.4] to [0115.0.0.4] for the disclosure of the paragraphs [0112.0.0.4] to [0115.0.0.4] see paragraphs [0112.0.0.0] to [0115.0.0.0] above. [0116.0.4.4] In a preferred embodiment, the present invention relates to a process for 25 the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 30 peptide shown in table 1l, application no. 5, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; 386 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 5, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen 5 eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi 10 cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 15 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 20 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 25 the primers shown in table III, application no. 5, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 30 and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 387 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 5, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 5 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 5, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 10 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. 15 [0116.1.4.4.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 5, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 5, columns 5 and 7. In one embodiment, the nucleic 20 acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 5, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 5, columns 5 and 7. [0116.2.4.4.] In one embodiment, the nucleic acid molecule used in the process of the 25 invention distinguishes over the sequence indicated in table I B, application no. 5, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 5, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 30 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 5, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 5, columns 5 and 7.
388 [0117.0.4.4] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 5, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 5, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre 5 sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 5, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 5, columns 5 and 7. [0118.0.0.4] to [0120.0.0.4] for the disclosure of the paragraphs [0118.0.0.4] to 10 [0120.0.0.4] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.4.4] Nucleic acid molecules with the sequence shown in table I, application no. 5, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 5, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 5, column 7, or 15 their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 5, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0122.0.0.4] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.4.4] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 5, column 3 can be determined from generally acces sible databases. 25 [0124.0.0.4] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.4.4] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 5, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or 30 ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.4] to [0133.0.0.4] for the disclosure of the paragraphs [0126.0.0.4] to [0133.0.0.4] see paragraphs [0126.0.0.0] to [0133.0.0.0] above.
389 [0134.0.4.4] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 5, columns 5 and 5 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. 10 [0135.0.0.4] to [0140.0.0.4] for the disclosure of the paragraphs [0135.0.0.4] to [0140.0.0.4] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.4.4] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 5, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown 15 in table I, application no. 5, columns 5 and 7 or the sequences derived from table II, application no. 5, columns 5 and 7. [0142.0.4.4] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven 20 tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 5, column 7 is derived from said aligments. [0143.0.4.4] Degenerated primers can then be utilized by PCR for the amplification of 25 fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 5, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.4] to [0151.0.0.4] for the disclosure of the paragraphs [0144.0.0.4] to 30 [0151.0.0.4] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.4.4] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 5, columns 390 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the me thionine increasing activity. [0153.0.0.4] to [0159.0.0.4] for the disclosure of the paragraphs [0153.0.0.4] to 5 [0159.0.0.4] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.4.4] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 5, 10 columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, ap 15 plication no. 5, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or 20 C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner. [0161.0.4.4] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more 25 preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application 30 no. 5, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.4.4] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 5, columns 391 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. conferring of a arginine, glutamate, glutamine and/or proline increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in 5 plastids, and optionally, the activity of a protein as shown in table II, application no. 5, column 3. [0163.0.4.4] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7, 10 for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito 15 chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region 20 of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application 25 no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with 30 the primers shown in table III, application no. 5, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.4] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.4.4] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 35 gous to the amino acid sequence shown in table II, application no. 5, columns 5 and 7 392 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a arginine, glutamate, glutamine and/or proline in creasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. 5 [0166.0.4.4] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap 10 plication no. 5, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.4.4] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. 15 The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 5, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the 20 increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.4] and [0169.0.0.4] for the disclosure of the paragraphs [0168.0.0.4] and [0169.0.0.4] see paragraphs [0168.0.0.0] to [0169.0.0.0] above. [0170.0.4.4] The invention further relates to nucleic acid molecules that differ from 25 one of the nucleotide sequences shown in table I, application no. 5, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 5, columns 5 30 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 5, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length 393 protein which is substantially homologous to an amino acid sequence shown in table 1l, application no. 5, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table 1, application no. 5, columns 5 and 7, preferably as in 5 dicated in table I A, application no. 5, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole cule indicated in table I B, application no. 5, columns 5 and 7. [0171.0.0.4] to [0173.0.0.4] for the disclosure of the paragraphs [0171.0.0.4] to [0173.0.0.4] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. 10 [0174.0.4.4] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 5, columns 5 15 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.4] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.4.4] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 5, columns 5 and 7 20 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex 25 pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.4] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. 30 [0178.0.4.4] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 5, columns 5 and 7.
394 [0179.0.0.4] and [0180.0.0.4] for the disclosure of the paragraphs [0179.0.0.4] and [0180.0.0.4] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.4.4] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine 5 chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 5, columns 5 and 7, preferably shown in ta 10 ble II A, application no. 5, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 5, columns 5 and 7, preferably shown in table II A, application no. 5, columns 5 and 7 and is capable of 15 participation in the increase of production of the fine chemical after increasing its activ ity, e.g. its expression by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 5, columns 5 and 7, preferably shown in table II A, 20 application no. 5, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 5, columns 5 and 7, preferably shown in table II A, application no. 5, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 5, columns 5 and 7, preferably shown in table II A, application no. 5, columns 5 and 7, 25 and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 5, columns 5 and 7, preferably shown in table II A, application no. 5, columns 5 and 7. [0182.0.0.4] to [0188.0.0.4] for the disclosure of the paragraphs [0182.0.0.4] to [0188.0.0.4] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 30 [0189.0.4.4] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 5, columns 5 and 7, preferably shown in table II B, application no. 5, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 35 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 395 homology with one of the polypeptides as shown in table II, application no. 5, columns 5 and 7, preferably shown in table II B, application no. 5, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 5, columns 5 and 7, preferably shown 5 in table II B, application no. 5, columns 5 and 7. [0190.0.4.4] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 10 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 5, columns 5 and 7, preferably shown in table II B, application no. 5, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper 15 ties as the polypeptide as shown in table II, application no. 5, columns 5 and 7, pref erably shown in table II B, application no. 5, columns 5 and 7. [0191.0.0.4] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.4.4] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 5, columns 5 and 7, preferably shown in table II B, application 20 no. 5, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the 25 encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.4] to [0196.0.0.4] for the disclosure of the paragraphs [0193.0.0.4] to 30 [0196.0.0.4] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.4.4] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, ap plication no. 5, columns 5 and 7, comprise also allelic variants with at least approxi- 396 mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 5 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 5, columns 5 and 7, preferably shown in table I B, applica tion no. 5, columns 5 and 7, or from the derived nucleic acid sequences, the intention 10 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.4.4] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 5, columns 5 and 7, preferably shown in table I B, 15 application no. 5, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu 20 cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 5, columns 5 and 7, preferably shown in table I B, application no. 5, columns 5 and 7. [0199.0.4.4] Also preferred is that the nucleic acid molecule used in the process of 25 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 5, columns 5 and 7, preferably shown in table II B, application no. 5, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one 30 embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 5, columns 5 and 7, preferably shown in table II B, application no. 5, columns 5 and 7. [0200.0.4.4] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica 35 tion no. 5, columns 5 and 7, preferably shown in table II B, application no. 5, columns 5 397 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 5, columns 5 and 7, preferably shown in table 5 II B, application no. 5, columns 5 and 7. [0201.0.4.4] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very 10 especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 5, columns 5 and 7 expressed under identical conditions. [0202.0.4.4] Homologues of table I, application no. 5, columns 5 and 7 or of the de 15 rived sequences of table II, application no. 5, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences 20 stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 25 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.4] to [0215.0.0.4] for the disclosure of the paragraphs [0203.0.0.4] to [0215.0.0.4] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. 30 [0216.0.4.4] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 398 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 5, columns 5 and 7, preferably in Table II B, application no. 5, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof 5 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 5, columns 5 and 7, prefera bly in Table I B, application no. 5, columns 5 and 7 or a fragment thereof confer ring an increase in the amount of the fine chemical in an organism or a part thereof; 10 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% 15 identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 20 amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine 25 chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; 30 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli- 399 cation no. 5, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 5 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 5, columns 7 and conferring an in 10 crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 5, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and 15 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 20 1, application no. 5, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 5, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 25 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 5, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 5, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in 30 vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 5, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 5, columns 5 and 7. Ac- 400 cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 5, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli 5 cation no. 5, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 5, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 5, columns 5 and 7 and less than 10 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 5, columns 5 and 7. [0217.0.0.4] to [0226.0.0.4] for the disclosure of the paragraphs [0217.0.0.4] to [0226.0.0.4] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. 15 [0227.0.4.4] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir 20 genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 25 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 5, columns 5 and 7 can be cloned 3'prime to the 30 transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.4] to [0239.0.0.4] for the disclosure of the paragraphs [0228.0.0.4] to [0239.0.0.4] see paragraphs [0228.0.0.0] to [0239.0.0.0] above.
401 [0240.0.4.4] In addition to the sequence mentioned in table 1, application no. 5, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the amino acid biosynthetic pathway such as for L-lysine, L 5 threonine and/or L-methionine is expressed in the organisms such as plants or micro organisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased syn thesis of the amino acids desired since, for example, feedback regulations no longer 10 exist to the same extent or not at all. In addition it might be advantageously to combine the nucleic acids sequences of the invention containing the sequences shown in table 1, application no. 5, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide 15 resistant plants. [0241.0.0.4] to [0264.0.0.4] for the disclosure of the paragraphs [0241.0.0.4] to [0264.0.0.4] see paragraphs [0241.0.0.0] to [0264.0.0.0] above. [0265.0.4.4] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 20 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 25 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 30 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 5, columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.4] to [0287.0.0.4] for the disclosure of the paragraphs [0266.0.0.4] to 35 [0287.0.0.4] see paragraphs [0266.0.0.0] to [0287.0.0.0] above.
402 [0288.0.4.4] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a 5 vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 5, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 5, columns 5 and 7 or their homologs is functionally linked to a 10 regulatory sequences which permit the expression in plastids. [0289.0.0.4] to [0296.0.0.4] for the disclosure of the paragraphs [0289.0.0.4] to [0296.0.0.4] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.4.4] Moreover, native polypeptide conferring the increase of the fine chemi cal in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for 15 example using the antibody of the present invention as described below, in particular, an anti-b0342, anti-b0855, anti-b1062, anti-b1184, anti-b1223, anti-b1556, anti-b1758, anti-b2040, anti-b3443, anti-b4072, anti-b4074, anti-b1264, anti-b1852, anti-b1907, anti-b2025, anti-b2818, anti-b2926, anti-b2965, anti-b4139, anti-YGR262C, anti YHR202W, anti-YMR262W, anti-YPL162C, anti-YALO38W, anti-YBRO01C, anti 20 YER024W, anti-YGR256W, anti-YGR289C, anti-YHR037W, anti-YKRO43C, anti YLR027C and/or anti-YNL241C protein antibody or an antibody against polypeptides as shown in table II, application no. 5, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. 25 [0298.0.0.4] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.4.4] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 5, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 5, columns 5 and 7 or func tional homologues thereof. 30 [0300.0.4.4] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 5, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the 403 consensus sequence shown in table IV, application no. 5, columns 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. 5 [0301.0.0.4] to [0304.0.0.4] for the disclosure of the paragraphs [0301.0.0.4] to [0304.0.0.4] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.4.4] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. 10 In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 5, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II, application no. 5, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are 15 more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, appli cation no. 5, columns 5 and 7 by not more than 80% or 70% of the amino acids, pref erably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide 20 of the invention does not consist of the sequence shown in table II A and/or II B, appli cation no. 5, columns 5 and 7. [0306.0.0.4] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.4.4] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid 25 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 5, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 5, columns 5 and 7. In a further embodiment, said polypep 30 tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 5, columns 5 and 7.
404 [0308.0.4.4] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 5, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 5, columns 5 and 7 by one or more amino acids, preferably by more than 5, 5 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention 10 takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.4] to [0311.0.0.4] for the disclosure of the paragraphs [0309.0.0.4] to 15 [0311.0.0.4] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.4.4] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II A and/or II B, application no. 5, columns 5 and 7. 20 [0313.0.4.4] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 25 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 5, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 30 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 5, columns 5 and 7 or which is homologous thereto, as defined above.
405 [0314.0.4.4] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 5, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 5 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 5, columns 5 and 7. [0315.0.0.4] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. 10 [0316.0.4.4] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 5, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include 15 fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 20 [0317.0.0.4] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.4.4] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 5, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 5, column 3, prefera 25 bly at least 2, 3, 4, 5, ,6 ,7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap plication no. 5, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. 30 [0319.0.4.4] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha- 406 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 5, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the 5 yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.4] to [0322.0.0.4] for the disclosure of the paragraphs [0320.0.0.4] to [0322.0.0.4] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.4.4] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 5, column 3 refers to a polypeptide having an amino acid sequence corre 10 sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 5, 15 column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.4] to [0329.0.0.4] for the disclosure of the paragraphs [0324.0.0.4] to [0329.0.0.4] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.4.4] In an especially preferred embodiment, the polypeptide according to the 20 invention furthermore also does not have the sequences of those proteins which are encoded by the sequences shown in table II, application no. 5, columns 5 and 7. [0331.0.0.4] to [0346.0.0.4] for the disclosure of the paragraphs [0331.0.0.4] to [0346.0.0.4] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.4.4] Accordingly the present invention relates to any cell transgenic for any 25 nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as 30 shown in table II, application no. 5, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe- 407 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table 1l, application no. 5, col 5 umn 3 or a protein as shown in table 1l, application no. 5, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.4] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. 10 [0349.0.4.4] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 5, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described 15 (US 5,565,350; WO 00/15815; also see above). [0350.0.0.4] to [0369.0.0.4] for the disclosure of the paragraphs [0350.0.0.4] to [0369.0.0.4] see paragraphs [0350.0.0.0] to [0369.0.0.0] above. [0370.0.4.4] The fermentation broths obtained in this way, containing in particular L arginine, L-glutamate, L-glutamine and/or L-proline preferably L-arginine, L-glutamine 20 and/or L-proline, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be removed entirely or partly by separation methods, such as, for example, cen trifugation, filtration, decantation or a combination of these methods, from the fermenta tion broth or left completely in it. The fermentation broth can then be thickened or con 25 centrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.0.4] to [0376.0.0.4], [0376.1.0.4] and [0377.0.0.4] for the disclosure of the 30 paragraphs [0371.0.0.4] to [0376.0.0.4], [0376.1.0.4] and [0377.0.0.4] see paragraphs [0371.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above.
408 [0378.0.4.4] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 5 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemi cal after expression, with the nucleic acid molecule of the present invention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 10 the nucleic acid molecule sequence shown in table 1, application no. 5, columns 5 and 7, preferably in table I B, application no. 5, columns 5 and 7, and, optionally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 15 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. 20 [0379.0.0.4] to [0383.0.0.4] for the disclosure of the paragraphs [0379.0.0.4] to [0383.0.0.4] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.4.4] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 25 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de 30 pendent on the proteins as shown in table 1l, application no. 5, column 3, eg comparing 409 near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 5, column 3. [0385.0.0.4] to [0435.0.0.4] for the disclosure of the paragraphs [0385.0.0.4] to [0435.0.0.4] see paragraphs [0385.0.0.0] to [0435.0.0.0] above. 5 [0436.0.4.4] Arginine, glutamate, glutamine and/or proline production in Chlamy domonas reinhardtii The amino acid production can be analysed as mentioned above. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.4] to [0497.0.0.4] for the disclosure of the paragraphs [0437.0.0.4] to 10 [0497.0.0.4] see paragraphs [0437.0.0.0] to [0497.0.0.0] above. [0498.0.4.4] The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max b1264 Glutamine LC 1.27 1.75 b1852 Proline GC + LC 1.45 1.62 b1907 Arginine LC 1.46 2.13 b2025 Proline GC 1.38 4.53 b2818 Arginine LC 4.33 14.36 b2926 Proline GC 1.34 2.30 b2965 Proline GC + LC 1.60 9.55 b4139 Glutamine LC 1.38 2.00 YALO38W Proline GC 1.41 2.01 YALO38W Glutamate GC 1.58 2.20 YBRO01C Proline GC + LC 1.33 1.66 YER024W Arginine LC 1.24 1.39 YGR256W Proline LC 1.54 2.22 YGR289C Proline GC 1.37 1.82 YHR037W Proline GC + LC 1.71 2.17 YKR043C Proline GC + LC 1.34 4.30 YLR027C Proline LC 1.52 2.82 YNL241C Arginine LC 1.48 3.74 410 ORF Metabolite Method Min Max b0342 Glutamine LC 1.29 1.81 b0342 Glutamate LC 1.33 1.85 b0855 Arginine LC 1.46 2.13 b1062 Proline GC 1.43 2.45 b1184 Proline GC 1.34 2.30 b1223 Proline GC 1.44 6.01 b1556 Proline GC 1.45 3.29 b1758 Glutamate LC 1.36 1.38 b2040 Glutamine LC 1.32 1.49 b3443 Glutamine LC 1.30 1.36 b4072 Glutamine LC 1.33 1.45 b4074 Proline LC 1.45 1.62 b4139 Arginine LC 2.06 11.38 YGR262C Glutamate LC 1.33 1.48 YHR202W Glutamate LC 1.33 1.34 YMR262W Glutamate LC 1.35 2.28 YPL162C Glutamine LC 1.28 1.59 [0499.0.0.4] and [0500.0.0.4] for the disclosure of the paragraphs [0499.0.0.4] and [0500.0.0.4] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.4.4] Example 15a: Engineering ryegrass plants by over-expressing 5 YALO38W from Saccharomyces cerevisiae or homologs of YALO38W from other organisms. [0502.0.0.4] to [0508.0.0.4] for the disclosure of the paragraphs [0502.0.0.4] to [0508.0.0.4] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.4.4] Example 15b: Engineering soybean plants by over-expressing 10 YALO38W from Saccharomyces cerevisiae or homologs of YALO38W from other organisms. [0510.0.0.4] to [0513.0.0.4] for the disclosure of the paragraphs [0510.0.0.4] to [0513.0.0.4] see paragraphs [0510.0.0.0] to [0513.0.0.0] above.
411 [0514.0.0.4] Example 15c: Engineering corn plants by over-expressing YALO38W from Saccharomyces cerevisiae or homologs of YALO38W from other organisms. [0515.0.0.4] to [0540.0.0.4] for the disclosure of the paragraphs [0515.0.0.4] to 5 [0540.0.0.4] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.4.4] Example 15d: Engineering wheat plants by over-expressing YALO38W from Saccharomyces cerevisiae or homologs of YALO38W from other organisms. [0542.0.0.4] to [0544.0.0.4] for the disclosure of the paragraphs [0542.0.0.4] to 10 [0544.0.0.4] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.4.4] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YALO38W from Saccharomyces cerevisiae or homologs of YALO38W from other organisms. [0546.0.0.4] to [0549.0.0.4] for the disclosure of the paragraphs [0546.0.0.4] to 15 [0549.0.0.4] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.4.4] Example 15f: Engineering alfalfa plants by over-expressing YALO38W from Saccharomyces cerevisiae or homologs of YALO38W from other organisms. [0551.0.0.4] to [0554.0.0.4] for the disclosure of the paragraphs [0551.0.0.4] to 20 [0554.0.0.4] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.4.4]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. 25 The results are shown in table VII as minimal (MIN) or maximal changes (MAX) in the respective fine chemical (column "metabolite") in genetically modified corn plants ex pressing thesequence listed in column 1 (ORF): The results of the different Zea mays plants analysed can be seen from table VII, which follows: Table VII 412 ORFNAME Metabolite Min Max b2818 Arginine 5.47 12.62 b4139 Arginine 2.32 2.46 b4139 Glutamine 1,37 4,47 YAL038W Proline 1.51 4.48 YKR043C Proline 2.03 2.61 YLR027C Proline 1.44 2.41 Table VII shows the increase in arginine or proline in genetically modified corn plants expressing the Escherichia coli sequences b2818 or b4139 or the Saccharomyces cer evisiae nucleic acid sequence YALO38W, YKR043C or YLR027C. 5 In one embodiment, in case the activity of the Saccaromyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical proline between 51% and 338% or more is conferred. In one embodiment, in case the activity of the Saccaromyces cerevisiae protein 10 YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein", is increased in corn plants, preferably, an increase of the fine chemical proline between 103% and 161 % or more is conferred. In one embodiment, in case the activity of the Saccaromyces cerevisiae protein YLR027C or its homologs, e.g. a "aspartate aminotransferase", is increased in corn 15 plants, preferably, an increase of the fine chemical proline between 103% and 161 % or more is conferred. In one embodiment, in case the activity of the Escherichia coli protein b2818 or its ho mologs, e.g. a "N-acetylglutamate synthase", is increased in corn plants, preferably, an increase of the fine chemical proline between 447% and 1162% or more is conferred. 20 In one embodiment, in case the activity of the Escherichia coli protein b4139 or its ho mologs, e.g. a "aspartate ammonia-lyase (aspartase)", is increased in corn plants, preferably, an increase of the fine chemical arginine between 132% and 146% or more is conferred. In one embodiment, in case the activity of the Escherichia coli protein b4139 or its ho 25 mologs, e.g. a "aspartate ammonia-lyase (aspartase)", is increased in corn plants, 413 preferably, an increase of the fine chemical glutamine between 37% and 347% or more is conferred. In one embodiment, in case the activity of the Escherichia coli protein b4139 or its ho mologs, e.g. a "aspartate ammonia-lyase (aspartase)", is increased in corn plants, 5 preferably, an increase of the fine chemical glutamine between 37% and 347% or more and of the fine chemical arginine between 132% and 146% or more is conferred. [0554.2.0.4] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.4] for the disclosure of this paragraph see [0555.0.0.0] above.
414 [0001.0.0.5] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.5.5] Fatty acids are the building blocks of triglycerides, lipids, oils and fats. Some of the fatty acids such as linoleic or linolenic acid are "essential" because the human body is not able to synthesize them but needs them, so humans must ingest 5 them through the diet. The human body can synthesize other fatty acids therefore they are not labeled as "essential". Nevertheless very often the amount of production of for example fatty acids such as eicosapentaenoic acid (= EPA, C 2 0: 5 1,5'8'1114'17) or docosa hexaenoic acid (= DHA, C 22
:
6 ''4710'131619) in the body is not sufficient for an optimal body function. Polyunsaturated fatty acids (= PUFA) that mean fatty acids, which have 10 more than 1 double bond in the carbon chain are divided into families depending on where their end-most double bond is located. There are two main subtypes of fatty ac ids: the omega-3 and omega-6 fatty acids. The Omega-3's are those with their end most double bond 3 carbons from their methyl end. The Omega-6's are those with their endmost double bond 6 carbons from their methyl end. Linoleic acid (an omega-6) and 15 alpha-linolenic acid (an omega-3) are the only true "essential" fatty acids. Both are used inside the body as starting material to synthesize others such as EPA or DHA. [0003.0.5.5] Fatty acids and triglycerides have numerous applications in the food and feed industry, in cosmetics and in the drug sector. Depending on whether they are free saturated or unsaturated fatty acids or triglycerides with an increased content of satu 20 rated or unsaturated fatty acids, they are suitable for the most varied applications; thus, for example, golygnsaturated fatty acids (= PUFAs) are added to infant formula to in crease its nutritional value. The various fatty acids and triglycerides are mainly ob tained from microorganisms such as fungi or from oil-producing plants including phyto plankton and algae, such as soybean, oilseed rape, sunflower and others, where they 25 are usually obtained in the form of their triacylglycerides. [0004.0.5.5] Principally microorganisms such as Mortierella or oil producing plants such as soybean, rapeseed or sunflower or algae such as Crytocodinium or Phaeodac tylum are a common source for oils containing PUFAs, where they are usually obtained in the form of their triacyl glycerides. Alternatively, they are obtained advantageously 30 from animals, such as fish. The free fatty acids are prepared advantageously by hy drolysis with a strong base such as potassium or sodium hydroxide. Higher poly un saturated fatty acids such as DHA, EPA, ARA, Dihomo-y-linoleic acid (C2038'11'14) or Docosapentaenoic acid (= DPA, C22 7,10'13'16'19) are not produced by oil producing plants such as soybean, rapeseed, safflower or sunflower. A natural sources for said 415 fatty acids are fish for example herring, salmon, sardine, redfish, eel, carp, trout, hali but, mackerel, pike-perch or tuna or algae. [0005.0.5.5] Whether oils with unsaturated or with saturated fatty acids are preferred depends on the intended purpose; thus, for example, lipids with unsaturated fatty acids, 5 specifically polyunsaturated fatty acids, are preferred in human nutrition since they have a positive effect on the cholesterol level in the blood and thus on the possibility of heart disease. They are used in a variety of dietetic foodstuffs or medicaments. In addi tion PUFAs are commonly used in food, feed and in the cosmetic industry. Poly unsatu rated w-3- and/or w-6-fatty acids are an important part of animal feed and human food. 10 Because of the common composition of human food polyunsaturated w-3-fatty acids, which are an essential component of fish oil, should be added to the food to increase the nutritional value of the food; thus, for example, polyunsaturated fatty acids such as DHA or EPA are added as mentioned above to infant formula to increase its nutritional value. The true essential fatty acids linoleic and linolenic fatty acid have a lot of positive 15 effects in the human body such as a positive effect on healthy heart, arteries and skin. They bring for example relieve from eczema, diabetic neuropathy or PMS and cyclical breast pain. [0006.0.5.5] Poly unsaturated w-3- and w-6-fatty acids are for example precursor of a family of paracrine hormones called eicosanoids such as prostaglandins which are 20 products of the metabolism of Dihomo-y-linoleic acid, ARA or EPA. Eicosanoids are involved in the regulation of lipolysis, the initiation of inflammatory responses, the regu lation of blood circulation and pressure and other central functions of the body. Eico sanoids comprise prostaglandins, leukotrienes, thromboxanes, and prostacyclins. w-3 fatty acids seem to prevent artherosclerosis and cardiovascular diseases primarily by 25 regulating the levels of different eicosanoids. Other Eicosanoids are the thromboxanes and leukotrienes, which are products of the metabolism of ARA or EPA. [0007.0.5.5] On account of their positive properties there has been no shortage of attempts in the past to make available genes which participate in the synthesis of fatty acids or triglycerides for the production of oils in various organisms having a modified 30 content of unsaturated fatty acids. [0008.0.5.5] Methods of recombinant DNA technology have also been used for some years to improve the oil content in microorganisms or plants by amplifying individual fatty acid biosynthesis genes and investigating the effect on fatty acid production. For example in WO 91/13972 a A-9-desaturase is described, which is involved in the syn- 416 thesis of polyunsaturated fatty acids. In WO 93/11245 a A-15-desaturase and in WO 94/11516 a A-12-desaturase is claimed. Other desaturases are described, for ex ample, in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144 5 20149, Wada et al., Nature 347, 1990: 200-203 or Huang et al., Lipids 34, 1999: 649 659. To date, however, the various desaturases have been only inadequately charac terized biochemically since the enzymes in the form of membrane-bound proteins are isolable and characterizable only with very great difficulty (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 10 777-792). Generally, membrane-bound desaturases are characterized by introduction into a suitable organism, which is then investigated for enzyme activity by means of analysis of starting materials and products. With regard to the effectiveness of the ex pression of desaturases and their effect on the formation of polyunsaturated fatty acids it may be noted that through expression of a desaturases and elongases as described 15 to date only low contents of poly-unsaturated fatty acids/lipids have been achieved. Therefore, an alternative and more effective pathway with higher product yield is desir able. [0009.0.5.5] As described above, the essential fatty acids are necessary for hu mans and many mammals, for example for livestock. In a study of middle-aged men 20 disclosed by Finnish researchers (International Journal of Cancer, September 1, 2004), high intake of linoleic acid seemed to lower the risk of prostate and other cancers. In another publication the positive influence on stroke is disclosed (Umemura et al., Stroke, 2002, vol. 33, pp. 2086--2093). [0010.0.5.5] Therefore improving the quality of foodstuffs and animal feeds is an im 25 portant task of the food-and-feed industry. This is necessary since, for example, as mentioned above certain fatty acids, which occur in plants are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as balanced as possible fatty acid profile in the diet since a great excess of omega-3-fatty acids above a specific concentration in the food has no positive effect 30 unless the omega-3-fatty acid content is in balance to the omega-6-fatty acid content of the diet. A further increase in quality is only possible via addition of further fatty acids, which are limiting under these conditions. The targeted addition of the limiting fatty acid in the form of synthetic products must be carried out with extreme caution in order to avoid fatty acid imbalance.
417 [0011.0.5.5] To ensure a high quality of foods and animal feeds, it is therefore nec essary to add a plurality of fatty acids in a balanced manner to suit the organism. [0012.0.5.5] Accordingly, there is still a great demand for new and more suitable genes which encode proteins which participate in the biosynthesis of fatty acids and 5 make it possible to produce certain fatty acids specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for biosynthesis two character istics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of polyunsaturated fatty acids on the other hand as less as possible byproducts should be produced in the pro 10 duction process. [0013.0.0.5] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.5.5] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is linoleic acid or tryglyc erides, lipids, oils or fats containing linoleic acid. Accordingly, in the present invention, 15 the term "the fine chemical" as used herein relates to "linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid. [0015.0.5.5] In one embodiment, the term "the fine chemical" or "the respective fine 20 chemical" means linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid. Throughout the specification the term "the fine chemical" or "the respec tive fine chemical" means linoleic acid and/or tryglycerides, lipids, oils and/or fats con taining linoleic acid, linoleic acid and its salts, ester, thioester or linoleic acid in free form or bound to other compounds such as triglycerides, glycolipids, phospholipids etc. 25 In a preferred embodiment, the term "the fine chemical" means linoleic acid, in free form or its salts or bound to triglycerides. Triglycerides, lipids, oils, fats or lipid mixture thereof shall mean any triglyceride, lipid, oil and/or fat containing any bound or free linoleic acid for example sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcho 30 line, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidyl glycerol, or as monoacylglyceride, diacylglyceride or triacylglyceride or other fatty acid esters such as acetyl-Coenzym A thioester, which contain further saturated or unsatu rated fatty acids in the fatty acid molecule. In one embodiment, the term "the fine chemical" and the term "the respective fine 418 chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.5.5] Accordingly, the present invention relates to a process for the production of linoleic acid, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 6, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 6, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (b) growing the organism under conditions which permit the production of the fine chemical, thus, linoleic acid or fine chemicals comprising linoleic acid, in said or ganism or in the culture medium surrounding the organism. 15 [0016.1.5.5] / [0017.0.5.5] In another embodiment the present invention is related to a process for the production of linoleic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 6 column 3 encoded by the nucleic acid sequences as shown in table I, ap 20 plication no. 6, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 6, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 25 (c) increasing or generating the activity of a protein as shown in table II, application no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 6, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 419 (d) growing the organism under conditions which permit the production of linoleic acid in said organism. [0017.1.5.5] In another embodiment, the present invention relates to a process for the production of linoleic acid, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 6, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 6, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, linoleic acid or fine chemicals comprising linoleic acid, in said or 15 ganism or in the culture medium surrounding the organism. [0018.0.5.5] Advantagously the activity of the protein as shown in table II, application no. 6, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 6, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. 20 [0019.0.0.5] to [0024.0.0.5] for the disclosure of the paragraphs [0019.0.0.5] to [0024.0.0.5] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.5.5] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some 25 examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 6, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as 30 chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 420 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 5 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 10 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 15 ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 20 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.5.5] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 6, column 3 and its homologs as disclosed in 25 table 1, application no. 6, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 30 ing for proteins as shown in table 1l, application no. 6, column 3 and its homologs as disclosed in table 1, application no. 6, columns 5 and 7. [0027.0.0.5] to [0029.0.0.5] for the disclosure of the paragraphs [0027.0.0.5] to [0029.0.0.5] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.5.5] Alternatively, nucleic acid sequences coding for the transit peptides 35 may be chemically synthesized either in part or wholly according to structure of transit 421 peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 5 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 10 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 15 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 20 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 6, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 6, columns 5 and 7 25 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 6, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more 30 preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 6, col umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres 35 sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes.
422 The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 6, columns 5 and 7. Furthermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 5 [0030.2.5.5] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.5.5] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 6, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 10 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 6, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 15 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 20 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. 25 [0030.2.0.5] and [0030.3.0.5] for the disclosure of the paragraphs [0030.2.0.5] and [0030.3.0.5] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.5.5] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By 30 placing the genes specified in table 1, application no. 6, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro- 423 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 6, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 6, columns 5 and 5 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 10 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 6, columns 5 and 7 or a sequence 15 encoding a protein, as depicted in table II, application no. 6, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 6, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 6, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 20 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 6, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 25 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 30 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 6, columns 5 and 7.
424 [0030.5.5.5] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 6, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.5.5] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 6, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.5] and [0032.0.0.5] for the disclosure of the paragraphs [0031.0.0.5] and [0032.0.0.5] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.5.5] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 6, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 6, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.5.5] Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 6, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.5] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.5.5] The sequence of b0403 (Accession number PIR:C64769) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "maltodextrin glucosidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "malto- 425 dextrin glucosidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of linoleic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of 5 the present invention the activity of a b0403 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0403 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0931 (Accession number PIR:JQ0756) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nicotinate phosphoribosyltransferase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "nicotinate 15 phosphoribosyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of linoleic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0931 protein is increased or gener 20 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of b1046 (Accession number PIR:C64847) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative synthase with phospholipase D/nuclease domain". Ac cordingly, in one embodiment, the process of the present invention comprises the use of a "putative synthase with phospholipase D/nuclease domain" or its homolog, e.g. as 30 shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of linoleic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1046 protein is increased or generated, e.g. from Escherichia coli or a homolog 35 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1046 426 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1933 (Accession number PIR:B64957) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 5 has not been characterized. Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "b1 933 protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglyc erides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of linoleic acid in free or bound form in an organism or a part thereof, as men 10 tioned. In one embodiment, in the process of the present invention the activity of a b1933 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1933 15 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2126 (Accession number PIR:E64980) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative sensory kinase in a two component regulatory system". 20 Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative sensory kinase" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of linoleic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, 25 in the process of the present invention the activity of a b2126 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2126 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3708 (Accession number PIR:WZEC) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "tryptophan deaminase PLP dependent". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "tryptophan 35 deaminase" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing Ii noleic acid, in particular for increasing the amount of linoleic acid in free or bound form 427 in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3728 (Accession number PIR:BYECPR) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 10 is being defined as "high affinity phosphate transport protein (ABC superfamily peri bind)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "high affinity phosphate transport protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglyc erides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the 15 amount of linoleic acid in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b3728 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b3728 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YNR012W (Accession number NP_014409) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, 25 and its activity is being defined as "uridine kinase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uridine kinase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of linoleic acid in free or bound form in an organism or a part 30 thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNR012W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 35 YNR012W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria.
428 [0037.0.5.5] In one embodiment, the homolog of the YNR012W, is a homolog hav ing said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b0403, b0931, b1046, b1933, b2126, b3708 and/or b3728 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the 5 YNR012W is a homolog having said acitivity and being derived from Fungi. In one em bodiment, the homolog of the b0403, b0931, b1046, b1933, b2126, b3708 and/or b3728 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YNR012W is a homolog having said acitivity and be ing derived from Ascomycota. In one embodiment, the homolog of the b0403, b0931, 10 b1046, b1933, b2126, b3708 and/or b3728 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the YNR012W is a homolog having said acitivity and being derived from Saccharomy cotina. In one embodiment, the homolog of the b0403, b0931, b1046, b1933, b2126, b3708 and/or b3728 is a homolog having said acitivity and being derived from Entero 15 bacteriales. In one embodiment, the homolog of the YNR012W is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the ho molog of the b0403, b0931, b1046, b1933, b2126, b3708 and/or b3728 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YNR012W is a homolog having said acitivity and being derived from 20 Saccharomycetales. In one embodiment, the homolog of the b0403, b0931, b1046, b1933, b2126, b3708 and/or b3728 is a homolog having said acitivity and being de rived from Escherichia, preferably from Escherichia coli. In one embodiment, the ho molog of the YNR012W is a homolog having said acitivity and being derived from Sac charomycetaceae. In one embodiment, the homolog of the YNR012W is a homolog 25 having said acitivity and being derived from Saccharomycetes, preferably from Sac charomyces cerevisiae. [0038.0.0.5] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.5.5] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 6, column 3" if its de novo activity, 30 or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 6, column 3, preferably in the event the nucleic acid sequences encoding said pro 35 teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout 429 the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table 1l, application no. 6, column 3, or which has at least 10% of the original 5 enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table 1l, application no. 6, column 3 of Saccharomyces cerevisiae. [0040.0.0.5] to [0047.0.0.5] for the disclosure of the paragraphs [0040.0.0.5] to [0047.0.0.5] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 10 [0048.0.5.5] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav 15 ing the activity of a protein as shown in table 1l, application no. 6, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.5] to [0051.0.0.5] for the disclosure of the paragraphs [0049.0.0.5] to [0051.0.0.5] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.5.5] For example, the molecule number or the specific activity of the poly 20 peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 6, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V 25 or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, 30 which is directed for example to the plastids. [0053.0.0.5] to [0058.0.0.5] for the disclosure of the paragraphs [0053.0.0.5] to [0058.0.0.5] see paragraphs [0053.0.0.0] to [0058.0.0.0] above.
430 [0059.0.5.5] In case the activity of the Escherichia coli protein b0403 or its homologs, e.g. a "maltodextrin glucosidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing 5 linoleic acid between 15% and 38% or more is conferred. In case the activity of the Escherichia coli protein b0931 or its homologs, e.g. a "nicoti nate phosphoribosyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing 10 linoleic acid between 16% and 45% or more is conferred. In case the activity of the Escherichia coli protein b1046 or its homologs, e.g. a "puta tive synthase with phospholipase D/nuclease domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of linoleic acid and/or tryglycerides, lipids, oils 15 and/or fats containing linoleic acid between 15% and 22% or more is conferred. In case the activity of the Escherichia coli protein b1933 or its homologs, e.g. a "b1 933 protein with unknown biological function" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats con 20 taining linoleic acid between 14% and 22% or more is conferred. In case the activity of the Escherichia coli protein b2126 or its homologs, e.g. a "puta tive sensory kinase in a two component regulatory system" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of linoleic acid and/or tryglycerides, 25 lipids, oils and/or fats containing linoleic acid between 14% and 24% or more is con ferred. In case the activity of the Escherichia coli protein b3708 or its homologs, e.g. a "trypto phan deaminase PLP dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 30 cal, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid between 15% and 39% or more is conferred. In case the activity of the Escherichia coli protein b3728 or its homologs, e.g. a "high affinity phosphate transport protein (ABC superfamily peri bind)" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi 35 ment an increase of the fine chemical, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid between 15% and 21% or more is con ferred.
431 In case the activity of the Saccharomyces cerevisiae protein YNRO12W or its ho mologs, e.g. a "uridine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing 5 linoleic acid between 15% and 21% or more is conferred. [0060.0.5.5] In case the activity of the Escherichia coli proteins b0403, b0931, b1046, b1933, b2126, b3708 or b3728 or their homologs," are increased advanta geously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic 10 acid is conferred. In case the activity of the Saccharomyces cerevisiae protein YNR012W or its ho mologs, e.g. a "uridine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid is conferred. 15 [0061.0.0.5] and [0062.0.0.5] for the disclosure of the paragraphs [0061.0.0.5] and [0062.0.0.5] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.5.5] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising 20 the consensus sequence shown in table IV, application no. 6, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 6, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 25 1, application no. 6, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.5.5] For the purposes of the present invention, the term "linoleic acid" also encompasses the corresponding salts, such as, for example, the potassium or sodium salts of linoleic acid or the salts of linoleic acid with amines such as diethylamine as 30 well as tryglycerides, lipids, oils and/or fats containing linoleic acid. [0065.0.0.5] and [0066.0.0.5] for the disclosure of the paragraphs [0065.0.0.5] and [0066.0.0.5] see paragraphs [0065.0.0.0] and [0066.0.0.0] above.
432 [0067.0.5.5] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, 5 e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 6, columns 5 and 7 or its homologs activity having herein-mentioned linoleic acid increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a 10 fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 6, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 6, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein 15 mentioned linoleic acid increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned linoleic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, 20 application no. 6, columns 5 and 7 or its homologs activity, or decreasing the in hibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 25 polypeptide of the invention having herein-mentioned linoleic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 6, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 30 the present invention having herein-mentioned linoleic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 6, columns 5 and 7 or its homologs activity, by adding one or more ex ogenous inducing factors to the organismus or parts thereof; and/or 433 f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned li noleic acid increasing activity, e.g. of a polypeptide having the activity of a pro 5 tein as indicated in table 1l, application no. 6, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned 10 linoleic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table 1l, application no. 6, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in 15 table 1l, application no. 6, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt 20 repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 25 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; 30 and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 434 k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned linoleic acid in creasing activity, e.g. of polypeptide having the activity of a protein as indicated in table II, application no. 6, columns 5 and 7 or its homologs activity, to the plas 5 tids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned linoleic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table II, application no. 6, columns 5 and 7 or its 10 homologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or 15 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned linoleic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table II, application no. 6, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into 20 the plastidal genome under control of preferable a plastidial promoter. [0068.0.5.5] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the 25 herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 6, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. 30 [0069.0.0.5] to [0079.0.0.5] for the disclosure of the paragraphs [0069.0.0.5] to [0079.0.0.5] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.5.5] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 6, col- 435 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the 5 protein as shown in table 1l, application no. 6, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 6, column 3. The expression of the 10 chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 6, column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.5] to [0084.0.0.5] for the disclosure of the paragraphs [0081.0.0.5] to 15 [0084.0.0.5] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.5.5] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic 20 acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous fatty acid composition comprising a higher content of (from a viewpoint of nutrional physiology limited) fatty 25 acids, like palmitate, palmitoleate, stearate and/or oleate. [0086.0.0.5] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.5.5] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to linoleic acid, triglycerides, lipids, oils and/or fats 30 containing linoleic acid compounds such as palmitate, palmitoleate, stearate and/or oleate. [0088.0.5.5] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 436 a) providing a non-human organism, preferably a microorganism, a non-human animal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 6, column 5 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in 10 the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the micro organism, the plant cell, the plant tissue or the plant; and 15 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.5.5] The organism, in particular the microorganism, non-human animal, the 20 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound fatty acids, in particu lar oleic acid. 25 [0090.0.0.5] to [0097.0.0.5] for the disclosure of the paragraphs [0090.0.0.5] to [0097.0.0.5] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.5.5] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 30 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either 437 a) the nucleic acid sequence as shown in table 1, application no. 6, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 6, columns 5 and 7 5 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 10 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 15 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.5.5] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 20 depicted in the sequence protocol and disclosed in table 1, application no. 6, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 6, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se 25 quences as depicted in the sequence protocol and disclosed in table 1, application no. 6, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. 30 [0100.0.0.5] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.5.5] In an advantageous embodiment of the invention, the organism takes the form of a plant whose fatty acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant 438 breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned essential fatty acids and the general amount of fatty acids as en ergy source in feed. After the activity of the protein as shown in table 1l, application no. 6, column 3 has been increased or generated, or after the expression of nucleic acid 5 molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.5] to [0110.0.0.5] for the disclosure of the paragraphs [0102.0.0.5] to [0110.0.0.5] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. 10 [0111.0.5.5] In a preferred embodiment, the fine chemical (linoleic acid) is produced in accordance with the invention and, if desired, is isolated. The production of further fatty acids such as palmitic acid, stearic acid, palmitoleic acid and/or oleic acid mixtures thereof or mixtures of other fatty acids by the process according to the invention is ad vantageous. It may be advantageous to increase the pool of free fatty acids in the 15 transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.5.5] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of anucleic acid encoding a protein or polypeptid for ex 20 ample a fatty acid transporter protein or a compound, which functions as a sink for the desired fatty acid for example for linoleic acid in the organism is useful to increase the production of the respective fine chemical (see Bao and Ohlrogge, Plant Physiol. 1999 August; 120 (4): 1057-1062). Such fatty acid transporter protein may serve as a link between the location of fatty acid synthesis and the socalled sink tissue, in which fatty 25 acids, triglycerides, oils and fats are stored. [0113.0.5.5] In the case of the fermentation of microorganisms, the abovementioned fatty acids may accumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, the fermentation broth can be processed af ter the cultivation. Depending on the requirement, all or some of the biomass can be 30 removed from the fermentation broth by separation methods such as, for example, cen trifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be re duced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by 439 nanofiltration. Afterwards advantageously further compounds for formulation can be added such as corn starch or silicates. This concentrated fermentation broth advanta geously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, spray granulation or by other methods. Preferably the 5 fatty acids or the fatty acid compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromatography or a combination of these methods. These purification methods can be used alone or in combination with 10 the aforementioned methods such as the separation and/or concentration methods. [0114.0.5.5] Transgenic plants which comprise the fatty acids such as saturated or polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the oils, lipids or fatty acids synthesized to be isolated. Plants for the process according to the invention 15 are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cul tures which are derived from the actual transgenic plant and/or can be used for bring ing about the transgenic plant. In this context, the seed comprises all parts of the seed 20 such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the fine chemical produced in the process according to the invention can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids and/or free fatty acids. Fatty acids produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. 25 This can be done via pressing or extraction of the plant parts, preferably the plant seeds. To increase the efficiency of oil extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material expecially the seeds. In this context, the oils, fats, lipids and/or free fatty acids can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption 30 of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as preferably warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, 35 extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the process can be isolated. Thereafter, 440 the resulting products are processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter are first re moved. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Thereafter otionally, 5 the free fatty acids are removed by treatment with a base like alkali, for example aque ous KOH or NaOH, or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage, and isolated via, for example, phase separation and subsequent acidification via, for example, H 2
SO
4 . The fatty acids can also be liberated directly without the above-described processing step. If desired 10 the resulting product can be washed thoroughly with water to remove traces of soap and the alkali remaining in the product and then dried. To remove the pigment remain ing in the product, the products can be subjected to bleaching, for example using filler's earth or active charcoal. At the end, the product can be deodorized, for example using steam distillation under vacuum. These chemically pure fatty acids or fatty acid compo 15 sitions are advantageous for applications in the food industry sector, the cosmetic sec tor and especially the pharmacological industry sector. [0115.0.5.5] Fatty acids can for example be detected advantageously via GC separa tion methods. The unambiguous detection for the presence of fatty acid products can be obtained by analyzing recombinant organisms using analytical standard methods: 20 GC, GC-MS or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometric methods], Lipide 33:343-353). One example is the analysis of fatty acids via FAME and GC-MS or TLC (abbreviations: FAME, fatty acid 25 methyl ester; GC-MS, gas liquid chromatography/mass spectrometry; TLC, thin-layer chromatography. The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. After dis ruption, the material must be centrifuged. The sediment is resuspended in distilled wa ter, heated for 10 minutes at 100 C, cooled on ice and recentrifuged, followed by ex 30 traction for one hour at 90'C in 0.5 M sulfuric acid in methanol with 2% dimethoxypro pane, which leads to hydrolyzed oil and lipid compounds, which give transmethylated lipids. These fatty acid methyl esters are extracted in petroleum ether and finally sub jected to a GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP Wax-52 CB, 25 pm, 0.32 mm) at a temperature gradient of between 170'C and 240'C 35 for 20 minutes and 5 minutes at 240'C. The identity of the resulting fatty acid methyl 441 esters must be defined using standards, which are available from commercial sources (i.e. Sigma). [0116.0.5.5] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part 5 thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 6, columns 5 and 7 or a fragment 10 thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 6, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 15 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 20 molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 25 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 442 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 5 the primers shown in table III, application no. 6, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 10 and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 6, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; 15 k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 6, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under 20 stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 25 or which comprises a sequence which is complementary thereto. [0116.1.5.5.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 6, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 30 cated in table I A, application no. 6, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 6, 443 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 6, columns 5 and 7. [0116.2.5.5.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 6, 5 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 6, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 6, 10 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 6, columns 5 and 7. [0117.0.5.5] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 6, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica 15 tion no. 6, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 6, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 6, columns 5 and 7. 20 [0118.0.0.5] to [0120.0.0.5] for the disclosure of the paragraphs [0118.0.0.5] to [0120.0.0.5] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.5.5] Nucleic acid molecules with the sequence shown in table I, application no. 6, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 6, columns 5 and 7 or from polypeptides 25 comprising the consensus sequence shown in table IV, application no. 6, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 6, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or 30 in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.5] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.5.5] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as 444 shown in table II, application no. 6, column 3 can be determined from generally acces sible databases. [0124.0.0.5] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.5.5] The nucleic acid molecules used in the process according to the inven 5 tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 6, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.5] to [0133.0.0.5] for the disclosure of the paragraphs [0126.0.0.5] to 10 [0133.0.0.5] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.5.5] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 6, columns 5 and 15 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 6, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0135.0.0.5] to [0140.0.0.5] for the disclosure of the paragraphs [0135.0.0.5] to [0140.0.0.5] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.5.5] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 6, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown 25 in table I, application no. 6, columns 5 and 7 or the sequences derived from table II, application no. 6, columns 5 and 7. [0142.0.5.5] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven 30 tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 445 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 6, column 7 is derived from said aligments. [0143.0.5.5] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 5 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 6, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.5] to [0151.0.0.5] for the disclosure of the paragraphs [0144.0.0.5] to [0151.0.0.5] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 10 [0152.0.5.5] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 6, columns 5 and 7, preferably of table I B, application no. 6, columns 5 and 7 under relaxed hy bridization conditions and which code on expression for peptides having the linoleic 15 acid, triglycerides, lipids, oils and/or fats containing linoleic acid increasing activity. [0153.0.0.5] to [0159.0.0.5] for the disclosure of the paragraphs [0153.0.0.5] to [0159.0.0.5] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.5.5] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above 20 mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 25 6, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, ap plication no. 6, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto 30 according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner.
446 [0161.0.5.5] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide 5 sequence shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 6, column 3 by for example expression either in the cytsol or in an organelle such 10 as a plastid or mitochondria or both, preferably in plastids. [0162.0.5.5] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7, or a portion 15 thereof and encodes a protein having above-mentioned activity, e.g. conferring of a linoleic acid, triglycerides, lipids, oils and/or fats containing linoleic acid increase by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 6, column 3. 20 [0163.0.5.5] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly 25 peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the 30 generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo 35 tides of a sense strand of one of the sequences set forth, e.g., in table I, application no.
447 6, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleo tide of invention can be used in PCR reactions to clone homologues of the polypeptide 5 of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the exam ples. A PCR with the primers shown in table III, application no. 6, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.5] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. 10 [0165.0.5.5] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 6, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a linoleic acid, triglycerides, lipids, oils and/or fats 15 containing linoleic acid increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.5.5] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 20 which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 6, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. 25 [0167.0.5.5] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or 30 more homologous to an entire amino acid sequence of table II, application no. 6, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids.
448 [0168.0.0.5] and [0169.0.0.5] for the disclosure of the paragraphs [0168.0.0.5] and [0169.0.0.5] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.5.5] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 6, columns 5 and 7 5 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 6, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the 10 invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 6, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, 15 application no. 6, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 6, columns 5 and 7, preferably as in dicated in table I A, application no. 6, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole 20 cule indicated in table I B, application no. 6, columns 5 and 7. [0171.0.0.5] to [0173.0.0.5] for the disclosure of the paragraphs [0171.0.0.5] to [0173.0.0.5] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.5.5] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under 25 stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 6, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 30 [0175.0.0.5] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.5.5] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 6, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used 449 herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex 5 pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.5] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. 10 [0178.0.5.5] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 6, columns 5 and 7. [0179.0.0.5] and [0180.0.0.5] for the disclosure of the paragraphs [0179.0.0.5] and 15 [0180.0.0.5] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.5.5] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that 20 contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 6, columns 5 and 7, preferably shown in ta ble II A, application no. 6, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, 25 wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 6, columns 5 and 7, preferably shown in table II A, application no. 6, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activ ity, e.g. its expression by for example expression either in the cytsol or in an organelle 30 such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 6, columns 5 and 7, preferably shown in table II A, application no. 6, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 6, columns 5 and 7, preferably 450 shown in table II A, application no. 6, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 6, columns 5 and 7, preferably shown in table II A, application no. 6, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence 5 shown in table II, application no. 6, columns 5 and 7, preferably shown in table II A, application no. 6, columns 5 and 7. [0182.0.0.5] to [0188.0.0.5] for the disclosure of the paragraphs [0182.0.0.5] to [0188.0.0.5] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.5.5] Functional equivalents derived from one of the polypeptides as shown in 10 table II, application no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 15 homology with one of the polypeptides as shown in table II, application no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 and 7. 20 [0190.0.5.5] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 25 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 6, columns 5 and 7, pref 30 erably shown in table II B, application no. 6, columns 5 and 7. [0191.0.0.5] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.5.5] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 6, columns 5 and 7, preferably shown in table II B, application 451 no. 6, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7 resp., such that 5 one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. 10 [0193.0.0.5] to [0196.0.0.5] for the disclosure of the paragraphs [0193.0.0.5] to [0196.0.0.5] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.5.5] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, ap plication no. 6, columns 5 and 7, comprise also allelic variants with at least approxi 15 mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. 20 Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 6, columns 5 and 7, preferably shown in table I B, applica tion no. 6, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro 25 teins synthesized is advantageously retained or increased. [0198.0.5.5] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7. It is preferred that the nucleic acid molecule com 30 prises as little as possible other nucleotides not shown in any one of table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em 35 bodiment, the nucleic acid molecule use in the process of the invention is identical to 452 the sequences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7. [0199.0.5.5] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli 5 cation no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the 10 sequences shown in table II, application no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 and 7. [0200.0.5.5] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 6, columns 5 and 7, preferably shown in table II B, application no. 6, columns 5 15 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 6, columns 5 and 7, preferably shown in table I B, application no. 6, columns 5 and 7. 20 [0201.0.5.5] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme 25 activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 6, columns 5 and 7 expressed under identical conditions. [0202.0.5.5] Homologues of table I, application no. 6, columns 5 and 7 or of the de rived sequences of table II, application no. 6, columns 5 and 7 also mean truncated 30 sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or 453 deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 5 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.5] to [0215.0.0.5] for the disclosure of the paragraphs [0203.0.0.5] to [0215.0.0.5] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. 10 [0216.0.5.5] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 6, columns 5 and 7, preferably in table II 15 B, application no. 6, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 6, columns 5 and 7, prefera bly in table I B, application no. 6, columns 5 and 7 or a fragment thereof confer 20 ring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine 25 chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 454 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine 5 chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; 10 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 6, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex 15 pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus 20 sequence shown in table IV, application no. 6, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 6, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ 25 ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 30 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 6, columns 5 and 7 or a nucleic acid molecule encoding, preferably at least the mature form of, the polypeptide shown in table II, applica tion no. 6, columns 5 and 7, and conferring an increase in the amount of the fine 455 chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 6, columns 5 and 7 by 5 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 6, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 6, columns 10 5 and 7. In a further embodiment the nucleic acid molecule does not encode the poly peptide sequence shown in table II A and/or II B, application no. 6, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present invention encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 6, columns 5 15 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 6, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 6, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence 20 depicted in table II A and/or II B, application no. 6, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 6, columns 5 and 7. [0217.0.0.5] to [0226.0.0.5] for the disclosure of the paragraphs [0217.0.0.5] to 25 [0226.0.0.5] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.5.5] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 30 systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac 35 cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 456 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep 5 tides shown in table 1l, application no. 6, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.5] to [0239.0.0.5] for the disclosure of the paragraphs [0228.0.0.5] to [0239.0.0.5] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. 10 [0240.0.5.5] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. 15 In addition to the sequence mentioned in Table 1, application no. 6, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the fatty acid biosynthetic pathway such as for palmitate, palmitoleate, stearate and/or oleate is expressed in the organisms such as plants or microorganisms. It is also pos 20 sible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the se 25 quences shown in Table 1, application no. 6, columns 5 and 7 with genes which gener ally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.5.5] In a further embodiment of the process of the invention, therefore, or 30 ganisms are grown, in which there is simultaneous overexpression of at least one nu cleic acid or one of the genes which code for proteins involved in the fatty acid metabo lism, in particular in fatty acid synthesis.
457 [0242.0.5.5] Further advantageous nucleic acid sequences which can be expressed in combination with the sequences used in the process and/or the abovementioned biosynthesis genes are the sequences encoding further genes of the saturated, poly unsaturated fatty acid biosynthesis such as desaturases like A-4-desaturases, A-5 5 desaturases, A-6-desaturases, A-8-desaturases, A-9-desaturases, A-12-desaturases, A-17-desaturases, w-3-desaturases, elongases like A-5-elongases, A-6-elongases, A 9-elongases, acyl-CoA-dehydrogenases, acyl-ACP-desaturases, acyl-ACP thioesterases, fatty acid acyl-transferases, acyl-CoA lysophospholipid-acyltransferases, acyl-CoA carboxylases, fatty acid synthases, fatty acid hydroxylases, acyl-CoA oxy 10 dases, acetylenases, lipoxygenases, triacyl-lipases etc. as described in WO 98/46765, WO 98/46763, WO 98/46764, WO 99/64616, WO 00/20603, WO 00/20602, WO 00/40705, US 20040172682, US 20020156254, US 6,677,145 US 20040053379 or US 20030101486. These genes lead to an increased synthesis of the essential fatty acids. [0242.1.5.5] In a further advantageous embodiment of the process of the invention, 15 the organisms used in the process are those in which simultaneously a linoleic acid degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene. [0242.2.5.5] The fatty acids produced can be isolated from the organism by methods with which the skilled worker is familiar for example via extraction, salt precipitation 20 and/or different chromatography methods. The process according to the invention can be conducted batchwise, semibatchwise or continuously. The fine chemical produced in the process according to the invention can be isolated as mentioned above from the organisms, advantageously plants, in the form of their oils, fats, lipids and/or free fatty acids. Fatty acids produced by this process can be obtained by harvesting the organ 25 isms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably the plant seeds. Hexane is prefera bly used as solvent in the process, in which more than 96% of the compounds pro duced in the process can be isolated. Thereafter, the resulting products are processed further, i.e. degummed, refined, bleached and/or deodorized. 30 [0243.0.0.5] to [0264.0.0.5] for the disclosure of the paragraphs [0243.0.0.5] to [0264.0.0.5] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.5.5] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant 458 Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 5 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 10 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 6, columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.5] to [0287.0.0.5] for the disclosure of the paragraphs [0266.0.0.5] to 15 [0287.0.0.5] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.5.5] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a 20 vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 6, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 6, columns 5 and 7 or their homologs is functionally linked to a 25 regulatory sequences which permit the expression in plastids. [0289.0.0.5] to [0296.0.0.5] for the disclosure of the paragraphs [0289.0.0.5] to [0296.0.0.5] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.5.5] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial 30 cells), for example using the antibody of the present invention as described below, in particular, an anti-b0403, anti-b0931, anti-b1046, anti-b1933, anti-b2126, anti-b3708, anti-b3728 and/or anti-YNRO12W protein antibody or an antibody against polypeptides as shown in table 1l, application no. 6, columns 5 and 7, which can be produced by 459 standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. [0298.0.0.5] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.5.5] In one embodiment, the present invention relates to a polypeptide hav 5 ing the sequence shown in table II, application no. 6, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 6, columns 5 and 7 or func tional homologues thereof. [0300.0.5.5] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus 10 sequence shown in table IV, application no. 6, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 6, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino 15 acids positions indicated can be replaced by any amino acid. [0301.0.0.5] to [0304.0.0.5] for the disclosure of the paragraphs [0301.0.0.5] to [0304.0.0.5] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.5.5] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor 20 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 6, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 6, columns 5 and 7 by more than 5, 6, 7, 8 or 9 25 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 6, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 6, columns 5 and 7. [0306.0.0.5] for the disclosure of this paragraph see paragraph [0306.0.0.0] above.
460 [0307.0.5.5] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli 5 cation no. 6, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 6, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded 10 by the nucleic acid molecules shown in table I A and/or I B, application no. 6, columns 5 and 7. [0308.0.5.5] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 6, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli 15 cation no. 6, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred 20 are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. 25 [0309.0.0.5] to [0311.0.0.5] for the disclosure of the paragraphs [0309.0.0.5] to [0311.0.0.5] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.5.5] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table 30 II, application no. 6, columns 5 and 7. [0313.0.5.5] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence 461 which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se 5 quences as shown in table II A and/or II B, application no. 6, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo 10 tide sequence of table I A and/or I B, application no. 6, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.5.5] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 6, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. 15 Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 6, columns 5 and 7. 20 [0315.0.0.5] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.5.5] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 6, columns 5 25 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 30 or used in the process of the present invention. [0317.0.0.5] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.5.5] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in 462 table II, application no. 6, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 6, column 3, prefera bly at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap 5 plication no. 6, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. [0319.0.5.5] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing 10 said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 6, column 3. The nucleic 15 acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.5] to [0322.0.0.5] for the disclosure of the paragraphs [0320.0.0.5] to [0322.0.0.5] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.5.5] In one embodiment, a protein (= polypeptide) as shown in table II, appli 20 cation no. 6, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub 25 stantially homologous to a polypeptide or protein as shown in table II, application no. 6, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.5] to [0329.0.0.5] for the disclosure of the paragraphs [0324.0.0.5] to [0329.0.0.5] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 30 [0330.0.5.5] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 6, columns 5 and 7.
463 [0331.0.0.5] to [0346.0.0.5] for the disclosure of the paragraphs [0331.0.0.5] to [0346.0.0.5] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.5.5] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the 5 fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 6, column 3. Due to the above mentioned activity the 10 fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a 15 polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 6, col umn 3 or a protein as shown in table II, application no. 6, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in 20 vention. [0348.0.0.5] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.5.5] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 6, column 3 with the corresponding encoding gene - becomes a 25 transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.5] to [0358.0.0.5] for the disclosure of the paragraphs [0350.0.0.5] to [0358.0.0.5] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. 30 [0359.0.5.5] Transgenic plants comprising the fatty acids synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are understood as mean ing all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation 464 material or harvested material or the intact plant. In this context, the seed encom passes all parts of the seed such as the seed coats, epidermal cells, seed cells, en dosperm or embryonic tissue. The fatty acids produced in the process according to the invention may, however, also be isolated from the plant in the form of their free fatty 5 acids, lipids, oils and/or fats containing said produced fatty acid, that means bound as ester such as triacylglycerides or phospholipids. Fatty acids produced by this process can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant seeds, plant fruits, plant tubers and the like. 10 [0360.0.0.5] to [0362.0.0.5] for the disclosure of the paragraphs [0360.0.0.5] to [0362.0.0.5] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.5.5] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the fatty acids 15 produced in the process can be isolated. The resulting fatty acids can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as other fatty acids, vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, formulated. [0364.0.5.5] In one embodiment, the fatty acid is the fine chemical. 20 [0365.0.5.5] The fatty acids obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combi nation with each other or alone for the production of pharmaceuticals, foodstuffs, ani mal feeds or cosmetics. Accordingly, the present invention relates a method for the production of a pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics com 25 prising the steps of the process according to the invention, including the isolation of the fatty acid composition produced or the fine chemical produced if desired and formulat ing the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the fatty acids produced in the process or of the transgenic or 30 ganisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or phar maceuticals. For preparing fatty acid compound-containing fine chemicals, in particular the fine chemical, it is possible to use as fatty acid source organic compounds such as, for ex ample, oils, fats and/or lipids comprising fatty acids such as fatty acids having a carbon 465 back bone between C10- to C18- carbon atoms and/or small organic acids such acetic acid, propionic acid or butanoic acid as precursor compounds. [0366.0.0.5] to [0369.0.0.5] for the disclosure of the paragraphs [0366.0.0.5] to [0369.0.0.5] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 5 [0370.0.5.5] The fermentation broths obtained in this way, containing in particular linoleic acid, triglycerides, lipids, oils and/or fats containing linoleic acid, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be proc essed further. Depending on requirements, the biomass can be seperated, such as, for example, by centrifugation, filtration, decantation or a combination of these methods, 10 from the fermentation broth or left completely in it. Afterwards the biomass can be ex tracted without any further process steps or disrupted and then extracted. If necessary the fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evapo rator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can 15 then be worked up by extraction. [0371.0.5.5] However, it is also possible to purify the fatty acid produced further. For this purpose, the product-containing composition is subjected for example to a thin layer chromatography on silica gel plates or to a chromatography such as a Florisil column (Bouhours J.F., J. Chromatrogr. 1979, 169, 462), in which case the desired 20 product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chro matography resins and their most effective use. An alternative method to purify the fatty acids is for example crystallization in the presence of urea. These methods can be 25 combined with each other. [0372.0.0.5] to [0376.0.0.5], [0376.1.0.5] and [0377.0.0.5] for the disclosure of the paragraphs [0372.0.0.5] to [0376.0.0.5], [0376.1.0.5] and [0377.0.0.5] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.5.5] In one embodiment, the present invention relates to a method for the 30 identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a 466 candidate gene encoding a gene product conferring an increase in the fine chemi cal after expression, with the nucleic acid molecule of the present invention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 5 the nucleic acid molecule sequence shown in table 1, application no. 6, columns 5 and 7, preferably in table I B, application no. 6, columns 5 and 7, and, optionally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 10 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. 15 [0379.0.0.5] to [0383.0.0.5] for the disclosure of the paragraphs [0379.0.0.5] to [0383.0.0.5] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.5.5] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 20 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de 25 pendent on the proteins as shown in table 1l, application no. 6, column 3, eg comparing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 6, column 3. [0385.0.0.5] to [0404.0.0.5] for the disclosure of the paragraphs [0385.0.0.5] to [0404.0.0.5] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. 30 [0405.0.5.5] Accordingly, the nucleic acid of the invention, the polypeptide of the in vention, the nucleic acid construct of the invention, the organisms, the host cell, the 467 microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other 5 fatty acids such as palmitic acid or oleic acid. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof 10 of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the fine chemical in a organism or part thereof, e.g. in a cell. [0406.0.0.5] to [0435.0.0.5] for the disclosure of the paragraphs [0406.0.0.5] to [0435.0.0.5] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. 15 [0436.0.5.5] Linoleic acid, triglycerides, lipids, oils and/or fats containing linoleic acid production in Mortierella The fatty acid production can be analysed as mentioned above. The proteins and nu cleic acids can be analysed as mentioned below. [0437.0.0.5] and [0438.0.0.5] for the disclosure of the paragraphs [0437.0.0.5] and 20 [0438.0.0.5] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.5.5] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the fatty acid [0440.0.5.5] The effect of the genetic modification in plants, fungi, algae or ciliates on the production of a desired compound (such as a fatty acid) can be determined by 25 growing the modified microorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular compo nents for the elevated production of desired product (i.e. of the lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectros copy, thin-layer chromatography, various types of staining methods, enzymatic and 30 microbiological methods and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Ap plications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and 468 Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Ma 5 terials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification tech niques in biotechnology, Noyes Publications). In addition to the abovementioned processes, plant lipids are extracted from plant ma 10 terial as described by Cahoon et al. (1999) Proc. NatI. Acad. Sci. USA 96 (22): 12935 12940 and Browse et al. (1986) Analytic Biochemistry 152:141-145. The qualitative and quantitative analysis of lipids or fatty acids is described by Christie, William W., Ad vances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scot 15 land: Oily Press, 1989, Repr. 1992, IX, 307 pp. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) under the title: Pro gress in the Chemistry of Fats and Other Lipids CODEN. [0441.0.0.5] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.5.5] Example 9: Purification of the fatty acid 20 [0443.0.5.5] One example is the analysis of fatty acids (abbreviations: FAME, fatty acid methyl ester; GC-MS, gas liquid chromatography/mass spectrometry; TAG, tria cylglycerol; TLC, thin-layer chromatography). The unambiguous detection for the presence of fatty acid products can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or 25 TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chroma tography/mass spectrometric methods], Lipide 33:343-353). The total fatty acids produced in the organism for example in yeasts used in the inven 30 tive process can be analysed for example according to the following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. After disruption, the material must be centrifuged (1000 x g, 10 min., 4'C) and washed once with 100 mM NaHCO 3 , pH 8.0 to remove residual medium and fatty 469 acids. For preparation of the fatty acid methyl esters (FAMES) the sediment is resus pended in distilled water, heated for 10 minutes at 100'C, cooled on ice and recentri fuged, followed by extraction for one hour at 90'C in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane, which leads to hydrolyzed oil and lipid compounds, which 5 give transmethylated lipids. The FAMES are then extracted twice with 2 ml petrolether, washed once with 100 mM NaHCO 3 , pH 8.0 and once with distilled water and dried with Na 2
SO
4 . The organic sol vent can be evaporated under a stream of Argon and the FAMES were dissolved in 50 pl of petrolether. The samples can be separated on a ZEBRON ZB-Wax capillary col 10 umn (30 m, 0,32 mm, 0,25 pm; Phenomenex) in a Hewlett Packard 6850 gas chro matograph with a flame ionisation detector. The oven temperature is programmed from 70'C (1 min. hold) to 200'C at a rate of 20'C/min., then to 250'C (5 min. hold) at a rate of 5 0 C/min and finally to 260'C at a rate of 5 0 C/min. Nitrogen is used as carrier gas (4,5 ml/min. at 70'C). The identity of the resulting fatty acid methyl esters can be identi 15 fied by comparison with retention times of FAME standards, which are available from commercial sources (i.e. Sigma). Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. This is followed by heating at 100 C for 10 minutes and, after cooling on ice, by re 20 sedimentation. The cell sediment is hydrolyzed for one hour at 90'C with 1 M methano lic sulfuric acid and 2% dimethoxypropane, and the lipids are transmethylated. The resulting fatty acid methyl esters (FAMEs) are extracted in petroleum ether. The ex tracted FAMEs are analyzed by gas liquid chromatography using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0.32 mm) and a temperature 25 gradient of from 170'C to 240'C in 20 minutes and 5 minutes at 240'C. The identity of the fatty acid methyl esters is confirmed by comparison with corresponding FAME standards (Sigma). The identity and position of the double bond can be analyzed fur ther by suitable chemical derivatization of the FAME mixtures, for example to give 4,4 dimethoxyoxazoline derivatives (Christie, 1998) by means of GC-MS. 30 The methodology is described for example in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581 1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 and Michaelson et al., 1998, FEBS Letters. 439(3): 215-218.
470 [0444.0.5.5] If required and desired, further chromatography steps with a suitable resin may follow. Advantageously the fatty acids can be further purified with a so-called RTHPLC. As eluent different an acetonitrile/water or chloroform/acetonitrile mixtures are advantageously is used. For example canola oil can be separated said HPLC 5 method using an RP-18-column (ET 250/3 Nucleosil 120-5 C18 Macherey und Nagel, Doren, Germany). A chloroform/acetonitrile mixture (v/v 30:70) is used as eluent. The flow rate is beneficial 0.8 ml/min. For the analysis of the fatty acids an ELSD detector (evaporative light-scattering detector) is used. MPLC, dry-flash chromatography or thin layer chromatography are other beneficial chromatography methods for the purification 10 of fatty acids. If necessary, these chromatography steps may be repeated, using identi cal or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be purified. [0445.0.5.5] In addition depending on the produced fine chemical purification is also 15 possible with cristalisation or destilation. Both methods are well known to a person skilled in the art. [0446.0.0.5] to [0497.0.0.5] for the disclosure of the paragraphs [0446.0.0.5] to [0497.0.0.5] see paragraphs [0446.0.0.0] to [0497.0.0.0] above.
471 [0498.0.5.5] The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max Linoleic Acid b0403 GC 1.15 1.38 (C18:2 (c9,c12)) Linoleic Acid b0931 GC 1.16 1.45 (C18:2 (c9,c12)) Linoleic Acid b1046 GC 1.15 1.22 (C18:2 (c9,c12)) Linoleic Acid b1933 GC 1.14 1.22 (C18:2 (c9,c12)) Linoleic Acid b2126 GC 1.14 1.24 (C18:2 (c9,c12)) Linoleic Acid b3708 GC 1.15 1.39 (C18:2 (c9,c12)) Linoleic Acid b3728 GC 1.15 1.21 (C18:2 (c9,c12)) Linoleic Acid YNRO12W GC 1.15 1.21 (C18:2 (c9,c12)) 5 [0499.0.0.5] and [0500.0.0.5] for the disclosure of the paragraphs [0499.0.0.5] and [0500.0.0.5] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.5.5] Example 15a: Engineering ryegrass plants by over-expressing YNRO12W from Saccharomyces cerevisiae or homologs of YNR012W from other organisms. 10 [0502.0.0.5] to [0508.0.0.5] for the disclosure of the paragraphs [0502.0.0.5] to [0508.0.0.5] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.5.5] Example 15b: Engineering soybean plants by over-expressing YNRO12W from Saccharomyces cerevisiae or homologs of YNR012W from other organisms. 15 [0510.0.0.5] to [0513.0.0.5] for the disclosure of the paragraphs [0510.0.0.5] to [0513.0.0.5] see paragraphs [0510.0.0.0] to [0513.0.0.0] above.
472 [0514.0.0.5] Example 15c: Engineering corn plants by over-expressing YNRO12W from Saccharomyces cerevisiae or homologs of YNR012W from other organisms. [0515.0.0.5] to [0540.0.0.5] for the disclosure of the paragraphs [0515.0.0.5] to 5 [0540.0.0.5] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.5.5] Example 15d: Engineering wheat plants by over-expressing YNRO12W from Saccharomyces cerevisiae or homologs of YNR012W from other organisms. [0542.0.0.5] to [0544.0.0.5] for the disclosure of the paragraphs [0542.0.0.5] to 10 [0544.0.0.5] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.5.5] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YNRO12W from Saccharomyces cerevisiae or homologs of YNR012W from other organisms. [0546.0.0.5] to [0549.0.0.5] for the disclosure of the paragraphs [0546.0.0.5] to 15 [0549.0.0.5] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.5.5] Example 15f: Engineering alfalfa plants by over-expressing YNRO12W from Saccharomyces cerevisiae or homologs of YNR012W from other organisms. [0551.0.0.5] to [0554.0.0.5] for the disclosure of the paragraphs [0551.0.0.5] to 20 [0554.0.0.5] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.5.5]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. The results of the different Zea mays plants analysed can be seen from table VII, which follows: 25 Table VII ORFNAME Metabolite Min Max YNRO12W Linoleic acid (C18:2cis[9,12]) 1.39 3.53 473 Table VII shows the increase in linoleic acid (C18:2cis[9,12]) in genetically modified corn plants expressing the Saccharomyces cerevisiae nucleic acid sequence YNRO12W. In one embodiment, in case the activity of the Saccaromyces cerevisiae protein 5 YNRO12W or its homologs, e.g. a "uridine kinase", is increased in corn plants, prefera bly, an increase of the fine chemical linoleic acid between 39% and 253% is conferred. [0554.2.0.5] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.5] for the disclosure of this paragraph see [0555.0.0.0] above.
474 [0001.0.0.6] for the disclosure of this paragraph see [0001.0.0.0]. [002.0.5.6] to [0008.0.5.6] for the disclosure of the paragraphs [0002.0.5.6] to [0008.0.5.6] see paragraphs [0002.0.5.5] and [0008.0.5.5] above. [0009.0.6.6] As described above, the essential fatty acids are necessary for hu 5 mans and many mammals, for example for livestock. Essential fatty acids, such as alpha-linolenic acid, are extremely important for healing and maintaining good health. Compounds made from alpha-linolenic acid have been shown to decrease blood clotting and decrease inflammatory processes in the body. [0010.0.5.6] to [0012.0.5.6] for the disclosure of the paragraphs [0010.0.5.6] to 10 [0012.0.5.6] see paragraphs [0010.0.5.5] and [0012.0.5.5] above. [0013.0.0.6] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.6.6] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is a-linolenic acid or try glycerides, lipids, oils or fats containing a-linolenic acid. Accordingly, in the present 15 invention, the term "the fine chemical" as used herein relates to "a-linolenic acid or try glycerides, lipids, oils or fats containing a-linolenic acid". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising a-linolenic acid or tryglycerides, lipids, oils or fats containing a-linolenic acid. [0015.0.6.6] In one embodiment, the term "the fine chemical" or "the respective fine 20 chemical" means a-linolenic acid or tryglycerides, lipids, oils or fats containing a linolenic acid. Throughout the specification the term "the fine chemical" or "the respec tive fine chemical" means a-linolenic acid or tryglycerides, lipids, oils or fats containing a-linolenic acid, a-linolenic acid and its salts, ester, thioester or a-linolenic acid in free form or bound to other compounds such as triglycerides, glycolipids, phospholipids etc. 25 In a preferred embodiment, the term "the fine chemical" means a-linolenic acid, in free form or its salts or bound to triglycerides. Triglycerides, lipids, oils, fats or lipid mixture thereof shall mean any triglyceride, lipid, oil and/or fat containing any bound or free a linolenic acid for example sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcho 30 line, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidyl glycerol, or as monoacylglyceride, diacylglyceride or triacylglyceride or other fatty acid esters such as acetyl-Coenzym A thioester, which contain further saturated or unsatu rated fatty acids in the fatty acid molecule.
475 In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.6.6] Accordingly, the present invention relates to a process for the production 5 of a-linolenic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (b) growing the organism under conditions which permit the production of the fine chemical, thus, a-linolenic acid or fine chemicals comprising a-linolenic acid, in 15 said organism or in the culture medium surrounding the organism. [0016.1.6.6] / [0017.0.6.6] In another embodiment the present invention is related to a process for the production of a-linolenic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 20 no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5, which are joined to a nucleic acid sequence encoding a 25 transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more 30 parts thereof, and 476 (d) growing the organism under conditions which permit the production of a-linolenic acid in said organism. [0017.1.6.6] In another embodiment, the present invention relates to a process for the production of a-linolenic acid, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 7, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, a-linolenic acid or fine chemicals comprising a-linolenic acid, in 15 said organism or in the culture medium surrounding the organism. [0018.0.6.6] Advantagously the activity of the protein as shown in table II, application no. 7, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 7, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. 20 [0019.0.0.6] to [0024.0.0.6] for the disclosure of the paragraphs [0019.0.0.6] to [0024.0.0.6] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.6.6] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some 25 examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 7, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as 30 chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 477 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 5 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 10 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 15 ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 20 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.6.6] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 7, column 3 and its homologs as disclosed in 25 table 1, application no. 7, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 30 ing for proteins as shown in table 1l, application no. 7, column 3 and its homologs as disclosed in table 1, application no. 7, columns 5 and 7. [0027.0.0.6] to [0029.0.0.6] for the disclosure of the paragraphs [0027.0.0.6] to [0029.0.0.6] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.6.6] Alternatively, nucleic acid sequences coding for the transit peptides 35 may be chemically synthesized either in part or wholly according to structure of transit 478 peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 5 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 10 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 15 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 20 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 7, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 7, columns 5 and 7 25 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 7, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more 30 preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 7, col umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres 35 sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes.
479 The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 7, columns 5 and 7. Furthermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 5 [0030.2.6.6] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.6.6] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 7, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 10 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 7, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 15 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 20 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. 25 [0030.2.0.6] and [0030.3.0.6] for the disclosure of the paragraphs [0030.2.0.6] and [0030.3.0.6] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.6.6] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By 30 placing the genes specified in table 1, application no. 7, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro- 480 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 7, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 7, columns 5 and 5 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 10 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 7, columns 5 and 7 or a sequence 15 encoding a protein, as depicted in table II, application no. 7, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 7, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 7, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 20 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 7, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 25 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 30 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 7, columns 5 and 7.
481 [0030.5.6.6] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 7, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.6.6] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 7, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.6] and [0032.0.0.6] for the disclosure of the paragraphs [0031.0.0.6] and [0032.0.0.6] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.6.6] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 7, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 7, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.6.6] Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 7, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.6] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.6.6] The sequence of b0342 (Accession number PIR:XXECTG) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "thiogalactoside acetyltransferase". Accord ingly, in one embodiment, the process of the present invention comprises the use of a 482 "thiogalactoside acetyltransferase" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a linolenic acid in free or bound form in an organism or a part thereof, as mentioned. In 5 one embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0403 (Accession number PIR:C64769) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "maltodextrin glucosidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "maltodextrin glucosidase" or 15 its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an or ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a b0403 protein is increased or generated, e.g. from Es 20 cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0403 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of b0931 (Accession number PIR:JQ0756) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nicotinate phosphoribosyltransferase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "nicotinate phosphoribosyltransferase" or its homolog, e.g. as shown herein, for the production of 30 the fine chemical, meaning of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a b0931 protein is in creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked 35 at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated in a subcellular compartment of the organism or or- 483 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1281 (Accession number PIR:DCECOP) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "orotidine-5'-phosphate decarboxylase". Accordingly, in one em 5 bodiment, the process of the present invention comprises the use of a "orotidine-5' phosphate decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an organism or a part thereof, as mentioned. In one em 10 bodiment, in the process of the present invention the activity of a b1281 protein is in creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1281 protein is increased or generated in a subcellular compartment of the organism or or 15 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1625 (Accession number PIR:C64919) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative hemolysin expression modulating protein HHA domain". Accordingly, in one embodiment, the process of the present invention comprises the 20 use of a "putative hemolysin expression modulating protein HHA domain" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of a linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an or ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre 25 sent invention the activity of a b1625 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1625 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2156 (Accession number NP_416661) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "lysine-specific permease". Accordingly, in one embodiment, the process of the present invention comprises the use of a "lysine-specific permease" or 35 its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an or- 484 ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a b2156 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a b2156 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2827 (Accession number PIR:SYECT) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 10 is being defined as "thymidylate synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "thymidylate synthetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of a linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an or 15 ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a b2827 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2827 20 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3429 (Accession number NP_417887) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glycogen synthase (starch synthase)". Accordingly, in one em 25 bodiment, the process of the present invention comprises the use of a "glycogen syn thase (starch synthase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, 30 in the process of the present invention the activity of a b3429 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3429 protein is increased or generated in a subcellular compartment of the organism or or 35 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YNL241C (Accession number NP_014158) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., 485 Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as " glucose-6 phosphate dehydrogenase". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "glucose-6-phosphate dehydrogenase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of a 5 linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid, in particular for increasing the amount of a-linolenic acid in free or bound form in an or ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a YNL241 C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one tran 10 sit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.6.6] In one embodiment, the homolog of the YNL241C, is a homolog hav 15 ing said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b0342, b0403, b0931, b1281, b1625, b2156, b2827 and/or b3429 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YNL241C is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of the b0342, b0403, b0931, b1281, b1625, b2156, b2827 20 and/or b3429 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YNL241 C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b0342, b0403, b0931, b1281, b1625, b2156, b2827 and/or b3429 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the ho 25 molog of the YNL241 C is a homolog having said acitivity and being derived from Sac charomycotina. In one embodiment, the homolog of the b0342, b0403, b0931, b1281, b1625, b2156, b2827 and/or b3429 is a homolog having said acitivity and being de rived from Enterobacteriales. In one embodiment, the homolog of the YNL241C is a homolog having said acitivity and being derived from Saccharomycetes. In one em 30 bodiment, the homolog of the b0342, b0403, b0931, b1281, b1625, b2156, b2827 and/or b3429 is a homolog having said acitivity and being derived from Enterobacteri aceae. In one embodiment, the homolog of the YNL241C is a homolog having said acitivity and being derived from Saccharomycetales. In one embodiment, the homolog of the b0342, b0403, b0931, b1281, b1625, b2156, b2827 and/or b3429 is a homolog 35 having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YNL241 C is a homolog having said acitiv- 486 ity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YNL241C is a homolog having said acitivity and being derived from Saccharomy cetes, preferably from Saccharomyces cerevisiae. [0038.0.0.6] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. 5 [0039.0.6.6] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 7, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the 10 protein has the above mentioned activities of a protein as shown in table II, application no. 7, column 3, preferably in the event the nucleic acid sequences encoding said pro teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep 15 tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 7, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table II, application no. 7, column 3 of Saccharomyces cerevisiae. 20 [0040.0.0.6] to [0047.0.0.6] for the disclosure of the paragraphs [0040.0.0.6] to [0047.0.0.6] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.6.6] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic 25 acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 7, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.6] to [0051.0.0.6] for the disclosure of the paragraphs [0049.0.0.6] to 30 [0051.0.0.6] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.6.6] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex- 487 pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 7, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle 5 such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 10 [0053.0.0.6] to [0058.0.0.6] for the disclosure of the paragraphs [0053.0.0.6] to [0058.0.0.6] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.6.6] In case the activity of the Escherichia coli protein b0342 or its homologs, e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 15 fine chemical, preferably of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 12% and 59% or more is conferred. In case the activity of the Escherichia coli protein b0403 or its homologs, e.g. a "malto dextrin glucosidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 20 bly of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 12% and 41% or more is conferred. In case the activity of the Escherichia coli protein b0931 or its homologs, e.g. a "nicoti nate phosphoribosyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 25 cal, preferably of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 11 % and 40% or more is conferred. In case the activity of the Escherichia coli protein b1281 or its homologs, e.g. a "orotidine-5'-phosphate decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 30 fine chemical, preferably of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 12% and 23% or more is conferred. In case the activity of the Escherichia coli protein b1 625 or its homologs, e.g. a "puta tive hemolysin expression modulating protein HHA domain" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi 35 ment an increase of the fine chemical, preferably of a-linolenic acid and/or tryglyc- 488 erides, lipids, oils and/or fats containing a-linolenic acid between 13% and 23% or more is conferred. In case the activity of the Escherichia coli protein b2156 or its homologs, e.g. a "lysine specific permease" is increased advantageously in an organelle such as a plastid or 5 mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 17% and 56% or more is conferred. In case the activity of the Escherichia coli protein b2827 or its homologs, e.g. a "thymidylate synthetase" is increased advantageously in an organelle such as a plastid 10 or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a linolenic acid between 14% and 19% or more is conferred. In case the activity of the Escherichia coli protein b3429 or its homologs, e.g. a "glyco gen synthase (starch synthase)" is increased advantageously in an organelle such as a 15 plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 12% and 27% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241 C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or 20 ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid between 12% and 13% or more is conferred. [0060.0.6.6] In case the activity of the Escherichia coli proteins b0342, b0403, b0931, b1281, b1625, b2156, b2827 or b3429 or their homologs," are increased advan 25 tageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or 30 ganelle such as a plastid or mitochondria, preferably an increase of the fine chemical a-linolenic acid and/or tryglycerides, lipids, oils and/or fats containing a-linolenic acid is conferred. [0061.0.0.6] and [0062.0.0.6] for the disclosure of the paragraphs [0061.0.0.6] and [0062.0.0.6] see paragraphs [0061.0.0.0] and [0062.0.0.0] above.
489 [0063.0.6.6] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 7, column 7 or of the poly 5 peptide as shown in the amino acid sequences as disclosed in table II, application no. 7, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 7, columns 5 and 7 or its herein described functional homologues and 10 has the herein mentioned activity. [0064.0.6.6] For the purposes of the present invention, the term "a-linolenic acid" also encompasses the corresponding salts, such as, for example, the potassium or sodium salts of a-linolenic acid or the salts of a-linolenic acid with amines such as di ethylamine as well as tryglycerides, lipids, oils and/or fats containing a-linolenic acid. 15 [0065.0.0.6] and [0066.0.0.6] for the disclosure of the paragraphs [0065.0.0.6] and [0066.0.0.6] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.6.6] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by 20 the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 7, columns 5 and 7 or its homologs activity having herein-mentioned a-linolenic acid increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by 25 the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 7, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 7, columns 5 and 7 or its homologs activity or of 30 a mRNA encoding the polypeptide of the present invention having herein mentioned a-linolenic acid increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep- 490 tide of the present invention having herein-mentioned a-linolenic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 7, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or 5 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned a-linolenic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 10 II, application no. 7, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned a-linolenic acid increasing activ ity, e.g. of a polypeptide having the activity of a protein as indicated in table II, 15 application no. 7, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned a 20 linolenic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table II, application no. 7, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole 25 cule of the invention or the polypeptide of the invention having herein-mentioned a-linolenic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 7, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of 30 the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 7, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like 491 for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 5 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it 10 self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention 15 from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned a-linolenic acid in creasing activity, e.g. of polypeptide having the activity of a protein as indicated 20 in table 1l, application no. 7, columns 5 and 7 or its homologs activity, to the plas tids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned a-linolenic acid increasing activity, e.g. of a polypeptide having the ac 25 tivity of a protein as indicated in table 1l, application no. 7, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly 30 peptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned a-linolenic acid increasing activity, e.g. of a polypeptide having the ac- 492 tivity of a protein as indicated in table II, application no. 7, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.6.6] Preferably, said mRNA is the nucleic acid molecule of the present inven 5 tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles 10 such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 7, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. [0069.0.0.6] to [0079.0.0.6] for the disclosure of the paragraphs [0069.0.0.6] to [0079.0.0.6] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. 15 [0080.0.6.6] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 7, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic 20 transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 7, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod 25 ing the protein as shown in table II, application no. 7, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 7, column 3, see e.g. in WOO1/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. 30 [0081.0.0.6] to [0084.0.0.6] for the disclosure of the paragraphs [0081.0.0.6] to [0084.0.0.6] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.6.6] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule 493 used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, 5 but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous fatty acid composition comprising a higher content of (from a viewpoint of nutrional physiology limited) fatty acids, like palmitate, palmitoleate, stearate and/or oleate. [0086.0.0.6] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 10 [0087.0.6.6] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to a-linolenic acid, triglycerides, lipids, oils and/or fats containing a-linolenic acid compounds such as palmitate, palmitoleate, stearate, oleate and/or linoleate. 15 [0088.0.6.6] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 20 b) increasing the activity of a protein as shown in table 1l, application no. 7, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present in vention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor 25 ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor 30 ganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ- 494 ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.6.6] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in 5 such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound fatty acids, in particu lar oleic acid and/or linoleic acid. [0090.0.0.6] to [0097.0.0.6] for the disclosure of the paragraphs [0090.0.0.6] to 10 [0097.0.0.6] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.6.6] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been 15 brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 7, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 7, columns 5 and 7 20 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 25 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 30 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
495 [0099.0.6.6] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 5 depicted in the sequence protocol and disclosed in table 1, application no. 7, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 7, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se 10 quences as depicted in the sequence protocol and disclosed in table 1, application no. 7, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. 15 [0100.0.0.6] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.6.6] In an advantageous embodiment of the invention, the organism takes the form of a plant whose fatty acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on 20 the abovementioned essential fatty acids and the general amount of fatty acids as en ergy source in feed. After the activity of the protein as shown in table 1l, application no. 7, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the 25 soil and subsequently harvested. [0102.0.0.6] to [0110.0.0.6] for the disclosure of the paragraphs [0102.0.0.6] to [0110.0.0.6] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.6.6] In a preferred embodiment, the fine chemical (a-linolenic acid) is pro duced in accordance with the invention and, if desired, is isolated. The production of 30 further fatty acids such as palmitic acid, stearic acid, palmitoleic acid, oleic acid and/or linoleic acid mixtures thereof or mixtures of other fatty acids by the process according to the invention is advantageous. It may be advantageous to increase the pool of free fatty acids in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical.
496 [0112.0.6.6] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of anucleic acid encoding a protein or polypeptid for ex ample a fatty acid transporter protein or a compound, which functions as a sink for the 5 desired fatty acid for example for a-linolenic acid in the organism is useful to increase the production of the respective fine chemical (see Bao and Ohlrogge, Plant Physiol. 1999 August; 120 (4): 1057-1062). Such fatty acid transporter protein may serve as a link between the location of fatty acid synthesis and the socalled sink tissue, in which fatty acids, triglycerides, oils and fats are stored. 10 [0113.0.5.6] to [0115.0.5.6] for the disclosure of the paragraphs [0113.0.5.6] to [0115.0.5.6] see paragraphs [0113.0.5.5] to [0115.0.5.5] above. [0116.0.6.6] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres 15 sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 7, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or 20 ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 7, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen 25 eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi 30 cal in an organism or a part thereof; 497 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 5 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 10 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 15 the primers shown in table III, application no. 7, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 20 and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 7, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; 25 k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 7, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under 30 stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole- 498 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.6.6.] In one embodiment, the nucleic acid molecule used in the process of the 5 invention distinguishes over the sequence indicated in table I A, application no. 7, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 7, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 10 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 7, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 7, columns 5 and 7. [0116.2.6.6.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 7, 15 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 7, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 7, 20 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 7, columns 5 and 7. [0117.0.6.6] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 7, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica 25 tion no. 7, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 7, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 7, columns 5 and 7. 30 [0118.0.0.6] to [0120.0.0.6] for the disclosure of the paragraphs [0118.0.0.6] to [0120.0.0.6] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.6.6] Nucleic acid molecules with the sequence shown in table I, application no. 7, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 499 sequences shown in table II, application no. 7, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 7, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 7, column 3 or conferring the 5 fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.6] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.6.6] Nucleic acid molecules, which are advantageous for the process accord 10 ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 7, column 3 can be determined from generally acces sible databases. [0124.0.0.6] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.6.6] The nucleic acid molecules used in the process according to the inven 15 tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 7, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.6] to [0133.0.0.6] for the disclosure of the paragraphs [0126.0.0.6] to 20 [0133.0.0.6] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.6.6] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 7, columns 5 and 25 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 7, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 30 [0135.0.0.6] to [0140.0.0.6] for the disclosure of the paragraphs [0135.0.0.6] to [0140.0.0.6] see paragraphs [0135.0.0.0] to [0140.0.0.0] above.
500 [0141.0.6.6] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 7, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 7, columns 5 and 7 or the sequences derived from table II, 5 application no. 7, columns 5 and 7. [0142.0.6.6] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. 10 Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 7, column 7 is derived from said aligments. [0143.0.6.6] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 15 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 7, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.6] to [0151.0.0.6] for the disclosure of the paragraphs [0144.0.0.6] to [0151.0.0.6] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 20 [0152.0.6.6] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 7, columns 5 and 7, preferably of table I B, application no. 7, columns 5 and 7 under relaxed hy bridization conditions and which code on expression for peptides having the a-linolenic 25 acid, triglycerides, lipids, oils and/or fats containing a-linolenic acid increasing activity. [0153.0.0.6] to [0159.0.0.6] for the disclosure of the paragraphs [0153.0.0.6] to [0159.0.0.6] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.6.6] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above 30 mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in 501 table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, ap plication no. 7, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy 5 bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing part 10 ner. [0161.0.6.6] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide 15 sequence shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 7, column 3 by for example expression either in the cytsol or in an organelle such 20 as a plastid or mitochondria or both, preferably in plastids. [0162.0.6.6] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7, or a portion 25 thereof and encodes a protein having above-mentioned activity, e.g. conferring of a a linolenic acid, triglycerides, lipids, oils and/or fats containing a-linolenic acid increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 7, column 3. 30 [0163.0.6.6] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly 35 peptide used in the process of the present invention, i.e. having above-mentioned ac- 502 tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the 5 generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo 10 tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 7, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleo tide of invention can be used in PCR reactions to clone homologues of the polypeptide 15 of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the exam ples. A PCR with the primers shown in table III, application no. 7, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.6] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. 20 [0165.0.6.6] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 7, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a a-linolenic acid, triglycerides, lipids, oils and/or fats 25 containing a-linolenic acid increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.6.6] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 30 which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 7, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein.
503 [0167.0.6.6] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 5 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 7, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 10 [0168.0.0.6] and [0169.0.0.6] for the disclosure of the paragraphs [0168.0.0.6] and [0169.0.0.6] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.6.6] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 7, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly 15 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 7, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding 20 a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 7, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 7, columns 5 and 7 or the functional homologues. However, in a pre 25 ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 7, columns 5 and 7, preferably as in dicated in table I A, application no. 7, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole cule indicated in table I B, application no. 7, columns 5 and 7. 30 [0171.0.0.6] to [0173.0.0.6] for the disclosure of the paragraphs [0171.0.0.6] to [0173.0.0.6] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.6.6] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the 504 nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 7, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 5 [0175.0.0.6] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.6.6] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 7, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 10 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 15 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.6] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.6.6] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid 20 molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 7, columns 5 and 7. [0179.0.0.6] and [0180.0.0.6] for the disclosure of the paragraphs [0179.0.0.6] and [0180.0.0.6] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.6.6] Accordingly, the invention relates to nucleic acid molecules encoding a 25 polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se 30 quences shown in table 1l, application no. 7, columns 5 and 7, preferably shown in ta ble II A, application no. 7, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identi- 505 cal to an amino acid sequence shown in table II, application no. 7, columns 5 and 7, preferably shown in table II A, application no. 7, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activ ity, e.g. its expression by for example expression either in the cytsol or in an organelle 5 such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 7, columns 5 and 7, preferably shown in table II A, application no. 7, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 7, columns 5 and 7, preferably 10 shown in table II A, application no. 7, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 7, columns 5 and 7, preferably shown in table II A, application no. 7, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 7, columns 5 and 7, preferably shown in table II A, 15 application no. 7, columns 5 and 7. [0182.0.0.6] to [0188.0.0.6] for the disclosure of the paragraphs [0182.0.0.6] to [0188.0.0.6] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.6.6] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 7, columns 5 and 7, preferably shown in table II B, application 20 no. 7, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 7, columns 25 5 and 7, preferably shown in table II B, application no. 7, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 7, columns 5 and 7, preferably shown in table II B, application no. 7, columns 5 and 7. [0190.0.6.6] Functional equivalents derived from the nucleic acid sequence as shown 30 in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 35 homology with one of the polypeptides as shown in table II, application no. 7, columns 506 5 and 7, preferably shown in table II B, application no. 7, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 7, columns 5 and 7, pref erably shown in table II B, application no. 7, columns 5 and 7. 5 [0191.0.0.6] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.6.6] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 7, columns 5 and 7, preferably shown in table II B, application no. 7, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid 10 molecule of the present invention, in particular of table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, 15 columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.6] to [0196.0.0.6] for the disclosure of the paragraphs [0193.0.0.6] to [0196.0.0.6] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.6.6] Homologues of the nucleic acid sequences used, with the sequence 20 shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, ap plication no. 7, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 25 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 7, columns 5 and 7, preferably shown in table I B, applica 30 tion no. 7, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased.
507 [0198.0.6.6] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7. It is preferred that the nucleic acid molecule com 5 prises as little as possible other nucleotides not shown in any one of table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em 10 bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7. [0199.0.6.6] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli 15 cation no. 7, columns 5 and 7, preferably shown in table II B, application no. 7, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the 20 sequences shown in table II, application no. 7, columns 5 and 7, preferably shown in table II B, application no. 7, columns 5 and 7. [0200.0.6.6] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 7, columns 5 and 7, preferably shown in table II B, application no. 7, columns 5 25 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 7, columns 5 and 7, preferably shown in table I B, application no. 7, columns 5 and 7. 30 [0201.0.6.6] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme 35 activity, advantageously, the activity is essentially not reduced in comparison with the 508 activity of a polypeptide shown in table II, application no. 7, columns 5 and 7 expressed under identical conditions. [0202.0.6.6] Homologues of table I, application no. 7, columns 5 and 7 or of the de rived sequences of table II, application no. 7, columns 5 and 7 also mean truncated 5 sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or 10 deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro 15 moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.6] to [0215.0.0.6] for the disclosure of the paragraphs [0203.0.0.6] to [0215.0.0.6] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.6.6] Accordingly, in one embodiment, the invention relates to a nucleic acid 20 molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 7, columns 5 and 7, preferably in table II B, application no. 7, columns 5 and 7; or a fragment thereof conferring an in 25 crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 7, columns 5 and 7, prefera bly in table I B, application no. 7, columns 5 and 7 or a fragment thereof confer ring an increase in the amount of the fine chemical in an organism or a part 30 thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener- 509 acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic 5 acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 10 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 15 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by 20 amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 7, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 25 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 7, column 7 and conferring an in 30 crease in the amount of the fine chemical in an organism or a part thereof; 510 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 7, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and 5 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 10 1, application no. 7, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 7, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 15 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 7, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 7, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in 20 vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 7, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 7, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en 25 codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 7, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 7, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence 30 shown in table I A and/or I B, application no. 7, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 7, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, 35 application no. 7, columns 5 and 7.
511 [0217.0.0.6] to [0226.0.0.6] for the disclosure of the paragraphs [0217.0.0.6] to [0226.0.0.6] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.6.6] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by 5 means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of 10 replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that 15 they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 7, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. 20 [0228.0.0.6] to [0239.0.0.6] for the disclosure of the paragraphs [0228.0.0.6] to [0239.0.0.6] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.6.6] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu 25 cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 7, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the 30 fatty acid biosynthetic pathway such as for palmitate, palmitoleate, stearate and/or oleate is expressed in the organisms such as plants or microorganisms. It is also pos sible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective 512 desired fine chemical since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the se quences shown in Table 1, application no. 7, columns 5 and 7 with genes which gener ally support or enhances to growth or yield of the target organismen, for example 5 genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.5.6] and [0242.0.5.6] for the disclosure of the paragraphs [0241.0.5.6] and [0242.0.5.6] see paragraphs [0241.0.5.5] and [0242.0.5.5] above. [0242.1.6.6] In a further advantageous embodiment of the process of the invention, 10 the organisms used in the process are those in which simultaneously a a-linolenic acid degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene. [0242.2.5.6] for the disclosure of this paragraph see paragraph [0242.2.5.5] above. [0243.0.0.6] to [0264.0.0.6] for the disclosure of the paragraphs [0243.0.0.6] to 15 [0264.0.0.6] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.6.6] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, 20 the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide 25 or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 7, 30 columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.6] to [0287.0.0.6] for the disclosure of the paragraphs [0266.0.0.6] to [0287.0.0.6] see paragraphs [0266.0.0.0] to [0287.0.0.0] above.
513 [0288.0.6.6] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a 5 vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 7, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 7, columns 5 and 7 or their homologs is functionally linked to a 10 regulatory sequences which permit the expression in plastids. [0289.0.0.6] to [0296.0.0.6] for the disclosure of the paragraphs [0289.0.0.6] to [0296.0.0.6] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.6.6] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial 15 cells), for example using the antibody of the present invention as described below, in particular, an anti-b0342, anti-b0403, anti-b0931, anti-b1281, anti-b1625, anti-b2156, anti-b2827, anti-b3429 and/or anti-YNL241C protein antibody or an antibody against polypeptides as shown in table II, application no. 7, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or 20 fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal anti bodies. [0298.0.0.6] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.6.6] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 7, columns 5 and 7 or as coded by 25 the nucleic acid molecule shown in table I, application no. 7, columns 5 and 7 or func tional homologues thereof. [0300.0.6.6] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 7, columns 7 and in one another embodi 30 ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 7, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre- 514 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.6] to [0304.0.0.6] for the disclosure of the paragraphs [0301.0.0.6] to [0304.0.0.6] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 5 [0305.0.6.6] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 7, columns 5 and 7 by one or more 10 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 7, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 15 II B, application no. 7, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 7, columns 5 and 7. 20 [0306.0.0.6] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.6.6] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli 25 cation no. 7, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 7, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded 30 by the nucleic acid molecules shown in table I A and/or I B, application no. 7, columns 5 and 7. [0308.0.6.6] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 7, col- 515 umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 7, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred 5 by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from 10 which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.6] to [0311.0.0.6] for the disclosure of the paragraphs [0309.0.0.6] to [0311.0.0.6] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.6.6] A polypeptide of the invention can participate in the process of the pre 15 sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 7, columns 5 and 7. [0313.0.6.6] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin 20 gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably 25 at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 7, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se 30 quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 7, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.6.6] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 7, columns 5 and 7 in amino 516 acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most 5 preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 7, columns 5 and 7. [0315.0.0.6] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.6.6] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se 10 quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 7, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an 15 polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.6] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.6.6] Manipulation of the nucleic acid molecule of the invention may result in 20 the production of a protein having differences from the wild-type protein as shown in table II, application no. 7, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 7, column 3, prefera bly at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap 25 plication no. 7, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. [0319.0.6.6] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing 30 said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated 517 proteins of the proteins as shown in table II, application no. 7, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.6] to [0322.0.0.6] for the disclosure of the paragraphs [0320.0.0.6] to 5 [0322.0.0.6] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.6.6] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 7, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a 10 polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 7, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. 15 [0324.0.0.6] to [0329.0.0.6] for the disclosure of the paragraphs [0324.0.0.6] to [0329.0.0.6] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.6.6] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 7, columns 5 and 7. 20 [0331.0.0.6] to [0346.0.0.6] for the disclosure of the paragraphs [0331.0.0.6] to [0346.0.0.6] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.6.6] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of 25 the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 7, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu 30 lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a 518 polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table 1l, application no. 7, col umn 3 or a protein as shown in table 1l, application no. 7, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids 5 or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.6] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.6.6] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 10 II, application no. 7, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.6] to [0358.0.0.6] for the disclosure of the paragraphs [0350.0.0.6] to 15 [0358.0.0.6] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0350.0.0.6] to [0358.0.0.6] and [0359.0.5.6] for the disclosure of the para graphs [0350.0.0.6] to [0358.0.0.6] and [0359.0.5.6] see paragraphs [0350.0.0.0] to [0358.0.0.0] and [0359.0.5.5] above. [0360.0.0.6] to [0362.0.0.6] for the disclosure of the paragraphs [0360.0.0.6] to 20 [0362.0.0.6] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.5.6] to [0365.0.5.6] for the disclosure of the paragraphs [0363.0.5.6] to [0365.0.5.6] see paragraphs [0363.0.5.5] to [0365.0.5.5] above. [0366.0.0.6] to [0369.0.0.6] for the disclosure of the paragraphs [0366.0.0.6] to [0369.0.0.6] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 25 [0370.0.6.6] The fermentation broths obtained in this way, containing in particular a linolenic acid, triglycerides, lipids, oils and/or fats containing a-linolenic acid, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be seperated, such as, for example, by centrifugation, filtration, decantation or a combination of these 30 methods, from the fermentation broth or left completely in it. Afterwards the biomass can be extracted without any further process steps or disrupted and then extracted. If 519 necessary the fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by extraction. 5 [0371.0.5.6] for the disclosure of this paragraph see paragraph [0371.0.5.5] above. [0372.0.0.6] to [0376.0.0.6], [0376.1.0.6] and [0377.0.0.6] for the disclosure of the paragraphs [0372.0.0.6] to [0376.0.0.6], [0376.1.0.6] and [0377.0.0.6] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.6.6] In one embodiment, the present invention relates to a method for the 10 identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting, e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine 15 chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 7, columns 20 5 and 7, preferably in table I B, application no. 7, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; 25 (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. [0379.0.0.6] to [0383.0.0.6] for the disclosure of the paragraphs [0379.0.0.6] to 30 [0383.0.0.6] see paragraphs [0379.0.0.0] to [0383.0.0.0] above.
520 [0384.0.6.6] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in 5 comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 7, column 3, eg comparing 10 near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 7, column 3. [0385.0.0.6] to [0404.0.0.6] for the disclosure of the paragraphs [0385.0.0.6] to [0404.0.0.6] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.5.6] for the disclosure of this paragraph see paragraph [0405.0.5.5] above. 15 [0406.0.0.6] to [0435.0.0.6] for the disclosure of the paragraphs [0406.0.0.6] to [0435.0.0.6] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.6.6] a-linolenic acid, triglycerides, lipids, oils and/or fats containing a linolenic acid production in Mortierella The fatty acid production can be analysed as mentioned above. The proteins and nu 20 cleic acids can be analysed as mentioned below. [0437.0.0.6] and [0438.0.0.6] for the disclosure of the paragraphs [0437.0.0.6] and [0438.0.0.6] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.5.6] and [0440.0.5.6] for the disclosure of the paragraphs [0439.0.5.6] and [0440.0.5.6] see paragraphs [0439.0.5.5] and [0440.0.5.5] above. 25 [0441.0.0.6] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.5.6] and [0445.0.5.6] for the disclosure of the paragraphs [0442.0.5.6] and [0445.0.5.6] see paragraphs [0442.0.5.5] and [0445.0.5.5] above. [0446.0.0.6] to [0497.0.0.6] for the disclosure of the paragraphs [0446.0.0.6] to [0497.0.0.6] see paragraphs [0446.0.0.0] to [0497.0.0.0] above.
521 [0498.0.6.6] The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max a-Linolenic Acid, GC b0342 C18:3 (c9,c12,c15) 1.12 1.59 a-Linolenic Acid, GC b0403 C18:3 (c9,c12,c15) 1.12 1.41 a-Linolenic Acid, GC b0931 C18:3 (c9,c12,c15) 1.11 1.40 a-Linolenic Acid, GO b1281 C18:3 (c9,c12,c15) 1.12 1.23 a-Linolenic Acid, GC b1625 C18:3 (c9,c12,c15) 1.13 1.23 a-Linolenic Acid, GC b2156 C18:3 (c9,c12,c15) 1.17 1.56 a-Linolenic Acid, GC b2827 C18:3 (c9,c12,c15) 1.14 1.19 a-Linolenic Acid, GC b3429 C18:3 (c9,c12,c15) 1.12 1.27 a-Linolenic Acid, GO YNL241C C18:3 (c9,c12,c15) 1.12 1.13 5 [0499.0.0.6] and [0500.0.0.6] for the disclosure of the paragraphs [0499.0.0.6] and [0500.0.0.6] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.6.6] Example 15a: Engineering ryegrass plants by over-expressing YNL241C from Saccharomyces cerevisiae or homologs 10 of YNL241 C from other organisms. [0502.0.0.6] to [0508.0.0.6] for the disclosure of the paragraphs [0502.0.0.6] to [0508.0.0.6] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.6.6] Example 15b: Engineering soybean plants by over-expressing YNL241C from Saccharomyces cerevisiae or homologs 15 of YNL241 C from other organisms.
522 [0510.0.0.6] to [0513.0.0.6] for the disclosure of the paragraphs [0510.0.0.6] to [0513.0.0.6] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.6.6] Example 15c: Engineering corn plants by over-expressing YNL241C from Saccharomyces cerevisiae or homologs of 5 YNL241 C from other organisms. [0515.0.0.6] to [0540.0.0.6] for the disclosure of the paragraphs [0515.0.0.6] to [0540.0.0.6] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.6.6] Example 15d: Engineering wheat plants by over-expressing YNL241C from Saccharomyces cerevisiae or homologs 10 of YNL241 C from other organisms. [0542.0.0.6] to [0544.0.0.6] for the disclosure of the paragraphs [0542.0.0.6] to [0544.0.0.6] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.6.6] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YNL241C from Saccharomyces cerevisiae or homologs 15 of YNL241 C from other organisms. [0546.0.0.6] to [0549.0.0.6] for the disclosure of the paragraphs [0546.0.0.6] to [0549.0.0.6] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.6.6] Example 15f: Engineering alfalfa plants by over-expressing YNL241C from Saccharomyces cerevisiae or homologs of 20 YNL241 C from other organisms. [0551.0.0.6] to [0554.0.0.6] for the disclosure of the paragraphs [0551.0.0.6] to [0554.0.0.6] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.6.6]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. 25 Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII Table VII 523 ORF_NAME Metabolite MIN MAX b3429 a-Linolenic Acid, C18:3 1.31 1.67 (c9,c12,c15) YNL241C a-Linolenic Acid, C18:3 1.33 1.82 (c9,c12,c15) Table VII shows the increase in a-Linolenic Acid, C18:3 (c9,c12,c15) in genetically modified corn plants expressing the Saccharomyces cerevisiae nucleic acid sequence 5 YNL241C and the E. coli nucleic acid sequence b3429. In one embodiment, in case the activity of the Saccaromyces cerevisiae protein YNL241C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase", is increased in corn plants, preferably, an increase of the fine chemical a-linolenic acid between 33% and 82% is conferred. 10 In one embodiment, in case the activity of the Escherichia coli protein b3429 or its ho mologs, e.g. a "glycogen synthase (starch synthase)", is increased in corn plants, pref erably, an increase of the fine chemical a-linolenic acid between 31 % and 67% is con ferred. [0554.2.0.6] for the disclosure of this paragraph see [0554.2.0.0] above. 15 [0555.0.0.6] for the disclosure of this paragraph see [0555.0.0.0] above.
524 [0001.0.0.7] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.7.7] Fatty acids and triglycerides have numerous applications in the food and feed industry, in cosmetics and in the drug sector. Depending on whether they are free saturated or unsaturated fatty acids or triglycerides with an increased content of satu 5 rated or unsaturated fatty acids, they are suitable for the most varied applications; thus, for example, polyunsaturated fatty acids (= PUFAs) are added to infant formula to in crease its nutritional value. The various fatty acids and triglycerides are mainly ob tained from microorganisms such as fungi or from oil-producing plants including phyto plankton and algae, such as soybean, oilseed rape, sunflower and others, where they 10 are usually obtained in the form of their triacylglycerides. [0003.0.7.7] Stearic acid (= octadecanoic acid) is one of the many useful types of saturated fatty acids that come from many animal and vegetable fats and oils. It is a waxy solid that melts at around 70'C. Commenly stearic acid is either prepared by treating animal fat with water at a high pressure and temperature or starting with 15 vegetable oils by hydrogenation of said oils. It is useful as an ingredient in making candles, soaps, and cosmetics and for softening rubber. [0004.0.7.7] Principally microorganisms such as Mortierella or oil producing plants such as soybean, rapeseed or sunflower or algae such as Crytocodinium or Phaeodac tylum are a common source for oils containing fatty acids, where they are usually ob 20 tained in the form of their triacyl glycerides. Alternatively, they are obtained advanta geously from animals, such as fish. The free fatty acids are prepared advantageously by hydrolysis with a strong base such as potassium or sodium hydroxide. [0005.0.5.7] for the disclosure of this paragraph see [0005.0.5.5] above. [0006.0.7.7] Unlike most saturated fats, stearic acid does not seem to increase 25 cholesterol levels in the blood, because liver enzymes convert it to an unsaturated fat during digestion. [0007.0.7.7] Stearic acid is the most common one of the long-chain fatty acids. It is found in many foods, such as beef fat, and cocoa butter. It is widely used as mentioned above as a lubricant, in soaps, cosmetics, food packaging, deodorant sticks, 30 toothpastes, and as a softener in rubber. [0008.0.7.7] Encouraging research shows that stearic acid; one of the components of the fat found in the cocoa butter of chocolate, may have some positive effects on plate- 525 lets. The mechanism believed to be responsible for the potential platelet activation by stearic acid involves Arachidonic metabolism, which includes thromboxane A2, a po tent aggregating compound, and prostaglandin 12, a potent anti-aggregating com pound. 5 [0009.0.7.7] As described above, fatty acids are used in a lot of different applica tions, for example in cosmetics, pharmaceuticals and in feed and food. [0010.0.7.7] Therefore improving the productivity of such fatty acids and improving the quality of foodstuffs and animal feeds is an important task of the different industries. [0011.0.7.7] To ensure a high productivity of certain fatty acids in plants or microor 10 ganism, it is necessary to manipulate the natural biosynthesis of fatty acids in said or ganism. [0012.0.7.7] Accordingly, there is still a great demand for new and more suitable genes which encode enzymes which participate in the biosynthesis of fatty acids and make it possible to produce certain fatty acids specifically on an industrial scale without 15 unwanted byproducts forming. In the selection of genes for biosynthesis two character istics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of fatty acids on the other hand as less as possible byproducts should be produced in the production proc ess. 20 [0013.0.0.7] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.7.7] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is stearic acid or tryglyc erides, lipids, oils or fats containing stearic acid. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "stearic acid or tryglycerides, lip 25 ids, oils or fats containing stearic acid". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising stearic acid or tryglycerides, lipids, oils or fats containing stearic acid. [0015.0.7.7] In one embodiment, the term "the fine chemical" or "the respective fine chemical" means stearic acid or tryglycerides, lipids, oils or fats containing stearic acid. 30 Throughout the specification the term "the fine chemical" or "the respective fine chemi cal" means stearic acid or tryglycerides, lipids, oils or fats containing stearic acid, stearic acid and its salts, ester, thioester or stearic acid in free form or bound to other 526 compounds such as triglycerides, glycolipids, phospholipids etc. In a preferred em bodiment, the term "the fine chemical" means stearic acid, in free form or its salts or bound to triglycerides. Triglycerides, lipids, oils, fats or lipid mixture thereof shall mean any triglyceride, lipid, oil and/or fat containing any bound or free stearic acid for exam 5 ple sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidyl serine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, or as monoacylglyceride, diacylglyceride or triacylglyceride or other fatty acid esters such as acetyl-Coenzym A thioester, which contain further saturated or unsaturated fatty acids 10 in the fatty acid molecule. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.7.7] Accordingly, the present invention relates to a process for the production 15 of stearic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 8, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application 20 no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 8, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (b) growing the organism under conditions which permit the production of the fine chemical, thus, stearic acid or fine chemicals comprising stearic acid, in said or 25 ganism or in the culture medium surrounding the organism. [0016.1.7.7] / [0017.0.7.7] In another embodiment the present invention is related to a process for the production of stearic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 30 no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 8, column 5, in an organelle of a non-human organism, or 527 (b) increasing or generating the activity of a protein as shown in table II, application no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 8, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 5 (c) increasing or generating the activity of a protein as shown in table II, application no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 8, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 10 (d) growing the organism under conditions which permit the production of stearic acid in said organism. [0017.1.7.7] In another embodiment, the present invention relates to a process for the production of stearic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 15 no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 8, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, ap 20 plication no. 8, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, stearic acid or fine chemicals comprising stearic acid, in said or ganism or in the culture medium surrounding the organism. 25 [0018.0.7.7] Advantagously the activity of the protein as shown in table II, application no. 8, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 8, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.7] to [0024.0.0.7] for the disclosure of the paragraphs [0019.0.0.7] to 30 [0024.0.0.7] see paragraphs [0019.0.0.0] and [0024.0.0.0] above.
528 [0025.0.7.7] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to 5 the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 8, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 10 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to 15 plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in 20 length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base 25 pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme 30 recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.7.7] As mentioned above the nucleic acid sequences coding for the pro 35 teins as shown in table II, application no. 8, column 3 and its homologs as disclosed in table I, application no. 8, columns 5 and 7 are joined to a nucleic acid sequence encod- 529 ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 5 ing for proteins as shown in table 1l, application no. 8, column 3 and its homologs as disclosed in table 1, application no. 8, columns 5 and 7. [0027.0.0.7] to [0029.0.0.7] for the disclosure of the paragraphs [0027.0.0.7] to [0029.0.0.7] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.7.7] Alternatively, nucleic acid sequences coding for the transit peptides 10 may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 15 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 20 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 25 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 30 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table 1, application no. 8, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table 1l, application no. 8, columns 5 and 7 35 during the transport preferably into the plastids. All products of the cleavage of the pre- 530 ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 8, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more 5 preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 8, col umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres 10 sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 8, columns 5 and 7. Furthermore the 15 skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.7.7] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.7.7] Alternatively to the targeting of the sequences shown in table II, ap 20 plication no. 8, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 25 8, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 30 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 531 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.7] and [0030.3.0.7] for the disclosure of the paragraphs [0030.2.0.7] and [0030.3.0.7] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. 5 [0030.4.7.7] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 8, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 10 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 8, columns 5 and 7 or a 15 sequence encoding a protein, as depicted in table II, application no. 8, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza 20 tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused 25 to the sequences depicted in table I, application no. 8, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 8, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 8, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 8, columns 5 and 7 into the chloroplasts. 30 A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 8, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in 35 corporated by reference. WO 2004/040973 teaches a method, which relates to the 532 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or 5 mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as 10 disclosed in table II, application no. 8, columns 5 and 7. [0030.5.7.7] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 8, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 15 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.7.7] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 8, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 20 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.7] and [0032.0.0.7] for the disclosure of the paragraphs [0031.0.0.7] and [0032.0.0.7] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 25 [0033.0.7.7] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 30 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 8, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 8, column 3 or their combination can be achieved by joining the protein to a transit peptide.
533 [0034.0.7.7] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table 1l, application no. 8, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in 5 the fine chemical content of the transformed plants. [0035.0.0.7] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.7.7] The sequence of b1556 (Accession number NP_416074) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one em 10 bodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of stearic acid and/or tryglycerides, lipids, oils and/or fats containing stearic acid, in particular for increasing the amount of stearic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in 15 vention the activity of a b1556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or 20 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1700 (Accession number NP_416215) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative 4Fe-4S ferredoxin-type protein". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "putative 4Fe-4S 25 ferredoxin-type protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of stearic acid and/or tryglycerides, lipids, oils and/or fats con taining stearic acid, in particular for increasing the amount of stearic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 700 protein is increased or gener 30 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1700 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 35 The sequence of b1704 (Accession number NP_416219) from Escherichia coli has 534 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabi noheptulosonate-7-phosphate synthase 5 (DAHP synthetase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of stearic acid and/or tryglycerides, lipids, oils and/or fats containing stearic acid, in particular for increasing the amount of stearic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 protein is increased or generated, e.g. 10 from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of YLR099C (Accession number NP_013200) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as " putative lipase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative lipase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of stearic 20 acid and/or tryglycerides, lipids, oils and/or fats containing stearic acid, in particular for increasing the amount of stearic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR099C protein is increased or generated, e.g. from Saccharomyces cer evisiae or a homolog thereof, preferably linked at least to one transit peptide as men 25 tioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR099C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.7.7] In one embodiment, the homolog of the YLR099C, is a homolog hav 30 ing said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b1556, b1700 and/or b1704 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YLR099C is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of the b1556, b1700 and/or b1704 is a homolog having said acitivity and being derived from 35 Proteobacteria. In one embodiment, the homolog of the YLR099C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of 535 the b1556, b1700 and/or b1704 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the YLR099C is a homolog having said acitivity and being derived from Saccharomycotina. In one em bodiment, the homolog of the b1556, b1700 and/or b1704 is a homolog having said 5 acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the YLR099C is a homolog having said acitivity and being derived from Saccharomy cetes. In one embodiment, the homolog of the b1556, b1700 and/or b1704 is a ho molog having said acitivity and being derived from Enterobacteriaceae. In one em bodiment, the homolog of the YLR099C is a homolog having said acitivity and being 10 derived from Saccharomycetales. In one embodiment, the homolog of the b1556, b1700 and/or b1704 is a homolog having said acitivity and being derived from Es cherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YLR099C is a homolog having said acitivity and being derived from Saccharomyceta ceae. In one embodiment, the homolog of the YLR099C is a homolog having said 15 acitivity and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae. [0038.0.0.7] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.7.7] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 8, column 3" if its de novo activity, 20 or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 8, column 3, preferably in the event the nucleic acid sequences encoding said pro 25 teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 8, column 3, or which has at least 10% of the original 30 enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table II, application no. 7, column 3 of Saccharomyces cerevisiae. [0040.0.0.7] to [0047.0.0.7] for the disclosure of the paragraphs [0040.0.0.7] to [0047.0.0.7] see paragraphs [0040.0.0.0] to [0047.0.0.0] above.
536 [0048.0.6.6] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 5 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 8, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.7] to [0051.0.0.7] for the disclosure of the paragraphs [0049.0.0.7] to [0051.0.0.7] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 10 [0052.0.7.7] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 8, columns 5 and 7 alone 15 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 20 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.7] to [0058.0.0.7] for the disclosure of the paragraphs [0053.0.0.7] to [0058.0.0.7] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.7.7] In case the activity of the Escherichia coli protein b1556 or its homologs, 25 e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of stearic acid and/or tryglycerides, lipids, oils and/or fats containing stearic acid between 18% and 37% or more is conferred. In case the activity of the Escherichia coli protein b1700 or its homologs, e.g. a "puta 30 tive 4Fe-4S ferredoxin-type protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of stearic acid and/or tryglycerides, lipids, oils and/or fats contain ing stearic acid between 29% and 113% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3- 537 deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of stearic acid and/or tryglyc erides, lipids, oils and/or fats containing stearic acid between 25% and 153% or more is 5 conferred. In case the activity of the Saccharomyces cerevisiae protein YLR099C or its homologs, e.g. a "putative lipase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of stearic acid and/or tryglycerides, lipids, oils and/or fats containing stearic acid 10 between 16% and 37% or more is conferred. [0060.0.7.7] In case the activity of the Escherichia coli proteins b1556, b1700 or b1704 or their homologs," are increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical stearic acid and/or tryglycerides, lipids, oils and/or fats containing stearic acid is conferred. 15 In case the activity of the Saccharomyces cerevisiae protein YLR099C or its homologs, e.g. a "putative lipase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical stearic acid and/or tryglyc erides, lipids, oils and/or fats containing stearic acid is conferred. [0061.0.0.7] and [0062.0.0.7] for the disclosure of the paragraphs [0061.0.0.7] and 20 [0062.0.0.7] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.7.7] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 8, column 7 or of the poly 25 peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 8, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 8, columns 5 and 7 or its herein described functional homologues and 30 has the herein mentioned activity. [0064.0.7.7] For the purposes of the present invention, the term "stearic acid" also encompasses the corresponding salts, such as, for example, the potassium or sodium salts of stearic acid or the salts of stearic acid with amines such as diethylamine as well as tryglycerides, lipids, oils and/or fats containing stearic acid.
538 [0065.0.0.7] and [0066.0.0.7] for the disclosure of the paragraphs [0065.0.0.7] and [0066.0.0.7] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.7.7] In one embodiment, the process of the present invention comprises one or more of the following steps 5 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 8, columns 5 and 7 or its homologs activity having herein-mentioned stearic acid increasing activity; and/or 10 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 8, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi 15 cated in table II, application no. 8, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned stearic acid increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep 20 tide of the present invention having herein-mentioned stearic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 8, columns 5 and 7 or its homologs activity, or decreasing the in hibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip 25 tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned stearic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 8, columns 5 and 7 or its homologs activity; and/or 30 e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned stearic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli- 539 cation no. 8, columns 5 and 7 or its homologs activity, by adding one or more ex ogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present 5 invention or a polypeptide of the present invention, having herein-mentioned stearic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table 1l, application no. 8, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a 10 nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned stearic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table 1l, application no. 8, columns 5 and 7 or its homologs activity; and/or 15 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 8, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like 20 for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated 25 near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam 30 ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or 540 j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 5 polypeptide of the present invention having herein-mentioned stearic acid in creasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 8, columns 5 and 7 or its homologs activity, to the plas tids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of 10 the invention or of the polypeptide of the present invention having herein mentioned stearic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table 1l, application no. 8, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive 15 nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 20 mentioned stearic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table 1l, application no. 8, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.7.7] Preferably, said mRNA is the nucleic acid molecule of the present inven 25 tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles 30 such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table 1l, application no. 8, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids.
541 [0069.0.0.7] to [0079.0.0.7] for the disclosure of the paragraphs [0069.0.0.7] to [0079.0.0.7] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.7.7] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table 1l, application no. 8, col 5 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table 1l, application no. 8, column 3 and activates its transcription. 10 A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 8, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific 15 expression of the protein as shown in table 1l, application no. 8, column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.7] to [0084.0.0.7] for the disclosure of the paragraphs [0081.0.0.7] to [0084.0.0.7] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. 20 [0085.0.7.7] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic acid construct mentioned below into an organism alone or in combination with other 25 genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous fatty acid composition comprising a higher content of (from a viewpoint of nutrional physiology limited) fatty acids, like palmitate and/or palmitoleate. 30 [0086.0.0.7] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.7.7] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of 542 such compounds are, in addition to stearic acid, triglycerides, lipids, oils and/or fats containing stearic acid compounds such as palmitate and/or palmitoleate. [0088.0.7.7] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 5 a) providing a non-human organism, preferably a microorganism, a non-human animal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 8, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present 10 invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, 15 c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the micro organism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical 20 and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.7.7] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in 25 such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound fatty acids, in particu lar palmitic acid. [0090.0.0.7] to [0097.0.0.7] for the disclosure of the paragraphs [0090.0.0.7] to 30 [0097.0.0.7] see paragraphs [0090.0.0.0] to [0097.0.0.0] above.
543 [0098.0.7.7] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been 5 brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 8, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 8, columns 5 and 7 10 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 15 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 20 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.7.7] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 25 depicted in the sequence protocol and disclosed in table 1, application no. 8, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 8, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se 30 quences as depicted in the sequence protocol and disclosed in table 1, application no. 8, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediat- 544 ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. [0100.0.0.7] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.7.7] In an advantageous embodiment of the invention, the organism takes 5 the form of a plant whose fatty acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned essential fatty acids and the general amount of fatty acids as en ergy source in feed. After the activity of the protein as shown in table 1l, application no. 10 8, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.7] to [0110.0.0.7] for the disclosure of the paragraphs [0102.0.0.7] to 15 [0110.0.0.7] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.7.7] In a preferred embodiment, the fine chemical (stearic acid) is produced in accordance with the invention and, if desired, is isolated. The production of further fatty acids such as palmitic acid and/or palmitoleic acid and/or mixtures thereof or mix tures of other fatty acids by the process according to the invention is advantageous. It 20 may be advantageous to increase the pool of free fatty acids in the transgenic organ isms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.7.7] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to 25 gether with the transformation of anucleic acid encoding a protein or polypeptid for ex ample a fatty acid transporter protein or a compound, which functions as a sink for the desired fatty acid for example for stearic acid in the organism is useful to increase the production of the respective fine chemical (see Bao and Ohlrogge, Plant Physiol. 1999 August; 120 (4): 1057-1062). Such fatty acid transporter protein may serve as a link 30 between the location of fatty acid synthesis and the socalled sink tissue, in which fatty acids, triglycerides, oils and fats are stored. [0113.0.5.7] to [0115.0.5.7] for the disclosure of the paragraphs [0113.0.5.7] to [0115.0.5.7] see paragraphs [0113.0.5.5] to [0115.0.5.5] above.
545 [0116.0.7.7] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected 5 from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 8, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; 10 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 8, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine 15 chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 20 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 25 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 30 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; 546 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 8, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 5 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 10 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 8, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly 15 peptide shown in table II, application no. 8, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 20 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.7.7.] In one embodiment, the nucleic acid molecule used in the process of the 25 invention distinguishes over the sequence indicated in table I A, application no. 8, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 8, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 30 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 8, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II A, application no. 8, columns 5 and 7.
547 [0116.2.7.7.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 8, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 5 cated in table I B, application no. 8, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 8, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 8, columns 5 and 7. 10 [0117.0.7.7] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 8, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 8, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se 15 quence shown in table I, application no. 8, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 8, columns 5 and 7. [0118.0.0.7] to [0120.0.0.7] for the disclosure of the paragraphs [0118.0.0.7] to [0120.0.0.7] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. 20 [0121.0.7.7] Nucleic acid molecules with the sequence shown in table I, application no. 8, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 8, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 8, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological 25 activity of a protein as shown in table II, application no. 8, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.7] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. 30 [0123.0.7.7] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 8, column 3 can be determined from generally acces sible databases.
548 [0124.0.0.7] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.7.7] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 8, column 3 and confer 5 ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.7] to [0133.0.0.7] for the disclosure of the paragraphs [0126.0.0.7] to [0133.0.0.7] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.7.7] However, it is also possible to use artificial sequences, which differ in 10 one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 8, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its 15 activity, e.g. after increasing the activity of a protein as shown in table II, application no. 8, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0135.0.0.7] to [0140.0.0.7] for the disclosure of the paragraphs [0135.0.0.7] to [0140.0.0.7] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. 20 [0141.0.7.7] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 8, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 8, columns 5 and 7 or the sequences derived from table II, application no. 8, columns 5 and 7. 25 [0142.0.7.7] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 30 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 8, column 7 is derived from said aligments.
549 [0143.0.7.7] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 8, column 3 or further functional 5 homologs of the polypeptide of the invention from other organisms. [0144.0.0.7] to [0151.0.0.7] for the disclosure of the paragraphs [0144.0.0.7] to [0151.0.0.7] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.7.7] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se 10 quences which hybridize to the sequences shown in table I, application no. 8, columns 5 and 7, preferably of table I B, application no. 8, columns 5 and 7 under relaxed hy bridization conditions and which code on expression for peptides having the stearic acid, triglycerides, lipids, oils and/or fats containing stearic acid increasing activity. [0153.0.0.7] to [0159.0.0.7] for the disclosure of the paragraphs [0153.0.0.7] to 15 [0159.0.0.7] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.7.7] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 8, 20 columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, ap 25 plication no. 8, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or 30 C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner. [0161.0.7.7] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 550 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7, or a portion thereof and preferably has 5 above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 8, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.7.7] The nucleic acid molecule of the invention comprises a nucleotide se 10 quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. conferring of a stearic acid, triglycerides, lipids, oils and/or fats containing stearic acid increase by for 15 example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 8, column 3. [0163.0.7.7] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 20 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for 25 example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises 30 substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 8, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in 35 table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no.
551 8, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleo tide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the exam 5 ples. A PCR with the primers shown in table III, application no. 8, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.7] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.7.7] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 10 gous to the amino acid sequence shown in table II, application no. 8, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a stearic acid, triglycerides, lipids, oils and/or fats containing stearic acid increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. 15 [0166.0.7.7] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap 20 plication no. 8, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.7.7] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. 25 The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 8, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the 30 increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.7] and [0169.0.0.7] for the disclosure of the paragraphs [0168.0.0.7] and [0169.0.0.7] see paragraphs [0168.0.0.0] and [0169.0.0.0] above.
552 [0170.0.7.7] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 8, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned 5 activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 8, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence 10 shown in table II, application no. 8, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 8, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist 15 of the sequence shown in table I, application no. 8, columns 5 and 7, preferably as in dicated in table I A, application no. 8, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole cule indicated in table I B, application no. 8, columns 5 and 7. [0171.0.0.7] to [0173.0.0.7] for the disclosure of the paragraphs [0171.0.0.7] to 20 [0173.0.0.7] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.7.7] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present 25 invention, e.g. comprising the sequence shown in table I, application no. 8, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.7] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.7.7] Preferably, nucleic acid molecule of the invention that hybridizes under 30 stringent conditions to a sequence shown in table I, application no. 8, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above- 553 mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, 5 preferably in plastids. [0177.0.0.7] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.7.7] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, 10 application no. 8, columns 5 and 7. [0179.0.0.7] and [0180.0.0.7] for the disclosure of the paragraphs [0179.0.0.7] and [0180.0.0.7] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.7.7] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine 15 chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 8, columns 5 and 7, preferably shown in ta 20 ble II A, application no. 8, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 8, columns 5 and 7, preferably shown in table II A, application no. 8, columns 5 and 7 and is capable of 25 participation in the increase of production of the fine chemical after increasing its activ ity, e.g. its expression by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 8, columns 5 and 7, preferably shown in table II A, 30 application no. 8, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 8, columns 5 and 7, preferably shown in table II A, application no. 8, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 8, columns 5 and 7, preferably shown in table II A, application no. 8, columns 5 and 7, 554 and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 8, columns 5 and 7, preferably shown in table II A, application no. 8, columns 5 and 7. [0182.0.0.7] to [0188.0.0.7] for the disclosure of the paragraphs [0182.0.0.7] to 5 [0188.0.0.7] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.7.7] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 10 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 15 polypeptide as shown in table II, application no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7. [0190.0.7.7] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7 resp., according to the invention by substitution, insertion or 20 deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7 resp., ac 25 cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 8, columns 5 and 7, pref erably shown in table II B, application no. 8, columns 5 and 7. [0191.0.0.7] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.7.7] A nucleic acid molecule encoding an homologous to a protein sequence 30 of table II, application no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 8, columns 5 555 and 7, preferably shown in table I B, application no. 8, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, 5 columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.7] to [0196.0.0.7] for the disclosure of the paragraphs [0193.0.0.7] to [0196.0.0.7] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.7.7] Homologues of the nucleic acid sequences used, with the sequence 10 shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, ap plication no. 8, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 15 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 8, columns 5 and 7, preferably shown in table I B, applica 20 tion no. 8, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.7.7] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown 25 in any of the table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 30 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7.
556 [0199.0.7.7] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 5 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7. 10 [0200.0.7.7] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 8, columns 5 and 7, preferably shown in table II B, application no. 8, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the 15 nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 8, columns 5 and 7, preferably shown in table I B, application no. 8, columns 5 and 7. [0201.0.7.7] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the 20 fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 8, columns 5 and 7 expressed 25 under identical conditions. [0202.0.7.7] Homologues of table I, application no. 8, columns 5 and 7 or of the de rived sequences of table II, application no. 8, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 30 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 35 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur- 557 thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 5 [0203.0.0.7] to [0215.0.0.7] for the disclosure of the paragraphs [0203.0.0.7] to [0215.0.0.7] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.7.7] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 10 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 8, columns 5 and 7, preferably in table || B, application no. 8, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 15 cleic acid molecule shown in table 1, application no. 8, columns 5 and 7, prefera bly in table I B, application no. 8, columns 5 and 7 or a fragment thereof confer ring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 20 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic 25 acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 558 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 5 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 10 cation no. 8, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) 15 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 8, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 20 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 8, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid 25 library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 8, columns 5 and 7 or a nucleic acid molecule encoding, pref 30 erably at least the mature form of, the polypeptide shown in table II, application no. 8, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 559 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 8, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 8, 5 columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 8, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 8, columns 5 and 7. Ac 10 cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 8, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 8, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by 15 a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 8, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 8, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 20 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 8, columns 5 and 7. [0217.0.0.7] to [0226.0.0.7] for the disclosure of the paragraphs [0217.0.0.7] to [0226.0.0.7] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.7.7] In general, vector systems preferably also comprise further cis 25 regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this 30 fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci 35 ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that 560 they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table 1l, application no. 8, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed 5 to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.7] to [0239.0.0.7] for the disclosure of the paragraphs [0228.0.0.7] to [0239.0.0.7] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.7.7] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together 10 with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table 1, application no. 8, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in 15 the organisms. Especially advantageously, additionally at least one further gene of the fatty acid biosynthetic pathway such as for palmitate, palmitoleate, stearate and/or oleate is expressed in the organisms such as plants or microorganisms. It is also pos sible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms 20 which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the se quences shown in Table 1, application no. 8, columns 5 and 7 with genes which gener ally support or enhances to growth or yield of the target organismen, for example 25 genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.5.7] and [0242.0.5.7] for the disclosure of the paragraphs [0241.0.5.7] and [0242.0.5.7] see paragraphs [0241.0.5.5] and [0242.0.5.5] above. [0242.1.7.7] In a further advantageous embodiment of the process of the invention, 30 the organisms used in the process are those in which simultaneously a stearic acid degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene. [0242.2.5.7] for the disclosure of this paragraph see paragraph [0242.2.5.5] above.
561 [0243.0.0.7] to [0264.0.0.7] for the disclosure of the paragraphs [0243.0.0.7] to [0264.0.0.7] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.7.7] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 5 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 10 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 15 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 8, columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.7] to [0287.0.0.7] for the disclosure of the paragraphs [0266.0.0.7] to 20 [0287.0.0.7] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.7.7] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a 25 vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 8, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 8, columns 5 and 7 or their homologs is functionally linked to a 30 regulatory sequences which permit the expression in plastids. [0289.0.0.7] to [0296.0.0.7] for the disclosure of the paragraphs [0289.0.0.7] to [0296.0.0.7] see paragraphs [0289.0.0.0] to [0296.0.0.0] above.
562 [0297.0.7.7] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b1 556, anti-b1 700, anti-b1 704 and/or anti-YLR099C protein antibody 5 or an antibody against polypeptides as shown in table II, application no. 8, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. [0298.0.0.7] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. 10 [0299.0.7.7] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 8, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 8, columns 5 and 7 or func tional homologues thereof. [0300.0.7.7] In one advantageous embodiment, in the method of the present inven 15 tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 8, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 8, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre 20 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.7] to [0304.0.0.7] for the disclosure of the paragraphs [0301.0.0.7] to [0304.0.0.7] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.7.7] In one advantageous embodiment, the method of the present invention 25 comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 8, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown 30 in table II A and/or II B, application no. 8, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 563 11 B, application no. 8, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or 5 II B, application no. 8, columns 5 and 7. [0306.0.0.7] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.7.7] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se 10 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 8, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 8, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden 15 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 8, columns 5 and 7. [0308.0.7.7] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 8, col 20 umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 8, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre 25 ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into 30 the organelle for example into the plastid or mitochondria. [0309.0.0.7] to [0311.0.0.7] for the disclosure of the paragraphs [0309.0.0.7] to [0311.0.0.7] see paragraphs [0309.0.0.0] to [0311.0.0.0] above.
564 [0312.0.7.7] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 8, columns 5 and 7. 5 [0313.0.7.7] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 10 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 8, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 15 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 8, columns 5 and 7 or which is homologous thereto, as defined above. 20 [0314.0.7.7] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 8, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 25 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 8, columns 5 and 7. [0315.0.0.7] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.7.7] Biologically active portions of an polypeptide of the present invention 30 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 8, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 565 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 5 [0317.0.0.7] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.7.7] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 8, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 8, column 3, prefera 10 bly at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap plication no. 8, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi ciency or activity in relation to the wild type protein. 15 [0319.0.7.7] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may 20 be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 8, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. [0320.0.0.7] to [0322.0.0.7] for the disclosure of the paragraphs [0320.0.0.7] to 25 [0322.0.0.7] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.7.7] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 8, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a 30 polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 8, 566 column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.7] to [0329.0.0.7] for the disclosure of the paragraphs [0324.0.0.7] to [0329.0.0.7] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 5 [0330.0.7.7] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 8, columns 5 and 7. [0331.0.0.7] to [0346.0.0.7] for the disclosure of the paragraphs [0331.0.0.7] to [0346.0.0.7] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 10 [0347.0.7.7] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep 15 tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 8, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe 20 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 8, col umn 3 or a protein as shown in table II, application no. 8, column 3-like activity is in 25 creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.7] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.7.7] A naturally occurring expression cassette - for example the naturally 30 occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 8, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 567 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.7] to [0358.0.0.7] and [0359.0.5.7] for the disclosure of the para graphs [0350.0.0.7] to [0358.0.0.7] and [0359.0.5.7] see paragraphs [0350.0.0.0] to 5 [0358.0.0.0] and [0359.0.5.5] above. [0360.0.0.7] to [0362.0.0.7] for the disclosure of the paragraphs [0360.0.0.7] to [0362.0.0.7] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.5.7] to [0365.0.5.7] for the disclosure of the paragraphs [0363.0.5.7] to [0365.0.5.7] see paragraphs [0363.0.5.5] to [0365.0.5.5] above. 10 [0366.0.0.7] to [0369.0.0.7] for the disclosure of the paragraphs [0366.0.0.7] to [0369.0.0.7] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.7.7] The fermentation broths obtained in this way, containing in particular stearic acid, triglycerides, lipids, oils and/or fats containing stearic acid, normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be proc 15 essed further. Depending on requirements, the biomass can be seperated, such as, for example, by centrifugation, filtration, decantation or a combination of these methods, from the fermentation broth or left completely in it. Afterwards the biomass can be ex tracted without any further process steps or disrupted and then extracted. If necessary the fermentation broth can be thickened or concentrated by known methods, such as, 20 for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evapo rator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by extraction. [0371.0.5.7] for the disclosure of this paragraph see paragraph [0371.0.5.5] above. [0372.0.0.7] to [0376.0.0.7], [0376.1.0.7] and [0377.0.0.7] for the disclosure of the 25 paragraphs [0372.0.0.7] to [0376.0.0.7], [0376.1.0.7] and [0377.0.0.7] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.7.7] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: 30 (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a 568 candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 5 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 8, columns 5 and 7, preferably in table I B, application no. 8, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a 10 plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 15 compared to the wild type. [0379.0.0.7] to [0383.0.0.7] for the disclosure of the paragraphs [0379.0.0.7] to [0383.0.0.7] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.7.7] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 20 microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 25 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 8, column 3, eg comparing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 8, column 3. [0385.0.0.7] to [0404.0.0.7] for the disclosure of the paragraphs [0385.0.0.7] to 30 [0404.0.0.7] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.5.7] for the disclosure of this paragraph see paragraph [0405.0.5.5] above.
569 [0406.0.0.7] to [0435.0.0.7] for the disclosure of the paragraphs [0406.0.0.7] to [0435.0.0.7] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.7.7] stearic acid, triglycerides, lipids, oils and/or fats containing stearic acid production in Mortierella 5 The fatty acid production can be analysed as mentioned above. The proteins and nu cleic acids can be analysed as mentioned below. [0437.0.0.7] and [0438.0.0.7] for the disclosure of the paragraphs [0437.0.0.7] and [0438.0.0.7] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.5.7] and [0440.0.5.7] for the disclosure of the paragraphs [0439.0.5.7] and 10 [0440.0.5.7] see paragraphs [0439.0.5.5] and [0440.0.5.5] above. [0441.0.0.7] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.5.7] and [0445.0.5.7] for the disclosure of the paragraphs [0442.0.5.7] and [0445.0.5.7] see paragraphs [0442.0.5.5] and [0445.0.5.5] above. [0446.0.0.7] to [0497.0.0.7] for the disclosure of the paragraphs [0446.0.0.7] to 15 [0497.0.0.7] see paragraphs [0446.0.0.0] to [0497.0.0.0] above. [0498.0.7.7] The results of the different plant analyses can be seen from the table, which follows: 570 Table VI ORF Metabolite Method Min Max b1556 stearic acid (C18:0) GC 1.18 1.37 b1700 stearic acid (C18:0) GC 1.29 2.13 b1704 stearic acid (C18:0) GC 1.25 2.53 YLR099C stearic acid (C18:0) GC 1.16 1.37 [0499.0.0.7] and [0500.0.0.7] for the disclosure of the paragraphs [0499.0.0.7] and 5 [0500.0.0.7] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.7.7] Example 15a: Engineering ryegrass plants by over-expressing YLR099C from Saccharomyces cerevisiae or homologs of YLR099C from other organisms. [0502.0.0.7] to [0508.0.0.7] for the disclosure of the paragraphs [0502.0.0.7] to 10 [0508.0.0.7] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.7.7] Example 15b: Engineering soybean plants by over-expressing YLR099C from Saccharomyces cerevisiae or homologs of YLR099C from other organisms. [0510.0.0.7] to [0513.0.0.7] for the disclosure of the paragraphs [0510.0.0.7] to 15 [0513.0.0.7] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.7.7] Example 15c: Engineering corn plants by over-expressing YLR099C from Saccharomyces cerevisiae or homologs of YLR099C from other organisms. [0515.0.0.7] to [0540.0.0.7] for the disclosure of the paragraphs [0515.0.0.7] to 20 [0540.0.0.7] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.7.7] Example 15d: Engineering wheat plants by over-expressing YLR099C from Saccharomyces cerevisiae or homologs of YLR099C from other organisms. [0542.0.0.7] to [0544.0.0.7] for the disclosure of the paragraphs [0542.0.0.7] to 25 [0544.0.0.7] see paragraphs [0542.0.0.0] to [0544.0.0.0] above.
571 [0545.0.7.7] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YLR099C from Saccharomyces cerevisiae or homologs of YLR099C from other organisms. [0546.0.0.7] to [0549.0.0.7] for the disclosure of the paragraphs [0546.0.0.7] to 5 [0549.0.0.7] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.7.7] Example 15f: Engineering alfalfa plants by over-expressing YLR099C from Saccharomyces cerevisiae or homologs of YLR099C from other organisms. [0551.0.0.7] to [0554.0.0.7] for the disclosure of the paragraphs [0551.0.0.7] to 10 [0554.0.0.7] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.7.7]: % [0554.2.0.7] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.7] for the disclosure of this paragraph see [0555.0.0.0] above.
572 [0001.0.0.8] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.7.8] for the disclosure of this paragraph see [0002.0.7.7] above. [0003.0.8.8] Palmitic acid is a major component for manufacturing of soaps, lubricat ing oils and waterproofing materials. Furhermore it is used for the synthesis of metallic 5 palmitates. Additional applications are as food additive and in the synthesis of food grade additives; as a constituent of cosmetic formulations. Palmitic acid is a major component of many natural fats and oils in the form of a glyceryl ester, e.g. palm oil, and in most commercial- grade stearic acid products. [0004.0.7.8] for the disclosure of the paragraph [0004.0.7.8] see paragraph 10 [0004.0.7.7] above. [0005.0.5.8] for the disclosure of this paragraph see [0005.0.5.5] above. [0006.0.8.8] Palmitic acid is as mentioned above the major fat in meat and dairy products. [0007.0.8.8] Further uses or palmitic acid are as food ingredients raw material for 15 emulsifiers or personal care emulsifier for facial creams and lotions. Palmitic acid is also used in shaving cream formulations, waxes or fruit wax formulations. [0008.0. .8] Palmitic acid is also used in shaving cream formulations, waxes or fruit wax formulations. [0009.0.8.8] to [0012.0.7.8] for the disclosure of the paragraphs [0009.0.7.8] to 20 [0012.0.7.8] see paragraphs [0009.0.7.7] and [0012.0.7.7] above [0013.0.0.8] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.8.8] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is palmitic acid or tryglyc erides, lipids, oils or fats containing palmitic acid. Accordingly, in the present invention, 25 the term "the fine chemical" as used herein relates to "palmitic acid or tryglycerides, lipids, oils or fats containing palmitic acid". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising palmitic acid or tryglycerides, lipids, oils or fats containing palmitic acid. [0015.0.8.8] In one embodiment, the term "the fine chemical" or "the respective fine 30 chemical" means palmitic acid or tryglycerides, lipids, oils or fats containing palmitic 573 acid. Throughout the specification the term "the fine chemical" or "the respective fine chemical" means palmitic acid or tryglycerides, lipids, oils or fats containing palmitic acid, palmitic acid and its salts, ester, thioester or palmitic acid in free form or bound to other compounds such as triglycerides, glycolipids, phospholipids etc. In a preferred 5 embodiment, the term "the fine chemical" means palmitic acid, in free form or its salts or bound to triglycerides. Triglycerides, lipids, oils, fats or lipid mixture thereof shall mean any triglyceride, lipid, oil and/or fat containing any bound or free palmitic acid for example sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolip ids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphati 10 dylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, or as monoacylglyceride, diacylglyceride or triacylglyceride or other fatty acid esters such as acetyl-Coenzym A thioester, which contain further saturated or unsaturated fatty acids in the fatty acid molecule. In one embodiment, the term "the fine chemical" and the term "the respective fine 15 chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.8.8] Accordingly, the present invention relates to a process for the production of palmitic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 20 no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 9, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 9, column 5 in the plastid of a microorganism or plant, or in one or 25 more parts thereof; and (b) growing the organism under conditions which permit the production of the fine chemical, thus, palmitic acid or fine chemicals comprising palmitic acid, in said organism or in the culture medium surrounding the organism. [0016.1.8.8] / 30 [0017.0.8.8] In another embodiment the present invention is related to a process for the production of palmitic acid, which comprises 574 (a) increasing or generating the activity of a protein as shown in table II, application no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 9, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application 5 no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 9, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 9, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of palmitic acid in said organism. 15 [0017.1.8.8] In another embodiment, the present invention relates to a process for the production of palmitic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 9, column 5, in an organelle of a microorganism or plant through the 20 transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 9, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 25 (c) growing the organism under conditions which permit the production of the fine chemical, thus, palmitic acid or fine chemicals comprising palmitic acid, in said organism or in the culture medium surrounding the organism. [0018.0.8.8] Advantagously the activity of the protein as shown in table II, application no. 9, column 3 encoded by the nucleic acid sequences as shown in table I, application 30 no. 9, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant.
575 [0019.0.0.8] to [0024.0.0.8] for the disclosure of the paragraphs [0019.0.0.8] to [0024.0.0.8] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.8.8] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 5 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 9, columns 5 and 7. Most preferred nucleic 10 acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid 15 sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are 20 typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct 25 molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported 30 protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. 35 structural flexible amino acids such as glycine or alanine.
576 [0026.0.8.8] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 9, column 3 and its homologs as disclosed in table I, application no. 9, columns 5 and 7 are joined to a nucleic acid sequence encod ing a transit peptide, This nucleic acid sequence encoding a transit peptide ensures 5 transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 9, column 3 and its homologs as disclosed in table I, application no. 9, columns 5 and 7. 10 [0027.0.0.8] to [0029.0.0.8] for the disclosure of the paragraphs [0027.0.0.8] to [0029.0.0.8] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.8.8] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized 15 sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore 20 favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 25 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo 30 plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in 35 table I, application no. 9, columns 5 and 7. The person skilled in the art is able to join 577 said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 9, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal 5 amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 9, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possible in front of the start methionine of the protein metioned in table II, application no. 9, col 10 umns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent clon ing) cassette. Said short amino acid sequence is preferred in the case of the expres sion of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short 15 amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 9, columns 5 and 7. Furthermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 20 [0030.2.8.8] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.8.8] Alternatively to the targeting of the sequences shown in table II, ap plication no. 9, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 25 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 9, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 30 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 578 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea 5 tures of the integrated DNA sequence to the progeny. [0030.2.0.8] and [0030.3.0.8] for the disclosure of the paragraphs [0030.2.0.8] and [0030.3.0.8] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.8.8] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 10 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 9, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 15 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 9, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 9, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In 20 one embodiment the chloroplast localization signal is substantially similar or comple mentary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain 25 about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 9, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 9, columns 5 and 7 in such a 30 manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 9, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 9, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25).
579 In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table 1l, application no. 9, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 5 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 10 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table 1l, application no. 9, columns 5 and 7. 15 [0030.5.8.8] In a preferred embodiment of the invention the nucleic acid se quences as shown in table 1, application no. 9, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle 20 dons or in seeds. [0030.6.8.8] For a good expression in the plastids the nucleic acid sequences as shown in table 1, application no. 9, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro 25 moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.8] and [0032.0.0.8] for the disclosure of the paragraphs [0031.0.0.8] and [0032.0.0.8] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.8.8] Advantageously the process for the production of the fine chemical 30 leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the 580 activity of a protein as shown in table II, application no. 9, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 9, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.8.8] Surprisingly it was found, that the transgenic expression of the Sac 5 caromyces cerevisiae protein as shown in table II, application no. 9, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.8] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 10 [0036.0.8.8] The sequence of b0403 (Accession numberPIR:C64769) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "maltodextrin glucosidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "malto dextrin glucosidase" or its homolog, e.g. as shown herein, for the production of the fine 15 chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats contain ing palmitic acid, in particular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a b0403 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit 20 peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0403 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0488 (Accession number NP_415021) from Escherichia coli has 25 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997). Accordingly, in one embodiment, the process of the present invention comprises the use of its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in par ticular for increasing the amount of palmitic acid in free or bound form in an organism 30 or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b0488 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0488 35 protein is increased or generated in a subcellular compartment of the organism or or- 581 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1095 (Accession number NP_415613) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-oxoacyl-[acyl-carrier-protein] synthase 1l". Accordingly, in one 5 embodiment, the process of the present invention comprises the use of a "3-oxoacyl [acyl-carrier-protein] synthase 1l" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in particular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one em 10 bodiment, in the process of the present invention the activity of a b1 095 protein is in creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated in a subcellular compartment of the organism or or 15 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1410 (Accession number NP_415928) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative methylase with S-adenosyl-L-methionine-dependent me thyltransferase domain and alpha/beta-hydrolase domain". Accordingly, in one em 20 bodiment, the process of the present invention comprises the use of a "putative methy lase with S-adenosyl-L-methionine-dependent methyltransferase domain and al pha/beta-hydrolase domain" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in particular for increasing the amount of palmitic acid in free 25 or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1410 protein is increased or gen erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1410 30 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1627 (Accession number :NP_416144) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative oxidoreductase, inner membrane protein". Accordingly, in 35 one embodiment, the process of the present invention comprises the use of a "putative oxidoreductase, inner membrane protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, 582 oils and/or fats containing palmitic acid, in particular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 627 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 5 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1627 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1758 (Accession number NP_416272) from Escherichia coli has 10 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative cytochrome oxidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative cytochrome oxi dase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic 15 acid, in particular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1758 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b1758 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1980 (Accession number F64962) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 25 being defined as "putative transport protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative transport protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in par ticular for increasing the amount of palmitic acid in free or bound form in an organism 30 or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b1980 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1980 35 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2066 (Accession number NP_416570) from Escherichia coli has 583 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "uridine/cytidine kinase". Accordingly, in one embodiment, the proc ess of the present invention comprises the use of a "uridine/cytidine kinase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of 5 palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in par ticular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b2066 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned 10 for example in table V. In another embodiment, in the process of the present invention the activity of a b2066 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2223 (Accession number NP_416727) from Escherichia coli has 15 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "short chain fatty acid transporter". Accordingly, in one embodiment, the process of the present invention comprises the use of a "short chain fatty acid transporter" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 20 palmitic acid, in particular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a b2223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR099C (Accession number NP_013200NP_014158) from Sac charomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546 30 547, 1996, and its activity is being defined as " putative lipase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative Ii pase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in particular for increasing the amount of palmitic acid in free or bound form in an 35 organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR099C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one tran- 584 sit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR099C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 5 The sequence of YPR035W (Accession number NP_015360) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as " glutamine synthetase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "glutamine syn thetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, 10 meaning of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid, in particular for increasing the amount of palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YPR035W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one 15 transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YPR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.8.8] In one embodiment, the homolog of the YLR099C or YPR035W, is a 20 homolog having said acitivity and being derived from Eukaryot. In one embodiment, the homolog of the b0403, b0488, b1410, b1627, b1758, b1980, b2066, b2223 and/or b1095 is a homolog having said acitivity and being derived from bacteria. In one em bodiment, the homolog of the YLR099C or YPR035W is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of the b0403, b0488, 25 b1410, b1627, b1758, b1980, b2066, b2223 and/or b1095 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YLR099C or YPR035W is a homolog having said acitivity and being derived from As comycota. In one embodiment, the homolog of the b0403, b0488, b1410, b1627, b1758, b1980, b2066, b2223 and/or b1095 is a homolog having said acitivity and being 30 derived from Gammaproteobacteria. In one embodiment, the homolog of the YLR099C or YPR035W is a homolog having said acitivity and being derived from Saccharomy cotina. In one embodiment, the homolog of the b0403, b0488, b1410, b1627, b1758, b1980, b2066, b2223 and/or b1095 is a homolog having said acitivity and being de rived from Enterobacteriales. In one embodiment, the homolog of the YLR099C or 35 YPR035W is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the b0403, b0488, b1410, b1627, b1758, b1980, 585 b2066, b2223 and/or b1095 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YLR099C or YPR035W is a homolog having said acitivity and being derived from Saccharomycetales. In one em bodiment, the homolog of the b0403, b0488, b1410, b1627, b1758, b1980, b2066, 5 b2223 and/or b1 095 is a homolog having said acitivity and being derived from Es cherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YLR099C or YPR035W is a homolog having said acitivity and being derived from Sac charomycetaceae. In one embodiment, the homolog of the YLR099C or YPR035W is a homolog having said acitivity and being derived from Saccharomycetes, preferably 10 from Saccharomyces cerevisiae. [0038.0.0.8] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.8.8] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 9, column 3" if its de novo activity, 15 or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application no. 9, column 3, preferably in the event the nucleic acid sequences encoding said pro 20 teins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypep tide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 9, column 3, or which has at least 10% of the original 25 enzymatic activity, preferably 20%, particularly preferably 30%, most particularly pref erably 40% in comparison to a protein as shown in table II, application no. 7, column 3 of Saccharomyces cerevisiae. [0040.0.0.8] to [0047.0.0.8] for the disclosure of the paragraphs [0040.0.0.8] to [0047.0.0.8] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 30 [0048.0.6.6] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav- 586 ing the activity of a protein as shown in table II, application no. 9, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.8] to [0051.0.0.8] for the disclosure of the paragraphs [0049.0.0.8] to [0051.0.0.8] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 5 [0052.0.8.8] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table I, application no. 9, columns 5 and 7 alone 10 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 15 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.8] to [0058.0.0.8] for the disclosure of the paragraphs [0053.0.0.8] to [0058.0.0.8] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.8.8] In case the activity of the Escherichia coli protein b0403 or its homologs, 20 e.g. a "maltodextrin glucosidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid between 21 % and 40% or more is conferred. In case the activity of the Escherichia coli protein b0488 or its homologs is increased 25 advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of palmitic acid and/or tryglyc erides, lipids, oils and/or fats containing palmitic acid between 16% and 43% or more is conferred. In case the activity of the Escherichia coli protein b1095 or its homologs, e.g. a "3 30 oxoacyl-[acyl-carrier-protein] synthase II" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid between 16% and 47% or more is conferred. In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta- 587 tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 5 palmitic acid between 28% and 41 % or more is conferred. In case the activity of the Escherichia coli protein b1627 or its homologs, e.g. a "puta tive oxidoreductase, inner membrane protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of palmitic acid and/or tryglycerides, lipids, oils and/or 10 fats containing palmitic acid between 16% and 24% or more is conferred. In case the activity of the Escherichia coli protein b1758 or its homologs, e.g. a "puta tive cytochrome oxidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic 15 acid between 16% and 29% or more is conferred. In case the activity of the Escherichia coli protein b1980 or its homologs, e.g. a "puta tive transport protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid 20 between 16% and 33% or more is conferred. In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. a "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic 25 acid between 19% and 46% or more is conferred. In case the activity of the Escherichia coli protein b2233 or its homologs, e.g. a "short chain fatty acid transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 30 palmitic acid between 17% and 89% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR099C or its homologs, e.g. a putative lipase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid 35 between 15% and 50% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YPR035W or its ho mologs, e.g. a "glutamine synthetase" is increased advantageously in an organelle 588 such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid between 25% and 60% or more is conferred. [0060.0.8.8] In case the activity of the Escherichia coli proteins b0403, b0488, 5 b1410, b1627, b1758, b1980, b2066, b2223 or b1095 or their homologs," are increased advantageously in an organelle such as a plastid or mitochondria, preferably an in crease of the fine chemical palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR099C or YPR035W or 10 its homologs is increased advantageously in an organelle such as a plastid or mito chondria, preferably an increase of the fine chemical palmitic acid and/or tryglycerides, lipids, oils and/or fats containing palmitic acid is conferred. [0061.0.0.8] and [0062.0.0.8] for the disclosure of the paragraphs [0061.0.0.8] and [0062.0.0.8] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. 15 [0063.0.8.8] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 9, column 7 or of the poly peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 20 9, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 9, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. 25 [0064.0.8.8] For the purposes of the present invention, the term "palmitic acid" also encompasses the corresponding salts, such as, for example, the potassium or sodium salts of palmitic acid or the salts of palmitic acid with amines such as diethylamine as well as tryglycerides, lipids, oils and/or fats containing palmitic acid. [0065.0.0.8] and [0066.0.0.8] for the disclosure of the paragraphs [0065.0.0.8] and 30 [0066.0.0.8] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.8.8] In one embodiment, the process of the present invention comprises one or more of the following steps 589 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 9, columns 5 and 7 or its homologs activity having herein-mentioned 5 palmitic acid increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 9, columns 5 and 7, e.g. a nucleic 10 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 9, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned palmitic acid increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 15 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned palmitic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 9, columns 5 and 7 or its homologs activity, or decreasing the in hibitiory regulation of the polypeptide of the invention; and/or 20 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned palmitic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, 25 application no. 9, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned palmitic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 30 cation no. 9, columns 5 and 7 or its homologs activity, by adding one or more ex ogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present 590 invention or a polypeptide of the present invention, having herein-mentioned palmitic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table 1l, application no. 9, columns 5 and 7 or its homologs activity, and/or 5 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned palmitic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table 1l, application no. 9, columns 5 and 7 or its homologs 10 activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 9, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous 15 recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 20 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it 25 self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention 30 from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned palmitic acid in- 591 creasing activity, e.g. of polypeptide having the activity of a protein as indicated in table II, application no. 9, columns 5 and 7 or its homologs activity, to the plas tids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of 5 the invention or of the polypeptide of the present invention having herein mentioned palmitic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table II, application no. 9, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive 10 nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 15 mentioned palmitic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table II, application no. 9, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.8.8] Preferably, said mRNA is the nucleic acid molecule of the present inven 20 tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles 25 such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 9, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. [0069.0.0.8] to [0079.0.0.8] for the disclosure of the paragraphs [0069.0.0.8] to [0079.0.0.8] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. 30 [0080.0.8.8] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 9, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like 592 a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table 1l, application no. 9, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA 5 binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 9, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 9, column 3, see e.g. in 10 WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.8] to [0084.0.0.8] for the disclosure of the paragraphs [0081.0.0.8] to [0084.0.0.8] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.8.8] Owing to the introduction of a gene or a plurality of genes conferring the 15 expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, 20 but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous fatty acid composition comprising a higher content of (from a viewpoint of nutrional physiology limited) fatty acids, like palmitate and/or palmitoleate. [0086.0.0.8] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 25 [0087.0.8.8] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to palmitic acid, triglycerides, lipids, oils and/or fats containing palmitic acid compounds such as palmitate and/or palmitoleate. [0088.0.8.8] Accordingly, in one embodiment, the process according to the invention 30 relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human animal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 593 b) increasing the activity of a protein as shown in table 1l, application no. 9, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant 5 or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 10 permit the production of the fine chemical in the organism, preferably the micro organism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the 15 plant or animal tissue or the plant. [0089.0.8.8] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to 20 produce, recover and, if desired isolate, other free or/and bound fatty acids, in particu lar palmitic acid, palmitate, palmitoleic acid and/or palmitoleate. [0090.0.0.8] to [0097.0.0.8] for the disclosure of the paragraphs [0090.0.0.8] to [0097.0.0.8] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.8.8] With regard to the nucleic acid sequence as depicted a nucleic acid 25 construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 9, columns 5 and 7 30 or a derivative thereof, or 594 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 9, columns 5 and 7 or a derivative thereof, or c) (a) and (b) 5 is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic 10 library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.8.8] The use of the nucleic acid sequence according to the invention or of 15 the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 9, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nu 20 cleic acid sequence which directs the nucleic acid sequences disclosed in table 1, ap plication no. 9, columns 5 and 7 to the organelle preferentially the plastids. Altenatively the inventive nucleic acids sequences consist advantageously of the nucleic acid se quences as depicted in the sequence protocol and disclosed in table 1, application no. 9, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable 25 integration of nucleic acids into the plastidial genome and optionally sequences mediat ing the transcription of the sequence in the plastidial compartment. A transient expres sion is in principal also desirable and possible. [0100.0.0.8] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.8.8] In an advantageous embodiment of the invention, the organism takes 30 the form of a plant whose fatty acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned essential fatty acids and the general amount of fatty acids as en- 595 ergy source in feed. After the activity of the protein as shown in table 1l, application no. 9, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the 5 soil and subsequently harvested. [0102.0.0.8] to [0110.0.0.8] for the disclosure of the paragraphs [0102.0.0.8] to [0110.0.0.8] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.8.8] In a preferred embodiment, the fine chemical (palmitic acid) is produced in accordance with the invention and, if desired, is isolated. The production of further 10 fatty acids such as palmitoleic acid and/or mixtures thereof or mixtures of other fatty acids by the process according to the invention is advantageous. It may be advanta geous to increase the pool of free fatty acids in the transgenic organisms by the proc ess according to the invention in order to isolate high amounts of the pure fine chemi cal. 15 [0112.0.8.8] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of anucleic acid encoding a protein or polypeptid for ex ample a fatty acid transporter protein or a compound, which functions as a sink for the desired fatty acid for example for palmitic acid in the organism is useful to increase the 20 production of the respective fine chemical (see Bao and Ohlrogge, Plant Physiol. 1999 August; 120 (4): 1057-1062). Such fatty acid transporter protein may serve as a link between the location of fatty acid synthesis and the socalled sink tissue, in which fatty acids, triglycerides, oils and fats are stored. [0113.0.5.8] to [0115.0.5.8] for the disclosure of the paragraphs [0113.0.5.8] to 25 [0115.0.5.8] see paragraphs [0113.0.5.5] to [0115.0.5.5] above. [0116.0.8.8] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected 30 from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 9, columns 5 and 7 or a fragment 596 thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 9, columns 5 and 7; 5 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity 10 with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 15 amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine 20 chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; 25 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 9, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex 30 pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 597 and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 9, column 7 and conferring an in 5 crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 9, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 10 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase 15 in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.8.8.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 9, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid 20 molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 9, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 9, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a 25 polypeptide of a sequence indicated in table II A, application no. 9, columns 5 and 7. [0116.2.8.8.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 9, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 30 cated in table I B, application no. 9, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 9, 598 columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of a sequence indicated in table II B, application no. 9, columns 5 and 7. [0117.0.8.8] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 9, columns 5 and 7 by 5 one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 9, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 9, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in 10 table II, application no. 9, columns 5 and 7. [0118.0.0.8] to [0120.0.0.8] for the disclosure of the paragraphs [0118.0.0.8] to [0120.0.0.8] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.8.8] Nucleic acid molecules with the sequence shown in table I, application no. 9, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 15 sequences shown in table II, application no. 9, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 9, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 9, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously 20 increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.8] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.8.8] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as 25 shown in table II, application no. 9, column 3 can be determined from generally acces sible databases. [0124.0.0.8] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.8.8] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with 30 the activity of the proteins as shown in table II, application no. 9, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids.
599 [0126.0.0.8] to [0133.0.0.8] for the disclosure of the paragraphs [0126.0.0.8] to [0133.0.0.8] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.8.8] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or 5 more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 9, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 10 9, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0135.0.0.8] to [0140.0.0.8] for the disclosure of the paragraphs [0135.0.0.8] to [0140.0.0.8] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.8.8] Synthetic oligonucleotide primers for the amplification, e.g. as shown in 15 table III, application no. 9, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 9, columns 5 and 7 or the sequences derived from table II, application no. 9, columns 5 and 7. [0142.0.8.8] Moreover, it is possible to identify conserved regions from various or 20 ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence 25 shown in table IV, application no. 9, column 7 is derived from said aligments. [0143.0.8.8] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 9, column 3 or further functional 30 homologs of the polypeptide of the invention from other organisms. [0144.0.0.8] to [0151.0.0.8] for the disclosure of the paragraphs [0144.0.0.8] to [0151.0.0.8] see paragraphs [0144.0.0.0] to [0151.0.0.0] above.
600 [0152.0.8.8] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 9, columns 5 and 7, preferably of table I B, application no. 9, columns 5 and 7 under relaxed hy 5 bridization conditions and which code on expression for peptides having the palmitic acid, triglycerides, lipids, oils and/or fats containing palmitic acid increasing activity. [0153.0.0.8] to [0159.0.0.8] for the disclosure of the paragraphs [0153.0.0.8] to [0159.0.0.8] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.8.8] Further, the nucleic acid molecule of the invention comprises a nucleic 10 acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in 15 table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, ap plication no. 9, columns 5 and 7, thereby forming a stable duplex. Preferably, the hy bridisation is performed under stringent hybrization conditions. However, a complement 20 of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled per son. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing part ner. 25 [0161.0.8.8] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 9, columns 5 and 7, preferably shown in 30 table I B, application no. 9, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 9, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids.
601 [0162.0.8.8] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7, or a portion 5 thereof and encodes a protein having above-mentioned activity, e.g. conferring of a palmitic acid, triglycerides, lipids, oils and/or fats containing palmitic acid increase by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 9, column 3. 10 [0163.0.8.8] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encod ing a biologically active portion of the polypeptide of the present invention or of a poly 15 peptide used in the process of the present invention, i.e. having above-mentioned ac tivity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the 20 generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo 25 tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 9, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleo tide of invention can be used in PCR reactions to clone homologues of the polypeptide 30 of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the exam ples. A PCR with the primers shown in table III, application no. 9, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.8] for the disclosure of this paragraph see paragraph [0164.0.0.0] above.
602 [0165.0.8.8] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 9, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine 5 chemical production, in particular a palmitic acid, triglycerides, lipids, oils and/or fats containing palmitic acid increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.8.8] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum 10 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 9, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity 15 of a protein as shown in table II, column 3 and as described herein. [0167.0.8.8] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 20 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 9, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 25 [0168.0.0.8] and [0169.0.0.8] for the disclosure of the paragraphs [0168.0.0.8] and [0169.0.0.8] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.8.8] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 9, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly 30 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 9, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding 603 a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 9, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, 5 application no. 9, columns 5 and 7 or the functional homologues. However, in a pre ferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 9, columns 5 and 7, preferably as in dicated in table I A, application no. 9, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid mole 10 cule indicated in table I B, application no. 9, columns 5 and 7. [0171.0.0.8] to [0173.0.0.8] for the disclosure of the paragraphs [0171.0.0.8] to [0173.0.0.8] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.8.8] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under 15 stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 9, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 20 [0175.0.0.8] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.8.8] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 9, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 25 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 30 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.8] for the disclosure of this paragraph see paragraph [0177.0.0.0] above.
604 [0178.0.8.8] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 9, columns 5 and 7. 5 [0179.0.0.8] and [0180.0.0.8] for the disclosure of the paragraphs [0179.0.0.8] and [0180.0.0.8] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.8.8] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol 10 or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 9, columns 5 and 7, preferably shown in ta ble II A, application no. 9, columns 5 and 7 yet retain said activity described herein. The 15 nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identi cal to an amino acid sequence shown in table II, application no. 9, columns 5 and 7, preferably shown in table II A, application no. 9, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activ 20 ity, e.g. its expression by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 9, columns 5 and 7, preferably shown in table II A, application no. 9, columns 5 and 7, more preferably at least about 70% identical to one 25 of the sequences shown in table II, application no. 9, columns 5 and 7, preferably shown in table II A, application no. 9, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 9, columns 5 and 7, preferably shown in table II A, application no. 9, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence 30 shown in table II, application no. 9, columns 5 and 7, preferably shown in table II A, application no. 9, columns 5 and 7. [0182.0.0.8] to [0188.0.0.8] for the disclosure of the paragraphs [0182.0.0.8] to [0188.0.0.8] see paragraphs [0182.0.0.0] to [0188.0.0.0] above.
605 [0189.0.8.8] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 5 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 10 polypeptide as shown in table II, application no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7. [0190.0.8.8] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7 resp., according to the invention by substitution, insertion or 15 deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7 resp., ac 20 cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 9, columns 5 and 7, pref erably shown in table II B, application no. 9, columns 5 and 7. [0191.0.0.8] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.8.8] A nucleic acid molecule encoding an homologous to a protein sequence 25 of table II, application no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7 resp., such that 30 one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
606 [0193.0.0.8] to [0196.0.0.8] for the disclosure of the paragraphs [0193.0.0.8] to [0196.0.0.8] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.8.8] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, 5 application no. 9, columns 5 and 7, comprise also allelic variants with at least approxi mately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 10 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7, or from the derived nucleic acid sequences, the 15 intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.8.8] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 9, columns 5 and 7, preferably shown in table I B, 20 application no. 9, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nu 25 cleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 9, columns 5 and 7, preferably shown in table I B, application no. 9, columns 5 and 7. [0199.0.8.8] Also preferred is that the nucleic acid molecule used in the process of 30 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one 35 embodiment used in the inventive process, the encoded polypeptide is identical to the 607 sequences shown in table II, application no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7. [0200.0.8.8] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica 5 tion no. 9, columns 5 and 7, preferably shown in table II B, application no. 9, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nu cleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the nucleic acid molecule used in the process is identical to a coding sequence of the se quences shown in table I, application no. 9, columns 5 and 7, preferably shown in table 10 I B, application no. 9, columns 5 and 7. [0201.0.8.8] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very 15 especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 9, columns 5 and 7 expressed under identical conditions. [0202.0.8.8] Homologues of table I, application no. 9, columns 5 and 7 or of the de 20 rived sequences of table II, application no. 9, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences 25 stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 30 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.8] to [0215.0.0.8] for the disclosure of the paragraphs [0203.0.0.8] to [0215.0.0.8] see paragraphs [0203.0.0.0] to [0215.0.0.0] above.
608 [0216.0.8.8] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 5 peptide shown in table 1l, application no. 9, columns 5 and 7, preferably in table || B, application no. 9, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 9, columns 5 and 7, prefera 10 bly in table I B, application no. 9, columns 5 and 7 or a fragment thereof confer ring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener 15 acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine 20 chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 25 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 30 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; 609 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 9, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 10 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 9, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 9, columns 5 15 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 20 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 9, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 9, columns 5 and 7, and conferring an increase in the amount of the fine 25 chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 9, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention 30 does not consist of the sequence shown in table I A and/or I B, application no. 9, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 9, columns 5 610 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 9, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino 5 acids from the polypeptide shown in table II A and/or II B, application no. 9, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 9, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 9, columns 5 and 7. In a further embodi 10 ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 9, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 9, columns 5 and 7. 15 [0217.0.0.8] to [0226.0.0.8] for the disclosure of the paragraphs [0217.0.0.8] to [0226.0.0.8] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.8.8] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and 20 T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from 25 the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic 30 acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 9, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.8] to [0239.0.0.8] for the disclosure of the paragraphs [0228.0.0.8] to 35 [0239.0.0.8] see paragraphs [0228.0.0.0] to [0239.0.0.0] above.
611 [0240.0.8.8] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously 5 into a plant cell or a microorgansims. In addition to the sequence mentioned in Table 1, application no. 9, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the fatty acid biosynthetic pathway such as for palmitate, palmitoleate, stearate and/or 10 oleate is expressed in the organisms such as plants or microorganisms. It is also pos sible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the 15 same extent or not at all. In addition it might be advantageously to combine the se quences shown in Table 1, application no. 9, columns 5 and 7 with genes which gener ally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. 20 [0241.0.5.8] and [0242.0.5.8] for the disclosure of the paragraphs [0241.0.5.8] and [0242.0.5.8] see paragraphs [0241.0.5.5] and [0242.0.5.5] above. [0242.1.8.8] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a palmitic acid degrading protein is attenuated, in particular by reducing the rate of expression of the 25 corresponding gene. [0242.2.5.8] for the disclosure of this paragraph see paragraph [0242.2.5.5] above. [0243.0.0.8] to [0264.0.0.8] for the disclosure of the paragraphs [0243.0.0.8] to [0264.0.0.8] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.8.8] Other preferred sequences for use in operable linkage in gene expres 30 sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the 612 extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide 5 or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 9, 10 columns 5 and 7 and described herein to achieve an expression in one of said com partments or extracellular. [0266.0.0.8] to [0287.0.0.8] for the disclosure of the paragraphs [0266.0.0.8] to [0287.0.0.8] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.8.8] Accordingly, one embodiment of the invention relates to a vector where 15 the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 9, columns 5 and 7 or their homologs is functionally linked to a 20 plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 9, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.8] to [0296.0.0.8] for the disclosure of the paragraphs [0289.0.0.8] to 25 [0296.0.0.8] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.8.8] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b0403, anti-b0488, anti-b1410, anti-b1 627, anti-b1 758, anti-b1 980, 30 anti-b2066, anti-b2223, anti-b1095, ant-YPR035W and/or anti-YLR099C protein anti body or an antibody against polypeptides as shown in table 1l, application no. 9, columns 5 and 7, which can be produced by standard techniques utilizing the polypep tid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies.
613 [0298.0.0.8] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.8.8] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 9, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 9, columns 5 and 7 or func 5 tional homologues thereof. [0300.0.8.8] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 9, columns 7 and in one another embodi ment, the present invention relates to a polypeptide comprising or consisting of the 10 consensus sequence shown in table IV, application no. 9, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.8] to [0304.0.0.8] for the disclosure of the paragraphs [0301.0.0.8] to 15 [0304.0.0.8] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.8.8] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence 20 shown in table II A and/or II B, application no. 9, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 9, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the 25 polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 9, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or 30 11 B, application no. 9, columns 5 and 7. [0306.0.0.8] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.8.8] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid 614 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 9, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A 5 and/or II B, application no. 9, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 9, columns 5 and 7. 10 [0308.0.8.8] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 9, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 9, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, 15 evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep 20 tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.8] to [0311.0.0.8] for the disclosure of the paragraphs [0309.0.0.8] to [0311.0.0.8] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. 25 [0312.0.8.8] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 9, columns 5 and 7. [0313.0.8.8] Further, the polypeptide can have an amino acid sequence which is en 30 coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and 615 more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 9, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 5 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 9, columns 5 and 7 or which is homologous thereto, as defined above. 10 [0314.0.8.8] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 9, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 15 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 9, columns 5 and 7. [0315.0.0.8] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.8.8] Biologically active portions of an polypeptide of the present invention 20 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 9, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 25 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.8] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. 30 [0318.0.8.8] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 9, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 9, column 3, prefera- 616 bly at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, ap plication no. 9, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in effi 5 ciency or activity in relation to the wild type protein. [0319.0.8.8] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha 10 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 9, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. 15 [0320.0.0.8] to [0322.0.0.8] for the disclosure of the paragraphs [0320.0.0.8] to [0322.0.0.8] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.8.8] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 9, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, 20 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 9, column 3, e.g., a protein which does not confer the activity described herein and which 25 is derived from the same or a different organism. [0324.0.0.8] to [0329.0.0.8] for the disclosure of the paragraphs [0324.0.0.8] to [0329.0.0.8] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.8.8] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are 30 encoded by the sequences shown in table II, application no. 9, columns 5 and 7. [0331.0.0.8] to [0346.0.0.8] for the disclosure of the paragraphs [0331.0.0.8] to [0346.0.0.8] see paragraphs [0331.0.0.0] to [0346.0.0.0] above.
617 [0347.0.8.8] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the 5 invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table 1l, application no. 9, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as 10 plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table 1l, application no. 9, col 15 umn 3 or a protein as shown in table 1l, application no. 9, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.8] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. 20 [0349.0.8.8] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 9, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described 25 (US 5,565,350; WO 00/15815; also see above). [0350.0.0.8] to [0358.0.0.8] for the disclosure of the paragraphs [0350.0.0.8] to [0358.0.0.8] see paragraphs [0350.0.0.0] to [0358.0.0.0]above. [0359.0.5.8] for the disclosure of the paragraph [0359.0.5.8] see paragraph [0359.0.5.5] above. 30 [0360.0.0.8] to [0362.0.0.8] for the disclosure of the paragraphs [0360.0.0.8] to [0362.0.0.8] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.5.8] to [0365.0.5.8] for the disclosure of the paragraphs [0363.0.5.8] to [0365.0.5.8] see paragraphs [0363.0.5.5] to [0365.0.5.5] above.
618 [0366.0.0.8] to [0369.0.0.8] for the disclosure of the paragraphs [0366.0.0.8] to [0369.0.0.8] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.8.8] The fermentation broths obtained in this way, containing in particular palmitic acid, triglycerides, lipids, oils and/or fats containing palmitic acid, normally 5 have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be seperated, such as, for example, by centrifugation, filtration, decantation or a combination of these methods, from the fermentation broth or left completely in it. Afterwards the biomass can be extracted without any further process steps or disrupted and then extracted. If 10 necessary the fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by extraction. [0371.0.5.8] for the disclosure of this paragraph see paragraph [0371.0.5.5] above. 15 [0372.0.0.8] to [0376.0.0.8] for the disclosure of the paragraphs [0372.0.0.8] to [0376.0.0.8], [0376.1.0.8] and [0377.0.0.8] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0376.1.0.8] for the disclosure of the paragraph [0376.1.0.8] see paragraph [0376.1.0.0] above. 20 [0377.0.0.8] for the disclosure of the paragraph [0377.0.0.8] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.8.8] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: 25 (a) contacting, e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; 30 (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 619 the nucleic acid molecule sequence shown in table 1, application no. 9, columns 5 and 7, preferably in table I B, application no. 9, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a 5 plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 10 compared to the wild type. [0379.0.0.8] to [0383.0.0.8] for the disclosure of the paragraphs [0379.0.0.8] to [0383.0.0.8] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.8.8] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 15 microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 20 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 9, column 3, eg comparing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 9, column 3. [0385.0.0.8] to [0404.0.0.8] for the disclosure of the paragraphs [0385.0.0.8] to 25 [0404.0.0.8] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.5.8] for the disclosure of this paragraph see paragraph [0405.0.5.5] above. [0406.0.0.8] to [0435.0.0.8] for the disclosure of the paragraphs [0406.0.0.8] to [0435.0.0.8] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.8.8] Palmitic acid or triglycerides, lipids, oils and/or fats containing palmitic 30 acid production in Mortierella 620 The fatty acid production can be analysed as mentioned above. The proteins and nu cleic acids can be analysed as mentioned below. [0437.0.0.8] and [0438.0.0.8] for the disclosure of the paragraphs [0437.0.0.8] and [0438.0.0.8] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. 5 [0439.0.5.8] and [0440.0.5.8] for the disclosure of the paragraphs [0439.0.5.8] and [0440.0.5.8] see paragraphs [0439.0.5.5] and [0440.0.5.5] above. [0441.0.0.8] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.5.8] and [0445.0.5.8] for the disclosure of the paragraphs [0442.0.5.8] and [0445.0.5.8] see paragraphs [0442.0.5.5] and [0445.0.5.5] above. 10 [0446.0.0.8] to [0497.0.0.8] for the disclosure of the paragraphs [0446.0.0.8] to [0497.0.0.8] see paragraphs [0446.0.0.0] to [0497.0.0.0] above. [0498.0.8.8] The results of the different plant analyses can be seen from the table, which follows: Table VI 15 ORF Metabolite Method/Analytics Min.-Value Max.-Value b0403 Palmitic acid (C16:0) GC 1.21 1.40 b0488 Palmitic acid (C16:0) GC 1.16 1.43 b1095 Palmitic acid (C16:0) GC 1.16 1.47 b1410 Palmitic acid (C16:0) GC 1.28 1.41 b1627 Palmitic acid (C16:0) GC 1.16 1.24 b1758 Palmitic acid (C16:0) GC 1.16 1.29 b1980 Palmitic acid (C16:0) GC 1.16 1.33 b2066 Palmitic acid (C16:0) GC 1.19 1.46 b2223 Palmitic acid (C16:0) GC 1.17 1.89 YLR099C Palmitic acid (C16:0) GC 1.15 1.50 YPR035W Palmitic acid (C16:0) GC 1.25 1.60 [0499.0.0.8] and [0500.0.0.8] for the disclosure of the paragraphs [0499.0.0.8] and [0500.0.0.8] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.8.8] Example 15a: Engineering ryegrass plants by over-expressing 20 YLR099C or YPR035W from Saccharomyces cerevisiae 621 or homologs of YLR099C or YPR035W from other organ isms. [0502.0.0.8] to [0508.0.0.8] for the disclosure of the paragraphs [0502.0.0.8] to [0508.0.0.8] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. 5 [0509.0.8.8] Example 15b: Engineering soybean plants by over-expressing YLR099C or YPR035W from Saccharomyces cerevisiae or homologs of YLR099C or YPR035W from other organ isms. [0510.0.0.8] to [0513.0.0.8] for the disclosure of the paragraphs [0510.0.0.8] to 10 [0513.0.0.8] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.7.8] Example 15c: Engineering corn plants by over-expressing YLR099C or YPR035W from Saccharomyces cerevisiae or homologs of YLR099C or YPR035W from other organisms. [0515.0.0.8] to [0540.0.0.8] for the disclosure of the paragraphs [0515.0.0.8] to 15 [0540.0.0.8] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.8.8] Example 15d: Engineering wheat plants by over-expressing YLR099C or YPR035W from Saccharomyces cerevisiae or homologs of YLR099C or YPR035W from other organ isms. 20 [0542.0.0.8] to [0544.0.0.8] for the disclosure of the paragraphs [0542.0.0.8] to [0544.0.0.8] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.8.8] Example 15e: Engineering Rapeseed/Canola plants by over-expressing YLR099C or YPR035W from Saccharomyces cerevisiae or homologs of YLR099C or YPR035W from other organ 25 isms. [0546.0.0.8] to [0549.0.0.8] for the disclosure of the paragraphs [0546.0.0.8] to [0549.0.0.8] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.8.8] Example 15f: Engineering alfalfa plants by over-expressing YLR099C or YPR035W from Saccharomyces cerevisiae or ho 30 mologs of YLR099C or YPR035W from other organisms.
622 [0551.0.0.8] to [0554.0.0.8] for the disclosure of the paragraphs [0551.0.0.8] to [0554.0.0.8] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.7.8]: % [0554.2.0.8] for the disclosure of this paragraph see [0554.2.0.0] above. 5 [0555.0.0.8] for the disclosure of this paragraph see [0555.0.0.0] above.
623 [0001.0.0.9] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.9.9] Due to their plastids, plants possess some biosynthetic pathways, which are, besides in cyanobacteria, unique in living organisms. Some plastidic com pounds are indispensable for human and animal nutrition and are therefore called vi 5 tamins.Two essential lipophilic components for nutrition are provitamin A (beta carotene) and vitamin E. Vitamin E is classified by its pharmacological effect and chromanol ring structure and not by biosynthesis. It comprises a class of 8 lipid-soluble components, being subdi vided into tocopherols and tocotrienols. While tocopherols share an isoprenoid side 10 chain derived from phytyl-PP, tocotrienol side chains are derivates of geranylgeranyl PP. The a, P, y and 6-members of these subclasses differ in their degree of methylation in the 6-chromanol-ring structure. The tocopherol group (la-d) has a saturated side chain, and the tocotrienol group (2a d) has an unsaturated side chain: 15 R1 HO 20 1a, a-tocopherol: R 1 = R 2 = R 3 = CH 3 25 1b, P-tocopherol: R 1 = R 3 = CH 3 , R2 = H 1c, y-tocopherol: R 1 = H, R2 = R 3 = CH 3 (1) 1d, 6-tocopherol: R 1 = R 2 = H, R 3 = CH 3 30 HO R2 0(2) 3 35 624 2a, a-tocotrienol: R 1 = R2 = R3= CH 3 2b, p-tocotrienol: R 1 = R 3 = CH 3 , R 2 = H 2c, y-tocotrienol: R 1 = H, R 2 = R O3 CH 3 2d, 6-tocotrienol: R 1 = R 2 = H, R 3 = CH 3 5 In the present invention, vitamin E means all of the aforementioned tocopherols and tocotrienols with vitamin E activity. [0003.0.9.9] The four major forms of tocopherols, a, P, y, and 6, differ in the posi 10 tion and number of methyl groups. The predominant form in the leaves of higher plants is a-tocopherol, whereas in seeds y-tocopherol is often the major isoform. Tocopherols predominantly function as antioxidants in vivo in photosynthetic organisms and in ani mals, as well as in isolated compounds such as oils. The antioxidant properties of to copherols derive from their ability to quench free radicals and different tocopherols may 15 be optimal as antioxidants for different biological systems. For human and animal util ity, a-tocopherol has the highest vitamin E activity and has been implicated in a variety of health areas, including possible benefits in preventing cardiovascular disease, cer tain cancers, and cataract formation. The amounts of vitamin E needed to achieve these effects are often quite high, 100 to 400 International Units (I.U.) and even up to 20 800 I.U. compared with the recommended daily allowance of 40 I.U. In fats and oils, tocopherols protect unsaturated fatty acids from oxidation. In these systems, y tocopherol appears to have the greater utility. In fact, tocopherols are often included in processed oils to help stabilize the fatty acids. For human health as well as food and feed utility, it is desirable to have plants with increased tocopherol content along with 25 those where the tocopherol composition is customized. [0004.0.9.9] Tocopherols contain an aromatic head group, which is derived from homogentisic acid (HGA) and a hydrocarbon portion, which arises from phytyldiphos phate (phytyl-DP). HGA is derived from the shikimic acid pathway and phytyl-DP is 30 generated from the condensation of four isoprenoid units. The isoprenoid contribution to tocopherol biosynthesis is thought to come primarily from the plastidal methyl erythritol phosphate pathway, and not the cytosolic mevalonic acid pathway. The con densation of HGA and phytyl-DP to form 2-methyl-6-phytylplastoquinol, the first com mitted step in tocopherol biosynthesis, is a prenyltransferase reaction that is performed 35 by a homogentisate phytyltransferase (HPT). Subsequent cyclization and methylation reactions result in the formation of the four major tocopherols. The enzymatic reactions 625 in tocopherol biosynthesis were identified 15 to 20 years ago, but cloning of the genes encoding these enzymes has only occurred in the last few years. [0005.0.9.9] Tocopherol biosynthesis takes place in the plastid and the enzymes 5 are associated with the chloroplast envelope. The membrane association of the en zymes has made purification difficult. With the advent of genomics and the availability of complete genome sequences of a number of organisms, including Synechocystis sp. PCC 6803 and Arabidopsis, it has become possible to use bioinformatics techniques to identify and clone additional genes in the tocopherol pathway. 10 The first enzyme cloned in the tocopherol pathway, y-tocopherol methyl transferase (y TMT), was identified in Synechocystis sp. PCC 6803 and Arabidopsis using bioinfor matics. In that study, the Arabidopsis y-TMT was shown to alter seed tocopherol com position when overexpressed in Arabidopsis. y- Tocopherol, normally the predominant tocopherol isomer in Arabidopsis seeds, was almost completely converted to a 15 tocopherol. HPT catalyzes the first committed reaction in the tocopherol pathway, and was uniden tified previously. Concomitant with this study, s/ri 736 was found to encode a HPT in Synechocystis sp. PCC 6803 and the Arabidopsis HTP was identified. There are prenyltransferases that condense prenyl groups with allylic chains and those 20 that condense prenyl chains with aromatic groups. The prenyltransferases that catalyze sequential condensations of isopentenylpyrophosphate with allylic chains share com mon features, including Asp-rich motifs, and lead to the formation of compounds with two isoprenoid units, such as geranylpyrophosphate, or to much longer molecules, such as rubber, which contains greater than 1,000 isoprenoid units. Prenyltransferases 25 that catalyze condensations with nonisoprenoid groups have an Asp-rich motif distinct from that of the allylic class, and include UbiA, which attaches a prenyl group to 4 hydroxybenzoic acid, and chlorophyll synthase, which attaches a prenyl group to chlorophyllide. 30 [0006.0.9.9] The first committed step in tocopherol biosynthesis is catalyzed by an aromatic prenyltransferase that transfers a phytyl chain to HGA Classification by head groups would arrange tocopherols, tocotrienols and plas toquinones in one group, being quinones with antioxidant properties and having ho mogentisic acid as a precursor. Plastoquinones are important components of the 35 quinone-pool in the photosynthetic electron transport chains of plastids, also interfering in the biosynthesis of provitamin A (beta-carotene; Norris SR, (1995). Plant Cell 7, 2139-2149).
626 [0007.0.9.9] Vitamin E is predominantly delivered by the ingestion of vegetable oils. It plays an important role as a membrane-associated antioxidant scavenger. Dur ing past years several additional functions of vitamin E as anti-hypercholesterolemic 5 and immunostimulatory agent in humans have been proposed (Beharka (1997). Meth ods Enzymol. 282, 247-263). These compounds with vitamin E activity are important natural fat-soluble antioxidants. A vitamin E deficiency leads to pathophysiological situations in humans and animals. Vitamin E compounds therefore are of high economical value as additives in the food 10 and feed sectors, in pharmaceutical formulations and in cosmetic applications. [0008.0.9.9] In plastids of plants many isoprenoid pathways are localized, which are interconnected by their substrates, end products and by regulation. These are, e.g. monoterpene-, diterpene-, giberillic acid-, abscisic acid-, chlorophyll-, phylloquinone-, 15 carotenoid-, tocopherol-, tocotrienol- and plastoquinone-biosynthesis. In all these pathways prenyltransferases are involved in the biosynthesis of these compounds. With respect to the length of their side chains diterpenes, chlorophylls, phylloquinones, tocopherols and tocotrienols can be arranged into a C 20 -group of isoprenoids. Another classification by degree of desaturation of the side chain, would arrange e.g. chloro 20 phylls, phylloquinones and tocopherols into a phytyl-group and e.g. diterpenes, to cotrienols, plastoquinones and carotenoids into a group of desaturated isoprenoid compounds. [0009.0.9.9] An economical method for producing vitamin E or its precursor and 25 food- and feedstuffs with increased vitamin E content is therefore very important. Particularly economical methods are biotechnological methods utilizing vitamin E producing organisms which are either natural or optimized by genetic modification. There is a constant need for providing novel enzyme activities or direct or indirect regu 30 lators and thus alternative methods with advantageous properties for producing vitamin E or its precursor in organisms, e.g. in transgenic organisms. Attempts are known to achieve an increase in the flow of metabolites so as to increase the tocopherol and/or tocotrienol content by overexpressing Phytyl/prenyltransferasegenes in transgenic organisms; WO 00/63391, WO 00/68393, 35 WO 01/62781 and WO 02/33060.
627 [0010.0.9.9] Therefore improving the quality of foodstuffs and animal feeds is an im portant task of the food-and-feed industry. This is necessary since, for example, Vita min E, which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal 5 feeds is as balanced as possible a vitamin profile in the diet since a great excess of some vitamins above a specific concentration in the food has only some or little or no positive effect. A further increase in quality is only possible via addition of further vita mins, which are limiting. [0011.0.9.9] To ensure a high quality of foods and animal feeds, it is therefore nec 10 essary to add one or a plurality of vitamins in a balanced manner to suit the organism. [0012.0.9.9] Accordingly, there is still a great demand for new and more suitable genes which encode proteins which participate in the biosynthesis of vitamins,in par ticular vitamin E and make it possible to produce certain vitamins specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for or 15 regulators of biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of vitamins like vitamin E on the other hand as less as possible by products should be produced in the production process. [0013.0.0.9] for the disclosure of this paragraph see [0013.0.0.0] above. 20 [0014.0.9.9] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is vitamin E. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "vitamin E". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising vitamin E. 25 [0015.0.9.9] I n one embodiment, the term "Vitamin E" or "the fine chemical" or "the respective fine chemical" means at least one chemical compound with vitamin E activ ity selected from the group alpha-tocopherol, beta-tocopherol, gamma-tocopherol, delta-tocopherol, alpha-tocotrienol, beta-tocotrienol, gamma-tocotrienol and delta tocotrienol. In another embodiment, the term "Vitamin E" or "the fine chemical" or "the 30 respective fine chemical" means at least one chemical compound with vitamin E activ ity selected from the group alpha-tocopherol, beta-tocopherol, gamma-tocopherol, delta-tocopherol, alpha-tocotrienol, beta-tocotrienol, gamma-tocotrienol and delta tocotrienol or the Vitamin E precourser 2,3-Dimethyl-5-phytylquinol. In an preferred 628 embodiment, the term "the fine chemical" or the term "Vitamine E" or the term "the re spective fine chemical" means at least one chemical compound with vitamin E activity selected from the group "alpha-tocopherol", "beta-tocopherol", "gamma-tocopherol", "alpha-tocotrienol", "beta-tocotrienol", and/or "gamma-tocotrienol". 5 An increased vitamin E content normally means an increased total vitamin E content. However, an increased vitamin E content also means, in particular, a modified content of the above-described 8 compounds with vitamin E activity, without the need for an inevitable increase in the total vitamin E content. In a preferred embodiment, the term "the fine chemical" means vitamin E in free form or its salts or its ester or bound. 10 [0016.0.9.9] Accordingly, the present invention relates to a process for the production of vitamin E, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 10, column 5, in an organelle of a microorganism or plant, or 15 (b) increasing or generating the activity of a protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 10, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine 20 chemical, thus, vitamin E or fine chemicals comprising vitamin E, in said organ ism or in the culture medium surrounding the organism. [0016.1.9.9] Accordingly, the term "the fine chemical" means in one embodiment "2,3-dimethyl-5-pythylquinol" in relation to all sequences listed in Table I to IV, lines 92 to 97 or homologs thereof; 25 and means in one embodiment "alpha-tocopherol" in relation to all sequences listed in Tables I to IV, lines 85 to 90 or homologs thereof; and means in one embodiment "alpha-tocotrienol" in relation to all sequences listed in Tables I to IV, line 91 or homologs thereof; and means in one embodiment "beta-tocopherol" in relation to all sequences listed in 30 Table I, lines 92 to 97, or homologs thereof; and means in one embodiment "gamma-tocopherol" in relation to all sequences listed in Table I to IV, lines 92 to 97 or homologs thereof; and means in one embodiment "beta-tocotrienol" in relation to all sequences listed in 629 Table I, lines 98, or homologs thereof; and means in one embodiment "gamma-tocotrienol" in relation to all sequences listed in Table I to IV, lines 98 or homologs thereof. Accordingly, in one embodiment the term "the fine chemical" means "2,3-dimethyl-5 5 phytylquinol", "beta-tocopherol" and "gamma-tocopherol" in relation to all sequences listed in Table I to IV, lines 92 to 97. In one embodiment the term "the fine chemical" means "beta-tocotrienol" and "gamma-tocotrienol" in relation to all sequences listed in Table I to IV, line 98. Accordingly, the term "the fine chemical" can mean "2,3- dimethyl-5-pythylquinol", "al 10 pha-tocopherol", "beta-tocopherol", "gamma-tocopherol", "alpha-tocotrienol", "beta tocotrienol", and/or "gamma-tocotrienol", owing to circumstances and the context. In order to illustrate that the meaning of the term "the fine chemical" means "2,3- dimethyl 5-pythylquinol", "alpha-tocopherol", "beta-tocopherol", "gamma-tocopherol", "alpha tocotrienol", "beta-tocotrienol", and/or "gamma-tocotrienol" the term "the respective fine 15 chemical" is also used. [0017.0.9.9] In another embodiment the present invention is related to a process for the production of vitamin E, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 6 column 3 encoded by the nucleic acid sequences as shown in table I, ap 20 plication no. 10, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 10, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 25 (c) increasing or generating the activity of a protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 10, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 30 (d) growing the organism under conditions which permit the production of vitamin E in said organism. [0017.1.9.9] In another embodiment, the present invention relates to a process for the production of vitamin E, which comprises 630 (a) increasing or generating the activity of a protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 10, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or 5 (b) increasing or generating the activity of a protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 10, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine 10 chemical, thus, vitamin E or fine chemicals comprising vitamin E, in said organ ism or in the culture medium surrounding the organism. [0018.0.9.9] Advantagously the activity of the protein as shown in table II, application no. 10, column 3 encoded by the nucleic acid sequences as shown in table I, applica tion no. 10, column 5 is increased or generated in the abovementioned process in the 15 plastid of a microorganism or plant. [0019.0.0.9] to [0024.0.0.9] for the disclosure of the paragraphs [0019.0.0.9] to [0024.0.0.9] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.9.9] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 20 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 10, columns 5 and 7. Most preferred nucleic 25 acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid 30 sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive 631 process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 5 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 10 ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 15 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.9.9] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 10, column 3 and its homologs as disclosed in 20 table 1, application no. 10, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 25 ing for proteins as shown in table 1l, application no. 10, column 3 and its homologs as disclosed in table 1, application no. 10, columns 5 and 7. [0027.0.0.9] to [0029.0.0.9] for the disclosure of the paragraphs [0027.0.0.9] to [0029.0.0.9] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.9.9] Alternatively, nucleic acid sequences coding for the transit peptides 30 may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 35 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 632 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 5 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 10 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 15 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 10, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 10, columns 5 and 7 20 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 10, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 25 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 10, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= !igatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex 30 pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 10, columns 5 and 7. Fur 35 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes.
633 [0030.2.9.9] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.9.9] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 10, columns 5 and 7 preferably of sequences in general encoded in the 5 nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 10, columns 5 and 7 are directly introduced and expressed in plastids. 10 The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the 15 plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea 20 tures of the integrated DNA sequence to the progeny. [0030.2.0.9] and [0030.3.0.9] for the disclosure of the paragraphs [0030.2.0.9] and [0030.3.0.9] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.9.9] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 25 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 10, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 30 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table 1, application no. 10, columns 5 and 7 or a sequence encoding a protein, as depicted in table 1l, application no. 10, columns 5 634 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza 5 tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused 10 to the sequences depicted in table, 1, application no. 10, columns 5 and 7 or a se quence encoding a protein, as depicted in table II, application no. 10, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table 1 application no. 10, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 10, columns 5 and 7 into the 15 chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 10, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in 20 corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or 25 mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as 30 disclosed in table II, application no. 10, columns 5 and 7. [0030.5.9.9] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 10, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 635 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.9.9] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 10, columns 5 and 7 are introduced into an expression 5 cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.9] and [0032.0.0.9] for the disclosure of the paragraphs [0031.0.0.9] and 10 [0032.0.0.9] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.9.9] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro 15 duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 10, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 10, column 3 or their combination can be achieved by joining the protein to a transit peptide. 20 [0034.0.9.9] Surprisingly it was found, that the transgenic expression of the E. coli proteins shown in table II, application no. 10, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V - conferred an increase in the respective fine chemical indicated in column 6 "metabolite" of each table I to IV in the transformed 25 plant. Surprisingly it was found, that the transgenic expression of the E. coli protein b1 704, b2600, b2601, b2965, b3281, and/or b3390 in Arabidopsis thaliana conferred an in crease in the 2,3-dimethyl-5-phytylquinol, which is a precursor in the biosynthesis of vitamin E, in particular of gama-tocopherol and thus of alpha-tocopherol. Thus, an in 30 crease in the level of this precursor of the tocopherol bioynthesis can be advantageous for the production of vitamin E. For example, in one embodiment the level of 2,3 dimethyl-5-phytylquinol is increased in combination with the modulation of the expres sion of other genes of the biosynthesis of vitamin E, in particular of genes encoding 636 enzymes metabolising 2,3-dimethyl-5-phytylquinol to produce vitamin E or a precursor thereof, such as the 2,3-dimethyl-5-phytylquinol-Cyclase and/or gama-tocopherol methyltransferase 1l. [0035.0.0.9] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 5 [0036.0.9.9] The sequence of b1251 (Accession number F64872) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ycil protein". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "ycil protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of vi 10 tamin E, in particular for increasing the amount of vitamin E in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1251 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a b1251 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1704 (Accession number NP_416219) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 20 is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophan-repressible". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase (DAHP synthetase), tryptophan-repressible" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of vitamin E, in par 25 ticular for increasing the amount of vitamin E in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. 30 In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2600 (Accession number NP_417091) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 35 is being defined as "bifunctional chorismate mutase / prephenate dehydrogenase". Ac- 637 cordingly, in one embodiment, the process of the present invention comprises the use of a "bifunctional chorismate mutase / prephenate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of vitamin E, in par ticular for increasing the amount of vitamin E in free or bound form in an organism or a 5 part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2600 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b2600 10 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2601 (Accession number NP_417092) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase, 15 tryptophan-repressible. Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase, trypothan-repressible" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of vitamin E, in particular for increasing the amount of vitamin E in free or bound form in an organism or a part thereof, as men 20 tioned. In one embodiment, in the process of the present invention the activity of a b2601 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2601 25 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the 30 process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of vi tamin E, in particular for increasing the amount of vitamin E in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated, e.g. from 35 Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2965 638 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3281 (Accession number NP_417740) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 5 is being defined as "Shikimate dehydrogenase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Shikimate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of vitamin E, in particular for increasing the amount of vitamin E in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 10 present invention the activity of a b3281 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3281 protein is increased or generated in a subcellular compartment of the organism 15 or organism cell such as in an organelle like a plastid or mitochondria. The sequence of b3390 (Accession number YP_026215 ) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "shikimate kinase I". Accordingly, in one embodiment, the process of the present invention comprises the use of a "shikimate kinase I" or its homolog, e.g. 20 as shown herein, for the production of the fine chemical, meaning of vitamin E, in par ticular for increasing the amount of vitamin E in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3390 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 25 ample in table V. In another embodiment, in the process of the present invention the activity of a b3390protein is increased or generated in a subcellular compartment of the organism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.9.9] In one embodiment, the homolog of the b1251, b1704, b2600, b2601, 30 b2965, b3281, and/or b3390 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b1251, b1704, b2600, b2601, b2965, b3281, and/or b3390 is a homolog having said acitivity and being derived from Proteo bacteria. In one embodiment, the homolog of the b1251, b1704, b2600, b2601, b2965, b3281, and/or b3390 is a homolog having said acitivity and being derived from Gam 35 maproteobacteria. In one embodiment, the homolog of the b1251, b1704, b2600, b2601, b2965, b3281, and/or b3390 is a homolog having said acitivity and being de- 639 rived from Enterobacteriales. In one embodiment, the homolog of the b1251, b1704, b2600, b2601, b2965, b3281, and/or b3390 is a homolog having said acitivity and be ing derived from Enterobacteriaceae. In one embodiment, the homolog of the b1251, b1704, b2600, b2601, b2965, b3281, and/or b3390 is a homolog having said acitivity 5 and being derived from Escherichia, preferably from Escherichia coli. [0037.1.9.9] Homologs of the polypeptide table II, application no. 10, column 3 may be the polypetides encoded by the nucleic acid molecules indicated in table I , applica tion no. 10, column 7, resp., or may be the polypeptides indicated in table II, application 10 no. 10, column 7, resp. [0038.0.0.9] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.9.9] In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 10, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the level of the 15 fine chemical indicated in the respective line of table II, application no. 10, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism .The protein has the above mentioned activities of a protein as shown in table II, application no. 10, column 3, preferably in the event the nucleic acid sequences encoding said 20 proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 10, column 3, or which has at least 10% of 25 the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in the respective line of table II, application no. 10, column 3 of E. coli. [0040.0.0.9] to [0047.0.0.9] for the disclosure of the paragraphs [0040.0.0.9] to [0047.0.0.9] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 30 [0048.0.9.9] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav- 640 ing the activity of a respective protein as shown in table 1l, application no. 10, column 3 its biochemical or genetical causes and the increased amount of the respective fine chemical. [0049.0.0.9] to [0051.0.0.9] for the disclosure of the paragraphs [0049.0.0.9] to 5 [0051.0.0.9] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.9.9] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu 10 cleic acid molecules as mentioned in table 1, application no. 10, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, 15 for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.9] to [0058.0.0.9] for the disclosure of the paragraphs [0053.0.0.9] to [0058.0.0.9] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. 20 [0059.0.9.9] In case the activity of the Escherichia coli protein b1251 or its homologs, e.g. a "ycil protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of alpha-Tocopherol between 35% and 81% or more is conferred. In case the activity of the Escherichia coli protein b1 704 or its homologs, e.g. a "3 25 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of alpha-Tocopherol between 25% and 82% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 30 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of gamma-Tocopherol, beta-Tocopherol and 2,3-Dimethyl-5-phytylquinol between 83% and 1547% or more is conferred.
641 In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of alpha-Tocopherol between 53% and 88% or 5 more is conferred. In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of gamma-Tocotrienol andbeta-Tocotrienol be 10 tween 677% and 1543% or more is conferred. In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of gamma-Tocopherol, beta-Tocopherol and2,3 15 Dimethyl-5-phytylquinol between 140% and 464% or more is conferred. In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of alpha-Tocotrienol between 68% and 1512% 20 or more is conferred. In case the activity of the Escherichia coli protein b2601 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate (DAHP) synthase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of alpha-Tocopherol between 56% 25 and 611% or more is conferred. In case the activity of the Escherichia coli protein b2601 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate (DAHP) synthase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of gamma-Tocopherol, beta 30 Tocopherol and 2,3-Dimethyl-5-phytylquinol between 63% and 257% or more is con ferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 35 bly of gamma-Tocopherol, beta-Tocopherol and2,3-Dimethyl-5-phytylquinol between 203% and 610% or more is conferred.
642 In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of alpha-Tocopherol between 72% and 204% or more is conferred. 5 In case the activity of the Escherichia coli protein b3281 or its homologs, e.g. a "Shiki mate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of gamma-Tocopherol, beta-Tocopherol and2,3-Dimethyl-5-phytylquinol between 38% and 164% or more is conferred. 10 In case the activity of the Escherichia coli protein b3390 or its homologs, e.g. a "shiki mate kinase I" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of alpha-Tocopherol between 62% and 68% or more is conferred. In case the activity of the Escherichia coli protein b3390 or its homologs, e.g. a "shiki 15 mate kinase I" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of gamma-Tocopherol, beta-Tocopherol and 2,3-Dimethyl-5-phytylquinol between 41% and 86% or more is conferred. [0060.0.9.9] In one embodiment, the activity of any on of the Escherichia coli pro 20 teins b1251, b1704, b2600, b2601, b2965, b3281, and/or b3390 f or their homologs," is advantageously increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical indicated in column 6 "metabolites" for ap plication no. 10 in any one of Tables I to IV, resp., [0061.0.0.9] and [0062.0.0.9] for the disclosure of the paragraphs [0061.0.0.9] and 25 [0062.0.0.9] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.9.9] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in oen embodiment the structure of the polypeptide described herein, in particular of the polypeptides com prising the consensus sequence shown in table IV, application no. 10, column 7 or of 30 the polypeptide as shown in the amino acid sequences as disclosed in table II, applica tion no. 10, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 10, columns 5 and 7 or its herein described functional 35 homologues and has the herein mentioned activity.
643 [0064.0.9.9] For the purposes of the present invention, the reference to the fine chemical, e.g. to the term "vitamin E", also encompasses the corresponding salts, such as, for example, the potassium or sodium salts or the salts with amines such as di ethylamine as well as tryglycerides, lipids, oils and/or fats containing the respective fine 5 chemical, e.g. vitamin E, alpha-, beta-, gamma-tocopherol, alpha-, beta-tocotrienol or the precourser 2,3-Dimethyl-5-phytylquinol [0065.0.0.9] and [0066.0.0.9] for the disclosure of the paragraphs [0065.0.0.9] and [0066.0.0.9] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.9.9] In one embodiment, the process of the present invention comprises one 10 or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, appli cation no. 10, columns 5 and 7 or its homologs activity having herein-mentioned 15 vitamin E increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table 1, application no. 10, columns 5 and 7, e.g. a nucleic 20 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table 1l, application no. 10, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned vitamin E increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 25 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned vitamin E increasing activ ity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 10, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or 30 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned vitamin E increasing activ- 644 ity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 10, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 5 the present invention having herein-mentioned vitamin E increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 10, columns 5 and 7 or its homologs activity, by adding one or more exoge nous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 10 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned vi tamin E increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 10, columns 5 and 7 or its homologs activ ity, and/or 15 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned vitamin E increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 10, columns 5 and 7 or its homologs activ 20 ity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 10, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous 25 recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 30 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 645 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of 5 heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 10 k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned vitamin E increas ing activity, e.g. of polypeptide having the activity of a protein as indicated in ta ble 1l, application no. 10, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 15 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned vitamin E increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 10, columns 5 and 7 or its ho mologs activity in plastids by the stable or transient transformation advanta 20 geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of 25 the invention or of the polypeptide of the present invention having herein mentioned vitamin E increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 10, columns 5 and 7 or its ho mologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. 30 [0068.0.9.9] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the 646 herein mentioned activity, e.g. conferring the increase of the respective fine chemical as indicated in column 6 of application no. 10 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as 5 shown in table II, application no. 10, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. [0069.0.0.9] to [0079.0.0.9] for the disclosure of the paragraphs [0069.0.0.9] to [0079.0.0.9] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.9.9] The activation of an endogenous polypeptide having above-mentioned 10 activity, e.g. having the activity of a protein as shown in table II, application no. 10, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec tive fine chemical after increase of expression or activity in the cytsol and/or in an or ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en 15 coding the protein as shown in table II, application no. 10, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA-binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 10, column 3. The 20 expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 10, column 3, see e.g. in WOO1/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.9] to [0084.0.0.9] for the disclosure of the paragraphs [0081.0.0.9] to 25 [0084.0.0.9] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.9.9] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic 30 acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous vitamin composition com- 647 prising a higher content of (from a viewpoint of nutrional physiology limited) vitamins, like vitamin A, B, E; etc., or its precursor like 2,3-dimethyl-5-phytylquinol. [0086.0.0.9] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.9.9] By influencing the metabolism thus, it is possible to produce, in the 5 process according to the invention, further advantageous compounds. Examples of such compounds are vitamin E or its precursor 2,3-dimethyl-5-phytylquinol, further vi tamins or provitamins or carotenoids. [0088.0.9.9] Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 10 a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a mi croorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 10, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present in 15 vention and described below, e.g. conferring an increase of the respective fine chemical as indicated in any one of Tables I to IV, application no. 10, column 6 "metabolite" in the organism, preferably in the microorganism, the non-human ani mal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, preferen 20 tially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the respective fine chemical in the organism, preferably the microorganism, the plant cell, the plant tissue or the plant; and 25 d) if desired, revovering, optionally isolating, the resepctive free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.9.9] The organism, in particular the microorganism, non-human animal, the 30 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the 648 respective fine chemical or the free and bound the resepctive fine chemical but as op tion it is also possible to produce, recover and, if desired isolate, other free or/and bound carotenoids, vitamins, provitamins etc.l [0090.0.0.9] to [0097.0.0.9] for the disclosure of the paragraphs [0090.0.0.9] to 5 [0097.0.0.9] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.9.9] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been 10 brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 10, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 10, columns 5 and 15 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 20 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 25 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.9.9] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 30 depicted in the sequence protocol and disclosed in table 1, application no. 10, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, 649 application no. 10, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 10, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the 5 stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.9] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.9.9] In an advantageous embodiment of the invention, the organism takes 10 the form of a plant whose vitamin E content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned vitamin E as vitamin source in feed. Further, this is also important for the production of cosmetic compostions since, for example, the antioxidant level of 15 plant extracts is depending on the abovementioned vitamin E and the general amount of vitamins e.g. as antioxidants. After the activity of the protein as shown in table 1l, application no. 10, column 3 has been increased or generated, or after the expression of nucleic acid molecule or poly peptide according to the invention has been generated or increased, the transgenic 20 plant generated thus is grown on or in a nutrient medium or else in the soil and subse quently harvested. [0102.0.0.9] to [0110.0.0.9] for the disclosure of the paragraphs [0102.0.0.9] to [0110.0.0.9] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.9.9] In a preferred embodiment, the respective fine chemical (vitamin E or 25 its precursor 2,3-dimethyl-5-phytylquinol) is produced in accordance with the invention and, if desired, is isolated. The production of further vitamins, provitamins or carote noids, e.g. carotenes or xanthophylls, or mixtures thereof or mixtures with other com pounds by the process according to the invention is advantageous. Thus, the content of plant components and preferably also further impurities is as low 30 as possible, and the abovementioned vitamin E or its precursor 2,3-dimethyl-5 phytylquinol are obtained in as pure form as possible. In these applications, the content of plant components advantageously amounts to less than 10%, preferably 1 %, more preferably 0.1%, very especially preferably 0.01% or less.
650 [0112.0.9.9] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a protein or polypeptid or a compound, which func tions as a sink for the desired fine chemical, for example vitamin E or its precursor 2,3 5 dimethyl-5-phytylquinol in the organism, is useful to increase the production of the re spective fine chemical. [0113.0.9.9] In the case of the fermentation of microorganisms, the abovementioned vitamin E or its precursor 2,3-dimethyl-5-phytylquinol may accumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, 10 the fermentation broth can be processed after the cultivation. Depending on the re quirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a com bination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of 15 known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formulation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the for mulation can subsequently be processed by lyophilization, spray drying, spray granula 20 tion or by other methods. Preferably the the respective fine chemical or the vitamin E or its precursor 2,3-dimethyl-5-phytylquinol comprising compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromatog 25 raphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. [0114.0.9.9] Transgenic plants which comprise the vitamin E or its precursor 2,3 dimethyl-5-phytylquinol such as alpha, beta, or gamma-tocopherol, synthesized in the 30 process according to the invention can advantageously be marketed directly without there being any need for vitamin E or its precoursor 2,3-dimethyl-5-phytylquinol syn thesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, peti 35 oles, harvested material, plant tissue, reproductive tissue and cell cultures which are 651 derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The site of vitamin E biosynthesis in plants is, inter alia, the leaf tissue so that the isola 5 tion of leafs makes sense. However, this is not limiting, since the expression may also take place in a tissue-specific manner in all of the remaining parts of the plant, in par ticular in fat-containing seeds. A further preferred embodiment therefore relates to a seed-specific isolation of vitamin E or its precursor 2,3-dimethyl-5-phytylquinol. However, the respective fine chemical produced in the process according to the inven 10 tion can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids as extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free vitamin E or its precursor 2,3-dimethyl-5-phytylquinol. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be 15 done via pressing or extraction of the plant parts, preferably the plant seeds. To in crease the efficiency of oil extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material expecially the seeds. E.g the oils, fats, lipids, ex tracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free vitamin E or its precursor 2,3-dimethyl-5-phytylquinol can be obtained by what is 20 known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds, which have been pretreated in this manner can sub sequently be pressed or extracted with solvents such as preferably warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after 25 harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the process can be iso lated. Thereafter, the resulting products are processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter 30 are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Because vitamin E or its precursor 2,3-dimethyl-5-phytylquinol in microorganisms may be localized intracellularly, their recovery essentials comes down to the isolation of the biomass. Well-establisthed approaches for the harvesting of cells include filtration, cen 35 trifugation and coagulation/flocculation as described herein. Determination of toco pherols in cells has been described by Tan and Tsumura 1989, see also Biotechnology of Vitamins, Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 652 1989, p.96 to 103. Many further methods to determine the tocopherol content are known to the person skilled in the art. [0115.0.9.9] Vitamin E or its precursor 2,3-dimethyl-5-phytylquinol can for ex ample be analyzed advantageously via HPLC or GC separation methods and detected 5 by MS oder MSMS methods. The unambiguous detection for the presence of Vitamin E or its precursor 2,3-dimethyl-5-phytylquinol containing products can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 10 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chroma tography/mass spectrometric methods], Lipide 33:343-353). The material to be ana lyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grind ing, cooking, or via other applicable methods; see also Biotechnology of Vitamins, Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 1989, p.96 to 15 103. [0116.0.9.9] In a preferred embodiment, the present invention relates to a process for the production of the respective fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule 20 selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 10, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; 25 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 10, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the re 30 spective fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 653 molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 5 amount of the respective fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the respective 10 fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 15 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 10, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof; 20 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 25 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 10, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 30 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 10, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 654 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole 5 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.9.9] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 10, 10 columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 10, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 15 10, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 10, columns 5 and 7. [0116.2.9.9] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 10, 20 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 10, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 25 10, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 10, columns 5 and 7. [0117.0.9.9] In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 10, columns 5 and 7 by 30 one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 10, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 10, columns 5 and 7. In another embodiment, 655 the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 10, columns 5 and 7. [0118.0.0.9] to [0120.0.0.9] for the disclosure of the paragraphs [0118.0.0.9] to [0120.0.0.9] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. 5 [0121.0.9.9] The expression of nucleic acid molecules with the sequence shown in table I, application no. 10, columns 5 and 7, or nucleic acid molecules which are de rived from the amino acid sequences shown in table II, application no. 10, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 10, column 7, or their derivatives or homologues encoding polypeptides 10 with the enzymatic or biological activity of a protein as shown in table II, application no. 10, column 3, and conferring an increase of the respective fine chemical (column 6 of application no. 10 in any one of Tables I to IV) after increasing its plastidic and/or spe cific activity in the plastids is advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mito 15 chondria or both, preferably in plastids. [0122.0.0.9] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.9.9] Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 10, column 3 can be determined from generally ac 20 cessible databases. [0124.0.0.9] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.9.9] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 10, column 3 and which 25 confer an increase in the level of the respective fine chemical indicated in table II, ap plication no. 10, column 6 by being expressed either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product being localized in the plastid and other parts of the cell or in the plastid as described above. 30 [0126.0.0.9] to [0133.0.0.9] for the disclosure of the paragraphs [0126.0.0.9] to [0133.0.0.9] see paragraphs [0126.0.0.0] to [0133.0.0.0] above.
656 [0133.1.9.9]: Production strains which are also advantageously selected in the proc ess according to the invention are microorganisms selected from the group of green algae, like Spongioccoccum exentricum, Chlorella sorokiniana (pyrenoidosa, 7-11-05), or algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or Dunaliella 5 or form the group of fungi like fungi belonging to the Daccrymycetaceae family, or non photosynthetic bacteria, like methylotrophs, flavobacteria, actinomycetes, like strepto myces chrestomyceticus, Mycobacteria like Mycobacterim phlei, or Rhodobacter cap sulatus. Thus, the invention also contemplates embodiments in which a host lacks vi tamin E or its precursor 2,3-dimethyl-5-phytylquinol or other vitamin E or its precursor 10 2,3-dimethyl-5-phytylquinol precursors, such as the vinca. In a plant of the latter type, the inserted DNA includes genes that code for proteins producing vitamin E precursors (compounds that can be converted biologically into a cmpound with vitamin E activity) and one or more modifiying enzymes which were originally absent in such a plant. The invention also contemplates embodiments in which the vitamin E or its precursor 15 2,3-dimethyl-5-phytylquinol, or other vitamin E precursor compounds in the production of the respective fine chemical, is present in the phytosynthtically active organisms chosen as the host; for example, cyanobacteria, moses, algae or plants which, even as a wild type, are capable of producing vitamin E. [0134.0.9.9] However, it is also possible to use artificial sequences, which differ in 20 one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table 1l, application no. 10, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring an increase of the respective fine chemical 25 after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table 1l, application no. 10, column 3 by - for example - expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. 30 [0135.0.0.9] to [0140.0.0.9] for the disclosure of the paragraphs [0135.0.0.9] to [0140.0.0.9] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.9.9] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 10, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown 657 in table I, application no. 10, columns 5 and 7 or the sequences derived from table II, application no. 10, columns 5 and 7. [0142.0.9.9] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the 5 process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 10, column 7 is derived from said aligments. 10 [0143.0.9.9] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 10, column 3 or further functional homologs of the polypeptide of the invention from other organisms. 15 [0144.0.0.9] to [0151.0.0.9] for the disclosure of the paragraphs [0144.0.0.9] to [0151.0.0.9] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.9.9] Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no.10, column 6,, and being derived from other organisms, can be encoded by other DNA sequences 20 which hybridize to the sequences shown in table I, application no. 10, columns 5 and 7, preferably of table I B, application no. 10, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the the respective fine chemical, i.e. vitamin E or its precursor 2,3-dimethyl-5-phytylquinol resp., in particular, of alpha-, beta-, and/or gamma-tocopherol, resp., increasing activity. 25 [0153.0.0.9] to [0159.0.0.9] for the disclosure of the paragraphs [0153.0.0.9] to [0159.0.0.9] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.9.9] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is 30 complementary to one of the nucleotide sequences shown in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application 658 no. 10, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple 5 ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. 10 [0161.0.9.9] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 10, columns 5 and 7, preferably shown in 15 table I B, application no. 10, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a respective fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 10, column 3 by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene 20 product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0162.0.9.9] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 10, 25 columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a vitamin E, triglycerides, lipids, oils and/or fats containing vitamin E increase by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as 30 shown in table II, application no. 10, column 3, and the gene product, e.g. the polypep tide, being localized in the plastid and other parts of the cell or in the plastid as de scribed above. [0163.0.9.9] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 35 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 659 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, 5 application no. 10, column 6, if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding 10 gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 15 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 10, columns 5 and 7, an anti-sense sequence of one of the se quences, e.g., set forth in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to 20 clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 10, column 7 will result in a fragment of the gene product as shown in table II, column 3. 25 [0164.0.0.9] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.9.9] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 10, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine 30 chemical production, in particular an activity increasing the level of vitamin E or its pre cursor 2,3-dimethyl-5-phytylquinol resp., in particular, of alpha-, beta-, and/or gamma tocopherol, resp., increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.9.9] As used herein, the language "sufficiently homologous" refers to pro 35 teins or portions thereof which have amino acid sequences which include a minimum 660 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 10, columns 5 and 7 such that the protein or portion thereof is able to par 5 ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.9.9] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 10 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 10, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol 15 or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0168.0.0.9] and [0169.0.0.9] for the disclosure of the paragraphs [0168.0.0.9] and [0169.0.0.9] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. 20 [0170.0.9.9] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 10, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. 25 as that polypeptides depicted by the sequence shown in table II, application no. 10, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole cule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 10, columns 5 and 7 or the functional homo 30 logues. In a still further embodiment, the nucleic acid molecule of the invention en codes a full length protein which is substantially homologous to an amino acid se quence shown in table II, application no. 10, columns 5 and 7 or the functional homo logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 10, 35 columns 5 and 7, preferably as indicated in table I A, application no. 10, columns 5 and 661 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 10, columns 5 and 7. [0171.0.0.9] to [0173.0.0.9] for the disclosure of the paragraphs [0171.0.0.9] to 5 [0173.0.0.9] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.9.9] Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present 10 invention, e.g. comprising the sequence shown in table 1, application no. 10, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.9] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.9.9] Preferably, nucleic acid molecule of the invention that hybridizes under 15 stringent conditions to a sequence shown in table 1, application no. 10, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above 20 mentioned activity, e.g. conferring the respective fine chemical increase after increas ing the expression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. 25 [0177.0.0.9] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.9.9] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 10, columns 5 and 7. 30 [0179.0.0.9] and [0180.0.0.9] for the disclosure of the paragraphs [0179.0.0.9] and [0180.0.0.9] see paragraphs [0179.0.0.0] and [0180.0.0.0] above.
662 [0181.0.9.9] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera 5 bly in plastids (as described), that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table II, application no. 10, columns 5 and 7, preferably shown in table II A, application no. 10, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide 10 sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 10, columns 5 and 7, preferably shown in table II A, application no. 10, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression ei 15 ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 10, columns 5 and 7, preferably shown in table II A, 20 application no. 10, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 10, columns 5 and 7, preferably shown in table II A, application no. 10, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 10, columns 5 and 7, preferably shown in table II A, application no. 10, columns 5 and 25 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se quence shown in table II, application no. 10, columns 5 and 7, preferably shown in ta ble II A, application no. 10, columns 5 and 7. [0182.0.0.9] to [0188.0.0.9] for the disclosure of the paragraphs [0182.0.0.9] to [0188.0.0.9] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 30 [0189.0.9.9] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 10, columns 5 and 7, preferably shown in table II B, application no. 10, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 35 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 663 homology with one of the polypeptides as shown in table II, application no. 10, columns 5 and 7, preferably shown in table II B, application no. 10, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 10, columns 5 and 7, preferably shown 5 in table II B, application no. 10, columns 5 and 7. [0190.0.9.9] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 10 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 10, columns 5 and 7, preferably shown in table II B, application no. 10, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper 15 ties as the polypeptide as shown in table II, application no. 10, columns 5 and 7, pref erably shown in table II B, application no. 10, columns 5 and 7. [0191.0.0.9] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.9.9] A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 10, columns 5 and 7, preferably shown in table II B, applica 20 tion no. 10, columns 5 and 7 resp., can be created by introducing one or more nucleo tide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are introduced into the 25 encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.9] to [0196.0.0.9] for the disclosure of the paragraphs [0193.0.0.9] to 30 [0196.0.0.9] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.9.9] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7, comprise also allelic variants with at least ap- 664 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 5 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 10, columns 5 and 7, preferably shown in table I B, applica tion no. 10, columns 5 and 7, or from the derived nucleic acid sequences, the intention 10 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.9.9] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 10, columns 5 and 7, preferably shown in table I B, 15 application no. 10, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the 20 nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 10, columns 5 and 7, preferably shown in table I B, application no. 10, columns 5 and 7. [0199.0.9.9] Also preferred is that the nucleic acid molecule used in the process of 25 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 10, columns 5 and 7, preferably shown in table II B, application no. 10, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. 30 In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 10, columns 5 and 7, preferably shown in table II B, application no. 10, columns 5 and 7. [0200.0.9.9] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica 35 tion no. 10, columns 5 and 7, preferably shown in table II B, application no. 10, 665 columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 10, columns 5 and 7, preferably 5 shown in table I B, application no. 10, columns 5 and 7. [0201.0.9.9] Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the respective fine chemical indicated in column 6 of Table I, application no. 10, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by pref 10 erence 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 10, columns 5 and 7 expressed under identical conditions. [0202.0.9.9] Homologues of table I, application no. 10, columns 5 and 7 or of the 15 derived sequences of table II, application no. 10, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences 20 stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 25 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.9] to [0215.0.0.9] for the disclosure of the paragraphs [0203.0.0.9] to [0215.0.0.9] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. 30 [0216.0.9.9] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 666 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 10, columns 5 and 7, preferably in table II B, application no. 10, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical according to table II B, application no. 5 10, column 6 in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 10, columns 5 and 7, pref erably in table I B, application no. 10, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, 10 application no. 10, column 6 in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a 15 part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a 20 part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a part thereof; 25 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a 30 part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 667 (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 10, column 6 in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 5 cation no. 10, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 10 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 10, column 7 and conferring an in 15 crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 10, columns 5 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a part thereof; and 20 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 25 1, application no. 10, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 10, columns 5 and 7, and conferring an increase in the amount of the fine chemical according to table II B, application no. 10, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 30 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 10, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 10, 668 columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 10, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode 5 the polypeptide sequence shown in table II A and/or II B, application no. 10, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present inven tion encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 10, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or 10 11 B, application no. 10, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 10, columns 5 and 7. In a fur ther embodiment, the protein of the present invention is at least 30 % identical to pro tein sequence depicted in table II A and/or II B, application no. 10, columns 5 and 7 15 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 10, columns 5 and 7. [0217.0.0.9] to [0226.0.0.9] for the disclosure of the paragraphs [0217.0.0.9] to [0226.0.0.9] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. 20 [0227.0.9.9] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir 25 genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 30 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 10, columns 5 and 7 can be cloned 3'prime to 35 the transitpeptide encoding sequence, leading to a functional preprotein, which is di- 669 rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.9] to [0239.0.0.9] for the disclosure of the paragraphs [0228.0.0.9] to [0239.0.0.9] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. 5 [0240.0.9.9] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. 10 In addition to the sequence mentioned in Table 1, application no. 10, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the tocopherol biosynthetic pathway such as for a vitamin E precursor, is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation 15 of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the or ganisms. This leads to an increased synthesis of the amino acids desired since, for example, feedback regulations no longer exist to the same extent or not at all. In addi tion it might be advantageously to combine the sequences shown in Table 1, application 20 no. 10, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.9.9] In a further embodiment of the process of the invention, therefore, or 25 ganisms are grown, in which there is simultaneous overexpression of at least one nu cleic acid or one of the genes which code for proteins involved in the tocopherol me tabolism, in particular in synthesis of alpha-, beta-, and/or gamma-tocopherol. [0242.0.9.9] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen 30 tioned biosynthesis genes are the sequences encoding further genes of the tocopherol biosynthetic pathway, such as the homogentisate phytyltransferase (HPT) or the en zymes catalysing the subsequent cyclization and methylation reactions, y-tocopherol methyl transferase (y-TMT), prenyltransferases that condense prenyl groups with allylic 670 chains and those that condense prenyl chains with aromatic groups and others. These genes can lead to an increased synthesis of the essential vitamin E or its precursor 2,3-dimethyl-5-phytylquinol resp., in particular, of the fine chemical indicated in column 6 of any one of Tables I to IV. 5 [0242.1.9.9] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a vitamin E de grading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene. [0242.2.9.9] The respective fine chemical produced can be isolated from the organ 10 ism by methods with which the skilled worker is familiar. For example, via extraction, salt precipitation, and/or different chromatography methods. The process according to the invention can be conducted batchwise, semibatchwise or continuously. The respec tive fine chemcical produced by this process can be obtained by harvesting the organ isms, either from the crop in which they grow, or from the field. This can be done via 15 pressing or extraction of the plant parts. [0243.0.0.9] to [0264.0.0.9] for the disclosure of the paragraphs [0243.0.0.9] to [0264.0.0.9] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.9.9] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 20 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 25 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 30 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 10, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular.
671 [0266.0.0.9] to [0287.0.0.9] for the disclosure of the paragraphs [0266.0.0.9] to [0287.0.0.9] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.9.9] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory 5 sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 10, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 10 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 10, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.9] to [0296.0.0.9] for the disclosure of the paragraphs [0289.0.0.9] to [0296.0.0.9] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. 15 [0297.0.9.9] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo thelial cells), for example using the antibody of the present invention as described herein, in particular, an antibody against polypeptides as shown in table II, application no. 10, columns 5 and 7, which can be produced by standard techniques utilizing the 20 polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. [0298.0.0.9] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.9.9] In one embodiment, the present invention relates to a polypeptide hav 25 ing the sequence shown in table II, application no. 10, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 10, columns 5 and 7 or func tional homologues thereof. [0300.0.9.9] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus 30 sequence shown in table IV, application no. 10, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 10, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre- 672 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.9] to [0304.0.0.9] for the disclosure of the paragraphs [0301.0.0.9] to [0304.0.0.9] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 5 [0305.0.9.9] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 10, columns 5 and 7 by one or more 10 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 10, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 15 II B, application no. 10, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 10, columns 5 and 7. 20 [0306.0.0.9] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.9.9] In one embodiment, the invention relates to polypeptide conferring an increase of level of the respective fine chemical indicated in Table II A and/or II B, ap plication no. 10, column 6 in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se 25 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 10, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 10, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden 30 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 10, columns 5 and 7.
673 [0308.0.9.9] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 10, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 10, columns 5 and 7 by one or more amino acids, preferably by more than 5, 5 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention 10 takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle, for example into the plastid or mitochondria. [0309.0.0.9] to [0311.0.0.9] for the disclosure of the paragraphs [0309.0.0.9] to 15 [0311.0.0.9] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.9.9] A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 10, columns 5 and 7. 20 [0313.0.9.9] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 25 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 10, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 30 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 10, columns 5 and 7 or which is homologous thereto, as defined above.
674 [0314.0.9.9] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 10, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 5 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 10, columns 5 and 7. [0315.0.0.9] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. 10 [0316.0.9.9] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 10, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include 15 fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 20 [0317.0.0.9] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.9.9] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 10, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 10, column 3, pref 25 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 10, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 30 [0319.0.9.9] Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha- 675 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 10, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the 5 yield, production, and/or efficiency of production of a desired compound is improved. [0319.1.9.9] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. Vitamin E, i.e. alpha-tocopherol, beta-tocopherol, and/or gamma tocopherol or the vitamin E precursor 2,3-Dimethyl-5-pythylquinol, respectively or a 10 recovered or isolated Vitamin E, i.e. alpha-tocopherol, beta-tocopherol, and/or gamma tocopherol or the vitamin E precursor 2,3-Dimethyl-5-pythylquinol, respectively, e.g. in free or in protein- or membrane-bound form. [0320.0.0.9] to [0322.0.0.9] for the disclosure of the paragraphs [0320.0.0.9] to [0322.0.0.9] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. 15 [0323.0.9.9] In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 10, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not 20 substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 10, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.9] to [0329.0.0.9] for the disclosure of the paragraphs [0324.0.0.9] to 25 [0329.0.0.9] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.9.9] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 10, columns 5 and 7. [0331.0.0.9] to [0346.0.0.9] for the disclosure of the paragraphs [0331.0.0.9] to 30 [0346.0.0.9] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.9.9] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the respective fine chemical indicated in column 6 of application no. 10 in any one of Tal- 676 bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as 5 shown in table II, application no. 10, column 3. Due to the above mentioned activity the respective fine chemical content in a cell or an organism is increased. For example, due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an 10 organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 10, column 3 or a protein as shown in table II, application no. 10, col umn 3-like activity is increased in the cell or organism or part thereof especially in or 15 ganelles such as plastids or mitochondria. Examples are described above in context with the process of the invention. [0348.0.0.9] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.9.9] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 20 II, application no. 10, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.9] to [0358.0.0.9] for the disclosure of the paragraphs [0350.0.0.9] to 25 [0358.0.0.9] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.9.9] Transgenic plants comprising the respective fine chemical synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are un derstood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or 30 seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The respective fine chemical indicated in column 6 of any one of Tables I to IV, application no. 10, e.g. itamin E or its precursor 2,3-dimethyl-5-phytylquinol resp., in particular, alpha-, beta-, and/or gamma-tocopherol 677 resp., and being produced in the process according to the invention may, however, also be isolated from the plant and can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via ex pressing, grinding and/or extraction of the plant parts, preferably the plant seeds, plant 5 fruits, plant tubers and the like. [0360.0.0.9] to [0362.0.0.9] for the disclosure of the paragraphs [0360.0.0.9] to [0362.0.0.9] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.0.9] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 10 80% by weight, very especially preferably more than 90% by weight, of the respective fine chemical produced in the process can be isolated. The resulting composition or fraction comprising the respective fine chemical can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as fatty acids, vita mins, amino acids, carbohydrates, antibiotics, covitamins, antioxidants, carotenoids, 15 and the like, and, if appropriate, formulated. [0364.0.0.9] In one embodiment, the composition is the fine chemical. [0365.0.9.9] The fine chemical indicated in column 6 of application no. 10 in Table 1, in particular vitamin E or its precursor 2,3-dimethyl-5-phytylquinol resp., e.g. alpha-, beta-, and/or gamma-tocopherol resp., and being obtained in the process of the inven 20 tion are suitable as starting material for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the production of pharmaceuticals, foodstuffs, animal feeds or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the process according to the in 25 vention, including the isolation of a composition comprising the fine chemical, e.g. Vi tamin E- or its precursor 2,3-dimethyl-5-phytylquinol, or the isolated respective fine chemical produced, if desired, and formulating the product with a pharmaceutical ac ceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the respec 30 tive fine chemical indicated in application no. 10, Table 1, column 6, and being pro duced in the process or the use of the transgenic organisms in animal feeds, food stuffs, medicines, food supplements, cosmetics or pharmaceuticals.
678 [0366.0.0.9] to [0369.0.0.9] for the disclosure of the paragraphs [0366.0.0.9] to [0369.0.0.9] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.9.9] The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; application 5 no. 10 or containig mixtures with other compounds, in particular with other vitamins or e.g. with carotenoids, e.g. with astaxanthin, or fatty acids or containing microorganisms or parts of microorganisms, like plastids, , normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be separated, such as, for example, by centrifugation, 10 filtration, decantation coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nano filtration. This concentrated fermentation broth can then be worked up by extraction, 15 freeze-drying, spray drying, spray granulation or by other processes. [0371.0.9.9] As vitamin E is often localized in membranes or plastids, in one em bodiment it is advantageous to avoid a leaching of the cells when the biomass is iso lated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combination of these methods, from 20 the fermentation broth. The dry biomass can directly be added to animal feed, provided the vitamin E concentration is sufficiently high and no toxic compounds are present. In view of the instability of vitamin E, conditions for drying, e.g. spray or flash-drying, can be mild and can be avoiding oxidation and cis/trans isomerization. For example anti oxidants, e.g. BHT, ethoxyquin or other, can be added. In case the vitamin E concen 25 tration in the biomass is to dilute, solvent extraction can be used for their isolation, e.g. with alcohols, ether or other organic solvents, e.g. with methanol, ethanol, aceton, al coholic potassium hydroxide, glycerol-fenol, liquefied fenol or for example with acids or bases, like trichloroacetatic acid or potassium hydroxide. A wide range of advanta geous methods and techniques for the isolation of vitamin E can be found in the state 30 of the art. Accordingly, it is possible to further purify the produced vitamin E or its precursor 2,3 dimethyl-5-phytylquinol resp., in particular, alpha-, beta-, and/or gamma-tocopherol, resp. For this purpose, the product-containing composition, e.g. a total or partial lipid extraction fraction using organic solvents, e.g. as described above, is subjected for 35 example to a saponification to remove triglycerides, partition between e.g. hex- 679 ane/methanol (seperation of non-polar epiphase from more polar hypophasic derivates) and separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or 5 different chromatography resins. The skilled worker is familiar with the choice of suit able chromatography resins and their most effective use. [0372.0.0.9] to [0376.0.0.9], [0376.1.0.9] and [0377.0.0.9] for the disclosure of the paragraphs [0372.0.0.9] to [0376.0.0.9], [0376.1.0.9] and [0377.0.0.9] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. 10 [0378.0.9.9] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a 15 candidate gene encoding a gene product conferring an increase in the respective fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 20 the nucleic acid molecule sequence shown in table 1, application no. 10, columns 5 and 7, preferably in table I B, application no. 10, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the respective fine chemical; 25 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the respective fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical level in the host cell after ex pression compared to the wild type. 30 [0379.0.0.9] to [0383.0.0.9] for the disclosure of the paragraphs [0379.0.0.9] to [0383.0.0.9] see paragraphs [0379.0.0.0] to [0383.0.0.0] above.
680 [0384.0.9.9] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in 5 comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 10, column 3, eg compar 10 ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 10, column 3. [0385.0.0.9] to [0404.0.0.9] for the disclosure of the paragraphs [0385.0.0.9] to [0404.0.0.9] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.9.9] Accordingly, the nucleic acid of the invention, the polypeptide of the in 15 vention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the respective fine chemicalindicated in Column 6, Table 1, appli 20 cation no. 10 or for the production of the respective fine chemical and one or more other carotenoids, vitamins or fatty acids. In one embodiment, in the process of the present invention, the produced vitamin E is used to protect fatty acids against oxidiza tion, e.g. it is in a further step added in a pure form or only partly isolated to a composi tion comprising fatty acids.. 25 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the 30 invention, the antibody of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. [0405.1.9.9] The nucleic acid molecule of the invention, the vector of the invention or the nucleic acid construct of the invention may also be useful for the production of or ganisms resistant to inhibitors of the vitamin E production biosynthesis pathways. In 681 particular, the overexpression of the polypeptide of the present invention may protect an organism such as a microorganism or a plant against inhibitors, which block the vitamin E, in particular the respective fine chemical synthesis in said organism. As vitamin E can protect organisms against damages of oxidative stress, especially 5 singlet oxygens, a increased level of the respective fine chemical can protect plants against herbicides which cause the toxic buildup of oxidative compounds,e.g. singlet oxygens. For example, inhibition of the protoporphorineogen oxidase (Protox), an en zyme important in the synthesis of chlorophyll and heme biosynthesis results in the loss of chlorophyll and carotenoids and in leaky membranes; the membrane destruc 10 tion is due to creation of free oxygen radicals (which is also reported for other classic photosynthetic inhibitor herbicides). Accordingly, in one embodiment, the increase of the level of the respective fine chemi cal is used to protect plants against herbicides destroying membranes due to the crea tion of free oxygen radicals. 15 Examples of inhibitors or herbicides building up oxidative stress are aryl triazion, e.g. sulfentrazone, carfentrazone; or diphenylethers, e.g. acifluorfen, lactofen, or oxyfluor fen; or N-Phenylphthalimide, e.g. flumiclorac or flumioxazin; substituted ureas, e.g. fluometuron, tebuthiuron, diuron, or linuron; triazines, e.g. atrazine, prometryn, ametryn, metributzin, prometon, simazine, or hexazinone: or uracils, e.g. bromacil or 20 terbacil. [0405.2.9.9] In a further embodiment the present invention relates to the use of the antagonist of the present invention, the plant of the present invention or a part thereof, the microorganism or the host cell of the present invention or a part thereof for the pro duction a cosmetic composition or a pharmaceutical compostion. Such a composition 25 has an antioxidative activity, photoprotective activity, can be used to protect, treat or heal the above mentioned diseases, e.g. rhypercholesterolemic or cardiovascular dis eases, certain cancers, and cataract formation or as as immunostimulatory agent. The vitamin E can be also used as stabilizer of other colours or oxygen senitive com pounds, like fatty acids, in particular unsaturated fatty acids. 30 [0406.0.0.9] to [0416.0.0.9] for the disclosure of the paragraphs [0406.0.0.9] to [0416.0.0.9] see paragraphs [0406.0.0.0] to [0416.0.0.0] above. [0417.0.9.9] An in vivo mutagenesis of organisms such as algae (e.g. Spongiococ cum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedacty lum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella 682 patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which are beneficial for the production of vitamin E can be carried out by passing a plasmid DNA (or another vector DNA) containing the desired nucleic acid sequence or nucleic acid sequences, e.g. the nucleic acid molecule of the invention or the vector of the in 5 vention, through E. coli and other microorganisms (for example Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of maintaining the integrity of its genetic information. Usual mutator strains have mutations in the genes for the DNA repair system [for example mutHLS, mutD, mutT and the like; for comparison, see Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, 10 pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strate gies 7; 32-34. In-vitro mutation methods such as increasing the spontaneous mutation rates by chemical or physical treatment are well known to the skilled person. Mutagens like 5 15 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran dom in-vitro mutagensis. The most common physical method for mutagensis is the treatment with UV irradiation. Another random mutagenesis technique is the error prone PCR for introducing amino acid changes into proteins. Mutations are deliberately 20 introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized DNA sequences are cloned into expression vectors and the resulting mutant libraries screened for altered or improved protein activity as described below. Site-directed mutagensis method such as the introduction of desired mutations with an 25 M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic acid sequence of the invention into an M13 or phagemid vector, which permits recovery of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide primer is then designed whose sequence is perfectly complementary to nucleic acid 30 sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather than the original. The mutagenic oligonucleotide is then allowed to prime new DNA synthesis to create a complementary full-length sequence containing the desired muta tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis 35 method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known 683 and used in common practice. Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical. [0418.0.0.9] to [0427.0.0.9] for the disclosure of the paragraphs [0418.0.0.9] to 5 [0427.0.0.9] see paragraphs [0418.0.0.0] to [0427.0.0.0] above. [0427.1.9.9] Synechocystis sp. PCC 6803 is a unicellular, non-nitrogen-fixing cyanobacterium which has undergone thorough genetic investigation (Churin et al. (1995) J Bacteriol 177: 3337-3343), can easily be transformed (Williams (1988) Methods Enzymol 167:766-778) and has a very active homologous recombination 10 potential. The strain PCC 6803 was isolated as Aphanocapsa N-1 from fresh water in California, USA, by R. Kunisawa in 1968 and is now obtainable through the "Pasteur Culture Collection of Axenic Cyanobacterial Strains" (PCC), Unit6 de Physiologie Microbienne, Paris, France. The complete genomic sequence of Synechocystis sp. PCC 6803 has been published from 1995 (Kaneko et al. (1995) DNA Research 2:153 15 166; Kaneko et al. (1995)DNA Research 2:191-198; Kaneko et al. (1996) DNA Research 3:109-136; Kaneko et al. (1996) DNA Research 3:185-209; Kaneko and Tabata (1997) Plant Cell Physiol 38:1171-1176; Kotani and Tabata (1998) Annu Rev Plant Physiol 49:151-171) and is published on the Internet (http://www.kazusa.or.jp/cyano/cyano.html) under the name "CyanoBase". Efficient 20 expression systems for Synechocystis 6803 are described in the literature (Mermet Bouvier et al. (1993) Curr Microbiol 27:323-327; Mermet-Bouvier and Chauvat (1993) Curr Microbiol 28:145-148; Murphy and Stevens (1992) Appl Environ Microbiol 58:1650-1655; Takeshima et al. (1994) Proc Natl Acad Sci USA 91:9685-9689; Xiaoqiang et al. (1997) Appl Environ Microbiol 63:4971-4975; Ren et al. (1998) FEMS 25 Microbiol Lett 158:127-132). [0427.2.9.9] Growing synechocystis The cells of Synechocystis sp. PCC 6803 can be normally cultured autotrophically in BG1 1 medium. They have a diameter of 2.3 to 2.5 pm. For example, a cyanobacterium 30 Synechocystis sp. PCC 6803 strain which is glucose-tolerant can be used, i.e. it is also able to grow heterotrophically in the dark with only a few minutes of weak blue light illumination per day. The culture conditions were developed by Anderson and McIntosh (Anderson und McIntosh (1991) J Bacteriol 173:2761-2767) and called light-activated heterotrophic growth (LAHG). This makes it possible to cultivate these cyanobacteria 684 without continuous photosynthesis and thus without production of oxygen. BG 11 culture medium for Synechocystis 5 Stock solution 100 x BG11: NaNO 3 1.76 M = 149.58 g MgSO 4 x 7 H 2 0 30.4 mM = 7.49 g CaCl 2 x 2 H 2 0 24.5 mM = 3.6 g Citric acid 3.12 mM = 0.6 g 10 Na EDTA pH 8 0.279 mM = 0.104 g The weighed substances can be dissolved in 900 ml of H20 and made up to 1000 ml with 100 ml of the trace metal mix stock 1 000x. The solution thus obtained is used as stock solution. 15 Trace metal mix stock 1000x:
H
3
BO
3 46.3 mM = 2.86 g/l MnCl 2 x 4 H 2 04.15 mM = 1.81 g/l ZnSO 4 x 7 H 2 0 0.77 mM = 0.222 g/l 20 Na 2 MoO 4 x 2 H 2 0 1.61 mM = 0.39 g/l CuSO 4 x 5 H 2 0 0.32 mM = 0.079 g/l Co(N0 3
)
2 x 6 H 2 0 0.17 mM = 0.0494 g/l The following solutions are required for 1 liter of BG1 1 culture solution: 25 1. 10 ml of stock solution 100 x BG 11 2. 1 ml Na 2 CO3 (189 mM) 3. 5 ml TES (1 M, pH 8) 4. 1 ml K 2
PO
4 (175 mM) 30 Whereas solution 2. and 3. ought to be sterilized by filtration, solution 4 must be auto claved. The complete BG1 1 culture solution must be autoclaved before use and then be mixed with 1 ml of iron ammonium citrate (6 mg/ml) which has previously been ster ilized by filtration. The iron ammonium citrate should never be autoclaved. For agar plates, 1.5% (w/v) bacto agar are added per liter of BG1 1 medium. 35 [0427.3.9.9] Amplification and cloning of DNA from Synechocystis spec. PCC 6803 685 The DNA can be amplified by the polymerase chain reaction (PCR) from Synechocystis spec. PCC 6803 by the method of Crispin A. Howitt (Howitt CA (1996) BioTechniques 21:32-34). [0427.4.9.9] Tocopherol production in Synechocystis spec. PCC 6803 5 The cells of each of independent Synechocystis spec. PCC 6803 strains cultured on the BG-1 1km agar medium, and untransformed wild-type cells (on BG1 1 agar medium without kanamycin) can be used to inoculate liquid cultures. For this, cells of a mutant or of the wild-type Synechocystis spec. PCC 6803 are transferred from plate into 10 ml of liquid culture in each case. These cultures are cultivated at 280C and 30 pmol pho 10 tons*(m 2 *s)-l (30 pE) for about 3 days. After determination of the OD 730 of the individual cultures, the OD 73 0 of all cultures is synchronized by appropriate dilutions with BG-1 1 (wild types) or e.g. BG-1 1km (mutants). These cell density-synchronized cultures are used to inoculate three cultures of the mutant and of the wild-type control. It is thus possible to carry out biochemical analyses using in each case three independently 15 grown culutres of a mutant and of the corresponding wild types. The cultures are grown until the optical density was OD 73 0 =0.3. The cell culture medium is removed by centrifugation in an Eppendorf bench centrifuge at 14000 rpm twice. The subsequent disruption of the cells and extraction of the toco pherols or vitamin E take place by incubation in an Eppendorf shaker at 30'C, 1000 20 rpm in 100% methanol for 15 minutes twice, combining the supernatants obtained in each case. In order to avoid oxidation, the resulting extracts can be analyzed immediate after the extraction with the aid of a Waters Allience 2690 HPLC system. Tocopherols and vita min E is separated on a reverse phase column (ProntoSil 200-3-C30, Bischoff) with a 25 mobile phase of 100% methanol, and identified by means of a standard (Merck). The fluorescence of the substances (excitation 295 nm, emission 320 nm), which is de tected with the aid of a Jasco FP 920 fluorescence detector, can serve as detection system. [0428.0.0.9] to [0435.0.0.9] for the disclosure of the paragraphs [0428.0.0.9] to 30 [0435.0.0.9] see paragraphs [0428.0.0.0] to [0435.0.0.0] above. [0436.0.9.9] Vitamin E production Vitamin E, like alpha-, beta-, or gamma-tocopherol, or its precursor 2,3-dimethyl-5 phytylquinol, can be detected advantageously as desribed in Deli,J. & Molnar,P., Pa prika carotenoids: Analysis, isolation, structure elucidation. Curr. Org. Chem. 6, 1197- 686 1219 (2004) or Fraser,P.D., Pinto,M.E., Holloway,D.E. & Bramley,P.M. Technical ad vance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551-558 (2000). [0437.0.0.9] and [0438.0.0.9] for the disclosure of the paragraphs [0437.0.0.9] and 5 [0438.0.0.9] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.9.9] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the respective fine chemical indicated in Table 1, application no. 10, column 6 [0440.0.9.9] The effect of the genetic modification in plants, fungi, algae or ciliates on 10 the production of a desired compound can be determined by growing the modified mi croorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated pro duction of desired product (i.e. of the lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, 15 various types of staining methods, enzymatic and microbiological methods and analyti cal chromatography such as high-performance liquid chromatography (see, for exam ple, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemis try" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et 20 al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469 714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream process ing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial 25 Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). Vitamin E, like alpha-, beta-, or gamma-tocopherol, or its precursor 2,3-dimethyl-5 phytylquinol, can be detected advantageously as desribed in Deli,J. & Molnar,P., Pa prika carotenoids: Analysis, isolation, structure elucidation. Curr. Org. Chem. 6, 1197 30 1219 (2004) or Fraser,P.D., Pinto,M.E., Holloway,D.E. & Bramley,P.M. Technical ad vance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551-558 (2000). [0441.0.0.9] for the disclosure of this paragraph see [0441.0.0.0] above.
687 [0442.0.9.9] Example 9: Purification of the vitamin E or its precursor 2,3-dimethyl-5 phytylquinol [0443.0.9.9] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrometry; TLC, thin-layer chromatography. 5 The unambiguous detection for the presence of vitamin E, like alpha-, beta-, or gamma-tocopherol, or its precursor 2,3-dimethyl-5-phytylquinol can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as described (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie 10 Verfahren [Gas chromatography/mass spectrometric methods], Lipide 33:343-353). The total vitamin E produced in the organism for example in yeasts used in the inven tive process can be analysed for example according to the following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable 15 methods. Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. A typical sample pretreatment consists of a total lipid extraction using such polar or ganic solvents as acetone or alcohols as methanol, or ethers, saponification , partition 20 between phases, seperation of non-polar epiphase from more polar hypophasic deriva tives and chromatography. [0443.1.9.9] Characterization of the transgenic plants In order to confirm that vitamin E biosynthesis in the transgenic plants is influenced by the expression of the polypeptides described herein, the tocopherol/vitamin E content 25 in leaves and seeds of the plants transformed with the described constructs (Arabidop sis.thaliana, Brassica napus and Nicotiana tabacum) is analyzed. For this purpose, the transgenic plants are grown in a greenhouse, and plants which express the gene cod ing for polypeptide of the invention or used in the method of the invention are identified at the Northern level. The tocopherol content or the vitamin E content in leaves and 30 seeds of these plants is measured. In all, the tocopherol concentration is raised by comparison with untransformed plants. [0444.0.9.9] If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the vitamin E, like alpha-, beta-, or gamma- 688 tocopherol, or its precursor 2,3-dimethyl-5-phytylquinol, can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable 5 chromatography resin and the most effective use for a particular molecule to be puri fied. [0445.0.9.9] In addition depending on the produced fine chemical purification is also possible with cristalisation or destilation. Both methods are well known to a person skilled in the art. 10 [0446.0.0.9] to [0496.0.0.9] for the disclosure of the paragraphs [0446.0.0.9] to [0496.0.0.9] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.9.9] As an alternative, the vitamin E, like alpha-, beta-, or gamma tocopherol, or its precursor 2,3-dimethyl-5-phytylquinol, can be detected advanta geously as desribed in Deli,J. & Molnar,P., Paprika carotenoids: Analysis, isolation, 15 structure elucidation. Curr. Org. Chem. 6, 1197-1219 (2004) or Fraser,P.D., Pinto,M.E., Holloway,D.E. & Bramley,P.M. Technical advance: application of high performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551-558 (2000). [0498.0.9.9] The results of the different plant analyses can be seen from the table, 20 which follows: 689 Table VI Min.- Max.
ORF Metabolite Method/Analytics Value Value b1251 alpha-Tocopherol LC 1.35 1.81 b1704 alpha-Tocopherol LC 1.25 1.82 b2600 alpha-Tocopherol GC 1.53 1.88 b2601 alpha-Tocopherol LC 1.56 7.11 b2965 alpha-Tocopherol GC 1.72 3.04 b3390 alpha-Tocopherol GC 1.62 1.68 b2600 alpha-Tocotrienol LC 1.68 16.12 gamma-Tocopherol/beta Tocopherol/2,3-Dimethyl-5 b1704 phytylquinol LC 1.83 16.47 gamma-Tocopherol/beta Tocopherol/2,3-Dimethyl-5 b2600 phytylquinol LC 2.40 5.64 gamma-Tocopherol/beta Tocopherol/2,3-Dimethyl-5 b2601 phytylquinol LC 1.63 3.57 gamma-Tocopherol/beta Tocopherol/2,3-Dimethyl-5 b2965 phytylquinol LC 3.03 7.10 gamma-Tocopherol/beta Tocopherol/2,3-Dimethyl-5 b3281 phytylquinol LC 1.38 2.64 gamma-Tocopherol/beta Tocopherol/2,3-Dimethyl-5 b3390 phytylquinol LC 1.41 1.86 gamma-Tocotrienol/beta b2600 Tocotrienol LC 7.77 16.43 In the context of this table "gamma-Tocopherol/beta-Tocopherol/2,3-Dimethyl-5 phytylquinol" means the total amount of gamma-Tocopherol and beta-Tocopherol and 5 2,3-Dimethyl-5-phytylquinol. [0499.0.0.9] and [0500.0.0.9] for the disclosure of the paragraphs [0499.0.0.9] and [0500.0.0.9] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.9.9] Example 15a: Engineering ryegrass plants by over-expressing b1251 from E. coli or homologs of b1251 from other organisms.
690 [0502.0.0.9] to [0508.0.0.9] for the disclosure of the paragraphs [0502.0.0.9] to [0508.0.0.9] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.9.9] Example 15b: Engineering soybean plants by over-expressing b1251 from E. coli or homologs of b1251 from other organisms. 5 [0510.0.0.9] to [0513.0.0.9] for the disclosure of the paragraphs [0510.0.0.9] to [0513.0.0.9] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.9] Example 15c: Engineering corn plants by over-expressing b1251 from E. coli or homologs of b1251 from other organisms. [0515.0.0.9] to [0540.0.0.9] for the disclosure of the paragraphs [0515.0.0.9] to 10 [0540.0.0.9] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.9.9] Example 15d: Engineering wheat plants by over-expressing b1251 from E. coli or homologs of b1251 from other or ganisms. [0542.0.0.9] to [0544.0.0.9] for the disclosure of the paragraphs [0542.0.0.9] to 15 [0544.0.0.9] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.9.9] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b1251 from E. coli or homologs of b1251 from other or ganisms. [0546.0.0.9] to [0549.0.0.9] for the disclosure of the paragraphs [0546.0.0.9] to 20 [0549.0.0.9] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.9.9] Example 15f: Engineering alfalfa plants by over-expressing b1251 from E. coli or homologs of b1251 from other organisms. [0551.0.0.9] to [0554.0.0.9] for the disclosure of the paragraphs [0551.0.0.9] to [0554.0.0.9] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. 25 [0554.1.0.9]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants.
691 The results are shown in table VII as minimal (MIN) or maximal changes (MAX) in the respective fine chemical (column "metabolite") in genetically modified corn plants ex pressing thesequence listed in column 1 (ORF).: Table VII ORF Metabolite MIN MAX b2601 alpha-Tocopherol 1.56 2.67 b2601 beta/gamma-Tocopherol 1.74 4.90 b3390 beta/gamma-Tocopherol 1.83 2.03 b3390 alpha-Tocopherol 1.47 1.86 5 In the context of this table "beta/gamma-Tocopherol" means the total amount of gamma-Tocopherol and beta-Tocopherol, In one embodiment, in case the activity of the the protein listed in column 1 of Table VII 10 or its homologs, is increased in corn plants, preferably, an increase of the respective fine chemical as indicated in column 2 (Metabolite) is in the range between the mini mal value shown in the line "MIN" and the maximal value shown in the line "MAXis con ferred. 15 [0554.2.0.9] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.9] for the disclosure of this paragraph see [0555.0.0.0] above.
692 [0001.0.0.10] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.10.10] Carotenoids are red, yellow and orange pigments that are widely dis tributed in nature. Although specific carotenoids have been identified in photosynthetic centers in plants, in bird feathers, in crustaceans and in marigold petals, they are espe 5 cially abundant in yellow-orange fruits and vegetables and dark green, leafy vegeta bles. Of the more than 700 naturally occurring carotenoids identified thus far, as many as 50 may be absorbed and metabolized by the human body. To date, only 14 carote noids have been identified in human serum. In animals some carotenoids (particularly beta-carotene) serve as dietary precursors to 10 Vitamin A, and many of them may function as fat-soluble antioxidants. In plants caro tenes serve for example as antioxidants to protect the highly reactive photosystems and act as accessory photopigments. In vitro experiments have shown that lycopene, alpha-carotene, zeaxanthin, lutein and cryptoxanthin quench singlet oxygen and inhibit lipid peroxidation. The isolation and identification of oxidized metabolites of lutein, ze 15 axanthin and lycopene provide direct evidence of the antioxidant action of these caro tenoids. Carotenoids are 40-carbon (C40) terpenoids generally comprising eight isoprene (C) units joined together. Linking of the units is reversed at the center of the molecule. "Ke tocarotenoid" is a general term for carotenoid pigments that contain a keto group in the 20 ionene ring portion of the molecule, whereas "hydroxycarotenoid" refers to carotenoid pigments that contain a hydroxyl group in the ionene ring. Trivial names and abbrevia tions will be used throughout this disclosure, with IUPAC-recommended semi systematic names usually being given in parentheses after first mention of a trivial name. 25 Carotenoids are synthesized from a five carbon atom metabolic precursor, isopentenyl pyrophosphate (IPP). There are at least two known biosynthetic pathways in the forma tion of IPP, the universal isoprene unit. One pathway begins with mevalonic acid, the first specific precursor of terpenoids, formed from acetyl-CoA via HMG-CoA (3 hydroxy-3-methylglutaryl-CoA), that is itself converted to isopentenyl pyrophosphate 30 (IPP). Later, condensation of two geranylgeranyl pyrophosphate (GGPP) molecules with each other produces colorless phytoene, which is the initial carotenoid. Studies have also shown the existence of an alternative, mevalonate-independent pathway for IPP formation that was characterized initially in several species of eubacteria, a green 693 alga, and in the plastids of higher plants. The first reaction in this alternative pathway is the transketolase-type condensation reaction of pyruvate and D-glyceraldehylde-3 phosphate to yield 1-deoxy-D-xylulose-5-phosphate (DXP) as an intermediate. Through a series of desaturation reactions, phytoene is converted to phytofluene, G 5 carotene, neurosporene and finally to lycopene. Subsequently, lycopene is converted by a cyclization reaction to p-carotene that contains two p-ionene rings. A keto-group and/or a hydroxyl group are introduced into each ring of p-carotene to thereby synthe size canthaxanthin, zeaxanthin, astaxanthin. A hydroxylase enzyme has been shown to convert canthaxanthin to astaxanthin. Similarly, a ketolase enzyme has been shown to 10 convert zeaxanthin to astaxanthin. The ketolase also converts p-carotene to canthax anthin and the hydroxylase converts p-carotene to zeaxanthin. Carotenoids absorb light in the 400-500 nm region of the visible spectrum. This physi cal property imparts the characteristic red/yellow color of the pigments. A conjugated backbone composed of isoprene units is usually inverted at the center of the molecule, 15 imparting symmetry. Changes in geometrical configuration about the double bonds result in the existence of many cis- and trans- isomers. Hydroxylated, oxidized, hydro genated or ring-containing derivatives also exist. Hydrocarbon carotenoids are classi fied as carotenes while those containing oxygen are known as xanthophylls. In animals, carotenoids are absorbed from the intestine with the aid of dietary fat and 20 incorporated into chylomicrons for transport in the serum. The different structural fea tures possessed by carotenoids account for selective distribution in organ tissue, bio logical activity and pro-vitamin A potency, or in vivo conversion to vitamin A. Due to the hydrophobic character, carotenoids are associated with lipid portions of human tissues, cells, and membranes. In general, 80-85% of carotenoids are distributed in adipose 25 tissue, with smaller amounts found in the liver, muscle, adrenal glands, and reproduc tive organs. Approximately 1 % circulate in the serum on high and low density lipopro teins. Serum concentrations are fairly constant and slow to change during periods of low intake. The estimated half-life was estimated to be 11-14 days for lycopene, a carotene, p-carotene, lutein and zeaxanthin. Evidence for the existence of more than 30 one body pool has been published. The major serum carotenoids are a-carotene, p carotene, lutein, zeaxanthin, lycopene and cryptoxanthin. Smaller amounts of polyenes such as phytoene and phytofluene are also present. Human serum levels reflect lifestyle choices and dietary habits within and between cul tures. Approximately only 15 circulate in the blood, on HDL and LDL. Variations can be 694 attributed to different intakes, unequal abilities to absorb certain carotenoids, and dif ferent rates of metabolism and tissue uptake. Decreased serum levels occur with alco hol consumption, the use of oral contraceptives, smoking and prolonged exposure to UV light. 5 a-Carotene, p-carotene and p-cryptoxanthin can be converted to retinol or vitamin A in the intestine and liver by the enzyme 15-15'-b-carotenoid dioxygenase. Such in vivo formation of retinol appears to be homeostatically controlled, such that conversion to retinol is limited in persons having adequate vitamin A status. [0003.0.10.10] The established efficacy of beta-carotene in quenching singlet oxygen 10 and intercepting deleterious free radicals and reactive oxygen species makes it part of the diverse antioxidant defense system in humans. Reactive oxygen species have been implicated in the development of many diseases, including ischemic heart dis ease, various cancers, cataracts and macular degeneration. Because the conjugated polyene portion of beta-carotene confers its antioxidant capability and all carotenoids 15 possess this structural feature, research efforts have been directed at evaluating the efficacy of other carotenoids in the prevention of free radical-mediated diseases. In deed, in vitro experiments have demonstrated that lycopene, alpha-carotene, zeaxan thin, lutein and cryptoxanthin quench singlet oxygen and inhibit lipid peroxidation. The isolation and identification of oxidized metabolites of lutein, zeaxanthin and lycopene 20 may provide direct evidence of the antioxidant action of these carotenoids. In addition to antioxidant capability, other biological actions of carotenoids include the ability to enhance immunocompetence and in vitro gap junction communication, reduce or inhibited mutagenesis and inhibit cell transformations in vitro. Many epidemiological studies have established an inverse correlation between dietary 25 intake of yellow-orange fruit and dark green, leafy vegetables and the incidence of various cancers, especially those of the mouth, pharynx, larynx, esophagus, lung, stomach, cervix and bladder. While a number of protective compounds may be respon sible for this observation, the co-incidence of carotenoids in these foods has been noted. Because nutritionists and medical professionals currently recognize the occur 30 rence of a large number of distinct carotenoids in food, interest in their functions and biological impact on health is burgeoning. Lutein exists in the retina. It functions to protect photoreceptor cells from light generated oxygen radicals, and thus plays a key role in preventing advanced macular 695 degeneration. Lutein possesses chemopreventive activity, induces gap junction com munication between cells and inhibits lipid peroxidation in vitro more effectively than beta-carotene, alpha-carotene and lycopene. High levels of lutein in serum have been inversely correlated with lung cancer. 5 In addition to lutein, zeaxanthin exists in the retina and confers protection against macular degeneration. Zeaxanthin is also prevalent in ovaries and adipocyte tissue. This xanthophyll does not possess provitamin A activity. Alcohol consumption has been shown to influence lipid peroxidation. Anhydrolutein, an oxidative by-product of lutein and zeaxanthin, was higher in plasma after alcohol inges 10 tion, while concentrations of these xanthophylls were reduced. Lutein and zeaxanthin may therefore have protective effects against LDL oxidation. The all-trans isomer of Lycopene is typically quantified in serum, although signals for 9-, 13- and 15-cis isomers are detectable and account for as much as 50% of the total lycopene. In experiments performed in vitro, lycopene quenched singlet oxygen more 15 efficiently than alpha-carotene, beta-carotene, zeaxanthin, lutein and cryptoxanthin. Lycopene induces gap junction communication, inhibits lipid peroxidation and has dis plays chemopreventive activity. Serum levels of lycopene have been inversely related to the risk of cancer in the pancreas and cervix. This carotenoid has been identified in tissues of the thyroid, kidneys, adrenals, spleen, liver, heart, testes and pancreas. Ly 20 copene is not converted to retinol in vivo. beta-Cryptoxanthin is capable of quenching singlet oxygen. beta-Cryptoxanthin is used to color butter. beta-Cryptoxanthin exhibits provitamin A activity. The all-trans isomer of this carotenoid is the major source of dietary retinoids, due to its high provitamin A activity. One molecule of trans-beta-carotene can theoretically pro 25 vide two molecules of trans retinaldehyde in vivo. Signals for 13- and 15-cis isomers of beta-carotene are also observed in the carotenoid profile and account for 10% or less of the total beta-carotene in serum. beta-Carotene quenches singlet oxygen, induces gap junction communication and inhibits lipid peroxidation. High serum levels of beta carotene are correlated with low incidences of cancer in the mouth, lung, breast, cervix, 30 skin and stomach. beta-Carotene has been identified in tissues of the thyroid, kidney, spleen, liver, heart, pancreas, fat, ovaries and adrenal glands.
696 alpha-Carotene is similar to beta-carotene in its biological activity, but quenches singlet oxygen more effectively. alpha-Carotene improves gap junction communication, pre vents lipid peroxidation and inhibits the formation and uptake of carcinogens in the body. High serum levels have been associated with lower risks of lung cancer. With 5 one half the provitamin A potency of beta-carotene, alpha-carotene also restores nor mal cell growth and differentiation. Serum levels are usually between 10 and 20% of the values for total beta-carotene. Alpha-Carotene, beta-carotene and beta-cryptoxanthin can be converted to Vitamin A in the intestine and liver. Vitamin A is essential for the immune response and is also 10 involved in other defenses against infectious agents. Nevertheless, in many individuals, this conversion is slow and ineffectual, particularly for older. Some individuals are known as non or low-responders because they do not convert beta-carotene to Vitamin A at the rate as expected. A number of factors can inhibit this conversion of beta carotene to Vitamin A. The major reason why so many Americans have a poor vitamin 15 A status is the regular use of excessive alcohol. Intestinal parasites can be a factor. And, any prescription drug that requires liver metabolism will decrease the liver conver sion of beta-carotene to retinol in the liver. Diabetics and individuals with hypothyroid ism or even borderline hypothyroidism are likely to be low-responders. [0004.0.10.10] In plants, approximately 80-90% of the carotenoids present in green, 20 leafy vegetables such as broccoli, kale, spinach and brussel sprouts are xanthophylls, whereas 10-20% are carotenes. Conversely, yellow and orange vegetables including carrots, sweet potatoes and squash contain predominantly carotenes. Up to 60% of the xanthophylls and 15% of the carotenes in these foods are destroyed during microwave cooking. Of the xanthophylls, lutein appears to be the most stable. 25 Lutein occurs in mango, papaya, oranges, kiwi, peaches, squash, peas, lima beans, green beans, broccoli, brussel sprouts, cabbage, kale, lettuce, prunes, pumpkin, sweet potatoes and honeydew melon. Commercial sources are obtained from the extraction of marigold petals. Lutein does not possess provitamin A activity. Dietary sources of Zeaxanthin include peaches, squash, apricots, oranges, papaya, 30 prunes, pumpkin, mango, kale, kiwi, lettuce, honeydew melon and yellow corn. The red color of fruits and vegetables such as tomatoes, pink grapefruit, the skin of red grapes, watermelon and red guavas is due to lycopene. Other dietary sources include papaya and apricots.
697 beta-Cryptoxanthin occurs in oranges, mango, papaya, cantaloupe, peaches, prunes, squash. Dietary sources of beta-Carotene include mango, cantaloupe, carrots, pumpkin, papaya, peaches, prunes, squash, sweet potato, apricots, cabbage, lima beans, green 5 beans, broccoli, brussel sprouts, kale, kiwi, lettuce, peas, spinach, tomatoes, pink grapefruit, honeydew melon and oranges. Dietary sources of alpha-Carotene include sweet potatoes, apricots, pumpkin, cantaloupe, green beans, lima beans, broccoli, brussel sprouts, cabbage, kale, kiwi, lettuce, peas, spinach, prunes, peaches, mango, papaya, squash and carrots. 10 [0005.0.10.10]Some carotenoids occur particularly in a wide variety of marine animals including fish such as salmonids and sea bream, and crustaceans such as crab, lob ster, and shrimp. Because animals generally cannot biosynthesize carotenoids, they obtain those carotenoids present in microorganisms or plants upon which they feed. Carotenoids e.g. xanthophylls, e.g. as astaxanthin, supplied from biological sources, 15 such as crustaceans, yeast, and green alga is limited by low yield and costly extraction methods when compared with that obtained by organic synthetic methods. Usual syn thetic methods, however, produce by-products that can be considered unacceptable. It is therefore desirable to find a relatively inexpensive source of carotenoids, in particular xanthophylls, to be used as a feed supplement in aquaculture and as a valuable 20 chemical for other industrial uses and for diets. Sources of Xanthophylls include crus taceans such as a krill in the Antarctic Ocean, cultured products of the yeast Phaffia, cultured products of a green alga Haematococcus pluvialis, and products obtained by organic synthetic methods. However, when crustaceans such as a krill or the like are used, a great deal of work and expense are required for the isolation of xanthophylls 25 from contaminants such as lipids and the like during the harvesting and extraction. Moreover, in the case of the cultured product of the yeast Phaffia, a great deal of ex pense is required for the gathering and extraction of astaxanthin because the yeast has rigid cell walls and produces xanthophylls only in a low yield. One approach to increase the productivity of some xanthophylls' production in a biological system is to use ge 30 netic engineering technology. [0006.0.10.10]In many plants, lycopene is a branch point in carotenoid biosynthesis. Thus, some of the plant's lycopene is made into beta-carotene and zeaxanthin, and sometimes zeaxanthin diglucoside, whereas remaining portions of lycopene are formed into alpha-carotene and lutein (3,3'-dihydroxy-a-carotene), another hydroxylated com- 698 pound. Carotenoids in higher plants; i.e., angiosperms, are found in plastids; i.e., chloroplasts and chromoplasts. Plastids are intracellular storage bodies that differ from vacuoles in being surrounded by a double membrane rather than a single membrane. Plastids such as chloroplasts can also contain their own DNA and ribosomes, can re 5 produce independently and synthesize some of their own proteins. Plastids thus share several characteristics of mitochondria. In leaves, carotenoids are usually present in the grana of chloroplasts where they provide a photoprotective function. Beta-carotene and lutein are the predominant carotenoids, with the epoxidized carotenoids violaxan thin and neoxanthin being present in smaller amounts. Carotenoids accumulate in de 10 veloping chromoplasts of flower petals, usually with the disappearance of chlorophyll. As in flower petals, carotenoids appear in fruit chromoplasts as they develop from chloroplasts. Most enzymes that take part in conversion of phytoene to carotenes and xanthophylls are labile, membrane-associated proteins that lose activity upon solubili zation. In maize, cartonoids were present in horny endosperm (74% to 86%), floury 15 endosperm (9%-23%) and in the germ and bran of the kernel. [0007.0.10.1O]At the present time only a few plants are widely used for commercial colored carotenoid production. However, the productivity of colored carotenoid synthe sis in most of these plants is relatively low and the resulting carotenoids are expen sively produced. 20 Dried marigold petals and marigold petal concentrates obtained from so-called xantho phyll marigolds are used as feed additives in the poultry industry to intensify the yellow color of egg yolks and broiler skin. The pigmenting ability of marigold petal meal re sides largely in the carotenoid fraction known as the xanthophylls, primarily lutein es ters. The xanthophyll zeaxanthin, also found in marigold petals, has been shown to be 25 effective as a broiler pigmenter, producing a highly acceptable yellow to yellow-orange color. Of the xanthophylls, the pigments lutein and zeaxanthin are the most abundant in commercially available hybrids. Structural formulas for lutein and zeaxanthin are shown below. Carotenoids have been found in various higher plants in storage organs and in flower 30 petals. For example, marigold flower petals accumulate large quantities of esterified lutein as their predominant xanthophyll carotenoid (about 75 to more than 90 percent), with smaller amounts of esterified zeaxanthin. Besides lutein and zeaxanthin, marigold flower petals also typically exhibit a small accumulation of p-carotene and epoxidized xanthophylls, but do not produce or accumulate canthaxanthin or astaxanthin because 699 a 4-keto-p-ionene ring-forming enzyme is absent in naturally-occurring marigolds or their hybrids. [0008.0.10.1O]One way to increase the productive capacity of biosynthesis is to apply recombinant DNA technology. Thus, it would be desirable to produce colored carote 5 noids generally and, with the use of recent advances in determining carotenoid biosyn thesis from p-carotene to xanthophylls to control the production of carotenoids. That type of production permits control over quality, quantity and selection of the most suit able and efficient producer organisms. The latter is especially important for commercial production economics and therefore availability to consumers. 10 Methods of recombinant DNA technology have been used for some years to improve the production of Xanthophylls in microorganisms, in particular algae or in plants by amplifying individual xanthophyll biosynthesis genes and investigating the effect on xanthophyll production. It is for example reportet, that the five ketocarotenoids, e.g. the xanthophyll astaxanthin could be produced in the nectaries of transgenic tobacco 15 plants. Those transgenic plants were prepared by Argobacterium tumifaciens-mediated transformation of tobacco plants using a vector that contained a ketolase-encoding gene from H. pluvialis denominated crtO along with the Pds gene from tomato as the promoter and to encode a leader sequence. The Pds gene was said by those workers to direct transcription and expression in chloroplasts and/or chromoplast-containing 20 tissues of plants. Those results indicated that about 75 percent of the carotenoids found in the flower of the transformed plant contained a keto group. Further, in maize the phytonene synthase (Psy), Phytone desaturase (Pds), and the (-carotene desatu rase were identified and it was shown, that PSY activity is an important control point for the regulation of the flux. 25 Genes suitable for conversion of microorganisms have also been reported (U.S. Patent No. 6,150,130 WO 99/61652). Two different genes that can convert a carotenoid p ionene ring compound into astaxanthin have been isolated from the green alga Haema tococcus pluvialis. Zeaxanthin or (-carotene were also found in the marine bacteria Agrobacterium aurantiacum, Alcaligenes PC-1, Erwinia uredovora. An A. aurantiacum 30 crtZ gene was introduced to an E. coli transformant that accumulated all-trans-p carotene. The transformant so formed produced zeaxanthin. A gene cluster encoding the enzymes for a carotenoid biosynthesis pathway has been also cloned from the pur ple photosynthetic bacterium Rhodobacter capsulatus. A similar cluster for carotenoid biosynthesis from ubiquitous precursors such as farnesyl pyrophosphate and geranyl 35 pyrophosphate has been cloned from the non-photosynthetic bacteria Erwinia herbi- 700 cola. Yet another carotenoid biosynthesis gene cluster has been cloned from Erwinia uredovora. It is yet unknown and unpredictable as to whether enzymes encoded by other organisms behave similarly to that of A. aurantiacum in vitro or in vivo after trans formation into the cells of a higher plant. 5 [0009.0.10.10]In addition to the above said about the biological importance of carote noids, e.g. in vision, bone growth, reproduction, immune function, gene expression, emboryonic expression, cell division and cell differation, and respiration, it should be mentioned that in the world, the prevalence of vitamin A deficiency ranges from 100 to 250 million children and an estimated 250.000 to 500.000 children go blind each year 10 from vitamin A deficiency. Thus, it would be advantageous if an algae or other microorganism were available who produce large amounts of p-carotene, beta-cryptoxanthin, lutein, zeaxanthin, or other carotenoids. It might be advantageous that only small amounts or no lutein is produced so that such organisms could be transformed with e.g. one or more of an appropriate 15 hydroxylase gene and/or an appropriate ketolase gene to produce cryptoxanthin, zeax anthin or astaxanthin. The invention discussed hereinafter relates in some embodi ments to such transformed prokaryotic or eukaryotic microorganisms. It would also be advantageous if a marigold or other plants were available whose flow ers produced large amounts of p-carotene, beta-cryptoxanthin, lutein, zeaxanthin, or 20 other carotenoids. It might be advantageous that only small amounts or no lutein is produced so that such plants could be transformed with one or more of an appropriate hydroxylase gene and an appropriate ketolase gene to produce cryptoxanthin, zeaxan thin or astaxanthin from e.g the flowers of the resulting transformants. The invention discussed hereinafter relates in some embodiments to such transformed plants. 25 [0010.0.10.10]Therefore improving the quality of foodstuffs and animal feeds is an im portant task of the food-and-feed industry. This is necessary since, for example, as mentioned above xanthophylls, which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as balanced as possible a carotenoids profile in the 30 diet since a great excess of some carotenoids above a specific concentration in the food has only some positive effect. A further increase in quality is only possible via ad dition of further carotenoids, which are limiting..
701 [0011.0.10.10]To ensure a high quality of foods and animal feeds, it is therefore nec essary to add one or a plurality of carotenoids in a balanced manner to suit the organ ism. [0012.0.10.10]Accordingly, there is still a great demand for new and more suitable 5 genes which encode enzymes which participate in the biosynthesis of carotenoids, e.g. xanthophylls, e.g. like beta-crypotxanthin, or zeaxanthin, or astaxanthin, and make it possible to produce them specifically on an industrial scale without unwanted byprod ucts forming. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved proc 10 esses for obtaining the highest possible contents of carotenoids like xanthophylls; on the other hand as less as possible byproducts should be produced in the production process. [0013.0.0.10] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.10.10]Accordingly, in a first embodiment, the invention relates to a process for 15 the production of a fine chemical, whereby the fine chemical is a xanthophyll. Accord ingly, in the present invention, the term "the fine chemical" as used herein relates to a "Xanthophyll". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising xanthophylls. [0015.0.10.10] In one embodiment, the term "xanthophylls", "the fine chemical" or "the 20 respective fine chemical" means at least one chemical compound with xanthophylls activity selected from the group comprising zeaxanthin or p-cryptoxanthin. Throughout the specification the term "the fine chemical" or "the respective fine chemical" means at xanthophylls especially selected from the group comprising zeaxanthin or p cryptoxanthin in free form or bound to other compounds such as membrane lipids. 25 In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.10.10]Accordingly, the present invention relates to a process for the production of xanthophylls preferably zeaxanthin and/or cryptoxanthin, which comprises 30 (a) increasing or generating the activity of a protein as shown in table 1l, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 11, column 5, in an organelle of a microorganism or plant, or 702 (b) increasing or generating the activity of a protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 11, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 5 (c) growing the organism under conditions which permit the production of the fine chemical, thus, xanthophylls preferably zeaxanthin and/or cryptoxanthin or fine chemicals comprising xanthophylls preferably zeaxanthin and/or cryptoxanthin, in said organism or in the culture medium surrounding the organism. [0016.1.10.10] Accordingly, the term "the fine chemical" means "beta 10 cryptoxanthin" in relation to all sequences listed in table I, application no. 11, columns 3 and 7 or homologs thereof. Accordingly, the term "the fine chemical" can mean "zeax anthin" or "cryptoxanthin", owing to circumstances and the context. Preferably the term "the fine chemical" means "zeaxanthin". In order to illustrate that the meaning of the term "the respective fine chemical" means "cryptoxanthin", and/or "zeaxanthin" owing to 15 the sequences listed in the context the term "the respective fine chemical" is also used. The terms "beta-cryptoxanthin" and "cryptoxanthin" are used as equivalent terms. [0017.0.10.10]In another embodiment the present invention is related to a process for the production of xanthophylls, preferably zeaxanthin and/or cryptoxanthin, which com prises 20 (a) increasing or generating the activity of a protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 11, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, ap 25 plication no. 11, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 11, column 5, which are joined to a nucleic acid sequence encoding 30 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 703 (d) growing the organism under conditions which permit the production of xantho phylls, preferably zeaxanthin and/or cryptoxanthin in said organism. [0017.1.10.10]In another embodiment, the present invention relates to a process for the production of xanthophylls, preferably zeaxanthin and/or cryptoxanthin, which com 5 prises (a) increasing or generating the activity of a protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 11, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or 10 (b) increasing or generating the activity of a protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 11, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine 15 chemical, thus, xanthophylls, preferably zeaxanthin and/or cryptoxanthin or fine chemicals comprising xanthophylls, preferably zeaxanthin and/or cryptoxanthin, in said organism or in the culture medium surrounding the organism. [0018.0.10.10]Advantagously the activity of the protein as shown in table II, application no. 11, column 3 encoded by the nucleic acid sequences as shown in table I, applica 20 tion no. 11, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.10] to [0024.0.0.10] for the disclosure of the paragraphs [0019.0.0.10] to [0024.0.0.10] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.10.10] Even more preferred nucleic acid sequences are encoding transit 25 peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se 30 quences shown in table I, application no. 11, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 704 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro 5 teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac 10 ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en 15 coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any 20 case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. 25 [0026.0.10.10] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 11, column 3 and its homologs as disclosed in table I, application no. 11, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex 30 pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 11, column 3 and its homologs as disclosed in table I, application no. 11, columns 5 and 7. [0027.0.0.10] to [0029.0.0.10] for the disclosure of the paragraphs [0027.0.0.10] to 35 [0029.0.0.10] see paragraphs [0027.0.0.0] and [0029.0.0.0] above.
705 [0030.0.10.10] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a 5 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences 10 derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more 15 preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be 20 also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 11, columns 5 and 7. The person skilled in the art is able to join 25 said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 11, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 30 protein metioned in table II, application no. 11, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 11, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids 35 in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six 706 amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 11, columns 5 and 7. Fur 5 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.10.10] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.10.10] Alternatively to the targeting of the sequences shown in table 1l, ap 10 plication no. 11, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 15 11, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 20 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 25 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.10] and [0030.3.0.10] for the disclosure of the paragraphs [0030.2.0.10] and [0030.3.0.10] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.10.10] For the inventive process it is of great advantage that by transforming 30 the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 11, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 707 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 5 scribed from the sequences depicted in table I, application no. 11, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 11, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal 10 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, 15 PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 11, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 11, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 11, columns 5 and 7 or a sequence encoding a 20 protein as depicted in table II, application no. 11, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 11, columns 5 and 7 are encoded by differ 25 ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in 30 troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the 35 nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 11, columns 5 and 7.
708 [0030.5.10.10] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 11, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.10.10] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 11, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.10] and [0032.0.0.10] for the disclosure of the paragraphs [0031.0.0.10] and [0032.0.0.10] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.10.1 O]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 11, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 11, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.10.10]Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 11, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.10] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.10.10] The sequence of b1095 (Accession number NP_415613) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-oxoacyl-[acyl-carrier-protein] synthase II". Accordingly, in one embodiment, the process of the present invention comprises the 709 use of a "3-oxoacyl-[acyl-carrier-protein] synthase 1l" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of xanthophylls and/or tryglyc erides, lipids, oils and/or fats containing xanthophylls, in particular for increasing the amount of xanthophylls in free or bound form in an organism or a part thereof, as men 5 tioned. In one embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1095 10 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2022 (Accession number NP_416526) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "bifunctional histidinol-phosphatase / imidazoleglycerol-phosphate 15 dehydratase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "bifunctional histidinol-phosphatase / imidazoleglycerol phosphate dehydratase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of xanthophylls and/or tryglycerides, lipids, oils and/or fats con taining xanthophylls, in particular for increasing the amount of xanthophylls in free or 20 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2022 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2022 25 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2344 (Accession number PIR:F65007) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "outer membrane porin, transport of long-chain fatty acids, sensitiv 30 ity to phage T2". Accordingly, in one embodiment, the process of the present invention comprises the use of a "outer membrane porin, transport of long-chain fatty acids, sen sitivity to phage T2" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of xanthophylls and/or tryglycerides, lipids, oils and/or fats contain ing xanthophylls, in particular for increasing the amount of xanthophylls in free or 35 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2344 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one 710 transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2344 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 5 [0037.0.10.10] In one embodiment, the homolog of the b1095, b2022 and/or b2344 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b1 095, b2022 and/or b2344 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b1095, b2022 and/or b2344 is a homolog having said acitivity and being derived from Gam 10 maproteobacteria. In one embodiment, the homolog of the b1095, b2022 and/or b2344 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the b1095, b2022 and/or b2344 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the b1 095, b2022 and/or b2344 is a homolog having said acitivity and being derived 15 from Escherichia, preferably from Escherichia coli. [0038.0.0.10] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.10.10] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 11, column 3" if its de novo activ 20 ity, or its increased expression directly or indirectly leads to an increased in the fine chemical level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica tion no. 11, column 3, preferably in the event the nucleic acid sequences encoding said 25 proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 11, column 3, or which has at least 10% of 30 the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in table II, application no. 11, column 3 of Saccharomyces cerevisiae. [0040.0.0.10] to [0047.0.0.10] for the disclosure of the paragraphs [0040.0.0.10] to [0047.0.0.10] see paragraphs [0040.0.0.0] to [0047.0.0.0] above.
711 [0048.0.10.10]Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 5 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 11, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.10] to [0051.0.0.10] for the disclosure of the paragraphs [0049.0.0.10] to [0051.0.0.10] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 10 [0052.0.10.10]For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 11, columns 5 and 7 alone 15 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 20 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.10] to [0058.0.0.10] for the disclosure of the paragraphs [0053.0.0.10] to [0058.0.0.10] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.10.10]In case the activity of the Escherichia coli protein b1095 or its homologs, 25 e.g. a "3-oxoacyl-[acyl-carrier-protein] synthase 1l" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of xanthophylls, more preferably zeaxanthin between 25% and 37% or more is conferred. In case the activity of the Escherichia coli protein b2022 or its homologs, e.g. a "bifunc 30 tional histidinol-phosphatase / imidazoleglycerol-phosphate dehydratase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of xanthophylls, more prefera bly zeaxanthin between 23% and 29% or more is conferred. In case the activity of the Escherichia coli protein b2344 or its homologs, e.g. a "outer 712 membrane porin, transport of long-chain fatty acids, sensitivity to phage T2" is in creased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of xanthophylls, more preferably zeaxanthin between 27% and 90% or more is conferred. 5 [0060.0.10.10] In case the activity of the Escherichia coli proteins b1095, b2022 and/or b2344 or their homologs, are increased advantageously in an organelle such as a plas tid or mitochondria, preferably an increase of the fine chemical xanthophylls, more preferably zeaxanthin is conferred. [0061.0.0.10] and [0062.0.0.10] for the disclosure of the paragraphs [0061.0.0.10] and 10 [0062.0.0.10] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.10.10]A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 11, column 7 or of the poly 15 peptide as shown in the amino acid sequences as disclosed in table 1l, application no. 11, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 11, columns 5 and 7 or its herein described functional homologues 20 and has the herein mentioned activity. [0064.0.10.10]/ [0065.0.0.10] and [0066.0.0.10] for the disclosure of the paragraphs [0065.0.0.10] and [0066.0.0.10] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.10.10]In one embodiment, the process of the present invention comprises one 25 or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, appli cation no. 11, columns 5 and 7 or its homologs activity having herein-mentioned 30 xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity; and/or 713 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 11, columns 5 and 7, e.g. a nucleic 5 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 11, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity; and/or 10 c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 11, columns 5 and 15 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypep tide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 20 polypeptide of the invention having herein-mentioned xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 11, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein 25 encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned xanthophylls, preferably cryp toxanthin and/or zeaxanthin increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 11, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the 30 organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned xan thophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity, e.g. of a 714 polypeptide having the activity of a protein as indicated in table 1l, application no. 11, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole 5 cule of the invention or the polypeptide of the invention having herein-mentioned xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 11, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of 10 the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 11, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements 15 form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en 20 hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of 25 heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 30 k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned xanthophylls, pref erably cryptoxanthin and/or zeaxanthin increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 11, columns 715 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial tar geting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 5 mentioned xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 11, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advantageously stable transformation of or ganelles preferably plastids with an inventive nucleic acid sequence preferably in 10 form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned xanthophylls, preferably cryptoxanthin and/or zeaxanthin increasing 15 activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 11, columns 5 and 7 or its homologs activity in plastids by inte gration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.10.10]Preferably, said mRNA is the nucleic acid molecule of the present inven 20 tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles 25 such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table 1l, application no. 11, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. [0069.0.0.10] to [0079.0.0.10] for the disclosure of the paragraphs [0069.0.0.10] to [0079.0.0.10] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. 30 [0080.0.10.10]The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table 1l, application no. 11, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like 716 a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table 1l, application no. 11, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA 5 binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 11, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 11, column 3, see e.g. in 10 W001/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.10] to [0084.0.0.10] for the disclosure of the paragraphs [0081.0.0.10] to [0084.0.0.10] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.10.10]Owing to the introduction of a gene or a plurality of genes conferring the 15 expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, 20 but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous xanthophyll composition comprising a higher content of (from a viewpoint of nutrional physiology limited) xan thopylls, like violaxanthin, antheraxanthin, lutein, astaxanthin, canthaxanthin and/or fucoxanthin. 25 [0086.0.0.10] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.10.10]By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to xanthophylls, triglycerides, lipids, oils and/or fats containing xanthophylls compounds such as zeaxanthin, cryptoxanthin, violaxanthin, 30 antheraxanthin, lutein, astaxanthin, canthaxanthin and/or fucoxanthin preferably zeax anthin and/or cryptoxanthin. [0088.0.10.10]Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 717 a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 11, column 5 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in 10 the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 15 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.10.10] The organism, in particular the microorganism, non-human animal, the 20 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound xanthopylls, in particu lar zeaxanthin and/or cryptoxanthin. 25 [0090.0.0.10] to [0097.0.0.10] for the disclosure of the paragraphs [0090.0.0.10] to [0097.0.0.10] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.10.10]With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 30 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either 718 a) the nucleic acid sequence as shown in table 1, application no. 11, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 11, columns 5 and 5 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 10 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 15 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.10.1 0]The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 20 depicted in the sequence protocol and disclosed in table 1, application no. 11, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 11, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid 25 sequences as depicted in the sequence protocol and disclosed in table 1, application no. 11, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. 30 [0100.0.0.10] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.6.6] In an advantageous embodiment of the invention, the organism takes the form of a plant whose xanthophyll content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant 719 breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned xanthopylls and the general amount of xanthopylls as energy source and/or protecting compounds in feed. After the activity of the protein as shown in table 1l, application no. 11, column 3 has been increased or generated, or after the 5 expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.10] to [0110.0.0.10] for the disclosure of the paragraphs [0102.0.0.10] to [0110.0.0.10] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. 10 [0111.0.10.10]In a preferred embodiment, the fine chemical (xanthophyll) is produced in accordance with the invention and, if desired, is isolated. The production of further xanthophylss such as zeaxanthin, cryptoxanthin, violaxanthin, antheraxanthin, lutein, astaxanthin, canthaxanthin and/or fucoxanthin and mixtures thereof or mixtures of other xanthophylls by the process according to the invention is advantageous. It may 15 be advantageous to increase the pool of free xanthophylls in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.10.10]In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to 20 gether with the transformation of anucleic acid encoding a protein or polypeptid for ex ample another gene of the xanthopyhll biosynthesis, or a compound, which functions as a sink for the desired xanthopyhll for example for xanthophylls like zeaxanthin, cryp toxanthin, violaxanthin, antheraxanthin, lutein, astaxanthin, canthaxanthin and/or fucoxanthin, preferably zeaxanthin and/or cryptoxanthin in the organism is useful to 25 increase the production of the respective fine chemical. [0113.0.10.10]In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further ca rotenoids, e.g. carotenes or xanthophylls, in particular ketocarentoids or hydrocarote noids, e.g. lutein, lycopene, alpha-carotene, or beta-carotene, or compounds for which 30 the respective fine chemical is a biosynthesis precursor compounds, e.g. astaxanthin, or mixtures thereof or mixtures of other carotenoids, in particular of xanthophylls, by the process according to the invention is advantageous.
720 [0114.0.10.10]In the case of the fermentation of microorganisms, the abovementioned desired fine chemical may accumulate in the medium and/or the cells. If microorgan isms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the bio 5 mass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subse quently be reduced, or concentrated, with the aid of known methods such as, for ex ample, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse os 10 mosis or by nanofiltration. Afterwards advantageously further compounds for formula tion can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, and spray granulation or by other meth ods. Preferably the respective fine chemical comprising compositions are isolated from 15 the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation 20 and/or concentration methods. [0115.0.10.10]Transgenic plants which comprise the carotenoids such as said xantho phylls, e.g. cryptoxanthin or zeaxanthin (or astaxanthin as it is synthesized from cryp toxanthin or zeaxanthin) synthesized in the process according to the invention can ad vantageously be marketed directly without there being any need for the carotenoids 25 synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, flowers, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing 30 about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, (in the form of their oils, fats, lipids, as extracts, e.g. ether, alcohol, or other organic solvents or water 35 containing extract and/or free xanthophylls. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the medium in 721 which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material..E.g., oils, fats, and/or lipids comprising xanthophylls can be obtained by what is known as cold beating or cold 5 pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they can previously be comminuted, steamed or roasted. Seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted di 10 rectly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. Thereafter, the resulting products can be processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter can be first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition 15 of acid such as phosphoric acid. Because carotenoids in microorganisms are localized intracellular, their recovery es sentials comes down to the isolation of the biomass. Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, adsorbed on the cells, has to be re 20 moved. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. [0115.1.10.10]The identity and purity of the compound(s) isolated can be determined by prior-art techniques. They encompass high-performance liquid chromatography 25 (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbiological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial 30 Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.
722 [0115.2.10.10]Xanthophylls, in particular beta-cryptoxanthin or zeaxanthin can for ex ample be detected advantageously via HPLC, LC or GC separation methods. The un ambiguous detection for the presence of xanthophylls, in particular beta-cryptoxanthin or zeaxanthin containing products can be obtained by analyzing recombinant organ 5 isms using analytical standard methods: LC, LC-MS, MS or TLC). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cooking, or via other applicable methods [0116.0.10.10]In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part 10 thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 11, columns 5 and 7 or a fragment 15 thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 11, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 20 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 25 molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 723 preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 5 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 11, column 7 and conferring an in 10 crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism 15 or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 11, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 20 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 11, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 25 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. 30 [0116.1.10.10.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 11, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid 724 molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 11, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 5 11, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 11, columns 5 and 7. [0116.2.10.10.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 11, 10 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 11, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 15 11, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 11, columns 5 and 7. [0117.0.10.10]In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 11, columns 5 and 7 by 20 one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 11, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 11, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in 25 table II, application no. 11, columns 5 and 7. [0118.0.0.10] to [0120.0.0.10] for the disclosure of the paragraphs [0118.0.0.10] to [0120.0.0.10] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.10.10]Nucleic acid molecules with the sequence shown in table I, application no. 11, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 30 sequences shown in table II, application no. 11, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 11, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 11, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously 725 increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.10] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.10.10]Nucleic acid molecules, which are advantageous for the process accord 5 ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 11, column 3 can be determined from generally ac cessible databases. [0124.0.0.10] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.10.10]The nucleic acid molecules used in the process according to the inven 10 tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 11, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.10] to [0133.0.0.10] for the disclosure of the paragraphs [0126.0.0.10] to 15 [0133.0.0.10] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.10.10]However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 11, columns 5 and 20 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 11, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 25 [0135.0.0.10] to [0140.0.0.10] for the disclosure of the paragraphs [0135.0.0.10] to [0140.0.0.10] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.10.10]Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 11, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown 30 in table I, application no. 11, columns 5 and 7 or the sequences derived from table II, application no. 11, columns 5 and 7.
726 [0142.0.10.10]Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. 5 Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 11, column 7 is derived from said aligments. [0143.0.10.10]Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 10 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 11, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.10] to [0151.0.0.10] for the disclosure of the paragraphs [0144.0.0.10] to [0151.0.0.10] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 15 [0152.0.10.10]Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 11, columns 5 and 7, preferably of table I B, application no. 11, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 20 xanthophyll preferably zeaxanthin and/or cryptoxanthin or lipids, oils and/or fats con taining xanthophyll preferably zeaxanthin and/or cryptoxanthin increasing activity. [0153.0.0.10] to [0159.0.0.10] for the disclosure of the paragraphs [0153.0.0.10] to [0159.0.0.10] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.10.10] Further, the nucleic acid molecule of the invention comprises a nucleic 25 acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in 30 table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7, thereby forming a stable duplex. Preferably, the 727 hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U 5 or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.10.10]The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more 10 preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application 15 no. 11, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.10.10]The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 11, 20 columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a xanthophyll preferably zeaxanthin and/or cryptoxanthin, triglycerides, lipids, oils and/or fats containing xanthophyll preferably zeaxanthin and/or cryptoxanthin in crease by for example expression either in the cytsol or in an organelle such as a plas 25 tid or mitochondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 11, column 3. [0163.0.10.10]Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 30 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito 35 chondria or both, preferably in plastids. The nucleotide sequences determined from the 728 cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region 5 of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 11, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application 10 no. 11, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 11, column 7 will 15 result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.10] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.10.10]The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 11, columns 5 and 7 20 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a xanthophyll preferably zeaxanthin and/or cryp toxanthin, triglycerides, lipids, oils and/or fats containing xanthophylls preferably zeax anthin and/or cryptoxanthin increasing the activity as mentioned above or as described in the examples in plants or microorganisms is comprised. 25 [0166.0.10.10]As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap 30 plication no. 11, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.10.10]In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention.
729 The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 11, 5 columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.10] and [0169.0.0.10] for the disclosure of the paragraphs [0168.0.0.10] and [0169.0.0.10] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. 10 [0170.0.10.10]The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 11, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that 15 polypeptides depicted by the sequence shown in table II, application no. 11, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 11, columns 5 and 7 or the functional homologues. In 20 a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 11, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 11, columns 5 and 7, prefera 25 bly as indicated in table I A, application no. 11, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 11, columns 5 and 7. [0171.0.0.10] to [0173.0.0.10] for the disclosure of the paragraphs [0171.0.0.10] to [0173.0.0.10] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. 30 [0174.0.10.10]Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 11, columns 5 730 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.6] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.10.10]Preferably, nucleic acid molecule of the invention that hybridizes under 5 stringent conditions to a sequence shown in table I, application no. 11, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above 10 mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. 15 [0177.0.0.10] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.10.10] For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 11, columns 5 and 7. 20 [0179.0.0.10] and [0180.0.0.10] for the disclosure of the paragraphs [0179.0.0.10] and [0180.0.0.10] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.10.10]Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol 25 or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 11, columns 5 and 7, preferably shown in table II A, application no. 11, columns 5 and 7 yet retain said activity described herein. 30 The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 11, columns 5 and 7, preferably shown in table II A, application no. 11, columns 5 and 7 and is capa- 731 ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se 5 quence shown in table II, application no. 11, columns 5 and 7, preferably shown in ta ble II A, application no. 11, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 11, columns 5 and 7, preferably shown in table II A, application no. 11, columns 5 and 7, even more prefera bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap 10 plication no. 11, columns 5 and 7, preferably shown in table II A, application no. 11, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 11, columns 5 and 7, preferably shown in table II A, application no. 11, columns 5 and 7. [0182.0.0.10] to [0188.0.0.10] for the disclosure of the paragraphs [0182.0.0.10] to 15 [0188.0.0.10] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.10.10]Functional equivalents derived from one of the polypeptides as shown in table II, application no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 20 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 25 polypeptide as shown in table II, application no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7. [0190.0.10.10] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7 resp., according to the invention by substitution, insertion or 30 deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7 resp., ac 35 cording to the invention and encode polypeptides having essentially the same proper- 732 ties as the polypeptide as shown in table II, application no. 11, columns 5 and 7, pref erably shown in table II B, application no. 11, columns 5 and 7. [0191.0.0.10] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.10.10]A nucleic acid molecule encoding an homologous to a protein sequence 5 of table II, application no. 11, columns 5 and 7, preferably shown in table II B, applica tion no. 11, columns 5 and 7 resp., can be created by introducing one or more nucleo tide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7 resp., such 10 that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. 15 [0193.0.0.10] to [0196.0.0.10] for the disclosure of the paragraphs [0193.0.0.10] to [0196.0.0.10] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.10.10] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7, comprise also allelic variants with at least ap 20 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. 25 Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 11, columns 5 and 7, preferably shown in table I B, applica tion no. 11, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro 30 teins synthesized is advantageously retained or increased. [0198.0.10.10]In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 11, columns 5 and 7, preferably shown in table I B, 733 application no. 11, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 5 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7. 10 [0199.0.10.10]Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the 15 encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7. [0200.0.10.10]In one embodiment, the nucleic acid molecule of the invention or used in 20 the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 11, columns 5 and 7, preferably shown in table II B, application no. 11, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence 25 of the sequences shown in table I, application no. 11, columns 5 and 7, preferably shown in table I B, application no. 11, columns 5 and 7. [0201.0.10.10]Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at 30 least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 11, columns 5 and 7 ex pressed under identical conditions.
734 [0202.0.10.10]Homologues of table I, application no. 11, columns 5 and 7 or of the derived sequences of table II, application no. 11, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 5 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 10 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 15 [0203.0.0.10] to [0215.0.0.10] for the disclosure of the paragraphs [0203.0.0.10] to [0215.0.0.10] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.10.10]Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 20 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 11, columns 5 and 7, preferably in table II B, application no. 11, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 25 cleic acid molecule shown in table I, application no. 11, columns 5 and 7, pref erably in table I B, application no. 11, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 30 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 735 d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 10 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 15 (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 11, column 7 and conferring an increase in the amount of the fine 20 chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a 25 part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 11, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod 30 ing a domaine of the polypeptide shown in table 1l, application no. 11, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and 736 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 5 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 11, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 11, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence 10 which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 11, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 11, 15 columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 11, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 11, columns 5 and 7. Ac 20 cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 11, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 11, columns 5 and 7. Accordingly, in one embodiment, the protein encoded 25 by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 11, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 11, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 30 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 11, columns 5 and 7. [0217.0.0.10] to [0226.0.0.10] for the disclosure of the paragraphs [0217.0.0.10] to [0226.0.0.10] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.10.10]In general, vector systems preferably also comprise further cis 35 regulatory regions such as promoters and terminators and/or selection markers by 737 means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this 5 fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci 10 ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 11, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di 15 rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.10] to [0239.0.0.10] for the disclosure of the paragraphs [0228.0.0.10] to [0239.0.0.10] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.10.10] The abovementioned nucleic acid molecules can be cloned into the 20 nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 11, columns 5 and 7 25 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of xanthophyll biosynthetic pathway such as for cryptoxanthin or zeaxanthin, e.g. one of the above mentioned genes of this pathway, or e.g. for the synthesis of astaxanthin or for another provitamin A or for another carotenoids is expressed in the organisms such 30 as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might 35 be advantageously to combine the sequences shown in Table I, application no. 11, 738 columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microor ganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.10.10] In a further embodiment of the process of the invention, therefore, 5 organisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the xanthophyll metabolism, in particular in synthesis of beta-cryptoxanthin, zeaxanthin, astaxanthin or lutein. Indirect overexpression might be brought about by the manipula tion of the regulation of the endogenous gene, for example through promotor mutations 10 or the expression of natural or artificial transcriptional regulators. [0242.0.10.10] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the carote noids biosynthetic pathway, such as phytoene synthase (Psy), which is an important 15 control point for the regulation of the flux (Fraser et al., 2002), phytoene desaturase (Pds), z-carotene desaturase, above mentioned enzymes (s. introduction of the appli cation), e.g. hydroxylases such as beta-carotene hydroxylase (US 6,214,575), keto lases, or cyclases such as the beta-cyclase (US 6,232,530) or oxygenases such as the beta-C4-oxygenase described in US 6,218,599 or homologs thereof, astaxanthin syn 20 thase (US 6,365,386), or other genes as described in US 6,150,130. These genes can lead to an increased synthesis of the essential carotenoids, in particular xanthophylls. [0242.1.10.10]In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a zeaxanthin or cryptoxanthin degrading protein is attenuated, in particular by reducing the rate of ex 25 pression of the corresponding gene, or by inactivating the gene for example the mutagenesis and/or selection. In another advantageous embodiment the synthesis of competitive pathways which rely on the same precoursers are down regulated or inter rupted. A person skilled in the art knows for example, that the inhibition of the lutein synthesis from carotene increases the amount of cryptoxanthine and zeaxanthin in an 30 organism, in particular in plants. In one embodiment, the level of astaxanthin in the organism shall be increased. Thus, astaxanthin degrading enzymes are attenuated but not enzymes catalyzing the synthesis of astaxanthin from zeaxanthin or cryptoxanthin. [0242.2.10.10]The respective fine chemical produced can be isolated from the organ ism by methods with which the skilled worker are familiar, for example via extraction, 739 salt precipitation, and/or different chromatography methods. The process according to the invention can be conducted batchwise, semibatchwise or continuously. The fine chemcical and other xanthophylls produced by this process can be obtained by har vesting the organisms, either from the crop in which they grow, or from the field. This 5 can be done via pressing or extraction of the plant parts. [0242.3.10.10] Preferrably, the compound is a composition comprising the essentially pure cryptoxanthin or zeaxanthin or a recovered or isolated cryptoxanthin or zeaxathin, in particular, the respective fine chemical, free or in protein- and/or lipid-bound form. [0243.0.0.10] to [0264.0.0.10] for the disclosure of the paragraphs [0243.0.0.10] to 10 [0264.0.0.10] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.10.10]Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, 15 the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide 20 or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 25 11, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.10] to [0287.0.0.10] for the disclosure of the paragraphs [0266.0.0.10] to [0287.0.0.10] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.10.1 O]Accordingly, one embodiment of the invention relates to a vector where 30 the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in 740 table II, application no. 11, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 11, columns 5 and 7 or their homologs is functionally linked to a 5 regulatory sequences which permit the expression in plastids. [0289.0.0.10] to [0296.0.0.10] for the disclosure of the paragraphs [0289.0.0.10] to [0296.0.0.10] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.10.10] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial 10 cells), for example using the antibody of the present invention as described below, in particular, an anti-b1 095, anti-2022 and/or anti-b2344 protein antibody or an antibody against polypeptides as shown in table II, application no. 11, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present inven tion or fragment thereof, i.e., the polypeptide of this invention. Preferred are mono 15 clonal antibodies. [0298.0.0.10] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.10.10]In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 11, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 11, columns 5 and 7 or func 20 tional homologues thereof. [0300.0.10.10]In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 11, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the 25 consensus sequence shown in table IV, application no. 11, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.10] to [0304.0.0.10] for the disclosure of the paragraphs [0301.0.0.10] to 30 [0304.0.0.10] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.10.10]In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor- 741 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 11, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown 5 in table II A and/or II B, application no. 11, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 11, columns 5 and 7 by not more than 80% or 70% of the amino 10 acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 11, columns 5 and 7. [0306.0.0.10] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. 15 [0307.0.10.10]In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 11, columns 5 and 7 by one or more amino acids. In another embodiment, 20 said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 11, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 11, columns 25 5 and 7. [0308.0.10.10]In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 11, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 11, columns 5 and 7 by one or more amino acids, preferably by more than 5, 30 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention 35 takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep- 742 tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.10] to [0311.0.0.10] for the disclosure of the paragraphs [0309.0.0.10] to 5 [0311.0.0.10] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.10.10]A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 11, columns 5 and 7. 10 [0313.0.10.10]Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 15 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 11, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 20 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 11, columns 5 and 7 or which is homologous thereto, as defined above. 25 [0314.0.10.10]Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 11, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 30 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 11, columns 5 and 7. [0315.0.0.10] for the disclosure of this paragraph see paragraph [0315.0.0.0] above.
743 [0316.0.10.10]Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 11, columns 5 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 10 or used in the process of the present invention. [0317.0.0.10] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.10.10]Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 11, column 3. Differences shall mean at least one amino acid 15 different from the sequences as shown in table II, application no. 11, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 11, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in 20 efficiency or activity in relation to the wild type protein. [0319.0.10.10]Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha 25 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 11, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. 30 [0320.0.0.10] to [0322.0.0.10] for the disclosure of the paragraphs [0320.0.0.10] to [0322.0.0.10] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.10.10]In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 11, column 3 refers to a polypeptide having an amino acid sequence corre- 744 sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub 5 stantially homologous to a polypeptide or protein as shown in table II, application no. 11, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.10] to [0329.0.0.10] for the disclosure of the paragraphs [0324.0.0.10] to [0329.0.0.10] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 10 [0330.0.10.10]In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 11, columns 5 and 7. [0331.0.0.10] to [0346.0.0.10] for the disclosure of the paragraphs [0331.0.0.10] to [0346.0.0.10] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 15 [0347.0.6.6] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep 20 tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 11, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe 25 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 11, col umn 3 or a protein as shown in table II, application no. 11, column 3-like activity is in 30 creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.10] for the disclosure of this paragraph see paragraph [0348.0.0.0] above.
745 [0349.0.10.10]A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 11, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 5 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.10] to [0358.0.0.10] for the disclosure of the paragraphs [0350.0.0.10] to [0358.0.0.10] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.10.10]Transgenic plants comprising the xanthophylls preferably zeaxanthin 10 and/or cryptoxanthin synthesized in the process according to the invention can be mar keted directly without isolation of the compounds synthesized. In the process according to the invention, plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the 15 seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The xantho phylls preferably zeaxanthin and/or cryptoxanthin produced in the process according to the invention may, however, also be isolated from the plant in the form of their free xan thophylls preferably zeaxanthin and/or cryptoxanthin, lipids, oils and/or fats containing said produced xanthophylls preferably zeaxanthin and/or cryptoxanthin or xanthophylls 20 preferably zeaxanthin and/or cryptoxanthin bound to proteins. Xanthophylls preferably zeaxanthin and/or cryptoxanthin produced by this process can be isolated by harvest ing the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, prefera bly the plant leaves, plant fruits, flowers and the like. 25 The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, flowers and the like as mentioned above in the case of transgenic plant organisms derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, pharma 30 ceuticals or fine chemicals. [0360.0.0.10] to [0362.0.0.10] for the disclosure of the paragraphs [0360.0.0.10] to [0362.0.0.10] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.10.10] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 746 80% by weight, very especially preferably more than 90% by weight, of the fatty acids produced in the process can be isolated. The resulting xanthophylls can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, antibiotics and 5 the like, and, if appropriate, formulated. [0364.0.10.10] In one embodiment, the xanthophyll is the fine chemical. [0365.0.10.10] The xanthophylls, in particular the respective fine chemicals obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the 10 production of pharmaceuticals, health products, foodstuffs, animal feeds, nutrients or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, health products, food stuff, animal feeds, nutrients or cosmetics com prising the steps of the process according to the invention, including the isolation of the carotenoids containing, in particular xanthophylls containing composition produced or 15 the respective fine chemical produced if desired and formulating the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the carentoids or xanthophylls produced in the process or of the transgenic organ isms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharma 20 ceuticals or for the production of astaxanthin, e.g. in after isolation of the respective fine chemical or without, e.g. in situ, e.g in the organism used for the process for the pro duction of the respective fine chemical. [0366.0.0.10] to [0369.0.0.10] for the disclosure of the paragraphs [0366.0.0.10] to [0369.0.0.10] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 25 [0370.0.10.10] The fermentation broths obtained in this way, containing in particular zeaxanthin and/or beta-cryptoxanthin alone or in mixtures with other carotenoids, in particular with other xanthophylls, e.g. with astaxanthin, or containing microorganisms or parts of microorganisms, like plastids, containing zeaxanthin and/or beta cryptoxanthin alone or in mixtures with other carotenoids, in particular with other xan 30 thophylls, e.g. with astaxanthin, normally have a dry matter content of from 1 to 70% by weight, preferably 7.5 to 25% by weight. Sugar-limited fermentation is additionally ad vantageous, e.g. at the end, for example over at least 30% of the fermentation time. This means that the concentration of utilizable sugar in the fermentation medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3 g/I during this time. The fermenta- 747 tion broth is then processed further. Depending on requirements, the biomass can be removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. 5 The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. 10 As carotenoids are often localized in membranes or plastids, in one embodiment it is advantageous to avoid a leaching of the cells when the biomass is isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decanta tion, coagulation/flocculation or a combination of these methods, from the fermentation broth. The dry biomass can directly be added to animal feed, provided the carotenoids 15 concentration is sufficiently high and no toxic compounds are present. In view of the instability of carentoids, conditions for drying, e.g. spray or flash-drying, can be mild and can be avoiding oxidation and cis/trans isomerization. For example antioxidants, e.g. BHT, ethoxyquin or other, can be added. In case the carotenoids concentration in the biomass is to dilute, solvent extraction can be used for their isolation, e.g. with al 20 cohols, ether or other organic solvents, e.g. with methanol, ethanol, aceton, alcoholic potassium hydroxide, glycerol-phenol, liquefied phenol or for example with acids or bases, like trichloroacetatic acid or potassium hydroxide. A wide range of advanta geous methods and techniques for the isolation of carotenoids, in particular of xantho phylls, in particular of zeaxanthin or cryptoxanthin can be found in the state of the art. 25 In case phenol is used it can for example be removed with ether and water extraction and the dry eluate comprises a mixture of the carotenoids of the biomass. [0371.0.10.10] Accordingly, it is possible to purify the carotenoids, in particular the xanthophylls produced according to the invention further. For this purpose, the product containing composition, e.g. a total or partial lipid extraction fraction using organic sol 30 vents, e.g. as described above, is subjected for example to a saponification to remove triglycerides, partition between e.g. hexane/methanol (separation of non-polar epiphase from more polar hypophasic derivates) and separation via e.g. an open column chro matography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be 35 repeated if necessary, using the same or different chromatography resins. The skilled 748 worker is familiar with the choice of suitable chromatography resins and their most ef fective use. [0372.0.0.10] to [0376.0.0.10], [0376.1.0.10] and [0377.0.0.10]for the disclosure of the paragraphs [0372.0.0.10] to [0376.0.0.10], [0376.1.0.10] and [0377.0.0.10] see 5 paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.10.10]In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 10 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 15 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 11, columns 5 and 7, preferably in table I B, application no. 11, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a 20 plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 25 compared to the wild type. [0379.0.0.10] to [0383.0.0.10] for the disclosure of the paragraphs [0379.0.0.10] to [0383.0.0.10] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.10.10] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 30 microorganism in the presence of growth reducing amounts of an inhibitor of the syn- 749 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 5 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 11, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 11, column 3. [0385.0.0.10] to [0404.0.0.10] for the disclosure of the paragraphs [0385.0.0.10] to 10 [0404.0.0.10] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.10.10] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant 15 cell, or the part thereof of the invention, the vector of the invention, the agonist identi fied with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other carotenoids, in particular the xanthophylls such as astaxanthin or lutein. 20 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the 25 invention, the antibody of the present invention, can be used for the reduction of the fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.10] to [0435.0.0.10] for the disclosure of the paragraphs [0406.0.0.10] to [0435.0.0.10] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.10.10] Production of xanthophyll, triglycerides, lipids, oils and/or fats con 30 taining xanthophylls in Chlamydomonas reinhardtii The xanthophyll production can be analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below.
750 [0437.0.0.10] and [0438.0.0.10] for the disclosure of the paragraphs [0437.0.0.10] and [0438.0.0.10] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.10.10] Example 9: Analysis of the effect of the nucleic acid molecule on the production of xanthophylls 5 [0440.0.10.10] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as xantopyhlls preferably zeaxanthin and/or cryp toxanthin) can be determined by growing the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular compo nents for the elevated production of desired product (i.e. of the xanthophylls). These 10 analytical techniques are known to the skilled worker and comprise spectroscopy, thin layer chromatography, various types of staining methods, enzymatic and microbiologi cal methods and analytical chromatography such as high-performance liquid chroma tography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of 15 HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biol ogy, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Biosepara tions: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and 20 Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.10] for the disclosure of this paragraph see [0441.0.0.0] above. 25 [0442.0.10.10] Purification of the Xanthophylls and determination of the carotenoids content: [0443.0.10.10] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of xanthophylls can be obtained by ana 30 lyzing recombinant organisms using analytical standard methods: LC, LC-MSMS or TLC, as described The total xanthophylls produced in the organism for example in al gae used in the inventive process can be analysed for example according to the follow ing procedure: 751 The material such as algae or plants to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. 5 [0444.0.10.10] A typical sample pretreatment consists of a total lipid extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponifica tion , partition between phases, seperation of non-polar epiphase from more polar hy pophasic derivatives and chromatography. E.g.: For analysis, solvent delivery and aliquot removal can be accomplished with a robotic 10 system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% potassium hydroxide hydro-ethanolic solution (4 water:1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal 15 shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. Following saponification, the supernatant can be diluted with 0.10 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials 20 for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The col 25 umn can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab 30 sorbance at 447 nm. [0445.0.10.10] Carotenoid especially xanthophylls compositions can be determined for wild-type and transgene samples selected from those identified in a screening pro cedure. Petal samples can be stored in a -80'C freezer until mutants were identified.
752 Samples can be lyophilized, and the dried tissue can be stored under argon at -80*C until ready for analysis. Extraction procedures can be performed under red light. Dried petals can be ground to pass through a No. 40 sieve mesh size. A ground sample can be accurately weighed 5 and transferred into a 100 ml red volumetric flask. To the sample, 500 microliter.spl) of
H
2 0 can be added, and the mixture can be swirled for 1 minute. Thirty ml of extractant solvent (10 ml hexane + 7 ml acetone + 6 ml absolute alcohol + 7 ml toluene) can be added, and the flask can be shaken at 160 rpm for 10 minutes. For saponification, 2 ml of 40% methanolic KOH can be added into the flask, which can 10 be then swirled for one minute. The flask can be placed in a 560C H 2 0 bath for 20 min utes. An air condenser can be attached to prevent loss of solvent. The sample can be cooled in the dark for one hour with the condenser attached. After cooling, 30 ml of hexane can be added, and the flask can be shaken at 160 rpm for 10 minutes. The shaken sample can be diluted to volume (100 ml) with 10% sodium sulfate solution 15 and shaken vigorously for one minute. The sample can be remained in the dark for at least 30 minutes. A 35 ml aliquot can be removed from the approximately 50 ml upper phase, and transferred to a sample cup. An additional 30 ml of hexane can be added into the flask that can be then shaken at 160 rpm for 10 minutes. After approximately one hour, the upper phases can be combined. For HPLC analysis, 10 ml aliquots can 20 be dried under nitrogen and stored under argon at -80*C. HPLC equipment comprised an Alliance 2690 equipped with a refrigerated autosam pler, column heater and a Waters Photodiode Array 996 detector (Waters Corp., 34 Maple Street Milford, MA 01757). Separation can be obtained with a YMC30 column, 3 pm, 2.0 x 150 mm with a guard column of the same material. Standards can be ob 25 tained from ICC Indorespective fine chemicals Somerville, New Jersey 088876 and from DHI-Water & Environment, DK -2970 Horsholm, Denmark. The dried mutant samples can be resuspended in tetrahydrofuran and methanol to a total volume of 200 pl and filtered, whereas the control can be not additionally concen trated. Carotenoids especially xanthophylls can be separated using a gradient method. 30 Initial gradient conditions can be 90% methanol: 5% water: 5% methyl tert-butyl ether at a flow rate of 0.4 milliliters per minute (ml/min). From zero to 15 minutes, the mobile phase can be changed from the initial conditions to 80 methanol: 5 water: 15 methyl tert-butyl ether, and from 15 to 60 minutes to 20 methanol: 5 water: 75 methyl tert-butyl ether. For the following 10 minutes, the mobile phase can be returned to the initial con 35 ditions and the column equilibrated for an additional 10 minutes. The column tempera ture can be maintained at 27 0 C and the flow rate was 0.4 ml/minute. Injections were 10 753 1l. The majority of peak responses can be measured at 450 nm and additional areas added from 286, 348, 400 and 472 nm extracted channels. If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the xanthophylls can be further purified with a so-called RTHPLC. As 5 eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be purified. [0446.0.0.10] to [0496.0.0.10] for the disclosure of the paragraphs [0446.0.0.6] to 10 [0496.0.0.6] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.10.10] As an alternative, the xanthopylls can be detected advantageously via HPLC separation in combination with NMR techniques for the structure clarification or in combination with mass spectrometry in case of small sample volumes as described for example by Karsten Putzbach (Theses, 2005 at the Eberhard-Karls-University of 15 Tuebingen, Department of Chemistry and Pharmacy) or Mueller, H. Z. Lebensm. Unters. Forsch. A 204, 1997: 88 - 94. [0498.0.10.10] The results of the different plant analyses can be seen from the table, which follows: 754 Table VI ORF Metabolite Method Min Max b1095 Zeaxanthin LC 1.25 1.37 b2022 Zeaxanthin LC 1.23 1.29 b2344 Zeaxanthin LC 1.27 1.90 [0499.0.0.10] and [0500.0.0.10] for the disclosure of the paragraphs [0499.0.0.10] 5 and [0500.0.0.10] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.10.10]Example 15a: Engineering ryegrass plants by over-expressing b1095 from Escherichia coli or homologs of b1095 from other organisms. [0502.0.0.10] to [0508.0.0.10] for the disclosure of the paragraphs [0502.0.0.10] to 10 [0508.0.0.10] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.10.10]Example 15b: Engineering soybean plants by over-expressing b1095 from Escherichia coli or homologs of b1095 from other organisms. [0510.0.0.10] to [0513.0.0.10] for the disclosure of the paragraphs [0510.0.0.10] to 15 [0513.0.0.10] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.6.6] Example 15c: Engineering corn plants by over-expressing b1095 from Escherichia coli or homologs of b1095 from other organ isms. [0515.0.0.10] to [0540.0.0.10] for the disclosure of the paragraphs [0515.0.0.10] to 20 [0540.0.0.10] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.10.10] Example 15d: Engineering wheat plants by over-expressing b1095 from Escherichia coli or homologs of b1095 from other organisms. [0542.0.0.10] to [0544.0.0.10] for the disclosure of the paragraphs [0542.0.0.10] to 25 [0544.0.0.10] see paragraphs [0542.0.0.0] to [0544.0.0.0] above.
755 [0545.0.10.10] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b1095 from Escherichia coli or homologs of b1095 from other organisms. [0546.0.0.10] to [0549.0.0.10] for the disclosure of the paragraphs [0546.0.0.10] to 5 [0549.0.0.10] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.10.10]Example 15f: Engineering alfalfa plants by over-expressing b1095 from Escherichia coli or homologs of b1095 from other organ isms. [0551.0.0.10] to [0554.0.0.10] for the disclosure of the paragraphs [0551.0.0.10] to 10 [0554.0.0.10] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.10.10]: % [0554.2.0.10] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.10] for the disclosure of this paragraph see [0555.0.0.0] above.
756 [0001.0.0.11] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.11.11] Carotenoids are red, yellow and orange pigments that are widely dis tributed in nature. Although specific carotenoids have been identified in photosynthetic centers in plants, in bird feathers, in crustaceans and in marigold petals, they are espe 5 cially abundant in yellow-orange fruits and vegetables and dark green, leafy vegeta bles. Of the more than 700 naturally occurring carotenoids identified thus far, as many as 50 may be absorbed and metabolized by the human body. To date, only 14 carote noids have been identified in human serum. In animals some carotenoids (particularly beta-carotene) serve as dietary precursors to 10 Vitamin A, and many of them may function as fat-soluble antioxidants. In plants caro tenes serve for example as antioxidants to protect the highly reactive photosystems and act as accessory photopigments. In vitro experiments have shown that lycopene, alpha-carotene, zeaxanthin, lutein and cryptoxanthin quench singlet oxygen and inhibit lipid peroxidation. The isolation and identification of oxidized metabolites of lutein, ze 15 axanthin and lycopene provide direct evidence of the antioxidant action of these caro tenoids. Carotenoids are 40-carbon (C40) terpenoids generally comprising eight isoprene (C) units joined together. Linking of the units is reversed at the center of the molecule. "Ke tocarotenoid" is a general term for carotenoid pigments that contain a keto group in the 20 ionene ring portion of the molecule, whereas "hydroxycarotenoid" refers to carotenoid pigments that contain a hydroxyl group in the ionene ring. Trivial names and abbrevia tions will be used throughout this disclosure, with IUPAC-recommended semi systematic names usually being given in parentheses after first mention of a trivial name. Owing to its three chiral centers, there are 23 or 8 stereoisomers of lutein. 25 The principal natural stereoisomer of lutein and the form of lutein in the plasma is (3R,3'R,6'R)-lutein, thus a preferred form of the compound. Lutein is also known as xanthophyll (also, the group name of the oxygen-containing carotenoids), vegetable lutein, vegetable luteol and beta, epsilon-carotene-3,3'diol. The molecular formula of lutein is C 40
H
5 6 0 2 and its molecular weight is 568.88 daltons. The chemical name of the 30 principal natural stereoisomer of lutein is (3R,3'R,6'R)-beta,epsilon-carotene-3,3'-diol. Lutein and zeaxanthin esters are hydrolyzed in the small intestine via esterases and lipases. Lutein and zeaxanthin that are derived from supplements or released from the matrices of foods, are either solubilized in the lipid core of micelles (formed from bile 757 salts and dietary lipids) in the lumen of the small intestine, or form clathrate complexes with conjugated bile salts. Micelles and possibly clathrate complexes deliver lutein and zeaxanthin to the enterocytes. Lutein and zeaxanthin are released from the enterocytes into the lymphatics in the form of chylomicrons. They are transported by the lymphatics 5 to the general circulation via the thoracic duct. In the circulation, lipoprotein lipase hy drolyzes much of the triglycerides in the chylomicrons, resulting in the formation of chy lomicron remnants. Chylomicron remnants retain apolipoproteins E and B48 on their surfaces and are mainly taken up by the hepatocytes and to a smaller degree by other tissues. Within hepatocytes, lutein and zeaxanthin are incorporated into lipoproteins. 10 Lutein and zeaxanthin appear to be released into the blood mainly in the form of high density lipoproteins (HDL) and, to a lesser extent, in the form of very-low density lipo protein (VLDL). Lutein and zeaxanthin are transported in the plasma predominantly in the form of HDL. Lutein and zeaxanthin are mainly accumulated in the macula of the retina, where they bind to the retinal protein tuberlin. Zeaxanthin is specifically concen 15 trated in the macula, especially in the fovea. Lutein is distributed throughout the retina. Zeaxanthin found in plasma is predominantly (3R,3'R)-zeaxanthin. Lutein appears to undergo some metabolism in the retina to meso-zeaxanthin. Carotenoids are synthesized from a five carbon atom metabolic precursor, isopentenyl pyrophosphate (IPP). There are at least two known biosynthetic pathways in the forma 20 tion of IPP, the universal isoprene unit. One pathway begins with mevalonic acid, the first specific precursor of terpenoids, formed from acetyl-CoA via HMG-CoA (3 hydroxy-3-methylglutaryl-CoA), that is itself converted to isopentenyl pyrophosphate (IPP). Later, condensation of two geranylgeranyl pyrophosphate (GGPP) molecules with each other produces colorless phytoene, which is the initial carotenoid. Studies 25 have also shown the existence of an alternative, mevalonate-independent pathway for IPP formation that was characterized initially in several species of eubacteria, a green alga, and in the plastids of higher plants. The first reaction in this alternative pathway is the transketolase-type condensation reaction of pyruvate and D-glyceraldehylde-3 phosphate to yield 1-deoxy-D-xylulose-5-phosphate (DXP or DOXP) as an intermedi 30 ate. Through a series of desaturation reactions, phytoene is converted to phytofluene, G carotene, neurosporene and finally to lycopene. Subsequently, lycopene is converted by a cyclization reaction to p-carotene that contains two p-ionene rings. A keto-group and/or a hydroxyl group are introduced into each ring of p-carotene to thereby synthe 35 size canthaxanthin, zeaxanthin, astaxanthin. A hydroxylase enzyme has been shown to 758 convert canthaxanthin to astaxanthin. Similarly, a ketolase enzyme has been shown to convert zeaxanthin to astaxanthin. The ketolase also converts p-carotene to canthax anthin and the hydroxylase converts p-carotene to zeaxanthin. In many plants, lyco pene is a branch point in carotenoid biosynthesis. Thus, some of the plant's lycopene 5 is made into beta-carotene and zeaxanthin, and sometimes zeaxanthin diglucoside, whereas remaining portions of lycopene are formed into alpha-carotene and lutein (3,3'-dihydroxy-a-carotene), another hydroxylated compound. Lutein and zeaxanthin exist in several forms. Lutein and zeaxanthin also occur in plants in the form of mono- or diesters of fatty acids. For example, lutein and zeaxanthin di 10 palmitates, dimyristates and monomyristates are found in the petals of the marigold flower (Tagetes erecta). Many of the marketed lutein nutritional supplements contain lutein esters, with much smaller amounts of zeaxanthin esters, which are derived from the dried petals of marigold flowers. Lutein dipalmitate is found in the plant Helenium autumnale L. Compositae. It is also known as helenien and it is used in France for the 15 treatment of visual disorders. Zeaxanthin in its fatty acid ester forms, is the principal carotenoid found in the plant Lycium chinese Mill. Lycium chinese Mill, also known as Chinese boxthorn, is used in traditional Chinese medicine for the treatment of a num ber of disorders, including visual problems. Nutritional supplement forms are comprised of these carotenoids either in their free (non-esterified) forms or in the form of fatty acid 20 esters. Lutein and zeaxanthin exist in a matrix in foods. In the case of the chicken egg yolk, the matrix is comprised of lipids (cholesterol, phospholipid, triglycerides). The carotenoids are dispersed in the matrix along with fat-soluble nutrients, including vitamins A, D and E. In the case of plants, lutein and zeaxanthin are associated with chloroplasts or 25 chromoplasts. Carotenoids absorb light in the 400-500 nm region of the visible spectrum. This physi cal property imparts the characteristic red/yellow colour of the pigments. A conjugated backbone composed of isoprene units is usually inverted at the centre of the molecule, imparting symmetry. Changes in geometrical configuration about the double bonds 30 result in the existence of many cis- and trans- isomers. Hydroxylated, oxidized, hydro genated or ring-containing derivatives also exist. Hydrocarbon carotenoids are classi fied as carotenes while those containing oxygen are known as xanthophylls. In animals, carotenoids are absorbed from the intestine with the aid of dietary fat and incorporated into chylomicrons for transport in the serum. The different structural fea- 759 tures possessed by carotenoids account for selective distribution in organ tissue, bio logical activity and pro-vitamin A potency, or in vivo conversion to vitamin A. Due to the hydrophobic character, carotenoids are associated with lipid portions of human tissues, cells, and membranes. In general, 80-85% of carotenoids are distributed in adipose 5 tissue, with smaller amounts found in the liver, muscle, adrenal glands, and reproduc tive organs. Approximately 1 % circulate in the serum on high and low density lipopro teins. Serum concentrations are fairly constant and slow to change during periods of low intake. The estimated half-life was estimated to be 11-14 days for lycopene, a carotene, p-carotene, lutein and zeaxanthin. Evidence for the existence of more than 10 one body pool has been published. The major serum carotenoids are p-carotene, a carotene, lutein, zeaxanthin, lycopene and cryptoxanthin. Smaller amounts of polyenes such as phytoene and phytofluene are also present. Human serum levels reflect lifestyle choices and dietary habits within and between cul tures. Approximately only 15 carotenoids circulate in the blood, on HDL and LDL. 15 Variations can be attributed to different intakes, unequal abilities to absorb certain caro tenoids, and different rates of metabolism and tissue uptake. Decreased serum levels occur with alcohol consumption, the use of oral contraceptives, smoking and prolonged exposure to UV light. [0003.0.11.11] The established efficacy of lutein in quenching singlet oxygen and in 20 tercepting deleterious free radicals and reactive oxygen species can make it part of the diverse antioxidant defense system in humans. Reactive oxygen species have been implicated in the development of many diseases, including ischemic heart disease, various cancers, cataracts and macular degeneration. Because the conjugated polyene portion of beta-carotene confers its antioxidant capability and all carotenoids possess 25 this structural feature, research efforts have been directed at evaluating the efficacy of other carotenoids in the prevention of free radical-mediated diseases. Indeed, in vitro experiments have demonstrated that lycopene, alpha-carotene, zeaxanthin, lutein and cryptoxanthin quench singlet oxygen and inhibit lipid peroxidation. The isolation and identification of oxidized metabolites of lutein, zeaxanthin and lycopene may provide 30 direct evidence of the antioxidant action of these carotenoids. In addition to antioxidant capability, other biological actions of carotenoids include the ability to enhance immunocompetence and in vitro gap junction communication, reduce or inhibited mutagenesis and inhibit cell transformations in vitro.
760 Many epidemiological studies have established an inverse correlation between dietary intake of yellow-orange fruit and dark green, leafy vegetables and the incidence of various cancers, especially those of the mouth, pharynx, larynx, esophagus, lung, stomach, cervix and bladder. While a number of protective compounds may be respon 5 sible for this observation, the co-incidence of carotenoids in these foods has been noted. Because nutritionists and medical professionals currently recognize the occur rence of a large number of distinct carotenoids in food, interest in their functions and biological impact on health is burgeoning. Lutein exists in the retina. It functions to protect photoreceptor cells from light 10 generated oxygen radicals, and thus plays a key role in preventing advanced macular degeneration. Lutein possesses chemopreventive activity, induces gap junction com munication between cells and inhibits lipid peroxidation in vitro more effectively than beta-carotene, alpha-carotene and lycopene. High levels of lutein in serum have been inversely correlated with lung cancer. 15 In addition to lutein, zeaxanthin exists in the retina and confers protection against macular degeneration. Zeaxanthin is also prevalent in ovaries and adipocyte tissue. This xanthophyll does not possess provitamin A activity. Alcohol consumption has been shown to influence lipid peroxidation. Anhydrolutein, an oxidative by-product of lutein and zeaxanthin, was higher in plasma after alcohol inges 20 tion, while concentrations of these xanthophylls were reduced. Lutein and zeaxanthin may therefore have protective effects against LDL oxidation. [0004.0.11.11] In plants, approximately 80-90% of the carotenoids present in green, leafy vegetables such as broccoli, kale, spinach and brussel sprouts are xanthophylls, whereas 10-20% are carotenes. Conversely, yellow and orange vegetables including 25 carrots, sweet potatoes and squash contain predominantly carotenes. Up to 60% of the xanthophylls and 15% of the carotenes in these foods are destroyed during microwave cooking. Of the xanthophylls, lutein appears to be the most stable. Lutein occurs in mango, papaya, oranges, kiwi, peaches, squash, peas, lima beans, green beans, broccoli, brussel sprouts, cabbage, kale, lettuce, prunes, pumpkin, sweet 30 potatoes and honeydew melon. Commercial sources are obtained from the extraction of marigold petals. Lutein does not possess provitamin A activity. Dietary sources of Zeaxanthin include peaches, squash, apricots, oranges, papaya, prunes, pumpkin, mango, kale, kiwi, lettuce, honeydew melon and yellow corn.
761 [0005.0.11.11] Some carotenoids occur particularly in a wide variety of marine ani mals including fish such as salmonids and sea bream, and crustaceans such as crab, lobster, and shrimp. Because animals generally cannot biosynthesize carotenoids, they obtain those carotenoids present in microorganisms or plants upon which they 5 feed. Carotenoids, e.g. xanthophylls, in particular lutein, supplied from biological sources, such as crustaceans, yeast, and green alga is limited by low yield and costly extraction methods when compared with that obtained by organic synthetic methods. Synthetic methods are e.g. described in Hansgeorg Ernst, Pure Appl. Chem., Vol. 74, No. 8, pp. 10 1369-1382, 2002. Usual synthetic methods, however, produce by-products that can be considered unacceptable. It is therefore desirable to find a relatively inexpensive source of carotenoids, in particular lutein, to be used as a feed supplement in aquacul ture and as a valuable chemical for other industrial uses and for diets. Sources of xan thophylls include crustaceans such as a krill in the Antarctic Ocean, cultured products 15 of the yeast Phaffia, cultured products of a green alga Haematococcus pluvialis, and products obtained by organic synthetic methods. However, when crustaceans such as a krill or the like are used, a great deal of work and expense are required for the isola tion of xanthophylls from contaminants such as lipids and the like during the harvesting and extraction. Moreover, in the case of the cultured product of the yeast Phaffia, a 20 great deal of expense is required for the gathering and extraction of astaxanthin be cause the yeast has rigid cell walls and produces xanthophylls only in a low yield. One approach to increase the productivity of some xanthophylls' production in a biological system is to use genetic engineering technology. [0006.0.11.11] Carotenoids in higher plants; i.e., angiosperms, are found in plastids; 25 i.e., chloroplasts and chromoplasts. Plastids are intracellular storage bodies that differ from vacuoles in being surrounded by a double membrane rather than a single mem brane. Plastids such as chloroplasts can also contain their own DNA and ribosomes, can reproduce independently, and synthesize some of their own proteins. Plastids thus share several characteristics of mitochondria. In leaves, carotenoids are usually pre 30 sent in the grana of chloroplasts where they provide a photoprotective function. Beta carotene and lutein are the predominant carotenoids, with the epoxidized carotenoids violaxanthin and neoxanthin being present in smaller amounts. Carotenoids accumu late in developing chromoplasts of flower petals, usually with the disappearance of chlorophyll. As in flower petals, carotenoids appear in fruit chromoplasts as they de 35 velop from chloroplasts. Most enzymes that take part in conversion of phytoene to 762 carotenes and xanthophylls are labile, membrane-associated proteins that lose activity upon solubilization. In maize, cartonoids were present in horny endosperm (74% to 86%), floury endosperm (9%-23%) and in the germ and bran of the kernel. [0007.0.11.11] At the present time only a few plants are widely used for commercial 5 coloured carotenoid production. However, the productivity of coloured carotenoid syn thesis in most of these plants is relatively low and the resulting carotenoids are expen sively produced. Dried marigold petals and marigold petal concentrates obtained from so-called xantho phyll marigolds are used as feed additives in the poultry industry to intensify the yellow 10 color of egg yolks and broiler skin. The pigmenting ability of marigold petal meal re sides largely in the carotenoid fraction known as the xanthophylls, primarily lutein es ters. The xanthophyll zeaxanthin, also found in marigold petals, has been shown to be effective as a broiler pigmenter, producing a highly acceptable yellow to yellow-orange color. Of the xanthophylls, the pigments lutein and zeaxanthin are the most abundant in 15 commercially available hybrids. Carotenoids have been found in various higher plants in storage organs and in flower petals. For example, marigold flower petals accumulate large quantities of esterified lutein as their predominant xanthophyll carotenoid (about 75 to more than 90 percent), with smaller amounts of esterified zeaxanthin. Besides lutein and zeaxanthin, marigold 20 flower petals also typically exhibit a small accumulation of p-carotene and epoxidized xanthophylls, but do not produce or accumulate canthaxanthin or astaxanthin because a 4-keto-p-ionene ring-forming enzyme is absent in naturally-occurring marigolds or their hybrids. [0008.0.11.11] One way to increase the productive capacity of biosynthesis is to ap 25 ply recombinant DNA technology. Thus, it would be desirable to produce coloured ca rotenoids generally and, with the use of recent advances in determining carotenoid biosynthesis from p-carotene to xanthophylls to control the production of carotenoids. That type of production permits control over quality, quantity, and selection of the most suitable and efficient producer organisms. The latter is especially important for com 30 mercial production economics and therefore availability to consumers. Methods of recombinant DNA technology have been used for some years to improve the production of Xanthophylls in microorganisms, in particular algae or in plants by amplifying individual xanthophyll biosynthesis genes and investigating the effect on 763 xanthophyll production. It is for example reported, that the five ketocarotenoids, e.g. the xanthophyll astaxanthin could be produced in the nectaries of transgenic tobacco plants. Those transgenic plants were prepared by Argobacterium tumifaciens-mediated transformation of tobacco plants using a vector that contained a ketolase-encoding 5 gene from H. pluvialis denominated crtO along with the Pds gene from tomato as the promoter and to encode a leader sequence. The Pds gene was said by those workers to direct transcription and expression in chloroplasts and/or chromoplast-containing tissues of plants. Those results indicated that about 75 percent of the carotenoids found in the flower of the transformed plant contained a keto group. Further, in maize 10 the phytonene synthase (Psy), Phytone desaturase (Pds), and the G-carotene desatu rase were identified and it was shown, that PSY activity is an important control point for the regulation of the flux. Genes suitable for conversion of microorganisms have also been reported (U.S. Patent No. 6,150,130 WO 99/61652). Two different genes that can convert a carotenoid P 15 ionene ring compound into astaxanthin have been isolated from the green alga Haema tococcus pluvialis. Zeaxanthin or p-carotene were also found in the marine bacteria Agrobacterium aurantiacum, Alcaligenes PC-1, Erwinia uredovora. An A. aurantiacum crtZ gene was introduced to an E. coli transformant that accumulated all-trans-p carotene. The transformant so formed produced zeaxanthin. A gene cluster encoding 20 the enzymes for a carotenoid biosynthesis pathway has been also cloned from the pur ple photosynthetic bacterium Rhodobacter capsulatus. A similar cluster for carotenoid biosynthesis from ubiquitous precursors such as farnesyl pyrophosphate and geranyl pyrophosphate has been cloned from the non-photosynthetic bacteria Erwinia herbi cola. Yet another carotenoid biosynthesis gene cluster has been cloned from Erwinia 25 uredovora. It is yet unknown and unpredictable as to whether enzymes encoded by other organisms behave similarly to that of A. aurantiacum in vitro or in vivo after trans formation into the cells of a higher plant. [0009.0.11.11] Thus, it would be advantageous if an algae or other microorganism were available which produce large amounts of p-carotene, beta-cryptoxanthin, lutein, 30 zeaxanthin, or other carotenoids. The invention discussed hereinafter relates in some embodiments to such transformed prokaryotic or eukaryotic microorganisms. It would also be advantageous if a marigold or other plants were available whose flow ers produced large amounts of p-carotene, beta-cryptoxanthin, lutein, zeaxanthin, or other carotenoids. The invention discussed hereinafter relates in some embodiments 35 to such transformed plants.
764 [0010.0.11.11] Therefore improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. This is necessary since, for example, as mentioned above xanthophylls, which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality 5 of foodstuffs and animal feeds is as balanced as possible a carotenoids profile in the diet since a great excess of some carotenoids above a specific concentration in the food has only some positive effect. A further increase in quality is only possible via ad dition of further carotenoids, which are limiting. [0011.0.11.11] To ensure a high quality of foods and animal feeds, it is therefore nec 10 essary to add carotenoidsin a balanced manner to suit the organism. [0012.0.11.11] Accordingly, there is still a great demand for new and more suitable genes which encode proteins or regulators which participate in the biosynthesis of lu tein and make it possible to produce lutein and other carotenoids specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for or 15 regulators of biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of carotenoids like lutein on the other hand as less as possible by products should be produced in the production process. [0013.0.0.11] for the disclosure of this paragraph see [0013.0.0.0] above. 20 [0014.0.11.11] Accordingly, in a first embodiment, in context of paragraphs [0001.n.n.1 1] to [0555.n.n.1 1] the invention relates to a process for the production of a fine chemical, whereby the fine chemical is lutein. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "lutein". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising lutein. 25 [0015.0.11.11] In one embodiment , in context with paragraphs [0001.n.n.11] to [0555.n.n.1 1], the term "the respective fine chemical" means lutein. Throughout the specification of paragraph [0001.n.n.1 1] to paragraph [0555.n.n.11 ] the term "the re spective fine chemical" or the term "lutein" means lutein in its free form, its salts, ester, its mono- or diesters of fatty acids, e.g. as lutein dipalmitates, dimyristates or mono 30 myristates or bound to proteins, e.g. lipoproteins or tuberlin, or bound to other com pounds.
765 Lutein exist in a matrix in foods. Thus, in one embodiment, the fine chemical produced according to the process of the invention is a matrix comprising inter alia lipids, in par ticular cholesterol, phospholipid, and/or triglycerides, and lutein. Thus in one embodiment, the fine chemical is a lutein ester. In one particular embodi 5 ment, the fine chemical is a lutein ester of a natural occurring, preferably in plants or microorganisms occurring fatty acid. In a further embodiment, the fine chemical is a lutein monoester. In a further embodiment, the fine chemical is a lutein diester. In a further embodiment, the fine chemical is lutein dipalmitates, dimyristates or mono myristates. In a further embodiment, the fine chemical is a lutein comprising matrix. In a 10 further embodiment, the fine chemical is a lutein comprising micelle, e.g. a micelle formed from bile salts or dietary lipids, or a clathrate complex, e.g. with conjugated bile salts. In a further embodiment, the fine chemical is lutein in the form of chylomicrons. In a further embodiment, the fine chemical is lutein in the form of chylomicron remnants. In a further embodiment, the fine chemical is lutein incorporated into lipoproteins, e.g. 15 HDL or VLDL. In a further embodiment, the fine chemical is lutein bound to tuberlin. In a further embodiment, the fine chemical is free lutein, in particular (3R,3'R,6'R)-lutein. [0016.0.11.11] Accordingly, the present invention relates to a process for the produc tion of lutein, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 20 no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 12, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 12, column 5 in the plastid of a microorganism or plant, or in one or 25 more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, lutein or fine chemicals comprising lutein, in said organism or in the culture medium surrounding the organism. [0016.1.11.11] Accordingly, the term "the fine chemical" means in one embodiment 30 "lutein" in relation to all sequences listed in Table I to IV, application No. 12 [0017.0.11.11] In another embodiment the present invention is related to a process for the production of lutein, which comprises 766 (a) increasing or generating the activity of a protein as shown in table II, application no. 12 column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 12, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application 5 no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 12, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 12, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of lutein in said organism. 15 [0017.1.11.11] In another embodiment, the present invention relates to a process for the production of lutein, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 12, column 5, in an organelle of a microorganism or plant through 20 the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 12, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 25 (c) growing the organism under conditions which permit the production of the fine chemical, thus, lutein or fine chemicals comprising lutein, in said organism or in the culture medium surrounding the organism. [0018.0.11.11] Advantagously the activity of the protein as shown in table II, applica tion no. 12, column 3 encoded by the nucleic acid sequences as shown in table I, ap 30 plication no. 12, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.11] to [0024.0.0.11] for the disclosure of the paragraphs [0019.0.0.11] to [0024.0.0.11] see paragraphs [0019.0.0.0] and [0024.0.0.0] above.
767 [0025.0.11.11] Even more preferred nucleic acid sequences are encoding transit pep tides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to 5 the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 12, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 10 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to 15 plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in 20 length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base 25 pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme 30 recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.11.11] As mentioned above the nucleic acid sequences coding for the pro 35 teins as shown in table II, application no. 12, column 3 and its homologs as disclosed in table I, application no. 12, columns 5 and 7 are joined to a nucleic acid sequence en- 768 coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 5 ing for proteins as shown in table 1l, application no. 12, column 3 and its homologs as disclosed in table 1, application no. 12, columns 5 and 7. [0027.0.0.11] to [0029.0.0.11] for the disclosure of the paragraphs [0027.0.0.11] to [0029.0.0.11] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.11.11] Alternatively, nucleic acid sequences coding for the transit peptides 10 may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 15 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 20 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 25 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 30 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table 1, application no. 12, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table 1l, application no. 12, columns 5 and 7 35 during the transport preferably into the plastids. All products of the cleavage of the pre- 769 ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 12, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 5 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 12, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= !igatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex 10 pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 12, columns 5 and 7. Fur 15 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.11.11] Table V: Examples of transit peptides disclosed by von Heijne et al.: for the disclosure of the Table V see paragraphs [0030.2.0.0] above. [0030.1.11.11] Alternatively to the targeting of the sequences shown in table II, ap 20 plication no. 12, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 25 12, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 30 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 770 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.11] and [0030.3.0.11] for the disclosure of the paragraphs [0030.2.0.11] and [0030.3.0.11] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. 5 [0030.4.11.11] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 12, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 10 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table 1, application no. 12, columns 5 and 7 or 15 a sequence encoding a protein, as depicted in table II, application no. 12, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza 20 tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused 25 to the sequences depicted in table, 1, application no. 12, columns 5 and 7 or a se quence encoding a protein, as depicted in table II, application no. 12, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table 1 application no. 12, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 12, columns 5 and 7 into the 30 chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 12, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in 35 corporated by reference. WO 2004/040973 teaches a method, which relates to the 771 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or 5 mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as 10 disclosed in table II, application no. 12, columns 5 and 7. [0030.5.11.11] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 12, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 15 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.11.11] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 12, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 20 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.11] and [0032.0.0.11] for the disclosure of the paragraphs [0031.0.0.11] and [0032.0.0.11] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 25 [0033.0.11.11 ]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 30 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 12, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 12, column 3 or their combination can be achieved by joining the protein to a transit peptide.
772 [0034.0.11.11] Surprisingly it was found, that the transgenic expression of the E. coli proteins shown in table II, application no. 12, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V - conferred an increase in the respective fine 5 chemical indicated in column 6 "metabolite" of each table I to IV in the transformed plant. Surprisingly it was found, that the transgenic expression of the E. coli protein b2344 in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in lutein. 10 [0035.0.0.11] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.11.11] The sequence of b2344 (Accession number PIR:F65007) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "outer membrane porin, transport of long chain fatty acids, sensitivity to phage T2". Accordingly, in one embodiment, the process 15 of the present invention comprises the use of a "outer membrane porin, transport of long-chain fatty acids, sensitivity to phage T2" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of lutein, in particular for increasing the amount of lutein in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2344 pro 20 tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2344 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 [0037.0.11.11] In one embodiment, the homolog of the b2344 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b2344 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b2344 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the b2344 is a 30 homolog having said acitivity and being derived from Enterobacteriales. In one em bodiment, the homolog of the b2344 is a homolog having said acitivity and being de rived from Enterobacteriaceae. In one embodiment, the homolog of the b2344 is a ho molog having said acitivity and being derived from Escherichia, preferably from Es cherichia coli.
773 [0037.1.11.11] Homologs of the polypeptide discolosed in table II, application no. 12, column 3 may be the polypetides encoded by the nucleic acid molecules indicated in table I , application no. 12, column 7, resp., or may be the polypeptides indicated in table II, application no. 12, column 7, resp. 5 [0038.0.0.11] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.11.11] In accordance with the invention, a protein or polypeptide has the "activity of an protein as shown in table II, application no. 12, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the 10 level of the fine chemical indicated in the respective line of table II, application no. 12, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said or ganism, more preferably in an organelle such as a plastid or mitochondria of said or ganism .The protein has the above mentioned activities of a protein as shown in table II, application no. 12, column 3, preferably in the event the nucleic acid sequences en 15 coding said proteins is functionally joined to the nucleic acid sequence of a transit pep tide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 12, column 3, or which has at least 10% of 20 the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in the respective line of table II, application no. 12, column 3 of E. coli. [0040.0.0.11] to [0047.0.0.11] for the disclosure of the paragraphs [0040.0.0.11] to [0047.0.0.11] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 25 [0048.0.11.11] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav 30 ing the activity of a respective protein as shown in table II, application no. 12, column 3 its biochemical or genetical causes and the increased amount of the respective fine chemical.
774 [0049.0.0.11] to [0051.0.0.11] for the disclosure of the paragraphs [0049.0.0.11] to [0051.0.0.11] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.11.11] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 5 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 12, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle 10 such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 15 [0053.0.0.11] to [0058.0.0.11] for the disclosure of the paragraphs [0053.0.0.11] to [0058.0.0.11] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.11.11] In case the activity of the Escherichia coli protein b2344 or its ho mologs, e.g. a "outer membrane porin, transport of long-chain fatty acids, sensitivity to phage T2" is increased, advantageously in an organelle such as a plastid or mitochon 20 dria, preferably, an increase of the fine chemical, preferably of free lutein between 39% and 115% or more is conferred. [0060.0.11.11] In one embodiment, the activity of the Escherichia coli protein b2344 or its homologs,e.g. a outer membrane porin, transport of long-chain fatty acids, sensi tivity to phage T2" is advantageously increased in an organelle such as a plastid or 25 mitochondria, preferably conferring an increase of the fine chemical indicated in column 6 "metabolites" for application no. 12 in any one of Tables I to IV and of further carote noids, preferably xanthophylls, in particular zeaxanthin. [0061.0.0.11] and [0062.0.0.11] for the disclosure of the paragraphs [0061.0.0.11] and [0062.0.0.11] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. 30 [0063.0.11.11] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in one embodi ment the structure of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 12, column 7 or 775 of the polypeptide as shown in the amino acid sequences as disclosed in table II, appli cation no. 12, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as 5 shown in table I, application no. 12, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.11.11] For the purposes of the present invention, the reference to the fine chemical, e.g. to the term "lutein", also encompasses the corresponding salt, ester, e.g. the mono- or diesters of fatty acids, e.g. lutein dipalmitates, dimyristates or mono 10 myristates, or lutein bound to proteins, e.g. lipoproteins or e.g. tuberlin, or bound to other compounds. Lutein exist in a matrix in foods. Thus, in one embodiment, the fine chemical produced according to the process of the invention is a matrix comprising inter alia lipids, in par ticular cholesterol, phospholipid, and/or triglycerides, and lutein. 15 [0065.0.0.11] and [0066.0.0.11] for the disclosure of the paragraphs [0065.0.0.11] and [0066.0.0.11] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.11.11] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by 20 the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 12, columns 5 and 7 or its homologs activity having herein-mentioned lutein increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by 25 the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 12, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 12, columns 5 and 7 or its homologs activity or of 30 a mRNA encoding the polypeptide of the present invention having herein mentioned lutein increasing activity; and/or 776 c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned lutein increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 5 cation no. 12, columns 5 and 7 or its homologs activity, or decreasing the inhibi tiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 10 polypeptide of the invention having herein-mentioned lutein increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 12, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 15 the present invention having herein-mentioned lutein increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 12, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 20 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned lu tein increasing activity, e.g. of a polypeptide having the activity of a protein as in dicated in table II, application no. 12, columns 5 and 7 or its homologs activity, and/or 25 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned lutein increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 12, columns 5 and 7 or its homologs activity; 30 and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 12, columns 5 and 7 or its homologs activity, by adding 777 positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt 5 repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 10 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; 15 and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 20 polypeptide of the present invention having herein-mentioned lutein increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 12, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of 25 the invention or of the polypeptide of the present invention having herein mentioned lutein increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 12, columns 5 and 7 or its ho mologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive 30 nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or 778 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned lutein increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 12, columns 5 and 7 or its ho 5 mologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.11.11] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid 10 sequence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the respective fine chemi cal as indicated in column 6 of application no. 12 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as 15 shown in table II, application no. 12, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. [0069.0.0.11] to [0079.0.0.11] for the disclosure of the paragraphs [0069.0.0.11] to [0079.0.0.11] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.11.11] The activation of an endogenous polypeptide having above-mentioned 20 activity, e.g. having the activity of a protein as shown in table II, application no. 12, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec tive fine chemical after increase of expression or activity in the cytsol and/or in an or ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en 25 coding the protein as shown in table II, application no. 12, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA-binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 12, column 3. The 30 expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 12, column 3, see e.g. in WOO1/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13296.
779 [0081.0.0.11] to [0084.0.0.11] for the disclosure of the paragraphs [0081.0.0.11] to [0084.0.0.11] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.11.11] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole 5 cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably 10 novel metabolites composition in the organism, e.g. an advantageous lutein containing composition comprising a higher content of (from a viewpoint of nutrional physiology limited) , carotenoids, e.g. xanthophylls, in particular lutein, e.g. in combination with fatty acid(s), dietary oil(s), such as corn oil, and/or triglycerides, in particular medium chain (e.g. C4 to C18-, in particular C6 to C14-) triglycerides, lipoproteins, e.g. HDL and/or 15 VLDL, micelles, clathrate complexes, e.g. conjugated with bile salts, chylomicrons, chy lomicron remnants, tuberlin and/or other carotenoids, e.g. xanthophylls, in particular zeaxanthin It can also be advantageous to increase the level of a metabolic precursor of lutein in the organism or part thereof, e.g. of phytoene, lycopene, alpha-carotene. It can also be advantageous owing to the introduction of a gene or a plurality of genes 20 conferring the expression of a inhibitory nucleic acid molecule, e.g. for a gene k.o., e.g. a iRNA or a antisense nucleic acid, to decrease the level of production of neoxanthin or one or more precursor thereof, e.g. vialastaxanthin, zeaxanthin, and/or beta-carotene as this might increase the level of lycopene to be provided for the production of lutein according to method of present invention. 25 Depending on the choice of the organism used for the process according to the present invention, for example a microorganism or a plant, compositions or mixtures of various carotenoids and lutein can be produced. [0086.0.0.11] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.11.11] By influencing the metabolism thus, it is possible to produce, in the 30 process according to the invention, further advantageous compounds. Examples of such compounds are are further carotenoids, e.g. carotenes or xanthophylls, in par ticular ketocarotenoids, or hydrocarotenoids, e.g. beta-cryptoxanthin, zeaxanthin, astaxanthin, lycopene, alpha-carotene, or beta-carentene, or compounds for which lutein is a precursor compound or medium-chain (e.g C4 to C18-, in particular C6 to C14-) 780 triglycerides, lipoproteins, e.g. HDL and/or VLDL, micelles, clathrate complexes, e.g. conjugated with bile salts, chylomicrons, chylomicron remnants, and/or tuberlin.. [0088.0.11.11] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: 5 a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 12, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present 10 invention and described below, e.g. conferring an increase of the respective fine chemical as indicated in any one of Tables I to IV, application no. 12, column 6 "metabolite" in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more pref erably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, 15 preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the respective fine chemical in the organism, preferably the microorganism, the plant cell, the plant tissue or the plant; and 20 d) if desired, revovering, optionally isolating, the resepctive free and/or bound the fine chemical as indicated in any one of Tables I to IV, application no. 12, column 6 "metabolite" and, optionally further free and/or bound carotenoids, in particular ketocarotenoids, or hydrocarotenoids, e.g. beta-cryptoxanthin, zeaxanthin, astax anthin, lycopene, alpha-carotene, or beta-carotene, synthesized by the organism, 25 the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.11.11] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the 30 respective fine chemical or the free and bound the resepctive fine chemical but as op tion it is also possible to produce, recover and, if desired isolate, other free or/and bound carotenoids, in particular ketocarotenoids, or hydrocarotenoids, e.g. beta cryptoxanthin, zeaxanthin, astaxanthin, lycopene, alpha-carotene, or beta-carotene.
781 [0090.0.0.11] to [0097.0.0.11] for the disclosure of the paragraphs [0090.0.0.11] to [0097.0.0.11] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.11.11]With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 5 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 12, columns 5 and 7 or a derivative thereof, or 10 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 12, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 15 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 20 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.11.11] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic 25 plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 12, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, 30 application no. 12, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 12, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the 782 stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.11] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. 5 [0101.0.11.11] In an advantageous embodiment of the invention, the organism takes the form of a plant whose lutein content is modified advantageously owing to the nu cleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned lutein as antioxidant source in feed. Further, this is also important 10 for the production of cosmetic compostions since, for example, the antioxidant level of plant extracts is depending on the abovementioned lutein and the general amount of antioxidants e.g. as vitamins. After the activity of the protein as shown in table 1l, application no. 12, column 3 has been increased or generated, or after the expression of nucleic acid molecule or poly 15 peptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subse quently harvested. [0102.0.0.11] to [0110.0.0.11] for the disclosure of the paragraphs [0102.0.0.11] to [0110.0.0.11] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. 20 [0111.0.11.11] In a preferred embodiment, the respective fine chemical as indicated in any one of Tables I to IV, application no. 12, column 6 "metabolite" (lutein) is produced in accordance with the invention and, if desired, is isolated. The production of further vitamins, provitamins or carotenoids, e.g. carotenes or xanthophylls, or mixtures thereof or mixtures with other compounds by the process according to the invention is 25 advantageous. Thus, the content of plant components and preferably also further impurities is as low as possible, and the abovementioned lutein are obtained in as pure form as possible. In these applications, the content of plant components advantageously amounts to less than 10%, preferably 1%, more preferably 0.1%, very especially preferably 0.01% or 30 less. [0112.0.11.11] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a protein or polypeptid or a compound, which func- 783 tions as a sink for the desired fine chemical, for example lutein in the organism, is use ful to increase the production of the respective fine chemical (as indicated in any one of Tables I to IV, application no. 12, column 6 "metabolite"). [0113.0.11.11] In the case of the fermentation of microorganisms, the abovemen 5 tioned lutein may accumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, the fermentation broth can be proc essed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for exam ple, centrifugation, filtration, decanting or a combination of these methods, or else the 10 biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, ro tary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formulation can be added such as corn starch or silicates. This concentrated fermentation broth advanta 15 geously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, spray granulation or by other methods. Preferably the respective fine chemical as indicated for application no. 12 in any one of Tables I to IV, column 6 "metabolite" or the lutein comprising compositions are isolated from the or ganisms, such as the microorganisms or plants or the culture medium in or on which 20 the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromatography or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concen tration methods. 25 [0114.0.11.11] Transgenic plants which comprise the lutein, synthesized in the proc ess according to the invention can advantageously be marketed directly without there being any need for lutein synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, 30 embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tis sue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. 35 The site of lutein biosynthesis in plants is, inter alia, the leaf tissue so that the isolation 784 of leafs makes sense. However, this is not limiting, since the expression may also take place in a tissue-specific manner in all of the remaining parts of the plant, in particular in fat-containing seeds . A further preferred embodiment therefore relates to a seed specific isolation of lutein. 5 However, the respective fine chemical as indicated for application no. 12 in any one of Tables I to IV, column 6, "metabolite" produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids as extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free lutein. The respective fine chemical produced by this 10 process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably the plant seeds. To increase the efficiency of oil extraction it is benefi cial to clean, to temper and if necessary to hull and to flake the plant material expecially the seeds. E.g the oils, fats, lipids, extracts, e.g. ether, alcohol, or other organic sol 15 vents or water containing extract and/or free lutein can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds, which have been pretreated in this manner can sub sequently be pressed or extracted with solvents such as preferably warm hexane. The 20 solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the process can be iso lated. Thereafter, the resulting products are processed further, i.e. degummed and/or 25 refined. In this process, substances such as the plant mucilages and suspended matter are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Because lutein in microorganisms may be localized intracellularly, their recovery es sentials comes down to the isolation of the biomass. Well-establisthed approaches for 30 the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. [0115.0.11.11] Lutein can for example be analyzed advantageously via HPLC, LC or GC separation methods and detected by MS oder MSMS methods. The unambiguous detection for the presence of Lutein containing products can be obtained by analyzing 35 recombinant organisms using analytical standard methods: GC, GC-MS, or TLC, as described on several occasions by Christie and the references therein (1997, in: Ad- 785 vances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatogra phy/mass spectrometric methods], Lipide 33:343-353). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cook 5 ing, or via other applicable methods; see also Biotechnology of Vitamins, Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 1989, p.96 to 103. [0116.0.11.11]In a preferred embodiment, the present invention relates to a process for the production of the respective fine chemical as indicated for application no. 12 in any one of Tables I to IV, column 6 "metabolite", comprising or generating in an organism 10 or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 12, columns 5 and 7 or a fragment 15 thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 12, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 20 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 25 molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 30 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 786 preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 5 (c) and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 12, column 7 and conferring an in 10 crease in the amount of the respective fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 15 and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 12, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part 20 thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 12, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 25 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase 30 in the amount of the respective fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto.
787 [0116.1.11.11] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 12, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 5 cated in table I A, application no. 12, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 12, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 12, columns 5 10 and 7. [0116.2.11.11] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 12, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 15 cated in table I B, application no. 12, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 12, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 12, columns 5 20 and 7. [0117.0.11.11] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 12, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 12, columns 5 and 7. In one embodiment, the nucleic acid molecule of the 25 present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 12, columns 5 and 7. In another embodi ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 12, columns 5 and 7. [0118.0.0.11] to [0120.0.0.11] for the disclosure of the paragraphs [0118.0.0.11] to 30 [0120.0.0.11] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.11.11] The expression of nucleic acid molecules with the sequence shown in table I, application no. 12, columns 5 and 7, or nucleic acid molecules which are de rived from the amino acid sequences shown in table II, application no. 12, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, 788 application no. 12, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 12, column 3, and conferring an increase of the respective fine chemical (column 6 of application no. 12 in any one of Tables I to IV) after increasing its plastidic expression 5 and/or specific activity in the plastids is advantageously increased in the process ac cording to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.11] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. 10 [0123.0.11.11] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 12, column 3 can be determined from generally ac cessible databases. [0124.0.0.11] for the disclosure of this paragraph see paragraph [0124.0.0.0] 15 above. [0125.0.11.11] The nucleic acid molecules used in the process according to the in vention take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 12, column 3 and which confer an increase in the level of the respective fine chemical indicated in table 20 II, application no. 12, column 6 by being expressed either in the cytsol or in an organ elle such as a plastid or mitochondria or both, preferably in plastids, and the gene product being localized in the plastid and other parts of the cell or in the plastid as de scribed above. [0126.0.0.11] to [0133.0.0.11] for the disclosure of the paragraphs [0126.0.0.11] to 25 [0133.0.0.11] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0133.1.11.11] Production strains which are also advantageously selected in the process according to the invention are microorganisms selected from the group of green algae, like Spongioccoccum exentricum, Chlorella sorokiniana (pyrenoidosa, 7 11-05), or algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or 30 Dunaliella or form the group of fungi like fungi belonging to the Daccrymycetaceae fam ily, or non-photosynthetic bacteria, like methylotrophs, flavobacteria, actinomycetes, like streptomyces chrestomyceticus, Mycobacteria like Mycobacterim phlei, Rhodobac ter capsulatus, or Brevibacterium linens, Dunaliella spp., Phaffia rhodozyma, Phyco- 789 myces sp., Rhodotorula spp.. Thus, the invention also contemplates embodiments in which a host lacks lutein or lutein precursors, such as the vinca. In a plant of the latter type, the inserted DNA includes genes that code for proteins producing lutein precur sors (compounds that can be converted biologically into a compound with lutein activ 5 ity) and one or more modifiying enzymes which were originally absent in such a plant. The invention also contemplates embodiments in which the lutein or lutein precursor compounds in the production of the respective fine chemical, are present in a photo synthetic active organisms chosen as the host; for example, cyanobacteria, moses, algae or plants which, even as a wild type, are capable of producing carotenoids. 10 [0134.0.11.11] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 12, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring 15 above-mentioned activity, i.e. conferring an increase of the respective fine chemical after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table II, application no. 12, column 3 by - for example - expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and 20 other parts of the cell or in the plastid as described above. [0135.0.0.11] to [0140.0.0.11] for the disclosure of the paragraphs [0135.0.0.11] to [0140.0.0.11] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.11.11] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 12, column 7, by means of polymerase chain reaction can be 25 generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 12, columns 5 and 7 or the sequences derived from table II, application no. 12, columns 5 and 7. [0142.0.11.11] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the 30 process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 790 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 12, column 7 is derived from said aligments. [0143.0.11.11] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 5 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 12, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.11] to [0151.0.0.11] for the disclosure of the paragraphs [0144.0.0.11] to [0151.0.0.11] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 10 [0152.0.11.11] Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no. 12, column 6,, and being derived from other organisms, can be encoded by other DNA sequences which hybridize to the sequences shown in table I, application no. 12, columns 5 and 7, preferably of table I B, application no. 12, columns 5 and 7 under relaxed hybridization 15 conditions and which code on expression for peptides having the the respective fine chemical, i.e. lutein increasing activity, when expressed in a way that the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0153.0.0.11] to [0159.0.0.11] for the disclosure of the paragraphs [0153.0.0.11] to 20 [0159.0.0.11] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.11.11] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 12, 25 columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, 30 application no. 12, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled 791 person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.11.11] The nucleic acid molecule of the invention comprises a nucleotide se 5 quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7, or a portion thereof and preferably has 10 above mentioned activity, in particular having a respective fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 12, column 3 by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or 15 in the plastid as described above. [0162.0.11.11] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7, or 20 a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a lutein or triglycerides, lipids, oils and/or fats containing lutein increase by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 12, column 3, and the gene product, e.g. the polypep 25 tide, being localized in the plastid and other parts of the cell or in the plastid as de scribed above. [0163.0.11.11] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 30 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, application no. 12, column 6, if its activity is increased by for example expression either 35 in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in 792 plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying 5 and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in 10 table I, application no. 12, columns 5 and 7, an anti-sense sequence of one of the se quences, e.g., set forth in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the 15 process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 12, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.11] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. 20 [0165.0.11.11] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 12, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular an activity increasing the level of lutein increasing the 25 activity as mentioned above or as described in the examples in plants or microorgan isms is comprised. [0166.0.11.11] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 30 which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 12, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein.
793 [0167.0.11.11] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 5 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 12, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and 10 the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0168.0.0.11] and [0169.0.0.11] for the disclosure of the paragraphs [0168.0.0.11] and [0169.0.0.11] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.11.11] The invention further relates to nucleic acid molecules that differ from 15 one of the nucleotide sequences shown in table I, application no. 12, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 12, 20 columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole cule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 12, columns 5 and 7 or the functional homo logues. In a still further embodiment, the nucleic acid molecule of the invention en 25 codes a full length protein which is substantially homologous to an amino acid se quence shown in table II, application no. 12, columns 5 and 7 or the functional homo logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 12, columns 5 and 7, preferably as indicated in table I A, application no. 12, columns 5 and 30 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 12, columns 5 and 7. [0171.0.0.11] to [0173.0.0.11] for the disclosure of the paragraphs [0171.0.0.11] to [0173.0.0.11] see paragraphs [0171.0.0.0] to [0173.0.0.0] above.
794 [0174.0.11.11] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present 5 invention, e.g. comprising the sequence shown in table 1, application no. 12, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.11] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.11.11] Preferably, nucleic acid molecule of the invention that hybridizes under 10 stringent conditions to a sequence shown in table 1, application no. 12, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above 15 mentioned activity, e.g. conferring the respective fine chemical increase after increas ing the expression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. 20 [0177.0.0.11] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.11.11] For example, nucleotide substitutions leading to amino acid substitu tions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 12, columns 5 and 7. 25 [0179.0.0.11] and [0180.0.0.11] for the disclosure of the paragraphs [0179.0.0.11] and [0180.0.0.11] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.11.11] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression 30 either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids (as described), that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table 1l, application no. 12, columns 5 795 and 7, preferably shown in table II A, application no. 12, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, 5 application no. 12, columns 5 and 7, preferably shown in table II A, application no. 12, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression ei ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and 10 other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 12, columns 5 and 7, preferably shown in table II A, application no. 12, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 12, columns 5 and 7, preferably 15 shown in table II A, application no. 12, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 12, columns 5 and 7, preferably shown in table II A, application no. 12, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se quence shown in table II, application no. 12, columns 5 and 7, preferably shown in ta 20 ble II A, application no. 12, columns 5 and 7. [0182.0.0.11] to [0188.0.0.11] for the disclosure of the paragraphs [0182.0.0.11] to [0188.0.0.11] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.11.11] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 12, columns 5 and 7, preferably shown in table II B, applica 25 tion no. 12, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 12, columns 30 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7. [0190.0.11.11] Functional equivalents derived from the nucleic acid sequence as 35 shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, 796 application no. 12, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 5 99% homology with one of the polypeptides as shown in table II, application no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same properties as the polypeptide as shown in table II, application no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7. 10 [0191.0.0.11] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.11.11] A nucleic acid molecule encoding an homologous to a protein se quence of table II, application no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu 15 cleic acid molecule of the present invention, in particular of table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 12, columns 5 and 7, preferably shown in table I B, 20 application no. 12, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.11] to [0196.0.0.11] for the disclosure of the paragraphs [0193.0.0.11] to [0196.0.0.11] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.11.11] Homologues of the nucleic acid sequences used, with the sequence 25 shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 30 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 12, columns 5 and 7, preferably shown in table I B, applica- 797 tion no. 12, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.11.11] In one embodiment of the present invention, the nucleic acid molecule 5 of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, 10 columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 12, columns 5 and 7, 15 preferably shown in table I B, application no. 12, columns 5 and 7. [0199.0.11.11] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 20 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7. 25 [0200.0.11.11] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, appli cation no. 12, columns 5 and 7, preferably shown in table II B, application no. 12, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi 30 ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 12, columns 5 and 7, preferably shown in table I B, application no. 12, columns 5 and 7. [0201.0.11.11] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of 798 the respective fine chemical indicated in column 6 of Table I, application no. 12, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advanta 5 geously, the activity is essentially not reduced in comparison with the activity of a poly peptide shown in table II, application no. 12, columns 5 and 7 expressed under identi cal conditions. [0202.0.11.11] Homologues of table I, application no. 12, columns 5 and 7 or of the derived sequences of table II, application no. 12, columns 5 and 7 also mean truncated 10 sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or 15 deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro 20 moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.11] to [0215.0.0.11] for the disclosure of the paragraphs [0203.0.0.11] to [0215.0.0.11] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.11.11] Accordingly, in one embodiment, the invention relates to a nucleic acid 25 molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 12, columns 5 and 7, preferably in table II B, application no. 12, columns 5 and 7; or a fragment thereof conferring an in 30 crease in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 12, columns 5 and 7, pref- 799 erably in table I B, application no. 12, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 5 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% 10 identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) 15 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 20 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 25 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 12, column 6 in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 30 cation no. 12, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; 800 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a 5 part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 12, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod 10 ing a domaine of the polypeptide shown in table II, application no. 12, columns 5 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the 15 sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 12, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application 20 no. 12, columns 5 and 7, and conferring an increase in the amount of the fine chemical according to table II B, application no. 12, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 12, columns 5 and 7 by 25 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 12, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 12, 30 columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypeptide sequence shown in table II A and/or II B, application no. 12, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present inven tion encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 12, 801 columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, application no. 12, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 12, columns 5 and 7. In a fur 5 ther embodiment, the protein of the present invention is at least 30 % identical to pro tein sequence depicted in table II A and/or II B, application no. 12, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 12, columns 5 and 7. 10 [0217.0.0.11] to [0226.0.0.11] for the disclosure of the paragraphs [0217.0.0.11] to [0226.0.0.11] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.11.11] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and 15 T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from 20 the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic 25 acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 12, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. 30 [0228.0.0.11] to [0239.0.0.11] for the disclosure of the paragraphs [0228.0.0.11] to [0239.0.0.11] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.11.11] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu- 802 cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 12, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes 5 in the organisms.It can be especially advantageously, if additionally at least one further gene of the lutein biosynthetic pathway, e.g. of the DOXP pathway of isoprenoids bio synthesis, is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms 10 which exist in the organisms. This leads to an increased synthesis of the amino acids desired since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table I, application no. 12, columns 5 and 7 with genes which generally support or en hances the growth or yield of the target organismen, for example genes which lead to 15 faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0240.1.11.11] In addition, it might be also advantageously to combine one or more of the sequences indicated in Table I, columns 5 or 7, application no. 12, with genes which modify plant architecture or flower development, in the way, that the plant either 20 produces more flowers, or produces flowers with more petals in order to increase the respective fine chemical production capacity. [0241.0.11.11] In a further embodiment of the process of the invention, therefore, or ganisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the 25 carotenoids metabolism, in particular in synthesis of zeaxanthin, e.g. as described in Burrr BJ. Carotenoids and gen expression. Nutrition 2000, 31;16(7-8):577-8; Delagado Vargas F, Natural pigments: carotenoids, anthocyanins, and betalains - characteris tics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 2000; 40(3):173 289. . Indirect overexpression might be brought about by the manipulation of the regu 30 lation of the endogenous gene, for example through promotor mutations or the expres sion of natural or artificial transcriptional regulators. [0242.0.11.11] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the carote- 803 noids biosynthetic pathway, such as E-Lycopene cyclase, p-lycopene cyclase, beta carotene hydroxylase, and/or E-carotene hydroxylase. These genes may lead to an increased synthesis of the essential carotenoids, in particular lutein.. [0242.1.11.11] In a further advantageous embodiment of the process of the invention, 5 the organisms used in the process are those in which simultaneously a lutein degrad ing protein is attenuated, in particular by reducing the rate of expression of the corre sponding gene. [0242.2.11.11] The respective fine chemical produced can be isolated from the organ ism by methods with which the skilled worker is familiar. For example, via extraction, 10 salt precipitation, and/or different chromatography methods. The process according to the invention can be conducted batchwise, semibatchwise or continuously. The respec tive fine chemical produced by this process can be obtained by harvesting the organ isms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. 15 [0243.0.0.11] to [0264.0.0.11] for the disclosure of the paragraphs [0243.0.0.11] to [0264.0.0.11] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.11.11] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant 20 Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se 25 quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with 30 the nucleic acid molecule of the present invention as shown in table 1, application no. 12, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular.
804 [0266.0.0.11] to [0287.0.0.11] for the disclosure of the paragraphs [0266.0.0.11] to [0287.0.0.11] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.11.11] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula 5 tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 12, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 10 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 12, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.11] to [0296.0.0.11] for the disclosure of the paragraphs [0289.0.0.11] to [0296.0.0.11] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. 15 [0297.0.11.11] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo thelial cells), for example using the antibody of the present invention as described herein, in particular, an antibody against polypeptides as shown in table II, application no. 12, columns 5 and 7, which can be produced by standard techniques utilizing the 20 polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. [0298.0.0.11] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.11.11] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 12, columns 5 and 7 or as coded by 25 the nucleic acid molecule shown in table I, application no. 12, columns 5 and 7 or func tional homologues thereof. [0300.0.11.11] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 12, columns 7 and in one another em 30 bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 12, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre- 805 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.11] to [0304.0.0.11] for the disclosure of the paragraphs [0301.0.0.11] to [0304.0.0.11] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 5 [0305.0.11.11] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 12, columns 5 and 7 by one or more 10 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 12, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 15 II B, application no. 12, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 12, columns 5 and 7. 20 [0306.0.0.11] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.11.11] In one embodiment, the invention relates to polypeptide conferring an increase of level of the respective fine chemical indicated in Table II A and/or II B, ap plication no. 12, column 6 in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se 25 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 12, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 12, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden 30 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 12, columns 5 and 7.
806 [0308.0.11.11] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 12, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 12, columns 5 and 7 by one or more amino acids, preferably by more than 5, 5 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention 10 takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle, for example into the plastid or mitochondria. [0309.0.0.11] to [0311.0.0.11] for the disclosure of the paragraphs [0309.0.0.11] to 15 [0311.0.0.11] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.11.11] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 12, columns 5 and 7. 20 [0313.0.11.11] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 25 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 12, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 30 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 12, columns 5 and 7 or which is homologous thereto, as defined above.
807 [0314.0.11.11] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 12, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 5 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 12, columns 5 and 7. [0315.0.0.11] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. 10 [0316.0.11.11] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 12, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include 15 fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 20 [0317.0.0.11] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.11.11] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 12, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 12, column 3, pref 25 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 12, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 30 [0319.0.11.11] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the 808 mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 12, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such 5 that the yield, production, and/or efficiency of production of a desired compound is im proved. [0319.1.11.11] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. lutein or a recovered or isolated lutein in free or in protein- or membrane-bound form. 10 [0320.0.0.11] to [0322.0.0.11] for the disclosure of the paragraphs [0320.0.0.11] to [0322.0.0.11] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.11.11] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 12, column 3 refers to a polypeptide having an amino acid sequence cor responding to the polypeptide of the invention or used in the process of the invention, 15 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 12, column 3, e.g., a protein which does not confer the activity described herein and 20 which is derived from the same or a different organism. [0324.0.0.11] to [0329.0.0.11] for the disclosure of the paragraphs [0324.0.0.11] to [0329.0.0.11] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.11.11] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which 25 are encoded by the sequences shown in table II, application no. 12, columns 5 and 7. [0331.0.0.11] to [0346.0.0.11] for the disclosure of the paragraphs [0331.0.0.11] to [0346.0.0.11] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.11.11] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the 30 respective fine chemical indicated in column 6 of application no. 12 in any one of Tal bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the 809 invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 12, column 3. Due to the above mentioned activity the respective fine chemical content in a cell or an organism is increased. For example, 5 due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to 10 modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 12, column 3 or a protein as shown in table II, application no. 12, col umn 3-like activity is increased in the cell or organism or part thereof especially in or ganelles such as plastids or mitochondria. Examples are described above in context with the process of the invention. 15 [0348.0.0.11] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.11.11] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 12, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 20 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.11] to [0358.0.0.11] for the disclosure of the paragraphs [0350.0.0.11] to [0358.0.0.11] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.11.11] Transgenic plants comprising the respective fine chemical synthesized 25 in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are un derstood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, 30 seed cells, endosperm or embryonic tissue. The respective fine chemical indicated in column 6 of any one of Tables I to IV, application no. 12 and being produced in the process according to the invention may, however, also be isolated from the plant as one of the above mentioned derivates of lutein or lutein itself and can be isolated by harvesting the plants either from the culture in which they grow or from the field. This 810 can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant seeds, plant fruits, plant tubers and the like. [0360.0.0.11] to [0362.0.0.11] for the disclosure of the paragraphs [0360.0.0.11] to [0362.0.0.11] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. 5 [0363.0.0.11] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the respective fine chemical produced in the process can be isolated. The resulting composition or fraction comprising the respective fine chemical can, if appropriate, subsequently be 10 further purified, if desired mixed with other active ingredients such as fatty acids, vita mins, amino acids, carbohydrates, antibiotics, covitamins, antioxidants, carotenoids, and the like, and, if appropriate, formulated. [0364.0.0.11] In one embodiment, the composition is the fine chemical. [0365.0.11.11] The fine chemical indicated in column 6 of application no. 12 in Table 15 1, , and being obtained in the process of the invention are suitable as starting material for the synthesis of further products of value. For example, they can be used in combi nation with each other or alone for the production of pharmaceuticals, foodstuffs, ani mal feeds or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics compris 20 ing the steps of the process according to the invention, including the isolation of a composition comprising the fine chemical, e.g. luteinor the isolated respective fine chemical produced, if desired, and formulating the product with a pharmaceutical ac ceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the respec 25 tive fine chemical indicated in application no. 12, Table 1, column 6, and being pro duced in the process or the use of the transgenic organisms in animal feeds, food stuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.11] to [0369.0.0.11] for the disclosure of the paragraphs [0366.0.0.11] to [0369.0.0.11] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 30 [0370.0.11.11] The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; applica tion no. 12 or containig mixtures with other compounds, in particular with other vitamins or e.g. with carotenoids, e.g. with astaxanthin, or fatty acids or containing microorgan- 811 isms or parts of microorganisms, like plastids, , normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depend ing on requirements, the biomass can be separated, such as, for example, by centrifu gation, filtration, decantation, coagulation/flocculation or a combination of these meth 5 ods, from the fermentation broth or left completely in it. The fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by extrac tion, freeze-drying, spray drying, spray granulation or by other processes. 10 [0371.0.11.11] As lutein is often localized in membranes or plastids, in one embodi ment it is advantageous to avoid a leaching of the cells when the biomass is isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combination of these methods, from the fer mentation broth. The dry biomass can directly be added to animal feed, provided the 15 lutein concentration is sufficiently high and no toxic compounds are present. In view of the instability of lutein, conditions for drying, e.g. spray or flash-drying, can be mild and can be avoiding oxidation and cis/trans isomerization. For example antioxidants, e.g. BHT, ethoxyquin or other, can be added. In case the lutein concentration in the bio mass is to dilute, solvent extraction can be used for their isolation, e.g. with alcohols, 20 ether or other organic solvents, e.g. with methanol, ethanol, aceton, alcoholic potas sium hydroxide, glycerol-phenol, liquefied phenol or for example with acids or bases, like trichloroacetatic acid or potassium hydroxide. A wide range of advantageous meth ods and techniques for the isolation of lutein can be found in the state of the art. Accordingly, it is possible to further purify the produced lutein. For this purpose, the 25 product-containing composition, e.g. a total or partial lipid extraction fraction using or ganic solvents, e.g. as described above, is subjected for example to a saponification to remove triglycerides, partition between e.g. hexane/methanol (seperation of non-polar epiphase from more polar hypophasic derivates) and separation via e.g. an open col umn chromatography or HPLC in which case the desired product or the impurities are 30 retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use.
812 [0372.0.0.11] to [0376.0.0.11], [0376.1.0.11] and [0377.0.0.11] for the disclosure of the paragraphs [0372.0.0.11] to [0376.0.0.11], [0376.1.0.11] and [0377.0.0.11] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.11.11]In one embodiment, the present invention relates to a method for the 5 identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the respective 10 fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 12, columns 15 5 and 7, preferably in table I B, application no. 12, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the respective fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; 20 (e) assaying the the respective fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical as indicated for application no. 12 in any one of Tables I to IV level in the host cell after expression compared to the wild type. 25 [0379.0.0.11] to [0383.0.0.11] for the disclosure of the paragraphs [0379.0.0.11] to [0383.0.0.11] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.11.11] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 30 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product 813 or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 12, column 3, eg compar 5 ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 12, column 3. [0385.0.0.11] to [0404.0.0.11] for the disclosure of the paragraphs [0385.0.0.11] to [0404.0.0.11] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.11.11] Accordingly, the nucleic acid of the invention, the polypeptide of the 10 invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the respective fine chemicalindicated in Column 6, Table 1, appli 15 cation no. 12 or for the production of the respective fine chemical and one or more other carotenoids, vitamins or fatty acids. In one embodiment, in the process of the present invention, the produced lutein is used to protect fatty acids against oxidization, e.g. it is in a further step added in a pure form or only partly isolated to a composition comprising fatty acids. 20 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the 25 invention, the antibody of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. [0405.1.11.11] The nucleic acid molecule of the invention, the vector of the invention or the nucleic acid construct of the invention may also be useful for the production of organisms resistant to inhibitors of the lutein production biosynthesis pathways. In par 30 ticular, the overexpression of the polypeptide of the present invention may protect an organism such as a microorganism or a plant against inhibitors, which block the lutein, in particular the respective fine chemical synthesis in said organism. As lutein can protect organisms against damages of oxidative stress, especially singlet oxygens, a increased level of the respective fine chemical can protect plants against 814 herbicides which cause the toxic buildup of oxidative compounds,e.g. singlet oxygens. For example, inhibition of the protoporphorineogen oxidase (Protox), an enzyme impor tant in the synthesis of chlorophyll and heme biosynthesis results in the loss of chloro phyll and carotenoids and in leaky membranes; the membrane destruction is due to 5 creation of free oxygen radicals (which is also reported for other classic photosynthetic inhibitor herbicides). Accordingly, in one embodiment, the increase of the level of the respective fine chemi cal is used to protect plants against herbicides destroying membranes due to the crea tion of free oxygen radicals. 10 Examples of inhibitors or herbicides building up oxidative stress are aryl triazion, e.g. sulfentrazone, carfentrazone; or diphenylethers, e.g. acifluorfen, lactofen, or oxyfluor fen; or N-Phenylphthalimide, e.g. flumiclorac or flumioxazin; substituted ureas, e.g. fluometuron, tebuthiuron, diuron, or linuron; triazines, e.g. atrazine, prometryn, ametryn, metributzin, prometon, simazine, or hexazinone: or uracils, e.g. bromacil or 15 terbacil. [0405.2.11.11] In a further embodiment the present invention relates to the use of the antagonist of the present invention, the plant of the present invention or a part thereof, the microorganism or the host cell of the present invention or a part thereof for the pro duction a cosmetic composition or a pharmaceutical compostion. Such a composition 20 has an antioxidative activity, photoprotective activity, can be used to protect, treat or heal the above mentioned diseases, e.g. rhypercholesterolemic or cardiovascular dis eases, certain cancers, and cataract formation or can be used as an immunostimula tory agent. The lutein can be also used as stabilizer of other colours or oxygen senitive com 25 pounds, like fatty acids, in particular unsaturated fatty acids. [0406.0.0.11] to [0416.0.0.11] for the disclosure of the paragraphs [0406.0.0.11] to [0416.0.0.11] see paragraphs [0406.0.0.0] to [0416.0.0.0] above. [0417.0.11.11] An in vivo mutagenesis of organisms such as algae (e.g. Spongiococ cum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedacty 30 lum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which are beneficial for the production of lutein can be carried out by passing a plasmid DNA (or another vector DNA) containing the desired nucleic acid sequence or nucleic acid sequences, e.g. the nucleic acid molecule of the invention or the vector of the inven- 815 tion, through E. coli and other microorganisms (for example Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of maintaining the integrity of its genetic information. Usual mutator strains have mutations in the genes for the DNA repair system [for example mutHLS, mutD, mutT and the like; for comparison, see 5 Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strate gies 7; 32-34. In-vitro mutation methods such as increasing the spontaneous mutation rates by 10 chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran dom in-vitro mutagensis. The most common physical method for mutagensis is the treatment with UV irradiation. Another random mutagenesis technique is the error 15 prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized DNA sequences are cloned into expression vectors and the resulting mutant libraries screened for altered or improved protein activity as described below. 20 Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic acid sequence of the invention into an M13 or phagemid vector, which permits recovery of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide 25 primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather than the original. The mutagenic oligonucleotide is then allowed to prime new DNA synthesis to create a complementary full-length sequence containing the desired muta 30 tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known and used in common practice. 35 Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical.
816 [0418.0.0.11] to [0427.0.0.11] for the disclosure of the paragraphs [0418.0.0.11] to [0427.0.0.11] see paragraphs [0418.0.0.0] to [0427.0.0.0] above. [0427.1.9.11] for the disclosure of the paragraphs [0427.1.9.11] see paragraphs [0428.1.9.9] above 5 [0427.2.9.11] for the disclosure of the paragraphs [0427.2.9.11] see paragraph [0428.2.9.9] above [0427.3.9.11] for the disclosure of the paragraphs [0427.3.9.11] see paragraph [0428.3.9.9] above. [0427.4.11.11] Lutein may be produced in Synechocystis spec. PCC 6803 10 The cells of each of independent Synechocystis spec. PCC 6803 strains cultured on the BG-1 1km agar medium, and untransformed wild-type cells (on BG1 1 agar medium without kanamycin) can be used to inoculate liquid cultures. For this, cells of a mutant or of the wild-type Synechocystis spec. PCC 6803 are transferred from plate into 10 ml of liquid culture in each case. These cultures are cultivated at 280C and 30 pmol pho 15 tons*(m 2 *s)-l (30 pE) for about 3 days. After determination of the OD 730 of the individual cultures, the OD 73 0 of all cultures is synchronized by appropriate dilutions with BG-1 1 (wild types) or e.g. BG-1 1km (mutants). These cell density-synchronized cultures are used to inoculate three cultures of the mutant and of the wild-type control. It is thus possible to carry out biochemical analyses using in each case three independently 20 grown culutres of a mutant and of the corresponding wild types. The cultures are grown until the optical density was OD 730 =0.3. The cell culture medium is removed by centrifugation in an Eppendorf bench centrifuge at 14000 rpm twice. The subsequent disruption of the cells and extraction lutein take place by incubation in an Eppendorf shaker at 30'C, 1000 rpm in 100% methanol for 25 15 minutes twice, combining the supernatants obtained in each case. In order to avoid oxidation, the resulting extracts can be analyzed immediate after the extraction with the aid of a Waters Allience 2690 HPLC system. Lutein can be sepa rated on a reverse phase column and identified by means of a standard. The fluores cence of the substances which can be detected with the aid of a Jasco FP 920 fluores 30 cence detector, can serve as detection system. [0428.0.0.11] to [0435.0.0.11] for the disclosure of the paragraphs [0428.0.0.11] to [0435.0.0.11] see paragraphs [0428.0.0.0] to [0435.0.0.0] above. [0436.0.11.11] Lutein production 817 Lutein can be detected advantageously as desribed in Deli,J. & Molnar,P., Paprika ca rotenoids: Analysis, isolation, structure elucidation. Curr. Org. Chem. 6, 1197-1219 (2004) or Fraser,P.D., Pinto,M.E., Holloway,D.E. & Bramley,P.M. Technical advance: application of high-performance liquid chromatography with photodiode array detection 5 to the metabolic profiling of plant isoprenoids. Plant J. 24, 551-558 (2000). [0437.0.0.11] and [0438.0.0.11] for the disclosure of the paragraphs [0437.0.0.11] and [0438.0.0.11] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.11.11] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the respective fine chemical indicated in Table 1, applica 10 tion no. 12, column 6 [0440.0.11.1 1]The effect of the genetic modification in plants, fungi, algae or ciliates on the production of a desired compound can be determined by growing the modified mi croorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated pro 15 duction of desired product (i.e. of the lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analyti cal chromatography such as high-performance liquid chromatography (see, for exam ple, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, 20 VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemis try" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469 714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream process ing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) 25 Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). Lutein can be detected advantageously as desribed above. 30 [0441.0.0.11] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.11.11] Example 9: Purification of the lutein 818 [0443.0.11.11]Abbreviations:; GC-MS, gas liquid chromatography/mass spectrometry; TLC, thin-layer chromatography. The unambiguous detection for the presence of lutein can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as 5 described (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometric methods], Lipide 33:343-353). The total lutein produced in the organism used in the inventive process can be ana lysed for example according to the following procedure: 10 The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pes tle and mortar to make it more amenable to extraction. A typical sample pretreatment consists of a total lipid extraction using such polar or 15 ganic solvents as acetone or alcohols as methanol, or ethers, saponification , partition between phases, seperation of non-polar epiphase from more polar hypophasic deriva tives and chromatography. [0443.1.11.11] Characterization of the transgenic plants 20 In order to confirm that lutein biosynthesis in the transgenic plants is influenced by the expression of the polypeptides described herein, the lutein content in leaves, seeds and/or preferably flowers of the plants transformed with the described constructs (Arabidopsis.thaliana, Brassica napus and Nicotiana tabacum) is analyzed. For this purpose, the transgenic plants are grown in a greenhouse, and plants which express 25 the gene coding for polypeptide of the invention or used in the method of the invention are identified at the Northern level. The lutein content in flowers, leaves or seeds of these plants is measured. In all, the lutein concentration is raised by comparison with untransformed plants. [0444.0.11.11]If required and desired, further chromatography steps with a suitable 30 resin may follow. Advantageously, the lutein can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be puri 35 fied.
819 [0445.0.11.11]In addition depending on the produced fine chemical purification is also possible with cristalisation or destilation. Both methods are well known to a person skilled in the art. [0446.0.0.11] to [0496.0.0.11] for the disclosure of the paragraphs [0446.0.0.11] to 5 [0496.0.0.11] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.11.11]As an alternative, the lutein can be detected advantageously as des ribed above. [0498.0.11.11] The results of the different plant analyses can be seen from the table, which follows: 10 Table VI Min.- Max.
ORF Metabolite Method/Analytics Value Value b2344 Lutein LC 1.39 2.15 [0499.0.0.11] and [0500.0.0.11] for the disclosure of the paragraphs [0499.0.0.11] and [0500.0.0.11] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.11.11]Example 15a: Engineering ryegrass plants by over-expressing b2344 15 from E. coli or homologs of b2344 from other organisms. [0502.0.0.11] to [0508.0.0.11] for the disclosure of the paragraphs [0502.0.0.11] to [0508.0.0.11] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.11.11]Example 15b: Engineering soybean plants by over-expressing b2344 from E. coli or homologs of b2344 from other organisms. 20 [0510.0.0.11] to [0513.0.0.11] for the disclosure of the paragraphs [0510.0.0.11] to [0513.0.0.11] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.11] Example 15c: Engineering corn plants by over-expressing b2344 from E. coli or homologs of b2344 from other organisms. [0515.0.0.11] to [0540.0.0.11] for the disclosure of the paragraphs [0515.0.0.11] to 25 [0540.0.0.11] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.11.11]Example 15d: Engineering wheat plants by over-expressing b2344 from E. coli or homologs of b2344 from other organisms.
820 [0542.0.0.11] to [0544.0.0.11] for the disclosure of the paragraphs [0542.0.0.11] to [0544.0.0.11] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.11.11] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b2344 from E. coli or homologs of b2344 from other or 5 ganisms. [0546.0.0.11] to [0549.0.0.11] for the disclosure of the paragraphs [0546.0.0.11] to [0549.0.0.11] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.11.11]Example 15f: Engineering alfalfa plants by over-expressing b2344 from E. coli or homologs of b2344 from other organisms. 10 [0551.0.0.11] to [0554.0.0.11] for the disclosure of the paragraphs [0551.0.0.11] to [0554.0.0.11] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.11.11]: ./. [0554.2.0.11] for the disclosure of this paragraph see [0554.2.0.0] above. 15 [0555.0.0.11] for the disclosure of this paragraph see [0555.0.0.0] above.
821 [0001.0.0.12] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.12.12] Sterols are a class of essential, natural compounds required by all eukaryotes to complete their life cycle. In animals, cholesterol is typically the major sterol while in fungi it is ergosterol. Plants produce a class of sterols called 5 phytosterols. Phytosterols are natural components of many vegetables and grains. The term "phytosterols" covers plant sterols and plant stanols. Plant sterols are naturally occurring substances present in the diet as minor components of vegetable oils. The structures of these plant sterols are similar to that of cholesterol with an extra methyl or ethyl group and a double bond in the side chain. Saturated plant sterols, referred to as 10 stanols, have no double bond in the ring structure. Phytosterols (including plant sterols and stanols) are natural components of plant foods, especially plant oils, seeds and nuts, cereals and legumes specially of edible vegetable oils such as sunflower seed oil and, as such are natural constituents of the human diet. The most common phytosterols are beta-sitosterol, campesterol, and 15 stigmasterol. Beta-sitosterol is found in high amounts in nuts. [0003.0.12.12] A high concentration of cholesterol in serum, i.e., hypercholesterolemia, is a wellknown risk factor for coronary heart disease (CHD). Blood cholesterol levels can be decreased by following diets, which are low in saturated fat, high in polyunsaturated fat and low in cholesterol. Although considerable 20 achievements have been made in terms of knowledge and education, consumers still find it difficult to follow healthy eating advice. Both plant sterols and plant stanols are effective in lowering plasma total and low density lipoprotein (LDL) cholesterol and this occurs by inhibiting the absorption of cholesterol from the small intestine. The plasma cholesterol-lowering properties of plant 25 sterols have been known since the 1950s (Pollak, Circulation, 7, 702-706.1953). They have been used as cholesterol-lowering agents, first in a free form (Pollak and Kritchevsky, Sitosterol. In: Monographs on Aherosclerosis. Clarkson TB, Kritchevsky D,Pollak OJ, eds. New York, Basel, Karger 1981; 1-219) and recently mainly as esterified phytosterols (Katan et al., Mayo Clin Proc 2003; 78: 965-978). 30 The consumption of plant sterols and plant stanols lowers blood cholesterol levels by inhibiting the absorption of dietary and endogenously-produced cholesterol from the small intestine and the plant sterols/stanols are only very poorly absorbed themselves. This inhibition is related to the similarity in physico-chemical properties of plant sterols 822 and stanols and cholesterol. Plant sterols and plant stanols appear to be without hazard to health, having been shown without adverse effects in a large number of human studies. They show no evidence of toxicity even at high dose levels and gastro intestinal absorption is low. 5 [0004.0.12.12] The most abundant sterols of vascular plants are campesterol, sitosterol and stigmasterol, all of which contain a double bond between the carbon atoms at positions 5 and 6 and are classified as delta-5 sterols. Exemplary naturally occurring delta-5 plant sterols are isofucosterol, sitosterol, stigmasterol, campesterol, cholesterol, and dihydrobrassicasterol. Exemplary naturally 10 occurring non-delta-5 plant sterols are cycloartenol, 24-methylene cycloartenol, cycloeucalenol, and obtusifoliol. The ratio of delta-5 to non-delta-5 sterols in plants can be an important factor relating to insect pest resistance. Insect pests are unable to synthesize de novo the steroid nucleus and depend upon external sources of sterols in their food source for production 15 of necessary steroid compounds. In particular, insect pests require an external source of delta-5 sterols. By way of example, externally provided delta-5 sterols are necessary for the production of ecdysteroids, hormones that control reproduction and development. See, e.g., Costet et al., Proc. NatI. Acad. Sci. USA, 84:643 (1987) and Corio-Costet et al., Archives of Insect Biochem. Physiol., 11:47 (1989). 20 [0005.0.12.12] US 20020148006 and WO 98/45457 describes the modulation of phytosterol compositions to confer resistance to insects, nematodes, fungi and/or environmental stresses, and/or to improve the nutritional value of plants by using a DNA sequence encoding a first enzyme; which binds a first sterol and is preferably selected from the group consisting of S-adenosyl-L-meth ion ine-L 24
(
25 )-sterol methyl 25 transferase, a C-4 demethylase, a cycloeucalenol to obtusifoliol-isomerase, a 14-a demethylase, a A 8 to A 7 -isomerase, a A 7 -C-5-desaturase and a 24,25-reductase, and produces a second sterol and a 3' non-translated region which causes polyadenylation at the 3' end of the RNA. WO 93/16187 discloses new plants containing in its genome one or more genes 30 involved in the early stages of phytosterol biosynthesis, preferably the genes encode mevalonate kinase. US 5,306,862, US 5,589,619, US 5,365,017, US 5,349,126 and US 20030150008 describe a method of increasing sterol (and squalene) accumulation in a plant based 823 on an increased HMG-CoA reductase activity to increase the pest resistance of transgenic plants. WO 97/48793 discloses a C-14 sterol reductase polypeptide for the genetic manipulation of a plant sterol biosynthetic pathway. 5 US 20040172680 disclose the use of a gene expressing a SMT1 (sterol methyltransferase) to increase the level of sterols in the seeds of plants. A DNA sequence encoding sterol methyltransferase isolated from Zea mays is disclosed in WO 00/08190. Bouvier-Nav et al in Eur. J. Biochem. 256, 88-96 (1988) describes two families of sterol methyl transferases (SMTs), The first (SMT1) applying to cycloartenol 10 and the second (SMT2) to 24-methylene lophenol. Schaller et al (Plant Physiology (1998) 118: 461-169) describes the over-expression of SMT2 from Arabidopsis in tobacco resulting in a change in the ratio of 24-methyl cholesterol to sitosterol in the tobacco leaf. US 6,723,837 and US 20040199940 disclose nucleic acid molecules encoding proteins 15 and fragments of proteins associated with sterol and phytosterol metabolism as well as cells, that have been manipulated to contain increased levels or overexpress at least one sterol or phytosterol compound. The protein or fragment is selected from the group consisting of a HES1, HMGCoA reductase, squalene synthase, cycloartenol synthase, SMTI, SMTII and UPC, preferably from member of the KES1/HES1/OSH1 20 family of oxysterol-binding (OSBP) proteins comprising an oxysterol-binding protein consensus sequence--E(K, Q) xSH (H, R) PPx (S, T, A, C, F)A. One class of proteins, oxysterol-binding proteins, have been reported in humans and yeast (Jiang et al., Yeast 10: 341-353 (1994), the entirety of which is herein incorporated by reference). These proteins have been reported to modulate ergosterol levels in yeast (Jiang et al., 25 Yeast 10: 341-353 (1994)). In particular, Jiang et al., reported three genes KES1, HES1 and OSH1, which encode proteins containing an oxysterol-binding region. [0006.0.12.12] Transgenic plants having altered sterol profiles could be instrumental in establishing a dietary approach to cholesterol management and cardiovascular disease prevention. The altered phytosterol profile further leads to pest resistance. 30 [0007.0.12.12] Although people consume plant sterols every day in their normal diet, the amount is not great enough to have a significant blood cholesterol lowering effect. The intake of phytosterols varies among different populations according to the food products being consumed, but the average daily Western diet is reported to contain 824 150-300 mg of these sterols (de Vries et al., J Food Comp Anal 1997; 19: 115-141; Bjbrkhem et al. Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver CS, Beaudet AL, Sly WS, Valle D, eds. New York, McGraw-Hill 2001; 2961-2988). In order 5 to achieve a cholesterol-lowering benefit, approximately 1 g/day of plant sterols need to be consumed (Hendriks et al., European Journal of Clinical Nutrition, 53, 319 327.1999). [0008.0.12.12] Phytosterols are found naturally in plant foods at low levels. The enrichment of foods such as margarines with plant sterols and stanols is one of the 10 recent developments in functional foods to enhance the cholesterol-lowering ability of traditional food products. Incorporation of additional phytosterols into the diet may be an effective way of lowering total and LDL cholesterol levels. The non-esterified phytosterols can be used as novel food ingredients in: (a) bakery products and cereals (eg, breakfast cereals, breakfast bars); 15 (b) dairy products such as low and reduced fat liquid milk, low and reduced fat yoghurt and yoghurt products, and dairy based desserts; (c) non-carbonated soft drinks like low and reduced fat soy beverages and low and reduced fat soy-based yoghurts; (d) meat products or edible fats and oils (eg, mayonnaise, spice sauces, salad dressings); (e) margarine; and table spreads or dietary fats. [0009.0.12.12] When edible oils undergo normal refining, plant sterols are partially extracted. It is estimated that 2500 tonnes of vegetable oil needs to be refined to 20 produce 1 tonne of plant sterols. Plant stanols are obtained by hydrogenation of the plant sterols. [0010.0.12.12] Another source of plant sterols is tall oil, derived from the process of paper production from wood and approximately 2500 tons of pine is required to pro duce 1 ton of plant sterols. Tall oil also contains a higher proportion of plant stanols 25 (primarily b-sitostanol) than do vegetable oils.
825 [0011.0.12.12] To ensure a high quality of foods and animal feeds, it is therefore nec essary to add sterols in a balanced manner to suit the organism. [0012.0.12.12] Accordingly, there is still a great demand for new and more suitable genes which encode proteins or regulators which participate in the biosynthesis of 5 sterols and make it possible to produce sterols specifically on an industrial scale with out unwanted byproducts forming. In the selection of genes for or regulators of biosyn thesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of sterols on the other hand as less as possible byproducts should be produced in the 10 production process. [0013.0.0.12] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.12.12] Accordingly, in a first embodiment, in context of paragraphs [0001.n.n.12] to [0555.n.n.12] the invention relates to a process for the production of a fine chemical, whereby the fine chemical are sterols . Accordingly, in the present in 15 vention, the term "the fine chemical" as used herein relates to " sterols". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising sterols. [0015.0.12.12] In one embodiment, the term "the fine chemical" means phytosterols, plant sterols and plant stanols. Throughout the specification the term "the fine 20 chemical" means phytosterols and ester, thioester or sterols in free form or bound to other compounds. For the purpose of this description, the term sterol/stanol refers both to free sterols/stanols and conjugated sterols/stanols, for example, where the 3 hydroxy group is esterified by a fatty acid chain or phenolic acid to give a steryl/stanyl ester. As used herein, the term "phytosterol" includes all phytosterols without limitation, 25 for example: sitosterol, campesterol, stigmasterol, brassicasterol, desmosterol, chalinosterol, poriferasterol, clionasterol, the corresponding stanols and all natural or synthesized forms and derivatives thereof, including isomers. It is to be understood that modifications to the phytosterols i.e. to include side chains also falls within the purview of this invention. All those derivates forms are summarized as "conjugates". In an 30 preferred embodiment, the term "the fine chemical" or the term "phytosterol" or the term "the respective fine chemical" means at least one chemical compound plant sterols and plant stanols selected from the group "beta-sitosterol, sitostanol, stigmasterol, brassicasterol, campestanol, isofucosterol and campesterol", preferred "beta- 826 sitosterol, campesterol, and/or stigmasterol", most preferred "beta-sitosterol and/or campesterol". Also preferably, are esters of sterols/stanols with C10-24 fatty acids. Increased phytosterol content normally means an increased total phytosterol content. However, an increased phytosterol content also means, in particular, a modified 5 content of the above-described compounds ("beta-sitosterol, sitostanol, stigmasterol, brassicasterol, campestanol, isofucosterol and campesterol") with phytosterol activity, without the need for an inevitable increase in the total phytosterol content. [0016.0.12.12]Accordingly, the present invention relates to a process for the production of sterols which comprises 10 (a) increasing or generating the activity of a protein as shown in table II, application no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap 15 plication no. 13, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus sterols or fine chemicals comprising sterols , in said organism or in the culture medium surrounding the organism. 20 [0016.1.12.12] Accordingly, the term "the fine chemical" means in one embodi ment " sterols" in relation to all sequences listed in Table I to IV, application no. 13 [0017.0.12.12]In another embodiment the present invention is related to a process for the production of sterols, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 25 no. 13 column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5, which are joined to a nucleic acid sequence encoding a 30 transit peptide in a non-human organism, or in one or more parts thereof; or 827 (c) increasing or generating the activity of a protein as shown in table II, application no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more 5 parts thereof, and (d) growing the organism under conditions which permit the production of sterols in said organism. [0017.1.12.12]In another embodiment, the present invention relates to a process for the production of sterols, which comprises 10 (a) increasing or generating the activity of a protein as shown in table II, application no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application 15 no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, sterols or fine chemicals comprising sterols, in said organism or 20 in the culture medium surrounding the organism. [0018.0.12.12] Advantagously the activity of the protein as shown in table II, applica tion no. 13, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 13, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. 25 [0019.0.0.12] to [0024.0.0.12] for the disclosure of the paragraphs [0019.0.0.12] to [0024.0.0.12] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.12.12] Even more preferred nucleic acid sequences are encoding transit pep tides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some 30 examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to 828 link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 13, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 5 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to 10 plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in 15 length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base 20 pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme 25 recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.12.12] As mentioned above the nucleic acid sequences coding for the pro 30 teins as shown in table II, application no. 13, column 3 and its homologs as disclosed in table I, application no. 13, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably 35 linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod- 829 ing for proteins as shown in table II, application no. 13, column 3 and its homologs as disclosed in table I, application no. 13, columns 5 and 7. [0027.0.0.12] to [0029.0.0.12] for the disclosure of the paragraphs [0027.0.0.12] to [0029.0.0.12] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. 5 [0030.0.12.12] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera 10 bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu 15 cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera 20 bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in 25 ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 13, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is 30 cleaved off from the protein part shown in table II, application no. 13, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 13, columns 5 and 7. Other short amino 35 acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 830 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 13, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent 5 cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the 10 expression of the genes metioned in table I, application no. 13, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.12.12] Table V: Examples of transit peptides disclosed by von Heijne et al.: for the disclosure of the Table V see paragraphs [0030.2.0.0] above. 15 [0030.1.12.12] Alternatively to the targeting of the sequences shown in table II, ap plication no. 13, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore 20 in a preferred embodiment the nucleic acid sequences shown in table I, application no. 13, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". 25 A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a 30 chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny.
831 [0030.2.0.12] and [0030.3.0.12] for the disclosure of the paragraphs [0030.2.0.12] and [0030.3.0.12] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.12.12] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 5 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 13, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 10 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table 1, application no. 13, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 13, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. 15 In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain 20 about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table, 1, application no. 13, columns 5 and 7 or a se quence encoding a protein, as depicted in table II, application no. 13, columns 5 and 7 25 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table 1 application no. 13, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 13, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). 30 In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 13, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast 35 by means of a chloroplast localization sequence. The genes, which should be ex- 832 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the 5 inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 13, columns 5 and 7. [0030.5.12.12] In a preferred embodiment of the invention the nucleic acid se 10 quences as shown in table I, application no. 13, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. 15 [0030.6.12.12] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 13, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter 20 from corn. [0031.0.0.12] and [0032.0.0.12] for the disclosure of the paragraphs [0031.0.0.12] and [0032.0.0.12] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.12.12] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in 25 crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 13, column 3. Preferably the 30 modification of the activity of a protein as shown in table II, application no. 13, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.12.12] Surprisingly it was found, that the transgenic expression of the E. coli proteins shown in table II, application no. 13, column 3 in plastids of a plant such as 833 Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V - conferred an increase in the respective fine chemical indicated in column 6 "metabolite" of each table I to IV in the transformed plant. 5 Surprisingly it was found, that the transgenic expression of the E. coli protein b0931 or b1410 in combination with a plastidal targeting sequence in Arabidopsis thaliana con ferred an increase in beta-sitosterol. Surprisingly it was found, that the transgenic expression of the E. coli protein b1 41 Oor b1556 or b2022 or b3708 in combination with a plastidal targeting sequence in Arabi 10 dopsis thaliana conferred an increase in campesterol. Surprisingly it was found, that the transgenic expression of the E. coli protein b1704 in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in stigmasterol. Surprisingly it was found, that the transgenic expression of the Saccharomyces cere 15 visiae protein YDR035W or YLR027C in combination with a plastidal targeting se quence in Arabidopsis thaliana conferred an increase in beta-sitosterol. Surprisingly it was found, that the transgenic expression of the Saccharomyces cere visiae protein YDR035W or YLR027C or YNL241C in combination with a plastidal tar geting sequence in Arabidopsis thaliana conferred an increase in campesterol. 20 [0035.0.0.12] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.12.12] The sequence of b0931 from Escherichia coli (Acession PIR:JQ0756) has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as " nicotinate phosphoribosyltransferase ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "nicotinate 25 phosphoribosyltransferase " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sterols, in particular for increasing the amount of beta sitosterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 30 linked at least to one transit peptide as mentioned for example in table V.
834 In another embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1410 from Escherichia coli (Accession NP_415928) has been pub 5 lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative methylase with S-adenosyl-L-methionine-dependent methyltrans ferase domain and alpha/beta-hydrolase domain". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative methylase with S adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase 10 domain" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sterols, in particular for increasing the amount of beta-sitosterol and/or campesterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 15 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 from Escherichia coli (Acession NP_416074) has been pub 20 lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sterols, in particular for increasing the amount of campesterol in free or bound form in an organism or a part thereof, as 25 mentioned. In one embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1556 30 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1704 from Escherichia coli (Accession NP_416219) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 835 defined as " 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase), tryptophan-repressible ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase (DAHP synthetase), tryptophan-repressible " or its homolog, e.g. 5 as shown herein, for the production of the fine chemical, meaning of sterols, in particu lar for increasing the amount of stigmasterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 10 ample in table V. In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2022 from Escherichia coli (Accession NP_416526) has been pub 15 lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "bifunctional histidinol-phosphatase / imidazoleglycerol-phosphate dehydra tase ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "bifunctional histidinol-phosphatase / imidazoleglycerol-phosphate dehy dratase " or its homolog, e.g. as shown herein, for the production of the fine chemical, 20 meaning of sterols, in particular for increasing the amount of campesterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2022 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b2022 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3708 from Escherichia coli (Accession PIR:WZEC) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 30 defined as "tryptophan deaminase, PLP-dependent ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "tryptophan deaminase, PLP-dependent " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sterols, in particular for increasing the amount of campesterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, 836 in the process of the present invention the activity of a b3708 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3708 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W from Saccharomyces cerevisiae (NP_010320) has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 and Gof feau, Science 274 (5287), 546-547, 1996, and its activity is being defined as "3-deoxy 10 D-arabino-heptulosonate 7-phosphate (DAHP) synthase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "3-deoxy-D-arabino heptulosonate 7-phosphate (DAHP) synthase " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sterols, in particular for increasing the amount of beta-sitosterol and/or campesterol in free or bound form in an organism 15 or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a YDR035W protein is increased or generated, e.g. from Sac charomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 20 YDR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR027C from Saccharomyces cerevisiae (Accession NP_013127) has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 and Goffeau, Science 274 (5287), 546-547, 1996, and its activity is being defined as 25 "aspartate aminotransferase ". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "aspartate aminotransferase " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sterols, in particular for increasing the amount of campesterol and/or beta-sitosterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the 30 process of the present invention the activity of a YLR027C protein is increased or gen erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V.
837 In another embodiment, in the process of the present invention the activity of a YLR027C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YNL241C from Saccharomyces cerevisiae (Accession NP_014158) 5 has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 and Goffeau, Science 274 (5287), 546-547, 1996, and its activity is being defined as "glucose-6-phosphate dehydrogenase ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glucose-6-phosphate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning 10 of sterols, in particular for increasing the amount of campesterol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.12.12] In one embodiment, the homolog of the b0931, b1410, b1556, b1704, 2022 and/or b3708 is a homolog having said acitivity and being derived from bacteria. 20 In one embodiment, the homolog of the b0931, b1410, b1556, b1704, 2022 and/or b3708 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b0931, b1410, b1556, b1704, 2022 and/or b3708 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the b0931, b1410, b1556, b1704, 2022 and/or b3708is a 25 homolog having said acitivity and being derived from Enterobacteriales. In one em bodiment, the homolog of the b0931, b1410, b1556, b1704, 2022 and/or b3708is a homolog having said acitivity and being derived from Enterobacteriaceae. In one em bodiment, the homolog of the b0931, b1410, b1556, b1704, 2022 and/or b3708is a homolog having said acitivity and being derived from Escherichia, preferably from Es 30 cherichia coli. In one embodiment, the homolog of the YDR035w, YLR027c and/or YNL241 c is a ho molog having said activity and being derived from an eukaryotic. In one embodiment, the homolog of the YDR035w, YLR027c and/or YNL241c is a homolog having said activity and being derived from Fungi. In one embodiment, the homolog of the 838 YDR035w, YLR027c and/or YNL241 c is a homolog having said activity and being de rived from Ascomyceta. In one embodiment, the homolog of the YDR035w, YLR027c and/or YNL241c is a homolog having said activity and being derived from Saccharo mycotina. In one embodiment, the homolog of the YDR035w, YLR027c and/or 5 YNL241c is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the YDR035w, YLR027c and/or YNL241 c is a ho molog having said activity and being derived from Saccharomycetales. In one embodi ment, the homolog of the YDR035w, YLR027c and/or YNL241c is a homolog having said activity and being derived from Saccharomycetaceae. In one embodiment, the 10 homolog of the YDR035w, YLR027c and/or YNL241c is a homolog having said activity and being derived from Saccharomycetes. [0037.1.12.12] Homologs of the polypeptide discolosed in table II, application no. 13, column 3 may be the polypetides encoded by the nucleic acid molecules indicated in table I , application no. 13, column 7, resp., or may be the polypeptides indicated in 15 table II, application no. 13, column 7, resp. [0038.0.0.12] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.12.12] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 13, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the level of 20 the fine chemical indicated in the respective line of table II, application no. 13, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism .The protein has the above mentioned activities of a protein as shown in table II, application no. 13, column 3, preferably in the event the nucleic acid sequences encoding said 25 proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 13, column 3, or which has at least 10% of 30 the original enzymatic or biological activity, preferably 20%, particularly preferably 30%, most particularly preferably 40% in comparison to a protein as shown in the respective line of table II, application no. 13, column 3 of E. coli or Saccharomyces cerevisiae. [0040.0.0.12] to [0047.0.0.12] for the disclosure of the paragraphs [0040.0.0.12] to [0047.0.0.12] see paragraphs [0040.0.0.0] to [0047.0.0.0] above.
839 [0048.0.12.12] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 5 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a respective protein as shown in table 1l, application no. 13, column 3 its biochemical or genetical causes and the increased amount of the respective fine chemical. [0049.0.0.12] to [0051.0.0.12] for the disclosure of the paragraphs [0049.0.0.12] to 10 [0051.0.0.12] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.12.12] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu 15 cleic acid molecules as mentioned in table 1, application no. 13, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, 20 for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.12] to [0058.0.0.12] for the disclosure of the paragraphs [0053.0.0.12] to [0058.0.0.12] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. 25 [0059.0.12.12] In case the activity of the Escherichia coli protein b0931 or its ho mologs, e.g. a " nicotinate phosphoribosyltransferase" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free beta sitosterol between 13% and 27% or more is con ferred. 30 In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free 840 beta-sitosterol between 20% and 26% or more is conferred. In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased, advantageously in an organelle such as a 5 plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free beta campesterol between 19% and 23% or more is conferred. In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased, advantageously in an organelle such as a 10 plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free beta-sitosterol between 20% and 26% or more and beta campesterol between 19% and 23% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased, advantageously in an organelle such as a plastid or mitochon 15 dria, preferably, an increase of the fine chemical, preferably of free campesterol be tween 26% and 52% or more is conferred. In case the activity of the Escherichia coli protein b1 704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible" is increased, advantageously in an organelle such as a plastid or mito 20 chondria, preferably, an increase of the fine chemical, preferably of free stigmasterol between 83% and 665% or more is conferred. In case the activity of the Escherichia coli protein b2022 or its homologs, e.g. a "bifunc tional histidinol-phosphatase / imidazoleglycerol-phosphate dehydratase" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an in 25 crease of the fine chemical, preferably of free campesterol between 22% and 27% or more is conferred. In case the activity of the Escherichia coli protein b3708 or its homologs, e.g. a "trypto phan deaminase, PLP-dependent" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of 30 free campesterol between 18% and 85% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased, advantageously in an organelle such as a plastid or mitochondria, prefera bly, an increase of the fine chemical, preferably of free beta-sitosterol between 15% 35 and 22% or more is conferred.
841 In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased, advantageously in an organelle such as a plastid or mitochondria, prefera bly, an increase of the fine chemical, preferably of free campesterol between 20% and 5 25% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased, advantageously in an organelle such as a plastid or mitochondria, prefera bly, an increase of the fine chemical, preferably of free beta-sitosterol between 15% 10 and 22% or more and free campesterol between 20% and 25% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YLR027C or its homologs, e.g. a "aspartate aminotransferase" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free campesterol between 22% and 285% or more is conferred 15 In case the activity of the Saccharomyces cerevisiae protein YLR027C or its homologs, e.g. a "aspartate aminotransferase" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free beta-sitosterol between 24% and 219% or more is conferred In case the activity of the Saccharomyces cerevisiae protein YLR027C or its homologs, 20 e.g. a "aspartate aminotransferase" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free campesterol between 22% and 285% or more and free beta-sitosterol between 24% and 219% or more is conferred In case the activity of the Saccharomyces cerevisiae protein YNL241 C or its homologs, 25 e.g. a "glucose-6-phosphate dehydrogenase" is increased, advantageously in an or ganelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free campesterol between 21% and 31% or more is conferred [0060.0.12.12] In one embodiment, the activity of the Escherichia coli protein b0931 or its homologs,e.g. a "nicotinate phosphoribosyltransferase " is advantageously in 30 creased in an organelle such as a plastid or mitochondria, preferably conferring an in crease of the fine chemical beta-sitosterol indicated in column 6 "metabolites" for appli cation no. 13 in any one of Tables I to IV.
842 In one embodiment, the activity of the Escherichia coli protein b1410 or its ho mologs,e.g. a "putative methylase with S-adenosyl-L-methionine-dependent methyl transferase domain and alpha/beta-hydrolase domain"is advantageously increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the 5 fine chemical beta-sitosterol and/or campesterol as indicated in column 6 "metabolites" for application no. 13 in any one of Tables I to IV In one embodiment, the activity of the Escherichia coli protein b1 556 or its ho mologs,e.g. a "Qin prophage" is advantageously increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical campes 10 terol as indicated in column 6 "metabolites" for application no. 13 in any one of Tables I to IV In one embodiment, the activity of the Escherichia coli protein b1 704 or its ho mologs,e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase), tryptophan-repressible" is advantageously increased in an organelle such as 15 a plastid or mitochondria, preferably conferring an increase of the fine chemical stig masterol as indicated in column 6 "metabolites" for application no. 13 in any one of Tables I to IV In one embodiment, the activity of the Escherichia coli protein b2022 or its ho mologs,e.g. a "bifunctional histidinol-phosphatase / imidazoleglycerol-phosphate dehy 20 dratase" is advantageously increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical campesterol as indicated in col umn 6 "metabolites" for application no. 13 in any one of Tables I to IV In one embodiment, the activity of the Escherichia coli protein b3708 or its ho mologs,e.g. a "tryptophan deaminase, PLP-dependent" is advantageously increased in 25 an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical campesterol as indicated in column 6 "metabolites" for application no. 13 in any one of Tables I to IV In one embodiment, the activity of the Saccharomcyes cerevisiae protein YDR035w or its homologs,e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" 30 is advantageously increased in an organelle such as a plastid or mitochondria, prefera bly conferring an increase of the fine chemical beta-sitosterol and/or campesterol as indicated in column 6 "metabolites" for application no. 13 in any one of Tables I to IV 843 In one embodiment, the activity of the Saccharomcyes cerevisiae protein YLR027c or its homologs,e.g. a "aspartate aminotransferase" is advantageously increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical beta-sitosterol and/or campesterol as indicated in column 6 "metabolites" 5 for application no. 13 in any one of Tables I to IV In one embodiment, the activity of the Saccharomcyes cerevisiae protein YNL241c or its homologs,e.g. a "glucose-6-phosphate dehydrogenase" is advantageously in creased in an organelle such as a plastid or mitochondria, preferably conferring an in crease of the fine chemical campesterol as indicated in column 6 "metabolites" for ap 10 plication no. 13 in any one of Tables I to IV [0061.0.0.12] and [0062.0.0.12] for the disclosure of the paragraphs [0061.0.0.12] and [0062.0.0.12] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.12.12]A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in one embodiment 15 the structure of the polypeptide described herein, in particular of the polypeptides com prising the consensus sequence shown in table IV, application no. 13, column 7 or of the polypeptide as shown in the amino acid sequences as disclosed in table II, applica tion no. 13, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid 20 molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 13, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.12.12] For the purposes of the present invention, the reference to the fine chemical, e.g. to the term "sterols", also encompasses the corresponding salt, ester, 25 e.g. the mono- or diesters of fatty acids, e.g. sterols dipalmitates, dimyristates or mon omyristates, or sterols bound to proteins, e.g. lipoproteins or e.g. tuberlin, or bound to other compounds. Sterols exist in a matrix in foods. Thus, in one embodiment, the fine chemical produced according to the process of the invention is a matrix comprising inter alia lipids, in par 30 ticular cholesterol, phospholipid, and/or triglycerides, and sterols. [0065.0.0.12] and [0066.0.0.12] for the disclosure of the paragraphs [0065.0.0.12] and [0066.0.0.12] see paragraphs [0065.0.0.0] and [0066.0.0.0] above.
844 [0067.0.12.12] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, 5 e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 13, columns 5 and 7 or its homologs activity having herein-mentioned sterol increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a 10 fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 13, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 13, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein 15 mentioned sterol increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 20 cation no. 13, columns 5 and 7 or its homologs activity, or decreasing the inhibi tiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 25 polypeptide of the invention having herein-mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 13, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 30 the present invention having herein-mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 13, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or 845 f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as 5 indicated in table 1l, application no. 13, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned 10 sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 13, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in 15 table 1l, application no. 13, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt 20 repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 25 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; 30 and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or 846 k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned sterol increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table II, application no. 13, columns 5 and 7 or its homologs activity, to the plastids by the 5 addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 13, columns 5 and 7 or its ho 10 mologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or 15 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 13, columns 5 and 7 or its ho mologs activity in plastids by integration of a nucleic acid of the invention into the 20 plastidal genome under control of preferable a plastidial promoter. [0068.0.12.12] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having 25 the herein mentioned activity, e.g. conferring the increase of the respective fine chemi cal as indicated in column 6 of application no. 13 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 13, column 3 or its homologs. Preferably the increase 30 of the fine chemical takes place in plastids. [0069.0.0.12] to [0079.0.0.12] for the disclosure of the paragraphs [0069.0.0.12] to [0079.0.0.12] see paragraphs [0069.0.0.0] to [0079.0.0.0] above.
847 [0080.0.12.12] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 13, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec tive fine chemical after increase of expression or activity in the cytsol and/or in an or 5 ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en coding the protein as shown in table II, application no. 13, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA-binding domain and an activation domain as e.g. the VP16 domain of 10 Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 13, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 13, column 3, see e.g. in WO01/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 15 13290 or Guan, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.12] to [0084.0.0.12] For the disclosure of the paragraphs [0081.0.0.12] to [0084.0.0.12] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.12.12] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole 20 cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably 25 novel metabolites composition in the organism, e.g. an advantageous sterols contain ing composition comprising a higher content of (from a viewpoint of nutrional physiol ogy limited) , sterols or phytosterol(s), in particular campesterol, beta-sitosterol or stigmasterol, e.g. in combination with fatty acid(s), dietary oil(s), such as corn oil, and/or triglycerides, in particular medium-chain (e.g. C4 to C18-, in particular C6 to C14-) 30 triglycerides, lipoproteins, e.g. HDL and/or VLDL, micelles, clathrate complexes, e.g. conjugated with bile salts, chylomicrons, chylomicron remnants, tuberlin and/or sterols It can also be advantageous to increase the level of a metabolic precursor of sterols in the organism or part thereof.
848 Depending on the choice of the organism used for the process according to the present invention, for example a microorganism or a plant, compositions or mixtures of various sterols can be produced. [0086.0.0.12] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 5 [0087.0.12.12] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are in addition to phytosterols further sterols, stanols or squalene, squalene epoxide or cycloartenol. [0088.0.12.12] Accordingly, in one embodiment, the process according to the inven 10 tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 13, column 15 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the respective fine chemical as indicated in any one of Tables I to IV, application no. 13, column 6 "metabolite" in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more pref 20 erably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the respective fine chemical in the organism, preferably 25 the microorganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the resepctive free and/or bound the fine chemical as indicated in any one of Tables I to IV, application no. 13, column 6 "metabolite" and, optionally further free and/or boundsterols, inparticular stig masterol, beta-sitosterol or campesterol , synthesized by the organism, the mi 30 croorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant.
849 [0089.0.12.12] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the respective fine chemical or the free and bound the resepctive fine chemical but as op 5 tion it is also possible to produce, recover and, if desired isolate, other free or/and bound sterols, in particular stigmasterol, beta-sitosterol or campesterol. The organism such as microorganisms or plants or the recovered, and if desired isolated, respective fine chemical can then be processed further directly into foodstuffs or animal feeds or for other applications, for example according to the disclosures 10 made in: US 20040101829, which disclose a methods for treating hyperlipidemia and to reduce Low Density Lipoprotein ("LDL") levels in a subject, US 20040047971, which disclose the preparation of a fat composition containing sterol esters characterised by direct interesterification of sterol with triglyceride, 15 US 5,965,449, which describes phytosterol-based compositions useful in preventing and treating cardiovascular disease and other disorders, US 5,523,087, which is for a pharmaceutical composition containing beta-sitosterol for the treatment of diabetic male sexual dysfunction; US 5,747,464, which discloses a composition for inhibiting absorption of fat and 20 cholesterol from the gut comprising beta.-sitosterol bound irreversibly to pectin, US 4,588,717, which describes a vitamin supplement which comprises a fatty acid ester of a phytosterol, US 5,270,041, which teaches the use of small amounts of sterols, their fatty acid esters and glucosides for the treatment of tumours, 25 US 6,087,353, which comprises methods of making a composition suitable for incorporation into foods, beverages, pharmaceuticals, nutraceuticals and the like which comprises condensing a suitable aliphatic acid with a phytosterol to form a phytosterol ester and subsequently hydrogenating the phytosterol ester to form a hydrogenated phytosterol ester, 30 which are expressly incorporated herein by reference. The fermentation broth, fermentation products, plants or plant products can be treated with water and a mixture of organic solvents (hexane and acetone) in order to extract the phytosterols. Crude phytosterols are obtained from the organic phase by removal of the solvents, complexation of the sterols in the extract with calcium chloride in 35 methanol, separation of the sterol-complexes by centrifugation, dissociation of the complexes by heating in water and removal of the water. The crude phytosterols can 850 be further purified by crystallisation from isopropanol. According to an other production process the tall oil soap is first subjected to fractional distillation which removes volatile compounds. The resulting residue (tall oil pitch) containing sterols in esterified form is treated with alkali to liberate these sterols. After neutralisation, the material is subjected 5 to a two-stage distillation process. The distillate is then dissolved in methanol/methylethylketone solvent and the sterols crystallising from this solution are obtained by filtration, washed with solvent and dried. US 4,420,427 teaches the preparation of sterols from vegetable oil sludge using solvents such as methanol. Alternatively, phytosterols may be obtained from tall oil pitch or soap, by-products of 10 the forestry practise as described in PCT/CA95/00555, incorporated herein by reference. The extraction and crystallization may be performed by other methods known to the person skilled in the art and described herein below. To form a phytosterol ester in accordance with the US 6,087,353, the selected phytosterol and aliphatic acid or its ester with volatile alcohol are mixed together under 15 reaction conditions to permit condensation of the phytosterol with the aliphatic acid to produce an ester. A most preferred method of preparing these esters which is widely used in the edible fat and oil industry is described in U.S. Pat. No. 5,502,045 (which is incorporated herein by reference). The stanol and/or sterol esters with the desired fatty acid composition can also be produced by direct, preferably catalytic esterification 20 methods, e.g. U.S. Pat. No. 5,892,068, between free fatty acids or fatty acid blends of the composition and the stanol and/or sterol. In addition, stanol and/or sterol esters can also be produced by enzymatic esterification e.g. as outlined in EP 195 311 (which are incorporated herein by reference). Products of these different work-up procedures are phytosterols and/or esters and/or 25 conjugates or compositions which still comprise fermentation broth, plant particles and cell components in different amounts, advantageously in the range of from 0 to 99% by weight, preferably below 80% by weight, especially preferably between below 50% by weight. [0090.0.0.12] to [0097.0.0.12] for the disclosure of the paragraphs [0090.0.0.12] to 30 [0097.0.0.12] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.12.12] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been 35 brought about by genetic manipulation methods,preferably in which either 851 a) the nucleic acid sequence as shown in table 1, application no. 13, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 13, columns 5 and 5 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 10 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 15 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.12.12] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 20 depicted in the sequence protocol and disclosed in table 1, application no. 13, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 13, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid 25 sequences as depicted in the sequence protocol and disclosed in table 1, application no. 13, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. 30 [0100.0.0.12] Transgenic plants which comprise the phytosterol (preferably beta sitosterol and/or stigmasterol and/or campesterol) synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the phytosterols (preferably beta-sitosterol and/or campesterol and/or stigmasterol) 852 (oils, lipids or fatty acids synthesized) to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive 5 tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the respective fine chemical produced in the process according to the invention can also be isolated from the organisms, advantageously 10 plants, in the form of their oils, fats, lipids, esters and/or as extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free phytosterol(s) . The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably the plant seeds. To increase the 15 efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material especially the seeds. In this context, the oils, fats, lipids, esters and/or free phytosterols can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The 20 seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the 25 compounds produced in the process can be isolated. Thereafter, the resulting products are processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. 30 Plant sterols (phytosterols) are by-products of traditional vegetable oil refining. The source may be commonly a blend of crude edible oils, consisting of soy bean oil or of other edible oils, e.g. corn, rapeseed, olive and palm oil in varying proportions. Hemp may also be a source of new oilseed, oil and food ingredients as well as Sea buckthorn (hippophas rhamnoides). The crude oil, which is obtained by pressing or solvent 35 extraction, may undergoes a series of refining processes to remove solvents, lecithins, free fatty acids, color bodies, off-odors and off-flavors. In one of these steps, the oil 853 may be subjected to steam distillation at reduced pressure (deodorisation) and the resulting distillate contains the phytosterol fraction. From this fraction, fatty acids, lecithins and other compounds are removed by fractional distillation, ethanolysis/transesterification, distillation and crystallisation from a heptane solution, 5 and the phytosterols are further purified by recrystallisation using food grade materials and good manufacturing practices. The extraction and purification steps are standard methods and similar to the procedures used traditionally by the food industry for the production of plant sterols. Phytosterol esters may be produced from the sterols using food grade vegetable oil-derived fatty acids or triglycerides and applying standard 10 methods for esterification or transesterification commonly used in the fats and oils industry. Phytosterol in microorganisms may be localized intracellularly, therefor their recovery essentials comes down to the isolation of the biomass. Well-establisthed approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation 15 as described herein. Determination of tocopherols in cells has been described by Tan and Tsumura 1989, see also Biotechnology of Vitamins, Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 1989, p.96 to 103. Many further methods to determine the tocopherol content are known to the person skilled in the art. [0101.0.12.12]In an advantageous embodiment of the invention, the organism takes 20 the form of a plant whose sterol content is modified advantageously owing to the nu cleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned sterols in feed. Further, this is also important for the production of cosmetic compostions. 25 In another advantageous embodiment of the invention, the organism takes the form of a plant whose sterol content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned sterols and the general amount of sterols as source in feed and/or 30 food. Further, this is also important since, for example a balanced content of different sterols induces stress resistance to plants.
854 After the activity of the protein as shown in table II, application no. 13, column 3 has been increased or generated, or after the expression of nucleic acid molecule or poly peptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subse 5 quently harvested. [0102.0.0.12] to [0110.0.0.12] for the disclosure of the paragraphs [0102.0.0.12] to [0110.0.0.12] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.12.12] In a preferred embodiment, the respective fine chemical as indicated in any one of Tables I to IV, application no. 13, column 6 "metabolite" (sterols) is pro 10 duced in accordance with the invention and, if desired, is isolated. The production of further vitamins, provitam ins or carotenoids, e.g. carotenes or xanthophylls, or mixtures thereof or mixtures with other compounds by the process according to the invention is advantageous. Thus, the content of plant components and preferably also further impurities is as low 15 as possible, and the abovementioned sterols are obtained in as pure form as possible. In these applications, the content of plant components advantageously amounts to less than 10%, preferably 1%, more preferably 0.1%, very especially preferably 0.01% or less. [0112.0.12.12] In another preferred embodiment of the invention a combination of the 20 increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a protein or polypeptid or a compound, which func tions as a sink for the desired fine chemical, for example sterols in the organism, is useful to increase the production of the respective fine chemical (as indicated in any one of Tables I to IV, application no. 13, column 6 "metabolite"). 25 [0113.0.12.12] In the case of the fermentation of microorganisms, the abovemen tioned sterols may accumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, the fermentation broth can be proc essed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for exam 30 ple, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, ro tary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by 855 nanofiltration. Afterwards advantageously further compounds for formulation can be added such as corn starch or silicates. This concentrated fermentation broth advanta geously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, spray granulation or by other methods. Preferably the 5 respective fine chemical as indicated for application no. 13 in any one of Tables I to IV, column 6 "metabolite" or the sterols comprising compositions are isolated from the or ganisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromatography 10 or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concen tration methods. [0114.0.12.12] Transgenic plants which comprise the sterols (preferably beta sitosterol and/or campesterol an/or stigmasterol), synthesized in the process according 15 to the invention can advantageously be marketed directly without there being any need for sterols synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cul 20 tures which are derived from the actual transgenic plant and/or can be used for bring ing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The site of sterol biosynthesis in plants is, inter alia, the leaf tissue so that the isolation of leafs makes sense. However, this is not limiting, since the expression may also take 25 place in a tissue-specific manner in all of the remaining parts of the plant, in particular in fat-containing seeds. A further preferred embodiment therefore relates to a seed specific isolation of sterols. However, the respective fine chemical as indicated for application no. 13 in any one of Tables I to IV, column 6, "metabolite" produced in the process according to the inven 30 tion can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids as extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free sterols. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant 35 parts, preferably the plant seeds. To increase the efficiency of oil extraction it is benefi cial to clean, to temper and if necessary to hull and to flake the plant material expecially 856 the seeds. E.g the oils, fats, lipids, extracts, e.g. ether, alcohol, or other organic sol vents or water containing extract and/or free sterols can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, 5 steamed or roasted. The seeds, which have been pretreated in this manner can sub sequently be pressed or extracted with solvents such as preferably warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In 10 this manner, more than 96% of the compounds produced in the process can be iso lated. Thereafter, the resulting products are processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. 15 Plant sterols (phytosterols) are by-products of traditional vegetable oil refining. The source may be commonly a blend of crude edible oils, consisting of soy bean oil or of other edible oils, e.g. corn, rapeseed, olive and palm oil in varying proportions. Hemp may also be a source of new oilseed, oil and food ingredients as well as Sea buckthorn (hippophas rhamnoides). The crude oil, which is obtained by pressing or solvent ex 20 traction, may undergoes a series of refining processes to remove solvents, lecithins, free fatty acids, color bodies, off-odors and off-flavors. In one of these steps, the oil may be subjected to steam distillation at reduced pressure (deodorisation) and the re sulting distillate contains the phytosterol fraction. From this fraction, fatty acids, leci thins and other compounds are removed by fractional distillation, ethanoly 25 sis/transesterification, distillation and crystallisation from a heptane solution, and the phytosterols are further purified by recrystallisation using food grade materials and good manufacturing practices. The extraction and purification steps are standard methods and similar to the procedures used traditionally by the food industry for the production of plant sterols. Phytosterol esters may be produced from the sterols using 30 food grade vegetable oil-derived fatty acids or triglycerides and applying standard methods for esterification or transesterification commonly used in the fats and oils in dustry. Because sterols in microorganisms may be localized intracellularly, their recovery es sentially comes down to the isolation of the biomass. Well-establisthed approaches for 857 the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. [0115.0.12.12] Sterols can for example be analyzed advantageously via HPLC, LC or GC separation methods and detected by MS oder MSMS methods. The unambigu 5 ous detection for the presence of sterols containing products can be obtained by ana lyzing recombinant organisms using analytical standard methods: GC, GC-MS, or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatogra 10 phy/mass spectrometric methods], Lipide 33:343-353). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cook ing, or via other applicable methods; see also Biotechnology of Vitamins, Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 1989, p.96 to 103. [0116.0.12.12]In a preferred embodiment, the present invention relates to a process for 15 the production of the respective fine chemical as indicated for application no. 13 in any one of Tables I to IV, column 6 "metabolite", comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 20 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 13, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 25 cleic acid molecule shown in table 1, application no. 13, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 30 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemi cal in an organism or a part thereof; 858 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 5 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is 10 encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 15 the primers shown in table III, application no. 13, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en 20 coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 13, column 7 and conferring an in 25 crease in the amount of the respective fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule encod ing the amino acid sequence of a polypeptide encoding a domain of the polypep tide shown in table 1l, application no. 13, columns 5 and 7 and conferring an in 30 crease in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 859 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 5 or which comprises a sequence which is complementary thereto. [0116.1.12.12] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 13, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 10 cated in table I A, application no. 13, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 13, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 13, columns 5 15 and 7. [0116.2.12.12] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 13, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 20 cated in table I B, application no. 13, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 13, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 13, columns 5 25 and 7. [0117.0.12.12] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 13, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 13, columns 5 and 7. In one embodiment, the nucleic acid molecule of the 30 present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 13, columns 5 and 7. In another embodi ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 13, columns 5 and 7.
860 [0118.0.0.12] to [0120.0.0.12] for the disclosure of the paragraphs [0118.0.0.12] to [0120.0.0.12] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.12.12] The expression of nucleic acid molecules with the sequence shown in table I, application no. 13, columns 5 and 7, or nucleic acid molecules which are de 5 rived from the amino acid sequences shown in table II, application no. 13, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 13, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 13, column 3, and conferring an increase of the respective fine chemical (column 6 of 10 application no. 13 in any one of Tables I to IV) after increasing its plastidic expression and/or specific activity in the plastids is advantageously increased in the process ac cording to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.12] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. 15 [0123.0.12.12]Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 13, column 3 can be determined from generally ac cessible databases. [0124.0.0.12] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. 20 [0125.0.12.12] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 13, column 3 and which confer an increase in the level of the respective fine chemical indicated in table II, ap plication no. 13, column 6 by being expressed either in the cytsol or in an organelle 25 such as a plastid or mitochondria or both, preferably in plastids, and the gene product being localized in the plastid and other parts of the cell or in the plastid as described above. [0126.0.0.12] to [0133.0.0.12] for the disclosure of the paragraphs [0126.0.0.12] to [0133.0.0.12] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. 30 [0133.1.12.12] Production strains which are also advantageously selected in the process according to the invention are microorganisms selected from the group of green algae, like Spongioccoccum exentricum, Chlorella sorokiniana (pyrenoidosa, 7- 861 11-05), or algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or Dunaliella or form the group of fungi like fungi belonging to the Daccrymycetaceae fam ily, or non-photosynthetic bacteria, like methylotrophs, flavobacteria, actinomycetes, like streptomyces chrestomyceticus, Mycobacteria like Mycobacterim phlei, Rhodobac 5 ter capsulatus, or Brevibacterium linens, Dunaliella spp., Phaffia rhodozyma, Phyco myces sp., Rhodotorula spp.. Thus, the invention also contemplates embodiments in which a host lacks sterols or sterols precursors, such as the vinca. In a plant of the latter type, the inserted DNA includes genes that code for proteins producing sterols precursors (compounds that can be converted biologically into a compound with sterols 10 activity) and one or more modifiying enzymes which were originally absent in such a plant. The invention also contemplates embodiments in which the sterols or sterols precursor compounds in the production of the respective fine chemical, are present in a photo synthetic active organisms chosen as the host; for example, cyanobacteria, moses, 15 algae or plants which, even as a wild type, are capable of producing sterols. [0134.0.12.12]However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 13, columns 5 and 20 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring an increase of the respective fine chemical after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table II, application no. 13, column 3 by - for example - expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in 25 plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0135.0.0.12] to [0140.0.0.12] for the disclosure of the paragraphs [0135.0.0.12] to [0140.0.0.12] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.12.12] Synthetic oligonucleotide primers for the amplification, e.g. as shown 30 in table III, application no. 13, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 13, columns 5 and 7 or the sequences derived from table II, application no. 13, columns 5 and 7.
862 [0142.0.12.12] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. 5 Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequences shown in table IV, application no. 13, column 7 are derived from said aligments. [0143.0.12.12] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 10 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 13, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.12] to [0151.0.0.12] for the disclosure of the paragraphs [0144.0.0.12] to [0151.0.0.12] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 15 [0152.0.12.12] Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no. 13, column 6,, and being derived from other organisms, can be encoded by other DNA sequences which hybridize to the sequences shown in table I, application no. 13, columns 5 and 7, preferably of table I B, application no. 13, columns 5 and 7 under relaxed hybridization 20 conditions and which code on expression for peptides having the the respective fine chemical, i.e. sterols increasing activity, when expressed in a way that the gene prod uct, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0153.0.0.12] to [0159.0.0.12] For the disclosure of the paragraphs [0153.0.0.12] to 25 [0159.0.0.12] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.12.12] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 13, 30 columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences 863 shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement 5 thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.12.12] The nucleic acid molecule of the invention comprises a nucleotide se 10 quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7, or a portion thereof and preferably has 15 above mentioned activity, in particular having a respective fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 13, column 3 by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or 20 in the plastid as described above. [0162.0.12.12] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7, or 25 a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a sterol or triglycerides, lipids, oils and/or fats containing sterol increase by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 13, column 3, and the gene product, e.g. the polypep 30 tide, being localized in the plastid and other parts of the cell or in the plastid as de scribed above. [0163.0.12.12] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 35 7, for example a fragment which can be used as a probe or primer or a fragment en- 864 coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, application no. 13, column 6, if its activity is increased by for example expression either 5 in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying 10 and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in 15 table I, application no. 13, columns 5 and 7, an anti-sense sequence of one of the se quences, e.g., set forth in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the 20 process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 13, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.12] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. 25 [0165.0.12.12] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 13, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular an activity increasing the level of sterol increasing 30 the activity as mentioned above or as described in the examples in plants or microor ganisms is comprised. [0166.0.12.12] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 35 which has a similar side chain as an amino acid residue in one of the sequences of the 865 polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 13, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. 5 [0167.0.12.12] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or 10 more homologous to an entire amino acid sequence of table II, application no. 13, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of 15 the cell or in the plastid as described above. [0168.0.0.12] and [0169.0.0.12] for the disclosure of the paragraphs [0168.0.0.12] and [0169.0.0.12] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.12.12] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 13, columns 5 and 7 20 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 13, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole 25 cule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 13, columns 5 and 7 or the functional homo logues. In a still further embodiment, the nucleic acid molecule of the invention en codes a full length protein which is substantially homologous to an amino acid se 30 quence shown in table II, application no. 13, columns 5 and 7 or the functional homo logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 13, columns 5 and 7, preferably as indicated in table I A, application no. 13, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or 866 identical to a nucleic acid molecule indicated in table I B, application no. 13, columns 5 and 7. [0171.0.0.12] to [0173.0.0.12] for the disclosure of the paragraphs [0171.0.0.12] to [0173.0.0.12] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. 5 [0174.0.12.12] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 13, columns 5 10 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.12] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.12.12] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 13, columns 5 and 15 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the respective fine chemical increase after increas 20 ing the expression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.12] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. 25 [0178.0.12.12] For example, nucleotide substitutions leading to amino acid substitu tions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 13, columns 5 and 7. [0179.0.0.12] and [0180.0.0.12] For the disclosure of the paragraphs [0179.0.0.12] 30 and [0180.0.0.12] see paragraphs [0179.0.0.0] and [0180.0.0.0] above.
867 [0181.0.12.12] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera 5 bly in plastids (as described), that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table II, application no. 13, columns 5 and 7, preferably shown in table II A, application no. 13, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide 10 sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 13, columns 5 and 7, preferably shown in table II A, application no. 13, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression ei 15 ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 13, columns 5 and 7, preferably shown in table II A, 20 application no. 13, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 13, columns 5 and 7, preferably shown in table II A, application no. 13, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 13, columns 5 and 7, preferably shown in table II A, application no. 13, columns 5 and 25 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se quence shown in table II, application no. 13, columns 5 and 7, preferably shown in ta ble II A, application no. 13, columns 5 and 7. [0182.0.0.12] to [0188.0.0.12] for the disclosure of the paragraphs [0182.0.0.12] to [0188.0.0.12] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 30 [0189.0.12.12] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 13, columns 5 and 7, preferably shown in table II B, applica tion no. 13, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 35 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 868 homology with one of the polypeptides as shown in table II, application no. 13, columns 5 and 7, preferably shown in table II B, application no. 13, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 13, columns 5 and 7, preferably shown 5 in table II B, application no. 13, columns 5 and 7. [0190.0.12.12] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 10 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 13, columns 5 and 7, preferably shown in table II B, application no. 13, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same 15 properties as the polypeptide as shown in table II, application no. 13, columns 5 and 7, preferably shown in table II B, application no. 13, columns 5 and 7. [0191.0.0.12] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.12.12] A nucleic acid molecule encoding an homologous to a protein se quence of table II, application no. 13, columns 5 and 7, preferably shown in table II B, 20 application no. 13, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu cleic acid molecule of the present invention, in particular of table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are intro 25 duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.12] to [0196.0.0.12] for the disclosure of the paragraphs [0193.0.0.12] to 30 [0196.0.0.12] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.12.12] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7, comprise also allelic variants with at least ap- 869 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 5 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 13, columns 5 and 7, preferably shown in table I B, applica tion no. 13, columns 5 and 7, or from the derived nucleic acid sequences, the intention 10 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.12.12] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 13, columns 5 and 7, preferably shown in 15 table I B, application no. 13, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em 20 bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 13, columns 5 and 7, preferably shown in table I B, application no. 13, columns 5 and 7. [0199.0.12.12] Also preferred is that the nucleic acid molecule used in the process of 25 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 13, columns 5 and 7, preferably shown in table II B, application no. 13, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. 30 In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 13, columns 5 and 7, preferably shown in table II B, application no. 13, columns 5 and 7. [0200.0.12.12] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, appli 35 cation no. 13, columns 5 and 7, preferably shown in table II B, application no. 13, 870 columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 13, columns 5 and 7, preferably 5 shown in table I B, application no. 13, columns 5 and 7. [0201.0.12.12] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the respective fine chemical indicated in column 6 of Table I, application no. 13, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by 10 preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advanta geously, the activity is essentially not reduced in comparison with the activity of a poly peptide shown in table II, application no. 13, columns 5 and 7 expressed under identi cal conditions. 15 [0202.0.12.12] Homologues of table I, application no. 13, columns 5 and 7 or of the derived sequences of table II, application no. 13, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en 20 hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur 25 thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.12] to [0215.0.0.12] for the disclosure of the paragraphs [0203.0.0.12] to 30 [0215.0.0.12] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.12.12] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 871 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 13, columns 5 and 7, preferably in table II B, application no. 13, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical according to table II B, application no. 5 13, column 6 in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 13, columns 5 and 7, pref erably in table I B, application no. 13, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, 10 application no. 13, column 6 in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a 15 part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a 20 part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a part thereof; 25 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a 30 part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 872 (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 13, column 6 in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, ap 5 plication no. 13, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 10 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 13, column 7 and conferring an in 15 crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 13, columns 5 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a part thereof; and 20 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 25 1, application no. 13, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 13, columns 5 and 7, and conferring an increase in the amount of the fine chemical according to table II B, application no. 13, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 30 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 13, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 13, 873 columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 13, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode 5 the polypeptide sequence shown in table II A and/or II B, application no. 13, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present inven tion encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 13, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or 10 11 B, application no. 13, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 13, columns 5 and 7. In a fur ther embodiment, the protein of the present invention is at least 30 % identical to pro tein sequence depicted in table II A and/or II B, application no. 13, columns 5 and 7 15 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 13, columns 5 and 7. [0217.0.0.12] to [0226.0.0.12] For the disclosure of the paragraphs [0217.0.0.12] to [0226.0.0.12] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. 20 [0227.0.12.12] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir 25 genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 30 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 13, columns 5 and 7 can be cloned 3'prime to 35 the transitpeptide encoding sequence, leading to a functional preprotein, which is di- 874 rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.12] to [0239.0.0.12] For the disclosure of the paragraphs [0228.0.0.12] to [0239.0.0.12] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. 5 [0240.0.12.12] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. 10 In addition to the sequence mentioned in Table I, application no. 13, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms.It can be especially advantageously, if additionally at least one further gene of the sterol biosynthetic pathway, is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been 15 modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the amino acids desired since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table I, application no. 13, columns 5 and 7 with 20 genes which generally support or enhances the growth or yield of the target organis men, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0240.1.12.12] In addition, it might be also advantageously to combine one or more of the sequences indicated in Table I, columns 5 or 7, application no. 13, with genes 25 which modify plant architecture or flower development, in the way, that the plant either produces more flowers, or produces flowers with more petals in order to increase the respective fine chemical production capacity. [0241.0.12.12] In a further embodiment of the process of the invention, therefore, or ganisms are grown, in which there is simultaneous direct or indirect overexpression of 30 at least one nucleic acid or one of the genes which code for proteins involved in the sterol metabolism, in particular in synthesis of enzymes catalyzing the production of acetyl CoAHMGCoA, mevalonate, mevalonate 5 phosphate, mevalonate 5 pyrophosphate, isopentyl diphosphate, 5-pyrophosphatemevalonate, isopentyl pyro- 875 phosphate (PIP), dimethylallyl pyrophosphate (DMAPP), PIP+DMAPP, geranyl pyro phosphate+IPP, farnesyl pyrophosphate, 2 farnesyl pyrophosphate, squalene (squalene synthase) and squalene epoxide, or cycloartenol synthase controling the cyclization of squalene epoxide, S-adenosyl-L-methionine:sterol C-24 methyl trans 5 ferase (EC 2.1.1.41) (SMT1) catalyzing the transfer of a methyl group from a cofactor, SMT2 catalyzing the second methyl transfer reaction, sterol C-14 demethylase catalyz ing the demethylation at C-14, removing the methyl group and creating a double bond Indirect overexpression might be brought about by the manipulation of the regulation of the endogenous gene, for example through promotor mutations or the expression of 10 natural or artificial transcriptional regulators. [0242.0.12.12] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the sterol bio synthetic pathway. These genes may lead to an increased synthesis of sterols, in par 15 ticular of stigmasterol, beta-sitosterol or campestrol. [0242.1.12.12] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a sterol degrad ing protein is attenuated, in particular by reducing the rate of expression of the corre sponding gene. 20 [0242.2.12.12] The respective fine chemical produced can be isolated from the organ ism by methods with which the skilled worker is familiar. For example, via extraction, salt precipitation, and/or different chromatography methods. The process according to the invention can be conducted batchwise, semibatchwise or continuously. The respec tive fine chemical produced by this process can be obtained by harvesting the organ 25 isms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. [0243.0.0.12] to [0264.0.0.12] For the disclosure of the paragraphs [0243.0.0.12] to [0264.0.0.12] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.12.12] Other preferred sequences for use in operable linkage in gene expres 30 sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the 876 extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide 5 or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 10 13, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.12] to [0287.0.0.12] For the disclosure of the paragraphs [0266.0.0.12] to [0287.0.0.12] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.12.12] Accordingly, one embodiment of the invention relates to a vector 15 where the nucleic acid molecule according to the invention is linked operably to regula tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 13, columns 5 and 7 or their homologs is functionally linked to a 20 plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 13, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.12] to [0296.0.0.12] For the disclosure of the paragraphs [0289.0.0.12] to 25 [0296.0.0.12] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.12.12] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo thelial cells), for example using the antibody of the present invention as described herein, in particular, an antibody against polypeptides as shown in table 1l, application 30 no. 13, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. [0298.0.0.12] for the disclosure of this paragraph see paragraph [0298.0.0.0] above.
877 [0299.0.12.12] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 13, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 13, columns 5 and 7 or func tional homologues thereof. 5 [0300.0.12.12] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 13, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 13, column 7 whereby 20 or 10 less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.12] to [0304.0.0.12] For the disclosure of the paragraphs [0301.0.0.12] to [0304.0.0.12] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 15 [0305.0.12.12] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 13, columns 5 and 7 by one or more 20 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 13, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 25 II B, application no. 13, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 13, columns 5 and 7. 30 [0306.0.0.12] For the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.12.12] In one embodiment, the invention relates to polypeptide conferring an increase of level of the respective fine chemical indicated in Table II A and/or II B, ap plication no. 13, column 6 in an organism or part being encoded by the nucleic acid 878 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 13, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A 5 and/or II B, application no. 13, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 13, columns 5 and 7. 10 [0308.0.12.12] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 13, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 13, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, 15 evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep 20 tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle, for example into the plastid or mitochondria. [0309.0.0.12] to [0311.0.0.12] For the disclosure of the paragraphs [0309.0.0.12] to [0311.0.0.12] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. 25 [0312.0.12.12] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 13, columns 5 and 7. [0313.0.12.12] Further, the polypeptide can have an amino acid sequence which is 30 encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and 879 more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 13, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 5 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 13, columns 5 and 7 or which is homologous thereto, as defined above. 10 [0314.0.12.12] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 13, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 15 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 13, columns 5 and 7. [0315.0.0.12] For the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.12.12] Biologically active portions of an polypeptide of the present invention 20 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 13, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 25 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.12] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. 30 [0318.0.12.12] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 13, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 13, column 3, pref- 880 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 13, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in 5 efficiency or activity in relation to the wild type protein. [0319.0.12.12] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the 10 mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 13, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im 15 proved. [0319.1.12.12] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. sterol or a recovered or isolated sterol in free or in protein- or membrane-bound form. [0320.0.0.12] to [0322.0.0.12] For the disclosure of the paragraphs [0320.0.0.12] to 20 [0322.0.0.12] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.12.12] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 13, column 3 refers to a polypeptide having an amino acid sequence cor responding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a 25 polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 13, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. 30 [0324.0.0.12] to [0329.0.0.12] For the disclosure of the paragraphs [0324.0.0.12] to [0329.0.0.12] see paragraphs [0324.0.0.0] to [0329.0.0.0] above.
881 [0330.0.12.12]In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 13, columns 5 and 7. [0331.0.0.12] to [0346.0.0.12] For the disclosure of the paragraphs [0331.0.0.12] to 5 [0346.0.0.12] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.12.12] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the respective fine chemical indicated in column 6 of application no. 13 in any one of Tal bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of 10 the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 13, column 3. Due to the above mentioned activity the respective fine chemical content in a cell or an organism is increased. For example, 15 due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to 20 modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 13, column 3 or a protein as shown in table II, application no. 13, col umn 3-like activity is increased in the cell or organism or part thereof especially in or ganelles such as plastids or mitochondria. Examples are described above in context with the process of the invention. 25 [0348.0.0.12] For the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.12.12] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 13, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 30 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.12] to [0358.0.0.12] For the disclosure of the paragraphs [0350.0.0.12] to [0358.0.0.12] see paragraphs [0350.0.0.0] to [0358.0.0.0] above.
882 [0359.0.12.12] Transgenic plants comprising the respective fine chemical synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are un derstood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or 5 seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The respective fine chemical indicated in column 6 of any one of Tables I to IV, application no. 13 and being produced in the process according to the invention may, however, also be isolated from the plant as 10 one of the above mentioned derivates of sterols or the sterols itself, in particular beta sitosterol and/or campesterol and/or stigmasterol resp., can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant seeds, plant fruits, plant tubers and the like. 15 [0360.0.0.12] to [0362.0.0.12] for the disclosure of the paragraphs [0360.0.0.12] to [0362.0.0.12] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.0.12] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the respective 20 fine chemical produced in the process can be isolated. The resulting composition or fraction comprising the respective fine chemical can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as fatty acids, vita mins, amino acids, carbohydrates, antibiotics, covitamins, antioxidants, carotenoids, and the like, and, if appropriate, formulated. 25 [0364.0.0.12] In one embodiment, the composition is the fine chemical. [0365.0.12.12] The fine chemical indicated in column 6 of application no. 13 in Ta ble 1, and being obtained in the process of the invention are suitable as starting mate rial for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the production of pharmaceuticals, foodstuffs, 30 animal feeds or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics compris ing the steps of the process according to the invention, including the isolation of a composition comprising the fine chemical, e.g. sterolsor the isolated respective fine chemical produced, if desired, and formulating the product with a pharmaceutical ac- 883 ceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the respec tive fine chemical indicated in application no. 13, Table 1, column 6, and being pro duced in the process or the use of the transgenic organisms in animal feeds, food 5 stuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.12] to [0369.0.0.12] for the disclosure of the paragraphs [0366.0.0.12] to [0369.0.0.12] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.12.12] The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; applica 10 tion no. 13 or containig mixtures with other compounds, in particular with vitamins or e.g. with carotenoids, e.g. with astaxanthin, or fatty acids or containing microorganisms or parts of microorganisms, like plastids, , normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be separated, such as, for example, by centrifugation, 15 filtration, decantation, coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nano filtration. This concentrated fermentation broth can then be worked up by extraction, 20 freeze-drying, spray drying, spray granulation or by other processes. [0371.0.12.12] As sterols are often localized in membranes or plastids, in one em bodiment it is advantageous to avoid a leaching of the cells when the biomass is iso lated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combination of these methods, from 25 the fermentation broth. The dry biomass can directly be added to animal feed, provided the sterols concentration is sufficiently high and no toxic compounds are present. In view of the instability of sterols, conditions for drying, e.g. spray or flash-drying, can be mild and can be avoiding oxidation and cis/trans isomerization. For example antioxi dants, e.g. BHT, ethoxyquin or other, can be added. In case the sterol concentration in 30 the biomass is to dilute, solvent extraction can be used for their isolation, e.g. with al cohols, ether or other organic solvents, e.g. with methanol, ethanol, aceton, alcoholic potassium hydroxide, glycerol-phenol, liquefied phenol or for example with acids or bases, like trichloroacetatic acid or potassium hydroxide. A wide range of advanta geous methods and techniques for the isolation of sterols can be found in the state of 35 the art.
884 Accordingly, it is possible to further purify the produced sterols. For this purpose, the product-containing composition, e.g. a total or partial lipid extraction fraction using or ganic solvents, e.g. as described above, is subjected for example to a saponification to remove triglycerides, partition between e.g. hexane/methanol (seperation of non-polar 5 epiphase from more polar hypophasic derivates) and separation via e.g. an open col umn chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their 10 most effective use. [0372.0.0.12] to [0376.0.0.12], [0376.1.0.12] and [0377.0.0.12] for the disclosure of the paragraphs [0372.0.0.12] to [0376.0.0.12], [0376.1.0.12] and [0377.0.0.12] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.12.12] In one embodiment, the present invention relates to a method for the 15 identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the respective 20 fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 13, columns 25 5 and 7, preferably in table I B, application no. 13, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the respective fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; 30 (e) assaying the the respective fine chemical level in the host cells; and 885 (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical as indicated for application no. 13 in any one of Tables I to IV level in the host cell after expression compared to the wild type. 5 [0379.0.0.12] to [0383.0.0.12] for the disclosure of the paragraphs [0379.0.0.12] to [0383.0.0.12] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.12.12] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 10 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de 15 pendent on the proteins as shown in table 1l, application no. 13, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 13, column 3. [0385.0.0.12] to [0404.0.0.12] for the disclosure of the paragraphs [0385.0.0.12] to [0404.0.0.12] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. 20 [0405.0.12.12] Accordingly, the nucleic acid of the invention, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used 25 for the production of the respective fine chemicalindicated in Column 6, Table 1, appli cation no. 13 or for the production of the respective fine chemical and one or more other carotenoids, vitamins or fatty acids. In one embodiment, in the process of the present invention, the produced sterols are used to protect fatty acids against oxidiza tion, e.g. it is in a further step added in a pure form or only partly isolated to a composi 30 tion comprising fatty acids.. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, 886 the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. 5 [0405.1.12.12] The nucleic acid molecule of the invention, the vector of the invention or the nucleic acid construct of the invention may also be useful for the production of organisms resistant to inhibitors of the sterol production biosynthesis pathways. In par ticular, the overexpression of the polypeptide of the present invention may protect an organism such as a microorganism or a plant against inhibitors, which block the phy 10 tosterol, in particular the respective fine chemical, synthesis in said organism. Exam ples of inhibitors or herbicides blocking the phytosterol synthesis in organism such as microorganism or plants are for example compounds which inhibit the cytochrom P450 such as Tetcyclasis, triazoles like Paclobutrazol or Epoxiconazol, pyridines like Obtusi foliol, demethylases inhibitors, or compounds like Mevilonin, which inhibits the HMG 15 CoA reductase. [0405.2.12.12] In a further embodiment the present invention relates to the use of the antagonist of the present invention, the plant of the present invention or a part thereof, the microorganism or the host cell of the present invention or a part thereof for the pro duction a cosmetic composition or a pharmaceutical compostion. Such a composition 20 has an antioxidative activity, photoprotective activity, can be used to protect, treat or heal the above mentioned diseases, e.g. hypercholesterolemic or cardiovascular dis eases, certain cancers, and cataract formation or can be used as an immunostimula tory agent. The sterols can be also used as stabilizer of other colours or oxygen senitive com 25 pounds, like fatty acids, in particular unsaturated fatty acids. [0406.0.0.12] to [0416.0.0.12] for the disclosure of the paragraphs [0406.0.0.12] to [0416.0.0.12] see paragraphs [0406.0.0.0] to [0416.0.0.0] above. [0417.0.12.12]An in vivo mutagenesis of organisms such as algae (e.g. Spongiococ cum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedacty 30 lum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which are beneficial for the production of sterols can be carried out by passing a plasmid DNA (or another vector DNA) containing the desired nucleic acid sequence or nucleic acid 887 sequences, e.g. the nucleic acid molecule of the invention or the vector of the inven tion, through E. coli and other microorganisms (for example Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of maintaining the integrity of its genetic information. Usual mutator strains have mutations in the genes for the 5 DNA repair system [for example mutHLS, mutD, mutT and the like; for comparison, see Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strate gies 7; 32-34. 10 In-vitro mutation methods such as increasing the spontaneous mutation rates by chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran dom in-vitro mutagensis. The most common physical method for mutagensis is the 15 treatment with UV irradiation. Another random mutagenesis technique is the error prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized DNA sequences are cloned into expression vectors and the resulting mutant libraries 20 screened for altered or improved protein activity as described below. Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic acid sequence of the invention into an M13 or phagemid vector, which permits recovery 25 of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather than the original. The mutagenic oligonucleotide is then allowed to prime new DNA 30 synthesis to create a complementary full-length sequence containing the desired muta tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known 35 and used in common practice. Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical.
888 [0418.0.0.12] to [0427.0.0.12] for the disclosure of the paragraphs [0418.0.0.12] to [0427.0.0.12] see paragraphs [0418.0.0.0] to [0427.0.0.0] above. [0427.1.9.12] for the disclosure of the paragraphs [0427.1.9.12] see paragraphs [0428.1.9.9] above 5 [0427.2.9.12] for the disclosure of the paragraphs [0427.2.9.12] see paragraph [0428.2.9.9] above [0427.3.9.12] for the disclosure of the paragraphs [0427.3.9.12] see paragraph [0428.3.9.9] above. [0427.4.12.12] Sterols may be produced in Synechocystis spec. PCC 6803 10 The cells of each of independent Synechocystis spec. PCC 6803 strains cultured on the BG-1 1km agar medium, and untransformed wild-type cells (on BG1 1 agar medium without kanamycin) can be used to inoculate liquid cultures. For this, cells of a mutant or of the wild-type Synechocystis spec. PCC 6803 are transferred from plate into 10 ml of liquid culture in each case. These cultures are cultivated at 280C and 30 pmol pho 15 tons*(m 2 *s)-l (30 pE) for about 3 days. After determination of the OD 730 of the individual cultures, the OD 73 0 of all cultures is synchronized by appropriate dilutions with BG-1 1 (wild types) or e.g. BG-1 1km (mutants). These cell density-synchronized cultures are used to inoculate three cultures of the mutant and of the wild-type control. It is thus possible to carry out biochemical analyses using in each case three independently 20 grown culutres of a mutant and of the corresponding wild types. The cultures are grown until the optical density was OD 730 =0.3. The cell culture medium is removed by centrifugation in an Eppendorf bench centrifuge at 14000 rpm twice. The subsequent disruption of the cells and extraction of sterols takes place by incubation in an Eppendorf shaker at 30'C, 1000 rpm in 100% metha 25 nol for 15 minutes twice, combining the supernatants obtained in each case. In order to avoid oxidation, the resulting extracts can be analyzed immediate after the extraction with the aid of a Waters Allience 2690 HPLC system. Sterols can be sepa rated on a reverse phase column and identified by means of a standard. The fluores cence of the substances which can be detected with the aid of a Jasco FP 920 fluores 30 cence detector, can serve as detection system. [0428.0.0.12] to [0435.0.0.12] for the disclosure of the paragraphs [0428.0.0.12] to [0435.0.0.12] see paragraphs [0428.0.0.0] to [0435.0.0.0] above.
889 [0436.0.12.12] Sterol production Sterols can be detected via HPLC, e.g. reversed-phase HPLC, as described by Heftmann, E. and Hunter, I.R. (J Chromatogr 1979; 165: 283-299). As separating principles of HPLC and GC are complementary, preparative reversed-phase HPLC 5 followed by GC-MS analysis of the obtained sterol fractions is a preferred method to analyze sterols from natural products (Bianchini, J.-P. et al.; J Chromatogr 1985; 329: 231-246). [0437.0.0.12] and [0438.0.0.12] for the disclosure of the paragraphs [0437.0.0.12] and [0438.0.0.12] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. 10 [0439.0.12.12] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the respective fine chemical indicated in Ta ble 1, application no. 13, column 6 [0440.0.12.12] The effect of the genetic modification in plants, fungi, algae or ciliates on the production of a desired compound such as sterols can be determined by grow 15 ing the modified microorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated production of desired product (i.e. of the lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin layer chromatography, various types of staining methods, enzymatic and microbiologi 20 cal methods and analytical chromatography such as high-performance liquid chroma tography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biol ogy, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery 25 and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Biosepara tions: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; 30 and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). Sterols can be detected advantageously as desribed above. [0441.0.0.12] for the disclosure of this paragraph see [0441.0.0.0] above.
890 [0442.0.12.12] Example 9: Purification of the sterols One example is the analysis of phytosterol: the content of the phytosterols of the invention can be determinated by gas chromatography with flame ionisation detection (GC-FID; column SAC-5, 30 m x 0.25 mm, 0.25 pm, samples not silylated) using 5 standards for these phytosterols. Another method is the detection by gas chromatography-mass spectrometry (GC-MS) using the same type of column as indicated above. For the analysis of the concentrations of sterols by gas chromatography mass spectrometry a Hewlett-Packard (HP) 5890 gas chromatograph equipped with an NB 10 54 fused-silica capillary column (15 mx0.20mm I.D.; Nordion, Helsinki, Finland) and interfaced with an HP 5970A mass spectrometry detector operating in electron impact mode (70 eV) can be used. The column oven is programmed from 230 'C to 285 'C at 10 'C/min and injector and detector should be at 285 'C. The lipids from the samples (200 pl) are extracted with chloroform/methanol (2:1) and transesterified with sodium 15 methoxide. The released free sterols are trimethylsilylated as described previously (Gylling et al. J. Lipid Res 40: 593-600, 1999) and quantified by single ion monitoring technique using m/z 129 (cholesterol, campesterol and p-sitosterol), m/z 215 (p sitostanol), m/z 343 (desmosterol), m/z 255 (lathosterol) and m/z 217 (5-a-cholestane, internal standard) as selected ions (Vaskonen, Dissertation, Biomedicum Helsinki, 20 June 19, 2002). [0443.0.12.12]Abbreviations:; GC-MS, gas liquid chromatography/mass spectrometry; TLC, thin-layer chromatography. The unambiguous detection for the presence of sterols can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as 25 described (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometric methods], Lipide 33:343-353). The total sterols produced in the organism used in the inventive process can be ana lysed for example according to the following procedure: 30 The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pes tle and mortar to make it more amenable to extraction.
891 A typical sample pretreatment consists of a total lipid extraction using such polar or ganic solvents as acetone or alcohols as methanol, or ethers, saponification , partition between phases, seperation of non-polar epiphase from more polar hypophasic deriva tives and chromatography. 5 [0443.1.12.12] Characterization of the transgenic plants In order to confirm that sterols biosynthesis in the transgenic plants is influenced by the expression of the polypeptides described herein, the sterols content in leaves, seeds and/or preferably flowers of the plants transformed with the described constructs (Arabidopsis.thaliana, Brassica napus and Nicotiana tabacum) is analyzed. For this 10 purpose, the transgenic plants are grown in a greenhouse, and plants which express the gene coding for polypeptide of the invention or used in the method of the invention are identified at the Northern level. The sterols content in flowers, leaves or seeds of these plants is measured. In all, the sterols concentration is raised by comparison with untransformed plants. 15 [0444.0.12.12] If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the sterols can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable 20 chromatography resin and the most effective use for a particular molecule to be puri fied. [0445.0.12.12] In addition depending on the produced fine chemical purification is also possible with cristalisation or destilation. Both methods are well known to a person skilled in the art. 25 [0446.0.0.12] to [0496.0.0.12] for the disclosure of the paragraphs [0446.0.0.12] to [0496.0.0.12] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.12.12] As an alternative, the sterols can be detected advantageously as des ribed above. [0498.0.12.12] The results of the different plant analyses can be seen from the table, 30 which follows: Table VI 892 ORF Metabolite Method/Analytics Min.-Value Max.-Value b0931 beta-Sitosterol GC 1.13 1.27 b1410 beta-Sitosterol GC 1.20 1.26 b1410 Campesterol GC 1.19 1.23 b1556 Campesterol GC 1.26 1.52 b1704 Stigmasterol GC 1.83 7.65 b2022 Campesterol GC 1.22 1.27 b3708 Campesterol GC 1.18 1.85 YDR035W beta-Sitosterol GC 1.15 1.22 YDR035W Campesterol GC 1.20 1.25 YLR027C Campesterol GC 1.22 3.85 YLR027C beta-Sitosterol GC 1.24 3.19 YNL241C Campesterol GC 1.21 1.31 [0499.0.0.12] and [0500.0.0.12] for the disclosure of the paragraphs [0499.0.0.12] and [0500.0.0.12] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. 5 [0501.0.12.12] Example 15a: Engineering ryegrass plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0502.0.0.12] to [0508.0.0.12] for the disclosure of the paragraphs [0502.0.0.12] to [0508.0.0.12] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.12.12]Example 15b: Engineering soybean plants by over-expressing b0931 10 from E. coli or homologs of b0931 from other organisms. [0510.0.0.12] to [0513.0.0.12] for the disclosure of the paragraphs [0510.0.0.12] to [0513.0.0.12] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.12.12]Example 15c: Engineering corn plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. 15 [0515.0.0.12] to [0540.0.0.12] for the disclosure of the paragraphs [0515.0.0.12] to [0540.0.0.12] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.12.12] Example 15d: Engineering wheat plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0542.0.0.12] to [0544.0.0.12] for the disclosure of the paragraphs [0542.0.0.12] to 20 [0544.0.0.12] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.12.12] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms.
893 [0546.0.0.12] to [0549.0.0.12] for the disclosure of the paragraphs [0546.0.0.12] to [0549.0.0.12] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.12.12]Example 15f: Engineering alfalfa plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. 5 [0551.0.0.12] to [0554.0.0.12] for the disclosure of the paragraphs [0551.0.0.12] to [0554.0.0.12] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.12.12]Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or 10 from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII as minimal (MIN) or maximal changes (MAX) in the respective fine chemical (column "metabolite") in genetically modified corn plants ex pressing thesequence listed in column 1 (ORF): Table VII ORF Metabolite MIN MAX YDR035W Campesterol 1.37 1.49 YLR027C beta-Sitosterol 1.26 1.59 15 Table VII shows the increase in campesterol in genetically modified corn plants ex pressing the Saccharomyces cerevisiae nucleic acid sequence YDR035W. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YDR035W or its homologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate 20 (DAHP) synthase", is increased in corn plants, preferably, an increase of the fine chemical campesterol between 37% and 49% is conferred. Furthermore table VII shows the increase in beta-sitosterol in genetically modified corn plants expressing the Saccharomyces cerevisiae nucleic acid sequence YLR027C. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein 25 YLR027C or its homologs, e.g. a "aspartate aminotransferase", is increased in corn plants, preferably, an increase of the fine chemical campesterol between 26% and 59% is conferred. [0554.2.0.12] for the disclosure of this paragraph see [0554.2.0.0] above.
894 [0555.0.0.12] for the disclosure of this paragraph see [0555.0.0.0] above.
895 [0001.0.0.13] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.0.13] for the disclosure of this paragraph see paragraph [0002.0.0.0] above. [0002.1.13.13] L-alanine is used in various pharmaceutical and veterinary applications. For example, it is included, together with other amino acids, in 5 preparations for infusion solutions or preparations for parenteral administration as clinical preoperative and postoperative foods, as well as an animal feed supplement. Furthermore, alanine is used as a food additive on account of its sweet taste. L-phenylalanine and L-aspartic acid have very important markets as key components in the manufacture of the sweetener aspartame. Aspartame (C14H18N2O5), L-aspartyl 10 L-phenylalanine methyl ester, is a compound of three components, which are methanol, aspartic acid and phenylalanine. L-aspartic acid is further used as a flavoring agent. The amino acid L-citrulline is a metabolite in the urea cycle. Other amino acids in this cycle are L-arginine and L-ornithine.L-citrulline is involved in liver detoxification of 15 ammonia, and has been shown to speed recover from fatigue. It has also been utilized in the treatment of Ornithine Transcarbamylase Deficiency and other Urea Cycle disorders. In cell metabolism, L-arginine and L-citrulline might serve as endogenous N sources (Ludwig et al., PLANT PHYSIOLOGY, Vol 101, Issue 2 429-434, 1993). Glycine is a valuable compound of wide use as food additives for processed foodstuffs 20 and raw materials for agricultural chemicals and medicines. Glycine is the simplest amino acid, and is used in crop production as a chelating agent for micronutrients and has been used as a nitrogen fertilizer, at least on an experimental basis. As such, it is representative of amino acids used in crop production. Practically all commercial glycine is produced by synthetic processes such as the Strecker Synthesis, the 25 reaction of formaldehyde, ammonia, and hydrogen cyanide, and hydrolysis of the resulting aminonitrile. Glycine is used as chelating / complexing agent for cation nutrients, plant growth regulators, substrate for microbiological products, fertilizer source of nitrogen. Serine is a primary intermediate in the biosynthesis of a wide variety of cellular 30 metabolites including such economically important compounds as choline, glycine, cysteine and tryptophan. In addition, serine acts as a single carbon donor and is responsible for 60% to 75% of the total need of the cell for C1 units through the production of 5,10-methylenetetrahydrofolate from tetrahydrofolate. These C1 units are used in a wide variety of biosynthetic pathways including the synthesis of methionine, 35 inosine monophosphate, other purines and some pyrimidines (e.g., thymidine and 896 hydroxymethyl cytidine). The glycine-serine interconversion, catalysed by glycine decarboxylase and serine hydroxymethyltransferase, is an important reaction of primary metabolism in all organisms including plants, by providing one-carbon units for many biosynthetic 5 reactions. In plants, in addition, it is an integral part of the photorespiratory metabolic pathway and produces large amounts of photorespiratory C02 within mitochondria (Bauwe et al., Journal of Experimental Botany, Vol. 54, No. 387, pp. 1523-1535, June 1,2003.) The enzymatic conversion of phenylalanine to tyrosine is known in eukaryotes. Human 10 phenylalanine hydroxylase is specifically expressed in the liver to convert L phenylalanine to L-tyrosine (Wang et al. J. Biol. Chem. 269 (12): 9137-46 (1994)). Deficiency of the PAH enzyme causes classic phenylketonurea, a common genetic disorder. Tyrosine and homoserine and their derivatives are also used in organic synthesis. For 15 example, tyrosine is starting material in the synthesis of chatecolamines or DOPA (dihydroxy-phenyl-alanine) as well as a precursor of adrenaline, dopamine and norepinepherine. A variety of beta-amino-gamma-keto acids can be prepared from commercially available I-homoserine. 5-Oxoproline, also named as pyroglutamic acid PCA and slats like sodium-PCA, is 20 used as cosmetic ingredient, such as hair and skin conditioning agent. One optical isomer of PCA (the L form) is a naturally occurring component of mammalian tissue. 5-Oxoproline is further used as templates in the synthesis of homochiral glutamate antagonists. [0003.0.0.13] to [0008.0.0.13] for the disclosure of these paragraphs see 25 paragraphs [0003.0.0.0] to [0008.0.0.0] above. [0009.0.14.13] US 5,498,532 disclose the production of various L-amino acids like glutamic acid, glutamine, lysine, threonine, isoleucine, valine, leucine, tryptophan, phenylalanine, tyrosine, histidine, arginine, ornithine, citrulline and proline by direct fermentation using, coryneform bacteria belonging to the genus Corynbacterium or 30 Brevibacterium, which are inherently unable to assimilate lactose, but due to recombinant DNA technology able to assimilate lactose,which represent the carbon source. An other method for producing amino acids such as homoserine is disclosed in US 20010049126, which use a bacterium belonging to the genus Escherichia which 35 harbors a PTS, phosphotransferase system, gene.
897 The coproduction of glutamic acid and other amino acids including lysine, aspartic acid, alanine by an auxotroph of Bacillus methanolicus is described in US 6,110,713. According to the teaching of US 5,677,156 L-aspartic acid can be efficiently produced from maleic acid or fumaric acid by adding the aspartase-containing microorganism, 5 like Brevibacterium flavum AB-41 strain (FERM BP-1498) and Eschirichia coli ATCC 11303. US 5,354,672 discloses a method of producing tyrosine, methionine, or phenylalanine by transiently incorporating a DNA inversion gene into the host cell, Escherichia coli cells, which induce hypersecretion of amino acids. 10 Known is also the production of citrulline in the small intestine as a product of glutamine metabolism, or in the arginine biosynthetic pathway, where ornithine carbamoyltransferases catalyse the production of citrulline from carbamoyl-phosphate and ornithine. Benninghoff et al. disclose the production of citrulline and ornithine by interferon-gamma treated macrophages (International Immunology, Vol 3, 413-417, 15 1991). There disclosed is a method for producing glycine in US 20030040085, which comprises subjecting an aqueous solution of glycinonitrile to a hydrolysis reaction in a hydrolysis reaction system under the action of a microbial enzyme, thereby converting the glycinonitrile to glycine while by-producing ammonia. 20 US 20040157290 discloses a process for preparing a serine-rich foreign protein comprising culturing a bacterium containing the cysteine synthase (cysK) gene and a gene encoding the foreign protein. US 20030079255 disclose the production of Para-hydroxycinnamic acid by introducing genes encoding phenylalanine ammonia-lyase from C. violaceum or R. glutinis tyrosine 25 into a host microorganism and as intermediates, tyrosine and cinnamic acid are also produced. Production of single cell protein and selected amino acids by microbial fermentation is known, e.g., US 4,652,527. One amino acid which has been produced on an industrial scale is lysine, see Tosaka et al., Trends in Biotechnology, 1: 70-74 (1983), Tosaka 30 and Takinami, Progress in Industrial Microbiology, Ch. 24, pp. 152-172 (Aida et al., 1986). Another example is glutamic acid which has been produced using bacteria of the genera Corynebacterium, Brevibacterium, Microbacterium, and Arothrobacter by fermentation on molasses and starch hydrozylates. Aspartic acid and alanine are produced by enzymatic means from fumaric acid and ammonia. Bacillus species have 35 been used in fermentation processes to produce amino acids, Tosaka et al.; Tosaka and Takinami, as named above.
898 [0010.0.0.13] to [0011.0.0.13] for the disclosure of these paragraphs see para graphs [0010.0.0.0] to [0011.0.0.0] above. [0012.0.13.13] It is an object of the present invention to develop an inexpensive process for the synthesis of amino acids, preferably 5-oxoproline, alanine, aspartic 5 acid, citrulline, glycine, homoserine, phenylalanine, serine and/or tyrosine. Amino acids are (depending on the organism) one of the most frequently limiting components of food or feed . [0013.0.0.13] for the disclosure of this paragraphis see paragraphs [0013.0.0.0] above. 10 [0014.0.14.13] Accordingly, in a first embodiment, in context of paragraphs [0001.n.n.13] to [0555.n.n.13] the invention relates to a process for the production of a fine chemical, whereby the fine chemical are amino acids of the invention, e.g. "5 oxoproline", "alanine", "aspartic acid", "citrulline", "glycine", "homoserine", "phenyla lanine", "serine" and/or "tyrosine". Accordingly, in the present invention, the term "the 15 fine chemical" as used herein relates to "amino acids of the invention". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising amino acids of the invention. [0015.0.12.13] In one embodiment, the term "the fine chemical" or "the respective fine chemical" or "amino acids of the invention" means at least one chemical compound 20 with amino acid activity selected from the group of 5-oxoproline, alanine, aspartic acid, citrulline, glycine, homoserine, phenylalanine, serine and/or tyrosine. In one embodiment, the term "the fine chemical" or "the respective fine chemical" or "or "amino acids of the invention'''' or "one chemical compound with amino acid activity" means an organic amphoteric chemical compound comprising an amnino group (NH2) 25 and a carboxylic group (COOH) bound to the same or different carbon atoms of a hydrocarbonic backbone whereof optionally further functional groups, e.g. amnino group (NH2), carboxylic group (COOH), carbonyl group (CO), hydroxy (OH) or mercapto group (SH) or aryls like phenyl. In an preferred embodiment, the term "the fine chemical" or the term "amino acid" or "or 30 "amino acids of the invention" the term "the respective fine chemical" means at least one chemical compound with amnio acid activity selected from the group "5 oxoproline", "alanine", "aspartic acid", "citrulline", "glycine", "homoserine", "phenyla lanine", "serine" and/or "tyrosine.
899 An increased content normally means an increased total amino acid content. However, an increased amino acid content also means, in particular, a modified content of the above-described 9 compounds with amino acid activity, without the need for an inevita ble increase in the total amino acid content. In a preferred embodiment, the term "the 5 fine chemical" means amino acid in free form or its salts or its ester or bound. [0016.0.14.13] Accordingly, the present invention relates to a process for the production of amino acids of the invention which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 14, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 14, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 15 (c) growing the organism under conditions which permit the production of the fine chemical, thus amino acids of the invention or fine chemicals comprising amino acids of the invention, in said organism or in the culture medium surrounding the organism. [0016.1.14.13] Accordingly, the term "the fine chemical" means in one embodi 20 ment "amino acids of the invention" in relation to all sequences listed in Table I to IV, application no. 15. Accordingly, the term "the fine chemical" means in one embodiment "5-oxoproline" in relation to all sequences listed in Table I to IV, line 115 or homologs thereof and means in one embodiment "alanine" in relation to all sequences listed in Tables I to IV, 25 lines 116 to 122 or homologs thereof and means in one embodiment "aspartic acid" respectively "aspartate" in relation to all se quences listed in Table I, lines 123 to 128, and means in one embodiment "citrulline" in relation to all sequences listed in Table I to IV, lines 129 to 137 and 30 means in one embodiment "glycine" in relation to all sequences listed in Table I to IV, lines 138 to 142 and means in one embodiment "homoserine" in relation to all sequences listed in Table I to IV, lines 143 to 147 and 900 means in one embodiment "phenylalanine" in relation to all sequences listed in Table I to IV, lines 148 to 160 and means in one embodiment "serine" in relation to all sequences listed in Table I to IV, lines 161 to 169 and 5 means in one embodiment "tyrosine" in relation to all sequences listed in Table I to IV, lines 170 to 180. Accordingly, in one embodiment the term "the fine chemical" means any combination of 2, 3, 4 or all 5 of the fine chemicals, e.g. compounds, selected from the group of "alanine", "citrulline", "glycine", "homoserine" and "serine". in relation to all sequences 10 listed in Table I to IV, lines 117, 129, 138, 144 and/or 161; in one embodiment the term "the fine chemical" means "citrulline" and "phenylalanine" in relation to all sequences listed in Table I to IV, lines 130 and/or 150; in one embodiment the term "the fine chemical" means "phenylalanine" and "glycine" in relation to all sequences listed in Table I to IV, lines 151 and/or 139; 15 in one embodiment the term "the fine chemical" means any combination of 2, 3, 4 or all 5 of the fine chemicals, e.g. compounds, selected from the group of "alanine", "citrul line", "glycine", "homoserine" and "serine" in relation to all sequences listed in Table I to IV, lines 118, 131, 140, 145 and/or 162; in one embodiment the term "the fine chemical" means "5-oxoproline" and "aspartate" 20 in relation to all sequences listed in Table I to IV, lines 115 and/or 124; in one embodiment the term "the fine chemical" means "phenylalanine" and "tyrosine" in relation to all sequences listed in Table I to IV, lines 152 and/or 171; in one embodiment the term "the fine chemical" means any combination of 2or all 3 of the fine chemicals, e.g. compounds, selected from the group of "citrulline", "serine"and 25 "aspartate" in relation to all sequences listed in Table I to IV, lines 132, 164 and/or 125; in one embodiment the term "the fine chemical" means "citrulline" and "glycine" in rela tion to all sequences listed in Table I to IV, lines 133 and/or 141; in one embodiment the term "the fine chemical" means "phenylalanine" and "tyrosine" in relation to all sequences listed in Table I to IV, lines 153 and/or 174; 30 in one embodiment the term "the fine chemical" means any combination of 2, 3 or all 4 of the fine chemicals, e.g. compounds, selected from the group of "phenylalanine", "alanine", "glycine"and "serine" in relation to all sequences listed in Table I to IV, lines 154, 119, 142 and/or 165; in one embodiment the term "the fine chemical" means "phenylalanine" and "tyrosine" 35 in relation to all sequences listed in Table I to IV, lines 155 and/or 175; in one embodiment the term "the fine chemical" means "serine" and "homoserine" in relation to all sequences listed in Table I to IV, lines 167 and/or 146; 901 in one embodiment the term "the fine chemical" means "citrulline" and "serine" in rela tion to all sequences listed in Table I to IV, lines 137 and/or 168; in one embodiment the term "the fine chemical" means "alanine" and "phenylalanine" in relation to all sequences listed in Table I to IV, lines 121 and/or 156; 5 in one embodiment the term "the fine chemical" means "tyrosine" and "phenylalanine" in relation to all sequences listed in Table I to IV, lines 177 and/or 157; in one embodiment the term "the fine chemical" means "serine" and "phenylalanine" in relation to all sequences listed in Table I to IV, lines 169 and/or 159; in one embodiment the term "the fine chemical" means "alanine" and "tyrosine" in rela 10 tion to all sequences listed in Table I to IV, lines 122 and/or 180. Accordingly, the term "the fine chemical" can mean "5-oxoproline", "alanine", "aspartic acid", "citrulline", "glycine", "homoserine", "phenylalanine", "serine" and/or "tyrosine" , owing to circumstances and the context. In order to illustrate that the meaning of the term "the fine chemical" means "5-oxoproline", "alanine", "aspartic acid", "citrulline", 15 "glycine", "homoserine", "phenylalanine", "serine" and/or "tyrosine" the term "the respective fine chemical" is also used. [0017.0.13.13] In another embodiment the present invention is related to a process for the production of amino acids of the invention, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 20 no. 14 column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 14, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 14, column 5, which are joined to a nucleic acid sequence encoding a 25 transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 14, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more 30 parts thereof, and (d) growing the organism under conditions which permit the production of amino ac ids in said organism.
902 [0017.1.13.13] In another embodiment, the present invention relates to a process for the production of amino acids of the invention, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap 5 plication no. 14, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 14, column 5 in the plastid of a microorganism or plant, or in one or 10 more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, amino acids of the invention or fine chemicals comprising amino acids of the invention, in said organism or in the culture medium surrounding the organism. 15 [0018.0.13.13] Advantagously the activity of the protein as shown in table II, applica tion no. 14, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 14, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.13] to [0024.0.0.13] for the disclosure of the paragraphs [0019.0.0.13] to 20 [0024.0.0.13] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.13.13] Even more preferred nucleic acid sequences are encoding transit pep tides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to 25 the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 14, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 30 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro- 903 teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are 5 typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct 10 molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported 15 protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. 20 structural flexible amino acids such as glycine or alanine. [0026.0.13.13] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 14, column 3 and its homologs as disclosed in table 1, application no. 14, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures 25 transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table 1l, application no. 14, column 3 and its homologs as disclosed in table 1, application no. 14, columns 5 and 7. 30 [0027.0.0.13] to [0029.0.0.13] for the disclosure of the paragraphs [0027.0.0.13] to [0029.0.0.13] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.13.13] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized 35 sequences can be directly linked to the sequences encoding the mature protein or via a 904 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore 5 favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 10 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo 15 plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in 20 table I, application no. 13, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 14, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal 25 amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 14, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 14, 30 columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= !igatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said 35 short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 14, columns 5 and 7. Fur- 905 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. Table V: Examples of transit peptides disclosed by von Heijne et al.: for the disclosure of the Table V see Table V above, paragraphs [0030.0.0.0] above. 5 [0030.1.13.13] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 14, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore 10 in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 14, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". 15 A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a 20 chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.13] and [0030.3.0.13] for the disclosure of the paragraphs [0030.2.0.13] and [0030.3.0.13] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. 25 [0030.4.13.13] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 14, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 30 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran- 906 scribed from the sequences depicted in table 1, application no. 14, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 14, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com 5 plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi 10 roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table, 1, application no. 14, columns 5 and 7 or a se quence encoding a protein, as depicted in table II, application no. 14, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a 15 sequence as depicted in table 1 application no. 14, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 14, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the 20 proteins depicted in table II, application no. 14, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex 25 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA 30 to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 14, columns 5 and 7. [0030.5.13.13] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 14, columns 5 and 7 used in the inventive 35 process are transformed into plastids, which are metabolical active. Those plastids 907 should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.13.13] For a good expression in the plastids the nucleic acid sequences as 5 shown in table I, application no. 14, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. 10 [0031.0.0.13] and [0032.0.0.13] for the disclosure of the paragraphs [0031.0.0.13] and [0032.0.0.13] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.13.13]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 15 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 14, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 14, column 3 20 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.13.13] Surprisingly it was found, that the transgenic expression of the E. coli proteins and/or Saccharomyces cerevisiae proteins shown in table II, application no. 14, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V 25 conferred an increase in the respective fine chemical indicated in column 6 "metabo lite" of each table I to IV in the transformed plant. Surprisingly it was found, that the transgenic expression of the E. coli protein b1640 in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in 5-oxoproline. 30 Surprisingly it was found, that the transgenic expression of the E. coli protein b0342, b1062, b1264, b2965 and/or b4053 and/or the Saccharomyces cerevisiae protein YALO38W and/or YNL241 C in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in alanine.
908 Surprisingly it was found, that the transgenic expression of the E. coli protein b1 556, b1640, b1758, b2066 and/or b2312, and/or the Saccharomyces cerevisiae protein YNR012W in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in aspartate. 5 Surprisingly it was found, that the transgenic expression of the E. coli protein b1 062, b1136, b1264, b1758, b2366, b2818, b3117, b3213 and/or b4139 in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in citrul line. Surprisingly it was found, that the transgenic expression of the E. coli protein b1 062, 10 b1223, b1264, b2366 and/or b2965 in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in glycine. Surprisingly it was found, that the transgenic expression of the E. coli protein b0628, b1062, b1264 and/or b3616, and/or the Saccharomyces cerevisiae protein YEL046C in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an 15 increase in homoserine. Surprisingly it was found, that the transgenic expression of the E. coli protein b0403, b0754, b1 136, b1 223, b1 704, b2601, b2965 and/or b3390, and/or the Saccharomyces cerevisiae protein YAL038W, YDR035W, YDR430C, YKR043C and/or YOR353C in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an 20 increase in phenylalanine. Surprisingly it was found, that the transgenic expression of the E. coli protein b1 062, b1264, b1611, b1758, b2965, b3429, b3616 and/or b4139, and/or the Saccharomyces cerevisiae protein YKR043C in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in serine. 25 Surprisingly it was found, that the transgenic expression of the E. coli protein b0760, b1704, b2223, b2600, b2601 and/or b3390, and/or the Saccharomyces cerevisiae pro tein YBL082C, YDR035W, YDR497C, YLR174W, YNL241C in combination with a plas tidal targeting sequence in Arabidopsis thaliana conferred an increase in tyrosine. [0035.0.0.13] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.13.13] The sequence of b0342 (Accession number PIR:XXECTG) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 909 (1997), and its activity is being defined as "thiogalactoside acetyltransferase". Accord ingly, in one embodiment, the process of the present invention comprises the use of a "thiogalactoside acetyltransferase" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of amino acids of the invention, in particular for in 5 creasing the amount of alanine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 10 In another embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0403 (Accession number PIR:C64769) from Escherichia coli has 15 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "maltodextrin glucosidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "maltodextrin glucosidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of phenylalanine in 20 free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0403 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0403 25 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0628 from Escherichia coli (Acession NP_415161) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 30 defined as "lipoate synthase" or "an iron-sulfur enzyme". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "lipoate synthase" or "an iron-sulfur enzyme" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of homoserine in free or bound form in an organism or a part thereof, as men 35 tioned. In one embodiment, in the process of the present invention the activity of a b0628 protein is increased or generated, e.g. from Escherichia coli or a homolog 910 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0628 protein is increased or generated in a subcellular compartment of the organism or or 5 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0754 from Escherichia coli (Accession PIR:ADECHF) has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP syn thetase, phenylalanine-repressible)". Accordingly, in one embodiment, the process of 10 the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase (DAHP synthetase, phenylalanine-repressible)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount phenylalanine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc 15 ess of the present invention the activity of a b0754 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0754 protein is increased or generated in a subcellular compartment of the organism or or 20 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0760 from Escherichia coli (Acession PIR:JC6038) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ATP-binding component of molybdate transport system". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ATP 25 binding component of molybdate transport system" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b0760 protein is increased or generated, e.g. from Escherichia 30 coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0760 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria.
911 The sequence of b1062 from Escherichia coli (Acession PIR:DEECOO) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "dihydro-orotase". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "dihydro-orotase" or its homolog, e.g. as shown 5 herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of one or of any combination of 2, 3, 4 or all 5 of the fine chemicals, e.g. compounds, selected from the group of "alanine", "citrulline", "glycine", "homoserine" and "serine" in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 10 activity of a b1062 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1062 protein is increased or generated in a subcellular compartment of the organism or or 15 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1 136 from Escherichia coli (Acession PIR:DCECIS) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "isocitrate dehydrogenase (NADP)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "isocitrate dehydrogenase 20 (NADP)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of citrulline and/or phenylalanine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 136 protein is increased or generated, e.g. from Escherichia coli or a homolog 25 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1 136 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of b1223 from Escherichia coli (Acession NP_415741) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nitrite extrusion protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "nitrite extrusion protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids 35 of the invention, in particular for increasing the amount of glycine and/or phenylalanine 912 in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a b1223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a b1223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1264 from Escherichia coli (Acession NP_415780) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 10 defined as "anthranilate synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "anthranilate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of one or of any combination of 2, 3, 4 or all 5 of the fine chemicals, e.g. compounds, selected from the group of "alanine", 15 "citrulline", "glycine", "homoserine" and "serine" in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present inven tion the activity of a b1264 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b1264 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 25 is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of aspartate in free or bound form in an organ ism or a part thereof, as mentioned. In one embodiment, in the process of the present 30 invention the activity of a b1556 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or 35 ganism cell such as in an organelle like a plastid or mitochondria.
913 The sequence of b1611 (Accession number NP_416128) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "fumarase C (fumarate hydratase Class 1l)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "fumarase C 5 (fumarate hydratase Class 1l)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increas ing the amount of serine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1611 protein is increased or generated, e.g. from Escherichia coli or a homolog 10 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1611 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b1640 (Accession number NP_416157) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "conserved hypothetical protein with actin-like ATPase domain". Accordingly, in one embodiment, the process of the present invention comprises the use of a "conserved hypothetical protein with actin-like ATPase domain" or its homolog, 20 e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of 5-oxoproline and/or aspartate in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a b1640 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least 25 to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1640 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1704 from Escherichia coli (Accession NP_416219) has been pub 30 lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as " 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase), tryptophan-repressible ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase (DAHP synthetase), tryptophan-repressible " or its homolog, e.g. 35 as shown herein, for the production of the fine chemical, meaning of amino acids of the 914 invention, in particular for increasing the amount of phenylalanine and/or tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to 5 one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1758 from Escherichia coli (Accession NP_416272) has been pub 10 lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as " cytochrome oxidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "cytochrome oxidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of one or any combination of 2 or all 3 15 of the fine chemicals, e.g. compounds, selected from the group of "citrulline", "aspar tate", and "serine" in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 758 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b1758 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2066 (Accession number NP_416570) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 25 is being defined as "uridine/cytidine kinase". Accordingly, in one embodiment, the proc ess of the present invention comprises the use of a "uridine/cytidine kinase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of aspartate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the 30 process of the present invention the activity of a b2066 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2066 protein is increased or generated in a subcellular compartment of the organism or or 35 ganism cell such as in an organelle like a plastid or mitochondria.
915 The sequence of b2223 (Accession number NP_416727) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "short chain fatty acid transporter". Accordingly, in one embodiment, the process of the present invention comprises the use of a "short chain fatty acid 5 transporter" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of amino acids of the invention, in particular for increasing the amount of tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 10 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2312 from Escherichia coli (Accession PIR:XQEC) has been pub 15 lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "amidophosphoribosyltransferase (PRPP amidotransferase)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ami dophosphoribosyltransferase (PRPP amidotransferase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, 20 in particular for increasing the amount of aspartate in free or bound form in an organ ism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2312 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b23122 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2366 from Escherichia coli (Accession PIR:DWECS) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 30 defined as "D-serine deaminase (dehydratase)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "D-serine deaminase (dehydra tase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of citrulline and/or glycine in free or bound form in an organism or a part thereof, as men 35 tioned. In one embodiment, in the process of the present invention the activity of a 916 b2366 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2366 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2600 (Accession number NP_417091) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "bifunctional chorismate mutase / prephenate dehydrogenase". Ac 10 cordingly, in one embodiment, the process of the present invention comprises the use of a "bifunctional chorismate mutase / prephenate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 15 present invention the activity of a b2600 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2600 protein is increased or generated in a subcellular compartment of the organism or or 20 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2601 (Accession number NP_417092) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase, tryptophan-repressible". Accordingly, in one embodiment, the process of the present 25 invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase, trypothan-repressible" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of phenylalanine and/or tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 30 present invention the activity of a b2601 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2601 protein is increased or generated in a subcellular compartment of the organism or or 35 ganism cell such as in an organelle like a plastid or mitochondria.
917 The sequence of b2818 (Accession number NP_417295) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "N-acetylglutamate synthase (amino acids of the invention N acetyltransferase)". Accordingly, in one embodiment, the process of the present inven 5 tion comprises the use of a "N-acetylglutamate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of citrulline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b2818 protein is increased or generated, e.g. from Escherichia 10 coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2818 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 20 amino acids of the invention, in particular for increasing the amount of any combination of 2, 3, or all 4 of the fine chemicals, e.g. compounds, selected from the group of " phenylalanine", "alanine", "glycine" and "serine" in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present inven tion the activity of a b2965 protein is increased or generated, e.g. from Escherichia coli 25 or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of b3117 (Accession number PIR:DWECTD) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "threonine dehydratase, catabolic, PLP-dependent". Accordingly, in one embodiment, the process of the present invention comprises the use of a "threonine dehydratase, catabolic, PLP-dependent" or its homolog, e.g. as shown 35 herein, for the production of the fine chemical, meaning of amino acids of the invention, 918 in particular for increasing the amount of citrulline in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b3117 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned 5 for example in table V. In another embodiment, in the process of the present invention the activity of a b3117 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3213 (Accession number NP_417680) from Escherichia coli has 10 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glutamate synthase (small subunit)". Accordingly, in one embodi ment, the process of the present invention comprises the use of a glutamate synthase (small subunit)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the 15 amount of citrulline in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b3213 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b3213 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3390 (Accession number YP_026215) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 25 is being defined as a "shikimate kinase I". Accordingly, in one embodiment, the process of the present invention comprises the use of a "shikimate kinase I" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of phenylalanine and/or tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, 30 in the process of the present invention the activity of a b3390 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3390 protein is increased or generated in a subcellular compartment of the organism or or 35 ganism cell such as in an organelle like a plastid or mitochondria.
919 The sequence of b3429 (Accession number NP_417887) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glycogen synthase (starch synthase)". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "glycogen syn 5 thase (starch synthase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of serine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3429 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref 10 erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3429 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3616 (Accession number NP_418073) from Escherichia coli has 15 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "threonine 3-dehydrogenase, NAD(P)-binding". Accordingly, in one embodiment, the process of the present invention comprises the use of a "threonine 3 dehydrogenase, NAD(P)-binding" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of amino acids of the invention, in particular for in 20 creasing the amount of serine and/or homoserine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b3616 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b3616 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4053 (Accession number PIR:PC1296) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 30 is being defined as "alanine racemase, PLP-binding". Accordingly, in one embodiment, the process of the present invention comprises the use of a "alanine racemase, PLP binding" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of alanine in free or bound form in an organism or a part thereof, as mentioned. In one 35 embodiment, in the process of the present invention the activity of a b4053 protein is 920 increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4053 protein is increased or generated in a subcellular compartment of the organism or or 5 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4139 (Accession number NP_418562) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "aspartate ammonia-lyase (aspartase)". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "aspartate am 10 monia-lyase" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of amino acids of the invention, in particular for increasing the amount of citrulline and/or serine in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b4139 protein is increased or generated, e.g. from Escherichia coli or a homolog 15 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4139 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of YAL038W (Accession number NP_009362) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Bussey et al., Proc. NatI. Acad. Sci. U.S.A. 92 (9), 3809-3813 (1995), and its activ ity is being defined as "pyruvate kinase", which functions as a homotetramer in glycoly sis to convert phosphoenolpyruvate to pyruvate (Cdc 9p). Pyruvate is the input for 25 aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration. Accordingly, in one embodiment, the process of the present invention comprises the use of a "pyruvate kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of alanine and/or phenylalanine in free or bound form in an organism or a part thereof, as 30 mentioned. In one embodiment, in the process of the present invention the activity of a YAL038W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of an 921 YAL038W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YBL082C (Accession number NP_009471) from Saccharomyces cer evisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and 5 Feldmann et al. EMBO J. 13 (24), 5795-5809 (1994), and its activity is being defined as "Dol-P-Man dependent alpha(1-3) mannosyl-transferase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "Dol-P-Man depend ent alpha(1-3) mannosyl-transferase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of amino acids of the invention, in particular for 10 increasing the amount of tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YBL082C protein is increased or generated, e.g. from Saccharomyces cer evisiae or a homolog thereof, preferably linked at least to one transit peptide as men tioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of an YBL082C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W from Saccharomyces cerevisiae (NP_010320) has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 and Gof 20 feau, Science 274 (5287), 546-547, 1996, and its activity is being defined as "3-deoxy D-arabino-heptulosonate 7-phosphate (DAHP) synthase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "3-deoxy-D-arabino heptulosonate 7-phosphate (DAHP) synthase " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in par 25 ticular for increasing the amount of tyrosine and/or phenylalanine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 30 In another embodiment, in the process of the present invention the activity of a YDR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR430C from Saccharomyces cerevisiae (Accession PIR:S6971 1) has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 35 and Goffeau, Science 274 (5287), 546-547, 1996, and its activity is being defined as 922 "Metalloprotease". Accordingly, in one embodiment, the process of the present inven tion comprises the use of a "Metalloprotease" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particu lar for increasing the amount of phenylalanine in free or bound form in an organism or a 5 part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR430C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 10 YDR430C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR497C (Accession number NP_010785) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined 15 as a "myo-inositol transporter". Accordingly, in one embodiment, the process of the present invention comprises the use of a "myo-inositol transporter" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 20 present invention the activity of a YDR497C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR497C protein is increased or generated in a subcellular compartment of the organ 25 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YEL046C (Accession number NP_010868) from Saccharomyces cer evisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997), and its activity is being defined as a "L-threonine aldolase", which catalyzes cleavage of L-allo-threonine and L 30 threonine to Glycine (Glyl p). Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "low specific L-threonine aldolase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of homoserine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the 35 process of the present invention the activity of a YEL046C protein is increased or gen- 923 erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YEL046C protein is increased or generated in a subcellular compartment of the organ 5 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dujon et al., Nature 369 (6479), 371-378 (1994), and its activity is being defined as a "phosphoglycerate mutase like protein". Accordingly, in one embodiment, the process 10 of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of serine and/or phenylalanine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YKR043C 15 protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YKR043C protein is increased or generated in a subcellular compartment of the organ 20 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR174W (Accession number NP_013275) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997), and its activity is being defined as a "NADP-dependent isocitrate dehydrogenase". Accordingly, in one em 25 bodiment, the process of the present invention comprises the use of a "NADP dependent isocitrate dehydrogenase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 30 activity of a YLR1 74W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 74W protein is increased or generated in a subcellular compartment of the organ 35 ism or organism cell such as in an organelle like a plastid or mitochondria.
924 The sequence of YNL241C from Saccharomyces cerevisiae (Accession NP_014158) has been published in published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997 and Goffeau, Science 274 (5287), 546-547, 1996, and its activity is being defined as "glucose-6-phosphate dehydrogenase ". Accordingly, in one embodiment, the process 5 of the present invention comprises the use of a "glucose-6-phosphate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of amino acids of the invention, in particular for increasing the amount of alanine and/or tyrosine in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241C protein 10 is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of YNR012W (Accession number NP_014409) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "uridine kinase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uridine kinase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of amino 20 acids of the invention, in particular for increasing the amount of aspartate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNR012W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of an YNR012W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YOR353C (Accession number NP_014998) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, 30 and its activity is being defined as " Protein required for cell morphogenesis and cell separation after mitosis; Sog2p". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Protein required for cell morphogenesis and cell separation after mitosis; Sog2p" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of amino acids of the invention, in particular for 35 increasing the amount of phenylalanine in free or bound form in an organism or a part 925 thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YOR353C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of an YOR353C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.12.13] In one embodiment, the homolog of the b0342, b0403, b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, b1611, b1640, b1704, b1758, b2066, 10 b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, b4053 and/or b4139 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b0342, b0403, b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, b1611, b1640, b1704, b1758, b2066, b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, 15 b4053 and/or b4139 is a homolog having said acitivity and being derived from Proteo bacteria. In one embodiment, the homolog of the b0342, b0403, b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, b1611, b1640, b1704, b1758, b2066, b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, b4053 and/or b4139 is a homolog having said acitivity and being derived from Gam 20 maproteobacteria. In one embodiment, the homolog of the b0342, b0403, b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, b1611, b1640, b1704, b1758, b2066, b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, b4053 and/or b4139 is a homolog having said acitivity and being de rived from Enterobacteriales. In one embodiment, the homolog of the b0342, b0403, 25 b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, b1611, b1640, b1704, b1758, b2066, b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, b4053 and/or b4139 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the b0342, b0403, b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, b1611, b1640, 30 b1704, b1758, b2066, b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, b4053 and/or b4139 is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YALO38W, YBL082C, YDR035W, YDR430C, YDR497C, YELO46C, YKR043C, YLR174W, YNL241C, YNRO12W and/or YOR353C 35 is a homolog having said activity and being derived from an eukaryotic. In one em- 926 bodiment, the homolog of the YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said activity and being derived from Fungi. In one embodiment, the homolog of the YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, 5 YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said activity and being derived from Ascomyceta. In one embodiment, the homolog of the YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said activity and being derived from Saccharomycotina. In one embodiment, the homolog of the 10 YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said activity 15 and being derived from Saccharomycetales. In one embodiment, the homolog of the YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said activity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, 20 YLR174W, YNL241C, YNR012W and/or YOR353C is a homolog having said activity and being derived from Saccharomycetes. [0037.1.12.13] Homologs of the polypeptide discolosed in table II, application no. 13, column 3 may be the polypetides encoded by the nucleic acid molecules indicated in table I , application no. 13, column 7, resp., or may be the polypeptides indicated in 25 table II, application no. 13, column 7, resp. [0038.0.0.13] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.12.13] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 13, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the level of 30 the fine chemical indicated in the respective line of table II, application no. 13, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism .The protein has the above mentioned activities of a protein as shown in table II, application no. 13, column 3, preferably in the event the nucleic acid sequences encoding said 35 proteins is functionally joined to the nucleic acid sequence of a transit peptide.
927 Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table 1l, application no. 13, column 3, or which has at least 10% of 5 the original enzymatic or biological activity, preferably 20%, particularly preferably 30%, most particularly preferably 40% in comparison to a protein as shown in the respective line of table 1l, application no. 13, column 3 of E. coli or Saccharomyces cerevisiae. [0040.0.0.13] to [0047.0.0.13] for the disclosure of the paragraphs [0040.0.0.13] to [0047.0.0.13] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 10 [0048.0.12.13] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav 15 ing the activity of a respective protein as shown in table 1l, application no. 13, column 3 its biochemical or genetical causes and the increased amount of the respective fine chemical. [0049.0.0.13] to [0051.0.0.13] for the disclosure of the paragraphs [0049.0.0.13] to [0051.0.0.13] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 20 [0052.0.12.13] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 13, columns 5 and 7 alone 25 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 30 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.13] to [0058.0.0.13] for the disclosure of the paragraphs [0053.0.0.13] to [0058.0.0.13] see paragraphs [0053.0.0.0] to [0058.0.0.0] above.
928 [0059.0.12.13] In case the activity of the Escherichia coli protein b0342 or its ho mologs, e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of alanine between 20% and 43% or more is conferred. 5 In case the activity of the Escherichia coli protein b0403 or its homologs, e.g. a "malto dextrin glucosidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of phenylalanine between 31 % and 59% or more is conferred. In case the activity of the Escherichia coli protein b0628 or its homologs, e.g. a "lipoate 10 synthase, an iron-sulfur enzyme" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of homoserine between 34% and 47% or more is conferred. In case the activity of the Escherichia coli protein b0754 or its homologs, e.g. a "3 deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase, phenyla 15 lanine-repressible)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of phenylalanine between 28% and 122% or more is conferred. In case the activity of the Escherichia coli protein b0760 or its homologs, e.g. a "ATP binding component of molybdate transport system" is increased advantageously in an 20 organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of tyrosine between 22% and 37% or more is conferred. In case the activity of the Escherichia coli protein b1062 or its homologs, e.g. a "dihy dro-orotase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of 25 alanine between 26% and 61% or more and/or of citrulline between 39% and 90% or more and/or of glycine between 51% and 96% or more and/or of homoserine between 26% and 111% or more and/or of serine between 23% and 48% or more is conferred and/or an increase of any combination of 2, 3, 4 or all 5 of the said fine chemicals, e.g. compounds as mentioned above between 23% and 111 % or more is conferred. 30 In case the activity of the Escherichia coli protein b1 136 or its homologs, e.g. a "isocit rate dehydrogenase (NADP)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of citrulline between 32% and 60% or more and/or of phenylalanine be tween 35% and 147% or more is conferred and/or an increase of both of the two said 35 fine chemicals, e.g. compounds as mentioned above between 32% and 147% or more is confered. In case the activity of the Escherichia coli protein b1223 or its homologs, e.g. a "nitrite 929 extrusion protein" is increased advantageously in an organelle such as a plastid or mi tochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycine between 58% and 122% or more and/or of phenylalanine between 31 % and 142% or more is conferred and/or an increase of both of the two said fine chemicals, 5 e.g. compounds as mentioned above between 31% and 142% or more is confered. In case the activity of the Escherichia coli protein b1264 or its homologs, e.g. an "an thranilate synthase component I" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of alanine between 21 % and 55% or more and/or of citrulline between 10 38% and 63% or more and/or of glycine between 37% and 73% or more and/or of ho moserine between 25% and 44% or more and/or of serine between 35% and 96% or more is conferred and/or an increase of any combination of 2, 3, 4 or all 5 of the said fine chemicals, e.g. compounds as mentioned above between 21% and 96% or more is confered. 15 In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of as partate (aspartic acid) between 58% and 197% or more is conferred. In case the activity of the Escherichia coli protein b161 1 or its homologs, e.g. a "fu 20 marase C (fumarate hydratase Class 1l)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of serine between 24% and 41% or more is conferred. In case the activity of the Escherichia coli protein b1640 or its homologs, e.g. a "con served hypothetical protein with actin-like ATPase domain" is increased advanta 25 geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of 5-oxoproline between 24% and 33% or more and/or of aspartate between 46% and 60% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 24% and 60% or more is confered. 30 In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of phenylalanine between 43% and 38655% or more and/or of tyrosine between 1014% 35 and 10359% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 43% and 38655% or more is conferred.
930 In case the activity of the Escherichia coli protein b1758 or its homologs, e.g. a "cyto chrome oxidase" is increased advantageously in an organelle such as a plastid or mi tochondria, preferably, in one embodiment an increase of the fine chemical, preferably of aspartate between 51 % and 109% or more and/or of citrulline between 40% and 5 96% or more and/or of serine between 24% and 47% or more is conferred and/or an increase of any combination of two or of all 3 of the said fine chemicals, e.g. com pounds as mentioned above between 24% and 109% or more is conferred. In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. an "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid 10 or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of aspartate between 48% and 133% or more is conferred. In case the activity of the Escherichia coli protein b2223 or its homologs, e.g. a "short chain fatty acid transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 15 cal, preferably of tyrosine between 39% and 77% or more is conferred. In case the activity of the Escherichia coli protein b2312 or its homologs, e.g. a "amido phosphoribosyltransferase (PRPP amidotransferase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of aspartate between 52% and 114% or more is 20 conferred. In case the activity of the Escherichia coli protein b2366 or its homologs, e.g. a "D serine deaminase (dehydratase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of citrulline between 32% and 66% or more and/or of glycine between 25 43% and 98% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 43% and 98% or more is conferred. In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in 30 an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of tyrosine between 159% and 378% or more is conferred. In case the activity of the Escherichia coli protein b2601 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate (DAHP) synthase" is increased advanta 35 geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of phenylalanine between 152% and 2064% or more and/or of tyrosine between 132% and 1567% or more is conferred 931 and/or an increase of both of the two said fine chemicals, e.g. compounds as men tioned above between 132% and 2064% or more is confered. In case the activity of the Escherichia coli protein b2818 or its homologs, e.g. a "N acetylglutamate synthase" is increased advantageously in an organelle such as a plas 5 tid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of citrulline between 181 % and 328% or more is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. an "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 10 bly of alanine between 21% and 72% or more and/or of glycine between 52% and 198% or more and/or of phenylalanine between 31 % and 204% or more and/or of ser ine between 33% and 193% or more is conferred and/or an increase of any combina tion of 2, 3 or of all 4 of the said fine chemicals, e.g. compounds as mentioned above between 21% and 204% or more is confered. 15 In case the activity of the Escherichia coli protein b3117 or its homologs, e.g. a "threonine dehydratase, catabolic, PLP-dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of citrulline between 43% and 166% or more is con ferred. 20 In case the activity of the Escherichia coli protein b3213 or its homologs, e.g. a "gluta mate synthase (small subunit)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of citrulline between 32% and 56% or more is conferred. In case the activity of the Escherichia coli protein b3390 or its homologs, e.g. a "shiki 25 mate kinase I" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of phenylalanine between 100% and 241% or more and/or of tyrosine between 100% and 189% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 100% and 241% or more is confered. 30 In case the activity of the Escherichia coli protein b3429 or its homologs, e.g. a "glyco gen synthase (starch synthase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of serine between 25% and 70% or more is conferred. In case the activity of the Escherichia coli protein b3616 or its homologs, e.g. a 35 "threonine 3-dehydrogenase, NAD(P)-binding" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of homoserine between 26% and 101% or more and/or 932 of serine between 23% and 87% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 23% and 101% or more is confered. In case the activity of the Escherichia coli protein b4053 or its homologs, e.g. a "alanine 5 racemase, PLP-binding" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of alanine between 35% and 129% or more is conferred. In case the activity of the Escherichia coli protein b4139 or its homologs, e.g. a aspar tate ammonia-lyase (aspartase)" is increased advantageously in an organelle such as 10 a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of citruline between 145% and 522% or more and/or of serine between 130% and 478% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 145% and 522% or more is confered. 15 In case the activity of the Saccharomyces cerevisiae protein YAL038W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of alanine between 27% and 170% or more or phenylalanine between 25% and 51% or more is conferred and/or an increase of both of the two said fine chemicals, 20 e.g. compounds as mentioned above between 25% and 170% or more is confered. In case the activity of the Saccharomyces cerevisiae protein YBL082C or its homologs, e.g. a "Dol-P-Man dependent alpha(1-3) mannosyl-transferase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of tyrosine between 30% and 61 % or 25 more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of phenylalanine between 30 40% and 2244% or more or tyrosine between 43% and 509% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as men tioned above between 40% and 2244% or more is confered. In case the activity of the Saccharomyces cerevisiae protein YDR430C or its homologs, e.g. a "Metalloprotease" is increased advantageously in an organelle such as a plastid 35 or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of phenylalanine between 38% and 131% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR497C or its homologs, 933 e.g. a "myo-inositol transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of tyrosine between 38% and 46% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YEL046C or its homologs, 5 e.g. a "L-threonine aldolase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of homoserine between 26% and 117% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YKR043C or its homologs, e.g. a "YKR043C protein activity" is increased, preferably, in one embodment the in 10 crease of the fine chemical, preferably of phenylalanine between 35% and 340% or more or serine between 26% and 60% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 26% and 340% or more is confered. In case the activity of the Saccharomyces cerevisiae protein YLR1 74W or its ho 15 mologs, e.g. a "cytosolic NADP-specific isocitrate dehydrogenase" is increased advan tageously in an organelle such as a plastid or mitochondria, preferably, in one em bodiment an increase of the fine chemical, preferably of tyrosine between 20% and 25% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, 20 e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of lalanine between 66% and 115% or more or tyrosine between 29% and 35% or more is conferred and/or an increase of both of the two said fine chemicals, e.g. compounds as mentioned above between 29% and 115% or more 25 is conferred. In case the activity of the Saccharomyces cerevisiae protein YNR012W or its ho mologs, e.g. a "uridine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of aspartate between 48% and 73% or more is conferred. 30 In case the activity of the Saccharomyces cerevisiae protein YOR353C or its ho mologs, e.g. a "Protein required for cell morphogenesis and cell separation after mito sis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably phenylalanine between 41 % and 106% or more is conferred. 35 [0060.0.13.13] In one embodiment, the activity of any on of the Escherichia coli pro teins b0342, b0403, b0628, b0754, b0760, b1062, b1136, b1223, b1264, b1556, 934 b1611, b1640, b1704, b1758, b2066, b2223, b2312, b2366, b2600, b2601, b2818, b2965, b3117, b3213, b3390, b3429, b3616, b4053 and/or b4139 and/or the activity of any on of the Saccharomyces cerevisiae proteins YAL038W, YBL082C, YDR035W, YDR430C, YDR497C, YEL046C, YKR043C, YLR174W, YNL241C, YNR012W and/or 5 YOR353C or their homologs, is advantageously increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical indicated in column 6 "metabolites" for application no. 14 in any one of Tables I to IV, resp.. [0061.0.0.13] and [0062.0.0.13] for the disclosure of the paragraphs [0061.0.0.13] and [0062.0.0.13] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. 10 [0063.0.12.13] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in one embodi ment the structure of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 14, column 7 or of the polypeptide as shown in the amino acid sequences as disclosed in table II, appli 15 cation no. 14, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 14, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. 20 [0064.0.13.13] For the purposes of the present invention, the terms "5-oxoproline", "alanine", "aspartic acid", "citrulline", "glycine", "homoserine", "phenylalanine", "serine" and/or "tyrosine" also encompass the corresponding salts, such as, for example result ing in the reaction with acids like hydrochloride or the different sulphur containing acids. [0065.0.0.13] and [0066.0.0.13] for the disclosure of the paragraphs [0065.0.0.13] 25 and [0066.0.0.13] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.12.13] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, 30 e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 14, columns 5 and 7 or its homologs activity having herein-mentioned amino acids of the invention increasing activity; and/or 935 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 14, columns 5 and 7, e.g. a nucleic 5 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 14, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned amino acids of the invention increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 10 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned sterol increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 14, columns 5 and 7 or its homologs activity, or decreasing the inhibi tiory regulation of the polypeptide of the invention; and/or 15 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned amino acids of the inven tion increasing activity, e.g. of a polypeptide having the activity of a protein as in 20 dicated in table II, application no. 14, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned amino acids of the invention in 25 creasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 14, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 30 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned amino acids of the invention increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 14, columns 5 and 7 or its homologs activity, and/or 936 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned amino acids of the invention increasing activity, e.g. of a polypeptide having the 5 activity of a protein as indicated in table 1l, application no. 14, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 14, columns 5 and 7 or its homologs activity, by adding 10 positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele 15 ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres 20 sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or 25 j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned amino acids of the 30 invention increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 14, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 937 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned amino acids of the invention increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 14, columns 5 5 and 7 or its homologs activity in plastids by the stable or transient transforma tion advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or 10 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned amino acids of the invention increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 14, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the 15 invention into the plastidal genome under control of preferable a plastidial pro moter. [0068.0.13.13] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid 20 sequence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the respective fine chemi cal as indicated in column 6 of application no. 14 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as 25 shown in table II, application no. 14, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. [0069.0.0.13] to [0079.0.0.13] for the disclosure of the paragraphs [0069.0.0.13] to [0079.0.0.13] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.12.13] The activation of an endogenous polypeptide having above-mentioned 30 activity, e.g. having the activity of a protein as shown in table II, application no. 14, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec tive fine chemical after increase of expression or activity in the cytsol and/or in an or ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en- 938 coding the protein as shown in table 1l, application no. 14, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA-binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of 5 the gene encoding the protein as shown in table 1l, application no. 13, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 13, column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. 10 [0081.0.0.13] to [0084.0.0.13] For the disclosure of the paragraphs [0081.0.0.13] to [0084.0.0.13] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.13.13] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the polypeptide of the invention, for example the nucleic acid construct mentioned below, or encoding the 15 protein as shown in table 1l, application no. 14, column 3 into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advanta geous, preferably novel metabolite composition in the organism, e.g. an advantageous amino acid composition comprising a higher content of (from a viewpoint of nutrional 20 physiology limited) amino acids alone or in combination in free or bound form. [0086.0.0.13] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.13.13] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to 5-oxoproline, alanine, aspartic acid, citrulline, 25 glycine, homoserine, phenylalanine, serine and/or tyrosine further amino acids or the respective precursors or catabolic products. [0088.0.13.13] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani 30 mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 939 b) increasing the activity of a protein as shown in table 1l, application no. 14, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the respective fine chemical as indicated in any one of Tables I to IV, application no. 14, column 6 5 "metabolite" in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more pref erably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the 10 plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the respective fine chemical in the organism, preferably the microorganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the resepctive free and/or bound the fine chemical as indicated in any one of Tables I to IV, application no. 14, column 15 6 "metabolite" and, optionally further free and/or bound amino acids, , synthesized by the organism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.13.13] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in 20 such a way that it is not only possible to recover, if desired isolate the free or bound fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound amino acids for example in form of proteins. Such an concomitant increase of protein bound amino acids after enhancing the biosynthesis of an amino acid has previously been described . For example, Galili et al., Transgenic 25 Res., 200, 9, 2, 137-144 reported that the heterologous expression of a bacterial gene for the amino acid biosynthesis confers the increase of free as well as of protein-bound amino acids. [0090.0.0.13] to [0097.0.0.13] for the disclosure of the paragraphs [0090.0.0.13] to [0097.0.0.13] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. 30 [0098.0.13.13] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 940 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 14, columns 5 and 7 or a derivative thereof, or 5 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 14, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 10 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 15 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.13.13] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic 20 plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 14, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, 25 application no. 14, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 14, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences 30 mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.13] for the disclosure of this paragraph [0100.0.0.13] see paragraph [0100.0.0.0] above.
941 [0101.0.13.13] In an advantageous embodiment of the invention, the organism takes the form of a plant whose amino acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for animals is limited by a 5 few amino acids. [0102.0.0.13] to [0110.0.0.13] for the disclosure of the paragraphs [0102.0.0.13] to [0110.0.0.13] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.12.13] In a preferred embodiment, the respective fine chemical as indicated in any one of Tables I to IV, application no. 14, column 6 "metabolite" (5-oxoproline, 10 alanine, aspartic acid, citrulline, glycine, homoserine, phenylalanine, serine and/or tyro sine ) is produced in accordance with the invention and, if desired, is isolated. The pro duction of further amino acidsor mixtures thereof or mixtures with other compounds by the process according to the invention is advantageous. Thus, the content of plant components and preferably also further impurities is as low 15 as possible, and the abovementioned amino acids are obtained in as pure form as possible. In these applications, the content of plant components advantageously amounts to less than 10%, preferably 1%, more preferably 0.1%, very especially pref erably 0.01% or less. [0112.0.13.13] to [0115.0.13.13] for the disclosure of the paragraphs [0112.0.0.13] to 20 [0115.0.0.13] see paragraphs [0112.0.0.0] to [0115.0.0.0] above. [0116.0.13.13]In a preferred embodiment, the present invention relates to a process for the production of the respective fine chemical as indicated for application no. 14 in any one of Tables I to IV, column 6 "metabolite", comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, 25 the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 14, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the respective fine chemical in 30 an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 14, columns 5 and 7; 942 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 5 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) 10 under under stringent hybridisation conditions and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 15 preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the respective fine chemical in an 20 organism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 14, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part 25 thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the respective fine chemical in an 30 organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 14, column 7 and conferring an in- 943 crease in the amount of the respective fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule encod ing the amino acid sequence of a polypeptide encoding a domain of the polypep 5 tide shown in table II, application no. 14, columns 5 and 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 10 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.13.13] In one embodiment, the nucleic acid molecule used in the process of 15 the invention distinguishes over the sequence indicated in table I A, application no. 14, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 14, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 20 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 14, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 14, columns 5 and 7. [0116.2.13.13] In one embodiment, the nucleic acid molecule used in the process of 25 the invention distinguishes over the sequence indicated in table I B, application no. 14, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 14, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 30 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 14, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 14, columns 5 and 7.
944 [0117.0.13.13] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 14, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 14, columns 5 and 7. In one embodiment, the nucleic acid molecule of the 5 present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 14, columns 5 and 7. In another embodi ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 14, columns 5 and 7. [0118.0.0.13] to [0120.0.0.13] for the disclosure of the paragraphs [0118.0.0.13] to 10 [0120.0.0.13] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.12.13] The expression of nucleic acid molecules with the sequence shown in table I, application no. 14, columns 5 and 7, or nucleic acid molecules which are de rived from the amino acid sequences shown in table II, application no. 14, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, 15 application no. 14, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 14, column 3, and conferring an increase of the respective fine chemical (column 6 of application no. 14 in any one of Tables I to IV) after increasing its plastidic expression and/or specific activity in the plastids is advantageously increased in the process ac 20 cording to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.13] for the disclosure of this paragraph see paragraph [0 122.0.0.0] above. [0123.0.13.13] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as 25 shown in table II, application no. 14, column 3 can be determined from generally ac cessible databases. [0124.0.0.13] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.13.13] The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with 30 the activity of the proteins as shown in table II, application no. 14, column 3 and which confer an increase in the level of the respective fine chemical indicated in table II, ap plication no. 14, column 6 by being expressed either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product 945 being localized in the plastid and other parts of the cell or in the plastid as described above. [0126.0.0.13] to [0133.0.0.13] for the disclosure of the paragraphs [0126.0.0.13] to [0133.0.0.13] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. 5 [0133.1.13.13] Production strains which are also advantageously selected in the process according to the invention are microorganisms selected from the group of green algae, like Spongioccoccum exentricum, Chlorella sorokiniana (pyrenoidosa, 7 11-05), or algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or Dunaliella or form the group of fungi like fungi belonging to the Daccrymycetaceae fam 10 ily, or non-photosynthetic bacteria, like methylotrophs, flavobacteria, actinomycetes, like streptomyces chrestomyceticus, Mycobacteria like Mycobacterim phlei, Rhodobac ter capsulatus, or Brevibacterium linens, Dunaliella spp., Phaffia rhodozyma, Phyco myces sp., Rhodotorula spp.. Thus, the invention also contemplates embodiments in which a host lacks sterols or sterols precursors, such as the vinca. In a plant of the 15 latter type, the inserted DNA includes genes that code for proteins producing sterols precursors (compounds that can be converted biologically into a compound with sterols activity) and one or more modifiying enzymes which were originally absent in such a plant. The invention also contemplates embodiments in which the amino acids of the inven 20 tion or amino acids of the invention precursor compounds in the production of the re spective fine chemical, are present in a photosynthetic active organisms chosen as the host; for example, cyanobacteria, moses, algae or plants which, even as a wild type, are capable of producing the amino acids of the invention. [0134.0.13.13] However, it is also possible to use artificial sequences, which differ in 25 one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table 1l, application no. 14, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring an increase of the respective fine chemical 30 after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table 1l, application no. 14, column 3 by - for example - expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above.
946 [0135.0.0.13] to [0140.0.0.13] for the disclosure of the paragraphs [0135.0.0.13] to [0140.0.0.13] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.13.13] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 14, column 7, by means of polymerase chain reaction can be 5 generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 14, columns 5 and 7 or the sequences derived from table II, application no. 14, columns 5 and 7. [0142.0.13.13] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the 10 process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequences shown in table IV, application no. 14, column 7 are derived from said aligments. 15 [0143.0.13.13] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 14, column 3 or further functional homologs of the polypeptide of the invention from other organisms. 20 [0144.0.0.13] to [0151.0.0.13] for the disclosure of the paragraphs [0144.0.0.13] to [0151.0.0.13] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.13.13] Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no. 14, column 6,, and being derived from other organisms, can be encoded by other DNA sequences 25 which hybridize to the sequences shown in table I, application no. 14, columns 5 and 7, preferably of table I B, application no. 14, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the the respective fine chemical, i.e. amino acids of the invention increasing activity, when expressed in a way that the gene product, e.g. the polypeptide, being localized in the plastid and other 30 parts of the cell or in the plastid as described above. [0153.0.0.13] to [0159.0.0.13] For the disclosure of the paragraphs [0153.0.0.13] to [0159.0.0.13] see paragraphs [0153.0.0.0] to [0159.0.0.0] above.
947 [0160.0.13.13] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 14, 5 columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, 10 application no. 14, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U 15 or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.13.13] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more 20 preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a respective fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, 25 application no. 14, column 3 by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0162.0.13.13] The nucleic acid molecule of the invention comprises a nucleotide se 30 quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a 5-oxoproline, alanine, aspartic acid (aspartate), citrulline, glycine, homoserine, 35 phenylalanine, serine and/or tyrosineincrease by for example expression either in the 948 cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plas tids, and optionally, the activity of a protein as shown in table II, application no. 14, col umn 3, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. 5 [0163.0.13.13] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 1314 columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a 10 polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, application no. 14, column 6, if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and 15 other parts of the cell or in the plastid as described above. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically 20 comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 14, columns 5 and 7, an anti-sense sequence of one of the se quences, e.g., set forth in table I, application no. 14, columns 5 and 7, preferably 25 shown in table I B, application no. 14, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, 30 application no. 14, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.13] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.13.13] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 35 gous to the amino acid sequence shown in table II, application no. 14, columns 5 and 7 949 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular an activity increasing the level of 5-oxoproline, alanine, aspartic acid (aspartate), citrulline, glycine, homoserine, phenylalanine, serine and/or tyrosine,increasing the activity as mentioned above or as described in the ex 5 amples in plants or microorganisms is comprised. [0166.0.13.13] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the 10 polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 14, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.13.13] In one embodiment, the nucleic acid molecule of the present invention 15 comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 14, 20 columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. 25 [0168.0.0.13] and [0169.0.0.13] for the disclosure of the paragraphs [0168.0.0.13] and [0169.0.0.13] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.13.13] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 14, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly 30 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 14, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole cule of the invention comprises, or in an other embodiment has, a nucleotide sequence 950 encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 14, columns 5 and 7 or the functional homo logues. In a still further embodiment, the nucleic acid molecule of the invention en codes a full length protein which is substantially homologous to an amino acid se 5 quence shown in table II, application no. 14, columns 5 and 7 or the functional homo logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 14, columns 5 and 7, preferably as indicated in table I A, application no. 14, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or 10 identical to a nucleic acid molecule indicated in table I B, application no. 14, columns 5 and 7. [0171.0.0.13] to [0173.0.0.13] for the disclosure of the paragraphs [0171.0.0.13] to [0173.0.0.13] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.13.13] Accordingly, in another embodiment, a nucleic acid molecule of the 15 invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 14, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more 20 nucleotides in length. [0175.0.0.13] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.13.13] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 14, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used 25 herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the respective fine chemical increase after increas ing the expression or activity thereof or the activity of a protein of the invention or used 30 in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.13] for the disclosure of this paragraph see paragraph [0177.0.0.0] above.
951 [0178.0.13.13] For example, nucleotide substitutions leading to amino acid substitu tions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 14, columns 5 and 7. 5 [0179.0.0.13] and [0180.0.0.13] For the disclosure of the paragraphs [0179.0.0.13] and [0180.0.0.13] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.13.13] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression 10 either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids (as described), that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table II, application no. 14, columns 5 and 7, preferably shown in table II A, application no. 14, columns 5 and 7 yet retain 15 said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 14, columns 5 and 7, preferably shown in table II A, application no. 14, columns 5 and 7 and is capable of participation in the increase of production of the fine 20 chemical after increasing its activity, e.g. its expression by for example expression ei ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence 25 shown in table II, application no. 14, columns 5 and 7, preferably shown in table II A, application no. 14, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 14, columns 5 and 7, preferably shown in table II A, application no. 14, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 30 14, columns 5 and 7, preferably shown in table II A, application no. 13, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se quence shown in table II, application no. 14, columns 5 and 7, preferably shown in ta ble II A, application no. 14, columns 5 and 7. [0182.0.0.13] to [0188.0.0.13] for the disclosure of the paragraphs [0182.0.0.13] to 35 [0188.0.0.13] see paragraphs [0182.0.0.0] to [0188.0.0.0] above.
952 [0189.0.13.13] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 14, columns 5 and 7, preferably shown in table II B, applica tion no. 14, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 5 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 10 polypeptide as shown in table II, application no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7. [0190.0.13.13] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7 resp., according to the invention by substitution, 15 insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7 20 resp., according to the invention and encode polypeptides having essentially the same properties as the polypeptide as shown in table II, application no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7. [0191.0.0.13] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.13.13] A nucleic acid molecule encoding an homologous to a protein se 25 quence of table II, application no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu cleic acid molecule of the present invention, in particular of table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7 30 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis.
953 [0193.0.0.13] to [0196.0.0.13] for the disclosure of the paragraphs [0193.0.0.13] to [0196.0.0.13] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.13.13] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, 5 application no. 14, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 10 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 14, columns 5 and 7, preferably shown in table I B, applica tion no. 14, columns 5 and 7, or from the derived nucleic acid sequences, the intention 15 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.13.13] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 14, columns 5 and 7, preferably shown in 20 table I B, application no. 14, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em 25 bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 14, columns 5 and 7, preferably shown in table I B, application no. 14, columns 5 and 7. [0199.0.13.13] Also preferred is that the nucleic acid molecule used in the process of 30 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. 35 In one embodiment used in the inventive process, the encoded polypeptide is identical 954 to the sequences shown in table II, application no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7. [0200.0.13.13] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, appli 5 cation no. 14, columns 5 and 7, preferably shown in table II B, application no. 14, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 14, columns 5 and 7, preferably 10 shown in table I B, application no. 14, columns 5 and 7. [0201.0.12.13] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the respective fine chemical indicated in column 6 of Table I, application no. 14, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by 15 preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advanta geously, the activity is essentially not reduced in comparison with the activity of a poly peptide shown in table II, application no. 14, columns 5 and 7 expressed under identi cal conditions. 20 [0202.0.12.13] Homologues of table I, application no. 14, columns 5 and 7 or of the derived sequences of table II, application no. 14, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en 25 hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur 30 thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below.
955 [0203.0.0.13] to [0215.0.0.13] for the disclosure of the paragraphs [0203.0.0.13] to [0215.0.0.13] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.13.13] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting 5 of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 14, columns 5 and 7, preferably in table II B, application no. 14, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical according to table II B, application no. 10 14, column 6 in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 14, columns 5 and 7, pref erably in table I B, application no. 14, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, 15 application no. 14, column 6 in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 14, column 6 in an organism or a 20 part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 14, column 6 in an organism or a 25 part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical according to table II B, application no. 14, column 6 in an organism or a part thereof; 30 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 956 preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 14, column 6 in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 5 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 14, column 6 in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, ap 10 plication no. 14, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 14, column 6 in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 15 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 14, column 7 and conferring an in 20 crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 14, columns 5 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 14, column 6 in an organism or a part thereof; and 25 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 30 1, application no. 14, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 14, columns 5 and 7, and conferring an increase in the amount of the fine 957 chemical according to table II B, application no. 14, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 14, columns 5 and 7 by 5 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 14, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 14, 10 columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypeptide sequence shown in table II A and/or II B, application no. 14, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present inven tion encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 14, 15 columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 14, columns 5 and 7. In a fur ther embodiment, the protein of the present invention is at least 30 % identical to pro 20 tein sequence depicted in table II A and/or II B, application no. 14, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7. [0217.0.0.13] to [0226.0.0.13] For the disclosure of the paragraphs [0217.0.0.13] to 25 [0226.0.0.13] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.13.13] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 30 systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac 35 cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 958 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep 5 tides shown in table II, application no. 14, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.13] to [0239.0.0.13] For the disclosure of the paragraphs [0228.0.0.13] to 10 [0239.0.0.13] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.13.13] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously 15 into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 14, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms.It can be especially advantageously, if additionally at least one further gene of the amino acid of the invention biosynthetic pathway, is expressed in the or 20 ganisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organ isms. This leads to an increased synthesis of the amino acids desired since, for exam ple, feedback regulations no longer exist to the same extent or not at all. In addition it 25 might be advantageously to combine the sequences shown in Table I, application no. 14, columns 5 and 7 with genes which generally support or enhances the growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. 30 [0240.1.13.13] In addition, it might be also advantageously to combine one or more of the sequences indicated in Table I, columns 5 or 7, application no. 14, with genes which modify plant architecture or flower development, in the way, that the plant either produces more flowers, or produces flowers with more petals in order to increase the respective fine chemical production capacity.
959 [0241.0.0.13] to [0264.0.0.13] For the disclosure of the paragraphs [0241.0.0.13] to [0264.0.0.13] see paragraphs [0241.0.0.0] to [0264.0.0.0] above. [0265.0.12.13] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 5 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 10 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 15 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 14, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.13] to [0287.0.0.13] For the disclosure of the paragraphs [0266.0.0.13] to 20 [0287.0.0.13] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.13.13] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to 25 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 14, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 14, columns 5 and 7 or their homologs is functionally linked to a 30 regulatory sequences which permit the expression in plastids. [0289.0.0.13] to [0296.0.0.13] For the disclosure of the paragraphs [0289.0.0.13] to [0296.0.0.13] see paragraphs [0289.0.0.0] to [0296.0.0.0] above.
960 [0297.0.13.13] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo thelial cells), for example using the antibody of the present invention as described herein, in particular, an antibody against polypeptides as shown in table II, application 5 no. 14, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. [0298.0.0.13] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.13.13] In one embodiment, the present invention relates to a polypeptide hav 10 ing the sequence shown in table II, application no. 14, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 14, columns 5 and 7 or func tional homologues thereof. [0300.0.13.13] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus 15 sequence shown in table IV, application no. 14, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 14, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino 20 acids positions indicated can be replaced by any amino acid. [0301.0.0.13] to [0304.0.0.13] For the disclosure of the paragraphs [0301.0.0.13] to [0304.0.0.13] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.13.13] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor 25 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7 by more than 5, 6, 7, 8 or 9 30 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7 by not more than 80% or 70% of the amino 961 acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7. 5 [0306.0.0.13] For the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.13.13] In one embodiment, the invention relates to polypeptide conferring an increase of level of the respective fine chemical indicated in Table II A and/or II B, ap plication no. 14, column 6 in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se 10 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 14, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 14, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden 15 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 14, columns 5 and 7. [0308.0.13.13] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 14, col 20 umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 14, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre 25 ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into 30 the organelle, for example into the plastid or mitochondria. [0309.0.0.13] to [0311.0.0.13] For the disclosure of the paragraphs [0309.0.0.13] to [0311.0.0.13] see paragraphs [0309.0.0.0] to [0311.0.0.0] above.
962 [0312.0.13.13] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 14, columns 5 and 7. 5 [0313.0.13.13] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 10 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 14, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 15 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 14, columns 5 and 7 or which is homologous thereto, as defined above. 20 [0314.0.13.13] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 14, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 25 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 14, columns 5 and 7. [0315.0.0.13] For the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.13.13] Biologically active portions of an polypeptide of the present invention 30 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 14, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 963 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 5 [0317.0.0.13] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.13.13] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 14, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 14, column 3, pref 10 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 14, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 15 [0319.0.13.13] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven 20 tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 14, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im proved. 25 [0319.1.12.13] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. amino acid of the invention, e.g. 5-oxoproline, alanine, aspartic acid (aspartate), citrulline, glycine, homoserine, phenylalanine, serine and/or tyrosine or a recovered or isolated amino acid of the invention in free or in protein- or mem brane-bound form. 30 [0320.0.0.13] to [0322.0.0.13] For the disclosure of the paragraphs [0320.0.0.13] to [0322.0.0.13] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.13.13] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 14, column 3 refers to a polypeptide having an amino acid sequence cor- 964 responding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub 5 stantially homologous to a polypeptide or protein as shown in table II, application no. 14, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.13] to [0329.0.0.13] For the disclosure of the paragraphs [0324.0.0.13] to [0329.0.0.13] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 10 [0330.0.13.13] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 14, columns 5 and 7. [0331.0.0.13] to [0346.0.0.13] For the disclosure of the paragraphs [0331.0.0.13] to [0346.0.0.13] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 15 [0347.0.13.13] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the respective fine chemical indicated in column 6 of application no. 14 in any one of Tal bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the 20 invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 14, column 3. Due to the above mentioned activity the respective fine chemical content in a cell or an organism is increased. For example, due to modulation or manupulation, the cellular activity is increased preferably in or 25 ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipulation of the genome, the activity of protein as shown in table II, 30 application no. 14, column 3 or a protein as shown in table II, application no. 14, col umn 3-like activity is increased in the cell or organism or part thereof especially in or ganelles such as plastids or mitochondria. Examples are described above in context with the process of the invention.
965 [0348.0.0.13] For the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.13.13] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 5 II, application no. 14, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.13] to [0369.0.0.13] for the disclosure of the paragraphs 10 [0350.0.0.13] to [0369.0.0.13] see paragraphs [0350.0.0.0] to [0369.0.0.0] above. [0370.0.13.13] The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; applica tion no. 14 or containig mixtures with other compounds, in particular with other amino acids, vitamins or fatty acids or containing microorganisms or parts of microorganisms, 15 like plastids, , normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be separated, such as, for example, by centrifugation, filtration, decantation, co agulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can be thickened or concentrated by 20 known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This con centrated fermentation broth can then be worked up by extraction, freeze-drying, spray drying, spray granulation or by other processes. [0371.0.0.13] to [0376.0.0.13], [0376.1.0.13] and [0377.0.0.13] for the disclosure of 25 the paragraphs [0371.0.0.13] to [0376.0.0.13], [0376.1.0.13] and [0377.0.0.13] see paragraphs [0371.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.13.13]ln one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: 30 (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the respective 966 fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 5 the nucleic acid molecule sequence shown in table 1, application no. 14, columns 5 and 7, preferably in table I B, application no. 14, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the respective fine chemical; 10 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the respective fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical as indicated for application no. 14 in any one of Tables I to IV level in the host cell after expression compared to 15 the wild type. [0379.0.0.13] to [0383.0.0.13] for the disclosure of the paragraphs [0379.0.0.13] to [0383.0.0.13] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.13.13] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 20 microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 25 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 14, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 14, column 3. [0385.0.0.13] to [0416.0.0.13] for the disclosure of the paragraphs [0385.0.0.13] to 30 [0416.0.0.13] see paragraphs [0385.0.0.0] to [0416.0.0.0] above.
967 [0417.0.12.13]An in vivo mutagenesis of organisms such as algae (e.g. Spongiococ cum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedacty lum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which 5 are beneficial for the production of amino acids of the invention can be carried out by passing a plasmid DNA (or another vector DNA) containing the desired nucleic acid sequence or nucleic acid sequences, e.g. the nucleic acid molecule of the invention or the vector of the invention, through E. coli and other microorganisms (for example Ba cillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of 10 maintaining the integrity of its genetic information. Usual mutator strains have muta tions in the genes for the DNA repair system [for example mutHLS, mutD, mutT and the like; for comparison, see Rupp, W.D. (1996) DNA repair mechanisms in Es cherichia coli and Salmonella, pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. 15 and Callahan, M. (1994) Strategies 7; 32-34. In-vitro mutation methods such as increasing the spontaneous mutation rates by chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran 20 dom in-vitro mutagensis. The most common physical method for mutagensis is the treatment with UV irradiation. Another random mutagenesis technique is the error prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized 25 DNA sequences are cloned into expression vectors and the resulting mutant libraries screened for altered or improved protein activity as described below. Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic 30 acid sequence of the invention into an M13 or phagemid vector, which permits recovery of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather 35 than the original. The mutagenic oligonucleotide is then allowed to prime new DNA synthesis to create a complementary full-length sequence containing the desired muta tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis 968 method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known and used in common practice. 5 Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical. [0418.0.0.13] to [0435.0.0.13] for the disclosure of the paragraphs [0418.0.0.13] to [0435.0.0.13] see paragraphs [0418.0.0.0] to [0435.0.0.0] above. [0436.0.13.13] Production of amino acid of the invention, preferably 5 10 oxoproline, alanine, aspartic acid (aspartate), citrulline, glycine, homoserine, phenylalanine, serine and/or tyrosine The production of the amino acid of the invention can be analysed as mentioned above. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.13] 15 to [0497.0.0.13] for the disclosure of the paragraphs [0437.0.0.13] to [0497.0.0.13] see paragraphs [0437.0.0.0] to [0497.0.0.0] above. [0498.0.12.13] The results of the different plant analyses can be seen from the table, which follows: Table VI 20 ORF Metabolite Method/Analytics Min.-Value Max.-Value b0342 Alanine GC 1.20 1.43 b0403 Phenylalanine LC 1.31 1.59 b0628 Homoserine GC 1.34 1.47 b0754 Phenylalanine GC 1.28 2.22 b0760 Tyrosine GC 1.22 1.37 b1062 Alanine GC 1.26 1.61 b1062 Citrulline LC 1.39 1.90 b1062 Glycine GC 1.51 1.96 b1062 Homoserine GC 1.26 2.11 b1062 Serine GC 1.23 1.48 b1136 Citrulline LC 1.32 1.60 b1136 Phenylalanine GC 1.35 2.47 b1223 Glycine GC 1.58 2.22 b1223 Phenylalanine LC 1.31 2.42 b1264 Alanine GC 1.21 1.55 969 ORF Metabolite Method/Analytics Min.-Value Max.-Value b1264 Citrulline LC 1.38 1.63 b1264 Glycine GC 1.37 1.73 b1264 Homoserine GC 1.25 1.44 b1264 Serine GC 1.35 1.96 b1556 Aspartate GC 1.58 2.97 b1611 Serine GC 1.24 1.41 b1640 5-Oxoproline GC 1.24 1.33 b1640 Aspartate GC 1.46 1.60 b1704 Phenylalanine GC 1.43 387.55 b1704 Tyrosine GC 11.14 104.59 b1758 Aspartate GC 1.51 2.09 b1758 Citrulline LC 1.40 1.96 b1758 Serine GC 1.24 1.47 b2066 Aspartate GC 1.48 2.33 b2223 Tyrosine LC 1.39 1.77 b2312 Aspartate GC 1.52 2.14 b2366 Citrulline LC 1.32 1.66 b2366 Glycine GC 1.43 1.98 b2600 Tyrosine GC 2.59 4.78 b2601 Phenylalanine GC 2.52 21.64 b2601 Tyrosine GC 2.32 16.67 b2818 Citrulline LC 2.81 4.28 b2965 Alanine GC 1.21 1.72 b2965 Glycine GC 1.52 2.98 b2965 Phenylalanine LC 1.31 3.04 b2965 Serine GC 1.33 2.93 b3117 Citrulline LC 1.43 2.66 b3213 Citrulline LC 1.32 1.56 b3390 Phenylalanine LC 3.41 3.41 b3390 Tyrosine LC 2.89 2.89 b3429 Serine GC 1.25 1.70 b3616 Homoserine GC 1.26 2.01 b3616 Serine GC 1.23 1.87 b4053 Alanine GC 1.35 2.29 b4139 Citrulline LC 2.45 6.22 b4139 Serine GC 2.30 5.78 YAL038W Alanine GC 1.27 2.70 YAL038W Phenylalanine GC 1.25 1.51 YBL082C Tyrosine GC 1.30 1.61 YDR035W Phenylalanine GC 1.40 23.44 YDR035W Tyrosine LC 1.43 6.09 YDR430C Phenylalanine GC 1.38 2.31 YDR497C Tyrosine GC 1.38 1.46 YELO46C Homoserine GC 1.26 2.17 YKR043C Phenylalanine GC 1.35 4.40 YKR043C Serine GC 1.26 1.60 YLR1 74W Tyrosine GC 1.20 1.25 YNL241C Alanine GC 1.66 2.15 YNL241C Tyrosine GC 1.29 1.35 970 ORF Metabolite Method/Analytics Min.-Value Max.-Value YNR012W Aspartate GC 1.48 1.73 YOR353C Phenylalanine GC 1.41 2.06 [0499.0.0.13] to [0554.0.0.13] for the disclosure of the paragraphs [0499.0.0.13] to [0554.0.0.13] see paragraphs [0551.0.0.1] to [0554.0.0.1] above. [0554.1.12.13]Example 16: Metabolite Profiling Info from Zea mays 5 Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII as minimal (MIN) or maximal changes (MAX) in the respective fine chemical (column "metabolite") in genetically modified corn plants ex 10 pressing thesequence listed in column 1 (ORF).: Table VII ORF Metabolite MIN MAX b0754 Phenylalanine 1.55 3.25 b1704 Phenylalanine 3.07 18.75 b1704 Tyrosine 1.83 5.36 b2066 Aspartic acid 1.56 1.78 b2601 Phenylalanine 1.47 10.95 b2601 Tyrosine 1.75 7.71 b2818 Citrulline 1.96 2.36 b4053 Alanine 1.58 2.69 b4139 Citrulline 1.61 2.92 b4139 Serine 1.45 1.67 YALO38W Alanine 1.96 6.28 YALO38W Phenylalanine 1.61 5.39 YBL082C Tyrosine 1.40 4.08 YDR035W Tyrosine 1.63 6.29 YDR035W Phenylalanine 7.07 20.09 YDR497C Tyrosine 1.52 1.64 YKR043C Serine 1.23 16.90 YKR043C Phenylalanine 4.47 9.96 YNL241C Tyrosine 1.37 2.27 YNRO12W Aspartic acid 2.03 6.97 In one embodiment, in case the activity of the the protein listed in column 1 of Table VII or its homologs, is increased in corn plants, preferably, an increase of the respective 15 fine chemical as indicated in column 2 (Metabolite) is in the range between the minimal value shown in the line "MIN" and the maximal value shown in the line "MAXis con ferred.
971 [0554.2.0.13] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.13] for the disclosure of this paragraph see [0555.0.0.0] above.
972 [0001.0.0.14] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.14.14] for the disclosure of this paragraph see [0002.0.7.7] above. [0003.0.14.14] Oils and fats, which chemically are glycerol esters of fatty acids (triacylglycerols (TAGs)), play a major role in nutrition but more and more in nonfood 5 applications such as lubricants, hydraulic oil, biofuel, or oleochemicals for coatings, plasticizer, soaps, and detergents (W. Lohs and W. Friedt, in Designer Oil Crops, D. J. Murphy, Ed. (VCH, Weinheirn, Germany, 1993)). The ideal oil for industrial application would consist of a particular type of fatty acid that could be supplied constantly at a competitively low price as compared with raw materials based on mineral oil products. 10 Furthermore, such a fatty acid may have a reactive group in addition to the carboxyl function to provide an additional target for chemical modifications (Tbpfer et al., Science, Vol. 268, 681-686, 1995). [0004.0.14.14] for the disclosure of the paragraph [0004.0.7.14] see paragraph [0004.0.7.7] above. 15 [0005.0.14.14] Further sources of fatty acids are membrane lipids of organisms. Preferably lipids are phopholipids and/or glycolipids, more preferably glycerophospholipids, galactolipids and/or sphingolipids. [0006.0.14.14] Margaric acid was first mentioned in the early 1800s. 1813 M. E. Chevreul discovered that fats are composed of fatty acids and named one of these 20 "margaric acid" because it glistened with lustrous pearly drops that reminded him of the Greek word for pearl, margaron or margarites. In the middle of the 1800s W. H. Heintz showed that "margaric acid" discovered by Chevreul was an indefinite mixture of palmitic and stearic acids. Today, the term "margaric acid" is the trivial name for heptadecanoic acid (17:0), which 25 is naturally occurring in minor amounts. The fatty acid with odd number of carbon atoms is present in trace amounts in plants, in triglycerides from Brazil-nut oil, Dracocephalum moldavica oil, Poppy-seed, Palm, Almond, Sunflower or Soyabean. Margaric acid can be isolated from tallow (1%), specially from subcutaneous adipose tissue in subcutaneous fat from lambs. 30 Margaric acid can be ingredient of satiety agents or fungicide composition. It is further used as ingredient in cosmetics, pharmaceuticals and in feed and food, like baking adjuvants as disclosed in US 20030143312 or accordind to US 20040097392 as com ponent in surfactant systems.
973 The heptadecanoic acid is mainly used as an internal standard in quantification of fatty acids. It can be further useful in treatment of neurological diseases which may be caused by yeast, fungi or prions based on yeast or fungal etiology (US 6,652,866) or in antikeratolytic-wound healing compositions (US 5,641,814).Heptadecanoic acid was 5 produced up to now in higher amount primarily by organic synthesis. [0007.0.14.14] 2-Hydroxy fatty acids are synthesised in animal and plant tissues, and are often major constituents of the sphingolipids. Sphingolipids with 2-hydroxy fatty acid are found in most organisms including plants, yeast, worms, vertebrate animals, and some bacterial species. 10 In plants more than 95% of the fatty acid component of the ceramides and sphingolip ids is alpha-hydroxylated. The acyl groups of ceramides tend to consist of long-chain (C16 up to C26 but occasionally longer) odd- and even-numbered saturated or monoe noic fatty acids and related 2-D-hydroxy fatty acids, both in plant and animal tissues. Typical plant sphingolipids are made up by the long-chain sphingosine backbone which 15 is glycosylated and amide-linked to an usually hydroxylated (very-)-long-chain fatty acid, called cerebroside. Cerebrosides are essential constituents of the plasma mem brane involved in various physiological functions including signaling, exocytosis, an choring of proteins, and vesicular protein transport (Matthes et al., Z. Naturforsch. 57C, 843-852, 2002). 20 In mammals, 2-hydroxysphingolipids are present abundantly in brain because the ma jor myelin lipids galactosylceramides and sulfatides contain 2-hydroxy fatty acids. In mammals, 2-hydroxy fatty acid-containing sphingolipids are uniquely abundant in nerv ous and epidermal tissues. In mammalian central and peripheral nervous systems, galactosylceramides and sulfatides (3-sulfate ester of galactosylceramide) are major 25 lipid components of myelin. These glycosphingolipids contain a high proportion ( about 50%) of 2-hydroxy fatty acid and are critical components of myelin (4, 5). In the yeast Saccharomyces cerevisiae most sphingolipids contain 2-hydroxy fatty acid. COS7 cells expressing human FA2H contained 3-20-fold higher levels of 2 hydroxyceramides (C16, C18, C24, and C24:1) and 2-hydroxy fatty acids compared 30 with control cells (Alderson et al., J. Biol. Chem. Vol. 279, No. 47, 48562-48568, 2004). The 2-hydroxylation occurs during de novo ceramide synthesis and is catalyzed by fatty acid 2-hydroxylase (also known as fatty acid alpha-hydroxylase). No free hydroxy fatty acid or hydroxy fatty acid CoA has ever been reported; the hydroxylated product 35 always appeared as a component of ceramide or cerebroside (Hoshi et al., J. Biol. Chem. 248, 4123-4130, 1973). The alpha-hydroxylation involves the direct hydroxyla- 974 tion of a sphingolipid-bound fatty acid. ( Kayal et al., J. Biol. Chem. Vol. 259, No. 6, 3548-3553, 1984). Hydroxylated fatty acids initiate inflammation in the soft tissues and regulate the im mune response. 5 The 2-hydroxyl group in sphingolipids has a profound effect in the lipid organization within membranes because of its hydrogenbonding capability. Alpha-hydroxy-palmitic acid (hC 16:0) is mainly a building block of plant sphingolipids, for example soy glucosylceramide (GIcCer), which consists predominantly of a 4,8 sphingadiene backbone and alpha-hydroxy-palmitic acid. Soy GIcCer suppress tumori 10 genesis and gene expression in mice (Symolon et al., J. Nutr. 2004 May;134(5):1157 61). A monoglucosecerebroside (pinelloside) with strong antimicrobial properties (against Gram-positive and -negative bacteria and against fungi) was described in the tuber of Pinella ternata (Araceae), one component of decoctions used in traditional Chinese 15 medicine (Chen et al., Phytochemistry 2003, 64, 903). Its structure was shown to in clude a glucose moiety and the unusual 4,1 1-sphingadienine linked to a 2-hydroxy palmitic acid. Another hydroxylated fatty acid being a building block of cerrebrosides is the 2 hydroxy-nervonic acid (2-OH-C24:1). 2-hydroxy-15-tetracosenoic acid (hydroxyner 20 vonic acid) is constituent of the ceramide part of cerebrosides (glycosphingolipides found mainly in nervous tissue and in little amount in plants). The occurrence of 2 hydroxy nervonic acid is characteristic for the leaf cerebrosides of some chilling resistant cereals (Sperling et al., BBA 1632, 1-15, 2003). The hydroxylated fatty acid may be used in a method for producing fats or oils accord 25 ing to US 20030054509 or in lanolin-free cosmetic composition according to US 20040166130. [0008.0. 14.14] Monounsaturated fatty acids most frequently occur in higher concen trations in plant foods such as olive oil, most nuts, and avocados. When contrasted to saturated fatty acids, dietary monounsaturated fatty acids are healthful because they 30 lower blood cholesterol concentrations, specially they help lower LDL-cholesterol when they are substituted for foods high in saturated fat.. Oleic acid, a nonessential fatty acid with one double bond is the most common dietary monounsaturated, it is the major fatty acid in olive oil and canola oil.
975 There is evidence that oleic acid, found in the olive oil or carp oil, may have a important role in treating cancer, due to its antitumor and antimetastatic effects (Annals of Oncol ogy. 2005 and Kimura et al., J. Nutr. 132:2069-2075, 2002). Oleic acid is also used to reduce the population of the bacterial flora of poultry skin as 5 reported by Hinton et al., J Food Prot. 2000 Sep;63(9):1282-6. His findings indicate that oleic acid reduces the number of bacteria on the skin of processed broilers and that the fatty acid is bactericidal to several spoilage and pathogenic bacteria associated with poultry. Oleic acid may be also used in making soap and cosmetics and ointments and lubricat 10 ing oils or electrical insulation fluids (US Patent 6645404). Futther monounsaturated fatty acids are prevalent in most diets because of the wide spread use of hydrogenated oils by manufacturers of margarine, bakery products, and peanut butters. One of them is headecenoic acid. Specially the 9-hexadecenoic acid is to be found in the two isoforms cis and trans, also known as palmitoleic and palmite 15 laidic acid respectively. Okuyama et al. report high level of a 9-trans-hexadecenoic acid (C 16:1 9t) found in the phospholipids of a psychrophilic bacterium, Vibrio sp. strain ABE-1 cultivated at 20'C (Journal of Bacteriology 172(6) 3515-3518). The same author further reports the the cis/trans isomerization of the double bond the fatty acid (Biochim Biophys Acta. 1991 Jun 19;1084(1):13-20). The isomerase which catalyzes the cis 20 trans conversion of the abundant unsaturated membrane fatty acids 9-cis hexadecenoic acid in Pseudomonas oleovorans was identified by Pedrotta et al. (J Bacteriol. 1999 May; 181(10): 3256-3261).A [0009.0.14.14] Whether oils with unsaturated or with saturated fatty acids are pre ferred depends on the intended purpose; thus, for example, lipids with unsaturated fatty 25 acids, specifically polyunsaturated fatty acids, are preferred in human nutrition since they have a positive effect on the cholesterol level in the blood and thus on the possibil ity of heart disease. They are used in a variety of dietetic foodstuffs or medicaments. In addition PUFAs are commonly used in food, feed and in the cosmetic industry. Poly unsaturated w-3- and/or w-6-fatty acids are an important part of animal feed and hu 30 man food. Because of the common composition of human food polyunsaturated w-3 fatty acids, which are an essential component of fish oil, should be added to the food to increase the nutritional value of the food; thus, for example, polyunsaturated fatty acids such as DHA or EPA are added as mentioned above to infant formula to increase its nutritional value. The true essential fatty acids linoleic and linolenic fatty acid have a lot 35 of positive effects in the human body such as a positive effect on healthy heart, arteries 976 and skin. They bring for example relieve from eczema, diabetic neuropathy or PMS and cyclical breast pain. [0010.0.14.14] Further poly unsaturated w-3- and/or w-6-fatty acids important part of animal feed and human food are delta 7, 10 hexadecadienic acid (16:2(n-6)) and delta 5 7, 10, 13 hexadecatrienic acid (16:3(n-3)). Hexadecadienic acid is a minor component of some seed and fish oils, and of plant leaves but the precursor of hexadecatrienic acid 16:3(n-3), which is a common constituent of leaf lipids. This acid is known to occur in photosynthetic leaves, such as for example Arabidopsis thaliana, rape leaves, fern lipid, ginko leaves, potato leaves, 10 tomato leaves and spinach. It may also occur in the leaves of Brassicaceae plants, such as horse radish, cabbage, turnip, Chinese mustard, cauliflower and watercress. In higher plants, the galactolipids contain a high proportion of polyunsaturated fatty acids, up to 95% of which can be linolenic acid (1 8:3(n-3)). In this instance, the most abundant molecular species of mono- and digalactosyldiacylglycerols must have 18:3 15 at both sn-I and sn-2 positions of the glycerol backbone. Plants such as the pea, which have 18:3 as almost the only fatty acid in the monogalactosyldiacylglycerols, have been termed "18:3 plants". Other species, and Arabidopsis thaliana is an example, contain appreciable amounts of hexadecatrienoic acid (16:3(n-3)) in the monogalactosyldiacylglycerols, and they are termed "16:3 plants". 20 As mentioned, polyunsaturated fatty acid are further used in the cosmetic industry. The application US 20030039672 discloses a cosmetic method for treating aged, sensitive, dry, flaky, wrinkled and/or photodamaged skin through topical application of a composition which comprises an unsaturated C16 fatty acid having at least three double bonds, which may be preferably hexadecatrienoic acid. 25 [0011.0.14.14] for the disclosure of this paragraph see [0009.0.7.7] above. [0011.1.14.14] for the disclosure of this paragraph see [0010.0.7.7] above. [0011.2.14.14] for the disclosure of this paragraph see [0011.0.7.7] above. [0012.0.14.14] for the disclosure of this paragraph see [0012.0.7.7] above. [0013.0.0.14] for the disclosure of this paragraph see [0013.0.0.0] above. 30 [0014.0.14.14] Accordingly, in a first embodiment, in context of paragraphs [0001.n.n.14] to [0555.n.n.14] the invention relates to a process for the production of a 977 fine chemical, whereby the fine chemical is hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid ((E)-9-Hexadecenoic acid; palmitelaidic acid; trans-9-hexadecenoic acid; trans-palmitoleic acid, CAS Registry No.:10030-73-6) and/or 5 2-hydroxy palmitic acid (2-OH-C16:0, alfa-hydroxy palmitic acid, C16:0 OH) and/or heptadecanoic acid (C17:0, margaric acid) and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid (hydroxyner vonic acid, alfa-hydroxy-tetracosenoic-acid, C24:1 (n-9) OH, 2-hydroxy-cis 9 tetracosenoic-acid, delta 9 hydroxy-tetracosenoic-acid) and/or 10 hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid (9-Octadecenoic acid, (Z)-; oleic acid) and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid (C16:3 (n-3), 15 cis 7- cis 10- cis 13-hexadecatrienoic acid, hiragonic acid) or tryglycerides, lipids, oils or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid ((E)-9-Hexadecenoic acid; palmitelaidic acid; trans-9-hexadecenoic acid; trans-palmitoleic acid, CAS Registry No.:10030-73-6) and/or 20 2-hydroxy palmitic acid (2-OH-C16:0, alfa-hydroxy palmitic acid, C16:0 OH) and/or heptadecanoic acid (C17:0, margaric acid) and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid (hydroxyner vonic acid, alfa-hydroxy-tetracosenoic-acid, C24:1 (n-9) OH, 2-hydroxy-cis 9 tetracosenoic-acid, delta 9 hydroxy-tetracosenoic-acid) and/or 25 hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid (9-Octadecenoic acid, (Z)-; oleic acid) and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid (C16:3 (n-3), 30 cis 7- cis 10- cis 13-hexadecatrienoic acid, hiragonic acid). Accordingly, in the present invention of paragraphs [0001.n.n.14] to [0555.n.n.14], the term "the fine chemical" as used herein relates to "hexadecenoic acid", preferably "9-hexadecenoic acid", more preferably "trans-9 hexadecenoic acid" and/or 35 "2-hydroxy palmitic acid" and/or 978 "heptadecanoic acid" and/or "2-hydroxy-tetracosenoic-acid", preferably "2-hydroxy-1 5-tetracosenoic acid" and/or "hexadecadienoic acid", preferably "delta 7, 10 hexadecadienoic acid" and/or "octadecenoic acid", preferably "9-Octadecenoic acid", more preferably "(Z)-9 5 octadecenoic acid" and/or "hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid" or "tryglycerides, lipids, oils or fats containing hexadecenoic acid, preferably 9 hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 10 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 15 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 20 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or 25 octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acidor tryglycerides, lipids, oils or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 30 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or 35 octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid.
979 [0015.0.14.14] In one embodiment, the term "the fine chemical" or "the respective fine chemical" means hexadecenoic acid, preferably 9-hexadecenoic acid, more pref erably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 5 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 10 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid or tryglycerides, lipids, oils or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 15 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 20 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid. Throughout the specification of paragraphs [0001.n.n.14] to [0555.n.n.14] the term "the fine chemical" of paragraphs [0001.n.n.14] to [0555.n.n.14] or "the respective fine chemical" of para graphs [0001.n.n.14] to [0555.n.n.14] means hexadecenoic acid, preferably 9 25 hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 30 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid or tryglycerides, lipids, oils or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more 35 preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 980 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 5 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, and the salts, ester, thioester of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 10 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 15 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid or hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 20 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 25 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acidin free form or bound to other compounds such as triglycerides, glycolipids, phospholipids etc. In a preferred embodiment, the term "the fine chemical" of paragraphs [0001.n.n.14] to [0555.n.n.14] means hexadecenoic acid, preferably 9-hexadecenoic acid, more pref 30 erably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 35 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or 981 hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, in free form or its salts or bound to triglycerides. Triglycerides, lipids, oils, fats or lipid mixture thereof shall mean any triglyceride, lipid, oil and/or fat containing any bound or free hexade cenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic 5 acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 10 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid for example sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phos 15 pholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, or as monoacyl glyceride, diacylglyceride or triacylglyceride or other fatty acid esters such as acetyl Coenzym A thioester, which contain further saturated or unsaturated fatty acids in the fatty acid molecule. 20 In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.14.14] Accordingly, the present invention relates to a process for the produc tion of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 25 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 30 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, which com prises 982 (a) increasing or generating the activity of a protein as shown in table II, application no. 15, column 3 encoded by the nucleic acid sequences as shown in table I, applica tion no. 15, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application 5 no. 15, column 3 encoded by the nucleic acid sequences as shown in table I, applica tion no. 15, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (b) growing the organism under conditions which permit the production of the fine chemical, thus, hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably 10 trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 15 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid or fine chemi cals comprising hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably 20 trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 25 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, in said organ ism or in the culture medium surrounding the organism. 30 [0016.1.14.14] Accordingly, the term "the fine chemical" means in one embodiment "hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid" in relation to all sequences listed in Table I to IV, lines 182 to 183 or homologs thereof; and means in one embodiment "2-hydroxy palmitic acid" in relation to all sequences 35 listed in Tables I to IV, lines 184 to 189 or homologs thereof; 983 and means in one embodiment "heptadecanoic acid" in relation to all sequences listed in Tables I to IV, line 190 or homologs thereof; and means in one embodiment "2-hydroxy-tetracosenoic-acid" in relation to all se quences listed in Table I, lines 191 to 202, or homologs thereof; 5 and means in one embodiment "hexadecadienoic acid" in relation to all sequences listed in Table I to IV, lines 203 to 206 or homologs thereof; and means in one embodiment "octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid" in relation to all sequences listed in Table I, lines 207, or homologs thereof; 10 and means in one embodiment "hexadecatrienoic acid, preferably delta 7, 10 ,13 hexa decatrienoic acid" in relation to all sequences listed in Table I to IV, lines 208 to 210 or homologs thereof. Accordingly, in one embodiment the term "the fine chemical" means "hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid" and 15 "2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid" in relation to all sequences listed in Table I to IV, lines 183 and 201. In one embodiment the term "the fine chemical" means "2-hydroxy palmitic acid" and "2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid" in relation to all sequences listed in Table I to IV, lines 185 and 194. In one embodiment the term "the fine chemical" means "2 20 hydroxy palmitic acid" and "oleic acid" in relation to all sequences listed in Table I to IV, lines 187 and 207. In one embodiment the term "the fine chemical" means any combi nation of two or all three fine chemicals selected from the group consisting of "2 hydroxy palmitic acid" and "hexadecadienoic acid, preferably delta 7, 10 hexadecadie noic acid" and/or "hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic 25 acid" in relation to all sequences listed in Table I to IV, lines 189, 204 and 209. In one embodiment the term "the fine chemical" means "hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid" and/or "hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid" in relation to all sequences listed in Table I to IV, lines 203 and 208. In one embodiment the term "the fine chemical" means "hexadecadienoic 30 acid, preferably delta 7, 10 hexadecadienoic acid" and/or "hexadecatrienoic acid, pref erably delta 7, 10 ,13 hexadecatrienoic acid" in relation to all sequences listed in Table I to IV, lines 206 and 210. Accordingly, the term "the fine chemical" can mean "hexadecenoic acid", preferably "9 hexadecenoic acid", more preferably "trans-9-hexadecenoic acid" and/or 35 "2-hydroxy palmitic acid" and/or "heptadecanoic acid" and/or "2-hydroxy-tetracosenoic-acid", preferably "2-hydroxy-1 5-tetracosenoic acid" and/or 984 "hexadecadienoic acid", preferably "delta 7, 10 hexadecadienoic acid" and/or "octadecenoic acid", preferably "9-Octadecenoic acid", more preferably "(Z)-9 octadecenoic acid" and/or "hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid", 5 owing to circumstances and the context. In order to illustrate that the meaning of the term "the fine chemical" means "hexadecenoic acid", preferably "9-hexadecenoic acid", more preferably "trans-9-hexadecenoic acid" and/or "2-hydroxy palmitic acid" and/or "heptadecanoic acid" and/or 10 "2-hydroxy-tetracosenoic-acid", preferably "2-hydroxy-1 5-tetracosenoic acid" and/or "hexadecadienoic acid", preferably "delta 7, 10 hexadecadienoic acid" and/or "octadecenoic acid", preferably "9-Octadecenoic acid", more preferably "(Z)-9 octadecenoic acid" and/or "hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid" the term "the 15 respective fine chemical" is also used. [0017.0.14.14] In another embodiment the present invention is related to a process for the production of hexadecenoic acid, preferably 9-hexadecenoic acid, more pref erably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 20 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 25 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, which com prises (a) increasing or generating the activity of a protein as shown in table 1l, application no. 15, column 3 encoded by the nucleic acid sequences as shown in table 1, ap 30 plication no. 15, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table 1l, application no. 15, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 15, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 985 (c) increasing or generating the activity of a protein as shown in table 1l, application no. 15, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 15, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more 5 parts thereof, and (d) growing the organism under conditions which permit the production of hexade cenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 10 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7- cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 15 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid in said or ganism. [0017.1.14.14] In another embodiment, the present invention relates to a process for the production of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably 20 trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7 25 cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, which com prises 30 (a) increasing or generating the activity of a protein as shown in table 1l, application no. 15, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 15, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or 986 (b) increasing or generating the activity of a protein as shown in table 1l, application no. 15, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 15, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 5 (c) growing the organism under conditions which permit the production of the fine chemical, thus, hexadecenoic acid, preferably 9-hexadecenoic acid, more pref erably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 10 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7- cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or 15 hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid or fine chemicals comprising hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 20 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid (C16:2 (n-6), cis 7- cis 10-hexadecadienoic acid) and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or 25 hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid acid, in said organism or in the culture medium surrounding the organism. [0018.0.14.14] Advantagously the activity of the protein as shown in table 1l, applica tion no. 15, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 15, column 5 is increased or generated in the abovementioned process in 30 the plastid of a microorganism or plant. [0019.0.0.14] to [0024.0.0.14] for the disclosure of the paragraphs [0019.0.0.14] to [0024.0.0.14] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.14.14] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 987 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se 5 quences shown in table I, application no. 15, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 10 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive 15 process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local 20 ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure 25 might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein 30 folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.8.14] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 15, column 3 and its homologs as disclosed in table I, application no. 15, columns 5 and 7 are joined to a nucleic acid sequence en 35 coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex- 988 pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 15, column 3 and its homologs as disclosed in table I, application no. 15, columns 5 and 7. 5 [0027.0.0.14] to [0029.0.0.14] for the disclosure of the paragraphs [0027.0.0.14] to [0029.0.0.14] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.14.14] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized 10 sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore 15 favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 20 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo 25 plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in 30 table I, application no. 15, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 15, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal 35 amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 989 protein metioned in table II, application no. 15, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 15, 5 columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said 10 short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 15, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 15 [0030.2.0.14] Table V: Examples of transit peptides disclosed by von Heijne et al.: for the disclosure of the Table V see paragraphs [0030.2.0.0] above. [0030.1.14.14] Alternatively to the targeting of the sequences shown in table II, ap plication no. 15, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 20 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 15, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 25 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 30 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny.
990 [0030.2.0.14] and [0030.3.0.14] for the disclosure of the paragraphs [0030.2.0.14] and [0030.3.0.14] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.14.14] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 5 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 15, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 10 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 15, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 15, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. 15 In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain 20 about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 15, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 15, columns 5 and 7 in such 25 a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 15, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 15, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). 30 In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 15, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast 35 by means of a chloroplast localization sequence. The genes, which should be ex- 991 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the 5 inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 15, columns 5 and 7. [0030.5.14.14] In a preferred embodiment of the invention the nucleic acid se 10 quences as shown in table I, application no. 15, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. 15 [0030.6.14.14] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 15, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter 20 from corn. [0031.0.0.14] and [0032.0.0.14] for the disclosure of the paragraphs [0031.0.0.14] and [0032.0.0.14] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.148.14] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in 25 crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 15, column 3. Preferably the 30 modification of the activity of a protein as shown in table II, application no. 15, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.14.14] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table II, application no. 15, column 3 in plas- 992 tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.14] for the disclosure of this paragraph see paragraph [0035.0.0.0] 5 above. [0036.0.14.14] The sequence of b0403 (Accession numberPIR:C64769) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "maltodextrin glucosidase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "malto 10 dextrin glucosidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15 tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, in particular for increas ing the amount of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic 15 acid in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a b0403 protein is in creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0403 20 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0488 (Accession number NP_415021) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997). Accordingly, in one embodiment, the process of the present invention comprises the use of its ho 25 molog, e.g. as shown herein, for the production of the fine chemical, meaning of 2 hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid, in particular for increasing the amount of 2-hydroxy palmitic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0488 protein is increased or gener 30 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0488 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria.
993 The sequence of b0598 (Accession number PIR:QOECNA) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "carbon starvation protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "carbon starvation protein" or 5 its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or try glycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2 hydroxy-15-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid in free or bound form in 10 an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0598 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0598 15 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0621 (Accession number PIR:C64796) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "dicarboxylate transport protein (DcuC family)". Accordingly, in one 20 embodiment, the process of the present invention comprises the use of a "dicarboxy late transport protein (DcuC family)" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of 2-hydroxy-tetracosenoic-acid, preferably 2 hydroxy-15-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, in particular for 25 increasing the amount of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15 tetracosenoic acid in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b0621 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in 30 table V. In another embodiment, in the process of the present invention the activity of a b0621 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0720 (Accession number NP_415248) from Escherichia coli has 35 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997) and its activity 994 is being defined as a "citrate synthase" Accordingly, in one embodiment, the process of the present invention comprises the use of a "citrate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy palmitic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid 5 and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid and/or 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy palmitic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention 10 the activity of a b0720 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b0720 protein is increased or generated in a subcellular compartment of the organism or or 15 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0931 (Accession number PIR:JQ0756) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nicotinate phosphoribosyltransferase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "nicotinate 20 phosphoribosyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid, in particular for increasing the amount of 2-hydroxy palmitic acid in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a 25 b0931 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1095 (Accession number NP_415613) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-oxoacyl-[acyl-carrier-protein] synthase II". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-oxoacyl 35 [acyl-carrier-protein] synthase II" or its homolog, e.g. as shown herein, for the produc- 995 tion of the fine chemical, meaning of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or tryglycerides, lipids, oils and/or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid, in particular for increasing the amount of hexadecenoic 5 acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 095 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 10 In another embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1625 (Accession number PIR:C64919) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 15 is being defined as "putative hemolysin expression modulating protein HHA domain". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative hemolysin expression modulating protein HHA domain" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglyc 20 erides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2 hydroxy-15-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 625 protein is increased or generated, e.g. from 25 Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1625 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of b1627 (Accession number :NP_416144_) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative oxidoreductase, inner membrane protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative oxidoreductase, inner membrane protein" or its homolog, e.g. as shown herein, for the 35 production of the fine chemical, meaning of 2-hydroxy-tetracosenoic-acid, preferably 2- 996 hydroxy-15-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15 tetracosenoic acid in free or bound form in an organism or a part thereof, as men 5 tioned. In one embodiment, in the process of the present invention the activity of a b1627 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1627 10 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1700 (Accession number NP_416215) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative 4Fe-4S ferredoxin-type protein". Accordingly, in one em 15 bodiment, the process of the present invention comprises the use of a "putative 4Fe-4S ferredoxin-type protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy palmitic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid and/or octadecenoic acid, 20 preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid, in particular for increasing the amount of 2-hydroxy palmitic acid and/or octadecenoic acid, prefera bly 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 700 protein is increased or generated, e.g. 25 from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1700 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of b1900 (Accession number: PIR:S01074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "high-affinity L-arabinose transport protein (ABC superfamily, atpbind)". Accordingly, in one embodiment, the process of the present invention com prises the use of a "high-affinity L-arabinose transport protein (ABC superfamily, 35 atpbind)" or its homolog, e.g. as shown herein, for the production of the fine chemical, 997 meaning of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, in particular for increasing the amount of 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid in free or 5 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 900 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1900 10 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1933 (Accession number PIR: B64957) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity has not been characterized. Accordingly, in one embodiment, the process of the pre 15 sent invention comprises the use of a "b1 933 protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy-tetracosenoic acid, preferably 2-hydroxy-15-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy-tetracosenoic-acid, preferably 20 2-hydroxy-15-tetracosenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1933 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b1933 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1980 (Accession number F64962) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 30 being defined as "putative transport protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative transport protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid, in particular for increasing the amount of 2-hydroxy palmitic acid in free or 35 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the 998 process of the present invention the activity of a b1 980 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1980 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2284 (Accession number: PIR:B65000) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "NADH2 dehydrogenase ". Accordingly, in one embodiment, the 10 process of the present invention comprises the use of a "NADH2 dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglyc erides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2 hydroxy-15-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy 15 tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2284 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b2284 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2799 (Accession number: PIR:RDECLA) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 25 is being defined as "lactaldehyde reductase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "lactaldehyde reductase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2 hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglyc erides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2 30 hydroxy-15-tetracosenoic acid, in particular for increasing the amount of 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2799 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide 35 as mentioned for example in table V.
999 In another embodiment, in the process of the present invention the activity of a b2799 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3429 (Accession number NP_417887) from Escherichia coli has 5 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glycogen synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glycogen synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of hexadecadie noic acid, preferably delta 7, 10 hexadecadienoic acid and/or hexadecatrienoic acid, 10 preferably delta 7, 10 ,13 hexadecatrienoic acid, and/or tryglycerides, lipids, oils and/or fats containing hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, in par ticular for increasing the amount of hexadecadienoic acid, preferably delta 7, 10 hexa decadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadeca 15 trienoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3429 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3429 20 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3568 (Accession number PIR:S47789) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "xylose transport permease protein xylH". Accordingly, in one em 25 bodiment, the process of the present invention comprises the use of a "V" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of hexa decenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, and/or tryglycerides, lipids, oils and/or fats containing hexadecenoic acid, preferably 9 30 hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid, in particular for increas ing the amount of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy 15-tetracosenoic acid in free or bound form in an organism or a part thereof, as men 35 tioned. In one embodiment, in the process of the present invention the activity of a 1000 b3568 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3568 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3708 (Accession number PIR:WZEC) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "tryptophan deaminase PLP dependent". Accordingly, in one em 10 bodiment, the process of the present invention comprises the use of a "tryptophan deaminase" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of 2-hydroxy palmitic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid and/or any combination of two or all three of the fine chemicals 15 selected from the group consisting of 2-hydroxy palmitic acid, hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexade cadienoic acid and/or any combination of two or all three of the fine chemicals selected 20 from the group consisting of 2-hydroxy palmitic acid, hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid, in particular for increasing the amount of 2-hydroxy palmitic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid and/or any 25 combination of two or all three of the fine chemicals selected from the group consisting of 2-hydroxy palmitic acid, hexadecadienoic acid, preferably delta 7, 10 hexadecadie noic acid and hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3708 protein is increased or 30 generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria.
1001 The sequence of b3728 (Accession number PIR:BYECPR) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "high affinity phosphate transport protein (ABC superfamily peri bind)". Accordingly, in one embodiment, the process of the present invention comprises 5 the use of a "high affinity phosphate transport protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 2-hydroxy-tetracosenoic acid, preferably 2-hydroxy-15-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid, in particular for increasing the amount of -hydroxy-tetracosenoic-acid, preferably 10 2-hydroxy-15-tetracosenoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3728 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a b3728 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 20 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase" which cata lyzes the first step in aromatic amino acid biosynthesis and is feedback-inhibited by phenylalanine (Aro3p). Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabino-heptulosonate-7-phosphate syn 25 thase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of heptadecanoic acid, and/or tryglycerides, lipids, oils and/or fats containing heptadecanoic acid, in particular for increasing the amount of heptadecanoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased 30 or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria.
1002 The sequence of YJR073C (Accession number PIR:B28443) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a "unsaturated phospholipid N-methyltransferase (methylene-fatty-acyl-phospholipid 5 synthase)". Accordingly, in one embodiment, the process of the present invention com prises the use of a "unsaturated phospholipid N-methyltransferase (methylene-fatty acyl-phospholipid synthase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of hexadecadienoic acid, preferably delta 7, 10 hexade cadienoic acid, and/or tryglycerides, lipids, oils and/or fats containing hexadecadienoic 10 acid, preferably delta 7, 10 hexadecadienoic acid, in particular for increasing the amount of hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YJR073C protein is increased or gen erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at 15 least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YJR073C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YNL241C (Accession number NP_014158) from Saccharomyces 20 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as "glucose-6-phosphate dehydrogenase (Zwfl p)". Accordingly, in one em bodiment, the process of the present invention comprises the use of said "glucose-6 phosphate dehydrogenase" or its homolog, e.g. as shown herein, for the production of 25 the fine chemical, meaning of hexadecadienoic acid, preferably delta 7, 10 hexade cadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrie noic acid, and/or tryglycerides, lipids, oils and/or fats containing hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid,in particular for increasing the amount of hexade 30 cadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid in free or bound form in an organ ism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNL241C protein is increased or generated, e.g. from Sac charomyces cerevisiae or a homolog thereof, preferably linked at least to one transit 35 peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 1003 YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.8.8] In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241C, is a homolog having said acitivity and being derived from Eukaryot. In one 5 embodiment, the homolog of the b0403, b0488, b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241C is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of 10 the b0403, b0488, b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241 C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b0403, b0488, 15 b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b0403, 20 b0488, b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241 C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the b0403, b0488, 25 b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetales. In one embodiment, the homolog of the b0403, 30 b0488, b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YDR035W, YJR073C and/or YNL241C is a homolog having said acitivity and being derived from Saccharomycetaceae. In one embodiment, 35 the homolog of the YDR035W, YJR073C and/or YNL241C is a homolog having said 1004 acitivity and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae. [0037.1.14.14]Homologs of the polypeptide table II, application no. 15, column 5may be the polypetides encoded by the nucleic acid molecules indicated in table I , applica 5 tion no. 15, column 7, resp., or may be the polypeptides indicated in table II, application no. 15, column 7, resp.. [0038.0.0.14] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.14.14] In accordance with the invention, a protein or polypeptide has the 10 "activity of an protein as shown in table II, application no. 15, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemical level in the organism or a part thereof, preferably in a cell of said organ ism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, 15 application no. 15, column 3, preferably in the event the nucleic acid sequences encod ing said proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a 20 protein as shown in table II, application no. 15, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in table II, application no. 7, column 3 of Saccharomyces cerevisiae. [0040.0.0.14] to [0047.0.0.14] for the disclosure of the paragraphs [0040.0.0.14] to 25 [0047.0.0.14] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.14.14] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 30 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a respective protein as shown in table II, application no. 15, column 3 its biochemical or genetical causes and the increased amount of the fine chemical.
1005 [0049.0.0.14] to [0051.0.0.14] for the disclosure of the paragraphs [0049.0.0.14] to [0051.0.0.14] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.14.14] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 5 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 15, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle 10 such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 15 [0053.0.0.14] to [0058.0.0.14] for the disclosure of the paragraphs [0053.0.0.14] to [0058.0.0.14] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.14.14] In case the activity of the Escherichia coli protein b0403 or its ho mologs, e.g. a "maltodextrin glucosidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 20 fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15 tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid between 23% and 43% or more is conferred. In case the activity of the Escherichia coli protein b0488 or its homologs is increased 25 advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of 2-hydroxy palmitic and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic between 20% and 29% or more is conferred. In case the activity of the Escherichia coli protein b0598 or its homologs e.g. a "carbon 30 starvation protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid between 24% and 38% or more is conferred. 35 In case the activity of the Escherichia coli protein b0621 or its homologs e.g. a "dicar- 1006 boxylate transport protein (DcuC family)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15 tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy 5 tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid between 24% and 34% or more is conferred. In case the activity of the Escherichia coli protein b0720 or its homologs e.g. a "citrate synthase" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of 2 10 hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid between18% and 28% or more is conferred and/or of 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy 15-tetracosenoic acid between 22% and 59% or more is conferred. 15 In case the activity of the Escherichia coli protein b0931 or its homologs, e.g. a "nicoti nate phosphoribosyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of 2-hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid between 20% and 33% or more is conferred. 20 In case the activity of the Escherichia coli protein b1 095 or its homologs, e.g. a "3 oxoacyl-[acyl-carrier-protein] synthase 1l" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or tryglycerides, lipids, oils and/or fats con 25 taining hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid between 24% and 52% or more is conferred. In case the activity of the Escherichia coli protein b1625 or its homologs, e.g. a "puta tive hemolysin expression modulating protein HHA domain" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi 30 ment an increase of the fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, pref erably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats con taining 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid be tween 23% and 39% or more is conferred. In case the activity of the Escherichia coli protein b1 627 or its homologs, e.g. a "puta 35 tive oxidoreductase, inner membrane protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy- 1007 15-tetracosenoic and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic between 25% and 42% or more is conferred. 5 In case the activity of the Escherichia coli protein b1700 or its homologs, e.g. a "puta tive 4Fe-4S ferredoxin-type protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of oleic acid and/or tryglycerides, lipids, oils and/or fats containing oleic acid between 23% and 87% or more is conferred and or of 2-hydroxy palmitic acid 10 and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid between 17% and 20% or more is conferred In case the activity of the Escherichia coli protein b1900 or its homologs, e.g. a "high affinity L-arabinose transport protein (ABC superfamily, atpbind)" is increased advan 15 tageously in an organelle such as a plastid or mitochondria, preferably, in one em bodiment an increase of the fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid between 25% and 35% or more is conferred. 20 In case the activity of the Escherichia coli protein b1 933 or its homologs, e.g. a "b1 933 protein with unknown biological function" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15 tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy 25 tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid between 22% and 26% or more is conferred. In case the activity of the Escherichia coli protein b1 980 or its homologs, e.g. a "puta tive transport protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 30 bly of 2-hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2 hydroxy palmitic acid between 20% and 27% or more is conferred. In case the activity of the Escherichia coli protein b2284 or its homologs, e.g. a "NADH2 dehydrogenase" is increased advantageously in an organelle such as a plas tid or mitochondria, preferably, in one embodiment an increase of the fine chemical, 35 preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid between 30% and 65% or more is con- 1008 ferred. In case the activity of the Escherichia coli protein b2799 or its homologs, e.g. a "lactal dehyde reductase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 5 bly of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-15-tetracosenoic acid between 27% and 43% or more is conferred. In case the activity of the Escherichia coli protein b3429 or its homologs, e.g. a "glyco gen synthase" is increased advantageously in an organelle such as a plastid or mito 10 chondria, preferably, in one embodiment an increase of the fine chemical, preferably of hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or tryglyc erides, lipids, oils and/or fats containing hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid between 31% and 83% or more and/or of hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid and/or tryglycerides, lipids, oils and/or 15 fats containing hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid between 13% and 39% or more is conferred. In case the activity of the Escherichia coli protein b3568 or its homologs, e.g. a "xylose transport permease protein xylH" is increased advantageously in an organelle such as 20 a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy-tetracosenoic acid, preferably 2-hydroxy-15-tetracosenoic acid between 22% and 49% or more and/or of hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 25 hexadecenoic acid and/or tryglycerides, lipids, oils and/or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid be tween 22% and 38% or more is conferred. In case the activity of the Escherichia coli protein b3708 or its homologs, e.g. a "trypto phan deaminase PLP dependent" is increased advantageously in an organelle such as 30 a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of 2-hydroxy palmitic acid and/or tryglycerides, lipids, oils and/or fats containing 2-hydroxy palmitic acid between 22% and 29% or more and/or of hexade cadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or tryglycerides, lipids, oils and/or fats containing hexadecadienoic acid, preferably delta 7, 10 hexadecadie 35 noic acid between 23% and 84% or more and/or of hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid and/or tryglycerides, lipids, oils and/or fats con taining hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid between 1009 16% and 32% or more and/or an increaseof any combination of two or all three of the fine chemicals selected from the group consisting of 2-hydroxy palmitic acid, hexade cadienoic acid, preferably delta 7, 10 hexadecadienoic acid and hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid of 16% to 84% or more is conferred. 5 In case the activity of the Escherichia coli protein b3728 or its homologs, e.g. a "high affinity phosphate transport protein (ABC superfamily peri bind)" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of 2-hydroxy-tetracosenoic-acid, pref erably 2-hydroxy-1 5-tetracosenoic acid and/or tryglycerides, lipids, oils and/or fats con 10 taining 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid be tween 22% and 30% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one 15 embodiment an increase of the fine chemical, preferably of heptadecanoic acid and/or tryglycerides, lipids, oils and/or fats containing heptadecanoic acid between 21 % and 40% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YJR073C or its homologs, e.g. a "unsaturated phospholipid N-methyltransferase (methylene-fatty-acyl 20 phospholipid synthase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or tryglycerides, lipids, oils and/or fats containing hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid between 22% and 41 % or more is conferred. 25 In case the activity of the Saccharomyces cerevisiae protein YNL241 C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of hexadecadienoic acid, preferably delta 7, 10 hexade cadienoic acid, and/or tryglycerides, lipids, oils and/or fats containing hexadecadienoic 30 acid, preferably delta 7, 10 hexadecadienoic acid between 22% and 36% or more and/or of hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid and/or tryglycerides, lipids, oils and/or fats containing hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid between 17% and 24% or more is conferred. [0060.0.14.14] In case the activity of any of the Escherichia coli proteins b0403, 35 b0488, b0598, b0621, b0720, b0931, b1095, b1625, b1627, b1700, b1900, b1933, b1980, b2284, b2799, b3429, b3568, b3708 and/or b3728 or their homologs," are in- 1010 creased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical indicated in column 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp.,and/or tryglycerides, lipids, oils and/or fats con taining the fine chemical indicated in column 6 "metabolites" for application no. 15 in 5 any one of Tables I to IV, resp., is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W, YJR073C and/or YNL241C or its homologs is increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical indicated in col umn 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp.,and/or 10 tryglycerides, lipids, oils and/or fats containing the fine chemical indicated in column 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp., is conferred. [0061.0.0.14] and [0062.0.0.14] for the disclosure of the paragraphs [0061.0.0.14] and [0062.0.0.14] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.14.14] A protein having an activity conferring an increase in the amount or 15 level of the fine chemical, preferably upon targeting to the plastids preferably has in one embodiment the structure of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 15, column 7 or of the polypeptide as shown in the amino acid sequences as disclosed in table II, application no. 15, columns 5 and 7 or the functional homologues thereof as 20 described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 15, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.14.14] For the purposes of the present invention, the reference to the fine 25 chemical, e.g. to the term "hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or 30 hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid", also encom passes the corresponding salts, such as, for example, the potassium or sodium salts or 35 the salts with amines such as diethylamine as well as tryglycerides, lipids, oils and/or 1011 fats containing the respective fine chemical as indicated in column 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp. . [0065.0.0.14] and [0066.0.0.14] for the disclosure of the paragraphs [0065.0.0.14] and [0066.0.0.14] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. 5 [0067.0.14.14] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, appli 10 cation no. 15, columns 5 and 7 or its homologs activity having herein-mentioned hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 15 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas 20 ing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table 1, application no. 15, columns 5 and 7, e.g. a nucleic 25 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table 1l, application no. 15, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 30 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9- 1012 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas ing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 5 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned hexadecenoic acid, pref erably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 10 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas 15 ing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its homologs activity, or decreas ing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres 20 sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned hexadecenoic acid, pref erably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 25 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas 30 ing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned hexadecenoic acid, preferably 9 35 hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 1013 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or 5 octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its homologs activity, by adding 10 one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned 15 hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or 20 hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in 25 table 1l, application no. 15, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 30 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or 35 octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9- 1014 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its homologs activity; and/or 5 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like 10 for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated 15 near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam 20 ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target 25 organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 30 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9- 1015 octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas ing activity, e.g. of polypeptide having the activity of a protein as indicated in ta ble 1l, application no. 15, columns 5 and 7 or its homologs activity, to the plastids 5 by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned Palmitic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its 10 homologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or 15 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 20 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9 octadecenoic acid and/or 25 hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 15, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under con trol of preferable a plastidial promoter. 30 [0068.0.14.14] Preferably, said mRNA is the nucleic acid molecule of the present invention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical 35 after increasing the expression or activity of the encoded polypeptide preferably in or- 1016 ganelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 15, column 3 or its homologs. Prefera bly the increase of the fine chemical takes place in plastids. [0069.0.0.14] to [0079.0.0.14] for the disclosure of the paragraphs [0069.0.0.14] to 5 [0079.0.0.14] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.14.14] The activation of an endogenous polypeptide having above mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 15, column 3 or of the polypeptide of the invention, e.g. conferring the increase of the respective fine chemical after increase of expression or activity in the cytsol and/or 10 in an organelle like a plastid, preferentially in the plastid, can also be increased by in troducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 15, column 3 and acti vates its transcription. A chimeric zinc finger protein can be constructed, which com prises a specific DNA-binding domain and an activation domain as e.g. the VP16 do 15 main of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 15, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 15, column 3, see e.g. in WOO1/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 20 13290 or Guan, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.14] to [0084.0.0.14] for the disclosure of the paragraphs [0081.0.0.14] to [0084.0.0.14] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.8.14] for the disclosure of the paragraph [0085.0.8.14] see paragraphs [0085.0.8.8] above. 25 [0086.0.0.14] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.8.14] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to the fine chemical of the invention as indicated in 30 column 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp., triglyc erides, lipids, oils and/or fats containing these compounds like other fatty acids such as palmitate, stearate, palmitoleate, oleate, linoleate and/or linoleate or erucic acid and/or, arachidonic acid..
1017 [0088.0.14.14] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human animal, a plant or animal cell, a plant or animal tissue or a plant, more preferably 5 a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 15, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant 10 or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 15 permit the production of the fine chemical in the organism, preferably the micro organism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound fatty acids synthetized by the organism, the microorganism, the non-human animal, the plant or animal cell, the plant or 20 animal tissue or the plant. [0089.0.14.14] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possi 25 ble to produce, recover and, if desired isolate, other free or/and bound fatty acids, in particular palmitate, stearate, palmitoleate, oleate, linoleate and/or linoleate or erucic acid and/or, arachidonic acid. [0090.0.0.14] to [0097.0.0.14] for the disclosure of the paragraphs [0090.0.0.14] to [0097.0.0.14] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. 30 [0098.0.14.14] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 1018 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 15, columns 5 and 7 or a derivative thereof, or 5 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 15, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 10 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 15 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.14.14] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic 20 plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 15, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, 25 application no. 15, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 15, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences 30 mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.14] for the disclosure of this paragraph see paragraph [0100.0.0.0] above.
1019 [0101.0.14.14] In an advantageous embodiment of the invention, the organism takes the form of a plant whose fatty acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on 5 the abovementioned essential fatty acids and the general amount of fatty acids as en ergy source in feed. After the activity of the protein as shown in table II, application no. 15, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the 10 soil and subsequently harvested. [0102.0.0.14] to [0110.0.0.14] for the disclosure of the paragraphs [0102.0.0.14] to [0110.0.0.14] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.14.14] In a preferred embodiment, the fine chemical (as indicated in column 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp.) is produced in 15 accordance with the invention and, if desired, is isolated. The production of further fatty acids such as palmitate, stearate, palmitoleate, oleate, linoleate and/or linoleate or eru cic acid and/or, arachidonic acid and/or mixtures thereof or mixtures of other fatty acids by the process according to the invention is advantageous. It may be advantageous to increase the pool of free fatty acids in the transgenic organisms by the process accord 20 ing to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.14.14] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention together with the transformation of a nucleic acid encoding a protein or polypeptid for example a fatty acid transporter protein or a compound, which functions as a sink for 25 the desired fatty acid in the organism is useful to increase the production of the respec tive fine chemical (see Bao and Ohlrogge, Plant Physiol. 1999 August; 120 (4): 1057 1062). Such fatty acid transporter protein may serve as a link between the location of fatty acid synthesis and the socalled sink tissue, in which fatty acids, triglycerides, oils and fats are stored. 30 [0113.0.5.14] to [0115.0.5.14] for the disclosure of the paragraphs [0113.0.5.14] to [0115.0.5.14] see paragraphs [0113.0.5.5] to [0115.0.5.5] above. [0116.0.14.14] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a 1020 part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 5 peptide shown in table 1l, application no. 15, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 15, columns 5 and 7; 10 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity 15 with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 20 amount of the respective fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the respective 25 fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the repective fine chemical in an organism or a part thereof; 30 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 1021 the primers shown in table III, application no. 15, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex 5 pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus 10 sequence shown in table IV, application no. 15, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly 15 peptide shown in table II, application no. 15, columns 5 and 7 and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 20 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (k), preferably to (a) to (c), and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof; 25 or which comprises a sequence which is complementary thereto. [0116.1.14.14.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 15, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 30 cated in table I A, application no. 15, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 15, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en- 1022 code a polypeptide of a sequence indicated in table II A, application no. 15, columns 5 and 7. [0116.2.14.14.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 15, 5 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 15, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 10 15, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 15, columns 5 and 7. [0117.0.14.14] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 15, columns 5 and 7 15 by one or more nucleotides or does not consist of the sequence shown in table I, application no. 15, columns 5 and 7. In one embodiment, the nucleic acid molecule of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 15, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence 20 shown in table II, application no. 15, columns 5 and 7. [0118.0.0.14] to [0120.0.0.14] for the disclosure of the paragraphs [0118.0.0.14] to [0120.0.0.14] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.14.14] Nucleic acid molecules with the sequence shown in table I, applica tion no. 15, columns 5 and 7, nucleic acid molecules which are derived from the amino 25 acid sequences shown in table II, application no. 15, columns 5 and 7 or from polypep tides comprising the consensus sequence shown in table IV, application no. 15, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or bio logical activity of a protein as shown in table II, application no. 15, column 3 or confer ring the fine chemical increase after increasing its expression or activity are advanta 30 geously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plas tids.
1023 [0122.0.0.14] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.14.14] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as 5 shown in table II, application no. 15, column 3 can be determined from generally ac cessible databases. [0124.0.0.14] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.14.14] The nucleic acid molecules used in the process according to the in 10 vention take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 15, column 3 and conferring the fine chemical increase increase by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.14] to [0133.0.0.14] for the disclosure of the paragraphs [0126.0.0.14] to 15 [0133.0.0.14] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.14.14] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 15, columns 5 and 20 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 15, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 25 [0135.0.0.14] to [0140.0.0.14] for the disclosure of the paragraphs [0135.0.0.14] to [0140.0.0.14] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.14.14] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 15, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown 30 in table I, application no. 15, columns 5 and 7 or the sequences derived from table II, application no. 15, columns 5 and 7.
1024 [0142.0.14.14] Moreover, it is possible to identify conserved regions from various organisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the in vention, from which conserved regions, and in turn, degenerate primers can be de 5 rived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus se quence shown in table IV, application no. 15, column 7 is derived from said aligments. [0143.0.14.14] Degenerated primers can then be utilized by PCR for the amplifica tion of fragments of novel proteins having above-mentioned activity, e.g. conferring the 10 increase of the fine chemical after increasing the expression or activity or having the activity of a protein as shown in table 1l, application no. 15, column 3 or further func tional homologs of the polypeptide of the invention from other organisms. [0144.0.0.14] to [0151.0.0.14] for the disclosure of the paragraphs [0144.0.0.14] to [0151.0.0.14] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 15 [0152.0.14.14] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table 1, application no. 15, columns 5 and 7, preferably of table I B, application no. 15, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 20 hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or 25 hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid , triglycerides, lipids, oils and/or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, 30 more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or 35 octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 1025 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increasing ac tivity. [0153.0.0.14] to [0159.0.0.14] for the disclosure of the paragraphs [0153.0.0.14] to 5 [0159.0.0.14] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.14.14] Further, the nucleic acid molecule of the invention comprises a nu cleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, 10 application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 15, columns 5 and 7, preferably 15 shown in table I B, application no. 15, columns 5 and 7, thereby forming a stable du plex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a complement of one of the herein disclosed sequences is preferably a se quence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pair 20 ing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.14.14] The nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even 25 more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleo tide sequence shown in table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application 30 no. 15, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.14.14] The nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 15, 1026 columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9 hexadecenoic acid and/or 5 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 10 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid , triglycerides, lipids, oils and/or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 15 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or 20 hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increase by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table 1l, application no. 15, column 3. [0163.0.14.14] Moreover, the nucleic acid molecule of the invention can comprise 25 only a portion of the coding region of one of the sequences shown in table 1, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned 30 activity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its 35 homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region 1027 of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 15, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in 5 table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the 10 examples. A PCR with the primers shown in table III, application no. 15, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.14] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.14.14] The nucleic acid molecule of the invention encodes a polypeptide or 15 portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 15, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 20 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic 25 acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid , triglycerides, lipids, oils and/or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or 30 heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or 35 hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid increasing the 1028 activity as mentioned above or as described in the examples in plants or microorgan isms is comprised. [0166.0.14.14] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum 5 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 15, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity 10 of a protein as shown in table II, column 3 and as described herein. [0167.0.14.14] In one embodiment, the nucleic acid molecule of the present inven tion comprises a nucleic acid that encodes a portion of the protein of the present inven tion. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 15 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 15, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0168.0.0.14] and [0169.0.0.14] for the disclosure of the paragraphs [0168.0.0.14] and [0169.0.0.14] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.14.14] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 15, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly 25 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 15, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding 30 a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 15, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 15, columns 5 and 7 or the functional homologues. However, in 1029 a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table 1, application no. 15, columns 5 and 7, prefera bly as indicated in table I A, application no. 15, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid 5 molecule indicated in table I B, application no. 15, columns 5 and 7. [0171.0.0.14] to [0173.0.0.14] for the disclosure of the paragraphs [0171.0.0.14] to [0173.0.0.14] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.14.14] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un 10 der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 15, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 15 [0175.0.0.14] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.14.14] Preferably, nucleic acid molecule of the invention that hybridizes un der stringent conditions to a sequence shown in table 1, application no. 15, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As 20 used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the 25 process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.14] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. 30 [0178.0.14.14] For example, nucleotide substitutions leading to amino acid substitu tions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 15, columns 5 and 7.
1030 [0179.0.0.14] and [0180.0.0.14] for the disclosure of the paragraphs [0179.0.0.14] and [0180.0.0.14] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.14.14] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the 5 fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the sequences shown in table II, application no. 15, columns 5 and 7, preferably shown in 10 table II A, application no. 15, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 15, columns 5 and 7, preferably shown in table II A, application no. 15, columns 5 and 7 and is capa 15 ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se quence shown in table II, application no. 15, columns 5 and 7, preferably shown in ta 20 ble II A, application no. 15, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 15, columns 5 and 7, preferably shown in table II A, application no. 15, columns 5 and 7, even more prefera bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 15, columns 5 and 7, preferably shown in table II A, application no. 15, 25 columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 15, columns 5 and 7, preferably shown in table II A, application no. 15, columns 5 and 7. [0182.0.0.14] to [0188.0.0.14] for the disclosure of the paragraphs [0182.0.0.14] to [0188.0.0.14] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 30 [0189.0.14.14] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 15, columns 5 and 7, preferably shown in table II B, applica tion no. 15, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 35 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 1031 homology with one of the polypeptides as shown in table II, application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 15, columns 5 and 7, preferably shown 5 in table II B, application no. 15, columns 5 and 7. [0190.0.14.14] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 10 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same 15 properties as the polypeptide as shown in table II, application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7. [0191.0.0.14] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.14.14] A nucleic acid molecule encoding an homologous to a protein se 20 quence of table II, application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu cleic acid molecule of the present invention, in particular of table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7 25 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. 30 [0193.0.0.14] to [0196.0.0.14] for the disclosure of the paragraphs [0193.0.0.14] to [0196.0.0.14] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.14.14] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 15, columns 5 and 7, preferably shown in table I B, 1032 application no. 15, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 5 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 15, columns 5 and 7, preferably shown in table I B, 10 application no. 15, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.14.14] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the 15 sequences shown in any of the table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7. It is preferred that the nucleic acid molecule comprises as little as possible other nucleotides not shown in any one of table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less 20 than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 15, columns 5 and 7, preferably shown in table I B, application no. 15, columns 5 and 7. 25 [0199.0.14.14] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the 30 encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7. [0200.0.14.14] In one embodiment, the nucleic acid molecule of the invention or 35 used in the process encodes a polypeptide comprising the sequence shown in table II, 1033 application no. 15, columns 5 and 7, preferably shown in table II B, application no. 15, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodiment, the nucleic acid molecule used in the process is identical to a coding 5 sequence of the sequences shown in table I, application no. 15, columns 5 and 7, pref erably shown in table I B, application no. 15, columns 5 and 7. [0201.0.14.14] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at 10 least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 15, columns 5 and 7 expressed under identical conditions. 15 [0202.0.14.14] Homologues of table I, application no. 15, columns 5 and 7 or of the derived sequences of table II, application no. 15, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning derivatives, which comprise noncoding regions such as, for example, UTRs, 20 terminators, enhancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3' regulatory region such as terminators or other 3'regulatory regions, which are far away 25 from the ORF. It is furthermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even promoters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.14] to [0215.0.0.14] for the disclosure of the paragraphs [0203.0.0.14] to 30 [0215.0.0.14] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.14.14] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group con sisting of: 1034 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 15, columns 5 and 7, preferably in table II B, application no. 15, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the respective fine chemical in an organism or a part 5 thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 15, columns 5 and 7, pref erably in table I B, application no. 15, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the respective fine chemical in an organism 10 or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the rspec tivefine chemical in an organism or a part thereof; 15 d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) 20 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 25 preferably to (a) to (c), and conferring an increase in the amount of the respec tive fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism 30 or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, ap- 1035 plication no. 15, column 7 and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 5 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 15, column 7 and conferring an in 10 crease in the amount of the respective fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 15, columns 5 and 7 and conferring an increase in the amount of the respective fine chemical in 15 an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 20 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 15, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 15, columns 5 and 7, and conferring an increase in the amount of the respec tive fine chemical in an organism or a part thereof; or which encompasses a se 25 quence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 15, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 15, 30 columns 5 and 7. In another embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 15, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode 1036 the polypeptide sequence shown in table II A and/or II B, application no. 15, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present invention encodes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 5 15, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, application no. 15, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 15, columns 5 and 7. In a further embodiment, the protein of the present invention is at least 30 % identical to 10 protein sequence depicted in table II A and/or II B, application no. 15, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 15, columns 5 and 7. [0217.0.0.14] to [0226.0.0.14] for the disclosure of the paragraphs [0217.0.0.14] to 15 [0226.0.0.14] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.14.14] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 20 systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in 25 accordance with the invention are Bin19, pBI101, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Science (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the 30 polypeptides shown in table II, application no. 15, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is directed to the plastids and which means that the mature protein fulfills its biological activity. [0228.0.0.14] to [0239.0.0.14] for the disclosure of the paragraphs [0228.0.0.14] to 35 [0239.0.0.14] see paragraphs [0228.0.0.0] to [0239.0.0.0] above.
1037 [0240.0.14.14] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nucleic acid constructs or vectors (including plasmids) into a host cell, advantageously 5 into a plant cell or a microorgansims. In addition to the sequence mentioned in Table 1, application no. 15, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the fatty acid biosynthetic pathway such as for palmitate, palmitoleate, stearate and/or 10 oleate is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the 15 same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table 1, application no. 15, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. 20 [0241.0.5.14] and [0242.0.5.14] for the disclosure of the paragraphs [0241.0.5.14] and [0242.0.5.14] see paragraphs [0241.0.5.5] and [0242.0.5.5] above. [0242.1.14.14] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a fatty acid degrading protein is attenuated, in particular by reducing the rate of expression of 25 the corresponding gene. [0242.2.5.14] for the disclosure of this paragraph see paragraph [0242.2.5.5] above. [0243.0.0.14] to [0264.0.0.14] for the disclosure of the paragraphs [0243.0.0.14] to [0264.0.0.14] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. 30 [0265.0.14.14] Other preferred sequences for use in operable linkage in gene expression constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the 1038 vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, peroxisomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as 5 mentioned above. Sequences, which must be mentioned in this context are, in particular, the signal-peptide- or transit-peptide-encoding sequences which are known per se. For example, plastid-transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can 10 advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 15, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.14] to [0287.0.0.14] for the disclosure of the paragraphs [0266.0.0.14] to [0287.0.0.14] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. 15 [0288.0.14.14] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokaryotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides 20 shown in table 1l, application no. 15, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 15, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. 25 [0289.0.0.14] to [0296.0.0.14] for the disclosure of the paragraphs [0289.0.0.14] to [0296.0.0.14] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.14.14] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in 30 particular, an anti-b0403, anti-b0488, anti-b1410, anti-b1 627, anti-b1 758, anti-b1 980, anti-b2066, anti-b2223, anti-b1095, ant-YPR035W and/or anti-YLR099C protein anti body or an antibody against polypeptides as shown in table 1l, application no. 15, columns 5 and 7, which can be produced by standard techniques utilizing the polypep- 1039 tid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. [0298.0.0.14] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. 5 [0299.0.14.14] In one embodiment, the present invention relates to a polypeptide having the sequence shown in table II, application no. 15, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 15, columns 5 and 7 or functional homologues thereof. [0300.0.14.14] In one advantageous embodiment, in the method of the present in 10 vention the activity of a polypeptide is increased comprising or consisting of the con sensus sequence shown in table IV, application no. 15, columns 7 and in one another embodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 15, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre 15 ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.14] to [0304.0.0.14] for the disclosure of the paragraphs [0301.0.0.14] to [0304.0.0.14] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.14.14] In one advantageous embodiment, the method of the present inven 20 tion comprises the increasing of a polypeptide comprising or consisting of plant or mi croorganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 15, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown 25 in table II A and/or II B, application no. 15, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 15, columns 5 and 7 by not more than 80% or 70% of the amino 30 acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 15, columns 5 and 7.
1040 [0306.0.0.14] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.8.14] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid 5 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 15, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 15, columns 5 and 7. In a further embodiment, said 10 polypeptide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 15, columns 5 and 7. [0308.0.8.14] In one embodiment, the present invention relates to a polypeptide 15 having the activity of the protein as shown in table II A and/or II B, application no. 15, column 3, which distinguishes over the sequence depicted in table II A and/or II B, application no. 15, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more 20 preferred by less than 70% of the amino acids, more preferred by less than 50%, even more preferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypeptide having the activity of the protein as shown in table II A and/or II B, column 25 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.14] to [0311.0.0.14] for the disclosure of the paragraphs [0309.0.0.14] to [0311.0.0.14] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.14.14] A polypeptide of the invention can participate in the process of the 30 present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 15, columns 5 and 7.
1041 [0313.0.14.14] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence 5 which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 15, columns 5 and 7. The 10 preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 15, columns 5 and 7 or which is 15 homologous thereto, as defined above. [0314.0.14.14] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 15, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 20 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 15, columns 5 and 7. [0315.0.0.14] for the disclosure of this paragraph see paragraph [0315.0.0.0] 25 above. [0316.0.14.14] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 15, columns 30 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 35 or used in the process of the present invention.
1042 [0317.0.0.14] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.14.14] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in 5 table II, application no. 15, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 15, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 15, column 3. These proteins may be improved in efficiency or activity, 10 may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. [0319.0.14.14] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read 15 ily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 15, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such 20 that the yield, production, and/or efficiency of production of a desired compound is im proved. [0320.0.0.14] to [0322.0.0.14] for the disclosure of the paragraphs [0320.0.0.14] to [0322.0.0.14] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.14.14] In one embodiment, a protein (= polypeptide) as shown in table II, 25 application no. 15, column 3 refers to a polypeptide having an amino acid sequence corresponding to the polypeptide of the invention or used in the process of the inven tion, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub 30 stantially homologous to a polypeptide or protein as shown in table II, application no. 15, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism.
1043 [0324.0.0.14] to [0329.0.0.14] for the disclosure of the paragraphs [0324.0.0.14] to [0329.0.0.14] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.14.14] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which 5 are encoded by the sequences shown in table II, application no. 15, columns 5 and 7. [0331.0.0.14] to [0346.0.0.14] for the disclosure of the paragraphs [0331.0.0.14] to [0346.0.0.14] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.14.14] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of 10 the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid mole cule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypeptide of the invention, e.g. encoding a polypeptide having an activity as the pro tein as shown in table II, application no. 15, column 3. Due to the above mentioned 15 activity the fine chemical content in a cell or an organism is increased. For example, due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. 20 Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 15, column 3 or a protein as shown in table II, application no. 15, col umn 3-like activity is increased in the cell or organism or part thereof especially in or ganelles such as plastids or mitochondria. Examples are described above in context 25 with the process of the invention. [0348.0.0.14] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.14.14] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 30 II, application no. 15, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above).
1044 [0350.0.0.14] to [0358.0.0.14] for the disclosure of the paragraphs [0350.0.0.14] to [0358.0.0.14] see paragraphs [0350.0.0.0] to [0358.0.0.0]above. [0359.0.5.14] for the disclosure of the paragraph [0359.0.5.14] see paragraph [0359.0.5.5] above. 5 [0360.0.0.14] to [0362.0.0.14] for the disclosure of the paragraphs [0360.0.0.14] to [0362.0.0.14] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.5.14] to [0365.0.5.14] for the disclosure of the paragraphs [0363.0.5.14] to [0365.0.5.14] see paragraphs [0363.0.5.5] to [0365.0.5.5] above. [0366.0.0.14] to [0369.0.0.14] for the disclosure of the paragraphs [0366.0.0.14] to 10 [0369.0.0.14] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.14.14] The fermentation broths obtained in this way, containing in particular the fine chemical as indicated in column 6 "metabolites" for application no. 15 in any one of Tables I to IV, resp. , triglycerides, lipids, oils and/or fats containing the fine chemical as indicated in column 6 "metabolites" for application no. 15 in any one of 15 Tables I to IV, resp , normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be seperated, such as, for example, by centrifugation, filtration, decanta tion or a combination of these methods, from the fermentation broth or left completely in it. Afterwards the biomass can be extracted without any further process steps or dis 20 rupted and then extracted. If necessary the fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evapo rator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltra tion. This concentrated fermentation broth can then be worked up by extraction. [0371.0.5.14] for the disclosure of this paragraph see paragraph [0371.0.5.5] 25 above. [0372.0.0.14] to [0376.0.0.14] for the disclosure of the paragraphs [0372.0.0.14] to [0376.0.0.14], [0376.1.0.14] and [0377.0.0.14] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0376.1.0.14] for the disclosure of the paragraph [0376.1.0.14] see paragraph 30 [0376.1.0.0] above.
1045 [0377.0.0.14] for the disclosure of the paragraph [0377.0.0.14] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.8.14] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in 5 a cell, comprising the following steps: a) contacting, e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven 10 tion; b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 15, columns 5 and 7, preferably in table I B, application no. 15, columns 5 and 7, and, option 15 ally, isolating the full length cDNA clone or complete genomic clone; c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; d) expressing the identified nucleic acid molecules in the host cells; e) assaying the the fine chemical level in the host cells; and 20 f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. [0379.0.0.14] to [0383.0.0.14] for the disclosure of the paragraphs [0379.0.0.14] to [0383.0.0.14] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. 25 [0384.0.14.14] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product 30 or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis- 1046 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 15, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 15, column 3. 5 [0385.0.0.14] to [0404.0.0.14] for the disclosure of the paragraphs [0385.0.0.14] to [0404.0.0.14] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.5.14] for the disclosure of this paragraph see paragraph [0405.0.5.5] above. [0406.0.0.14] to [0435.0.0.14] for the disclosure of the paragraphs [0406.0.0.14] to 10 [0435.0.0.14] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.8.14] Hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 15 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid or triglycerides, 20 lipids, oils and/or fats containing hexadecenoic acid, preferably 9-hexadecenoic acid, more preferably trans-9-hexadecenoic acid and/or 2-hydroxy palmitic acid and/or heptadecanoic acid and/or 2-hydroxy-tetracosenoic-acid, preferably 2-hydroxy-1 5-tetracosenoic acid and/or 25 hexadecadienoic acid, preferably delta 7, 10 hexadecadienoic acid and/or octadecenoic acid, preferably 9-Octadecenoic acid, more preferably (Z)-9-octadecenoic acid and/or hexadecatrienoic acid, preferably delta 7, 10 ,13 hexadecatrienoic acid production in Mortierella 30 The fatty acid production can be analysed as mentioned above. The proteins and nu cleic acids can be analysed as mentioned below. [0437.0.0.14] and [0438.0.0.14] for the disclosure of the paragraphs [0437.0.0.14] and [0438.0.0.14] see paragraphs [0437.0.0.0] and [0438.0.0.0] above.
1047 [0439.0.5.14] and [0440.0.5.14] for the disclosure of the paragraphs [0439.0.5.14] and [0440.0.5.14] see paragraphs [0439.0.5.5] and [0440.0.5.5] above. [0441.0.0.14] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.5.14] and [0445.0.5.14] for the disclosure of the paragraphs [0442.0.5.14] 5 and [0445.0.5.14] see paragraphs [0442.0.5.5] and [0445.0.5.5] above. [0446.0.0.14] to [0497.0.0.14] for the disclosure of the paragraphs [0446.0.0.14] to [0497.0.0.14] see paragraphs [0446.0.0.0] to [0497.0.0.0] above. [0498.0.8.14] The results of the different plant analyses can be seen from the table, which follows: 10 Table VI Min.- Max.
ORF Metabolite Method/Analytics Value Value b0403 Nervonic acid (C24:1) GC 1.23 1.43 b0488 2-Hydroxypalmitic acid (2-OH-C16:0) GC 1.20 1.29 b0598 Nervonic acid (C24:1) GC 1.24 1.38 b0621 Nervonic acid (C24:1) GC 1.24 1.34 b0720 2-Hydroxypalmitic acid (2-OH-C16:0) GC 1.18 1.28 b0720 Nervonic acid (C24:1) GC 1.22 1.59 b0931 2-Hydroxypalmitic acid (2-OH-C16:0) GC 1.20 1.33 b1095 trans-9-Hexadecenoic acid (C16:trans[9]1) GC 1.24 1.52 b1625 Nervonic acid (C24:1) GC 1.23 1.39 b1627 Nervonic acid (C24:1) GC 1.25 1.42 b1700 Oleic acid (C18:cis[9]1) GC 1.23 1.87 b1700 2-Hydroxypalmitic acid (2-OH-C16:0) GC 1.17 1.20 b1900 Nervonic acid (C24:1) GC 1.25 1.35 b1933 Nervonic acid (C24:1) GC 1.22 1.26 b1980 2-Hydroxypalmitic acid (2-OH-C16:0) GC 1.20 1.27 b2284 Nervonic acid (C24:1) GC 1.30 1.65 b2799 Nervonic acid (C24:1) GC 1.27 1.43 b3429 Hexadecadienoic acid (C16:cis[7,10]2) GC 1.31 1.83 b3429 Hexadecatrienoic acid (C16:cis[7,10,13]3) GC 1.13 1.39 b3568 Nervonic acid (C24:1) GC 1.22 1.49 b3568 trans-9-Hexadecenoic acid (C16:trans[9]1) GC 1.22 1.38 1048 b3708 2-Hydroxypalmitic acid (2-OH-C16:0) GC 1.22 1.29 b3708 Hexadecadienoic acid (C16:cis[7,10]2) GC 1.23 1.84 b3708 Hexadecatrienoic acid (C16:cis[7,10,13]3) GC 1.16 1.32 b3728 Nervonic acid (C24:1) GC 1.22 1.30 YDR035WHeptadecanoic acid (C17:0) GC 1.21 1.40 YJR073C Hexadecadienoic acid (C16:cis[7,10]2) GC 1.22 1.41 YNL241C Hexadecadienoic acid (C16:cis[7,10]2) GC 1.22 1.36 YNL241 C Hexadecatrienoic acid (C1 6:cis[7,10,13]3) GC 1.17 1.24 [0499.0.0.14] and [0500.0.0.14] for the disclosure of the paragraphs [0499.0.0.14] and [0500.0.0.14] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.14.14] Example 15a: Engineering ryegrass plants by over-expressing 5 YDR035W from Saccharomyces cerevisiae or homologs of YDR035W from other or ganisms. [0502.0.0.14] to [0508.0.0.14] for the disclosure of the paragraphs [0502.0.0.14] to [0508.0.0.14] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.8.14] Example 15b: Engineering soybean plants by over-expressing 10 YDR035W from Saccharomyces cerevisiae or homologs of YDR035W from other or ganisms. [0510.0.0.14] to [0513.0.0.14] for the disclosure of the paragraphs [0510.0.0.14] to [0513.0.0.14] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.7.14] Example 15c: Engineering corn plants by over-expressing 15 YDR035W from Saccharomyces cerevisiae or homologs of YDR035W from other or ganisms. [0515.0.0.14] to [0540.0.0.14] for the disclosure of the paragraphs [0515.0.0.14] to [0540.0.0.14] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.8.14] Example 15d: Engineering wheat plants by over-expressing 20 YDR035W from Saccharomyces cerevisiae or homologs of YDR035W from other or ganisms. [0542.0.0.14] to [0544.0.0.14] for the disclosure of the paragraphs [0542.0.0.14] to [0544.0.0.14] see paragraphs [0542.0.0.0] to [0544.0.0.0] above.
1049 [0545.0.8.14] Example 15e: Engineering Rapeseed/Canola plants by over expressing YDR035W from Saccharomyces cerevisiae or homologs of YDR035W from other organisms. [0546.0.0.14] to [0549.0.0.14] for the disclosure of the paragraphs [0546.0.0.14] to 5 [0549.0.0.14] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.8.14] Example 15f: Engineering alfalfa plants by over-expressing YDR035W from Saccharomyces cerevisiae or homologs of YDR035W from other or ganisms. [0551.0.0.14] to [0554.0.0.14] for the disclosure of the paragraphs [0551.0.0.14] to 10 [0554.0.0.14] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.14.14]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. 15 The results are shown in table VII as minimal (MIN) or maximal changes (MAX) in the respective fine chemical (column "metabolite") in genetically modified corn plants ex pressing thesequence listed in column 1 (ORF).: Table VII ORF Metabolite MIN MAX YDR035W Heptadecanoic acid (C17:0) 1.43 1.68 20 In one embodiment, in case the activity of the YDR035W from Saccharomyces cere visiae is increased in corn plants, preferably, an increase of hetadecanoic acid between 43% and 68% or more is conferred. [0554.2.0.14] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.14] for the disclosure of this paragraph see [0555.0.0.0] above.
1050 [0001.0.0.15] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.15.15] The discovery in Arabidopsis of citramalaic acid (Fiehn et al. 2000 Nature Biotechnology 18, 1157-1161) a potential precursor of pyruvic acid and acetate suggests a novel aspect of carbon metabolism and furthermore suggests the existence 5 of a tricarboxylic acid cycle bypass previously found only in bacteria. [0003.0.15.15] Malic acid is an alpha-hydroxy organic acid. Its salt is named as malate. It is found in apples and other fruits and therefore named as fruit acid. Malic acid especially in the form of its anion malate, is a key intermediate in the major bio chemical energy-producing cycle in cells known as the citric acid or Krebs cycle located 10 in the cells' mitochondria. It is an important compound together with magnesium for the treatment of fibromyalgia, a rheumatic illness which affects often middle-aged women. D-Malate is an optically active compound which can be used as a synthon in organic synthesis, as a resolving agent and as a ligand in asymmetric catalysis. 15 The malic acid oxaloacetate shuttle is characteristic for plant cells. It transports redox equivalents intracellularly. Malic acid is not only a central metabolite in intermediary flow of carbon in organisms. In higher plants, vacuolar malic acid accumulation, and hence, transtonoplast malic acid transport, also plays a paramount role in many physio logical functions. These include adjustment of osmotic and turgor potentials in exten 20 sion growth and movements of stomata and pulvini, pH-regulation, e.g. during nitrate reduction, and others (for review, see Littge et al, Plant Physiol,124(2000),1335-1348). Osawa and Matsumoto, Plant Physiol, 126(2001), 411-420 discuss the involvement of malic acid in aluminium resistance in plants. Malic acid is a common constituent of all plants, and its formation is controlled by an enzyme (protein catalyst) called malic acid 25 dehydrogenase (MDH). Malic acid occupies a central role in plant metabolism. Its im portance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. During phosphorus defi ciency, malic acid is frequently secreted from roots to release unavailable forms of phosphorus. In nitrogen-fixing root nodules, malic acid is the primary substrate for bac 30 teroid respiration, thus fueling nitrogenase. Citramalate (= (2S)-2-hydroxy-2-methylbutanedioate or (S)-2-Methylmalic acid) is an derivative of malic acid and produced from itaconic acid.
1051 [0004.0.15.15] Pyruvic acid is a naturally occurring component in plants and vegeta bles and in the body, where it is inherently involved in metabolism, the process whereby energy is produced. Pyruvic acid represents the final step in the metabolism of glucose or starch.Increased pyruvic acid production in yeast strains is known 5 (WO 04/099425). Pyruvic acid is used commercially to produce its salts and esters (pyruvates) used as dietary supplements for the effect of enhancing weight loss. Pyruvic acid is used for the synthesis of amino acids (alanine, tyrosine, phenylalanine, and tryptophan) and used in biochemical research. Its derivatives are used in making food additives and flavoring 10 agents. [0005.0.15.15] Glyceric acid is an important precursor in the anabolism of amino acids, in particular for serin and glycin. Further, the energy level of a cell may be de pend on the level of glyceric acid found. Glycerate and glycerate-3-phophate form a shuttle for the transportation of energy equivalents, e.g. during photorespiration be 15 tween glycosomes and peroxisomes. Glyceric acid has an diuretic effect. [0006.0.15.15] Succinic acid is an intermediate of the citric acid cycle (and the gly oxylate cycle) produced by action of the enzyme succinyl-CoA synthetase on succinyl CoA. Succinic acid is converted to fumaric acid by action of the enzyme succinic acid 20 dehydrogenase (with formation of FADH 2 ). It is used as flavoring agent for food and beverages. Succinic acid is an intermediate for a lot of chemical compounds such as dyes, perfumes, lacquers, photographic chemicals, alkyd resins or plasticizer. Furthermore it is also an intermediate used for the production of medicines used as sedatives, contraceptives or anticancer drugs. 25 [0007.0.15.15] Fumaric acid is another intermediate of the citric acid cycle (Krebs cycle). It is synthesized from succinic acid. Fumarate, also called fumaric acid, is a useful compound in treatment of psoriasis, which is a chronic, incurable, disabling skin disease characterised by red, scaly plaques. Approximately 23% of psoriasis patients also have an accompanying arthritis 30 that can become debilitating.
1052 Threonolactone is another compound used for the treatment of dermatological disor ders. Due to these interesting physiological roles and agrobiotechnological potential of citra malic acid (= citramalate, hydroxypyrotartaric acid), glyceric acid (= glycerate), fumaric 5 acid (= fumarate), malic acid (= malate), pyruvic acid (= pyruvate), succinic acid (= suc cinate) and/or threonolactone there is a need to identify the genes of enzymes and other proteins involved in citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone metabolism, and to generate mutants or transgenic plant lines, which are able to modify the citramalic acid, glyceric acid, fu 10 maric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone content in the plant. [0008.0.15.15] One way to increase the productive capacity of biosynthesis is to ap ply recombinant DNA technology. Thus, it would be desirable to produce citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or 15 threonolactone in plants. That type of production permits control over quality, quantity and selection of the most suitable and efficient producer organisms. The latter is espe cially important for commercial production economics and therefore availability to con sumers. Methods of recombinant DNA technology have been used for some years to improve 20 the production of fine chemicals in microorganisms and plants by amplifying individual biosynthesis genes and investigating the effect on production of fine chemicals. [0009.0.15.15] Thus, it would be advantageous if an algae, plant or other microor ganism were available which produce large amounts citramalic acid, glyceric acid, fu maric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone. The invention 25 discussed hereinafter relates in some embodiments to such transformed eukaryotic organisms. It would also be advantageous if plants were available whose roots, leaves, stem, fruits or flowers produced large amounts of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone. The invention discussed here 30 inafter relates in some embodiments to such transformed plants. [0010.0.15.15] Therefore improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. It is further a task to increase the produc tivity of plants so that the content of citramalic acid, glyceric acid, fumaric acid, malic 1053 acid, pyruvic acid, succinic acid and/or threonolactone in the plants are increased. Said products can be isolated from the plants and used for the production of cosmetics and pharmaceuticals. [0011.0.15.15] To ensure a high quality of foods, animal feeds, cosmetics and phar 5 maceuticals, it is therefore necessary to make the aforementioned compounds in safe plants. [0012.0.15.15] Accordingly, there is still a great demand for new and more suitable genes which encode enzymes which participate in the biosynthesis of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac 10 tone, and make it possible to produce them specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for biosynthesis two character istics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of said compounds; on the other hand as less as possible byproducts should be produced in the production 15 process. [0013.0.0.15] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.15.15] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is citramalic acid, glyc eric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or 20 their salts, amides, thioesters or esters. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or their salts, amides, thioesters or esters". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising citramalic acid, glyceric acid, fumaric acid, malic acid, 25 pyruvic acid, succinic acid and/or threonolactone or their salts, amides, thioesters or esters. [0015.0.15.15] In one embodiment, the term "citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or their salts, am ides, thioesters or esters", "the fine chemical" or "the respective fine chemical" means 30 at least one chemical compound selected from the group consisting of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or their salts, amides, thioesters or esters. Throughout the specification the term "the fine chemical" or "the respective fine chemical" means a compound selected from the 1054 group consisiting of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or their salts, amides, thioesters or esters in free form or bound to other compounds such as proteins. In one embodiment, the term "the fine chemical" and the term "the respective fine 5 chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. In one embodiment, the term "the fine chemical" or "the respective fine chemical" means a citramalic acid, its salts, amides, thioesters and/or esters. In one embodiment, the term "the fine chemical" or "the respective fine chemical" 10 means a glyceric acid, its salts, amides, thioesters and/or esters. In another embodiment, the term "the fine chemical" or "the respective fine chemical" means fumaric acid, its salts, amides, thioesters and/or esters. In one embodiment, the term "the fine chemical" or "the respective fine chemical" means malic acid, its salts, amides, thioesters and/or esters. In further another embodiment, the term "the 15 fine chemical" or "the respective fine chemical" means pyruvic acid, its salts, amides, thioesters and/or esters. In one embodiment, the term "the fine chemical" or "the re spective fine chemical" means succinic acid, its salts, amides, thioesters and/or esters. In one embodiment, the term "the fine chemical" or "the respective fine chemical" means threonolactone. Throughout the specification the term "the fine chemical" or "the 20 respective fine chemical" means citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or their salts, amides, thioesters or esters in free form or bound to other compounds such as proteins, lipids or sugars or sugar polymers, like glucoside, e.g. diglucoside. In particular it is known to the skilled that anionic compounds as acids are present in an 25 equilibrium of the acid and its salts according to the pH present in the respective com partment of the cell or organism and the pK of the acid. Thus, the term "the fine chemi cal", the term "the respective fine chemical", the term "acid" or the use of a demonina tion referring to a neutralized anionic compound respectivley relates the anionic form as well as the neutralised status of that compound. 30 Thus, citramalic acid relates also to citramalate, glyceric acid also relates to glycerate, fumaric acid also relates to fumarate, malic acid also relates to malate, pyruvic acid also relates to pyruvate, succinic acid relates to succinate. In one embodiment, the term "the fine chemical" and the term "the respective fine 35 chemical" mean at least one chemical compound with an activity of the above men tioned fine chemical 1055 [0016.0.15.15] Accordingly, the present invention relates to a process for the produc tion of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 16, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 16, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or 15 esters or fine chemicals comprising citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters, are produced in said organism or in the culture medium surrounding the organism. [0016.1.15.15] Accordingly, the term "the fine chemical" means "citramalic acid, 20 glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac tone, their salts, amides, thioesters and/or esters" in relation to all sequences listed in table I - IV, application no. 16, columns 3, 5 and 7 or homologs thereof. Accordingly, the term "the fine chemical" can mean "citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters 25 and/or esters", owing to circumstances and the context. Preferably the term "the fine chemical" means "citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone or their salts". In order to illustrate that the meaning of the term "the respective fine chemical" means "citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, 30 thioesters and/or esters" owing to the sequences listed in the context the term "the re spective fine chemical" is also used. [0017.0.15.15] In another embodiment the present invention is related to a process for the production of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, 1056 succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap 5 plication no. 16, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 16, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 10 (c) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 16, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 15 (d) growing the organism under conditions which permit the production of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters in said organism. [0017.1.15.15] In another embodiment, the present invention relates to a process for the production of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, 20 succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 16, column 5, in an organelle of a microorganism or plant through the 25 transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 16, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 16, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 30 (c) growing the organism under conditions which permit the production of the fine chemical, thus, citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or es ters or fine chemicals comprising citramalic acid, glyceric acid, fumaric acid, malic 1057 acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thio esters and/or esters, are produced in said organism or in the culture medium sur rounding the organism. [0018.0.15.15] Advantagously the activity of the protein as shown in table 1l, applica 5 tion no. 16, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 16, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.15] to [0024.0.0.15] for the disclosure of the paragraphs [0019.0.0.15] to [0024.0.0.15] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. 10 [0025.0.15.15] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to 15 link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 16, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin 20 NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 25 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 30 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 35 ful for the molecular joining of the different nucleic acid molecules. This procedure 1058 might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 5 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.15.15] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 16, column 3 and its homologs as disclosed in 10 table I, application no. 16, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 15 ing for proteins as shown in table II, application no. 16, column 3 and its homologs as disclosed in table I, application no. 16, columns 5 and 7. [0027.0.0.15] to [0029.0.0.15] for the disclosure of the paragraphs [0027.0.0.15] to [0029.0.0.15] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.15.15] Alternatively, nucleic acid sequences coding for the transit peptides 20 may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 25 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 30 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 35 shorter or longer stretches are also possible. In addition target sequences, which facili- 1059 tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 5 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 16, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 16, columns 5 and 7 10 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 16, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 15 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 16, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex 20 pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 16, columns 5 and 7. Fur 25 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.15.15] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.15.15] Alternatively to the targeting of the sequences shown in table II, ap 30 plication no. 16, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 35 16, columns 5 and 7 are directly introduced and expressed in plastids.
1060 The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 5 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 10 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.15] and [0030.3.0.15] for the disclosure of the paragraphs [0030.2.0.15] and [0030.3.0.15] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.15.15] For the inventive process it is of great advantage that by transforming 15 the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 16, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. 20 A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 16, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 16, columns 5 25 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 30 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 16, columns 5 and 7 or a sequence 35 encoding a protein, as depicted in table II, application no. 16, columns 5 and 7 in such 1061 a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 16, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 16, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 5 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 16, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 10 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 15 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 16, columns 5 and 7. 20 [0030.5.15.15] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 16, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle 25 dons or in seeds. [0030.6.15.15] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 16, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro 30 moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.15] and [0032.0.0.15] for the disclosure of the paragraphs [0031.0.0.15] and [0032.0.0.15] see paragraphs [0031.0.0.0] and [0032.0.0.0] above.
1062 [0033.0.15.15] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro 5 duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 16, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 16, column 3 or their combination can be achieved by joining the protein to a transit peptide. 10 [0034.0.15.15] Surprisingly it was found, that the transgenic expression of the Es cherichia coli or Saccaromyces cerevisiae protein as shown in table II, application no. 16, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V con ferred an increase in the fine chemical content of the transformed plants as shown in 15 any one of table I-IV application no. 16, column 6. [0035.0.0.15] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.15.15] The sequence of b0931 (Accession number PIR:JQ0756) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "nicotinate phosphoribosyltransferase". Ac 20 cordingly, in one embodiment, the process of the present invention comprises the use of a "nicotinate phosphoribosyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fumaric acid, its salts, amides, thioesters or esters, in particular for increasing the amount of fumaric acid, its salts, amides, thioest ers or esters in free or bound form in an organism or a part thereof, as mentioned. In 25 one embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1046 (Accession number PIR:C64847) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative synthase with phospholipase D/nuclease domain". Ac cordingly, in one embodiment, the process of the present invention comprises the use 35 of a "putative synthase with phospholipase D/nuclease domain" or its homolog, e.g. as 1063 shown herein, for the production of the fine chemical, meaning of glyceric acid, its salts, amides, thioesters or esters, in particular for increasing the amount of glyceric acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 5 activity of a b1046 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1046 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown 15 herein, for the production of the fine chemical, meaning of fumaric acid, its salts, am ides, thioesters or esters, in particular for increasing the amount of fumaric acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated, e.g. from Escherichia coli or a 20 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of succinic acid, its salts, am 30 ides, thioesters or esters, in particular for increasing the amount of succinic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 35 ample in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or- 1064 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the 5 present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of threonolactone, in particular for increasing the amount of threonolactone in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 556 protein is increased or generated, e.g. from Escherichia coli or a 10 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. Furthermore in one 15 embodiment, the process of the present invention comprises the use of a " Qin pro hage" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of one or of any combination of 2, 3 of the fine chemicals, e.g. compounds, selected from the group of "fumaric acid, succinic acid and threolactone. 20 The sequence of b1732 (Accession number PIR:A39129) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "catalase (hydroperoxidase), RpoS-dependent". Accordingly, in one embodiment, the process of the present invention comprises the use of a "catalase (hydroperoxidase), RpoS-dependent" or its homolog, e.g. as shown herein, for the pro 25 duction of the fine chemical, meaning of succinic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of succinic acid, its salts, amides, thio esters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 732 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 30 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1732 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2066 (Accession number NP_416570) from Escherichia coli has 35 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "uridine/cytidine kinase". Accordingly, in one embodiment, the proc ess of the present invention comprises the use of a "uridine/cytidine kinase" or its ho- 1065 molog, e.g. as shown herein, for the production of the fine chemical, meaning of malic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of malic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in 5 vention the activity of a b2066 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2066 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2312 (Accession number PIR:XQEC) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "amidophosphoribosyltransferase (PRPP amidotransferase)". Accord ingly, in one embodiment, the process of the present invention comprises the use of a 15 "amidophosphoribosyltransferase (PRPP amidotransferase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of succinic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of succinic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention 20 the activity of a b2312 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b2312 protein is increased or generated in a subcellular compartment of the organism or or 25 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3770 (Accession number YP_026247) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "branched-chain amino-acid aminotransferase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "branched 30 chain amino-acid aminotransferase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of citramalic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of citramalic acid, its salts, amides, thio esters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3770 protein 35 is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3770 1066 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4122 (Accession number PIR:B4451 1) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 5 is being defined as "fumarase B, fumarate hydratase Class I". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "fumarase B, fumarate hydratase Class I" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fumaric acid, its salts, amides, thioesters or esters, in particular for increasing the amount of fumaric acid, its salts, amides, thioesters or es 10 ters in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a b4122 protein is in creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4122 15 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4139 (Accession number NP_418562) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "aspartate ammonia-lyase (aspartase)". Accordingly, in one em 20 bodiment, the process of the present invention comprises the use of a "aspartate am monia-lyase (aspartase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fumaric acid, its salts, amides, thioesters or esters, in par ticular for increasing the amount of fumaric acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodi 25 ment, in the process of the present invention the activity of a b4139 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4139 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YALO38W (Accession number NP_009362) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "pyruvate kinase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "pyruvate kinase" or its 35 homolog, e.g. as shown herein, for the production of the fine chemical, meaning of succinic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of succinic acid, its salts, amides, thioesters or esters in free or bound form in 1067 an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YAL038W protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a YAL038W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YAL038W (Accession number NP_009362) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, 10 and its activity is being defined as "pyruvate kinase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "pyruvate kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of py ruvic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of pyruvic acid, its salts, amides, thioesters or esters in free or bound form in an organ 15 ism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YAL038W protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 20 YAL038W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YAL038W (Accession number NP_009362) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "pyruvate kinase". Accordingly, in one embodiment, 25 the process of the present invention comprises the use of a "pyruvate kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of citramalic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of citramalic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 30 present invention the activity of a YAL038W protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YAL038W protein is increased or generated in a subcellular compartment of the organ 35 ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "pyru vate kinase" or its homolog, e.g. as shown herein for the production of the fine chemi- 1068 cals, in particular for increasing the amount of one or of any combination of 2, 3 of the fine chemicals, e.g. compounds, selected from the group of "citramalic acid, succinic acid and pyruvic acid. The sequence of YDL078C (Accession number PIR:DEBYMP) from Saccharomyces 5 cerevisiae has been published in Jacq et al., Nature 387 (6632 Suppl), 75-78, 1997, and its activity is being defined as "malate dehydrogenase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "malate dehy drogenase" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of malic acid, its salts, amides, thioesters or esters , in particular for in 10 creasing the amount of malic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDL078C protein is increased or gen erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a YDL078C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGL065C (Accession number PIR:S64069) from Saccharomyces cerevisiae has been published in Jackson et al., Glycobiology, 3:357-364(1993), and its 20 activity is being defined as "ALG2 protein precursor". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ALG2 protein precursor" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of succinic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of succinic acid, its salts, amides, thioesters or esters in free or bound form in 25 an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGL065C protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 30 YGL065C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGL126W (Accession number NP_011389) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "protein, which is required for inositol prototrophy". 35 Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein, which is required for inositol prototrophy" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of succinic acid, its 1069 salts, amides, thioesters or esters, in particular for increasing the amount of succinic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGL126W protein is increased or generated, e.g. from Escherichia coli 5 or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YGL126W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of YJL139C (Accession number PIR:S36856) from Saccharomyces cer evisiae has been published in Foreman et al., Nucleic Acids Res. 19:2781-2781(1991), and its activity is being defined as "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation". Accordingly, in one embodiment, the process of the present invention comprises the use of a "mannosyltransferase of the KTR1 family, involved in 15 protein N-glycosylation" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fumaric acid, its salts, amides, thioesters or esters, in par ticular for increasing the amount of fumaric acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a YJL1 39C protein is in 20 creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YJL1 39C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "phosphoglycerate mutase like protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein, for the 30 production of the fine chemical, meaning of malic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of malic acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YKR043C protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 35 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YKR043C protein is increased or generated in a subcellular compartment of the organ- 1070 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "phosphoglycerate mutase like protein". Accordingly, 5 in one embodiment, the process of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fumaric acid, its salts, amides, thioesters or esters, in particular for increasing the amount of fumaric acid, its salts, amides, thioest ers or esters in free or bound form in an organism or a part thereof, as mentioned. In 10 one embodiment, in the process of the present invention the activity of a YKR043C protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YKR043C protein is increased or generated in a subcellular compartment of the organ 15 ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of fumaric acid, its salts, amides, thioesters or esters and malic acid, its salts, amides, thioesters or 20 esters. The sequence of YOL126C (Accession number PIR:DEBYMC) from Saccharomyces cerevisiae has been published in Minard K.I., McAlister-Henn L., Mol. Cell. Biol. 11:370-380(1991), and its activity is being defined as "malate dehydrogenase". Accord ingly, in one embodiment, the process of the present invention comprises the use of a 25 "malate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fumaric acid, its salts, amides, thioesters or esters, in par ticular for increasing the amount of fumaric acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodi ment, in the process of the present invention the activity of a YOL126C protein is in 30 creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YOL126C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 35 The sequence of YOL126C (Accession number PIR:DEBYMC) from Saccharomyces cerevisiae has been published in Minard K.I., McAlister-Henn L., Mol. Cell. Biol. 11:370-380(1991), and its activity is being defined as "malate dehydrogenase". Accord- 1071 ingly, in one embodiment, the process of the present invention comprises the use of a "malate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of malic acid, its salts, amides, thioesters or esters, in particular for increasing the amount of malic acid, its salts, amides, thioesters or esters in free or 5 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YOL126C protein is increased or gen erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 10 YOL126C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "malate dehydrogenase" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of fumaric acid, its salts, amides, 15 thioesters or esters and malic acid, its salts, amides, thioesters or esters. The sequence of YOR350C (Accession number PIR|S67259) from Saccharomyces cerevisiae has been published in Dujon et al., Nature 387:98-102(1997), and its activity is being defined as "a protein, which is similar to Lucilia illustris mitochondria cyto chrome oxidase". Accordingly, in one embodiment, the process of the present invention 20 comprises the use of a "protein, which is similar to Lucilia illustris mitochondria cyto chrome oxidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glyceric acid, its salts, amides, thioesters or esters, in particular for increasing the amount of glyceric acid, its salts, amides, thioesters or esters in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in 25 the process of the present invention the activity of a YOR350C protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YOR350C protein is increased or generated in a subcellular compartment of the organ 30 ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.15.15] In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL126C, YOL126C or YOR350C, is a homolog having said acitivity and being de rived from Eukaryot. In one embodiment, the homolog of the b0931, b1046, b1556, 35 b1556, b1556, b1732, b2066, b2312, b3770, b4122 or b4139 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the 1072 YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL1 26C, YOL1 26C or YOR350C is a homolog having said acitivity and being derived from Fungi. In one embodiment, the homolog of the b0931, b1046, b1556, b1556, b1556, b1732, b2066, b2312, b3770, b4122 or b4139 is a ho 5 molog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL126C, YOL126C or YOR350C is a homolog hav ing said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b0931, b1046, b1556, b1556, b1556, b1732, b2066, b2312, b3770, b4122 or 10 b4139 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL139C, YKR043C, YKR043C, YOL126C, YOL126C or YOR350C is a homolog having said acitivity and being derived from Saccharomy cotina. In one embodiment, the homolog of the b0931, b1046, b1556, b1556, b1556, 15 b1732, b2066, b2312, b3770, b4122 or b4139 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL1 26C, YOL1 26C or YOR350C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of 20 the b0931, b1046, b1556, b1556, b1556, b1732, b2066, b2312, b3770, b4122 or b4139 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL139C, YKR043C, YKR043C, YOL126C, YOL126C or YOR350C is a homolog having said acitivity and being derived from Saccharomy 25 cetales. In one embodiment, the homolog of the b0931, b1046, b1556, b1556, b1556, b1732, b2066, b2312, b3770, b4122 or b4139 is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL126C, YOL126C or YOR350C is a homolog hav 30 ing said acitivity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YALO38W, YALO38W, YALO38W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL126C, YOL126C or YOR350C is a homolog hav ing said acitivity and being derived from Saccharomycetes, preferably from Saccharo myces cerevisiae. 35 [0038.0.0.15] for the disclosure of this paragraph see paragraph [0038.0.0.0] above.
1073 [0039.0.15.15] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 16, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the fine chemical level in the organism or a part thereof, preferably in a cell of said organism, 5 more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica tion no. 16, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a 10 protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 16, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in table II, application no. 15 16, column 3 of Saccharomyces cerevisiae. [0040.0.0.15] to [0047.0.0.15] for the disclosure of the paragraphs [0040.0.0.15] to [0047.0.0.15] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.15.15] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of 20 the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 16, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. 25 [0049.0.0.15] to [0051.0.0.15] for the disclosure of the paragraphs [0049.0.0.15] to [0051.0.0.15] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.15.15] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex 30 pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table I, application no. 16, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos- 1074 sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 5 [0053.0.0.15] to [0058.0.0.15] for the disclosure of the paragraphs [0053.0.0.15] to [0058.0.0.15] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.15.15] In case the activity of the Escherichia coli protein b0931 or its ho mologs, e.g. a "nicotinate phosphoribosyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in 10 crease of the fine chemical, preferably of fumaric acid, its salts, amides, thioesters and/or esters between 47% and 365% or more is conferred. In case the activity of the Escherichia coli protein b1046 or its homologs, e.g. a "puta tive synthase with phospholipase D/nuclease domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in 15 crease of the fine chemical, preferably of glyceric acid, its salts, amides, thioesters and/or esters between 31% and 65% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of fu 20 maric acid, its salts, amides, thioesters and/or esters between 136% and 372% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of suc 25 cinic acid, its salts, amides, thioesters and/or esters between 47% and 204% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of 30 threonolactone between 38% and 103% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of fu maric acid, its salts, amides, thioesters and/or esters between 136% and 372% or more 35 and/or succinic acid, its salts, amides, thioesters and/or esters between 47% and 204% 1075 or more and/or of threonolactone between 38% and 103% or more is conferred. In case the activity of the Escherichia coli protein b1732 or its homologs, e.g. a "cata lase (hydroperoxidase), RpoS-dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 5 fine chemical, preferably of succinic acid, its salts, amides, thioesters and/or esters between 28% and 37% or more is conferred. In case the activity of the Escherichia coli protein b2066 or its homologs, e.g. a "uridine/cytidine kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref 10 erably of malic acid, their salts, amides, thioesters and/or esters between 70% and 292% or more is conferred. In case the activity of the Escherichia coli protein b2312 or its homologs, e.g. a "amido phosphoribosyltransferase (PRPP amidotransferase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in 15 crease of the fine chemical, preferably of succinic acid, their salts, amides, thioesters and/or esters between 24% and 33% or more is conferred. In case the activity of the Escherichia coli protein 3770 or its homologs, e.g. a "branched-chain amino-acid aminotransferase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase 20 of the fine chemical, preferably of citramalic acid, their salts, amides, thioesters and/or esters between 49% and 223% or more is conferred. In case the activity of the Escherichia coli protein b4122 or its homologs, e.g. a "fu marase B, fumarate hydratase Class I" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 25 fine chemical, preferably of fumaric acid, their salts, amides, thioesters and/or esters between 153% and 444% or more is conferred. In case the activity of the Escherichia coli protein b4139 or its homologs, e.g. a "aspar tate ammonia-lyase (aspartase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 30 cal, preferably of fumaric acid, their salts, amides, thioesters and/or esters between 1394% and 2437% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YAL038W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref 35 erably of succinic acid, their salts, amides, thioesters and/or esters between 40% and 367% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YAL038W or its homologs, 1076 e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of pyruvic acid, their salts, amides, thioesters and/or esters between 37% and 164% or more is conferred. 5 In case the activity of the Saccharomyces cerevisiae protein YAL038W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of citramalic acid, their salts, amides, thioesters and/or esters between 72% and 337% or more is conferred. 10 In case the activity of the Saccharomyces cerevisiae protein YAL038W or its homologs, e.g. a "pyruvate kinase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of succinic acid, their salts, amides, thioesters and/or esters between 40% and 367% or more and/or pyruvic acid, their salts, amides, thioesters and/or esters between 15 37% and 164% or more and/or citramalic acid, their salts, amides, thioesters and/or esters between 72% and 337% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDL078C or its homologs, e.g. a "malate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 20 cal, preferably of malic acid, their salts, amides, thioesters and/or esters between 83% and 371 % or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YGL065C or its homologs, e.g. a "ALG2 protein precursor" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 25 cal, preferably of succinic acid, their salts, amides, thioesters and/or esters between 8% and 21% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YGL126W or its ho mologs, e.g. a "protein required for inositol prototrophy" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in 30 crease of the fine chemical, preferably of succinic acid, their salts, amides, thioesters and/or esters between 30% and 45% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YJL1 39C or its homologs, e.g. a "Mannosyltransferase of the KTR1 family, involved in protein N-glycosylation" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, 35 in one embodiment an increase of the fine chemical, preferably of fumaric acid, their salts, amides, thioesters and/or esters between 55% and 310% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, 1077 e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of malic acid, their salts, amides, thioesters and/or es ters between 54% and 216% or more is conferred. 5 In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of fumaric acid, their salts, amides, thioesters and/or esters between 990% and 1435% or more is conferred. 10 In case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of malic acid, their salts, amides, thioesters and/or es ters between 54% and 216% or more and/or fumaric acid, their salts, amides, thioest 15 ers and/or esters between 990% and 1435% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YOL126C or its homologs, e.g. a "malate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of fumaric acid, their salts, amides, thioesters and/or esters between 20 100% and 118% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YOL126C or its homologs, e.g. a "malate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of malic acid, their salts, amides, thioesters and/or esters between 83% 25 and 204% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YOL126C or its homologs, e.g. a "malate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of fumaric acid, their salts, amides, thioesters and/or esters between 30 100% and 118% or more and/or malic acid, their salts, amides, thioesters and/or esters between 83% and 204% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YOR350C or its ho mologs, e.g. a "protein similar to Lucilia illustris mitochondria cytochrome oxidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, 35 in one embodiment an increase of the fine chemical, preferably of glyceric acid, their salts, amides, thioesters and/or esters between 41% and 51% or more is conferred.
1078 [0060.0.15.15] In case the activity of the Escherichia coli proteins b0931, b1 046, b1556, b1556, b1556, b1732, b2066, b2312, b3770, b4122 and/or b4139 or their ho mologs, are increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical such as citramalic acid, glyceric acid, 5 fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters is conferred. In case the activity of the Saccharomyces cerevisiae proteins YAL038W, YAL038W, YAL038W, YDL078C, YGL065C, YGL126W, YJL1 39C, YKR043C, YKR043C, YOL126C, YOL126C and/or YOR350C or its homologsare increased advantageously 10 in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters is con ferred. [0061.0.0.15] and [0062.0.0.15] for the disclosure of the paragraphs [0061.0.0.15] and 15 [0062.0.0.15] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.15.15] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the structure of the polypeptide described herein, in particular of the polypeptides compris ing the consensus sequence shown in table IV, application no. 16, column 7 or of the 20 polypeptide as shown in the amino acid sequences as disclosed in table II, application no. 16, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 16, columns 5 and 7 or its herein described functional homologues 25 and has the herein mentioned activity. [0064.0.15.15]/ [0065.0.0.15] and [0066.0.0.15] for the disclosure of the paragraphs [0065.0.0.15] and [0066.0.0.15] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.15.15]In one embodiment, the process of the present invention comprises one 30 or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli- 1079 cation no. 16, columns 5 and 7 or its homologs activity having herein-mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing ac tivity; and/or 5 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table 1, application no. 16, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi 10 cated in table 1l, application no. 16, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity; and/or 15 c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity, e.g. of a polypep 20 tide having the activity of a protein as indicated in table 1l, application no. 16, col umns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres 25 sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity, e.g. of a polypep tide having the activity of a protein as indicated in table 1l, application no. 16, col 30 umns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned citramalic acid, glyceric acid, fu maric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their 1080 salts, amides, thioesters and/or esters increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 16, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing fac tors to the organismus or parts thereof; and/or 5 f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing ac 10 tivity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 16, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned 15 citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 16, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of 20 the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 16, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements 25 form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en 30 hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of 1081 heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target 5 organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity, 10 e.g. of polypeptide having the activity of a protein as indicated in table 1l, applica tion no. 16, columns 5 and 7 or its homologs activity, to the plastids by the addi tion of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 15 mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity, e.g. of a polypeptide having the activity of a protein as indi cated in table 1l, application no. 16, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advantageously stable trans 20 formation of organelles preferably plastids with an inventive nucleic acid se quence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the in vention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of 25 the invention or of the polypeptide of the present invention having herein mentioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity, e.g. of a polypeptide having the activity of a protein as indi cated in table 1l, application no. 16, columns 5 and 7 or its homologs activity in 30 plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.15.15] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by 1082 the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after increasing the expression or activity of the encoded polypeptide preferably in organ 5 elles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 16, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. [0069.0.0.15] to [0079.0.0.15] for the disclosure of the paragraphs [0069.0.0.15] to [0079.0.0.15] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. 10 [0080.0.15.15] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 16, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic 15 transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 16, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod 20 ing the protein as shown in table II, application no. 16, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 16, column 3, see e.g. in WOO1/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. 25 [0081.0.0.15] to [0084.0.0.15] for the disclosure of the paragraphs [0081.0.0.15] to [0084.0.0.15] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.15.15] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole cule used in the method of the invention or the polypeptide of the invention or the poly 30 peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel metabolites composition in the organism, e.g. citramalic acid, glyceric acid, fu- 1083 maric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters and mixtures thereof. [0086.0.0.15] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.15.15] By influencing the metabolism thus, it is possible to produce, in the 5 process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters compounds such as other organic acids, vitamins or fatty acids. [0088.0.15.15]Accordingly, in one embodiment, the process according to the invention 10 relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 16, column 15 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in 20 the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 25 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.15.15] The organism, in particular the microorganism, non-human animal, 30 the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound 1084 the fine chemical or the free and bound the fine chemical but as option it is also possi ble to produce, recover and, if desired isolate, other free or/and bound organic acids such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters. 5 [0090.0.0.15] to [0097.0.0.15] for the disclosure of the paragraphs [0090.0.0.15] to [0097.0.0.15] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.15.15] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 10 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 16, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked 15 to the nucleic acid sequence as shown table 1, application no. 16, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by 20 way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least 25 on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.15.15] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven 30 tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 16, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting 1085 nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 16, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application 5 no. 16, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.15] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. 10 [0101.0.15.15] In an advantageous embodiment of the invention, the organism takes the form of a plant whose citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutri 15 tional value of plants for poultry is dependent on the abovementioned citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac tone, their salts, amides, thioesters and/or esters and the general amount of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters as energy source and/or 20 protecting compounds citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters in feed. After the activity of the protein as shown in table 1l, application no. 16, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic 25 plant generated thus is grown on or in a nutrient medium or else in the soil and subse quently harvested. [0102.0.0.15] to [0110.0.0.15] for the disclosure of the paragraphs [0102.0.0.15] to [0110.0.0.15] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.15.15] In a preferred embodiment, the fine chemical (citramalic acid, glyceric 30 acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters) is produced in accordance with the invention and, if desired, is isolated. The production of further organic acid such as citric acid, a ketoglutaric acid, itaconic acid and mixtures thereof or mixtures of other organic acids by the process according to the invention is advantageous. It may be advantageous to 1086 increase the pool of free organic acids such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. 5 [0112.0.15.15] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of anucleic acid encoding a protein or polypeptid for ex ample another gene of the citramalic acid, glyceric acid, fumaric acid, malic acid, pyru vic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or es 10 ters biosynthesis, or a compound, which functions as a sink for the desired organic acids such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, suc cinic acid and/or threonolactone, their salts, amides, thioesters and/or esters in the organism is useful to increase the production of the respective fine chemical. [0113.0.15.15] In a preferred embodiment, the respective fine chemical is produced 15 in accordance with the invention and, if desired, is isolated. The production of further organic acids other then citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters or compounds for which the respective fine chemical is a biosynthesis precursor com pounds, e.g. amino acids, or mixtures thereof or mixtures of other organic acids, in par 20 ticular of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters, by the process according to the invention is advantageous. [0114.0.15.15] In the case of the fermentation of microorganisms, the abovemen tioned desired fine chemical may accumulate in the medium and/or the cells. If micro 25 organisms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can 30 subsequently be reduced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formu lation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently 35 be processed by lyophilization, spray drying, and spray granulation or by other meth- 1087 ods. Preferably the respective fine chemical comprising compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato 5 graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. [0115.0.15.15] Transgenic plants which comprise the fine chemical such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or 10 threonolactone, their salts, amides, thioesters and/or esters synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the fine chemical synthesized to be isolated. Plants for the process ac cording to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, 15 stalks, embryos, calli, cotelydons, petioles, flowers, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. 20 However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, (in the form of their organic extracts, e.g. amide, ester, alcohol, or other organic solvents or water con taining extract and/or free organic acids citramalic acid, glyceric acid, fumaric acid, ma lic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters 25 and/or esters or other extracts. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the medium in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extraction it is beneficial to clean, to temper and if neces sary to hull and to flake the plant material. To allow for greater ease of disruption of the 30 plant parts, specifically the seeds, they can previously be comminuted, steamed or roasted. Seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as organic solvents like warm hexane or water or mixtures of organic solvents and water. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly 35 without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. Thereafter, the resulting products can be proc- 1088 essed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter can be first removed. What is known as deslim ing can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. 5 Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, ad sorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. 10 [0115.1.15.15] The identity and purity of the compound(s) isolated can be deter mined by prior-art techniques. They encompass high-performance liquid chromatogra phy (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbi ological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. 15 Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Indus trial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. 20 (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17. [0115.2.15.15] Citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters can for example be detected advantageously via HPLC, LC or GC separation methods. The 25 unambiguous detection for the presence of organic acids, in particular citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac tone, their salts, amides, thioesters and/or esters containing products can be obtained by analyzing recombinant organisms using analytical standard methods: LC, LC-MS, MS or TLC). The material to be analyzed can be disrupted by sonication, grinding in a 30 glass mill, liquid nitrogen and grinding, cooking, or via other applicable methods [0116.0.15.15] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the 1089 expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 16, columns 5 and 7 or a fragment 5 thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 16, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 10 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 15 molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 20 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 25 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by 30 amplifying nucleic acid molecules from a cDNA library or a genomic library using 1090 the primers shown in table III, application no. 16, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en 5 coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 16, column 7 and conferring an in 10 crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 16, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 15 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase 20 in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.15.15] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 16, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid 25 molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 16, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 16, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en 30 code a polypeptide of a sequence indicated in table II A, application no. 16, columns 5 and 7.
1091 [0116.2.15.15] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 16, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 5 cated in table I B, application no. 16, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 16, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 16, columns 5 10 and 7. [0117.0.15.15] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 16, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 16, columns 5 and 7. In one embodiment, the nucleic acid molecule of the 15 present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 16, columns 5 and 7. In another embodi ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 16, columns 5 and 7. [0118.0.0.15] to [0120.0.0.15] for the disclosure of the paragraphs [0118.0.0.15] to 20 [0120.0.0.15] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.15.15] Nucleic acid molecules with the sequence shown in table I, application no. 16, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 16, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 16, column 7, or 25 their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 16, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 30 [0122.0.0.15] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.15.15] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as 1092 shown in table II, application no. 16, column 3 can be determined from generally ac cessible databases. [0124.0.0.15] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.15.15] The nucleic acid molecules used in the process according to the inven 5 tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 16, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.15] to [0133.0.0.15] for the disclosure of the paragraphs [0126.0.0.15] to 10 [0133.0.0.15] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.15.15] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 16, columns 5 and 15 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 16, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0135.0.0.15] to [0140.0.0.15] for the disclosure of the paragraphs [0135.0.0.15] to [0140.0.0.15] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.15.15] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 16, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown 25 in table I, application no. 16, columns 5 and 7 or the sequences derived from table II, application no. 16, columns 5 and 7. [0142.0.15.15] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven 30 tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 1093 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 16, column 7 is derived from said aligments. [0143.0.15.15] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 5 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 16, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.15] to [0151.0.0.15] for the disclosure of the paragraphs [0144.0.0.15] to [0151.0.0.15] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 10 [0152.0.15.15] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 16, columns 5 and 7, preferably of table I B, application no. 16, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 15 citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity. [0153.0.0.15] to [0159.0.0.15] for the disclosure of the paragraphs [0153.0.0.15] to [0159.0.0.15] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.15.15] Further, the nucleic acid molecule of the invention comprises a nucleic 20 acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in 25 table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple 30 ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U 1094 or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.15.15] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 5 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after 10 increasing the acitivity or an activity of a gene product as shown in table II, application no. 16, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.15.15] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined 15 herein, to one of the nucleotide sequences shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increase by for 20 example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 16, column 3. [0163.0.15.15] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 25 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for 30 example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises 35 substantially purified oligonucleotide. The oligonucleotide typically comprises a region 1095 of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 16, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in 5 table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the 10 examples. A PCR with the primers shown in table III, application no. 16, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.15] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.15.15] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 15 gous to the amino acid sequence shown in table II, application no. 16, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters increasing activity as mentioned above or as described in the examples 20 in plants or microorganisms is comprised. [0166.0.15.15] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the 25 polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 16, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.15.15] In one embodiment, the nucleic acid molecule of the present invention 30 comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 16, 1096 columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.15] and [0169.0.0.15] for the disclosure of the paragraphs [0168.0.0.15] 5 and [0169.0.0.15] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.15.15] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 16, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned 10 activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 16, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence 15 shown in table II, application no. 16, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 16, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not 20 consist of the sequence shown in table I, application no. 16, columns 5 and 7, prefera bly as indicated in table I A, application no. 16, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 16, columns 5 and 7. [0171.0.0.15] to [0173.0.0.15] for the disclosure of the paragraphs [0171.0.0.15] to 25 [0173.0.0.15] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.15.15] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present 30 invention, e.g. comprising the sequence shown in table I, application no. 16, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.15] for the disclosure of this paragraph see paragraph [0175.0.0.0] above.
1097 [0176.0.15.15] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 16, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 5 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 10 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.15] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.15.15]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid 15 molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 16, columns 5 and 7. [0179.0.0.15] and [0180.0.0.15] for the disclosure of the paragraphs [0179.0.0.15] and [0180.0.0.15] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.15.15] Accordingly, the invention relates to nucleic acid molecules encoding a 20 polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se 25 quences shown in table II, application no. 16, columns 5 and 7, preferably shown in table II A, application no. 16, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 16, columns 5 30 and 7, preferably shown in table II A, application no. 16, columns 5 and 7 and is capa ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se- 1098 quence shown in table II, application no. 16, columns 5 and 7, preferably shown in ta ble II A, application no. 16, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 16, columns 5 and 7, preferably shown in table II A, application no. 16, columns 5 and 7, even more prefera 5 bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap plication no. 16, columns 5 and 7, preferably shown in table II A, application no. 16, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 16, columns 5 and 7, preferably shown in table II A, application no. 16, columns 5 and 7. 10 [0182.0.0.15] to [0188.0.0.15] for the disclosure of the paragraphs [0182.0.0.15] to [0188.0.0.15] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.15.15] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 16, columns 5 and 7, preferably shown in table II B, applica tion no. 16, columns 5 and 7 resp., according to the invention by substitution, insertion 15 or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7 resp., ac 20 cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7. [0190.0.15.15] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, 25 application no. 16, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 16, 30 columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same properties as the polypeptide as shown in table II, application no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7. [0191.0.0.15] for the disclosure of this paragraph see paragraph [0191.0.0.0] above.
1099 [0192.0.15.15] A nucleic acid molecule encoding an homologous to a protein se quence of table II, application no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu 5 cleic acid molecule of the present invention, in particular of table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 16, columns 5 and 7, preferably shown in table I B, 10 application no. 16, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.15] to [0196.0.0.15] for the disclosure of the paragraphs [0193.0.0.15] to [0196.0.0.15] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.15.15] Homologues of the nucleic acid sequences used, with the sequence 15 shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more 20 homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 16, columns 5 and 7, preferably shown in table I B, 25 application no. 16, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.15.15] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences 30 shown in any of the table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 35 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em- 1100 bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7. 5 [0199.0.15.15] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the 10 encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7. [0200.0.15.15] In one embodiment, the nucleic acid molecule of the invention or used 15 in the process encodes a polypeptide comprising the sequence shown in table II, appli cation no. 16, columns 5 and 7, preferably shown in table II B, application no. 16, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence 20 of the sequences shown in table I, application no. 16, columns 5 and 7, preferably shown in table I B, application no. 16, columns 5 and 7. [0201.0.15.15] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at 25 least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 16, columns 5 and 7 ex pressed under identical conditions. 30 [0202.0.15.15] Homologues of table I, application no. 16, columns 5 and 7 or of the derived sequences of table II, application no. 16, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en- 1101 hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 5 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 10 [0203.0.0.15] to [0215.0.0.15] for the disclosure of the paragraphs [0203.0.0.15] to [0215.0.0.15] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.15.15] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 15 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 16, columns 5 and 7, preferably in table || B, application no. 16, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 20 cleic acid molecule shown in table 1, application no. 16, columns 5 and 7, pref erably in table I B, application no. 16, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 25 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic 30 acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 1102 e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 5 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 10 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 15 cation no. 16, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) 20 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 16, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 25 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table 1l, application no. 16, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid 30 library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 1103 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 16, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 16, columns 5 and 7, and conferring an increase in the amount of the fine 5 chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 16, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention 10 does not consist of the sequence shown in table I A and/or I B, application no. 16, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 16, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep 15 tide sequence shown in table II A and/or II B, application no. 16, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 16, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli 20 cation no. 16, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 16, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 16, columns 5 and 7 and less than 25 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 16, columns 5 and 7. [0217.0.0.15] to [0226.0.0.15] for the disclosure of the paragraphs [0217.0.0.15] to [0226.0.0.15] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. 30 [0227.0.15.15] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir 35 genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this 1104 fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 5 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 16, columns 5 and 7 can be cloned 3'prime to 10 the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.15] to [0239.0.0.15] for the disclosure of the paragraphs [0228.0.0.15] to [0239.0.0.15] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. 15 [0240.0.15.15] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. 20 In addition to the sequence mentioned in Table I, application no. 16, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters biosynthetic path 25 way is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the same ex 30 tent or not at all. In addition it might be advantageously to combine the sequences shown in Table I, application no. 16, columns 5 and 7 with genes which generally sup port or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, patho gen, or herbicide resistant plants.
1105 [0241.0.15.15] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the organic acid metabolism, in particular in synthesis of citramalic acid, glyceric acid, fu 5 maric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters. Indirect overexpression might be brought about by the manipulation of the regulation of the endogenous gene, for example through pro motor mutations or the expression of natural or artificial transcriptional regulators. [0242.0.15.15] Further advantageous nucleic acid sequences which can be ex 10 pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the sugar me tabolism, the citric cycle etc. [0242.1.15.15] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a citramalic acid, 15 glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac tone, their salts, amides, thioesters and/or esters degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene, or by inactivat ing the gene for example the mutagenesis and/or selection. In another advantageous embodiment the synthesis of competitive pathways which rely on the same precoursers 20 are down regulated or interrupted. [0242.2.15.15] The respective fine chemical produced can be isolated from the or ganism by methods with which the skilled worker are familiar, for example via extrac tion, salt precipitation, and/or different chromatography methods. The process accord ing to the invention can be conducted batchwise, semibatchwise or continuously. The 25 fine chemcical and other organic acids produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via for example pressing or extraction of the plant parts. [0242.3.15.15] Preferrably, the compound is a composition comprising the essentially pure citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid 30 and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof or a recovered or isolated citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters and/or esters.
1106 [0243.0.0.15] to [0264.0.0.15] for the disclosure of the paragraphs [0243.0.0.15] to [0264.0.0.15] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.15.15] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 5 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 10 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 15 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 16, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.15] to [0287.0.0.15] for the disclosure of the paragraphs [0266.0.0.15] to 20 [0287.0.0.15] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.15.15] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to 25 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 16, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 16, columns 5 and 7 or their homologs is functionally linked to a 30 regulatory sequences which permit the expression in plastids. [0289.0.0.15] to [0296.0.0.15] for the disclosure of the paragraphs [0289.0.0.15] to [0296.0.0.15] see paragraphs [0289.0.0.0] to [0296.0.0.0] above.
1107 [0297.0.15.15] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b0931, anti-b1046, anti-b1556, anti-b1732, anti-b2066, anti-b2312, 5 anti-b3770, anti-b4122, anti-b4139, anti-YALO38W, anti-YDL078C, anti-YGLO65C, anti YGL126W, anti-YJL1 39C, anti-YKR043C, anti-YOL126C and/or anti-YOR350C protein antibody or an antibody against polypeptides as shown in table II, application no. 16, columns 5 and 7, which can be produced by standard techniques utilizing the polypep tid of the present invention or fragment thereof, i.e., the polypeptide of this invention. 10 Preferred are monoclonal antibodies. [0298.0.0.15] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.15.15] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 16, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 16, columns 5 and 7 or func 15 tional homologues thereof. [0300.0.15.15] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 16, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the 20 consensus sequence shown in table IV, application no. 16, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.15] to [0304.0.0.15] for the disclosure of the paragraphs [0301.0.0.15] to 25 [0304.0.0.15] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.15.15] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence 30 shown in table II A and/or II B, application no. 16, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 16, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre- 1108 ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 16, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 5 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 16, columns 5 and 7. [0306.0.0.15] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.15.15] In one embodiment, the invention relates to polypeptide conferring an 10 increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 16, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A 15 and/or II B, application no. 16, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 16, columns 5 and 7. 20 [0308.0.15.15]In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 16, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 16, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, 25 evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep 30 tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.15] to [0311.0.0.15] for the disclosure of the paragraphs [0309.0.0.15] to [0311.0.0.15] see paragraphs [0309.0.0.0] to [0311.0.0.0] above.
1109 [0312.0.15.15] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 16, columns 5 and 7. 5 [0313.0.15.15] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 10 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 16, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 15 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 16, columns 5 and 7 or which is homologous thereto, as defined above. 20 [0314.0.15.15] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 16, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 25 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 16, columns 5 and 7. [0315.0.0.15] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.15.15] Biologically active portions of an polypeptide of the present invention 30 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 16, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 1110 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 5 [0317.0.0.15] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.15.15] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 16, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 16, column 3, pref 10 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 16, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 15 [0319.0.15.15] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven 20 tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 16, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im proved. 25 [0320.0.0.15] to [0322.0.0.15] for the disclosure of the paragraphs [0320.0.0.15] to [0322.0.0.15] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.15.15]In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 16, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, 30 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no.
1111 16, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.15] to [0329.0.0.15] for the disclosure of the paragraphs [0324.0.0.15] to [0329.0.0.15] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 5 [0330.0.15.15] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 16, columns 5 and 7. [0331.0.0.15] to [0346.0.0.15] for the disclosure of the paragraphs [0331.0.0.15] to [0346.0.0.15] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 10 [0347.0.15.15] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep 15 tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 16, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe 20 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 16, col umn 3 or a protein as shown in table II, application no. 16, column 3-like activity is in 25 creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.15] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.15.15] A naturally occurring expression cassette - for example the naturally 30 occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 16, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 1112 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.15] to [0358.0.0.15] for the disclosure of the paragraphs [0350.0.0.15] to [0358.0.0.15] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. 5 [0359.0.15.15] Transgenic plants comprising citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof synthesized in the process according to the in vention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are understood as meaning all plant parts, 10 plant organs such as leaf, stalk, root, tubers or seeds or propagation material or har vested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof 15 produced in the process according to the invention may, however, also be isolated from the plant in the form of their free acids such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid or succinic acid, in form of the threonolactone, their salts, their amides, their thioesters, their esters or mixtures thereof produced by this process can be isolated by harvesting the plants either from the culture in which they grow or 20 from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant leaves, plant fruits, flowers and the like. The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, flowers and the like as mentioned above in the case of transgenic plant organisms 25 derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, cosmet ics, pharmaceuticals or fine chemicals. [0360.0.0.15] to [0362.0.0.15] for the disclosure of the paragraphs [0360.0.0.15] to [0362.0.0.15] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. 30 [0363.0.15.15] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the organic acids such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid or succinic acid of the threonolactone, their salts, amides, thioesters, esters or mixtures 1113 thereof produced in the process can be isolated. The resulting fine chemical can, if appropriate, subsequently be further purified, if desired mixed with other active ingredi ents such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, an tibiotics and the like, and, if appropriate, formulated. 5 [0364.0.15.15] In one embodiment, citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof is the fine chemical. [0365.0.15.15] The citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mix 10 tures thereof, in particular the respective fine chemicals obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the production of pharma ceuticals, health products, foodstuffs, animal feeds, nutrients or cosmetics. Accord ingly, the present invention relates a method for the production of pharmaceuticals, 15 health products, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of the citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac tone, their salts, amides, thioesters, esters or mixtures thereof containing, in particular citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or 20 threonolactone or mixtures thereof containing composition produced or the respective fine chemical produced if desired and formulating the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or 25 threonolactone, their salts, amides, thioesters, esters or mixtures thereof produced in the process or of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.15] to [0369.0.0.15] for the disclosure of the paragraphs [0366.0.0.15] to [0369.0.0.15] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 30 [0370.0.15.15] The fermentation broths obtained in this way, containing in particular citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof or in mixtures with other organic acids, amino acids, polypeptides or polysaccarides, normally have a dry matter content of from 1 to 70% by weight, preferably 7.5 to 25% by weight. Sugar- 1114 limited fermentation is additionally advantageous, e.g. at the end, for example over at least 30% of the fermentation time. This means that the concentration of utilizable sugar in the fermentation medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/I during this time. The fermentation broth is then processed further. Depending on 5 requirements, the biomass can be removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagula tion/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, 10 such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.15.15] Accordingly, it is possible to purify the citramalic acid, glyceric acid, 15 fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof, in particular the citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone pro duced according to the invention further. For this purpose, the product-containing com position, e.g. a total or partial extraction fraction using organic solvents or water, is sub 20 jected for example to separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. 25 [0372.0.0.15] to [0376.0.0.15], [0376.1.0.15] and [0377.0.0.15]for the disclosure of the paragraphs [0372.0.0.15] to [0376.0.0.15], [0376.1.0.15] and [0377.0.0.15] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.15.15] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in 30 a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine 1115 chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 5 the nucleic acid molecule sequence shown in table 1, application no. 16, columns 5 and 7, preferably in table I B, application no. 16, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 10 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. 15 [0379.0.0.15] to [0383.0.0.15] for the disclosure of the paragraphs [0379.0.0.15] to [0383.0.0.15] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.15.15] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn 20 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de 25 pendent on the proteins as shown in table 1l, application no. 16, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 16, column 3. [0385.0.0.15] to [0404.0.0.15] for the disclosure of the paragraphs [0385.0.0.15] to [0404.0.0.15] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. 30 [0405.0.15.15] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se- 1116 quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identi fied with the method of the invention, the nucleic acid molecule identified with the 5 method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other organic acids, in particular the organic acids such as citric acid, oxaloacetic acid, cis-aconitic acid, isocitric acid, oxalosuccinic acid or ketoglutaric acid. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified 10 with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the 15 fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.15] to [0435.0.0.15] for the disclosure of the paragraphs [0406.0.0.15] to [0435.0.0.15] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.15.15] Production of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters 20 or mixtures thereof in Chlamydomonas reinhardtii The citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof pro duction can be analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below. 25 In addition a production in other organisms such as plants or microorganisms such as yeast, Mortierella or Escherichia coli is possible. [0437.0.0.15] and [0438.0.0.15] for the disclosure of the paragraphs [0437.0.0.15] and [0438.0.0.15] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.15.15] Example 9: Analysis of the effect of the nucleic acid molecule on the 30 production of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof 1117 [0440.0.10.10] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thio esters, esters or mixtures thereof) can be determined by growing the modified plant 5 under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated production of desired product (i.e. of citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone). These analytical techniques are known to the skilled worker and com prise spectroscopy, thin-layer chromatography, various types of staining methods, en 10 zymatic and microbiological methods and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Indus trial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Bio chemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, 15 Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Bio chemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; 20 Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purifi cation techniques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.15] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.15.15] Purification of and determination of the citramalic acid, glyceric acid, 25 fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolac tone, their salts, amides, thioesters, esters or mixtures thereof content: [0443.0.15.15] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of organic acids can be obtained by ana 30 lyzing recombinant organisms using analytical standard methods: LC, LC-MSMS or TLC, as described The total citramalic acid, glyceric acid, fumaric acid, malic acid, py ruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, esters or mixtures thereof produced in the organism for example in algae used in the inventive process can be analysed for example according to the following procedure: 1118 The material such as algae or plants to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. 5 [0444.0.15.15] A typical sample pretreatment consists of a total lipid extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponifica tion , partition between phases, seperation of non-polar epiphase from more polar hy pophasic derivatives and chromatography. E.g.: For analysis, solvent delivery and aliquot removal can be accomplished with a robotic 10 system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% potassium hydroxide hydro-ethanolic solution (4 water:1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal 15 shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. Following saponification, the supernatant can be diluted with 0.10 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials 20 for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The col 25 umn can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab 30 sorbance at 447 nm. [0445.0.15.15] If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone, their salts, amides, thioesters, 1119 esters or mixtures thereof can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography res ins. The skilled worker is familiar with the selection of suitable chromatography resin 5 and the most effective use for a particular molecule to be purified. [0446.0.0.15] to [0496.0.0.15] for the disclosure of the paragraphs [0446.0.0.15] to [0496.0.0.15] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.15.15] As an alternative, the organic acids such as citramalic acid, glyceric acid, fumaric acid, malic acid, pyruvic acid, succinic acid and/or threonolactone can be 10 detected as described in Farr6, E. et al. , Plant Physiol, 2001, Vol. 127, pp. 685-700. [0498.0.15.15] The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max b0931 Fumarate LC 1.47 4.65 b1046 Glyceric acid GC 1.31 1.65 b1556 Fumarate GC 2.36 4.72 b1556 Succinate LC 1.47 3.04 b1556 Threonolacton GC 1.38 2.03 b1732 Succinate LC 1.28 1.37 b2066 Malate GC 1.70 3.92 b2312 Succinate GC 1.24 1.33 b3770 Citramalate GC 1.49 3.23 b4122 Fumarate GC 2.53 5.44 b4139 Fumarate GC 14.94 25.37 YALO38W Succinate LC 1.40 4.67 YALO38W Pyruvate GC 1.37 2.64 YALO38W Citramalate GC 1.72 4.37 YDL078C Malate GC 1.83 4.71 YGL065C Succinate LC 1.08 1.21 YGL126W Succinate LC 1.30 1.45 YJL139C Fumarate GC 1.55 4.10 YKR043C Malate GC 1.54 3.16 1120 ORF Metabolite Method Min Max YKR043C Fumarate GC 10.90 15.35 YOL126C Fumarate GC 2.00 2.18 YOL126C Malate GC 1.83 3.04 YOR350C Glyceric acid GC 1.41 1.51 [0499.0.0.15] and [0500.0.0.15] for the disclosure of the paragraphs [0499.0.0.15] and [0500.0.0.15] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.15.15] Example 15a: Engineering ryegrass plants by over-expressing b0931 5 from Escherichia coli or homologs of b0931 from other organisms. [0502.0.0.15] to [0508.0.0.15] for the disclosure of the paragraphs [0502.0.0.15] to [0508.0.0.15] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.15.15] Example 15b: Engineering soybean plants by over-expressing b0931 10 from Escherichia coli or homologs of b0931 from other organisms. [0510.0.0.15] to [0513.0.0.15] for the disclosure of the paragraphs [0510.0.0.15] to [0513.0.0.15] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.15.15] Example 15c: Engineering corn plants by over-expressing b0931 from 15 Escherichia coli or homologs of b0931 from other organ isms. [0515.0.0.15] to [0540.0.0.15] for the disclosure of the paragraphs [0515.0.0.15] to [0540.0.0.15] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.15.15] Example 15d: Engineering wheat plants by over-expressing 20 b0931 from Escherichia coli or homologs of b0931 from other organisms. [0542.0.0.15] to [0544.0.0.15] for the disclosure of the paragraphs [0542.0.0.15] to [0544.0.0.15] see paragraphs [0542.0.0.0] to [0544.0.0.0] above.
1121 [0545.0.15.15] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b0931 from Escherichia coli or homologs of b0931 from other organisms. [0546.0.0.15] to [0549.0.0.15] for the disclosure of the paragraphs [0546.0.0.15] to 5 [0549.0.0.15] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.15.15] Example 15f: Engineering alfalfa plants by over-expressing b0931 from Escherichia coli or homologs of b0931 from other organ isms. [0551.0.0.15] to [0554.0.0.15] for the disclosure of the paragraphs [0551.0.0.15] to 10 [0554.0.0.15] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.15.15]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. 15 The results are shown in table VII Table VII ORF_NAME Metabolite MIN MAX b2066 Malate 1.99 3.02 b4139 Fumarate 1.59 5.08 YALO38W Succinate 1.33 3.78 YALO38W Pyruvate 1.73 2.31 YKR043C Fumarate 1.77 2.32 Table VII shows the increase in fumaric acid in genetically modified corn plants ex pressing the Saccharomyces cerevisiae nucleic acid sequence YKR043C and the E. 20 coli nucleic acid sequence b4139, the increase in malic acid in genetically modified corn plants expressing the E. coli nucleic acid sequence b2066, and the increase in pyruvic and succinic acid in genetically modified corn plants expressing the Saccharo myces cerevisiae nucleic acid sequence YALO38W. In one embodiment, in case the activity of the Saccaromyces cerevisiae protein 25 YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein", is increased 1122 in corn plants, preferably, an increase of the fine chemical fumaric acid (= fumarate) between 77% and 132% or more is conferred. In one embodiment, in case the activity of the Escherichia coli protein b4139 or its ho mologs, e.g. a "aspartate ammonia-lyase (aspartase)", is increased in corn plants, 5 preferably, an increase of the fine chemical fumaric acid (= fumarate) acid between 59% and 408% or more is conferred. In another embodiment, in case the activity of the Saccaromyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical succinic acid (= succinate) between 33% and 10 278% or more is conferred. In another embodiment, in case the activity of the Saccaromyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical pyruvic acid (= pyruvate) between 73% and 131% or more is conferred. 15 In another embodiment, in case the activity of the Saccaromyces cerevisiae protein YALO38W or its homologs, e.g. a "pyruvate kinase", is increased in corn plants, pref erably, an increase of the fine chemical pyruvic acid (= pyruvate) between 73% and 131 % or more and/or succinic acid (= succinate) between 33% and 278% or more is conferred. 20 In one embodiment, in case the activity of the Escherichia coli protein b2066 or its ho mologs, e.g. a "uridine/cytidine kinase", is increased in corn plants, preferably, an in crease of the fine chemical malic acid (= malate) acid between 99% and 202% or more is conferred. [0554.2.0.15] for the disclosure of this paragraph see [0554.2.0.0] above. 25 [0555.0.0.15] for the disclosure of this paragraph see [0555.0.0.0] above.
1123 [0001.0.0.16] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.16.16] Gamma-aminobutyric acid is used to enhance growth of specified plants, prevent development of powdery mildew on grapes, and suppress certain other plant diseases. Humans and animals normally ingest and metabolize gamma 5 aminobutyric acid in variable amounts. Gamma-aminobutyric acid was registered (li censed for sale) as growth enhancing pesticidal active ingredient in 1998. Gamma aminobutyric acid is an important signal which helps to regulate mineral availability in plants. Minerals support the biochemical pathways governing growth and reproduction as well as the pathways that direct plant's response to a variety of biotic and abiotic 10 stresses. Mineral needs are especially high during times of stress and at certain stages of plant growth. Gamma-aminobutyric acid levels in plants naturally increase at these times. Gamma-Aminobutyric acid (GABA), a nonprotein amino acid, is often accumulated in plants following environmental stimuli that can also cause ethylene production. Exoge 15 nous GABA causes up to a 14-fold increase in the ethylene production rate after about 12 h. GABA causes increases in ACC synthase mRNA accumulation, ACC levels, ACC oxidase mRNA levels and in vitro ACC oxidase activity. Possible roles of GABA as a signal transducer are suggested, see Plant Physiol.1 15(1):129-35(1997) Gamma-aminobutyric acid (GABA), a four-carbon non-protein amino acid, is a signifi 20 cant component of the free amino acid pool in most prokaryotic and eukaryotic organ isms. In plants, stress initiates a signal-transduction pathway, in which increased cyto solic Ca 2 + activates Ca 2 +/calmodulin-dependent glutamate decarboxylase activity and GABA synthesis. Elevated H* and substrate levels can also stimulate glutamate decar boxylase activity. GABA accumulation probably is mediated primarily by glutamate de 25 carboxylase. Experimental evidence supports the involvement of GABA synthesis in pH regulation, nitrogen storage, plant development and defence, as well as a compatible osmolyte and an alternative pathway for glutamate utilization, see Trends Plant Sci. 4(11):446-452(1999). Gamma-aminobutyric acid enhances nutrient uptake by roots and leaves so that plant 30 nutrient levels are higher than those achieved by using nutrients alone. When plants are stressed and nutrient uptake is limited, it is believed that gamma-aminobutyric acid facilitates nutrient utilization, thereby enhancing growth during stress.
1124 Rapid GABA accumulation in response to wounding may play a role in plant defense against insects (Ramputh and Brown, Plant Physiol. 111(1996): 1349-1352). The de velopment of gamma aminobutyrate (GABA) as a potential control agent in plant - in vertebrate pest systems has been reviewed in Shelp et al., Canadien Journal of Botany 5 (2003) 81, 11, 1045-1048. The authors describe that available evidence indicates that GABA accumulation in plants in response to biotic and abiotic stresses is mediated via the activation of glutamate decarboxylase. More applied research, based on the fact that GABA acts as an inhibitory neurotransmitter in invertebrate pests, indicates that ingested GABA disrupts nerve functioning and causes damage to oblique-banded lea 10 froller larvae, and that walking or herbivory by tobacco budworm and oblique-banded leafroller larvae stimulate GABA accumulation in soybean and tobacco, respectively. In addition, elevated levels of endogenous GABA in genetically engineered tobacco deter feeding by tobacco budworm larvae and infestation by the northern root-knot nema tode. Therefore the author concluded that genetically engineered crop species having 15 high GABA-producing potential may be an alternative strategy to chemical pesticides for the management of invertebrate pests. During angiosperm reproduction, pollen grains form a tube that navigates through fe male tissues to the micropyle, delivering sperm to the egg. In vitro, GABA stimulates pollen tube growth. The Arabidopsis POP2 gene encodes a transaminase that de 20 grades GABA and contributes to the formation of a gradient leading up to the micro pyle, see Cell. 114(1):47-59(2003). Due to these interesting physiological roles and agrobiotechnological potential of GABA there is a need to identify the genes of enzymes and other proteins involved in GABA metabolism, and to generate mutants or transgenic plant lines with which to modify the 25 GABA content in plants. Shikimic acid is found in various plants. It has two functional groups in the same mole cule, hydroxyl groups and a carboxylic acid group which are optically active. They can yield various kinds of esters and salts. It belongs to the class of cyclitols, which means it is a hydroxylated cycloalkane containing at least three hydroxy groups, each attached 30 to a different ring carbon atom. A key intermediate in synthesis of virtually all aromatic compounds in the cells is shiki mic acid. These include phenylalanine, tyrosine, tryptophan, p-aminobenzoic acid, and p-hydroxybenzoic acid.
1125 Glyphosate (N-phosphonomethylglycine) is a non-selective, broad spectrum herbicide that is symplastically translocated to the meristems of growing plants. It causes shiki mate accumulation through inhibition of the chloroplast localized EPSP synthase (5 eno/pyruvylshikimate-3-phosphate synthase; EPSPs) [EC 2.5.1.19] (Amrhein et al, 5 1980, Plant Physiol. 66: 830-834). The starting product of the biosynthesis of most phenolic compounds is shikimate. Phenols are acidic due to the dissociability of their -OH group. They are rather reactive compounds and as long as no steric inhibition due to additional side chains occurs, they form hydrogen bonds. Consequently, many flavonoids have intramolecular bonds. 10 Another important feature is their ability to form chelate complexes with metals. Also, they are easily oxidized and, if so, form polymers (dark aggregates). The darkening of cut or dying plant parts is caused by this reaction. They have usually an inhibiting effect on plant growth. Among the phenylpropanol derivatives of lower molecular weight are a number of scents like the coumarins, cinnamic acid, sinapinic acid, the coniferyl alco 15 hols and others. These substances and their derivatives are at the same time interme diates of the biosynthesis of lignin. The shikimate pathway links metabolism of carbohydrates to biosynthesis of aromatic compounds. In a sequence of seven metabolic steps, phosphoenolpyruvate and eryth rose 4-phosphate are converted to chorismate, the precursor of the aromatic amino 20 acids and many aromatic secondary metabolites. All pathway intermediates can also be considered branch point compounds that may serve as substrates for other meta bolic pathways. The shikimate pathway is found only in microorganisms and plants, never in animals. All enzymes of this pathway have been obtained in pure form from prokaryotic and eukaryotic sources and their respective DNAs have been characterized 25 from several organisms. The cDNAs of higher plants encode proteins with amino ter minal signal sequences for plastid import, suggesting that plastids are the exclusive locale for chorismate biosynthesis. In microorganisms, the shikimate pathway is regu lated by feedback inhibition and by repression of the first enzyme. In higher plants, no physiological feedback inhibitor has been identified, suggesting that pathway regulation 30 may occur exclusively at the genetic level. This difference between microorganisms and plants is reflected in the unusually large variation in the primary structures of the respective first enzymes. Several of the pathway enzymes occur in isoenzymic forms whose expression varies with changing environmental conditions and, within the plant, from organ to organ. The penultimate enzyme of the pathway is the sole target for the 35 herbicide glyphosate. Glyphosate-tolerant transgenic plants are at the core of novel 1126 weed control systems for several crop plants (Annual Review of Plant Physiology and Plant Molecular Biology 50(1999): 473-503). Natural products derived from shikimic acid range in complexity from the very simple, such as vanillin (used primarily as a flavoring agent), salicylic acid (the precursor of 5 aspirin), lawsone (a naphthoquinone used in some sunscreens), and scopletin (a cou marin once used as a uterine sedative), to the more complex, such as the lignan lac tone podophyllotoxin. Podophyllotoxin is basically a dimer incorporating two phenylpro panoid (a nine-carbon unit derived from shikimic acid) units. Podophyllotoxin was first isolated from Podophyllum peltatum, also known as mayapple or American mandrake, 10 a plant which has a long history of use as a cathartic and purgative. Podophyllotoxin has been used to treat warts, and is a mitotic inhibitor which shows antineoplastic activ ity. Etoposide, in particular, is used to treat forms of lung cancer, testicular cancer, and acute lymphocytic leukemia. Furthermore shikimic acid is an important starting substance for the production of 15 pharmacological active substances. For example the synthesis of @ Roche's antiviral drug Tamiflu @ (oseltamivir phosphate) starts from shikimic acid. Tamiflu @ treats seasonal influenza and is also being expected as a first line of defence against a possible pandemic outbreak of bird flu. The 10-step commercial route uses the natural product (-)-shikimic acid as a starting material. This precursor is converted into a 20 diethyl ketal intermediate, which is reductively opened to give a 1,2-epoxide. This epoxide is then converted into Tamiflu via a five-step reaction sequence involving three potentially toxic and explosive azide intermediates. Putrescine is synthesized by healthy living cells by the action of ornithine decarboxy lase, is one of the simplest polyamines and appears to be a growth factor necessary for 25 cell division. Experimental evidence indicate that polyamines may be involved in growth, differentia tion or morphogenesis, stress and senescence in plants ( Evans and Malmberg, 1989). [0003.0.16.16] % [0004.0.16.16] % 30 [0005.0.16.16] % [0006.0.16.16] 1127 [0007.0.16.16] % [0008.0.16.16] One way to increase the productive capacity of biosynthesis is to apply recombinant DNA technology. Thus, it would be desirable to produce gamma aminobutyric acid and/or shikimate and/or putrescine in plants. That type of production 5 permits control over quality, quantity and selection of the most suitable and efficient producer organisms. The latter is especially important for commercial production eco nomics and therefore availability to consumers. In addition it is desireable to produce gamma-aminobutyric acid and/or shikimate and/or putrescine in plants in order to in crease plant productivity and resistance against biotic and abiotic stress as discussed 10 before. Methods of recombinant DNA technology have been used for some years to improve the production of fine chemicals in microorganisms and plants by amplifying individual biosynthesis genes and investigating the effect on production of fine chemicals. It is for example reported, that the xanthophyll astaxanthin could be produced in the nectaries 15 of transgenic tobacco plants. Those transgenic plants were prepared by Argobacterium tumifaciens-mediated transformation of tobacco plants using a vector that contained a ketolase-encoding gene from H. pluvialis denominated crtO along with the Pds gene from tomato as the promoter and to encode a leader sequence. Those results indi cated that about 75 percent of the carotenoids found in the flower of the transformed 20 plant contained a keto group. [0009.0.16.16]Thus, it would be advantageous if an algae, plant or other microorgan ism were available which produce large amounts of gamma-aminobutyric acid and/or putrescine and/or shikimate . The invention discussed hereinafter relates in some em bodiments to such transformed prokaryotic or eukaryotic microorganisms. 25 It would also be advantageous if plants were available whose roots, leaves, stem, fruits or flowers produced large amounts of aminobutyric acid and/or putrescine and/or shikimate . The invention discussed hereinafter relates in some embodiments to such transformed plants. [0010.0.16.16] Therefore improving the quality of foodstuffs and animal feeds is an 30 important task of the food-and-feed industry. This is necessary since, for example gamma-aminobutyric acid or shikimate, as mentioned above, which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as balanced as possible 1128 a specific gamma-aminobutyric acid and/or shikimate and/or putrescine profile in the diet since an excess of gamma-aminobutyric acid and/or shikimate and/or putrescine above a specific concentration in the food has a positive effect. A further increase in quality is only possible via addition of further gamma-aminobutyric acid and/or shiki 5 mate and/or putrescine, which are limiting. [0011.0.16.16] To ensure a high quality of foods and animal feeds, it is therefore necessary to add gamma-aminobutyric acid and/or shikimate and/or putrescine in a balanced manner to suit the organism. [0012.0.16.16]Accordingly, there is still a great demand for new and more suitable 10 genes which encode enzymes or other proteins which participate in the biosynthesis of gamma-aminobutyric acid and/or putrescine and/or shikimate and make it possible to produce them specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtain 15 ing the highest possible contents of gamma-aminobutyric acid, putrescine and shiki mate; on the other hand as less as possible byproducts should be produced in the pro duction process. [0013.0.0.16] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.16.16]Accordingly, in a first embodiment, the invention relates to a process for 20 the production of a fine chemical, whereby the fine chemical is a gamma-aminobutyric acid and/or putrescine and/or shikimate . Accordingly, in the present invention, the term "the fine chemical" as used herein relates to a "gamma-aminobutyric acid and/or putre scine and/or shikimate ". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising gamma-aminobutyric acid and/or putrescine 25 and/or shikimate . [0015.0.16.16] In one embodiment, the term "the fine chemical" or "the respective fine chemical" means at least one chemical compound with gamma-aminobutyric acid and/or putrescine and/or shikimate . Throughout the specification the term "the fine chemical" or "the respective fine chemical" means a gamma-aminobutyric acid and/or 30 putrescine and/or shikimate in free form or bound to other compounds such as its salts, ester, thioester or in free form or bound to other compounds such sugars or sug arpolymers, like glucoside, e.g. diglucoside..
1129 In particular it is known to the skilled that anionic compounds as acids are present in an equilibrium of the acid and its salts according to the pH present in the respective com partment of the cell or organism and the pK of the acid. Thus, the term "the fine chemi cal", the term "the respective fine chemical", the term "acid" or the use of a demonina 5 tion referring to a neutralized anionic compound respectivley relates the anionic form as well as the neutralised status of that compound. Thus, specifically shikimic acid relates also to shikimate and vice versae and the terms are used interchangeable throughout the following description of the invention. In one embodiment, the term "the fine chemical" and the term "the respective fine 10 chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. [0016.0.16.16]Accordingly, the present invention relates to a process for the production of gamma-aminobutyric acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 15 no. 17a, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 17a, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 17a, column 3 encoded by the nucleic acid sequences as shown in table I, application no.17a, column 5 in the plastid of a microorganism or plant, or in one 20 or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, gamma-aminobutyric acid or fine chemicals comprising gamma aminobutyric acid, in said organism or in the culture medium surrounding the or ganism. 25 Accordingly, the present invention relates to a process for the production of shikimate, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 17b, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 17b, column 5, in an organelle of a microorganism or plant, or 30 (b) increasing or generating the activity of a protein as shown in table II, application no. 17b, column 3 encoded by the nucleic acid sequences as shown in table I, 1130 application no. 17b, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, shikimate or fine chemicals comprising aminobutyric acid and/or 5 putrescine and/or shikimate , in said organism or in the culture medium surround ing the organism. Accordingly, the present invention relates to a process for the production of putrescine, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 10 no. 17c, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 17c, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 17c, column 3 encoded by the nucleic acid sequences as shown in table I, application no. 17c, column 5 in the plastid of a microorganism or plant, or in one 15 or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, putrescine or fine chemicals comprising aminobutyric acid and/or putrescine and/or shikimate , in said organism or in the culture medium surround ing the organism. 20 [0016.1.16.16] Accordingly, the term "the fine chemical" means "gamma aminobutyric acid" in relation to all sequences listed in table I, application no. 17a, col umns 5 and 7 or homologs thereof. Accordingly, the term "the fine chemical" means "putrescine" in relation to all sequences listed in table I, application no. 17c, columns 5 and 7 or homologs thereof. Accordingly, the term "the fine chemical" means "shikimate" 25 in relation to all sequences listed in table I, application no. 17b, columns 5 and 7 or homologs thereof. Accordingly, the term "the fine chemical" can mean aminobutyric acid and/or putrescine and/or shikimate owing to circumstances and the context. Preferably the term "the fine chemical" means "shikimate" . In order to illustrate that the meaning of the term "the 30 respective fine chemical" means "aminobutyric acid and/or putrescine and/or shikimate " owing to the sequences listed in the context the term "the respective fine chemical" is also used.
1131 Throughout the specification the term "the fine chemical" means aminobutyric acid and/or putrescine and/or shikimate , its salts, ester, thioester or in free form or bound to other compounds such sugars or sugarpolymers, like glucoside, e.g. diglucoside. [0017.0.16.16]In another embodiment the present invention is related to a process for 5 the production of aminobutyric acid and/or putrescine and/or shikimate , which com prises (a) increasing or generating the activity of a protein as shown in table II, application no. 17, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 17, column 5, in an organelle of a non-human organism, or 10 (b) increasing or generating the activity of a protein as shown in table II, application no. 17, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 17, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application 15 no. 17, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 17, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of gamma 20 aminobutyric acid and/or putrescine and/or shikimate in said organism. (Warum oben nach Metaboliten zerlegt und hier nicht??) [0017.1.16.16]In another embodiment, the present invention relates to a process for the production of gamma-aminobutyric acid and/or putrescine and/or shikimate , which comprises 25 (a) increasing or generating the activity of a protein as shown in table II, application no. 17, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 17, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application 30 no. 17, column 3 encoded by the nucleic acid sequences as shown in table I, ap- 1132 plication no. 17, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, gamma-aminobutyric acid and/or putrescine and/or shikimate or 5 fine chemicals comprising aminobutyric acid and/or putrescine and/or shikimate in said organism or in the culture medium surrounding the organism. [0018.0.16.16]Advantagously the activity of the protein as shown in table 1l, application no. 17, column 3 encoded by the nucleic acid sequences as shown in table 1, applica tion no. 17, column 5 is increased or generated in the abovementioned process in the 10 plastid of a microorganism or plant. [0019.0.0.16] to [0024.0.0.16] for the disclosure of the paragraphs [0019.0.0.16] to [0024.0.0.16] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.16.16] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 15 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 17, columns 5 and 7. Most preferred nucleic 20 acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid 25 sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are 30 typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct 1133 molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure 5 might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein 10 folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.16.16] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 17, column 3 and its homologs as disclosed in table I, application no. 17, columns 5 and 7 are joined to a nucleic acid sequence en 15 coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 17, column 3 and its homologs as 20 disclosed in table I, application no. 17, columns 5 and 7. [0027.0.0.16] to [0029.0.0.16] for the disclosure of the paragraphs [0027.0.0.16] to [0029.0.0.16] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.16.16] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit 25 peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 30 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the 35 invention said amino-terminal region of the mature protein is typically less than 150 1134 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili 5 tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, 10 preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 17, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 17, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre 15 ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 17, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi 20 ble in front of the start methionine of the protein metioned in table II, application no. 17, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six 25 amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 17, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short 30 sequences in the expression of the genes. [0030.2.16.16] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. WO 2005/123929 (Plastid Transit Peptides) shows further transit peptides especially on pages 33 to 35, Tables 1 and two and in claim 1.
1135 [0030.1.16.16] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 17, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu 5 cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 17, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or 10 preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA 15 making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.16] and [0030.3.0.16] for the disclosure of the paragraphs [0030.2.0.16] 20 and [0030.3.0.16] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.16.16] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 17, columns 5 and 7 or active 25 fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 30 scribed from the sequences depicted in table 1, application no. 17, columns 5 and 7 or a sequence encoding a protein, as depicted in table 1l, application no. 17, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal 1136 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi 5 roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 17, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 17, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence 10 as depicted in table I, application no. 17, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 17, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the 15 proteins depicted in table II, application no. 17, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex 20 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA 25 to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 17, columns 5 and 7. [0030.5.16.16] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 17, columns 5 and 7 used in the inventive 30 process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.16.16] For a good expression in the plastids the nucleic acid sequences as 35 shown in table I, application no. 17, columns 5 and 7 are introduced into an expression 1137 cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. 5 [0031.0.0.16] and [0032.0.0.16] for the disclosure of the paragraphs [0031.0.0.16] and [0032.0.0.16] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.16.16]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 10 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table 1l, application no. 17, column 3. Preferably the modification of the activity of a protein as shown in table 1l, application no. 17, column 3 15 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.16.16]Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table 1l, application no. 17, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in 20 the fine chemical content of the transformed plants. [0035.0.0.16] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.16.16] The sequence of b1704 (Accession number NP_416219) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7 25 phosphate synthase (DAHP synthetase), tryptophan-repressible". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of shikimic acid and/or salts, esters, thioestesr containing shikimic acid, 30 in particular for increasing the amount of shikimic acidin free or bound form in an or ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a b1704 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as 1138 mentioned for example in table V. In a further embodiment, in the process of the pre sent invention the activity of a b1704 protein is increased or generated, e.g. from Es cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in WO 2005/123929 (Plastid Transit Peptides), which shows 5 further transit peptides especially on pages 33 to 35, Tables 1 and two and in claim 1. In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of b1868 (Accession number PIR:D64949) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "yecE protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "yecE protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of shikimic acid and/or salts, 15 esters, thioesters containing shikimic acid, in particular for increasing the amount of shikimic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 868 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In a further 20 embodiment, in the process of the present invention the activity of a b1 868 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in WO 2005/123929 (Plastid Transit Peptides), which shows further transit peptides especially on pages 33 to 35, Tables 1 and two and in claim 1. 25 In another embodiment, in the process of the present invention the activity of a b1868 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2600 (Accession number NP_417091) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 30 is being defined as "bifunctional chorismate mutase / prephenate dehydrogenase". Ac cordingly, in one embodiment, the process of the present invention comprises the use of a "bifunctional chorismate mutase / prephenate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of shikimic acid and/or salts, esters, thioesters containing shikimic acid, in particular for increasing the 35 amount of shikimic acid in free or bound form in an organism or a part thereof, as men- 1139 tioned. In one embodiment, in the process of the present invention the activity of a b2600protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In a further embodiment, in the process of the present invention the activity of 5 a b2600 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in WO 2005/123929 (Plastid Transit Peptides), which shows further transit peptides es pecially on pages 33 to 35, Tables 1 and two and in claim 1. In another embodiment, in the process of the present invention the activity of a 10 b2600protein is increased or generated in a subcellular compartment of the organism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of b2601 (Accession number NP_417092 ) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase". 15 Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase" or its ho molog, e.g. as shown herein, for the production of the fine chemical, meaning of shiki mic acid and/or salts, esters, thioesters containing shikimic acid, in particular for in creasing the amount of shikimic acid in free or bound form in an organism or a part 20 thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2601 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In a further embodiment, in the process of the present invention the activity of a b2601 protein is increased or generated, e.g. from Escherichia coli or a 25 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in WO 2005/123929 (Plastid Transit Peptides), which shows further transit pep tides especially on pages 33 to 35, Tables 1 and two and in claim 1. In another embodiment, in the process of the present invention the activity of a b2601 protein is increased or generated in a subcellular compartment of the organism or or 30 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its 35 homolog, e.g. as shown herein, for the production of the fine chemical, meaning of pu- 1140 trescine and/or gamma-aminobutyric acid and/or salts, esters, thioesters containing putrescine and/or gamma-aminobutyric acid, in particular for increasing the amount of putrescine and/or gamma-aminobutyric acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention 5 the activity of a b2965 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In a further embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 10 ample in WO 2005/123929 (Plastid Transit Peptides), which shows further transit pep tides especially on pages 33 to 35, Tables 1 and two and in claim 1. In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase" which cata lyzes the first step in aromatic amino acid biosynthesis and is feedback-inhibited by 20 phenylalanine (Aro3p). Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of shikimic acid and/or salts, esters, thioesters containing shikimic acid, in particular for increasing the amount of shikimic acid in free or bound form in an 25 organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In a further embodiment, in the process of the present invention the activity of a YDR035W protein is increased or 30 generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in WO 2005/123929 (Plastid Transit Peptides), which shows further transit peptides especially on pages 33 to 35, Tables 1 and two and in claim 1. In another embodiment, in the process of the present invention the activity of a 35 YDR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria.
1141 The sequence of YOR350C (Accession number PIR|S67259) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as similar to a "Lucilia illustris mitochondria cytochrome oxidase". Accordingly, in one 5 embodiment, the process of the present invention comprises the use of a protein simi lar to a "Lucilia illustris mitochondria cytochrome oxidase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of shikimic acid and/or tryglyc erides, lipids, oils and/or fats containing shikimic acid, in particular for increasing the amount of shikimic acid in free or bound form in an organism or a part thereof, as men 10 tioned. In one embodiment, in the process of the present invention the activity of a YOR350C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In a further embodiment, in the process of the present invention the activity of a YOR350C protein is increased or generated, e.g. from Saccharomyces 15 cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in WO 2005/123929 (Plastid Transit Peptides), which shows further transit peptides especially on pages 33 to 35, Tables 1 and two and in claim 1. In another embodiment, in the process of the present invention the activity of a YOR350C protein is increased or generated in a subcellular compartment of the organ 20 ism or organism cell such as in an organelle like a plastid or mitochondria.STOPP [0037.0.16.16] In one embodiment, the homolog of the b1704, b1868, b2600, b2601 and/or b2965 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b1704, b1868, b2600, b2601 and/or b2965is a ho molog having said acitivity and being derived from Proteobacteria. In one embodiment, 25 the homolog of the b1704, b1868, b2600, b2601 and/or b2965 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the b1 704, b1 868, b2600, b2601 and/or b2965 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the b1704, b1868, b2600, b2601 and/or b2965 is a homolog having said acitivity and 30 being derived from Enterobacteriaceae. In one embodiment, the homolog of the b1704, b1868, b2600, b2601 and/or b2965 is a homolog having said acitivity and being de rived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of YDR035W or YOR350C protein is a homolog hav ing the same or a similar activity, in particular an increase of activity confers an in 35 crease in the content of the fine chemical in the organisms and being derived from an 1142 Eukaryot. In one embodiment, the homolog of YDR035W or YOR350C protein is a ho molog having the same or a similar activity, in particular an increase of activity confers an increase in the content of the fine chemical in an organisms or part thereof, and being derived from Fungi. In one embodiment, the homolog of the YDR035W or 5 YOR350C is a homolog having the same or a similar activity, in particular an increase of activity confers an increase in the content of the fine chemical in the organisms or a part thereof and being derived from Ascomycota. In one embodiment, the homolog of the YDR035W or YOR350C is a homolog having the same or a similar activity, in par ticular an increase of activity confers an increase in the content of the fine chemical in 10 the organisms or part thereof, and being derived from Saccharomycotina, preferably Saccharomycetes, even more preferred from Saccharomycetales, Saccharomyceta ceae and especially from Saccharomycetes. [0038.0.0.16] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.16.16]In accordance with the invention, a protein or polypeptide has the "activ 15 ity of an protein as shown in table II, application no. 17, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the fine chemi cal level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, application 20 no. 17, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a 25 protein as shown in table II, application no. 17, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in table II, application no. 17, column 3 of Saccharomyces cerevisiae. [0040.0.0.16] to [0047.0.0.16] for the disclosure of the paragraphs [0040.0.0.16] to 30 [0047.0.0.16] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.16.16]Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly- 1143 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 17, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.16] to [0051.0.0.16] for the disclosure of the paragraphs [0049.0.0.16] to 5 [0051.0.0.16] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.16.16]For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu 10 cleic acid molecules as mentioned in table 1, application no. 17, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, 15 for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.16] to [0058.0.0.16] for the disclosure of the paragraphs [0053.0.0.16] to [0058.0.0.16] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. 20 [0059.0.16.16]In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophan-repressible" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref erably of shikimic acid between 154% and 6593% or more is conferred. 25 In case the activity of the Escherichia coli protein b2601 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate (DAHP) synthase" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of shikimic acid between 42% and 278% or more is conferred. 30 In case the activity of the Escherichia coli protein b1868or its homologs, e.g. a "yecE protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of shikimic acid between 20% and 108% or more is conferred.
1144 In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of shikimic acid between 14% and 32% or more 5 is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of gamma-Aminobutyric acid (GABA) between 253% and 830% or more is con 10 ferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of putrescine between 7224% and 132645% or more is conferred. 15 In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of of gamma-Aminobutyric acid (GABA) between 253% and 830% or more and of putrescine between 7224% and 132645% or more is conferred. 20 In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of shikimic acid be tween 26% and 174% or more is conferred. 25 In case the activity of the Saccharomyces cerevisiae protein YOR350C or its ho mologs, e.g. a "protein similar to Lucilia illustris mitochondria cytochrome oxidase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of shikimic acid be tween 14% and 15% or more is conferred. 30 [0060.0.16.16] % [0061.0.0.116] and [0062.0.0.116] for the disclosure of the paragraphs [0061.0.0.116] and [0062.0.0.116] see paragraphs [0061.0.0.0] and [0062.0.0.0] above.
1145 [0063.0.16.16]A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the struc ture of the polypeptide described herein, in particular of the polypeptides comprising the consensus sequence shown in table IV, application no. 17, column 7 or of the poly 5 peptide as shown in the amino acid sequences as disclosed in table II, application no. 17, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 17, columns 5 and 7 or its herein described functional homologues 10 and has the herein mentioned activity. [0064.0.16.16]/ [0065.0.0.116] and [0066.0.0.116] for the disclosure of the paragraphs [0065.0.0.116] and [0066.0.0.116] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.16.16]In one embodiment, the process of the present invention comprises one 15 or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 17, columns 5 and 7 or its homologs activity having herein-mentioned 20 gamma-aminobutyric acid and/or putrescine and/or shikimate increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid 25 sequence as shown in table I, application no. 17, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 17, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned gamma-aminobutyric acid and/or putrescine and/or shikimate increas 30 ing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned gamma-aminobutyric acid 1146 and/or putrescine and/or shikimate increasing activity, e.g. of a polypeptide hav ing the activity of a protein as indicated in table II, application no. 17, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the poly peptide of the invention; and/or 5 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned gamma-aminobutyric acid and/or putrescine and/or shikimate increasing activity, e.g. of a polypeptide hav 10 ing the activity of a protein as indicated in table II, application no. 17, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned gamma-aminobutyric acid and/or 15 putrescine and/or shikimate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 17, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 20 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned gamma-aminobutyric acid and/or putrescine and/or shikimate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 17, columns 5 and 7 or its homologs activity, and/or 25 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned gamma-aminobutyric acid and/or putrescine and/or shikimate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 30 cation no. 17, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 17, columns 5 and 7 or its homologs activity, by adding 1147 positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt 5 repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 10 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; 15 and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 20 polypeptide of the present invention having herein-mentioned gamma aminobutyric acid and/or putrescine and/or shikimate increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 17, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 25 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned gamma-aminobutyric acid and/or putrescine and/or shikimate increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 17, columns 5 and 7 or its homologs activity in plastids by 30 the stable or transient transformation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plas tidial expression of the nucleic acids or polypeptides of the invention; and/or 1148 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned gamma-aminobutyric acid and/or putrescine and/or shikimate increas ing activity, e.g. of a polypeptide having the activity of a protein as indicated in 5 table II, application no. 17, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under con trol of preferable a plastidial promoter. [0068.0.16.16]Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the 10 nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after in creasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein 15 as shown in table II, application no. 17, column 3 or its homologs. Preferably the in crease of the fine chemical takes place in plastids. [0069.0.0.116] to [0079.0.0.116]for the disclosure of the paragraphs [0069.0.0.116] to [0079.0.0.116] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.16.16]The activation of an endogenous polypeptide having above-mentioned 20 activity, e.g. having the activity of a protein as shown in table II, application no. 17, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the 25 protein as shown in table II, application no. 17, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 17, column 3. The expression of the 30 chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 17, column 3, see e.g. in WOO1/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296.
1149 [0081.0.0.16] to [0084.0.0.16] for the disclosure of the paragraphs [0081.0.0.16] to [0084.0.0.16] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.16.16]Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule 5 used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel me 10 tabolites composition in the organism, e.g. an advantageous gamma-aminobutyric acid and/or putrescine and/or shikimate composition comprising a higher content of (from a viewpoint of nutrional physiology limited) gamma-aminobutyric acid and/or putrescine and/or shikimate . [0086.0.0.16] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 15 [0087.0.16.16]By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to gamma-aminobutyric acid and/or putrescine and/or shikimate , salts, esters, thioesters containing aminobutyric acid and/or putrescine and/or shikimate . 20 [0088.0.16.16]Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 25 b) increasing the activity of a protein as shown in table 1l, application no. 17, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor 30 ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, 1150 c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 5 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.16.16] The organism, in particular the microorganism, non-human animal, the 10 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound gamma-aminobutyric acid and/or putrescine and/or shikimate . 15 [0090.0.0.16] to [0097.0.0.16] for the disclosure of the paragraphs [0090.0.0.16] to [0097.0.0.16] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.16.16] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 20 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 17, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked 25 to the nucleic acid sequence as shown table 1, application no. 17, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by 30 way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the 1151 organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 5 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.16.16]The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 10 depicted in the sequence protocol and disclosed in table 1, application no. 17, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 17, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid 15 sequences as depicted in the sequence protocol and disclosed in table 1, application no. 17, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. 20 [0100.0.0.16] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.16.1] In an advantageous embodiment of the invention, the organism takes the form of a plant whose gamma-aminobutyric acid and/or putrescine and/or shikimate content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutri 25 tional value of plants for poultry is dependent on the abovementioned gamma aminobutyric acid and/or putrescine and/or shikimate and the general amount of gamma-aminobutyric acid and/or putrescine and/or shikimate as energy source and/or protecting compounds in feed. After the activity of the protein as shown in table 1l, ap plication no. 17, column 3 has been increased or generated, or after the expression of 30 nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.16] to [0110.0.0.16] for the disclosure of the paragraphs [0102.0.0.16] to [0110.0.0.16] see paragraphs [0102.0.0.0] to [0110.0.0.0] above.
1152 [0111.0.16.16]In a preferred embodiment, the fine chemical (gamma-aminobutyric acid and/or putrescine and/or shikimate ) is produced in accordance with the invention and, if desired, is isolated. The production of further gamma-aminobutyric acid and/or putre scine and/or shikimate and mixtures thereof or mixtures of other fine chemicals by the 5 process according to the invention is advantageous. It may be advantageous to in crease the pool of free gamma-aminobutyric acid and/or putrescine and/or shikimate in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.16.16]In another preferred embodiment of the invention a combination of the 10 increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a nucleic acid encoding a protein or polypeptid for example another gene of the gamma-aminobutyric acid and/or putrescine and/or shikimate biosynthesis, or a compound, which functions as a sink for the desired gamma-aminobutyric acid and/or putrescine and/or shikimate in the organism is useful 15 to increase the production of the respective fine chemical. [0113.0.16.16]In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further fine chemicals, or compounds for which the respective fine chemical is a biosynthesis pre cursor compounds, or mixtures thereof or mixtures of other fine chemicals, by the 20 process according to the invention is advantageous. [0114.0.16.16]In the case of the fermentation of microorganisms, the abovementioned desired fine chemical may accumulate in the medium and/or the cells. If microorgan isms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the bio 25 mass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subse quently be reduced, or concentrated, with the aid of known methods such as, for ex ample, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse os 30 mosis or by nanofiltration. Afterwards advantageously further compounds for formula tion can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, and spray granulation or by other meth ods. Preferably the respective fine chemical comprising compositions are isolated from 35 the organisms, such as the microorganisms or plants or the culture medium in or on 1153 which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation 5 and/or concentration methods. [0115.0.16.16]Transgenic plants which comprise gamma-aminobutyric acid and/or putrescine and/or shikimate synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the gamma aminobutyric acid and/or putrescine and/or shikimate synthesized to be isolated. Plants 10 for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, flowers, harvested mate rial, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this con 15 text, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, in the form of their salts, esters, thioesters , as extracts, e.g. ether, alcohol, or other organic solvents 20 or water containing extract and/or free gamma-aminobutyric acid and/or putrescine and/or shikimate . The respective fine chemical produced by this process can be ob tained by harvesting the organisms, either from the medium in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to 25 flake the plant material..E.g., salts, esters, thioesters comprising gamma-aminobutyric acid and/or putrescine and/or shikimate can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they can previously be comminuted, steamed or roasted. Seeds, which have been pretreated in this manner can subsequently be 30 pressed or extracted with solvents such as warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. Thereafter, the resulting products can be processed further, i.e. degummed and/or refined. In this process, sub 35 stances such as the plant mucilages and suspended matter can be first removed. What 1154 is known as desliming can be affected enzymatically or, for example, chemico physically by addition of acid such as phosphoric acid. Because gamma-aminobutyric acid and/or putrescine and/or shikimate in microorgan isms are localized intracellular, their recovery essentials comes down to the isolation of 5 the biomass. Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydro carbon, adsorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. 10 [0115.1.16.16]The identity and purity of the compound(s) isolated can be determined by prior-art techniques. They encompass high-performance liquid chromatography (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbiological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. Environ. 15 Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) 20 Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17. [0115.2.16.16]Gamma-Aminobutyric acid and/or putrescine and/or shikimate can for example be detected advantageously via HPLC, LC or GC separation methods. The unambiguous detection for the presence of xanthophylls, in particular beta 25 cryptoxanthin or zeaxanthin containing products can be obtained by analyzing recom binant organisms using analytical standard methods: LC, LC-MS, MS or TLC). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cooking, or via other applicable methods [0116.0.16.16]In a preferred embodiment, the present invention relates to a process for 30 the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expres sion of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 1155 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 17, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; 5 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 17, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine 10 chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 15 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 20 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 25 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 17, column 7 and conferring an in 30 crease in the amount of the fine chemical in an organism or a part thereof; 1156 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism 5 or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 17, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 10 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 17, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 15 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. 20 [0116.1.16.16.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 17, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 17, columns 5 and 7. In one embodiment, the nucleic 25 acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 17, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 17, columns 5 and 7. 30 [0116.2.16.16.] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 17, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi- 1157 cated in table I B, application no. 17, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 17, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en 5 code a polypeptide of a sequence indicated in table II B, application no. 17, columns 5 and 7. [0117.0.16.16]In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 17, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica 10 tion no. 17, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 17, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 17, columns 5 and 7. 15 [0118.0.0.16] to [0120.0.0.16] for the disclosure of the paragraphs [0118.0.0.16] to [0120.0.0.16] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.16.16]Nucleic acid molecules with the sequence shown in table I, application no. 17, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 17, columns 5 and 7 or from polypeptides 20 comprising the consensus sequence shown in table IV, application no. 17, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 17, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or 25 in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.16] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.16.16]Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 17, column 3 can be determined from generally ac 30 cessible databases. [0124.0.0.16] for the disclosure of this paragraph see paragraph [0124.0.0.0] above.
1158 [0125.0.16.16]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 17, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or 5 ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.16] to [0133.0.0.16] for the disclosure of the paragraphs [0126.0.0.16] to [0133.0.0.16] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.16.16]However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or 10 more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 17, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 15 17, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0135.0.0.16] to [0140.0.0.16] for the disclosure of the paragraphs [0135.0.0.16] to [0140.0.0.16] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.16.16]Synthetic oligonucleotide primers for the amplification, e.g. as shown in 20 table III, application no. 17, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 17, columns 5 and 7 or the sequences derived from table II, application no. 17, columns 5 and 7. [0142.0.16.16]Moreover, it is possible to identify conserved regions from various or 25 ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence 30 shown in table IV, application no. 17, column 7 is derived from said aligments. [0143.0.16.16] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac- 1159 tivity of a protein as shown in table II, application no. 17, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.16] to [0151.0.0.16] for the disclosure of the paragraphs [0144.0.0.16] to [0151.0.0.16] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 5 [0152.0.16.16]Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 17, columns 5 and 7, preferably of table I B, application no. 17, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 10 Gamma-aminobutyric acid and/or shikimate and/or putrescine or lipids, oils and/or fats containing Gamma-aminobutyric acid and/or shikimate and/or putrescine increasing activity. [0153.0.0.16] to [0159.0.0.16] for the disclosure of the paragraphs [0153.0.0.16] to [0159.0.0.16] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. 15 [0160.0.16.16]Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7 is 20 one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7, thereby forming a stable duplex. Preferably, the 25 hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing 30 partner. [0161.0.16.16]The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more 1160 preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after 5 increasing the acitivity or an activity of a gene product as shown in table II, application no. 17, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.16.16]The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined 10 herein, to one of the nucleotide sequences shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a Gamma-aminobutyric acid and/or shikimate and/or putrescine, triglycerides, lipids, oils and/or fats containing Gamma-aminobutyric acid and/or shikimate and/or 15 putrescine increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the ac tivity of a protein as shown in table II, application no. 17, column 3. [0163.0.16.16]Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 20 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for 25 example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises 30 substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 17, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in 35 table I, application no. 17, columns 5 and 7, preferably shown in table I B, application 1161 no. 17, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the 5 examples. A PCR with the primers shown in table III, application no. 17, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.16] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.16.16]The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 10 gous to the amino acid sequence shown in table II, application no. 17, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a Gamma-aminobutyric acid and/or shikimate and/or putrescine, triglycerides, lipids, oils and/or fats containing gamma-aminobutyric acid and/or putrescine and/or shikimate increasing the activity as mentioned above or as 15 described in the examples in plants or microorganisms is comprised. [0166.0.16.16]As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the 20 polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 17, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.16.16]In one embodiment, the nucleic acid molecule of the present invention 25 comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 17, 30 columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids.
1162 [0168.0.0.16] and [0169.0.0.16] for the disclosure of the paragraphs [0168.0.0.16] and [0169.0.0.16] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.16.16]The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 17, columns 5 and 7 5 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 17, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the 10 invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 17, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in 15 table II, application no. 17, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 17, columns 5 and 7, prefera bly as indicated in table I A, application no. 17, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid 20 molecule indicated in table I B, application no. 17, columns 5 and 7. [0171.0.0.16] to [0173.0.0.16] for the disclosure of the paragraphs [0171.0.0.16] to [0173.0.0.16] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.16.16]Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under 25 stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 17, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 30 [0175.0.0.16] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.16.16]Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 17, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used 1163 herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex 5 pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.16] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. 10 [0178.0.16.16]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 17, columns 5 and 7. [0179.0.0.16] and [0180.0.0.16] for the disclosure of the paragraphs [0179.0.0.16] 15 and [0180.0.0.16] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.16.16]Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that 20 contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 17, columns 5 and 7, preferably shown in table II A, application no. 17, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep 25 tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 17, columns 5 and 7, preferably shown in table II A, application no. 17, columns 5 and 7 and is capa ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or 30 ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se quence shown in table II, application no. 17, columns 5 and 7, preferably shown in ta ble II A, application no. 17, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 17, columns 5 and 7, 1164 preferably shown in table II A, application no. 17, columns 5 and 7, even more prefera bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap plication no. 17, columns 5 and 7, preferably shown in table II A, application no. 17, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical 5 to the sequence shown in table II, application no. 17, columns 5 and 7, preferably shown in table II A, application no. 17, columns 5 and 7. [0182.0.0.16] to [0188.0.0.16] for the disclosure of the paragraphs [0182.0.0.16] to [0188.0.0.16] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.16.16]Functional equivalents derived from one of the polypeptides as shown in 10 table II, application no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 15 homology with one of the polypeptides as shown in table II, application no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, columns 5 and 7. 20 [0190.0.16.16] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 25 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 17, columns 5 and 7, pref 30 erably shown in table II B, application no. 17, columns 5 and 7. [0191.0.0.16] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.16.16]A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 17, columns 5 and 7, preferably shown in table II B, applica- 1165 tion no. 17, columns 5 and 7 resp., can be created by introducing one or more nucleo tide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7 resp., such 5 that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. 10 [0193.0.0.16] to [0196.0.0.16] for the disclosure of the paragraphs [0193.0.0.16] to [0196.0.0.16] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.16.16] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7, comprise also allelic variants with at least ap 15 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. 20 Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the result 25 ing proteins synthesized is advantageously retained or increased. [0198.0.16.16]In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7. It is preferred that the nucleic acid molecule com 30 prises as little as possible other nucleotides not shown in any one of table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em 35 bodiment, the nucleic acid molecule use in the process of the invention is identical to 1166 the sequences shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7. [0199.0.16.16]Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli 5 cation no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical 10 to the sequences shown in table II, application no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, columns 5 and 7. [0200.0.16.16]In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 17, columns 5 and 7, preferably shown in table II B, application no. 17, 15 columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 17, columns 5 and 7, preferably shown in table I B, application no. 17, columns 5 and 7. 20 [0201.0.16.16]Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme 25 activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 17, columns 5 and 7 ex pressed under identical conditions. [0202.0.16.16]Homologues of table I, application no. 17, columns 5 and 7 or of the derived sequences of table II, application no. 17, columns 5 and 7 also mean truncated 30 sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or 1167 deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 5 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.16] to [0215.0.0.16] for the disclosure of the paragraphs [0203.0.0.16] to [0215.0.0.16] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. 10 [0216.0.16.16]Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 17, columns 5 and 7, preferably in table 15 || B, application no. 17, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 17, columns 5 and 7, pref erably in table I B, application no. 17, columns 5 and 7 or a fragment thereof con 20 ferring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine 25 chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 1168 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine 5 chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; 10 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 17, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex 15 pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus 20 sequence shown in table IV, application no. 17, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 17, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ 25 ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 30 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 17, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 17, columns 5 and 7, and conferring an increase in the amount of the fine 1169 chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 17, columns 5 and 7 by 5 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 17, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 17, columns 5 10 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 17, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 17, columns 5 15 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 17, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 17, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence 20 depicted in table II A and/or II B, application no. 17, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 17, columns 5 and 7. [0217.0.0.16] to [0226.0.0.16] for the disclosure of the paragraphs [0217.0.0.16] to 25 [0226.0.0.16] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.16.16]In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 30 systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac 35 cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An 1170 overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep 5 tides shown in table II, application no. 17, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.16] to [0239.0.0.16] for the disclosure of the paragraphs [0228.0.0.16] to 10 [0239.0.0.16] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.16.16] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously 15 into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 17, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject 20 to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regula tions no longer exist to the same extent or not at all. In addition it might be advanta geously to combine the sequences shown in Table I, application no. 17, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target or 25 ganismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.16.16] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous overexpression of at least one nucleic acid or one of the genes which code for proteins directly or indirectly involved in 30 the glutamic acid or phosphoenolpyruvate metabolism. Indirect overexpression might be brought about by the manipulation of the regulation of the endogenous gene, for example through promotor mutations or the expression of natural or artificial transcrip tional regulators.
1171 [0242.0.16.16] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the aromatic amino acid pathway, such as tryptophan, phenylalanine or tyrosine.These genes can 5 lead to an increased synthesis of the essential amino acids tryptophan, phenylalanine or tyrosine. [0242.1.16.16]In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a gamma aminobutyric acid and/or shikimate and/or putrescine degrading protein is attenuated, 10 in particular by reducing the rate of expression of the corresponding gene. [0242.2.16.16]The respective fine chemical produced can be isolated from the organ ism by methods with which the skilled worker are familiar, for example via extraction, salt precipitation, and/or different chromatography methods. The process according to the invention can be conducted batchwise, semibatchwise or continuously. The fine 15 chemcical and other xanthophylls produced by this process can be obtained by har vesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. [0242.3.16.16] Preferrably, the compound is a composition comprising the essentially pure gamma-aminobutyric acid and/or shikimate and/or putrescine or a recovered or 20 isolated gamma-aminobutyric acid and/or shikimate and/or putrescine, in particular, the respective fine chemical, free or in protein- and/or lipid-bound form. [0243.0.0.16] to [0264.0.0.16] for the disclosure of the paragraphs [0243.0.0.16] to [0264.0.0.16] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.16.16]Other preferred sequences for use in operable linkage in gene expres 25 sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox 30 isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid- 1172 transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table I, application no. 5 17, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.16] to [0287.0.0.16] for the disclosure of the paragraphs [0266.0.0.16] to [0287.0.0.16] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.16.16]Accordingly, one embodiment of the invention relates to a vector where 10 the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 17, columns 5 and 7 or their homologs is functionally linked to a 15 plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 17, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.16] to [0296.0.0.16] for the disclosure of the paragraphs [0289.0.0.16] to 20 [0296.0.0.16] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.16.16] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti- b1704, anti-b1868, anti- b2600, anti- b2601, anti- b2965, anti 25 YDR035W and/or anti- YOR350C protein antibody or an antibody against polypeptides as shown in table II, application no. 17, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. [0298.0.0.16] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. 30 [0299.0.16.16]In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 17, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 17, columns 5 and 7 or func tional homologues thereof.
1173 [0300.0.16.16]In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 17, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the 5 consensus sequence shown in table IV, application no. 17, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.16] to [0304.0.0.16] for the disclosure of the paragraphs [0301.0.0.16] to 10 [0304.0.0.16] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.16.16]In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence 15 shown in table II A and/or II B, application no. 17, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 17, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the 20 polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 17, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or 25 II B, application no. 17, columns 5 and 7. [0306.0.0.16] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.16.16]In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se 30 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 17, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 17, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden- 1174 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 17, columns 5 and 7. [0308.0.16.16]In one embodiment, the present invention relates to a polypeptide hav 5 ing the activity of the protein as shown in table II A and/or II B, application no. 17, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 17, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred 10 by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from 15 which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.16] to [0311.0.0.16] for the disclosure of the paragraphs [0309.0.0.16] to [0311.0.0.16] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.16.16]A polypeptide of the invention can participate in the process of the pre 20 sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 17, columns 5 and 7. [0313.0.16.16] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin 25 gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably 30 at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 17, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se- 1175 quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 17, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.16.16]Accordingly the polypeptide of the present invention can vary from the 5 sequences shown in table II A and/or II B, application no. 17, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most 10 preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 17, columns 5 and 7. [0315.0.0.16] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.16.16]Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se 15 quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 17, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an 20 polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.16 for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.16.16]Manipulation of the nucleic acid molecule of the invention may result in 25 the production of a protein having differences from the wild-type protein as shown in table II, application no. 17, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 17, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, 30 application no. 17, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein.
1176 [0319.0.16.16]Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha 5 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 17, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. 10 [0320.0.0.16] to [0322.0.0.16] for the disclosure of the paragraphs [0320.0.0.16] to [0322.0.0.16] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.16.16]In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 17, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, 15 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 17, column 3, e.g., a protein which does not confer the activity described herein and 20 which is derived from the same or a different organism. [0324.0.0.16] to [0329.0.0.16] for the disclosure of the paragraphs [0324.0.0.16] to [0329.0.0.16] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.16.16]In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are 25 encoded by the sequences shown in table II, application no. 17, columns 5 and 7. [0331.0.0.16] to [0346.0.0.16] for the disclosure of the paragraphs [0331.0.0.16] to [0346.0.0.16] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.16.16]Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the 30 fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as 1177 shown in table II, application no. 17, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe 5 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 17, col umn 3 or a protein as shown in table II, application no. 17, column 3-like activity is in 10 creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.16] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.16.16]A naturally occurring expression cassette - for example the naturally 15 occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 17, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). 20 [0350.0.0.16] to [0358.0.0.16] for the disclosure of the paragraphs [0350.0.0.16] to [0358.0.0.16] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.16.16]Transgenic plants comprising the gamma-aminobutyric acid and/or pu trescine and/or shikimate synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process ac 25 cording to the invention, plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The gamma-aminobutyric acid and/or putrescine and/or shikimate produced in the process 30 according to the invention may, however, also be isolated from the plant in the form of their free gamma-aminobutyric acid and/or putrescine and/or shikimate, salts esters, thioesters containing said produced gamma-aminobutyric acid and/or putrescine and/or shikimate or gamma-aminobutyric acid and/or putrescine and/or shikimate bound to proteins. Gamma-aminobutyric acid and/or putrescine and/or shikimate produced by 1178 this process can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant leaves, plant fruits, flowers and the like. 5 The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, flowers and the like as mentioned above in the case of transgenic plant organisms derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, pharma 10 ceuticals or fine chemicals. [0360.0.0.16] to [0362.0.0.16] for the disclosure of the paragraphs [0360.0.0.16] to [0362.0.0.16] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.16.16] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 15 80% by weight, very especially preferably more than 90% by weight, of the gamma aminobutyric acid and/or shikimate and/or putrescine produced in the process can be isolated. The resulting gamma-aminobutyric acid and/or shikimate and/or putrescine can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as vitamins, amino acids, carbohydrates, antibiotics and the like, and, 20 if appropriate, formulated. [0364.0.16.16] In one embodiment, gamma-aminobutyric acid, putrescine and shiki mate, preferably gamma-aminobutyric acid and putrescine are a mixture of the respec tive fine chemicals. [0365.0.16.16] The gamma-aminobutyric acid and/or shikimate and/or putrescine 25 obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the production of pharmaceuticals, foodstuffs, animal feeds or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuti cals, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the proc 30 ess according to the invention, including the isolation of the gamma-aminobutyric acid and/or shikimate and/or putrescine composition produced or the respective fine chemi cal produced if desired and formulating the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture.
1179 A further embodiment according to the invention is the use of the gamma-aminobutyric acid and/or shikimate and/or putrescine produced in the process or of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals or for the production of gamma-aminobutyric acid and/or shikimate 5 and/or putrescine e.g. after isolation of the respective fine chemical or without, e.g. in situ, e.g in the organism used for the process for the production of the respective fine chemical. Accordingly, the present invention relates a method for the production of pharmaceuti cals, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the proc 10 ess according to the invention, including the isolation of the shikimate composition pro duced or the respective fine chemical produced if desired and formulating the product with a pharmaceutical acceptable carrier or formulating the product in a form accept able for an application in pharmacy. The production of shikimic acid by microbials has been already described in WO 02/29078, which is in incorporated herewith in its en 15 tirety, especially examples 1 and 2. In a preferred embodiment the shikimic acid is pro duced according to a process of the present invention in plants. A further embodiment of the present invention is the use of the coding sequences ac cording to table Nr. 17 b for the production of pharmaceuticals, especially of antivirals, even more preferred of antivirals against the avain influenza, especially preferred of 20 Tamiflu@. A further embodiment of the present invention is the use of shikimic acid produced by a method of the present invention for the production of pharmaceuticals, especially of antivirals, even more preferred of antivirals against the avain influenza, especially pre ferred of Tamiflu@. 25 A further embodiment of the present invention is the use of shikimic acid produced by a method of the present invention in plants for the production of pharmaceuticals, espe cially of antivirals, even more preferred of antivirals against the avain influenza, espe cially preferred of Tamiflu@. [0366.0.0.16] to [0369.0.0.16] for the disclosure of the paragraphs [0366.0.0.16] to 30 [0369.0.0.16] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.16.16] The fermentation broths obtained in this way, containing in particular gamma-aminobutyric acid and/or shikimate and/or putrescine in mixtures with other organic acids, aminoacids, polypeptides or polysaccarides, normally have a dry matter 1180 content of from 1 to 70% by weight, preferably 7.5 to 25% by weight. Sugar-limited fermentation is additionally advantageous, e.g. at the end, for example over at least 30% of the fermentation time. This means that the concentration of utilizable sugar in the fermentation medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/l 5 during this time. The fermentation broth is then processed further. Depending on re quirements, the biomass can be removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagula tion/flocculation or a combination of these methods, from the fermentation broth or left completely in it. 10 The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. 15 [0371.0.16.16] Accordingly, it is possible to purify the gamma-aminobutyric acid and/or shikimate and/or putrescine produced according to the invention further. For this purpose, the product-containing compositions subjected for example to separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatog 20 raphy steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. [0372.0.0.16] to [0376.0.0.16], [0376.1.0.16] and [0377.0.0.16] for the disclosure of the paragraphs [0372.0.0.16] to [0376.0.0.16], [0376.1.0.16] and [0377.0.0.16] see 25 paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.16.16]In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 30 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; 1181 (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 17, columns 5 and 7, preferably in table I B, application no. 17, columns 5 and 7, and, option 5 ally, isolating the full length cDNA clone or complete genomic clone; (c) ntroducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and(f) identifying the nucleic 10 acid molecule and its gene product which expression confers an increase in the the fine chemical level in the host cell after expression compared to the wild type. [0379.0.0.16] to [0383.0.0.16] for the disclosure of the paragraphs [0379.0.0.16] to [0383.0.0.16] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.16.16] The screen for a gene product or an agonist conferring an increase in 15 the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. 20 One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 17, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 17, column 3. 25 [0385.0.0.16] to [0404.0.0.16] for the disclosure of the paragraphs [0385.0.0.16] to [0404.0.0.16] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.16.16] Accordingly, the nucleic acid of the invention, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, 30 the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the respective fine chemical or of the respective fine chemical and 1182 one or more other non-protein amino acids or organic acids. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the pre sent invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgan 5 isms, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the antagonist identified with the method of the invention, the antibody of the present invention, the antisense molecule of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. [0406.0.0.16] to [0435.0.0.16] for the disclosure of the paragraphs [0406.0.0.16] to 10 [0435.0.0.16] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.16.16] Production of gamma-aminobutyric acid and/or shikimate and/or putrescine, salts, esters, thioesters containing gamma-aminobutyric acid and/or shiki mate and/or putrescine in Chlamydomonas reinhardtii The gamma-aminobutyric acid and/or shikimate and/or putrescineproduction can be 15 analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.16] and [0438.0.0.16] for the disclosure of the paragraphs [0437.0.0.16] and [0438.0.0.16] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.16.16] Example 9: Analysis of the effect of the nucleic acid molecule on the 20 production of gamma-aminobutyric acid and/or shikimate and/or pu trescine [0440.0.16.16] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as gamma-aminobutyric acid and/or shikimate and/or putrescine) can be determined by growing the modified plant under suitable 25 conditions (such as those described above) and analyzing the medium and/or the cellu lar components for the elevated production of desired product (i.e. of the gamma aminobutyric acid and/or shikimate and/or putrescine). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analyti 30 cal chromatography such as high-performance liquid chromatography (see, for exam ple, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemis try" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et 1183 al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469 714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream process ing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and 5 Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.16] for the disclosure of this paragraph see [0441.0.0.0] above. 10 [0442.0.16.16] Purification of aminobutyric acid and/or putrescine and/or shikimate: [0443.0.16.16] Abbreviations; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of aminobutyric acid and/or putrescine 15 and/or shikimate can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS, LC, LC-MSMS or TLC, as described. The total amount produced in the organism for example in yeasts used in the inventive process can be analysed for example according to the following procedure: 20 The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pestle and 25 mortar to make it more amenable to extraction. A typical sample pretreatment consists of a total extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponification, partition be tween phases, seperation of non-polar epiphase from more polar hypophasic deriva 30 tives and chromatography. For analysis, solvent delivery and aliquot removal can be accomplished with a robotic system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% 35 potassium hydroxide hydro-ethanolic solution (4 water - 1 ethanol) can be added to 1184 each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. 5 Following saponification, the supernatant can be diluted with 0.17 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials for analysis. 10 For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The 15 column can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT (2,6-di-tert-butyl-4-methylphenol). Injections were 20 1il. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab 20 sorbance at 447 nm. [0444.0.16.16]If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the aminobutyric acid and/or putrescine and/or shikimate can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. If necessary, these chromatography 25 steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most ef fective use for a particular molecule to be purified. [0445.0.16.16]% [0446.0.0.16] to [0496.0.0.16] for the disclosure of the paragraphs [0446.0.0.16] to 30 [0496.0.0.16] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.16.16] As an alternative, the gamma-aminobutyric acid and/or shikimate and/or putrescine can be detected advantageously via HPLC separation in combination with NMR techniques for the structure clarification or in combination with mass spec trometry in case of small sample volumes as described for example by Karsten Putz- 1185 bach (Theses, 2005 at the Eberhard-Karls-University of Tuebingen, Department of Chemistry and Pharmacy) or Mueller, H. Z. Lebensm. Unters. Forsch. A 204, 1997: 88 - 94. [0498.0.16.16] As an alternative, gamma-aminobutyric acid can be detected as de 5 scribed in Haak and Reineke, Antimicrob. Agents Chemother. 19(3): 493(1981) As an alternative, shikimate can be detected as described in Gould and Erickson, J Antibiot 41(5), 688-9 (1988). As an alternative, putrescine can be detected as described in Endo Y., Anal Biochem. 89(1):235-46(1978). 10 The results of the different plant analyses can be seen from the table, which follows: Table VI ORF Metabolite Method Min Max b1704 Shikimic acid GC 2.54 66.93 b1868 Shikimic acid GC 1.20 2.08 b2600 Shikimic acid GC 1.14 1.32 b2601 Shikimic acid GC 1.42 3.78 b2965 Putrescine GC 73.24 1327.45 gamma Aminobutyric acid b2965 (GABA) GC 3.53 9.30 YDR035W Shikimic acid GC 1.26 2.74 YOR350C Shikimic acid GC 1.14 1.15 [0499.0.0.16] and [0500.0.0.16] for the disclosure of the paragraphs [0499.0.0.16] 15 and [0500.0.0.16] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.16.16] Example 15a: Engineering ryegrass plants by over-expressing b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from Escherichia coli or homologs of b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from 20 other organisms.
1186 [0502.0.0.16] to [0508.0.0.16] for the disclosure of the paragraphs [0502.0.0.16] to [0508.0.0.16] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.16.16]Example 15b: Engineering soybean plants by over-expressing b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C 5 from Escherichia coli or homologs of b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from other organisms. [0510.0.0.16] to [0513.0.0.16] for the disclosure of the paragraphs [0510.0.0.16] to [0513.0.0.16] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. 10 [0514.0.16.16]Example 15c: Engineering corn plants by over-expressing b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from Escherichia coli or homologs of b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from other organisms. 15 [0515.0.0.16] to [0540.0.0.16] for the disclosure of the paragraphs [0515.0.0.16] to [0540.0.0.16] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.16.16] Example 15d: Engineering wheat plants by over-expressing b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from Escherichia coli or homologs of b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from other 20 organisms. [0542.0.0.16] to [0544.0.0.16] for the disclosure of the paragraphs [0542.0.0.16] to [0544.0.0.16] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.16.16] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b1704, b1868, b2600, b2601, b2965, YDR035W or 25 YOR350C from Escherichia coli or homologs of b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from other organisms. [0546.0.0.16] to [0549.0.0.16] for the disclosure of the paragraphs [0546.0.0.16] to [0549.0.0.16] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. 30 [0550.0.16.16]Example 15f: Engineering alfalfa plants by over-expressing b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C 1187 from Escherichia coli or homologs of b1704, b1868, b2600, b2601, b2965, YDR035W or YOR350C from other organisms. [0551.0.0.16] to [0554.0.0.16] for the disclosure of the paragraphs [0551.0.0.16] to 5 [0554.0.0.16] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.16.16]: Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII as minimal (MIN) or maximal changes (MAX) in the 10 respective fine chemical (column "metabolite") in genetically modified corn plants ex pressing thesequence listed in column 1 (ORF).: 1188 Table VII ORF Metabolite Min Max b1704 Shikimate 2.58 4.32 b2601 Shikimate 3.02 13.69 YDR035W Shikimate 2.94 3.15 5 Table VII describes the increase in shikimate in genetically modified corn plants ex pressing the Escherichia coli nucleic acid sequences b2601, b1 704 or Saccharomyces cerevisiae nucleic acid sequence YDR035W. In case the activity of the Saccharomyces cerevisiae protein YDR035W or a protein 10 with an 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase activity or its homolog, is increased in corn plants, preferably, an increase of the fine chemical shikimate between 194% and 215% or more is conferred. In case the activity of the Escherichia coli protein b2601 or a protein with an 3-deoxy-D arabinoheptulosonate-7-phosphate (DAHP) synthase activity or its homolog, is in 15 creased in corn plants, preferably, an increase of the fine chemical shikimate between 202% and 1269% or more is conferred. In case the activity of the Escherichia coli protein b1704 or a protein with an 3-deoxy-D arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible activity or its homolog, is increased in corn plants, preferably, an increase 20 of the fine chemical shikimate between 158% and 332% or more is conferred. [0554.2.0.16] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.16] for the disclosure of this paragraph see [0555.0.0.0] above.
1189 [0001.0.0.17] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.17.17] Coenzymes are molecules that cooperate in the catalytic action of an enzyme. Like enzymes, coenzymes are not irreversibly changed during catalysis; they are either unmodified or regenerated. Each kind of coenzyme has a particular chemical 5 function. Coenzymes may either be attached by covalent bonds to a particular enzyme or exist freely in solution, but in either case they participate intimately in the chemical reactions catalyzed by the enzyme. [0003.0.17.17] Coenzyme Q10 (CoQ 10) or ubiquinone is essentially a vitamin or vitamin-like substance. Disagreements on nomenclature notwithstanding, vitamins are 10 defined as organic compounds essential in minute amounts for normal body function acting as coenzymes or precursors to coenzymes. Coenzyme Q10 or CoQ10 belongs to a family of substances called ubiquinones. Ubiquinones, also known as coenzymes Q and mitoquinones, are lipophilic, water-insoluble substances involved in electron transport and energy production in mitochondria. The basic structure of ubiquinones 15 consists of a benzoquinone "head" and a terpinoid "tail." The "head" structure partici pates in the redox activity of the electron transport chain. The major difference among the various coenzymes Q is in the number of isoprenoid units (5-carbon structures) in the "tail." Coenzymes Q contain one to 12 isoprenoid units in the "tail"; 10 isoprenoid units are common in animals. Coenzymes Q occur in the majority of aerobic organ 20 isms, from bacteria to plants and animals. Two numbering systems exist for designa tion of the number of isoprenoid units in the terpinoid "tail": coenzyme Qn and coen zyme Q(x). N refers to the number of isoprenoid side chains, and x refers to the num ber of carbons in the terpinoid "tail" and can be any multiple of five. Thus, coenzyme Q10 refers to a coenzyme Q having 10 isoprenoid units in the "tail." Since each isopre 25 noid unit has five carbons, coenzyme Q10 can also be designated coenzyme Q(50). The structures of coenzymes Q are analogous to those of vitamin K2. Coenzyme Q10 is also known as Coenzyme Q(50), CoQ10, CoQ(50), ubiquinone (50), ubiquinol- 10 and ubidecarerone. They are present naturally in foods and sometimes are also synthesized in the body. 30 CoQ1 0 likewise is found in small amounts in a wide variety of foods and is synthesized in all tissues. The biosynthesis of CoQ10 from the amino acid tyrosine is a multistage process requiring at least eight vitamins and several trace elements. Coenzymes are cofactors upon which the comparatively large and complex enzymes absolutely depend for their function. Coenzyme Q10 is the coenzyme for at least three mitochondrial 1190 enzymes (complexes 1, 11 and III) as well as enzymes in other parts of the cell. Mitochondrial enzymes of the oxidative phosphorylation pathway are essential for the production of the high-energy phosphate, adenosine triphosphate (ATP), upon which all cellular functions depend. The electron and proton transfer functions of the quinone 5 ring are of fundamental importance to all life forms; ubiquinone in the mitochondria of animals, plastoquinone in the chloroplast of plants, and menaquinone in bacteria. The term "bioenergetics" has been used to describe the field of biochemistry looking specifically at cellular energy production. In the related field of free radical chemistry, CoQ10 has been studied in its reduced form as a potent antioxidant. The bioenergetics 10 and free radical chemistry of CoQ1 0 are reviewed in Gian Paolo Littarru's book, Energy and Defense, published in 1994. The precise chemical structure of CoQ10 is 2,3 di methoxy-5 methyl-6 decaprenyl benzoquinone [0004.0.17.17] Discovered in 1957, CoQ-10 is also called ubiquinone because it be longs to a class of compounds called quinones, and because it's ubiquitous in living 15 organisms, especially in the heart, liver, and kidneys. It plays a crucial role in producing energy in cells. And it acts as a powerful antioxidant, meaning that it helps neutralize cell-damaging molecules called free radicals. Manufactured by all cells in the body, CoQ-10 is also found in small amounts in foods, notably meat and fish. By the mid 1970's, the industrial technology to produce pure CoQ1 0 in quantities sufficient for lar 20 ger clinical trials was established. Principally CoQ10 can be isolated from microorgan isms or plants or algae; in particular mitochondria are a common source for CoQ1 0. Alternatively, they are obtained advantageously from animals or fish. [0005.0.17.17] Since the actions of supplemental CoQ10 have yet to be clarified, the mechanism of these actions is a matter of speculation. However, much is known about 25 the biochemistry of CoQ10. CoQ10 is an essential cofactor in the mitochondrial elec tron transport chain, where it accepts electrons from complex I and II, an activity that is vital for the production of ATP. CoQ10 has antioxidant activity in mitochondria and cel lular membranes, protecting against peroxidation of lipid membranes. It also inhibits the oxidation of LDL-cholesterol. LDL-cholesterol oxidation is believed to play a significant 30 role in the pathogenesis of atherosclerosis. CoQ10 is biosynthesized in the body and shares a common synthetic pathway with cholesterol. CoQ1 0 levels decrease with aging in humans. Why this occurs is not known but may be due to decreased synthesis and/or increased lipid peroxidation which occurs with aging. Significantly decreased levels of CoQ1 0 have been noted in a wide variety of 35 diseases in both animal and human studies. CoQ10 deficiency may be caused by in- 1191 sufficient dietary CoQ10, impairment in CoQ10 biosynthesis, excessive utilization of CoQ1 0 by the body, or any combination of the three. Decreased dietary intake is pre sumed in chronic malnutrition and cachexia. [0006.0.17.17] The relative contribution of CoQ10 biosynthesis versus dietary 5 CoQ10 is under investigation. Karl Folkers takes the position that the dominant source of CoQ10 in man is biosynthesis. This complex, 17 step process, requiring at least seven vitamins (vitamin B2 - riboflavin, vitamin B3 - niacinamide, vitamin B6, folic acid, vitamin B12, vitamin C, and pantothenic acid) and several trace elements, is, by its nature, highly vulnerable. Karl Folkers argues that suboptimal nutrient intake in man is 10 almost universal and that there is subsequent secondary impairment in CoQ1 0 biosyn thesis. This would mean that average or "normal" levels of CoQ10 are really subopti mal and the very low levels observed in advanced disease states represent only the tip of a deficiency "ice berg". Supplemental CoQ1 0 may have cardioprotective, cytoprotective and neuroprotective 15 activities. There are claims that it has positive effects in cancer, muscular dystrophy and immune dysfunction. Similarly, it may inhibit obesity or enhance athletic perform ance. [0007.0.17.17] HMG-CoA reductase inhibitors used to treat elevated blood choles terol levels by blocking cholesterol biosynthesis also block CoQ1 0 biosynthesis. The 20 resulting lowering of blood CoQ1 0 level is due to the partially shared biosynthetic pathway of CoQ1 0 and cholesterol. In patients with heart failure this is more than a laboratory observation. It has a significant harmful effect which can be negated by oral CoQ1 0 supplementation. Increased body consumption of CoQ10 is the presumed cause of low blood CoQ10 25 levels seen in excessive exertion, hypermetabolism, and acute shock states. It is likely that all three mechanisms (insufficient dietary CoQ10, impaired CoQ10 biosynthesis, and excessive utilization of CoQ1 0) are operable to varying degrees in most cases of observed CoQ10 deficiency. [0008.0.17.17] In nature, Coenzymes Q0 to Q9 are found as well. E.g. Coenzyme 30 Q9 is a derivative of CoQ1 0 found e.g. in the chloroplast of plants. Coenzyme Q9 has a shorter aliphatic group bound to the ring structure. Due to the high structural homology of Coenzymes Q0 to Q9 are expected to provide the same or very similar activities as CoQ10 in cells or organisms. However, Matsura et al., Biochim Biophys Acta, 1992, 1192 1123 (3) pp. 309-15 concluded from their study that CoQ9 constantly acts as a poten tial antioxidant in hepatocytes whereas CoQ10 manly exhibit its antioxidant activity in cells containing CoQ10 as the predominate CoQ homolog. Coenzyme Q10 is actual a very common ingredient in different types of cosmetics, due to its protective role 5 against radicals and its predicted function in skin tautening. [0009.0.17.17] Thus, Coenzymes, in particular CoQ10 or CoQ9 can be used in a lot of different applications, for example in cosmetics, pharmaceuticals and in feed and food. [0010.0.17.17] Therefore improving the productivity of said Coenzymes and improv 10 ing the quality of cosmetics, pharmaceuticals, foodstuffs and animal feeds, in particular of nutrition supplements, is an important task of the different industries. [0011.0.17.17] To ensure a high productivity of said Coenzymes in plants or micro organism, it is necessary to manipulate the natural biosynthesis of said Coenzymes in said organisms. 15 [0012.0.17.17] Accordingly, there is still a great demand for new and more suitable genes which encode enzymes or other regulators which participate in the biosynthesis of said Coenzymes and make it possible to produce said Coenzymes specifically on an industrial scale without that unwanted byproducts are formed. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one 20 hand, there is as ever a need for improved processes for obtaining the highest possible contents of said Coenzymes on the other hand as less as possible byproducts should be produced in the production process. [0013.0.0.17] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.17.17] Accordingly, in a first embodiment, the invention relates to a process 25 for the production of a fine chemical, whereby the fine chemical is Coenzyme Q9 and/or Coenzyme Q10 in free or bound form for example bound to lipids, oils or fatty acids. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "Coenzyme Q9 and/or Coenzyme Q10 in free or bound form". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising Co 30 enzyme Q9 and/or Coenzyme Q10 in free or bound form. [0015.0.17.17] In one embodiment, the term "Coenzyme Q9 and/or Coenzyme Q10 in free or bound form", "the fine chemical" or "the respective fine chemical" means at 1193 least one chemical compound selected from the group consisting of Coenzyme Q9, Coenzyme Q10 or mixtures thereof in free or bound form. Throughout the specification the term "the fine chemical" or "the respective fine chemical" means a compound se lected from the group Coenzyme Q9, Coenzyme Q10 or mixtures thereof in free form 5 or bound to other compounds such as protein(s) such as enzyme(s), peptide(s), poly peptide(s), membranes or part thereof, or lipids, oils, waxes or fatty acids or mixtures thereof or in compositions with lipids. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen 10 tioned fine chemical. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the above men tioned fine chemical [0016.0.17.17] Accordingly, the present invention relates to a process for the produc 15 tion of Coenzyme Q9 and/or Coenzyme Q10, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 18, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application 20 no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 18, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, Coenzyme Q9 and/or Coenzyme Q10 or fine chemicals compris 25 ing Coenzyme Q9 and/or Coenzyme Q10, are produced in said organism or in the culture medium surrounding the organism. [0016.1.17.17] Accordingly, the term "the fine chemical" means "Coenzyme Q9 and/or Coenzyme Q10" in relation to all sequences listed in table I, application no. 18, columns 3 and 7 or homologs thereof. Accordingly, the term "the fine chemical" can 30 mean "Coenzyme Q9 and/or Coenzyme Q10", owing to circumstances and the context. Preferably the term "the fine chemical" means "Coenzyme Q9 and/or Coenzyme Q10". In order to illustrate that the meaning of the term "the respective fine chemical" means 1194 "Coenzyme Q9 and/or Coenzyme Q10 in free or bound form" owing to the sequences listed in the context the term "the respective fine chemical" is also used. [0017.0.17.17] In another embodiment the present invention is related to a process for the production of Coenzyme Q9 and/or Coenzyme Q10, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 18, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 18, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 18, column 5, which are joined to a nucleic acid sequence encoding 15 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of Coenzyme Q9 and/or Coenzyme Q10 in said organism. [0017.1.17.17] In another embodiment, the present invention relates to a process for 20 the production of Coenzyme Q9 and/or Coenzyme Q10, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 18, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or 25 (b) increasing or generating the activity of a protein as shown in table II, application no. 18, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 18, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine 30 chemical, thus, Coenzyme Q9 and/or Coenzyme Q10 or fine chemicals compris ing Coenzyme Q9 and/or Coenzyme Q10 in said organism or in the culture me dium surrounding the organism.
1195 [0018.0.17.17] Advantagously the activity of the protein as shown in table 1l, applica tion no. 18, column 3 encoded by the nucleic acid sequences as shown in table 1, ap plication no. 18, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. 5 [0019.0.0.17] to [0024.0.0.17] for the disclosure of the paragraphs [0019.0.0.17] to [0024.0.0.17] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.17.17] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some 10 examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 18, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as 15 chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro 20 teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac 25 ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en 30 coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any 35 case, the additional base pairs at the joining position which forms restriction enzyme 1196 recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. 5 [0026.0.17.17] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 18, column 3 and its homologs as disclosed in table I, application no. 18, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex 10 pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 18, column 3 and its homologs as disclosed in table I, application no. 18, columns 5 and 7. [0027.0.0.17] to [0029.0.0.17] for the disclosure of the paragraphs [0027.0.0.17] to 15 [0029.0.0.17] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.17.17] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a 20 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences 25 derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more 30 preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be 35 also part of the inventive nucleic acid sequence. The proteins translated from said in- 1197 ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 18, columns 5 and 7. The person skilled in the art is able to join 5 said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 18, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 10 protein metioned in table II, application no. 18, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 18, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids 15 in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae 20 genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 18, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.17.17] Table V: Examples of transit peptides disclosed by von Heijne et al. for 25 the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.17.17] Alternatively to the targeting of the sequences shown in table II, ap plication no. 18, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu 30 cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 18, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or 35 preferably by "transformation".
1198 A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA 5 making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.17] and [0030.3.0.17] for the disclosure of the paragraphs [0030.2.0.17] 10 and [0030.3.0.17] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.17.17] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 18, columns 5 and 7 or active 15 fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 20 scribed from the sequences depicted in table I, application no. 18, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 18, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal 25 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, 30 PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 18, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 18, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 18, columns 5 and 7 or a sequence encoding a 35 protein as depicted in table II, application no. 18, columns 5 and 7 into the chloroplasts.
1199 A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table 1l, application no. 18, columns 5 and 7 are encoded by differ 5 ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in 10 troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the 15 nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table 1l, application no. 18, columns 5 and 7. [0030.5.17.17] In a preferred embodiment of the invention the nucleic acid se quences as shown in table 1, application no. 18, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids 20 should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.17.17] For a good expression in the plastids the nucleic acid sequences as shown in table 1, application no. 18, columns 5 and 7 are introduced into an expression 25 cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.17] and [0032.0.0.17] for the disclosure of the paragraphs [0031.0.0.17] and 30 [0032.0.0.17] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.17.17] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 1200 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 18, column 3. Preferably the 5 modification of the activity of a protein as shown in table II, application no. 18, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.17.17] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table II, application no. 18, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least 10 one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.17] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.17.17] The sequence of b1551 (Accession number PIR:B64910) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 15 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of Coenzyme Q9 and/or Coenzyme Q10, in particular for increasing the amount of Co enzyme Q9 in free or bound form in an organism or a part thereof, as mentioned. In 20 one embodiment, in the process of the present invention the activity of a b1 551 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1551 protein is increased or generated in a subcellular compartment of the organism or or 25 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown 30 herein, for the production of the fine chemical, meaning of Coenzyme Q9 and/or Coen zyme Q10, in particular for increasing the amount of Coenzyme Q9 in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a b1 556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit 35 peptide as mentioned for example in table V.
1201 In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1704 (Accession number NP_416219) from Escherichia coli has 5 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophan-repressible". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase (DAHP synthetase), tryptophan-repressible" or its homolog, e.g. 10 as shown herein, for the production of the fine chemical, meaning of Coenzyme Q9 and/or Coenzyme Q10, in particular for increasing the amount of Coenzyme Q9 and/or Coenzyme Q10 in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 704 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref 15 erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2600 (Accession number NP_417091) from Escherichia coli has 20 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "bifunctional chorismate mutase / prephenate dehydrogenase". Ac cordingly, in one embodiment, the process of the present invention comprises the use of a "bifunctional chorismate mutase / prephenate dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of Coenzyme Q9 25 and/or Coenzyme Q10, in particular for increasing the amount of Coenzyme Q9 and/or Coenzyme Q10 in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2600 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref erably linked at least to one transit peptide as mentioned for example in table V. 30 In another embodiment, in the process of the present invention the activity of a b2600 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 35 is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of Co- 1202 enzyme Q9 and/or Coenzyme Q10, in particular for increasing the amount of Coen zyme Q9 in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 5 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4039 (Accession number PIR:S25660) from Escherichia coli has 10 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "4-hydroxybenzoate synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "4-hydroxybenzoate syn thetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of Coenzyme Q9 and/or Coenzyme Q10, in particular for increasing the 15 amount of Coenzyme Q9 in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b4039 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b4039 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. [0037.0.17.17] In one embodiment, the homolog of the b1551, b1556, b1704, b1704, b2600, b2965 or b4039 is a homolog having said acitivity and being derived from bac 25 teria. In one embodiment, the homolog of the b1551, b1556, b1704, b1704, b2600, b2965 or b4039 is a homolog having said acitivity and being derived from Proteobacte ria. In one embodiment, the homolog of the b1551, b1556, b1704, b1704, b2600, b2965 or b4039 is a homolog having said acitivity and being derived from Gammapro teobacteria. In one embodiment, the homolog of the b1551, b1556, b1704, b1704, 30 b2600, b2965 or b4039 is a homolog having said acitivity and being derived from En terobacteriales. In one embodiment, the homolog of the b1551, b1556, b1704, b1704, b2600, b2965 or b4039 is a homolog having said acitivity and being derived from En terobacteriaceae. In one embodiment, the homolog of the b1551, b1556, b1704, b1704, b2600, b2965 or b4039 is a homolog having said acitivity and being derived 35 from Escherichia, preferably from Escherichia coli.
1203 [0038.0.0.17] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.17.17] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 18, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the fine 5 chemical level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica tion no. 18, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. 10 Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 18, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par 15 ticularly preferably 40% in comparison to a protein as shown in table II, application no. 18, column 3 of Saccharomyces cerevisiae. [0040.0.0.17] to [0047.0.0.17] for the disclosure of the paragraphs [0040.0.0.17] to [0047.0.0.17] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.17.17] Preferably, the reference, control or wild type differs form the subject 20 of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 18, column 3 its bio 25 chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.17] to [0051.0.0.17] for the disclosure of the paragraphs [0049.0.0.17] to [0051.0.0.17] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.17.17] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 30 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table I, application no. 18, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V 1204 or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 5 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.17] to [0058.0.0.17] for the disclosure of the paragraphs [0053.0.0.17] to [0058.0.0.17] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.17.17] In case the activity of the Escherichia coli protein b1551 or its ho 10 mologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of Coenzyme Q9 in free or bound form between 50% and 84% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin 15 prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of Co enzyme Q9 in free or bound form between 53% and 98% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan 20 repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of Coenzyme Q9 in free or bound form between 43% and 236% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan 25 repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of Coenzyme Q10 in free or bound form between 28% and 369% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan 30 repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of Coenzyme Q10 in free or bound form between 28% and 369% or more and of coen zyme Q9 in free or bound form between 43% and 236% is conferred. In case the activity of the Escherichia coli protein b2600 or its homologs, e.g. a "bifunc 35 tional chorismate mutase / prephenate dehydrogenase" is increased advantageously in 1205 an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of Coenzyme Q10 in free or bound form be tween 87% and 101% or more is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or 5 nithine decarboxylase is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of Coenzyme Q9 in free or bound form between 40% and 198% or more is con ferred. In case the activity of the Escherichia coli protein b4039 or its homologs, e.g. a "4 10 hydroxybenzoate synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of Coenzyme Q9 in free or bound form between 53% and 113% or more is conferred. [0060.0.17.17] In case the activity of the Escherichia coli proteins b1 551, b1 556, 15 b1 704, b1 704, b2600, b2965 and/or b4039 or their homologs, are increased advanta geously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical such as Coenzyme Q9 or Coenzyme Q10 or mixtures thereof in free or bound formis conferred. [0061.0.0.17] and [0062.0.0.17] for the disclosure of the paragraphs [0061.0.0.17] and 20 [0062.0.0.17] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.17.17] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the structure of the polypeptide described herein, in particular of the polypeptides compris ing the consensus sequence shown in table IV, application no. 18, column 7 or of the 25 polypeptide as shown in the amino acid sequences as disclosed in table 1l, application no. 18, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 18, columns 5 and 7 or its herein described functional homologues 30 and has the herein mentioned activity. [0064.0.17.17] / [0065.0.0.17] and [0066.0.0.17] for the disclosure of the paragraphs [0065.0.0.17] and [0066.0.0.17] see paragraphs [0065.0.0.0] and [0066.0.0.0] above.
1206 [0067.0.17.17] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, 5 e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 18, columns 5 and 7 or its homologs activity having herein-mentioned Coenzyme Q9 and/or Coenzyme Q10 increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a 10 fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 18, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 18, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein 15 mentioned Coenzyme Q9 and/or Coenzyme Q10increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned Coenzyme Q9 and/or Co enzyme Q10 increasing activity, e.g. of a polypeptide having the activity of a pro 20 tein as indicated in table II, application no. 18, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the inven tion; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres 25 sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned Coenzyme Q9 and/or Co enzyme Q10 increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table II, application no. 18, columns 5 and 7 or its homologs activity; and/or 30 e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned Coenzyme Q9 and/or Coenzyme Q10 increasing activity, e.g. of a polypeptide having the activity of a protein as 1207 indicated in table 1l, application no. 18, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 5 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned Co enzyme Q9 and/or Coenzyme Q10 increasing activity, e.g. of a polypeptide hav ing the activity of a protein as indicated in table 1l, application no. 18, columns 5 and 7 or its homologs activity, and/or 10 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned Coenzyme Q9 and/or Coenzyme Q10 increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 18, columns 15 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 18, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous 20 recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 25 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it 30 self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or 1208 j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 5 polypeptide of the present invention having herein-mentioned Coenzyme Q9 and/or Coenzyme Q10 increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 18, columns 5 and 7 or its ho mologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 10 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned Coenzyme Q9 and/or Coenzyme Q10 increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 18, columns 5 and 7 or its homologs activity in plastids by the stable or transient 15 transformation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expres sion cassette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of 20 the invention or of the polypeptide of the present invention having herein mentioned Coenzyme Q9 and/or Coenzyme Q10 increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 18, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plas 25 tidial promoter. [0068.0.17.17] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having 30 the herein mentioned activity, e.g. conferring the increase of the fine chemical after increasing the expression or activity of the encoded polypeptide preferably in organ elles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table 1l, application no. 18, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids.
1209 [0069.0.0.17] to [0079.0.0.17] for the disclosure of the paragraphs [0069.0.0.17] to [0079.0.0.17] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.17.17] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table 1l, application no. 18, col 5 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table 1l, application no. 18, column 3 and activates its transcription. 10 A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 18, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific 15 expression of the protein as shown in table 1l, application no. 18, column 3, see e.g. in WOO1/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.17] to [0084.0.0.17] for the disclosure of the paragraphs [0081.0.0.17] to [0084.0.0.17] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. 20 [0085.0.17.17] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with 25 other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel metabolites composition in the organism, e.g. Coenzyme Q9 and/or Coenzyme Q10 and mixtures thereof. [0086.0.0.17] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 30 [0087.0.17.17] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to Coenzyme Q9 and/or Coenzyme Q10 compounds 1210 such as other Coenzymes such as Coenzyme Q0 to Q8, vitamins, amino acids or fatty acids. [0088.0.17.17] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: 5 a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 18, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present 10 invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, 15 c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical 20 and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.17.17] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in 25 such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound Coenzymes such as Coenzyme Q0 to Q8 or mixtures thereof. The organism such as microorganisms or plants or the recovered, and if desired iso 30 lated, fine chemical can then be processed further directly into foodstuffs or animal feeds or for other applications, for example according to the disclosures made in the following US patent publications: 1211 US 6,380,252: Use of L-acetylcarnitine, L-isovalerylcarnitine, L-propionylcarnitine for increasing the levels of IGF-1, US 6,372,198: Dentifrice for the mineralization and remineralization of teeth, US 6,368,617: Dietary supplement, US 6,350,473: Method for 5 treating hypercholesterolemia, hyperlipidemia, and atherosclerosis , US 6,335,361: Method of treating benign forgetfulness, v6,329,432: Mesozeaxanthin formulations for treatment of retinal disorders, US 6,328,987: Cosmetic skin care compositions contain ing alpha interferon, US 6,312,703: Compressed lecithin preparations, US 6,306,392: Composition comprising a carnitine and glutathione, useful to increase the absorption 10 of glutathione and synergize its effects, US 6,303,586: Supportive therapy for diabetes, hyperglycemia and hypoglycemia, US 6,297,281: Association of no syntase inhibitors with trappers of oxygen reactive forms, US 6,294,697: Discrete-length polyethylene glycols, US 6,277,842: Dietary supplemental method for fat and weight reduction, US 6,261,250: Method and apparatus for enhancing cardiovascular activity and health 15 through rhythmic limb elevation, US 6,258,855: Method of retarding and ameliorating carpal tunnel syndrome, US 6,258,848: Methods and compositions for increasing insu lin sensitivity, US 6,258,847: Use of 2-mercaptoethanolamine (2-MEA) and related aminothiol compounds and copper(II)-3,5 di-isopropyl salicylates and related com pounds in the prevention and treatment of various diseases, US 6,255,354: Preparation 20 of a pulmonary surfactant for instillation and oral application, US 6,254,547: Breath methylated alkane contour: a new marker of oxidative stress and disease, US 6,248,552: Enzyme-based assay for determining effects of exogenous and endoge nous factors on cellular energy production, US 6,248,363: Solid carriers for improved delivery of active ingredients in pharmaceutical compositions, US 6,245,800: Method of 25 preventing or treating statin-induced toxic effects using L-carnitine or an alkanoyl L carnitine, US 6,245,378: Nutritional supplement for facilitating skeletal muscle adapta tion to strenuous exercise and counteracting defatigation in asthenic individuals, US 6,242,491: Use of creatine or creatine compounds for skin preservation, US 6,232,346: Composition for improvement of cellular nutrition and mitochondrial energetics, US 30 6,231,836: Folic acid dentifrice, US 6,228,891: Use of 2,3-dimethoxy-5-methyl-6 decaprenyl-1,4-benzoquinone, US 6,228,402: Xylitol-containing non-human foodstuff and method, US 6,228,347: Antioxidant gel for gingival conditions, US 6,218,436: Pharmaceutically active carotenoids, US 6,203,818: Nutritional supplement for cardio vascular health, US 6,200,550: Oral care compositions comprising coenzyme Q10, US 35 6,191,172: Water-soluble compositions of bioactive lipophilic compounds , US 6,184,255: Pharmaceutical composition comprising coenzyme Q10, US 6,166,077: Use of L-acetylcarnitine, L-isovalerylcarnitine, L-propionylcarnitine for increasing the levels 1212 of IGF-1, US 6,162,419: Stabilized ascorbyl compositions, US 6,159,508: Xylitol containing non-human foodstuff and method, US 6,159,476: Herbal supplement for increased muscle strength and endurance for athletes, US 6,153,582: Defined serum free medical solution for ophthalmology, US 6,136,859: Pharmaceutical formulation for 5 treating liver disorders, US 6,107,281: Compounds and their combinations for the treatment of influenza infection, US 6,106,286: Method and device for administering medicine to the periodontium, US 6,099,854: Dry composition containing flavonol use ful as a food supplement, US 6,086,910: Food supplements, US 6,080,788: Composi tion for improvement of cellular nutrition and mitochondrial energetics, US 6,069,167: 10 Use of antioxidant agents to treat cholestatic liver disease, US 6,063,820: Medical food for diabetics, US 6,054,261: Coenzyme Q.sub.10 compositions for organ protection during perfusion, US 6,051,250: Process for the stabilization of vesicles of amphiphilic lipid(s) and composition for topical application containing the said stabilized vesicles, The fermentation broth, fermentation products, plants or plant products can be purified 15 in the customary manner by hydrolysis with strong bases, extraction and crystallization or via thin layer chromatography and other methods known to the person skilled in the art and described herein below. Products of these different work-up procedures are fatty acids or fatty acid compositions which still comprise fermentation broth, plant par ticles and cell components in different amounts, advantageously in the range of from 0 20 to 99% by weight, preferably below 80% by weight, especially preferably between be low 50% by weight. Coenzyme Q10 production was reported in Agrobacterium sp., Protaminobacter rubber and Paracoccus denitrificans. Coenzyme Q9 production was reported in Candida tropi calis. Production of ubiquiones with side chain length of 6-10 units, e.g. including Co 25 enzyme Q10 and Coenzyme Q9 was reported for controlled continuous culture of pho totrophic bacteria (wild-type strains of Rhodobacter capsulatus, Rhodobacter sphaer oides, Thiocapsa roseopersicina and Ectothiorhodospira shaposhnikovii. Cells mostly contained one main ubiquinone, whereby the content and composition dependent on growth conditions, substrates and other factors. Preferred is a production of more than 30 0,1, preferably more than 1 to 6mg/g dry cells in one of said organisms or in any other microorganism, even more preferred are more than 10 mg/g dry cells, 20mg/g dry cells, 50mg/g dry cells, 100mg/g dry cells, 200mg/g dry cells, 300mg/g dry cells, 500mg/g dry cells or more. [0090.0.0.17] to [0097.0.0.17] for the disclosure of the paragraphs [0090.0.0.17] to 35 [0097.0.0.17] see paragraphs [0090.0.0.0] to [0097.0.0.0] above.
1213 [0098.0.17.17] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been 5 brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 18, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 18, columns 5 and 10 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 15 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 20 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.17.17] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 25 depicted in the sequence protocol and disclosed in table 1, application no. 18, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 18, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid 30 sequences as depicted in the sequence protocol and disclosed in table 1, application no. 18, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences 1214 mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.17] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.17.17] In an advantageous embodiment of the invention, the organism takes 5 the form of a plant whose Coenzyme Q9 and/or Coenzyme Q10 content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for animals is dependent on the abovementioned Coenzyme Q9 and/or Coenzyme Q10 and the general amount of Coenzyme Q9 and/or Coenzyme Q10 in feed. After the 10 activity of the protein as shown in table 1l, application no. 18, column 3 has been in creased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant gen erated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. 15 [0102.0.0.17] to [0110.0.0.17] for the disclosure of the paragraphs [0102.0.0.17] to [0110.0.0.17] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.17.17] In a preferred embodiment, the fine chemical (Coenzyme Q9 and/or Coenzyme Q10) is produced in accordance with the invention and, if desired, is iso lated. The production of further Coenzymes such as Coenzyme Q0 to Q8 and mixtures 20 thereof or mixtures of other Coenzymes by the process according to the invention is advantageous. It may be advantageous to increase the pool of free Coenzymes such as Coenzyme Q9 and/or Coenzyme Q10 and otheres as aforementioned in the trans genic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. 25 [0112.0.17.17] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a nucleic acid encoding a protein or polypeptid for example another gene of the Coenzyme Q9 and/or Coenzyme Q10 biosynthesis, or a compound, which functions as a sink for the desired Coenzyme Q9 and/or Coenzyme 30 Q10 in the organism is useful to increase the production of the respective fine chemi cal. [0113.0.17.17] In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further 1215 Coenzymes other then Coenzyme Q9 and/or Coenzyme Q10 or compounds for which the respective fine chemical is a biosynthesis precursor compounds, e.g. amino acids, or mixtures thereof or mixtures of other Coenzymes, in particular of Coenzyme Q0 to Q8, by the process according to the invention is advantageous. 5 Preferably the composition further comprises higher amounts of metabolites positively affecting or lower amounts of metabolites negatively affecting the nutrition or health of animals or humans provided with said compositions or organisms of the invention or parts thereof. Likewise, the number or activity of further genes which are required for the import or export of nutrients or metabolites, including amino acids, fatty acids, vita 10 mins, coenzymes, antioxidants etc. or any one of their precursors, required for the cell's biosynthesis of the respective fine chemical may be increased so that the con centration of necessary or relevant precursors, e.g. of isoprenoids, acetyl CoA, HMG CoA, mevalonate, Isopentenyl pyrophosphate, Geranyl pyrophosphate, Farnesyl Pyro phosphate, or other cofactors or intermediates within the organelle, e.g. in mitochondria 15 or plastids, resp., within (a) cell(s) or within the corresponding storage compartments is increased. Owing to the increased or novel generated activity of the polypeptide of the invention or used in the method of the invention or owing to the increased number of nucleic acid sequences of the invention or used in the method of the invention and/or to the modulation of further genes which are involved in the biosynthesis of the respec 20 tive fine chemical, e.g. by increasing the activity of enzymes synthesizing precursors, e.g. Lovastatin, HMG-CoA Reductase, Mevalonate Kinase, or by destroying the activity of one or more genes which are involved in the breakdown of the respective fine chemical, it is possible to increase the yield, production and/or production efficiency of the respective fine chemical in the host organism, such as plants or the microorgan 25 isms. [0114.0.17.17] In the case of the fermentation of microorganisms, the abovemen tioned desired fine chemical may accumulate in the medium and/or the cells. If micro organisms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of 30 the biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse 35 osmosis or by nanofiltration. Afterwards advantageously further compounds for formu- 1216 lation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, and spray granulation or by other meth ods. Preferably the respective fine chemical comprising compositions are isolated from 5 the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation 10 and/or concentration methods. [0115.0.17.17] Transgenic plants which comprise the fine chemical such as Coen zyme Q9 and/or Coenzyme Q10 synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the fine chemical synthesized to be isolated. Plants for the process according to the invention 15 are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, flowers, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the 20 seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, (in the form of their organic extracts, e.g. alcohol, or other organic solvents or water containing extract 25 and/or free Coenzyme Q9 and/or Coenzyme Q10 or other extracts. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the medium in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material. To allow for 30 greater ease of disruption of the plant parts, specifically the seeds, they can previously be comminuted, steamed or roasted. Seeds, which have been pretreated in this man ner can subsequently be pressed or extracted with solvents such as organic solvents like warm hexane or water or mixtures of organic solvents. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example 35 extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. Thereafter, the resulting 1217 products can be processed further, i.e. degummed and/or refined. In this process, sub stances such as the plant mucilages and suspended matter can be first removed. What is known as desliming can be affected enzymatically or, for example, chemico physically by addition of acid such as phosphoric acid. 5 Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, ad sorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. 10 [0115.1.17.17] The identity and purity of the compound(s) isolated can be deter mined by prior-art techniques. They encompass high-performance liquid chromatogra phy (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbi ological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. 15 Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Indus trial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. 20 (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17. [0115.2.17.17] Coenzymes can for example be detected advantageously via LC sepa ration methods. The unambiguous detection for the presence of Coenzymes products can be obtained by analyzing recombinant organisms using analytical standard meth 25 ods like LC-MS, LC-MSMS, or TLC. The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cooking, or via other applicable methods; see also Biotechnology of Vitamins, Pigments and Growth Fac tors, edited by Erik J. Vandamme, London, 1989, p.96 to 103. [0116.0.17.17] In a preferred embodiment, the present invention relates to a process 30 for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 1218 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 18, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; 5 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 18, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine 10 chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 15 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 20 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 25 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 18, column 7 and conferring an in 30 crease in the amount of the fine chemical in an organism or a part thereof; 1219 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism 5 or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 18, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 10 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 18, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 15 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. 20 [0116.1.17.17] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 18, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 18, columns 5 and 7. In one embodiment, the nucleic 25 acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 18, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 18, columns 5 and 7. 30 [0116.2.17.17] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 18, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi- 1220 cated in table I B, application no. 18, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 18, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en 5 code a polypeptide of a sequence indicated in table II B, application no. 18, columns 5 and 7. [0117.0.17.17] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 18, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli 10 cation no. 18, columns 5 and 7. In one embodiment, the nucleic acid molecule of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 18, columns 5 and 7. In another embodi ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 18, columns 5 and 7. 15 [0118.0.0.17] to [0120.0.0.17] for the disclosure of the paragraphs [0118.0.0.17] to [0120.0.0.17] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.17.17] Nucleic acid molecules with the sequence shown in table I, application no. 18, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 18, columns 5 and 7 or from polypeptides 20 comprising the consensus sequence shown in table IV, application no. 18, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 18, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or 25 in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.17] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.17.17] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 18, column 3 can be determined from generally ac 30 cessible databases. [0124.0.0.17] for the disclosure of this paragraph see paragraph [0124.0.0.0] above.
1221 [0125.0.17.17]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 18, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or 5 ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.17] to [0133.0.0.17] for the disclosure of the paragraphs [0126.0.0.17] to [0133.0.0.17] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.17.17] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or 10 more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 18, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 15 18, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0135.0.0.17] to [0140.0.0.17] for the disclosure of the paragraphs [0135.0.0.17] to [0140.0.0.17] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.17.17] Synthetic oligonucleotide primers for the amplification, e.g. as shown 20 in table III, application no. 18, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 18, columns 5 and 7 or the sequences derived from table II, application no. 18, columns 5 and 7. [0142.0.17.17] Moreover, it is possible to identify conserved regions from various or 25 ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence 30 shown in table IV, application no. 18, column 7 is derived from said aligments. [0143.0.17.17] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac- 1222 tivity of a protein as shown in table II, application no. 18, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.17] to [0151.0.0.17] for the disclosure of the paragraphs [0144.0.0.17] to [0151.0.0.17] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 5 [0152.0.17.17] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 18, columns 5 and 7, preferably of table I B, application no. 18, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 10 Coenzyme Q9 and/or Coenzyme Q10 increasing activity. [0153.0.0.17] to [0159.0.0.17] for the disclosure of the paragraphs [0153.0.0.17] to [0159.0.0.17] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.17.17] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above 15 mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application 20 no. 18, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement 25 thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.17.17] The nucleic acid molecule of the invention comprises a nucleotide se 30 quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 18, columns 5 and 7, preferably shown in 1223 table I B, application no. 18, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 18, column 3 by for example expression either in the cytsol or in an organelle such 5 as a plastid or mitochondria or both, preferably in plastids. [0162.0.17.17] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7, or 10 a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a Coenzyme Q9 and/or Coenzyme Q10 increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids, and optionally, the activity of a protein as shown in table II, application no. 18, column 3. 15 [0163.0.17.17] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a 20 polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the 25 generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo 30 tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 18, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly 35 peptide of the invention or of the polypeptide used in the process of the invention, e.g.
1224 as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 18, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.17] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. 5 [0165.0.17.17] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 18, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a Coenzyme Q9 and/or Coenzyme Q10 increasing 10 activity as mentioned above or as described in the examples in plants or microorgan isms is comprised. [0166.0.17.17] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 15 which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 18, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. 20 [0167.0.17.17] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or 25 more homologous to an entire amino acid sequence of table II, application no. 18, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.17] and [0169.0.0.17] for the disclosure of the paragraphs [0168.0.0.17] 30 and [0169.0.0.17] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.17.17] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 18, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly- 1225 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 18, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the 5 invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 18, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in 10 table II, application no. 18, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 18, columns 5 and 7, prefera bly as indicated in table I A, application no. 18, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid 15 molecule indicated in table I B, application no. 18, columns 5 and 7. [0171.0.0.17] to [0173.0.0.17] for the disclosure of the paragraphs [0171.0.0.17] to [0173.0.0.17] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.17.17] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un 20 der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 18, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 25 [0175.0.0.17] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.17.17] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 18, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 30 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 1226 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.17] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.17.17]For example, nucleotide substitutions leading to amino acid substitutions 5 at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 18, columns 5 and 7. [0179.0.0.17] and [0180.0.0.17] for the disclosure of the paragraphs [0179.0.0.17] and [0180.0.0.17] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. 10 [0181.0.17.17] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such 15 polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 18, columns 5 and 7, preferably shown in table II A, application no. 18, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% 20 identical to an amino acid sequence shown in table II, application no. 18, columns 5 and 7, preferably shown in table II A, application no. 18, columns 5 and 7 and is capa ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the 25 protein encoded by the nucleic acid molecule is at least about 60% identical to the se quence shown in table II, application no. 18, columns 5 and 7, preferably shown in ta ble II A, application no. 18, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 18, columns 5 and 7, preferably shown in table II A, application no. 18, columns 5 and 7, even more prefera 30 bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap plication no. 18, columns 5 and 7, preferably shown in table II A, application no. 18, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 18, columns 5 and 7, preferably shown in table II A, application no. 18, columns 5 and 7.
1227 [0182.0.0.17] to [0188.0.0.17] for the disclosure of the paragraphs [0182.0.0.17] to [0188.0.0.17] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.17.17] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 18, columns 5 and 7, preferably shown in table II B, applica 5 tion no. 18, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 18, columns 10 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 18, columns 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7. [0190.0.17.17] Functional equivalents derived from the nucleic acid sequence as 15 shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 20 99% homology with one of the polypeptides as shown in table II, application no. 18, columns 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same properties as the polypeptide as shown in table II, application no. 18, columns 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7. 25 [0191.0.0.17] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.17.17] A nucleic acid molecule encoding an homologous to a protein se quence of table II, application no. 18, columns 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu 30 cleic acid molecule of the present invention, in particular of table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 18, columns 5 and 7, preferably shown in table I B, 1228 application no. 18, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.17] to [0196.0.0.17] for the disclosure of the paragraphs [0193.0.0.17] to [0196.0.0.17] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. 5 [0197.0.17.17] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% 10 or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably 15 from table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.17.17] In one embodiment of the present invention, the nucleic acid molecule 20 of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, 25 columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 18, columns 5 and 7, 30 preferably shown in table I B, application no. 18, columns 5 and 7. [0199.0.17.17] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 18, columns 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 1229 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 18, columns 5 and 7, preferably 5 shown in table II B, application no. 18, columns 5 and 7. [0200.0.17.17] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, appli cation no. 18, columns 5 and 7, preferably shown in table II B, application no. 18, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, 10 said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 18, columns 5 and 7, preferably shown in table I B, application no. 18, columns 5 and 7. [0201.0.17.17] Polypeptides (= proteins), which still have the essential biological or 15 enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the 20 activity of a polypeptide shown in table II, application no. 18, columns 5 and 7 ex pressed under identical conditions. [0202.0.17.17] Homologues of table I, application no. 18, columns 5 and 7 or of the derived sequences of table II, application no. 18, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA 25 sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the 30 promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person 35 skilled in the art and are mentioned herein below.
1230 [0203.0.0.17] to [0215.0.0.17] for the disclosure of the paragraphs [0203.0.0.17] to [0215.0.0.17] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.17.17] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting 5 of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 18, columns 5 and 7, preferably in table || B, application no. 18, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof 10 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 18, columns 5 and 7, pref erably in table I B, application no. 18, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; 15 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% 20 identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 25 amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine 30 chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 1231 (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 5 cation no. 18, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) 10 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 18, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 15 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 18, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid 20 library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 18, columns 5 and 7 or a nucleic acid molecule encoding, pref 25 erably at least the mature form of, the polypeptide shown in table II, application no. 18, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over 30 the sequence depicted in table I A and/or I B, application no. 18, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 18, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in- 1232 vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 18, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 18, columns 5 and 7. Ac 5 cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 18, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 18, columns 5 and 7. Accordingly, in one embodiment, the protein encoded 10 by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 18, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 18, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 15 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 18, columns 5 and 7. [0217.0.0.17] to [0226.0.0.17] for the disclosure of the paragraphs [0217.0.0.17] to [0226.0.0.17] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.17.17] In general, vector systems preferably also comprise further cis 20 regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this 25 fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci 30 ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 18, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di- 1233 rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.17] to [0239.0.0.17] for the disclosure of the paragraphs [0228.0.0.17] to [0239.0.0.17] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. 5 [0240.0.17.17] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. 10 In addition to the sequence mentioned in Table 1, application no. 18, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the Coenzyme Q9 and/or Coenzyme Q10 biosynthetic pathway is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of 15 the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organ isms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table 1, 20 application no. 18, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resis tant plants. [0241.0.17.17] In a further embodiment of the process of the invention, therefore, 25 organisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the Coenzyme Q metabolism, in particular in synthesis of Coenzyme Q9 and/or Coenzyme Q10. Indirect overexpression might be brought about by the manipulation of the regula tion of the endogenous gene, for example through promotor mutations or the expres 30 sion of natural or artificial transcriptional regulators. [0242.0.17.17] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the isoprenoid 1234 biosynthetic pathway such as genes for acetyl CoA, HMG-CoA, Mevalonate, Isopentyl pyrophosphate, Geranyl pyrophosphate, Farnesyl pyrophosphate e.g. HMG-CoA Re ductase, Mevalonate, Kinase, etc.. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is 5 no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the isoprenoids, coenzyme precursor or coenzymes, preferably Q9 and/or Q10, as desired since, for example, feedback regulations no longer exist to the same extent or not at all. [0242.1.17.17] In a further advantageous embodiment of the process of the invention, 10 the organisms used in the process are those in which advantageously simultaneously a Coezyme Q9 and/or Coenzyme Q10 degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene, or by inactivating the gene for example the mutagenesis and/or selection. In another advantageous embodiment the synthesis of competitive pathways which rely on the same precoursers are down 15 regulated or interrupted. [0242.2.17.17] The respective fine chemical produced can be isolated from the or ganism by methods with which the skilled worker are familiar, for example via extrac tion, salt precipitation, and/or different chromatography methods. The process accord ing to the invention can be conducted batchwise, semibatchwise or continuously. The 20 fine chemcical and other Coenzymes produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via for example pressing or extraction of the plant parts. [0242.3.17.17] Preferrably, the compound is a composition comprising the essentially pure Coezyme Q9 and/or Coenzyme Q10 or a recovered or isolated Coezyme Q9 25 and/or Coenzyme Q10. [0243.0.0.17] to [0264.0.0.17] for the disclosure of the paragraphs [0243.0.0.17] to [0264.0.0.17] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.17.17] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 30 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox- 1235 isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid 5 transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 18, columns 5 and 7 and described herein to achieve an expression in one of said 10 compartments or extracellular. [0266.0.0.17] to [0287.0.0.17] for the disclosure of the paragraphs [0266.0.0.17] to [0287.0.0.17] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.17.17] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula 15 tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 18, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 20 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 18, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.17] to [0296.0.0.17] for the disclosure of the paragraphs [0289.0.0.17] to [0296.0.0.17] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. 25 [0297.0.17.17] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in particular, an anti-b1 551, anti-b1 556, anti-b1 704, anti-b2600, anti-b2965 and/or anti b4039 protein antibody or an antibody against polypeptides as shown in table 1l, appli 30 cation no. 18, columns 5 and 7, which can be produced by standard techniques utiliz ing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. [0298.0.0.17] for the disclosure of this paragraph see paragraph [0298.0.0.0] above.
1236 [0299.0.17.17] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 18, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 18, columns 5 and 7 or func tional homologues thereof. 5 [0300.0.17.17] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 18, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 18, column 7 whereby 20 or 10 less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.17] to [0304.0.0.17] for the disclosure of the paragraphs [0301.0.0.17] to [0304.0.0.17] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 15 [0305.0.17.17] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 18, columns 5 and 7 by one or more 20 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 18, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or 25 II B, application no. 18, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 18, columns 5 and 7. 30 [0306.0.0.17] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.17.17] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se- 1237 quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 18, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 18, columns 5 and 7. In a further embodiment, said polypep 5 tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 18, columns 5 and 7. [0308.0.17.17]In one embodiment, the present invention relates to a polypeptide hav 10 ing the activity of the protein as shown in table II A and/or II B, application no. 18, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 18, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred 15 by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from 20 which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.17] to [0311.0.0.17] for the disclosure of the paragraphs [0309.0.0.17] to [0311.0.0.17] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.17.17] A polypeptide of the invention can participate in the process of the 25 present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 18, columns 5 and 7. [0313.0.17.17] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin 30 gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably 1238 at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 18, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of 5 the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 18, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.17.17] Accordingly the polypeptide of the present invention can vary from the 10 sequences shown in table II A and/or II B, application no. 18, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most 15 preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 18, columns 5 and 7. [0315.0.0.17] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.17.17] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se 20 quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 18, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an 25 polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.17] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.17.17] Manipulation of the nucleic acid molecule of the invention may result in 30 the production of a protein having differences from the wild-type protein as shown in table II, application no. 18, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 18, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 1239 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 18, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 5 [0319.0.17.17] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven 10 tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 18, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im proved. 15 [0320.0.0.17] to [0322.0.0.17] for the disclosure of the paragraphs [0320.0.0.17] to [0322.0.0.17] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.17.17] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 18, column 3 refers to a polypeptide having an amino acid sequence cor responding to the polypeptide of the invention or used in the process of the invention, 20 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 18, column 3, e.g., a protein which does not confer the activity described herein and 25 which is derived from the same or a different organism. [0324.0.0.17] to [0329.0.0.17] for the disclosure of the paragraphs [0324.0.0.17] to [0329.0.0.17] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.17.17] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which 30 are encoded by the sequences shown in table II, application no. 18, columns 5 and 7. [0331.0.0.17] to [0346.0.0.17] for the disclosure of the paragraphs [0331.0.0.17] to [0346.0.0.17] see paragraphs [0331.0.0.0] to [0346.0.0.0] above.
1240 [0347.0.17.17] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the 5 invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 18, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as 10 plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 18, col 15 umn 3 or a protein as shown in table II, application no. 18, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.17] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. 20 [0349.0.17.17] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 18, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described 25 (US 5,565,350; WO 00/15815; also see above). [0350.0.0.17] to [0358.0.0.17] for the disclosure of the paragraphs [0350.0.0.17] to [0358.0.0.17] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.17.17] Transgenic plants comprising Coezyme Q9, Coenzyme Q10 or mix tures thereof synthesized in the process according to the invention can be marketed 30 directly without isolation of the compounds synthesized. In the process according to the invention, plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The Coezyme Q9 1241 and/or Coenzyme Q10 produced in the process according to the invention may, how ever, also be isolated from the plant in the form of their free Coezyme Q9 and/or Coen zyme Q10 produced by this process can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via 5 expressing, grinding and/or extraction of the plant parts, preferably the plant leaves, plant fruits, flowers and the like. The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, flowers and the like as mentioned above in the case of transgenic plant organisms 10 derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, cosmet ics, pharmaceuticals or fine chemicals. [0360.0.0.17] to [0362.0.0.17] for the disclosure of the paragraphs [0360.0.0.17] to [0362.0.0.17] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. 15 [0363.0.17.17] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the Coezyme Q9 and/or Coenzyme Q10 produced in the process can be isolated. The resulting fine chemical can, if appropriate, subsequently be further purified, if desired mixed with 20 other active ingredients such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, formulated. [0364.0.17.17] In one embodiment, Coezyme Q9 and/or Coenzyme Q10 is the fine chemical. [0365.0.17.17] The Coezyme Q9 and/or Coenzyme Q10, in particular the respective 25 fine chemicals obtained in the process are suitable as starting material for the synthe sis of further products of value. For example, they can be used in combination with each other or alone for the production of pharmaceuticals, health products, foodstuffs, animal feeds, nutrients or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, health products, food stuff, animal feeds, 30 nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of the Coezyme Q9 and/or Coenzyme Q10 containing, in particu lar Coezyme Q9 and/or Coenzyme Q10 containing composition produced or the re spective fine chemical produced if desired and formulating the product with a pharma ceutical acceptable carrier or formulating the product in a form acceptable for an appli- 1242 cation in agriculture. A further embodiment according to the invention is the use of the Coezyme Q9 and/or Coenzyme Q10 produced in the process or of the transgenic or ganisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or phar maceuticals. 5 [0366.0.0.17] to [0369.0.0.17] for the disclosure of the paragraphs [0366.0.0.17] to [0369.0.0.17] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.17.17] The fermentation broths obtained in this way, containing in particular Coezyme Q9 and/or Coenzyme Q10 in mixtures with other organic acids, amino acids, polypeptides or polysaccarides, normally have a dry matter content of from 1 to 70% by 10 weight, preferably 7.5 to 25% by weight. Sugar-limited fermentation is additionally ad vantageous, e.g. at the end, for example over at least 30% of the fermentation time. This means that the concentration of utilizable sugar in the fermentation medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/l during this time. The fermenta tion broth is then processed further. Depending on requirements, the biomass can be 15 removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling 20 film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.17.17] Accordingly, it is possible to purify the Coezyme Q9 and/or Coenzyme Q10, in particular the Coezyme Q9 and/or Coenzyme Q10 produced according to the 25 invention further. For this purpose, the product-containing composition, e.g. a total or partial extraction fraction using organic solvents, is subjected for example to separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chro matography steps can be repeated if necessary, using the same or different chroma 30 tography resins. The skilled worker is familiar with the choice of suitable chromatogra phy resins and their most effective use. [0372.0.0.17] to [0376.0.0.17], [0376.1.0.17] and [0377.0.0.17] for the disclosure of the paragraphs [0372.0.0.17] to [0376.0.0.17], [0376.1.0.17] and [0377.0.0.17] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above.
1243 [0378.0.17.17] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 5 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 10 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 18, columns 5 and 7, preferably in table I B, application no. 18, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a 15 plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 20 compared to the wild type. [0379.0.0.17] to [0383.0.0.17] for the disclosure of the paragraphs [0379.0.0.17] to [0383.0.0.17] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.17.17] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 25 microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 30 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 18, column 3, eg compar- 1244 ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 18, column 3. [0385.0.0.17] to [0404.0.0.17] for the disclosure of the paragraphs [0385.0.0.17] to [0404.0.0.17] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. 5 [0405.0.17.17] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identi 10 fied with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other Coenzymes, in particular Coenzymes such as Coenzyme Q0 to Q8. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified 15 with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the 20 fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.17] to [0435.0.0.17] for the disclosure of the paragraphs [0406.0.0.17] to [0435.0.0.17] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.17.17] Production of Coenzyme Q9 and/or Coenzyme Q10 in Chlamydo monas reinhardtii 25 The Coenzyme Q9 and/or Coenzyme Q10 production can be analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below. In addition a production in other organisms such as plants or microorganisms such as yeast, Mortierella or Escherichia coli is possible. 30 [0437.0.0.17] and [0438.0.0.17] for the disclosure of the paragraphs [0437.0.0.17] and [0438.0.0.17] see paragraphs [0437.0.0.0] and [0438.0.0.0] above.
1245 [0439.0.17.17] Example 9: Analysis of the effect of the nucleic acid molecule on the production of Coenzyme Q9 and/or Coenzyme Q1 0 [0440.0.10.10] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as Coenzyme Q9 and/or Coenzyme Q1 0) can 5 be determined by growing the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated production of desired product (i.e. of Coenzyme Q9 and/or Coenzyme Q1 0). These analytical techniques are known to the skilled worker and comprise spec troscopy, thin-layer chromatography, various types of staining methods, enzymatic and 10 microbiological methods and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Ap plications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: 15 "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Ma terials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, 20 p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification tech niques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.17] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.17.17] Purification of and determination of the Coenzyme Q9 and/or Coen zyme Q10 content: 25 [0443.0.17.17] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of xanthophylls can be obtained by ana lyzing recombinant organisms using analytical standard methods: LC, LC-MSMS or TLC, as described The total Coenzyme Q9 and/or Coenzyme Q10 produced in the 30 organism for example in algae used in the inventive process can be analysed for ex ample according to the following procedure: The material such as algae or plants to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods.
1246 Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. [0444.0.17.17] A typical sample pretreatment consists of a total lipid extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponifica 5 tion , partition between phases, seperation of non-polar epiphase from more polar hy pophasic derivatives and chromatography. E.g.: For analysis, solvent delivery and aliquot removal can be accomplished with a robotic system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% 10 potassium hydroxide hydro-ethanolic solution (4 water:1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. 15 Following saponification, the supernatant can be diluted with 0.10 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, 20 vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The col umn can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile 25 phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab sorbance at 447 nm. [0445.0.17.17] One example is the analysis of the coenzymes. The unambiguous 30 detection for the presence of the coenzymes products can be obtained by analyzing recombinant organisms using analytical standard methods, especially HPLC with UV or electrochemical detection as for example described in The Journal of Lipid Research, Vol. 39, 2099-2105, 1998.
1247 Possible methods for the production and preparation of coenzymes like Coenzyme Q10 has also been described for example in W02003056024, J57129695, J57202294, DE3416853 and DD-229152. Further methods for the isolation of the respective fine chemical can also been found in WO 9500634, Fat-Sci.Technol.; (1992) 94, 4, 153-57, 5 DD-294280, DD-293048, JP-145413, DD-273002, DD-271128, SU1406163, JP 166837, JP-1 76705, Acta-Biotechnol.; (1986) 6, 3, 277-79, DD-229152, DE3416854, DE3416853, JP-202840, JP-048433, JP-125306, JP-087137, JP-014026, W02003056024 and W0200240682. Plant material is initially homogenized mechanically by comminuting in a pestle and 10 mortar to make it more amenable to extraction. [0446.0.0.17] to [0496.0.0.17] for the disclosure of the paragraphs [0446.0.0.17] to [0496.0.0.17] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.17.17] Usually acetone or hexane is used for the extraction of the Coen zymes and further purification is achieved by column chromatography with a suitable 15 resin. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be puri fied. 20 In addition depending on the produced fine chemical purification is also possible with crystallization or distillation. Both methods are well known to a person skilled in the art. [0498.0.17.17] The results of the different plant analyses can be seen from the table, which follows: Table VI 25 ORF Metabolite Method Min Max b1551 Coenzyme Q9 LC 1.50 1.84 b1 556 Coenzyme Q9 LC 1.53 1.98 b1 704 Coenzyme Q9 LC 1.43 3.36 b1704 Coenzyme Q10 LC 1.28 4.69 b2600 Coenzyme Q10 LC 1.87 2.01 b2965 Coenzyme Q9 LC 1.40 2.98 1248 b4039 Coenzyme Q9 LC 1.53 2.13 [0499.0.0.17] and [0500.0.0.17] for the disclosure of the paragraphs [0499.0.0.17] and [0500.0.0.17] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.17.17] Example 15a: Engineering ryegrass plants by over-expressing b1551 5 from Escherichia coli or homologs of b1 551 from other organisms. [0502.0.0.17] to [0508.0.0.17] for the disclosure of the paragraphs [0502.0.0.17] to [0508.0.0.17] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.17.17] Example 15b: Engineering soybean plants by over-expressing b1551 10 from Escherichia coli or homologs of b1551 from other organisms. [0510.0.0.17] to [0513.0.0.17] for the disclosure of the paragraphs [0510.0.0.17] to [0513.0.0.17] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.17.17] Example 15c: Engineering corn plants by over-expressing b1551 from 15 Escherichia coli or homologs of b1551 from other organ isms. [0515.0.0.17] to [0540.0.0.17] for the disclosure of the paragraphs [0515.0.0.17] to [0540.0.0.17] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.17.17] Example 15d: Engineering wheat plants by over-expressing 20 b1551 from Escherichia coli or homologs of b1551 from other organisms. [0542.0.0.17] to [0544.0.0.17] for the disclosure of the paragraphs [0542.0.0.17] to [0544.0.0.17] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.17.17] Example 15e: Engineering Rapeseed/Canola plants by over-expressing 25 b1551 from Escherichia coli or homologs of b1551 from other organisms. [0546.0.0.17] to [0549.0.0.17] for the disclosure of the paragraphs [0546.0.0.17] to [0549.0.0.17] see paragraphs [0544.0.0.0] to [0549.0.0.0] above.
1249 [0550.0.17.17]Example 15f: Engineering alfalfa plants by over-expressing b1551 from Escherichia coli or homologs of b1551 from other organ isms. [0551.0.0.17] to [0554.0.0.17] for the disclosure of the paragraphs [0551.0.0.17] to 5 [0554.0.0.17] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.17.17]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. 10 The results are shown in table VII Table VII ORF_NAME Metabolite MIN MAX b1704 Coenzyme Q10 5.56 8.85 b2600 Coenzyme Q10 1.69 9.81 Table VII shows the increase in Coenzyme Q10 in genetically modified corn plants ex pressing the Escherichia coli nucleic acid sequence b1704 or b2600. 15 In one embodiment, in case the activity of the Escherichia coli protein b1704 or its ho mologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP syn thetase), tryptophan-repressible", is increased in corn plants, preferably, an increase of the fine chemical Coenzyme Q10 between 446% and 785% is conferred. In one embodiment, in case the activity of the Escherichia coli protein b2600 or its ho 20 mologs, e.g. a "bifunctional chorismate mutase / prephenate dehydrogenase", is in creased in corn plants, preferably, an increase of the fine chemical Coenzyme Q10 acid between 69% and 881% is conferred. [0554.2.0.17] for the disclosure of this paragraph see [0554.2.0.0] above. 25 [0555.0.0.17] for the disclosure of this paragraph see [0555.0.0.0] above.
1250 [0001.0.0.18] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.18.18] Plants produce several important secondary metabolites from phenylalanine through the phenylpropanoid pathway. Such substances include flavon oids, lignins, tannins, salicylic acid and hydroxycinnamic acid esters. Recent work on 5 the phenylpropanoid pathway has shown that the traditional view of lignin biosynthesis is incorrect. Although the hydroxylation and methylation reactions of the pathway were long thought to occur at the level of the free hydroxycinnamic aicds, it turns now out, that the enzymes catalyzing phenylpropanoid 3-hydroxylation and 3-0-methylation re actions uses shikimate and CoA conjugates as substrates. The recent cloning of a al 10 dehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis suggest that both substances are derived at least in part through oxidation of coniferaldehyde and sinapaldehyde (see Nair et al., 2004, Plant Cell, 16, 544-554 and citations therein). [0003.0.18.18] Ferulic acid is a substance found in the seeds and leaves of most plants, especially in the brans of grasses such as wheat, rice, and oats. Its chemical 15 structure strongly resembles that of curcumin, the substance responsible for the yellow color of the spice turmeric. [0004.0.18.18] The amount of ferulic acid in plant materials varies widely depending on the species and growing conditions; supplements are therefore a more reliable source of this substance than food or unprocessed herbal materials. 20 [0005.0.18.18] Ferulic acid has antioxidant properties that make it an important anti aging supplement, and they also contribute to ferulic acid's other potential uses. These include applications in diabetes, cardiovascular disease, cancer, neuroprotection, bone degeneration, menopause, immunity, and (perhaps) athletic performance. [0006.0.18.18] In male rats fed a high cholesterol diet, ferulic acid supplementation 25 significantly lowered total cholesterol and triglyceride concentrations in the blood, as compared to a control group. Moreover, HDL ('good cholesterol') is increased with fer ulic acid supplementation. Like many other dietary substances, ferulic acid is an antioxidant - but it is an unusu ally good one. It is especially good at neutralizing the free radicals known as 'superox 30 ide', 'hydroxyl radical', and 'nitric oxide'. It acts synergistically with other antioxidants, giving them extra potency. In addition, ferulic acid can be activated to even higher anti oxidant activity by exposure to UV light, suggesting that it might help to protect skin from sun damage.
1251 In microbiological applications ferulic acid is useful as a substrate for vanillin produc tion, as for example described in WO 9735999 or DE19960106 or for melanin produc tion (WO 9720944). [0007.0.18.18] Cinnamic acids, which include caffeic and ferulic acids, are also power 5 ful antioxidants. Experiments have found that these compounds can stop the growth of cancer cells. In addition sinapic acid is an intermediate in syringyl lignin biosynthesis in angio sperms, and in some taxa serves as a precursor for soluble secondary metabolites. The biosynthesis and accumulation of the sinapate esters sinapoylglucose, sinapoyl 10 malate, and sinapoylcholine are developmentally regulated in at least Arabidopsis and other members of the Brassicaceae (Ruegger et al., 1999, 119(1): 101-10, 1999). Due to these interesting physiological roles and agrobiotechnological potential of ferulic acid or sinapic acid there is a need to identify the genes of enzymes and other proteins involved in ferulic acid or sinapic acid metabolism, and to generate mutants or trans 15 genic plant lines with which to modify the ferulic acid or sinapic acid content in plants. [0008.0.18.18] One way to increase the productive capacity of biosynthesis is to ap ply recombinant DNA technology. Thus, it would be desirable to produce ferulic acid or sinapic acid in plants. That type of production permits control over quality, quantity and selection of the most suitable and efficient producer organisms. The latter is especially 20 important for commercial production economics and therefore availability to consum ers. In addition it is desirable to produce ferulic acid or sinapic acid in plants in order to increase plant productivity and resistance against biotic and abiotic stress as discussed before. Methods of recombinant DNA technology have been used for some years to improve 25 the production of fine chemicals in microorganisms and plants by amplifying individual biosynthesis genes and investigating the effect on production of fine chemicals. It is for example reported, that the xanthophyll astaxanthin could be produced in the nectaries of transgenic tobacco plants. Those transgenic plants were prepared by Argobacterium tumifaciens-mediated transformation of tobacco plants using a vector that contained a 30 ketolase-encoding gene from H. pluvialis denominated crtO along with the Pds gene from tomato as the promoter and to encode a leader sequence. Those results indi cated that about 75 percent of the carotenoids found in the flower of the transformed plant contained a keto group.
1252 [0009.0.18.18] Thus, it would be advantageous if an algae, plant or other microor ganism were available which produce large amounts ferulic acid or sinapic acid .The invention discussed hereinafter relates in some embodiments to such transformed pro karyotic or eukaryotic microorganisms. 5 It would also be advantageous if plants were available whose roots, leaves, stem, fruits or flowers produced large amounts of ferulic acid or sinapic acid. The invention dis cussed hereinafter relates in some embodiments to such transformed plants. [0010.0.18.18] Therefore improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. This is necessary since, for example fer 10 ulic acid or sinapic acid, as mentioned above, which occur in plants and some microor ganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as balanced as possible a specific ferulic acid or sinapic acid profile in the diet since an excess of ferulic acid or sinapic acid above a specific concentration in the food has a positive effect. A further increase in 15 quality is only possible via addition of further ferulic acid or sinapic acid, which are limit ing. [0011.0.11.18]To ensure a high quality of foods and animal feeds, it is therefore nec essary to add ferulic acid or sinapic acid in a balanced manner to suit the organism. [0012.0.11.18] Accordingly, there is still a great demand for new and more suitable 20 genes which encode enzymes or other proteins which participate in the biosynthesis of ferulic acid or sinapic acid and make it possible to produce them specifically on an in dustrial scale without unwanted byproducts forming. In the selection of genes for bio synthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible con 25 tents of ferulic acid or sinapic acid; on the other hand as less as possible byproducts should be produced in the production process. [0013.0.0.18] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.11.18] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is a ferulic acid or 30 sinapic acid. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to a ferulic acid or sinapic acid. Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising ferulic acid or sinapic acid.
1253 [0015.0.18.18] In one embodiment, the term "the fine chemical" or "the respective fine chemical" means at least one chemical compound with ferulic acid or sinapic acid activity. In one embodiment, the term "the fine chemical" means ferulic acid. In one 5 embodiment, the term "the fine chemical" means sinapic acid depending on the context in which the term is used. Throughout the specification the term "the fine chemical" means ferulic acid or sinapic acid, its salts, ester, thioester or in free form or bound to other compounds such sugars or sugarpolymers, like glucoside, e.g. diglucoside. [0016.0.11.18]Accordingly, the present invention relates to a process for the production 10 of sinapic acid or ferulic acid which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 19, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 19, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application 15 no. 19, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 19, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus sinapic acid or ferulic acid or fine chemicals comprisingsinapic 20 acid or ferulic acid, in said organism or in the culture medium surrounding the or ganism. [0016.1.11.18] Accordingly, the term "the fine chemical" means in one embodi ment " sinapic acid or ferulic acid " in relation to all sequences listed in Table I to IV, application no. 19 25 [0017.0.11.18]In another embodiment the present invention is related to a process for the production of sinapic acid or ferulic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 19 column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 19, column 5, in an organelle of a non-human organism, or 30 (b) increasing or generating the activity of a protein as shown in table II, application no. 19, column 3 encoded by the nucleic acid sequences as shown in table I, ap- 1254 plication no. 19, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 19, column 3 encoded by the nucleic acid sequences as shown in table I, ap 5 plication no. 19, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of sinapic acid or ferulic acid in said organism. 10 [0018.0.11.18]Advantagously the activity of the protein as shown in table II, application no. 19, column 3 encoded by the nucleic acid sequences as shown in table I, applica tion no. 19, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.18] to [0024.0.0.18] for the disclosure of the paragraphs [0019.0.0.18] to 15 [0024.0.0.18] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.11.18] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to 20 the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 19, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 25 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to 30 plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac- 1255 ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct 5 molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported 10 protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. 15 structural flexible amino acids such as glycine or alanine. [0026.0.11.18] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 19, column 3 and its homologs as disclosed in table 1, application no. 19, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures 20 transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table 1l, application no. 19, column 3 and its homologs as disclosed in table 1, application no. 19, columns 5 and 7. 25 [0027.0.0.18] to [0029.0.0.18] for the disclosure of the paragraphs [0027.0.0.18] to [0029.0.0.18] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.11.18] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized 30 sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore 35 favorable nucleic acid sequences encoding transit peptides may comprise sequences 1256 derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 5 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo 10 plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in 15 table I, application no. 19, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 18, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal 20 amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 19, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 19, 25 columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said 30 short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 19, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 35 [0030.2.11.18] Table V: Examples of transit peptides disclosed by von Heijne et al.: for the disclosure of the Table V see paragraphs [0030.2.0.0] above.
1257 [0030.1.11.18] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 19, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu 5 cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 19, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or 10 preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA 15 making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.18] and [0030.3.0.18] for the disclosure of the paragraphs [0030.2.0.18] 20 and [0030.3.0.18] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.11.18] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 19, columns 5 and 7 or active 25 fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 30 scribed from the sequences depicted in table 1, application no. 19, columns 5 and 7 or a sequence encoding a protein, as depicted in table 1l, application no. 19, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal 1258 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi 5 roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table, 1, application no. 19, columns 5 and 7 or a se quence encoding a protein, as depicted in table II, application no. 19, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a 10 sequence as depicted in table 1 application no. 19, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 19, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the 15 proteins depicted in table II, application no. 19, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex 20 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA 25 to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 19, columns 5 and 7. [0030.5.11.18] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 19, columns 5 and 7 used in the inventive 30 process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.11.18] For a good expression in the plastids the nucleic acid sequences as 35 shown in table I, application no. 19, columns 5 and 7 are introduced into an expression 1259 cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. 5 [0031.0.0.18] and [0032.0.0.18] for the disclosure of the paragraphs [0031.0.0.18] and [0032.0.0.18] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.11.18]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 10 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 19, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 19, column 3 15 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.11.18] Surprisingly it was found, that the transgenic expression of the E. coli proteins shown in table II, application no. 19, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V - conferred an increase in the respective fine 20 chemical indicated in column 6 "metabolite" of each table I to IV in the transformed plant. Surprisingly it was found, that the transgenic expression of the E. coli protein b0931, b1556 or b1797in combination with a plastidal targeting sequence in Arabidopsis thaliana conferred an increase in sinapic acid. 25 Surprisingly it was found, that the transgenic expression of the Saccharomyces cere visiae protein shown in table II, application no. 19, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting se quence - for example as mentioned in table V - conferred an increase in the respective fine chemical indicated in column 6 "metabolite" of each table I to IV in the transformed 30 plant. Surprisingly it was found, that the transgenic expression of the Saccharomyces cere visiae protein YDR035W in combination with a plastidal targeting sequence in Arabi dopsis thaliana conferred an increase in ferulic acid.
1260 [0035.0.0.18] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.11.18] The sequence of b0931(PIR:JQ0756) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as " nicotinate phosphoribosyltransferase ". Accordingly, in one em 5 bodiment, the process of the present invention comprises the use of a " nicotinate phosphoribosyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sinapic acid, in particular for increasing the amount of sinapic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0931 protein 10 is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0931 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of b1556 from Escherichia coli (Accession NP_416074) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sinapic acid, in particular for 20 increasing the amount of sinapic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. 25 In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1797 from Escherichia coli (Accession PIR:E64940) has been pub lished in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being 30 defined as "putative tellurite resistance protein ". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative tellurite resistance protein " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sinapic acid, in particular for increasing the amount of sinapic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the 35 process of the present invention the activity of a b1 797 protein is increased or gener- 1261 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1797 protein is increased or generated in a subcellular compartment of the organism or or 5 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W from Saccharomyces cerevisiae (Accession NP_010320)has been published in Goffeau, A. et al., Science 274 (5287), 546-547 (1996), and its activity is being defined as "3-deoxy-D-arabino-heptulosonate 7 phosphate (DAHP) synthase ". Accordingly, in one embodiment, the process of the 10 present invention comprises the use of a " 3-deoxy-D-arabino-heptulosonate 7 phosphate (DAHP) synthase " or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of ferulic acid, in particular for increasing the amount of ferulic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein 15 is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a YDR035W protein is increased or generated in a subcellular compartment of the or ganism or organism cell such as in an organelle like a plastid or mitochondria. 20 [0037.0.11.18] In one embodiment, the homolog of the b0931, b1556, and b1797 is a homolog having said activity and being derived from bacteria. In one embodiment, the homolog of the b0931, b1 556, and b1 797 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b0931, b1556, and b1797 is a homolog having said acitivity and being derived from Gammaproteo 25 bacteria. In one embodiment, the homolog of the b0931, b1556, and b1797 is a ho molog having said acitivity and being derived from Enterobacteriales. In one embodi ment, the homolog of the b0931, b1556, and b1797 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the b0931, b1556, and b1797 is a homolog having said acitivity and being derived from 30 Escherichia, preferably from Escherichia coli. [0037.1.11.18]Homologs of the polypeptide discolosed in table II, application no. 19, column 3 may be the polypetides encoded by the nucleic acid molecules indicated in table I , application no. 19, column 7, resp., or may be the polypeptides indicated in table II, application no. 19, column 7, resp.
1262 [0038.0.0.18] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.11.18]In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 19, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the level of the 5 fine chemical indicated in the respective line of table II, application no. 19, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism .The protein has the above mentioned activities of a protein as shown in table II, application no. 19, column 3, preferably in the event the nucleic acid sequences encoding said 10 proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 19, column 3, or which has at least 10% of 15 the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in the respective line of table II, application no. 19, column 3 of E. coli. [0040.0.0.18] to [0047.0.0.18] for the disclosure of the paragraphs [0040.0.0.18] to [0047.0.0.18] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 20 [0048.0.11.18]Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav 25 ing the activity of a respective protein as shown in table II, application no. 19, column 3 its biochemical or genetical causes and the increased amount of the respective fine chemical. [0049.0.0.18] to [0051.0.0.18] for the disclosure of the paragraphs [0049.0.0.18] to [0051.0.0.18] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 30 [0052.0.11.18]For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu- 1263 cleic acid molecules as mentioned in table 1, application no. 19, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos 5 sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.18] to [0058.0.0.18] for the disclosure of the paragraphs [0053.0.0.18] to 10 [0058.0.0.18] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.11.18]In case the activity of the Escherichia coli protein b0931 or its homologs, e.g. a "nicotinate phosphoribosyltransferase " is increased, advantageously in an or ganelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free sinapic acid between 29% and 97% or more is conferred. 15 In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased, advantageously in an organelle such as a plastid or mitochon dria, preferably, an increase of the fine chemical, preferably of free sinapic acid be tween 40% and 88% or more is conferred. In case the activity of the Escherichia coli protein b1 797 or its homologs, e.g. a "puta 20 tive tellurite resistance protein" is increased, advantageously in an organelle such as a plastid or mitochondria, preferably, an increase of the fine chemical, preferably of free sinapic acid between 29% and 36% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YDR035W or its ho mologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is 25 increased, advantageously in an organelle such as a plastid or mitochondria, prefera bly, an increase of the fine chemical, preferably of free ferulic acid between 37% and 75% or more is conferred. [0060.0.11.18] [0061.0.0.18] and [0062.0.0.18] for the disclosure of the paragraphs [0061.0.0.18] and 30 [0062.0.0.18] see paragraphs [0061.0.0.0] and [0062.0.0.0] above.
1264 [0063.0.11.18]A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in one embodiment the structure of the polypeptide described herein, in particular of the polypeptides com prising the consensus sequence shown in table IV, application no. 19, column 7 or of 5 the polypeptide as shown in the amino acid sequences as disclosed in table II, applica tion no. 19, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 19, columns 5 and 7 or its herein described functional 10 homologues and has the herein mentioned activity. [0064.0.11.18] For the purposes of the present invention, the reference to the fine chemical, e.g. to the term "sinapic acid or ferulic acid", also encompasses the corre sponding salt and esters, ethers or sinapic acid or ferulic acid bound to proteins, e.g. lipoproteins or other components or cross-linked to cell wall material like cellulose, 15 hemicellulose or pectins. [0065.0.0.18] and [0066.0.0.18] for the disclosure of the paragraphs [0065.0.0.18] and [0066.0.0.18] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.11.18]In one embodiment, the process of the present invention comprises one or more of the following steps 20 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 19, columns 5 and 7 or its homologs activity having herein-mentioned sinapic acid or ferulic acid increasing activity; and/or 25 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 19, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi 30 cated in table II, application no. 19, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned sinapic acid or ferulic acid increasing activity; and/or 1265 c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned sinapic acid or ferulic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indi 5 cated in table II, application no. 19, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 10 polypeptide of the invention having herein-mentioned sinapic acid or ferulic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indi cated in table II, application no. 19, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein 15 encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned sinapic acid or ferulic acid in creasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 19, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; 20 and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned sinapic acid or ferulic acid increasing activity, e.g. of a polypeptide having the ac 25 tivity of a protein as indicated in table II, application no. 19, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned 30 sinapic acid or ferulic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 19, columns 5 and 7 or its homologs activity; and/or 1266 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 19, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous 5 recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 10 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it 15 self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention 20 from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned sinapic acid or fer ulic acid increasing activity, e.g. of polypeptide having the activity of a protein as 25 indicated in table 1l, application no. 19, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned sinapic acid or ferulic acid increasing activity, e.g. of a polypeptide 30 having the activity of a protein as indicated in table 1l, application no. 19, columns 5 and 7 or its homologs activity in plastids by the stable or transient transforma tion advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette 1267 containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 5 mentioned sinapic acid or ferulic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 19, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial pro moter. 10 [0068.0.11.18]Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the respective fine chemical 15 as indicated in column 6 of application no. 19 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plas tids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 19, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. 20 [0069.0.0.18] to [0079.0.0.18] for the disclosure of the paragraphs [0069.0.0.18] to [0079.0.0.18] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.11.18]The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 19, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec 25 tive fine chemical after increase of expression or activity in the cytsol and/or in an or ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en coding the protein as shown in table II, application no. 19, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a 30 specific DNA-binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 19, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 19, 1268 column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.18] to [0084.0.0.18] for the disclosure of the paragraphs [0081.0.0.18] to [0084.0.0.18] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. 5 [0085.0.11.18]Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic acid construct mentioned below into an organism alone or in combination with other 10 genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous sinapic acid or ferulic acid containing composition comprising a higher content of different phenolic compounds , like salicylic acid, benzoic acid, cinnamic acid and caffeic acid wich have defense, anti 15 oxidant or other useful activities. It can also be advantageous to increase the level of a metabolic precursor of sinapic acid or ferulic acid in the organism or part thereof. . Depending on the choice of the organism used for the process according to the present invention, for example a microorganism or a plant, compositions or mixtures of various carotenoids and sinapic acid or ferulic acid can be produced. 20 [0086.0.0.18] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.11.18]By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are carotenoids, e.g. carotenes or xanthophylls, in particular keto carotenoids, or hydrocarotenoids, e.g. beta-cryptoxanthin, zeaxanthin, astaxanthin, 25 lycopene, alpha-carotene, or beta-carentene, or compounds for which sinapic acid or ferulic acid is a precursor compound. . [0088.0.11.18]Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani 30 mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 1269 b) increasing the activity of a protein as shown in table 1l, application no. 19, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the respective fine chemical as indicated in any one of Tables I to IV, application no. 19, column 6 5 "metabolite" in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more pref erably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the 10 plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the respective fine chemical in the organism, preferably the microorganism, the plant cell, the plant tissue or the plant; and if desired, recovering, optionally isolating, the respective free and/or bound fine chemi cal as indicated in any one of Tables I to IV, application no. 19, column 6 "metabolite". 15 [0089.0.11.18] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound respective fine chemical but as option it is also possible to produce, recover and, if de sired isolate, other free or/and bound derivatives of sinapic acid or ferulic acid. 20 [0090.0.0.18] to [0097.0.0.18] for the disclosure of the paragraphs [0090.0.0.18] to [0097.0.0.18] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.11.18] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 25 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods, preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 19, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked 30 to the nucleic acid sequence as shown table 1, application no. 19, columns 5 and 7 or a derivative thereof, or 1270 c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 5 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 10 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.11.18]The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 15 depicted in the sequence protocol and disclosed in table 1, application no. 19, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 19, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid 20 sequences as depicted in the sequence protocol and disclosed in table 1, application no. 19, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. 25 [0100.0.0.18] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.11.18]In an advantageous embodiment of the invention, the organism takes the form of a plant whose sinapic acid or ferulic acid content is modified advanta geously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poul 30 try is dependent on the abovementioned sinapic acid or ferulic acid content as antioxi dant source in feed. Further, this is also important for the production of cosmetic compostions since, for example, the antioxidant level of plant extracts is depending on the abovementioned sinapic acid or ferulic acid content and the general amount of antioxidants e.g. as vitamins.
1271 After the activity of the protein as shown in table II, application no. 19, column 3 has been increased or generated, or after the expression of nucleic acid molecule or poly peptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subse 5 quently harvested. [0102.0.0.18] to [0110.0.0.18] for the disclosure of the paragraphs [0102.0.0.18] to [0110.0.0.18] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.11.18]In a preferred embodiment, the respective fine chemical as indicated in any one of Tables I to IV, application no. 19, column 6 "metabolite" (sinapic acid or fer 10 ulic acid) is produced in accordance with the invention and, if desired, is isolated. The production of further phenolic compounds or compound with antioxidant activites like for example vitamins, provitamins or carotenoids, e.g. carotenes or xanthophylls, or mixtures thereof or mixtures with other compounds by the process according to the invention is advantageous. 15 Thus, the content of plant components and preferably also further impurities is as low as possible, and the abovementioned sinapic acid or ferulic acid are obtained in as pure form as possible. In these applications, the content of plant components advanta geously amounts to less than 10%, preferably 1%, more preferably 0.1%, very espe cially preferably 0.01% or less. 20 [0112.0.11.18]In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a protein or polypeptid or a compound, which func tions as a sink for the desired fine chemical, for example sinapic acid or ferulic acid in the organism, is useful to increase the production of the respective fine chemical (as 25 indicated in any one of Tables I to IV, application no. 19, column 6 "metabolite"). [0113.0.11.18] In the case of the fermentation of microorganisms, the abovementioned sinapic acid or ferulic acid may accumulate in the medium and/or the cells. If microor ganisms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the 30 biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can sub sequently be reduced, or concentrated, with the aid of known methods such as, for 1272 example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formu lation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently 5 be processed by lyophilization, spray drying, spray granulation or by other methods. Preferably the respective fine chemical as indicated for application no. 19 in any one of Tables I to IV, column 6 "metabolite" or the sinapic acid or ferulic acid comprising com positions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism 10 and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromatography or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. [0114.0.11.18]Transgenic plants which comprise the sinapic acid or ferulic acid, syn 15 thesized in the process according to the invention can advantageously be marketed directly without there being any need for sinapic acid or ferulic acid synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested 20 material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epider mal cells, seed cells, endosperm or embryonic tissue. The site of sinapic acid or ferulic acid biosynthesis in plants is, inter alia, the leaf tissue 25 so that the isolation of leafs makes sense. However, this is not limiting, since the ex pression may also take place in a tissue-specific manner in all of the remaining parts of the plant, in particular in seeds . A further preferred embodiment therefore relates to a seed-specific isolation of sinapic acid or ferulic acid. However, the respective fine chemical as indicated for application no. 19 in any one of 30 Tables I to IV, column 6, "metabolite" produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, in the form of their esters, ether or pyranosides, as extracts, e.g. ether, alcohol, or other organic sol vents or water containing extract and/or free sinapic acid or ferulic acid. The respective fine chemical produced by this process can be obtained by harvesting the organisms, 35 either from the crop in which they grow, or from the field. This can be done via pressing 1273 or extraction of the plant parts, preferably the plant seeds. To increase the efficiency of oil extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material expecially the seeds. e.g the esters or pyranosides, extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free sinapic acid or 5 ferulic acid can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as preferably warm hexane. The solvent is subsequently removed. In the case of 10 microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the process can be isolated. Thereafter, the resulting products are proc essed further, i.e. degummed and/or refined. In this process, substances such as the 15 plant mucilages and suspended matter are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Because sinapic acid or ferulic acid in microorganisms may be localized intracellularly, their recovery essentials comes down to the isolation of the biomass. Well-establisthed 20 approaches for the harvesting of cells include filtration, centrifugation and coagula tion/flocculation as described herein. [0115.0.11.18] Sinapic acid or ferulic acid can for example be analyzed advanta geously via HPLC, LC or GC separation methods and detected by MS oder MSMS methods. The unambiguous detection for the presence of sinapic acid or ferulic acid 25 containing products can be obtained by analyzing recombinant organisms using ana lytical standard methods: GC, GC-MS, or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometric methods], 30 Lipide 33:343-353). The material to be analyzed can be disrupted by sonication, grind ing in a glass mill, liquid nitrogen and grinding, cooking, or via other applicable meth ods; see also Biotechnology of Vitamins, Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 1989, p.96 to 103. [0116.0.11.18] In a preferred embodiment, the present invention relates to a proc 35 ess for the production of the respective fine chemical as indicated for application no. 19 1274 in any one of Tables I to IV, column 6 "metabolite", comprising or generating in an or ganism or a part thereof, preferably in a cell compartment such as a plastid or mito chondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 5 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 19, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 10 cleic acid molecule shown in table 1, application no. 19, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; 15 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) 20 under under stringent hybridisation conditions and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 25 preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the respective fine chemical 30 in an organism or a part thereof; 1275 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 19, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part 5 thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the respective fine chemical in 10 an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 19, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof ; 15 k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 19, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under 20 stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 25 or which comprises a sequence which is complementary thereto. [0116.1.11.18]In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 19, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 30 cated in table I A, application no. 19, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 19, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en- 1276 code a polypeptide of a sequence indicated in table II A, application no. 19, columns 5 and 7. [0116.2.11.18]In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 19, 5 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 19, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 10 19, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 19, columns 5 and 7. [0117.0.11.18]In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 19, columns 5 and 7 by 15 one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 19, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 19, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in 20 table II, application no. 19, columns 5 and 7. [0118.0.0.18] to [0120.0.0.18] for the disclosure of the paragraphs [0118.0.0.18] to [0120.0.0.18] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.11.18]The expression of nucleic acid molecules with the sequence shown in table I, application no. 19, columns 5 and 7, or nucleic acid molecules which are de 25 rived from the amino acid sequences shown in table II, application no. 19, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 19, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 19, column 3, and conferring an increase of the respective fine chemical (column 6 of 30 application no. 19 in any one of Tables I to IV) after increasing its plastidic expression and/or specific activity in the plastids is advantageously increased in the process ac cording to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids.
1277 [0122.0.0.18] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.11.18]Nucleic acid molecules, which are advantageous for the process accord ing to the invention and which encode polypeptides with the activity of a protein as shown in table 1l, application no. 19, column 3 can be determined from generally ac 5 cessible databases. [0124.0.0.18] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.11.18]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table 1l, application no. 19, column 3 and which 10 confer an increase in the level of the respective fine chemical indicated in table 1l, ap plication no. 19, column 6 by being expressed either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product being localized in the plastid and other parts of the cell or in the plastid as described above. 15 [0126.0.0.18] to [0133.0.0.18] for the disclosure of the paragraphs [0126.0.0.18] to [0133.0.0.18] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0133.1.11.18] Production strains which are also advantageously selected in the process according to the invention are microorganisms selected from the group of green algae, like Spongioccoccum exentricum, Chlorella sorokiniana (pyrenoidosa, 7 20 11-05), or algae of the genus Haematococcus, Phaedactylum tricomatum, Volvox or Dunaliella. The invention also contemplates embodiments in which the sinapic acid or ferulic acid or sinapic acid or ferulic acid precursor compounds in the production of the respective fine chemical, are present in a photosynthetic active organisms chosen as the host; for 25 example, cyanobacteria, moses, algae or plants which, even as a wild type, are capa ble of producing sinapic acid or ferulic acid . [0134.0.11.18]However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu 30 lar from the polypeptide sequences shown in table 1l, application no. 19, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring an increase of the respective fine chemical 1278 after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table II, application no. 19, column 3 by - for example - expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and 5 other parts of the cell or in the plastid as described above. [0135.0.0.18] to [0140.0.0.18] for the disclosure of the paragraphs [0135.0.0.18] to [0140.0.0.18] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.11.18]Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 19, column 7, by means of polymerase chain reaction can be 10 generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 19, columns 5 and 7 or the sequences derived from table II, application no. 19, columns 5 and 7. [0142.0.11.18]Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the 15 process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 19, column 7 is derived from said aligments. 20 [0143.0.11.18]Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 19, column 3 or further functional homologs of the polypeptide of the invention from other organisms. 25 [0144.0.0.18] to [0151.0.0.18] for the disclosure of the paragraphs [0144.0.0.18] to [0151.0.0.18] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.11.18]Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no. 19, column 6,, and being derived from other organisms, can be encoded by other DNA sequences 30 which hybridize to the sequences shown in table I, application no. 19, columns 5 and 7, preferably of table I B, application no. 19, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the the respective fine chemical, i.e. sinapic acid or ferulic acid increasing activity, when expressed in a way 1279 that the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0153.0.0.18] to [0159.0.0.18] for the disclosure of the paragraphs [0153.0.0.18] to [0159.0.0.18] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. 5 [0160.0.11.18]Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7 is 10 one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7, thereby forming a stable duplex. Preferably, the 15 hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing 20 partner. [0161.0.11.18]The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide 25 sequence shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a respective fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 19, column 3 by for example expression either in the cytsol or in an or 30 ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0162.0.11.18]The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined 1280 herein, to one of the nucleotide sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a sinapic acid or ferulic acid increase by for example expression either in the 5 cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plas tids, and optionally, the activity of a protein as shown in table II, application no. 19, col umn 3, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0163.0.11.18]Moreover, the nucleic acid molecule of the invention can comprise only 10 a portion of the coding region of one of the sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned 15 activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, application no. 19, column 6, if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. The nucleotide sequences 20 determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to 25 at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 19, columns 5 and 7, an anti-sense sequence of one of the se quences, e.g., set forth in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7, or naturally occurring mutants 30 thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 19, column 7 will result in a fragment of the gene product as shown in 35 table II, column 3.
1281 [0164.0.0.18] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.11.18]The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 19, columns 5 and 7 5 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular sinapic acid or ferulic acid increasing the activity as mentioned above or as described in the examples in plants or microorganisms is com prised. [0166.0.11.18]As used herein, the language "sufficiently homologous" refers to pro 10 teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 19, columns 5 and 7 such that the protein or portion thereof is able to par 15 ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.11.18]In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 20 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 19, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol 25 or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0168.0.0.18] and [0169.0.0.18] for the disclosure of the paragraphs [0168.0.0.18] and [0169.0.0.18] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. 30 [0170.0.11.18]The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 19, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned 1282 activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 19, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole cule of the invention comprises, or in an other embodiment has, a nucleotide sequence 5 encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 19, columns 5 and 7 or the functional homo logues. In a still further embodiment, the nucleic acid molecule of the invention en codes a full length protein which is substantially homologous to an amino acid se quence shown in table II, application no. 19, columns 5 and 7 or the functional homo 10 logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 19, columns 5 and 7, preferably as indicated in table I A, application no. 19, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 19, columns 5 15 and 7. [0171.0.0.18] to [0173.0.0.18] for the disclosure of the paragraphs [0171.0.0.18] to [0173.0.0.18] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.11.18]Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under 20 stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 19, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 25 [0175.0.0.18] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.11.18]Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 19, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 30 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the respective fine chemical increase after increas ing the expression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of 1283 the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.18] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.11.18]For example, nucleotide substitutions leading to amino acid substitutions 5 at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 19, columns 5 and 7. [0179.0.0.18] and [0180.0.0.18] for the disclosure of the paragraphs [0179.0.0.18] and [0180.0.0.18] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. 10 [0181.0.11.18]Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids (as described), that contain changes in amino acid residues that are not 15 essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table II, application no. 19, columns 5 and 7, preferably shown in table II A, application no. 19, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid 20 sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 19, columns 5 and 7, preferably shown in table II A, application no. 19, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression ei ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably 25 in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 19, columns 5 and 7, preferably shown in table II A, application no. 19, columns 5 and 7, more preferably at least about 70% identical to 30 one of the sequences shown in table II, application no. 19, columns 5 and 7, preferably shown in table II A, application no. 19, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 19, columns 5 and 7, preferably shown in table II A, application no. 19, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se- 1284 quence shown in table II, application no. 19, columns 5 and 7, preferably shown in ta ble II A, application no. 19, columns 5 and 7. [0182.0.0.18] to [0188.0.0.18] for the disclosure of the paragraphs [0182.0.0.18] to [0188.0.0.18] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 5 [0189.0.11.18]Functional equivalents derived from one of the polypeptides as shown in table II, application no. 19, columns 5 and 7, preferably shown in table II B, application no. 19, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 10 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 19, columns 5 and 7, preferably shown in table II B, application no. 19, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 18, columns 5 and 7, preferably shown 15 in table II B, application no. 19, columns 5 and 7. [0190.0.11.18]Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 20 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 19, columns 5 and 7, preferably shown in table II B, application no. 19, columns 5 and 7 resp., ac cording to the invention and encode polypeptides having essentially the same proper 25 ties as the polypeptide as shown in table II, application no. 19, columns 5 and 7, pref erably shown in table II B, application no. 19, columns 5 and 7. [0191.0.0.18] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.11.18]A nucleic acid molecule encoding an homologous to a protein sequence of table II, application no. 19, columns 5 and 7, preferably shown in table II B, applica 30 tion no. 19, columns 5 and 7 resp., can be created by introducing one or more nucleo tide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7 resp., such 1285 that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and 5 PCR-mediated mutagenesis. [0193.0.0.18] to [0196.0.0.18] for the disclosure of the paragraphs [0193.0.0.18] to [0196.0.0.18] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.11.18] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, 10 application no. 19, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 15 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 19, columns 5 and 7, preferably shown in table I B, applica tion no. 19, columns 5 and 7, or from the derived nucleic acid sequences, the intention 20 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.11.18]In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 19, columns 5 and 7, preferably shown in table I B, 25 application no. 19, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the 30 nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7.
1286 [0199.0.11.18]Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 19, columns 5 and 7, preferably shown in table II B, application no. 19, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 5 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 19, columns 5 and 7, preferably shown in table II B, application no. 19, columns 5 and 7. 10 [0200.0.11.18]In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica tion no. 19, columns 5 and 7, preferably shown in table II B, application no. 19, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi 15 ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 19, columns 5 and 7, preferably shown in table I B, application no. 19, columns 5 and 7. [0201.0.11.18]Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the 20 respective fine chemical indicated in column 6 of Table I, application no. 19, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by pref erence 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown 25 in table II, application no. 19, columns 5 and 7 expressed under identical conditions. [0202.0.11.18]Homologues of table I, application no. 19, columns 5 and 7 or of the derived sequences of table II, application no. 19, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 30 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 35 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur- 1287 thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 5 [0203.0.0.18] to [0215.0.0.18] for the disclosure of the paragraphs [0203.0.0.18] to [0215.0.0.18] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.11.18]Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 10 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 19, columns 5 and 7, preferably in table II B, application no. 19, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof 15 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table I, application no. 19, columns 5 and 7, pref erably in table I B, application no. 19, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; 20 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; 25 d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; 30 e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 1288 amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 5 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 10 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 19, column 6 in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 15 cation no. 19, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en 20 coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 19, column 7 and conferring an in 25 crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 19, columns 5 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; and 30 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 1289 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 19, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application 5 no. 19, columns 5 and 7, and conferring an increase in the amount of the fine chemical according to table II B, application no. 19, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 19, columns 5 and 7 by 10 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 19, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no.1 8, columns 5 15 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 19, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 19, columns 5 20 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 19, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 19, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence 25 depicted in table II A and/or II B, application no. 19, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 19, columns 5 and 7. [0217.0.0.18] to [0226.0.0.18] for the disclosure of the paragraphs [0217.0.0.18] to 30 [0226.0.0.18] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.11.18]In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 35 systems, binary systems are based on at least two vectors, one of which bears vir 1290 genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac 5 cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep 10 tides shown in table II, application no. 19, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.18] to [0239.0.0.18] for the disclosure of the paragraphs [0228.0.0.18] to 15 [0239.0.0.18] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.11.18] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously 20 into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 19, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms.It can be especially advantageously, if additionally at least one further gene of the sinapic acid or ferulic acid biosynthetic pathway, e.g. of the phenylpro 25 panoid pathway , is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advanta geously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the amino acids desired since, for example, feedback regulations no longer exist to the 30 same extent or not at all. In addition it might be advantageously to combine the se quences shown in Table I, application no. 19, columns 5 and 7 with genes which gen erally support or enhances the growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants.
1291 [0241.0.11.18] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the phenylpropanoid metabolism. Indirect overexpression might be achieved by the ma 5 nipulation of the regulation of the endogenous gene, for example through promotor mutations or the expression of natural or artificial transcriptional regulators. [0242.0.11.18] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the phenylpro 10 panoid pathway like cinnamate-4-hydroxylase (C4H), chalcone synthase (CHS), Ferulate 5-hydroxylase (F5H) or phenylalanine ammonia-lyase (PAL).. These genes may lead to an increased synthesis of sinapic acid or ferulic acid .. [0242.1.11.18]In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a sinapic acid or 15 ferulic acid degrading protein is attenuated, in particular by reducing the rate of expres sion of the corresponding gene. [0242.2.11.18]The respective fine chemical produced can be isolated from the organ ism by methods with which the skilled worker is familiar. For example, via extraction, salt precipitation, and/or different chromatography methods. The process according to 20 the invention can be conducted batchwise, semibatchwise or continuously. The respec tive fine chemical produced by this process can be obtained by harvesting the organ isms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. [0243.0.0.18] to [0264.0.0.18] for the disclosure of the paragraphs 25 [0243.0.0.18] to [0264.0.0.18] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.11.18]Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, 30 the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se- 1292 quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 5 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table I, application no. 19, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.18] to [0287.0.0.18] for the disclosure of the paragraphs [0266.0.0.18] to 10 [0287.0.0.18] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.11.18]Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a 15 vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 19, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 19, columns 5 and 7 or their homologs is functionally linked to a 20 regulatory sequences which permit the expression in plastids. [0289.0.0.18] to [0296.0.0.18] for the disclosure of the paragraphs [0289.0.0.18] to [0296.0.0.18] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.11.18] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo 25 thelial cells), for example using the antibody of the present invention as described herein, in particular, an antibody against polypeptides as shown in table II, application no. 19, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. 30 [0298.0.0.18] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.11.18]In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 19, columns 5 and 7 or as coded by 1293 the nucleic acid molecule shown in table I, application no. 19, columns 5 and 7 or func tional homologues thereof. [0300.0.11.18]In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus 5 sequence shown in table IV, application no. 19, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 19, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino 10 acids positions indicated can be replaced by any amino acid. [0301.0.0.18] to [0304.0.0.18] for the disclosure of the paragraphs [0301.0.0.18] to [0304.0.0.18] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.11.18]In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor 15 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 19, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 19, columns 5 and 7 by more than 5, 6, 7, 8 or 9 20 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 19, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 25 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 19, columns 5 and 7. [0306.0.0.18] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.11.18]In one embodiment, the invention relates to polypeptide conferring an 30 increase of level of the respective fine chemical indicated in Table II A and/or II B, ap plication no. 19, column 6 in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli- 1294 cation no. 19, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 19, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden 5 tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 19, columns 5 and 7. [0308.0.11.18]In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 19, col 10 umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 19, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre 15 ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into 20 the organelle, for example into the plastid or mitochondria. [0309.0.0.18] to [0311.0.0.18] for the disclosure of the paragraphs [0309.0.0.18] to [0311.0.0.18] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.11.18]A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid 25 sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 19, columns 5 and 7. [0313.0.11.18]Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole 30 cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se- 1295 quences as shown in table II A and/or II B, application no. 19, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se 5 quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 19, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.11.18]Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 19, columns 5 and 7 in amino 10 acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino 15 acid sequence shown in table II A and/or II B, application no. 19, columns 5 and 7. [0315.0.0.18] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.11.18]Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present 20 invention, e.g., the amino acid sequence shown in table II, application no. 19, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention 25 depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.18] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.11.18]Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in 30 table II, application no. 19, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 19, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, 1296 application no. 19, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. [0319.0.11.18]Any mutagenesis strategies for the polypeptide of the present invention 5 or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated 10 proteins of the proteins as shown in table II, application no. 19, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved. [0319.1.11.18] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. sinapic acid or ferulic acid or a recovered or isolated sinapic 15 acid or ferulic acid in free or bound form. [0320.0.0.18] to [0322.0.0.18] for the disclosure of the paragraphs [0320.0.0.18] to [0322.0.0.18] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.11.18]In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 19, column 3 refers to a polypeptide having an amino acid sequence corre 20 sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 25 19, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.18] to [0329.0.0.18] for the disclosure of the paragraphs [0324.0.0.18] to [0329.0.0.18] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.11.18]In an especially preferred embodiment, the polypeptide according to the 30 invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 19, columns 5 and 7.
1297 [0331.0.0.18] to [0346.0.0.18] for the disclosure of the paragraphs [0331.0.0.18] to [0346.0.0.18] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.11.18]Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the 5 respective fine chemical indicated in column 6 of application no. 19 in any one of Tal bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as 10 shown in table II, application no. 19, column 3. Due to the above mentioned activity the respective fine chemical content in a cell or an organism is increased. For example, due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an 15 organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 19, column 3 or a protein as shown in table II, application no. 19, col umn 3-like activity is increased in the cell or organism or part thereof especially in or 20 ganelles such as plastids or mitochondria. Examples are described above in context with the process of the invention. [0348.0.0.18] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.11.18]A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 25 II, application no. 19, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.18] to [0358.0.0.18] for the disclosure of the paragraphs [0350.0.0.18] to 30 [0358.0.0.18] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.11.18]Transgenic plants comprising the respective fine chemical synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are un- 1298 derstood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The respective fine chemical indicated in 5 column 6 of any one of Tables I to IV, application no. 19 and being produced in the process according to the invention may, however, also be isolated from the plant as one of the above mentioned derivates of sinapic acid or ferulic acid itself and can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via pressing out, grinding and/or extraction of the 10 plant parts, preferably the plant seeds, plant fruits, plant tubers and the like. [0360.0.0.18] to [0362.0.0.18] for the disclosure of the paragraphs [0360.0.0.18] to [0362.0.0.18] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.0.18] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 15 80% by weight, very especially preferably more than 90% by weight, of the respective fine chemical produced in the process can be isolated. The resulting composition or fraction comprising the respective fine chemical can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as fatty acids, vita mins, amino acids, carbohydrates, antibiotics, covitamins, antioxidants, carotenoids, 20 and the like, and, if appropriate, formulated. [0364.0.0.18] In one embodiment, the composition is the fine chemical. [0365.0.11.18]The fine chemical indicated in column 6 of application no. 19 in Table 1, , and being obtained in the process of the invention are suitable as starting material for the synthesis of further products of value. For example, they can be used in combina 25 tion with each other or alone for the production of pharmaceuticals, foodstuffs, animal feeds or cosmetics. Accordingly, the present invention relates a method for the produc tion of pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of a composition comprising the fine chemical, e.g. sinapic acid or ferulic acid or the isolated respective 30 fine chemical produced, if desired, and formulating the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the respec tive fine chemical indicated in application no. 19, Table 1, column 6, and being pro- 1299 duced in the process or the use of the transgenic organisms in animal feeds, food stuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.18] to [0369.0.0.18] for the disclosure of the paragraphs [0366.0.0.18] to [0369.0.0.18] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 5 [0370.0.11.18]The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; application no. 19 or containig mixtures with other compounds, in particular with other phenolic acids, normally have a dry matter content of from 7.5 to 25% by weight. The fermenta tion broth can be processed further. Depending on requirements, the biomass can be 10 separated, such as, for example, by centrifugation, filtration, decantation, coagula tion/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fer 15 mentation broth can then be worked up by extraction, freeze-drying, spray drying, spray granulation or by other processes. [0371.0.11.18] A wide range of advantageous methods and techniques for the isolation of sinapic acid or ferulic acid can be found in the state of the art. Accordingly, it is possible to further purify the produced sinapic acid or ferulic acid. For 20 this purpose, the product-containing composition, e.g. a total or partial lipid extraction fraction using organic solvents, e.g. as described above, is subjected for example to a saponification to remove triglycerides, partition between e.g. hexane/methanol (sepera tion of non-polar epiphase from more polar hypophasic derivates) and separation via e.g. an open column chromatography or HPLC in which case the desired product or the 25 impurities are retained wholly or partly on the chromatography resin. These chromatog raphy steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. [0372.0.0.18] to [0376.0.0.18], [0376.1.0.18] and [0377.0.0.18] for the disclosure of 30 the paragraphs [0372.0.0.18] to [0376.0.0.18], [0376.1.0.18] and [0377.0.0.18] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above.
1300 [0378.0.11.18]In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 5 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the respective fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 10 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 19, columns 5 and 7, preferably in table I B, application no. 19, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant 15 cell or a microorganism, appropriate for producing the respective fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the respective fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical as indicated for application no. 20 19 in any one of Tables I to IV level in the host cell after expression compared to the wild type. [0379.0.0.18] to [0383.0.0.18] for the disclosure of the paragraphs [0379.0.0.18] to [0383.0.0.18] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.11.18] The screen for a gene product or an agonist conferring an increase in 25 the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. 30 One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de- 1301 pendent on the proteins as shown in table 1l, application no. 19, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 19, column 3. [0385.0.0.18] to [0404.0.0.18] for the disclosure of the paragraphs [0385.0.0.18] to 5 [0404.0.0.18] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.11.18]Accordingly, the nucleic acid of the invention, the polypeptide of the in vention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the 10 nucleic acid molecule identified with the method of the present invention, can be used for the production of the respective fine chemicalindicated in Column 6, Table 1, appli cation no. 19 or for the production of the respective fine chemical and one or more other carotenoids, vitamins or fatty acids. In one embodiment, in the process of the present invention, the produced sinapic acid or ferulic acid is used to protect fatty ac 15 ids against oxidation, e.g. it is in a further step added in a pure form or only partly iso lated to a composition comprising fatty acids. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the 20 polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. 25 [0405.1.11.18]The nucleic acid molecule of the invention, the vector of the invention or the nucleic acid construct of the invention may also be useful for the production of or ganisms resistant to inhibitors of the sinapic acid or ferulic acid production biosynthe sis pathways. In particular, the overexpression of the polypeptide of the present inven tion may protect an organism such as a microorganism or a plant against inhibitors, 30 which block the sinapic acid or ferulic acid biosynthesis, in particular the respective fine chemical synthesis in said organism. As sinapic acid or ferulic acid can protect organisms against damages of oxidative stress, especially singlet oxygens, a increased level of the respective fine chemical can protect plants against herbicides which cause the toxic buildup of oxidative com 35 pounds,e.g. singlet oxygens. For example, inhibition of the protoporphorineogen oxi- 1302 dase (Protox), an enzyme important in the synthesis of chlorophyll and heme biosyn thesis results in the loss of chlorophyll and carotenoids and in leaky membranes; the membrane destruction is due to creation of free oxygen radicals (which is also reported for other classic photosynthetic inhibitor herbicides). 5 Accordingly, in one embodiment, the increase of the level of the respective fine chemi cal is used to protect plants against herbicides destroying membranes due to the crea tion of free oxygen radicals. Examples of inhibitors or herbicides building up oxidative stress are aryl triazion, e.g. sulfentrazone, carfentrazone; or diphenylethers, e.g. acifluorfen, lactofen, or oxyfluor 10 fen; or N-Phenylphthalimide, e.g. flumiclorac or flumioxazin; substituted ureas, e.g. fluometuron, tebuthiuron, diuron, or linuron; triazines, e.g. atrazine, prometryn, ametryn, metributzin, prometon, simazine, or hexazinone: or uracils, e.g. bromacil or terbacil. [0405.2.11.18]In a further embodiment the present invention relates to the use of the 15 antagonist of the present invention, the plant of the present invention or a part thereof, the microorganism or the host cell of the present invention or a part thereof for the pro duction a cosmetic composition or a pharmaceutical compostion. Such a composition has an antioxidative activity, photoprotective activity, can be used to protect, treat or heal the above mentioned diseases, e.g. hypercholesterolemic or cardiovascular dis 20 eases, certain cancers, and cataract formation or can be used as an immunostimula tory agent. Sinapic acid or ferulic acid can be also used as stabilizer of other colours or oxygen senitive compounds, like fatty acids, in particular unsaturated fatty acids. [0406.0.0.18] to [0416.0.0.18] for the disclosure of the paragraphs [0406.0.0.18] to 25 [0416.0.0.18] see paragraphs [0406.0.0.0] to [0416.0.0.0] above. [0417.0.11.18]An in vivo mutagenesis of organisms such as algae (e.g. Spongiococ cum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedacty lum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which 30 are beneficial for the production of sinapic acid or ferulic acid can be carried out by passing a plasmid DNA (or another vector DNA) containing the desired nucleic acid sequence or nucleic acid sequences, e.g. the nucleic acid molecule of the invention or the vector of the invention, through E. coli and other microorganisms (for example Ba cillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of 1303 maintaining the integrity of its genetic information. Usual mutator strains have muta tions in the genes for the DNA repair system [for example mutHLS, mutD, mutT and the like; for comparison, see Rupp, W.D. (1996) DNA repair mechanisms in Es cherichia coli and Salmonella, pp. 2277-2294, ASM: Washington]. The skilled worker 5 knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strategies 7; 32-34. In-vitro mutation methods such as increasing the spontaneous mutation rates by chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate 10 (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran dom in-vitro mutagensis. The most common physical method for mutagensis is the treatment with UV irradiation. Another random mutagenesis technique is the error prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special 15 reaction conditions known to a person skilled in the art. For this method randomized DNA sequences are cloned into expression vectors and the resulting mutant libraries screened for altered or improved protein activity as described below. Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach 20 for site-directed mutagensis. The clou of this method involves cloning of the nucleic acid sequence of the invention into an M13 or phagemid vector, which permits recovery of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu 25 tation site it bears a base that is complementary to the desired mutant nucleotide rather than the original. The mutagenic oligonucleotide is then allowed to prime new DNA synthesis to create a complementary full-length sequence containing the desired muta tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis method also known to the skilled person. DpnI site-directed mutagensis is a further 30 known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known and used in common practice. Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical. 35 [0418.0.0.18] to [0427.0.0.18] for the disclosure of the paragraphs [0418.0.0.18] to [0427.0.0.18] see paragraphs [0418.0.0.0] to [0427.0.0.0] above.
1304 [0427.1.9.18] for the disclosure of the paragraphs [0427.1.9.18] see paragraphs [0428.1.9.9] above [0427.2.9.18] for the disclosure of the paragraphs [0427.2.9.18] see paragraph [0428.2.9.9] above. 5 [0427.3.9.18] for the disclosure of the paragraphs [0427.3.9.18] see paragraph [0428.3.9.9] above. [0427.4.11.18] Sinapic acid or ferulic acid may be produced in Synechocystis spec. PCC 6803 The cells of each of independent Synechocystis spec. PCC 6803 strains cultured on 10 the BG-1 1km agar medium, and untransformed wild-type cells (on BG1 1 agar medium without kanamycin) can be used to inoculate liquid cultures. For this, cells of a mutant or of the wild-type Synechocystis spec. PCC 6803 are transferred from plate into 10 ml of liquid culture in each case. These cultures are cultivated at 280C and 30 pmol pho tons*(m 2 *s)-l (30 pE) for about 3 days. After determination of the OD 730 of the individual 15 cultures, the OD 73 0 of all cultures is synchronized by appropriate dilutions with BG-1 1 (wild types) or e.g. BG-1 1km (mutants). These cell density-synchronized cultures are used to inoculate three cultures of the mutant and of the wild-type control. It is thus possible to carry out biochemical analyses using in each case three independently grown culutres of a mutant and of the corresponding wild types. The cultures are grown 20 until the optical density was OD 730 =0.3. The cell culture medium is removed by centrifugation in an Eppendorf bench centrifuge at 14000 rpm twice. The subsequent disruption of the cells and extraction sinapic acid or ferulic acid take place by incubation in an Eppendorf shaker at 30'C, 1000 rpm in 100% methanol for 15 minutes twice, combining the supernatants obtained in each 25 case. In order to avoid oxidation, the resulting extracts can be analyzed immediate after the extraction with the aid of a Waters Allience 2690 HPLC system. Sinapic acid or ferulic acid can be separated on a reverse phase column and identified by means of a stan dard. The fluorescence of the substances which can be detected with the aid of a 30 Jasco FP 920 fluorescence detector, can serve as detection system. [0428.0.0.18] to [0436.0.0.18] for the disclosure of the paragraphs [0428.0.0.18] to [0436.0.0.18] see paragraphs [0428.0.0.0] to [0436.0.0.0] above.
1305 [0437.0.0.18] and [0438.0.0.18] for the disclosure of the paragraphs [0437.0.0.18] and [0438.0.0.18] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.11.18] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the respective fine chemical indicated in Table 1, applica 5 tion no. 19, column 6 [0440.0.11.18] The effect of the genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a ferulic acid or sinapic acid) can be determined by growing the modified microorganisms or the modified plant under suit able conditions (such as those described above) and analyzing the medium and/or the 10 cellular components for the elevated production of desired product (i.e. of ferulic acid or sinapic acid). These analytical techniques are known to the skilled worker and com prise spectroscopy, thin-layer chromatography, various types of staining methods, en zymatic and microbiological methods and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Indus 15 trial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Bio chemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John 20 Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Bio chemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purifi cation techniques in biotechnology, Noyes Publications). 25 Alternatively ferulic acid acid can be detected as described in Mattila, P. and Kumpu lainen J., J. Agric Food Chem. 2002 Jun 19;50(13):3660-7. Alternatively sinapic acid can be detected as described in Noda, M. and Matsumoto, M., Biochim Biophys Acta. 1971 Feb 2;231(1):131-3. [0441.0.0.18] for the disclosure of this paragraph see [0441.0.0.0] above. 30 [0442.0.11.18]Example 9: Purification of the ferulic acid or sinapic acid [0443.0.11.18] Abbreviations; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography.
1306 The unambiguous detection for the presence of ferulic acid or sinapic acid can be ob tained by analyzing recombinant organisms using analytical standard methods: LC, LC MSMS or TLC, as described. The total amount produced in the organism for example in yeasts used in the inventive process can be analysed for example according to the 5 following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pestle and 10 mortar to make it more amenable to extraction. A typical sample pretreatment consists of a total lipid extraction using such polar or ganic solvents as acetone or alcohols as methanol, or ethers, saponification, partition between phases, seperation of non-polar epiphase from more polar hypophasic deriva tives and chromatography. 15 For analysis, solvent delivery and aliquot removal can be accomplished with a robotic system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% potassium hydroxide hydro-ethanolic solution (4 water - 1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can 20 be conducted at room temperature with vials maintained on an IKA HS 501 horizontal shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. Following saponification, the supernatant can be diluted with 0.17 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. 25 Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies 30 available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The column can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT 1307 (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab sorbance at 447 nm. Alternatively ferulic acid acid can be detected as described in Mattila, P. and Kumpu 5 lainen J., J. Agric Food Chem. 2002 Jun 19;50(13):3660-7. Alternatively sinapic acid can be detected as described in Noda, M. and Matsumoto, M., Biochim Biophys Acta. 1971 Feb 2;231(1):131-3. [0443.1.11.18] Characterization of the transgenic plants In order to confirm that sinapic acid or ferulic acid biosynthesis in the transgenic plants 10 is influenced by the expression of the polypeptides described herein, the sinapic acid or ferulic acid content in leaves, seeds and/or preferably flowers of the plants trans formed with the described constructs (Arabidopsis thaliana, Brassica napus and Nico tiana tabacum) is analyzed. For this purpose, the transgenic plants are grown in a greenhouse, and plants which express the gene coding for polypeptide of the invention 15 or used in the method of the invention are identified at the Northern level. The sinapic acid or ferulic acid content in flowers, leaves or seeds of these plants is measured. In all, the sinapic acid or ferulic acid concentration is raised by comparison with untrans formed plants. [0444.0.11.18]If required and desired, further chromatography steps with a suitable 20 resin may follow. Advantageously, the sinapic acid or ferulic acid can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mix tures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selec tion of suitable chromatography resin and the most effective use for a particular mole 25 cule to be purified. [0445.0.11.18]In addition depending on the produced fine chemical purification is also possible with cristalisation or destilation. Both methods are well known to a person skilled in the art. [0446.0.0.18] to [0496.0.0.18] for the disclosure of the paragraphs [0446.0.0.18] to 30 [0496.0.0.18] see paragraphs [0446.0.0.0] to [0496.0.0.0] above.
1308 [0497.0.11.18]As an alternative, the sinapic acid or ferulic acid can be detected ad vantageously as desribed above. [0498.0.11.18] The results of the different plant analyses can be seen from the table, which follows: 5 Table VI ORF Metabolite Method/Analytics Min.-Value Max.-Value b0931 Sinapic acid GC 1.29 1.97 b1556 Sinapic acid GC 1.40 1.88 b1797 Sinapic acid GC 1.29 1.36 YDR035W Ferulic acid LC 1.37 1.75 [0499.0.0.18] and [0500.0.0.18] for the disclosure of the paragraphs [0499.0.0.18] and [0500.0.0.18] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.11.18]Example 15a: Engineering ryegrass plants by over-expressing b0931 10 from E. coli or homologs of b0931 from other organisms. [0502.0.0.18] to [0508.0.0.18] for the disclosure of the paragraphs [0502.0.0.18] to [0508.0.0.18] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.11.18]Example 15b: Engineering soybean plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. 15 [0510.0.0.18] to [0513.0.0.18] for the disclosure of the paragraphs [0510.0.0.18] to [0513.0.0.18] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.18] Example 15c: Engineering corn plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0515.0.0.18] to [0540.0.0.18] for the disclosure of the paragraphs [0515.0.0.18] to 20 [0540.0.0.18] see paragraphs [0515.0.0.0] to [0540.0.0.0] above.
1309 [0541.0.11.18]Example 15d: Engineering wheat plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0542.0.0.18] to [0544.0.0.18] for the disclosure of the paragraphs [0542.0.0.18] to [0544.0.0.18] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. 5 [0545.0.11.18]Example 15e: Engineering Rapeseed/Canola plants by over-expressing b0931 from E. coli or homologs of b0931 from other or ganisms. [0546.0.0.18] to [0549.0.0.18] for the disclosure of the paragraphs [0546.0.0.18] to [0549.0.0.18] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. 10 [0550.0.11.18]Example 15f: Engineering alfalfa plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0551.0.0.18] to [0554.0.0.18] for the disclosure of the paragraphs [0551.0.0.18] to [0554.0.0.18] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.11.18]: ./. 15 [0554.2.0.18] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.18] for the disclosure of this paragraph see [0555.0.0.0] above.
1310 [0001.0.0.19] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.19.19] Carbohydrates are aldehyde or ketone compounds with multiple hy droxyl groups. Many carbohydrates have the empirical formula (CH 2 O),; some also contain nitrogen, phosphorus, or sulfur. 5 Carbohydrates are classsfied in monosaccharides, oligosaccharides, and polysaccha rides. Monosaccharides, or simple sugars, consist of a single polyhydroxy aldehyde or ketone unit. Monosaccharides of more than four carbons tend to have cyclic structures. Oligosaccharides consist of short chains of monosaccharide units, or residues, usually 10 2 to 19 units, joined by glycosidic bonds. The polysaccharides are sugar polymers containing more than 20 or so monosaccha ride units, and some have hundreds or thousands of units. Some polysaccharides are linear chains; others are branched. Carbohydrates are called saccharides or, if they are relatively small, sugars. 15 In the present invention, saccharides means all of the aforementioned carbohydrate, e.g. monosaccharides, preferably fructose, glucose, inositol, galactose, arabinose, xy lose or other pentoses or hexoses; oligosaccharides, preferably disaccharides like su crose, lactose or trisaccharides like raffinose; or polysaccharides like starch or cellu lose. 20 [0003.0.19.19] Carbohydrates are the most abundant class of organic compounds found in living organisms. They are a major source of metabolic energy, both for plants and for animals. Aside from the sugars and starches that meet this vital nutritional role, carbohydrates function in energy storage (for example starch or glycogen), in signaling (by glycoproteins and 25 glycolipids, e.g. blood group determinants), fuel the nervous system, muscle and virtu ally all cells, are parts of nucleic acids ( in genes, mRNA, tRNA, ribosomes), and as cell surface markers as recognition sites on cell surfaces and signaling in glycolipids and glycoproteins and also serve as a structural material for example as cell wall compo nents (cellulose). 30 [0004.0.19.19] Glucose, also called dextrose, is the most widely distributed sugar in the plant and animal kingdoms and it is the sugar present in blood as "blood sugar". It occupies a central position in the metabolism of plants, animals, and many microorgan- 1311 isms. Glucose is rich in potential energy, and thus a good fuel; in the body is catabo lised to produce ATP. It is stored as a high molecular weight polymer such as starch or glycogen or is converted to fatty acids. It is also a remarkably versatile precursor, ca pable of supplying a huge array of metabolic intermediates for biosynthetic reactions. 5 Based on its manifold features, glucose is used in nutrition and medicine. Fructose, also called levulose or "fruit sugar", is the most important ketose sugar. Fruc tose is a hexose and is a reducing sugar. Fructose is used a a sweetener by diabetics because it does not rise the blood sugar level, even in large amounts. Fructose and glucose are the main carbohydrate constituents of honey. Those hexoses 10 are further the main components of many oligo- and polysaccharides, like sucrose, raffinose, stachyose, trehalose, starch, cellulose or dextran. The most frequent disaccharide is sucrose (saccharose, beta-D-fructofuranosyl-alpha D-glucopyranosid, cane sugar, beet sugar, sugar in a narrow sense of a name for commercially available sucrose meaning sucrose is the sugar that is commonly called 15 "sugar") which consists of the six-carbon sugars D-glucose and D-fructose. It is formed by plants but not by animals. Sucrose is a major intermediate product of photosynthe sis; in many plants it is the principal form in which sugar is transported from the leaves to other parts of the plant body. In mammalians sucrose is an obligatory component of blood and its content in blood is kept at the stable level. It is strongly necessary for 20 brain cells as well as for normal functioning of the central nervous system. Sugar is widely-known as a source of glycogen - a substance, feeding liver, heart and muscles. It is one of the most widely-used food products and is the major disaccharide in most diets. It is present in honey, maple sugar, fruits, berries, and vegetables. It may be added to food products as liquid or crystalline sucrose or as invert sugar. It is commer 25 cially prepared from sugar cane or sugar beets. Sucrose can provide a number of de sirable functional qualities to food products including sweetness, mouth-feel, and the ability to transform between amorphous and crystalline states. High-concentrated su crose is a natural preserving agent, it determines gel-formation processes, gives nec essary viscosity to the products. Sucrose is a raw material for caramel, colour etc. 30 Sucrose is further an excellent fermentation feedstock, which is of specific interest for fermentation industry (including a number of non-food industries -pharmaceutical in dustries). The presence of eight hydroxyl groups in the sucrose molecule provides a theoretical possibility of a very large number of sucrose derivatives. Sucrose deriva tives are used by industries in production of detergents, emulsifiers (sucrose + fatty 35 acids) and adhesives (sucrose octa acetate).
1312 Sucrose is a precursor to a group of carbohydrates in plants known as the raffinose family of oligosaccharides found in many plant seeds especially legumes. This family contains the trisaccharide raffinose, the tetrasaccharide stachyose and the pentasac charide verbascose. Oligosaccharides of the raffinose-series are major components in 5 many food legumes (Shallenberger et al., J.Agric. Food Chem., 9,1372; 1961). Raffi nose (beta-D-fructofuranosyl-6-O-alpha-D-galactopyranosyl- alpha- D- glucopyranosid, melitriose, gossypose, melitose), which consists of sucrose with a-galactose attached through its C-4 atom to the 1 position on the fructose residue and is thought to be sec ond only to sucrose among the nonstructural carbohydrates with respect to abundance 10 in the plant kingdom. It may be ubiquitous, at least among higher plants. Raffinose ac cumulate in significant quantities in the edible portion of many economically significant crop species. Examples include soybean, sugar beet, cotton, canola and all of the ma jor edible leguminous crops including beans, peas, lentil and lupine. An important key intermediates in the formation of raffinose and stachyose is myo 15 inositol (cyclohexan-1,2,3,4,5,6-hexaole), the most common cyclitol. Myo-inositol is fundamental to many different aspects of plant growth and development. In addition to its role as the precursor for phytic acid biosynthesis, myo-inositol is also used for uron ide and pentose biosynthesis, it is also present in phosphoinositides of plant cell mem branes, as well as other complex plant lipids including glycophosphoceramides. Fur 20 thermore, it is also a precursor of other naturally occurring inositol isomers, and many of these as well as myo-inositol are distributed as methyl ethers in a species specific pattern throughout the plant kingdom. Myo-inositol is an important growth factor. The most carbohydrates found in nature occur as polysaccharides which are polymers of medium to high molecular weight. Polysaccharides, also called glycans, differ from 25 each other in the identity of their recurring monosaccharide units, in the length of their chains, in the types of bonds linking the units, and in the degree of branching. Starch is the most valuable polysaccharide. Normal native starches consist of a mixture of 15-30 % amylose and 70-85 % amylopectin. Amylose structurally is a linear polymer of anhydroglucose units, of molecular weight approximately between 40 000 and 340 30 000, the chains containing 250 to 2000 anhydroglucose units. Amylopectin is consid ered to be composed of anhydroglucose chains with many branch points; the molecular weight may reach as high as 80 000 000. Starch is the most important, abundant, digestible food polysaccharide. It occurs as the reserve polysaccharide in the leaf, stem, root, seed, fruit and pollen of many higher 35 plants. It occurs as discrete, partially-crystalline granules whose size, shape, and ge- 1313 latinization temperature depend on the botanical source of the starch. Common food starches are derived from seed (wheat, maize, rice, barley) and root (potato, cas sava/tapioca) sources. Starches have been modified to improve desired functional characteristics and are added in relatively small amounts to foods as food additives. 5 Another important polysaccharide is cellulose. Cellulose is the most commonly seen polysaccharide and scientist estimate that over one trillion tons of cellulose are synthe sized by plants each year. Cellulose forms the cell wall of plants. It is yet a third poly mer of the monosaccharide glucose. Cellulose differs from starch and glycogen be cause the glucose units form a two-dimensional structure, with hydrogen bonds holding 10 together nearby polymers, thus giving the molecule added stability. A single "cellulose fiber" can consist of up to 10000 individual anhydroglucose units. In cellulose, the indi vidual fiber molecules are arranged in bundles and thus form so called micro fibrils which ultimately result in a "densely woven" net like structure of cellulose molecules. The strong cohesion between the individual cellulose fibers is due to the huge number 15 of strong hydrogen bonds. Cellulose is the major polysaccharide of grass, leaves and trees and is said to include around 50% of all biological carbon found on our planet. It is the basic material of natu ral substances such as wood, flax or cotton and consists of long, unbranched fiber molecules. Cellulose, as plant fiber, cannot be digested by human beings therefore 20 cellulose passes through the digestive tract without being absorbed into the body. Some animals, such as cows and termites, contain bacteria in their digestive tract that help them to digest cellulose. Nevertheless, cellulose is of importance in human nutri tion in that fiber is an essential part of the diet, giving bulk to food and promoting intes tinal motility. 25 [0005.0.19.19] The polysaccharides starch and cellulose are the most important raw material in the industrial and comercial production of glucose. In the common proce dure starch or cellulose are acidly or enzymatically hydrolysed to glucose. Many crops can be used as the source of starch Maize, rice, wheat, potato, cassava, arrowroot, and sago are all used in various parts of the world. In the United States, cornstarch is 30 used almost exclusively. The enzymatic process has two main steps. A first step in which the starch is heated for 1-2 hours up to approximately 100 *C. During this the starch is hydrolized into smaller carbohydrates containing on average 5-10 glucose units each. Some variations on this process briefly heat the starch mixture to 130 'C or hotter one or more times.
1314 This heat treatment improves the solubility of starch in water, but deactivates the enzyme, and fresh enzyme must be added to the mixture after each heating. In the second step the partially hydrolyzed starch is completely hydrolyzed to glucose by using a glucoamylase. The resulting glucose solution is further purified by filtration 5 and concentrated in a multiple-effect evaporator. The endproduct of the process is solid D-glucose, which is a starting material for the synthesis of fructose. In the body glucose can be converted to UDP glucose, which is an intermediate for the cell wall synthesis and other interacting pathways such as sucrose, starch and glycogen biosynthesis. 10 Fructose commonly known as fruit sugar, fructose is a simple carbohydrate widely dis tributed in organism, plants, and animals. Fructose is often recommended for, and con sumed by, people with diabetes mellitus or hypoglycemia, because it has a very low Glycemic Index relative to sucrose. Fructose is usually produced from starch by enzy matically transforming it into glucose syrup and subsequently treating with an isom 15 erase, leading to a conversion of glucose to fructose. Sucrose-commonly referred to as table sugar-is a disaccharide comprising glucose and fructose. Succrose is obtained comercially from the expressed juice of sugar cane or of sugar beet. The refining process removes impurities from the sugar plant, produc ing white sugar crystals. 20 Myo-inositol exists in nature either in its free form (found, for example, in sugarcane, beet molasses, and almond hulls) or as a hexaphosphate called phytin (found, for ex ample, in corn steep liquor). Industrial purification of phytin from corn steep liquor in volves precipitation with calcium, followed by hydrolysis with a strong acid. Separation of free form inositols from plant extracts involves treatment with acid and separation of 25 myo-inositol by column (US 5,482,631) or the use of ion-exchange (US 4,482,761). Myo-inositol, the major nutritionally active form of inositol, is vital to many biological processes of the body, participating in a diverse range of activities. Myo-inositol is one of nine distinct isomers of inositol. It is for example essential for the growth of rodents, but not for most other animals, including humans. Humans can make myo-inositol 30 endogenously, which they do from glucose. Nevertheless myo-inositol influences cer tain biological activities inside the body. It may affect behavior and may have anti depressant and anti-anxiety activities. It is synthesized in general from phytin.
1315 Myo-inositol is metabolized to phosphatidylinositol a small but important component of cell membranes. Phosphatidylinositol can be further converted to phosphatidylinositol 4,5-bisphosphate, which is a key intermediate in biological signaling. Phosphatidylinosi tol-4,5-bisphosphate is the precursor of at least three second-messenger molecules, 5 which are as follows: a) inositol-1 ,4,5-triphosphate, diacylglycerol, and phosphatidy linositol-3,4,5-triphosphate, which is involved in signal transduction. Inositol-1,4,5 triphosphate is a modifier of the intracellular calcium level. Diacylglycerol regulates some members of the protein kinase C family. The various forms of inositol (e.g. phosphatidylinositol or inositides such as 1,4,5 10 inositoltriphosphate = IP3) are active in cell-to-cell communication, including the trans mission of nerve impulses. Tissues that are affected include the brain, liver and mus cles. Inositol is an indirect source of glucose and glucoronic acid, which is essential to detoxification by the liver. Cellulose is a very important industrial product. As disclosed above, it serves as row 15 material for monosaccharides. It is further used in the manufacture of paper, textiles, plastics, explosives, packaging material cellophanee®, feed, food and fermentation products. Cellulose is obtained primarily by acid or alkaline hydrolize. Oxidized cellulose leads to anhydroglucose in the polymer chain of cellulose. It is an inherently non-homogeneous natural raw material, which when selectively, yet not ex 20 clusively, oxidised on the C6 carbon atom will yield oxidised product also containing by products formed by other oxidation routes. Starch is a polymer of anhydroglucose units linked by alpha-1,4 linkages. It is one of the most abundant renewable polymers found in nature. Starch occurs intracellularly as large clusters or granules. These granular starch consists of microscopic granules, 25 which differ in size and shape, depending on the plant source. The granules are in soluble in water at room temperature. There is a quite number of methods known for the extraction of starch. For example a slurry of grinded starch containing plant material is heated, whereby the granules swell and eventually burst, dispersing the starch mole cules into the solution. During the liquefaction step, the long-chained starch is further 30 degraded into smaller branched and linear units (maltodextrins) by an alpha-amylase. A large number of processes have been described for converting starch to starch hy drolysates, such as maltose, glucose or specialty syrups, either for use as sweeteners or as precursors for other saccharides such as fructose. A process for enzymatic hy- 1316 drolysis of granular starch into a soluble starch hydrolysate is disclosed in US 20050042737. [0006.0.19.19] Carbohydrates play a major role in human and animal diets, compris ing some 40-75% of energy intake. Their most important nutritional property is digesti 5 bility. Some of them are hydrolyzed by enzymes of the human gastrointestinal system to monosaccharides that are absorbed in the small intestine and enter the pathways of carbohydrate metabolism. Others can be digested by certain animals. Carbohydrates, fat and protein are the energy yielding nutrients in animal feed. In the average diet for farm animals, carbohydrates are included at levels of 70-80%. For ex 10 ample pig diets are mainly based on cereals which contain the main part of the energy providing nutrients that are essential for pigs. With view to the increasing global demand for food because of the growing world population and at the same time the shrinking availability of arable land, it is important to increase the food and feed quality, particulary the availability of certain essential 15 nutrients, preferably carbohydrates, preferably polysaccharides like starch or cellulose and/or monosaccharides like fructose, glucose and/or myo-inositol and/or trisaccha rides like raffinose and/or disaccharides like sucrose. Nutritional improvements in foods and feeds could help to meet these demands for improved quality. Modern agricultural biotechnology, which involves the application of cellular and molecular techniques to 20 transfer DNA that encodes a desired trait to food and feed crops, is a powerful com plement to traditional methods to meet global food and feed requirements. [0007.0.19.19] Furthermore the physicochemical properties such as viscosity and the capacity to bind water and ions, vary between different cereals. Consequently, different cereal properties affect digestion and fermentation as well as microbial populations in 25 the gastro-intestinal tract in various ways. Gastro-intestinal disturbances comprise a major problem for health of humans and animals. There is a need for suitable dietary composition and food or feed ingredients, prefera bly cereals, legumes or fruits which promotes a beneficial gut environment and thereby preventing gastro-intestinal disorders. 30 Therefore improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. This is necessary since, for example, carbohydrates, which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as 1317 balanced as possible a carbohydrate profile in the diet since a great excess of some sugars above a specific concentration in the food has only some or little or no positive effect. [0008.0.19.19] Genetically modified plants having improved nutritional profiles are 5 known in the state of art. US 20030070192 discloses a DNA expression cassette which alters the sugar alcohol of tranformed plants. US 5,908,975 concerns methods for synthesis and accumulation of fructose polymers in transgenic plants by selective expression of bacterial fructosyltransferase genes us ing tissue specific promoters and a vacuole targeting sequence. 10 W089/12386 describes a method for the production of glucose and fructose polymers in transgenic tomato plants. A stress tolerance sequences including proteins like galactinol synthase (GOLS) and raffinose synthase (RAFS), which are up regulated in response to stress and lead to the production of raffinose is disclosed in US 20050055748. 15 US 6,887,708 provides nucleotide sequences encoding polypeptides having the func tion of GIGANTEA gene of Arabidopsis thaliana which allows the manipulation of the starch accumulation process in plants. Grain having an embryo with a genotype heterozygous for two or more wild type genes (for example, Aa/Bb) and an endosperm having a genotype heterozygous for such 20 genes and leading to plants with altered the normal starch synthesis pathway is dis closed in US 20050091716. [0009.0.19.19] Nevertheles, there is a constant need for providing novel enzyme activities or direct or indirect regulators and thus alternative methods with advanta geous properties for producing carbohydrates, preferably polysaccharides like starch or 25 cellulose and/or monosaccharides like fructose, glucose and/or myo-inositol and/or trisaccharides like raffinose and/or disaccharides like sucrose or its precursor in organ isms, e.g. in transgenic organisms. [0010.0.19.19] Another problem is the seasonal change in carbohydrate composition of plants and optimum harvest periods for are complicated by issues of timing. 30 [0011.0.19.19] To ensure constantly a high quality of foods and animal feeds, it is necessary to add one or a plurality of carbohydrates, preferably polysaccharides like 1318 starch or cellulose and/or monosaccharides like fructose, glucose and/or myo-inositol and/or trisaccharides like raffinose and/or disaccharides like sucrose in a balanced manner to suit the organism. [0012.0.19.19] Accordingly, there is still a great demand for new and more suitable 5 genes which encode enzymes which participate in the biosynthesis of carbohydrates, preferably polysaccharides like starch or cellulose and/or monosaccharides like fruc tose, glucose and/or myo-inositol and/or trisaccharides like raffinose and/or disaccha rides like sucrose and make it possible to produce them specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for or regulators 10 of biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of carbohydrates, preferably polysaccharides like starch or cellulose and/or monosaccharides like fructose, glucose and/or myo-inositol and/or trisaccharides like raffinose and/or disaccharides like sucrose; on the other hand as less as possible by 15 products should be produced in the production process. The added carbohydrates further beneficially affects the microflora by selectively stimu lating the growth and/or activity of beneficial bacteria. Another aspect is the significant reduction of cost of production and manufacturing not only to the nutrition, in particular sweetener industry, but also agriculture and cosmetic 20 and health industry. [0013.0.0.19] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.19.19] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is myo-inositol, fruc tose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose in free or bound 25 form for example bound to lipids, proteins or carbohydrates. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/cellulose in free or bound form". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or 30 cellulose in free or bound form. A measure for the content of the polysaccharides, preferably starch and cellulose, of the invention can be the content of anhydroglucose. This compound is the analyte, 1319 which indicates the presence of the polysaccharides, preferably starch and cellulose, of the invention if the samples are prepared and measured as described in the examples [0015.0.19.19] In one embodiment, the term "myo-inositol, fructose, glucose, UDP glucose, raffinose and/or starch and/or cellulose in free or bound form", "the fine 5 chemical" or "the respective fine chemical" means at least one chemical compound selected from the group consisting of myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose or mixtures thereof in free or bound form. Throughout the specification the term "the fine chemical" or "the respective fine chemi cal" means a compound selected from the group myo-inositol, fructose, glucose, UDP 10 glucose, raffinose and/or starch and/or cellulose or mixtures thereof in free form or bound to other compounds such as protein(s) such as enzyme(s), peptide(s), polypep tide(s), membranes or part thereof, or lipids, proteins or carbohydrates or mixtures thereof or in compositions with lipids. In one embodiment, the term "the fine chemical" and the term "the respective fine 15 chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the above men tioned fine chemical 20 [0016.0.19.19] Accordingly, the present invention relates to a process for the produc tion of myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose in free or bound form, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap 25 plication no. 20, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 20, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 30 (c) growing the organism under conditions which permit the production of the fine chemical, thus, myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose or fine chemicals comprising myo-inositol, fructose, glu- 1320 cose, UDP-glucose, raffinose and/or starch and/cellulose, are produced in said organism or in the culture medium surrounding the organism. [0016.1.19.19] Accordingly, the term "the fine chemical" means "myo-inositol, fruc tose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose in free or bound 5 form" in relation to all sequences listed in table I, application no. 20, columns 5 and 7 or homologs thereof. Accordingly, the term "the fine chemical" can mean "myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose in free or bound form", owing to circumstances and the context. Preferably the term "the fine chemical" means "myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch 10 and/cellulose". In order to illustrate that the meaning of the term "the respective fine chemical" means "myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose in free or bound form" owing to the sequences listed in the context the term "the respective fine chemical" is also used. [0017.0.19.19] In another embodiment the present invention is related to a process 15 for the production of myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/cellulose, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 20, column 5, in an organelle of a non-human organism, or 20 (b) increasing or generating the activity of a protein as shown in table II, application no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 20, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application 25 no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 20, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of myo 30 inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose in said organism.
1321 [0017.1.19.19] In another embodiment, the present invention relates to a process for the production of myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/cellulose, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 5 no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 20, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap 10 plication no. 20, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, myo-inositol, fructose, glucose, UDP-glucose, raffinose and/or starch and/or cellulose or fine chemicals comprising myo-inositol, fructose, glu 15 cose, UDP-glucose, raffinose and/or starch and/or cellulose in said organism or in the culture medium surrounding the organism. [0018.0.19.19] Advantagously the activity of the protein as shown in table II, applica tion no. 20, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 20, column 5 is increased or generated in the abovementioned process in 20 the plastid of a microorganism or plant. [0019.0.0.19] to [0024.0.0.19] for the disclosure of the paragraphs [0019.0.0.19] to [0024.0.0.19] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.19.19] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 25 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 20, columns 5 and 7. Most preferred nucleic 30 acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 1322 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 5 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 10 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 15 ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 20 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.19.19] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table 1l, application no. 20, column 3 and its homologs as disclosed in 25 table 1, application no. 20, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 30 ing for proteins as shown in table 1l, application no. 20, column 3 and its homologs as disclosed in table 1, application no. 20, columns 5 and 7. [0027.0.0.19] to [0029.0.0.19] for the disclosure of the paragraphs [0027.0.0.19] to [0029.0.0.19] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.19.19] Alternatively, nucleic acid sequences coding for the transit peptides 35 may be chemically synthesized either in part or wholly according to structure of transit 1323 peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 5 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 10 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 15 shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 20 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 20, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 20, columns 5 and 7 25 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 20, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 30 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 20, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex 35 pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae 1324 genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 20, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. 5 [0030.2.19.19] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.19.19] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 20, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone 10 or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 20, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a 15 nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of 20 the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. 25 [0030.2.0.19] and [0030.3.0.19] for the disclosure of the paragraphs [0030.2.0.19] and [0030.3.0.19] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.19.19] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By 30 placing the genes specified in table 1, application no. 20, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro- 1325 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table I, application no. 20, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 20, columns 5 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 10 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 20, columns 5 and 7 or a sequence 15 encoding a protein, as depicted in table II, application no. 20, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 20, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 20, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 20 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 20, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 25 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 30 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 20, columns 5 and 7.
1326 [0030.5.19.19] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 20, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.19.19] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 20, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.19] and [0032.0.0.19] for the disclosure of the paragraphs [0031.0.0.19] and [0032.0.0.19] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.19.19] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 20, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 20, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.19.19] Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 20, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.19] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.19.19] The sequence of b0146 (Accession number A43671) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "sugar fermentation stimulation protein". Ac cordingly, in one embodiment, the process of the present invention comprises the use 1327 of a "sugar fermentation stimulation protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellulose in free or bound from, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc 5 ess of the present invention the activity of a bOl 46 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0146 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0342 (Accession number PIR:XXECTG) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "thiogalactoside acetyltransferase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "thiogalactoside ace 15 tyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellulose in free or bound from, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b0342 protein is increased or generated, e.g. from Escherichia 20 coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0342 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of b0523 (Accession number DEECPE) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "phosphoribosylaminoimidazole carboxylase = AIR carboxylase, cata lytic subunit". Accordingly, in one embodiment, the process of the present invention comprises the use of a "phosphoribosylaminoimidazole carboxylase = AIR carboxy 30 lase, catalytic subunit" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellulose in free or bound from, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b0523 protein is increased or generated, e.g. from Escherichia 35 coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0523 1328 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0598 (Accession number QOECNA) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 5 being defined as "carbon starvation protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "carbon starvation protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in free or bound from, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in 10 the process of the present invention the activity of a b0598 protein is increased or gen erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0598 protein is increased or generated in a subcellular compartment of the organism or or 15 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0644 (Accession number B64799) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as a "hypothetical protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized protein" or its ho 20 molog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellulose in free or bound from, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b0644 pro tein is increased or generated, e.g. from Escherichia coli or a homolog thereof, pref 25 erably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0644 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b0760 (Accession number JC6038) from Escherichia coli has been 30 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ATP-binding component of molybdate transport system". Accord ingly, in one embodiment, the process of the present invention comprises the use of a "ATP-binding component of molybdate transport system" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in free or bound 35 form, in particular for increasing the amount of glucose in free or bound form in an or ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a b0760 protein is increased or generated, e.g. from Es- 1329 cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0760 protein is increased or generated in a subcellular compartment of the organism or or 5 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1046 (Accession number PIR:C64847) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative synthase with phospholipase D/nuclease domain". Ac cordingly, in one embodiment, the process of the present invention comprises the use 10 of a "putative synthase with phospholipase D/nuclease domain" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellu lose in free or bound from, in particular for increasing the amount of starch and/or cellu lose in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a b1 046 protein is in 15 creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1046 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of b1095 (Accession number NP_415613) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-oxoacyl-[acyl-carrier-protein] synthase II". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-oxoacyl [acyl-carrier-protein] synthase II" or its homolog, e.g. as shown herein, for the produc 25 tion of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 30 ample in table V. In another embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1095 (Accession number NP_415613) from Escherichia coli has 35 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-oxoacyl-[acyl-carrier-protein] synthase II". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-oxoacyl- 1330 [acyl-carrier-protein] synthase II" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 5 activity of a b1095 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1095 (Accession number NP_415613) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-oxoacyl-[acyl-carrier-protein] synthase II". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-oxoacyl 15 [acyl-carrier-protein] synthase II" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated, e.g. from Escherichia coli or a 20 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 25 In another embodiment, in the process of the present invention the activity of a b1095 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "3-oxoacyl [acyl-carrier-protein] synthase II" or its homolog, e.g. as shown herein for the produc 30 tion of the fine chemicals, in particular for increasing the amount of one or of any com bination of 2 or 3 of the fine chemicals, e.g. compounds, selected from the group of "fructose, glucose and myo-inositol". The sequence of b1 136 (Accession number PIR:DCECIS) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 35 is being defined as "isocitrate dehydrogenase (NADP)". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "isocitrate dehydro genase (NADP)" or its homolog, e.g. as shown herein, for the production of the fine 1331 chemical, meaning of starch and/or cellulose in free or bound form, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b1 136 protein is increased or generated, e.g. from Escherichia 5 coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1 136 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of b1399 (Accession number B64891) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "phenylacetic acid degradation operon negative regulatory protein paaX". Accordingly, in one embodiment, the process of the present invention com prises the use of a "phenylacetic acid degradation operon negative regulatory protein 15 paaX" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 399 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 20 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1399 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1410 (Accession number NP_415928) from Escherichia coli has 25 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative methylase with S-adenosyl-L-methionine-dependent me thyltransferase domain and alpha/beta-hydrolase domain". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "putative methy lase with S-adenosyl-L-methionine-dependent methyltransferase domain and al 30 pha/beta-hydrolase domain" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated, e.g. from Escherichia coli or a homolog 35 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1410 1332 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1410 (Accession number NP_415928) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 5 is being defined as "putative methylase with S-adenosyl-L-methionine-dependent me thyltransferase domain and alpha/beta-hydrolase domain". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "putative methy lase with S-adenosyl-L-methionine-dependent methyltransferase domain and al pha/beta-hydrolase domain" or its homolog, e.g. as shown herein, for the production of 10 the fine chemical, meaning of myo-inositol in free or bound form, in particular for in creasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 15 ample in table V. In another embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1410 (Accession number NP_415928) from Escherichia coli has 20 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative methylase with S-adenosyl-L-methionine-dependent me thyltransferase domain and alpha/beta-hydrolase domain". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "putative methy lase with S-adenosyl-L-methionine-dependent methyltransferase domain and al 25 pha/beta-hydrolase domain" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated, e.g. from Escherichia coli or a homolog 30 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 35 In another embodiment, in the process of the present invention the activity of a b1410 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. Furthermore in one 1333 embodiment, the process of the present invention comprises the use of a "putative me thylase with S-adenosyl-L-methionine-dependent methyltransferase domain and al pha/beta-hydrolase domain" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of one or of any combination 5 of 2 or 3 of the fine chemicals, e.g. compounds, selected from the group of "fructose, glucose and myo-inositol". The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the 10 present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of sucrose in free or bound form, in particular for increasing the amount of sucrose in free or bound form in an or ganism or a part thereof, as mentioned. In one embodiment, in the process of the pre sent invention the activity of a b1556 protein is increased or generated, e.g. from Es 15 cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in free or bound 25 form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 30 In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1556 (Accession number NP_416074) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 35 is being defined as "Qin prophage". Accordingly, in one embodiment, the process of the present invention comprises the use of a "Qin prophage" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of raffinose in free or bound 1334 form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 556 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide 5 as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1556 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a b1556 10 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "Qin pro phage" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of one or of any combination of 2 or 3 of the fine 15 chemicals, e.g. compounds, selected from the group of "sucrose, raffinose and myo inositol". The sequence of b1704 (Accession number NP_416219) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP 20 synthetase)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellulose in free or bound form, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organism 25 or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a b1704 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1704 30 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1980 (Accession number F64962) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "putative transport protein". Accordingly, in one embodiment, the 35 process of the present invention comprises the use of a "putative transport protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in 1335 free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1 980 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of a b1980 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2223 (Accession number NP_416727) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 10 is being defined as "short chain fatty acid transporter". Accordingly, in one embodiment, the process of the present invention comprises the use of a "short chain fatty acid transporter" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as men 15 tioned. In one embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2223 20 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2223 (Accession number NP_416727) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "short chain fatty acid transporter". Accordingly, in one embodiment, 25 the process of the present invention comprises the use of a "short chain fatty acid transporter" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2223 protein is 30 increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 35 The sequence of b2223 (Accession number NP_416727) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "short chain fatty acid transporter". Accordingly, in one embodiment, 1336 the process of the present invention comprises the use of a "short chain fatty acid transporter" or its homolog, e.g. as shown herein, for the production of the fine chemi cal, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one 5 embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a b2223 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "short chain 15 fatty acid transporter" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of one or of any combination of 2 or 3 of the fine chemicals, e.g. compounds, selected from the group of "glucose, raffinose and myo-inositol". The sequence of b2284 (Accession number B65000) from Escherichia coli has been 20 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "NADH2 dehydrogenase". Accordingly, in one embodiment, the proc ess of the present invention comprises the use of a "NADH2 dehydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellulose in free or bound form, in particular for increasing the amount of 25 starch and/or cellulose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b2284 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 30 In another embodiment, in the process of the present invention the activity of a b2284 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2240 (Accession number JNECGT) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 35 being defined as "glycerol-3-phosphate transport protein". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "glycerol-3 phosphate transport protein" or its homolog, e.g. as shown herein, for the production of 1337 the fine chemical, meaning of starch and/or cellulose in free or bound form, in particular for increasing the amount of starch and/or cellulose in free or bound form in an organ ism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2240 protein is increased or generated, e.g. from Es 5 cherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2240 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of b2965 (Accession number NP_417440) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of su 15 crose in free or bound form, in particular for increasing the amount of sucrose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 20 In another embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3156 (Accession number H65105) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 25 being defined as "putative acyl-CoA N-acyltransferase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "putative acyl-CoA N-acyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as men 30 tioned. In one embodiment, in the process of the present invention the activity of a b3156 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3156 35 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3708 (Accession number WZEC) from Escherichia coli has been 1338 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "tryptophan deaminase, PLP-dependent". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "tryptophan deaminase, PLP-dependent" or its homolog, e.g. as shown herein, for the production of 5 the fine chemical, meaning of raffinose in free or bound form, in particular for increas ing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in 10 table V. In another embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YCR012W (Accession number KIBYG) from Saccharomyces cere 15 visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "3-phosphoglycerate kinase". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "3-phosphoglycerate kinase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of raffinose in free or bound form, in particular for increasing the amount of 20 raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YCR012W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a 25 YCR012W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined 30 as a "3-deoxy-D-arabi no-heptulosonate-7-phosphate (DAHP) synthase" which cata lyzes the first step in aromatic amino acid biosynthesis and is feedback-inhibited by phenylalanine (Aro3p). Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D-arabino-heptulosonate-7-phosphate syn thase" or its homolog, e.g. as shown herein, for the production of the fine chemical, 35 meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein 1339 is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR035W protein is increased or generated in a subcellular compartment of the organ 5 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR497C (Accession number NP_010785) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a "myo-inositol transporter". Accordingly, in one embodiment, the process of the 10 present invention comprises the use of a "myo-inositol transporter" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR497C protein is increased or generated, e.g. 15 from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR497C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of YDR497C (Accession number NP_010785) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997) , and its activity is being de fined as a "myo-inositol transporter". Accordingly, in one embodiment, the process of the present invention comprises the use of a "myo-inositol transporter" or its homolog, 25 e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR497C protein is increased or gen erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at 30 least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR497C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a 35 YDR497C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "myo- 1340 inositol transporter" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of fructose and myo-inositol. The sequence of YER063W (Accession number S50566) from Saccharomyces cere visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and 5 Dietrich et al., Nature 387 (6632 Suppl), 78-81 (1997), and its activity is being defined as a "uncharacterized protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in 10 an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YER063W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 15 YER063W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGL065C (Accession number S64069) from Saccharomyces cere visiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 (5287), 546-547, 1996,, and its activity is being defined as 20 a "ALG2 protein precursor". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "ALG2 protein precursor" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of 25 the present invention the activity of a YGL065C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YGL065C protein is increased or generated in a subcellular compartment of the organ 30 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGL065C (Accession number S64069) from Saccharomyces cere visiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 (5287), 546-547, 1996,, and its activity is being defined as a "ALG2 protein precursor". Accordingly, in one embodiment, the process of the pre 35 sent invention comprises the use of a "ALG2 protein precursor" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellu lose in free or bound form, in particular for increasing the amount of starch and/or cellu- 1341 lose in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a YGL065C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 5 In another embodiment, in the process of the present invention the activity of an YGL065C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YGL065C protein is increased or generated in a subcellular compartment of the organ 10 ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "ALG2 protein precursor" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of one or of any combination of the fine chemicals, e.g. compounds, selected from the group of "starch and/or cellulose 15 and myo-inositol". The sequence of YGR255C (Accession number NP_011771) from Saccharomyces cerevisiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "putative flavin-dependent monooxygenase" (Coq6p), which is involved in 20 ubiquinone (Coenzyme Q) biosynthesis". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative flavin-dependent monooxy genase" (Coq6p), which is involved in ubiquinone (Coenzyme Q) biosynthesis" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glu cose in free or bound form, in particular for increasing the amount of glucose in free or 25 bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGR255C protein is increased or gen erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 30 YGR255C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR255C (Accession number NP_011771) from Saccharomyces cerevisiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined 35 as a "putative flavin-dependent monooxygenase" (Coq6p), which is involved in ubiquinone (Coenzyme Q) biosynthesis". Accordingly, in one embodiment, the process of the present invention comprises the use of a "putative flavin-dependent monooxy- 1342 genase" (Coq6p), which is involved in ubiquinone (Coenzyme Q) biosynthesis" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of raf finose in free or bound form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in 5 the process of the present invention the activity of a YGR255C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YGR255C protein is increased or generated in a subcellular compartment of the organ 10 ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YGR255C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "puta 15 tive flavin-dependent monooxygenase" (Coq6p), which is involved in ubiquinone (Co enzyme Q) biosynthesis" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of glucose and raffinose. The sequence of YGR262C (Accession number S64595) from Saccharomyces cere visiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and 20 Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "protein involved in bud-site selection". Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein involved in bud-site selection" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free 25 or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGR262C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 30 YGR262C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YGR262C (Accession number S64595) from Saccharomyces cere visiae has been published in Tettelin et al., Nature 387 (6632 Suppl), 81-84 (1997), and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a 35 "protein involved in bud-site selection". Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein involved in bud-site selection" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of 1343 glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YGR262C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked 5 at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YGR262C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a 10 YGR262C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "pro tein involved in bud-site selection" or its homolog, e.g. as shown herein for the produc tion of the fine chemicals, in particular for increasing the amount of glucose and fruc 15 tose. The sequence of YHR204W (Accession number S46693) from Saccharomyces cere visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "mannosidase like protein". Accordingly, in one embodi ment, the process of the present invention comprises the use of a "mannosidase like 20 protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YHR204W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog 25 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YHR204W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of YIR020W-A (Accession number Q03886_YEAST) from Saccharomy ces cerevisiae has been published in the UniProtKB/TrEMBL database and its activity is being defined as a "protein of unknown function". Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein of unknown func tion" or its homolog, e.g. as shown herein, for the production of the fine chemical, 35 meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YIR020W-A pro- 1344 tein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 5 YlR020W-A protein is increased or generated in a subcellular compartment of the or ganism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YlR020W-A (Accession number Q03886_YEAST) from Saccharomy ces cerevisiae has been published in the UniProtKB/TrEMBL database, and its activity is being defined as a "protein of unknown function". Accordingly, in one embodiment, 10 the process of the present invention comprises the use of a "protein of unknown func tion" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YIR020W-A pro 15 tein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YIR020W-A protein is increased or generated in a subcellular compartment of the or 20 ganism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YIR020W-A protein is increased or generated in a subcellular compartment of the or ganism or organism cell such as in an organelle like a plastid or mitochondria. Fur thermore in one embodiment, the process of the present invention comprises the use 25 of a "protein of unknown function" or its homolog, e.g. as shown herein for the produc tion of the fine chemicals, in particular for increasing the amount of glucose and fruc tose. The sequence of YJL139C (Accession number PIR:S36856) from Saccharomyces cer evisiae has been published in Foreman et al., Nucleic Acids Res. 19:2781-2781(1991), 30 and its activity is being defined as a "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation". Accordingly, in one embodiment, the process of the present invention comprises the use of a "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing 35 the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YJL1 39C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a 1345 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of an YJL1 39C protein is increased or generated in a subcellular compartment of the organ 5 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YJL139C (Accession number PIR:S36856) from Saccharomyces cer evisiae has been published in Foreman et al., Nucleic Acids Res. 19:2781-2781(1991), and its activity is being defined as a " mannosyltransferase of the KTR1 family, involved in protein N-glycosylation". Accordingly, in one embodiment, the process of the present 10 invention comprises the use of a "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a 15 YJL1 39C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of an YJL1 39C protein is increased or generated in a subcellular compartment of the organ 20 ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YJL1 39C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "man 25 nosyltransferase of the KTR1 family, involved in protein N-glycosylation" or its ho molog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of " myo-inositol and fructose. The sequence of YKR043C (Accession number NP_012969) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, 30 and its activity is being defined as a "phosphoglycerate mutase like protein". Accord ingly, in one embodiment, the process of the present invention comprises the use of a "phosphoglycerate mutase like protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of UDP-glucose in free or bound form, in par ticular for increasing the amount of UDP-glucose in free or bound form in an organism 35 or a part thereof, as mentioned. In one embodiment, in the process of the present in vention the activity of a YKR043C protein is increased or generated, e.g. from Sac charomyces cerevisiae or a homolog thereof, preferably linked at least to one transit 1346 peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YKR043C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 5 The sequence of YLL033W (Accession number S64784) from Saccharomyces cere visiae has been published in Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "uncharacterized". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized protein" or its homolog, e.g. as 10 shown herein, for the production of the fine chemical, meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLL033W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one tran 15 sit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLL033W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR1 53C (Accession number NP_013254) from Saccharomyces 20 cerevisiae has been published in Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "acetyl CoA synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "acetyl CoA synthetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in 25 free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a YLR1 53C protein is increased or gener ated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 30 In another embodiment, in the process of the present invention the activity of an YLR1 53C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR174W (Accession number NP_013275) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 35 and Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997), and its activity is being defined as a "NADP-dependent isocitrate dehydrogenase". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "NADP- 1347 dependent isocitrate dehydrogenase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 5 activity of a YLR174W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 74W protein is increased or generated in a subcellular compartment of the organ 10 ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR174W (Accession number NP_013275) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997), and its activity is being defined as a "NADP-dependent isocitrate dehydrogenase". Accordingly, in one em 15 bodiment, the process of the present invention comprises the use of a "NADP dependent isocitrate dehydrogenase" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 20 activity of a YLR174W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 74W protein is increased or generated in a subcellular compartment of the organ 25 ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YLR1 74W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a 30 "NADP-dependent isocitrate dehydrogenase" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of raffinose and myo-inositol. The sequence of YNL022C (Accession number S62934) from Saccharomyces cere visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and 35 Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997),, and its activity is being de fined as a "uncharacterized protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized protein" or its homolog, 1348 e.g. as shown herein, for the production of the fine chemical, meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a YNL022C protein is increased or gener 5 ated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YNL022C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of YNL241C (Accession number NP_014158) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as a "glucose-6-phosphate dehydrogenase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glucose-6-phosphate de 15 hydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a 20 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of an YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 25 The sequence of YNL241C (Accession number NP_014158) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as a "glucose-6-phosphate dehydrogenase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glucose-6-phosphate de 30 hydrogenase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a 35 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of an 1349 YNL241 C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YNL241 C protein is increased or generated in a subcellular compartment of the organ 5 ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "glu cose-6-phosphate dehydrogenase" or its homolog, e.g. as shown herein for the produc tion of the fine chemicals, in particular for increasing the amount of glucose and fruc tose. 10 The sequence of YNR012W (Accession number NP_014409) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Philippsen et al., Nature 387 (6632 Suppl), 93-98 (1997), and its activity is being defined as a "uridine kinase". Accordingly, in one embodiment, the process of the pre sent invention comprises the use of a "uridine kinase" or its homolog, e.g. as shown 15 herein, for the production of the fine chemical, meaning of myo-inositol in free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YNR012W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one 20 transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YNR012W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YOR353C (Accession number NP_014998) from Saccharomyces 25 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Dujon et al., Nature 387 (6632 Suppl), 98-102 (1997) , and its activity is being defined as a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p". Accordingly, in one embodiment, the process of the present invention comprises the use of a "protein required for cell morphogenesis and 30 cell separation after mitosis; Sog2p" or its homolog, e.g. as shown herein, for the pro duction of the fine chemical, meaning of glucose in free or bound form, in particular for increasing the amount of glucose in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YOR353C protein is increased or generated, e.g. from Saccharomyces 35 cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 1350 YOR353C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YOR353C (Accession number NP_014998) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 5 and Dujon et al., Nature 387 (6632 Suppl), 98-102 (1997), and its activity is being de fined as a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p". Accordingly, in one embodiment, the process of the present invention com prises the use of a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p" or its homolog, e.g. as shown herein, for the production of the fine 10 chemical, meaning of fructose in free or bound form, in particular for increasing the amount of fructose in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a YOR353C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex 15 ample in table V. In another embodiment, in the process of the present invention the activity of an YOR353C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a 20 YOR353C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore in one embodiment, the process of the present invention comprises the use of a "pro tein required for cell morphogenesis and cell separation after mitosis; Sog2p" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for 25 increasing the amount of glucose and fructose. The sequence of YPL138C (Accession number NP_015187) from Saccharomyces cer evisiae has been published in Bussey et al., Nature 387 (6632 Suppl), 103-105 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "compass (complex proteins associated with Seti p) component". Accordingly, in 30 one embodiment, the process of the present invention comprises the use of a "com pass (complex proteins associated with Setip) component" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of starch and/or cellu lose in free or bound form, in particular for increasing the amount of starch and/or cellu lose in free or bound form in an organism or a part thereof, as mentioned. In one em 35 bodiment, in the process of the present invention the activity of a YPL1 38C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V.
1351 In another embodiment, in the process of the present invention the activity of an YPL1 38C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YPR035W (Accession number NP_015360) from Saccharomyces 5 cerevisiae has been published in in Bussey et al., Nature 387 (6632 Suppl), 103-105 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "glutamine synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glutamine synthetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of myo-inositol in 10 free or bound form, in particular for increasing the amount of myo-inositol in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YPR035W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of an YPR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YPR035W (Accession number NP_015360) from Saccharomyces cerevisiae has been published in in Bussey et al., Nature 387 (6632 Suppl), 103-105 20 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a " glutamine synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glutamine synthetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of raffinose in free or bound form, in particular for increasing the amount of raffinose in free or bound 25 form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a YPR035W protein is increased or gener ated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an 30 YPR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. In another embodiment, in the process of the present invention the activity of a YPR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. Furthermore 35 in one embodiment, the process of the present invention comprises the use of a "glutamine synthetase" or its homolog, e.g. as shown herein for the production of the fine chemicals, in particular for increasing the amount of myo-inositol and raffinose.
1352 [0037.0.19.19] In one embodiment, the homolog of the b0146, b0342, b0523, b0598, b0644, b0760, b1046, b1095, b1136, b1399, b1410, b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156b3708 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b0146, b0342, b0523, b0598, 5 b0644, b0760, b1046, b1095, b1136, b1399, b1410, b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156b3708 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b0146, b0342, b0523, b0598, b0644, b0760, b1046, b1095, b1136, b1399, b1410, b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156b3708 is a homolog having said acitivity and being 10 derived from Gammaproteobacteria. In one embodiment, the homolog of the b0146, b0342, b0523, b0598, b0644, b0760, b1046, b1095, b1136, b1399, b1410, b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156b3708 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the b0146, b0342, b0523, b0598, b0644, b0760, b1046, b1095, b1136, b1399, b1410, 15 b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156b3708 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one embodiment, the ho molog of the b0146, b0342, b0523, b0598, b0644, b0760, b1046, b1095, b1136, b1399, b1410, b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156b3708 is a homolog having said acitivity and being derived from Escherichia, preferably from Es 20 cherichia coli. In one embodiment, the homolog of the YCRO12W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YIR020W-A, YJL139C, YKR043C, YLLO33W, YLR153C, YLR174W, YNL022C, YNL241C, YNRO12W, YOR353C, YPL138C orYPR035W is a homolog having said activity and being derived from an 25 eukaryotic. In one embodiment, the homolog of the YCRO12W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YIR020W-A, YJL139C, YKR043C, YLLO33W, YLR153C, YLR174W, YNL022C, YNL241C, YNRO12W, YOR353C, YPL1 38C orYPR035W is a homolog having said activity and being derived from Fungi. In one embodiment, the homolog of the YCRO12W, YDR035W, YDR497C, 30 YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YIR020W-A, YJL139C, YKR043C, YLLO33W, YLR153C, YLR174W, YNL022C, YNL241C, YNRO12W, YOR353C, YPL1 38C orYPR035W is a homolog having said activity and being derived from Ascomyceta. In one embodiment, the homolog of the YCRO12W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YIR020W-A, 35 YJL1 39C, YKR043C, YLLO33W, YLR1 53C, YLR174W, YNL022C, YNL241C, YNRO12W, YOR353C, YPL1 38C orYPR035W is a homolog having said activity and being derived from Saccharomycotina. In one embodiment, the homolog of the 1353 YCR012W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YlR020W-A, YJL139C, YKR043C, YLL033W, YLR153C, YLR174W, YNL022C, YNL241C, YNR012W, YOR353C, YPL138C orYPR035W is a homolog hav ing said acitivity and being derived from Saccharomycetes. In one embodiment, the 5 homolog of the YCR012W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YlR020W-A, YJL139C, YKR043C, YLL033W, YLR153C, YLR174W, YNL022C, YNL241C, YNR012W, YOR353C, YPL138C orYPR035W is a homolog having said activity and being derived from Saccharomycetales. In one em bodiment, the homolog of the YCR012W, YDR035W, YDR497C, YER063W, 10 YGL065C, YGR255C, YGR262C, YHR204W, YlR020W-A, YJL139C, YKR043C, YLL033W, YLR153C, YLR174W, YNL022C, YNL241C, YNR012W, YOR353C, YPL138C orYPR035W is a homolog having said activity and being derived from Sac charomycetaceae. In one embodiment, the homolog of the YCR012W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YlR020W-A, 15 YJL1 39C, YKR043C, YLL033W, YLR1 53C, YLR174W, YNL022C, YNL241C, YNR012W, YOR353C, YPL1 38C orYPR035W is a homolog having said activity and being derived from Saccharomycetes. [0038.0.0.19] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.19.19] In accordance with the invention, a protein or polypeptide has the "ac 20 tivity of an protein as shown in table II, application no. 20, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the fine chemical level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica 25 tion no. 20, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a 30 protein as shown in table II, application no. 20, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in table II, application no. 20, column 3 of Saccharomyces cerevisiae. [0040.0.0.19] to [0047.0.0.19] for the disclosure of the paragraphs [0040.0.0.19] to 35 [0047.0.0.19] see paragraphs [0040.0.0.0] to [0047.0.0.0] above.
1354 [0048.0.19.19] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 5 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 20, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.19] to [0051.0.0.19] for the disclosure of the paragraphs [0049.0.0.19] to [0051.0.0.19] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 10 [0052.0.19.19] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 20, columns 5 and 7 alone 15 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 20 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.19] to [0058.0.0.19] for the disclosure of the paragraphs [0053.0.0.19] to [0058.0.0.19] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.19.19] In case the activity of the Escherichia coli protein b0146 or its ho 25 mologs, e.g. a "sugar fermentation stimulation protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of starch and/or cellulose in free or bound form between 39% and 73% or more is conferred. In case the activity of the Escherichia coli protein b0342 or its homologs, e.g. a "thioga 30 lactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of starch and/or cellulose in free or bound form between 34% and 69% or more is conferred. In case the activity of the Escherichia coli protein b0523 or its homologs, e.g. a "phos- 1355 phoribosylaminoimidazole carboxylase = AIR carboxylase, catalytic subunit" is in creased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of starch and/or cellu lose in free or bound form between 49% and 78% or more is conferred. 5 In case the activity of the Escherichia coli protein b0598 or its homologs, e.g. a "carbon starvation protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of glucose in free or bound form between 58% and 104% or more is conferred. In case the activity of the Escherichia coli protein b0644 or its homologs, e.g. a "un 10 characterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of starch and/or cellulose in free or bound form between 37% and 66% or more is conferred. In case the activity of the Escherichia coli protein b0760 or its homologs, e.g. a "ATP 15 binding component of molybdate transport system" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glucose in free or bound form between 97% and 352% or more is conferred. In case the activity of the Escherichia coli protein b1 046 or its homologs, e.g. a "puta 20 tive synthase with phospholipase D/nuclease domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of starch and/or cellulose in free or bound form between 31% and 82% or more is conferred. In case the activity of the Escherichia coli protein b1095 or its homologs, e.g. a "3 25 oxoacyl-[acyl-carrier-protein] synthase II" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of fructose in free or bound form between 113% and 478% or more is conferred. In case the activity of the Escherichia coli protein b1 095 or its homologs, e.g. a "3 30 oxoacyl-[acyl-carrier-protein] synthase II" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of myo-inositol in free or bound form between 92% and 219% or more is conferred. In case the activity of the Escherichia coli protein b1 095 or its homologs, e.g. a "3 35 oxoacyl-[acyl-carrier-protein] synthase II" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 1356 fine chemical, preferably of glucose in free or bound form between 72% and 358% or more is conferred. In case the activity of the Escherichia coli protein b1 095 or its homologs, e.g. a "3 oxoacyl-[acyl-carrier-protein] synthase 1l" is increased advantageously in an organelle 5 such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glucose in free or bound form between 72% and 358% or more and/or of myo-inositol in free or bound form between 92% and 219% or more and/or of fructose in free or bound form between 113% and 478% or more is conferred. In case the activity of the Escherichia coli protein b1 136 or its homologs, e.g. a "isocit 10 rate dehydrogenase (NADP)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of starch and/or cellulose in free or bound form between 31% and 72% or more is conferred. In case the activity of the Escherichia coli protein b1399 or its homologs, e.g. a 15 "phenylacetic acid degradation operon negative regulatory protein paaX" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of myo-inositol in free or bound form between 27% and 108% or more is conferred. In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta 20 tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of glucose in free or bound form between 57% and 377% or more is conferred. 25 In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of myo-inositol in free or bound form between 34% and 49% or more is 30 conferred. In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 35 cal, preferably of fructose in free or bound form between 87% and 427% or more is conferred.
1357 In case the activity of the Escherichia coli protein b1410 or its homologs, e.g. a "puta tive methylase with S-adenosyl-L-methionine-dependent methyltransferase domain and alpha/beta-hydrolase domain" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 5 cal, preferably of glucose in free or bound form between 57% and 377% or more and/or of myo-inositol in free or bound form between 34% and 49% or more and/or of fructose in free or bound form between 87% and 427% or more is conferred. In case the activity of the Escherichia coli protein b1 556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon 10 dria, preferably, in one embodiment an increase of the fine chemical, preferably of su crose in free or bound form between 31% and 37% or more is conferred. In case the activity of the Escherichia coli protein b1 556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of 15 myo-inositol between 25% and 207% or more is conferred. In case the activity of the Escherichia coli protein b1556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of raf finose in free or bound form between 85% and 309% or more is conferred. 20 In case the activity of the Escherichia coli protein b1 556 or its homologs, e.g. a "Qin prophage" is increased advantageously in an organelle such as a plastid or mitochon dria, preferably, in one embodiment an increase of the fine chemical, preferably of su crose in free or bound form between 31 % and 37% or more and/or of myo-inositol be tween 25% and 207% or more and/or of raffinose in free or bound form between 85% 25 and 309% or more is conferred. In case the activity of the Escherichia coli protein b1704 or its homologs, e.g. a "3 deoxy-D-arabinoheptu losonate-7-phosphate synthase (DAHP synthetase), tryptophan repressible" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of 30 starch and/or cellulose in free or bound form between 24% and 101% or more is con ferred. In case the activity of the Escherichia coli protein b1980 or its homologs, e.g. a "un characterized transport protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi 35 cal, preferably of raffinose in free or bound form between 67% and 101% or more is conferred.
1358 In case the activity of the Escherichia coli protein b2223 or its homologs, e.g. a "short chain fatty acid transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of myo-inositol in free or bound form between 26% and 332% or more is 5 conferred. In case the activity of the Escherichia coli protein b2223 or its homologs, e.g. a "short chain fatty acid transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of raffinose in free or bound form between 72% and 517% or more is 10 conferred. In case the activity of the Escherichia coli protein b2223 or its homologs, e.g. a "short chain fatty acid transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of glucose in free or bound form between 60% and 520% or more is 15 conferred. In case the activity of the Escherichia coli protein b2223 or its homologs, e.g. a "short chain fatty acid transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of myo-inositol in free or bound form between 26% and 332% or more 20 and/or of raffinose in free or bound form between 72% and 517% or more and/or of glucose in free or bound form between 60% and 520% or more is conferred. In case the activity of the Escherichia coli protein b2284 or its homologs, e.g. a "NADH2 dehydrogenase" is increased advantageously in an organelle such as a plas tid or mitochondria, preferably, in one embodiment an increase of the fine chemical, 25 preferably of starch and/or cellulose in free or bound form between 66% and 68% or more is conferred. In case the activity of the Escherichia coli protein b2240 or its homologs, e.g. a "glyc erol-3-phosphate transport protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine 30 chemical, preferably of starch and/or cellulose in free or bound form between 31 % and 90% or more is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera 35 bly of sucrose in free or bound form between 30% and 329% or more is conferred. In case the activity of the Escherichia coli protein b3156 or its homologs, e.g. a "puta- 1359 tive acyl-CoA N-acyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of fructose in free or bound form between 114% and 197% or more is conferred. 5 In case the activity of the Escherichia coli protein b3708 or its homologs, e.g. a "trypto phan deaminase, PLP-dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of raffinose in free or bound form between 61% and 249% or more is conferred. 10 In case the activity of the Saccharomyces cerevisiae protein YCR012W or its ho mologs, e.g. a "3-phosphoglycerate kinase" is increased advantageously in an organ elle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of raffinose between 57% and 281 % or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR035W or its homologs, 15 e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of raffinose between 71 % and 440% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR497C or its homologs, 20 e.g. a "myo-inositol transporter" is increased, preferably, in one embodment the in crease of the fine chemical, preferably of fructose between 106% and 527% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter" is increased advantageously in an organelle such as a 25 plastid or mitochondria, preferably, in one embodment the increase of the fine chemi cal, preferably of myo-inositol between 26% and 29% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR497C or its homologs, e.g. a "myo-inositol transporter" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi 30 cal, preferably of fructose between 106% and 527% or more and of myo-inositol be tween 26% and 29% or more is conferred. In case the activity of the Saccharomyces cerevisiae protein YER063W or its ho mologs, e.g. a "uncharacterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the 35 fine chemical, preferably of fructose between 68% and 80% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGL065C or its homologs, 1360 e.g. a "ALG2 protein precursor" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment the increase of the fine chemi cal, preferably of myo-inositol between 12% and 23% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGL065C or its homologs, 5 e.g. a "ALG2 protein precursor" is increased, preferably, in one embodment the in crease of the fine chemical, preferably of starch and/or cellulose between 40% and 47% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGL065C or its homologs, e.g. a "ALG2 protein precursor" is increased, preferably, in one embodiment the in 10 crease of the fine chemical, preferably of myo-inositol between 12% and 23% or more and of starch and/or cellulose between 40% and 47% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGR255C or its homologs, e.g. a "putative flavin-dependent monooxygenase, involved in ubiquinone (Coenzyme Q) biosynthesis" is increased advantageously in an organelle such as a plastid or mito 15 chondria, preferably, in one embodiment the increase of the fine chemical, preferably of glucose between 82% and 394% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGR255C or its homologs, e.g. a "putative flavin-dependent monooxygenase, involved in ubiquinone (Coenzyme Q) biosynthesis" is increased advantageously in an organelle such as a plastid or mito 20 chondria, preferably, in one embodment the increase of the fine chemical, preferably of raffinose between 72% and 151 % or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGR255C or its homologs, e.g. a "putative flavin-dependent monooxygenase, involved in ubiquinone (Coenzyme Q) biosynthesis" is increased advantageously in an organelle such as a plastid or mito 25 chondria, preferably, in one embodment the increase of the fine chemical, preferably of glucose between 82% and 394% or more and of raffinose between 72% and 151% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGR262C or its homologs, e.g. a "protein involved in bud-site selection" is increased advantageously in an organ 30 elle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of fructose between 58% and 106% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YGR262C or its homologs, e.g. a "protein involved in bud-site selection" is increased, preferably, in one embod ment the increase of the fine chemical, preferably of glucose between 65% and 77% or 35 more is conferred.
1361 In case the activity of the Saccaromyces cerevisiae protein YGR262C or its homologs, e.g. a "protein involved in bud-site selection" is increased, preferably, in one embod ment the increase of the fine chemical, preferably of fructose between 58% and 106% or more and of glucose between 65% and 77% or more is conferred. 5 In case the activity of the Saccaromyces cerevisiae protein YHR204W or its homologs, e.g. a "mannosidase like protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi cal, preferably of myo-inositol between 30% and 52% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YlR020W-A or its ho 10 mologs, e.g. a "protein of unknown function" is increased advantageously in an organ elle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of fructose between 84% and 107% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YlR020W-A or its ho mologs, e.g. a "protein of unknown function" is increased advantageously in an organ 15 elle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of glucose between 46% and 87% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YlR020W-A or its ho mologs, e.g. a "protein of unknown function" is increased advantageously in an organ elle such as a plastid or mitochondria, preferably, in one embodment the increase of 20 the fine chemical, preferably of fructose between 84% and 107% or more and of glu cose between 46% and 87% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YJL1 39C or its homologs, e.g. a "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, 25 in one embodment the increase of the fine chemical, preferably of myo-inositol be tween 27% and 135% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YJL1 39C or its homologs, e.g. a "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, 30 in one embodment the increase of the fine chemical, preferably of glucose between 64% and 157% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YJL139C or its homologs, e.g. a "mannosyltransferase of the KTR1 family, involved in protein N-glycosylation" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, 35 in one embodment the increase of the fine chemical, preferably of myo-inositol be- 1362 tween 27% and 135% or more and of glucose between 64% and 157% or more is con ferred. In case the activity of the Saccaromyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein" is increased, preferably, in one embod 5 ment the increase of the fine chemical, preferably of UDP-glucose between 66% and 72% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YLLO33W or its homologs, e.g. a "uncharacterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi 10 cal, preferably of raffinose between 81% and 82% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YLR153C or its homologs, e.g. a "acetyl CoA synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi cal, preferably of glucose between 64% and 306% or more is conferred. 15 In case the activity of the Saccaromyces cerevisiae protein YLR174W or its homologs, e.g. a "NADP-dependent isocitrate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of raffinose between 61 % and 86% or more is con ferred. 20 In case the activity of the Saccaromyces cerevisiae protein YLR174W or its homologs, e.g. a "NADP-dependent isocitrate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of myo-inositol between 25% and 32% or more is con ferred. 25 In case the activity of the Saccaromyces cerevisiae protein YLR174W or its homologs, e.g. a "NADP-dependent isocitrate dehydrogenase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of raffinose between 61% and 86% or more and of myo-inositol between 25% and 32% or more is conferred. 30 In case the activity of the Saccaromyces cerevisiae protein YNL022C or its homologs, e.g. a "uncharacterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi cal, preferably of raffinose between 59% and 62% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YNL241 C or its homologs, 35 e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodment the increase 1363 of the fine chemical, preferably of glucose between 199% and 430% or more is con ferred. In case the activity of the Saccaromyces cerevisiae protein YNL241C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or 5 ganelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of fructose between 86% and 364% or more is con ferred. In case the activity of the Saccaromyces cerevisiae protein YNL241C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase" is increased advantageously in an or 10 ganelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, preferably of of glucose between 199% and 430% or more and of fructose between 86% and 364% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YNRO12W or its homologs, e.g. a "uridine kinase" is increased advantageously in an organelle such as a plastid or 15 mitochondria, preferably, in one embodment the increase of the fine chemical, prefera bly of myo-inositol between 31 % and 64% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YOR353C or its homologs, e.g. a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochondria, prefera 20 bly, in one embodment the increase of the fine chemical, preferably of fructose be tween 78% and 287% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YOR353C or its homologs, e.g. a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochondria, prefera 25 bly, in one embodment the increase of the fine chemical, preferably of glucose between 66% and 141% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YOR353C or its homologs, e.g. a "protein required for cell morphogenesis and cell separation after mitosis; Sog2p" is increased advantageously in an organelle such as a plastid or mitochondria, prefera 30 bly, in one embodment the increase of the fine chemical, preferably of fructose be tween 78% and 287% or more and of glucose between 66% and 141% or more is con ferred. In case the activity of the Saccaromyces cerevisiae protein YPL1 38C or its homologs, e.g. a "compass (complex proteins associated with Setip) component" is increased 35 advantageously in an organelle such as a plastid or mitochondria, preferably, in one 1364 embodment the increase of the fine chemical, preferably of starch and/or cellulose be tween 31% and 114% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YPR035W or its homologs, e.g. a "glutamine synthetase" is increased advantageously in an organelle such as a 5 plastid or mitochondria, preferably, in one embodment the increase of the fine chemi cal, preferably of myo-inositol between 27% and 365% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YPR035W or its homologs, e.g. a "glutamine synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemical, pref 10 erably of raffinose between 102% and 125% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YPR035W or its homologs, e.g. a "glutamine synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodment the increase of the fine chemi cal, preferably of myo-inositol between 27% and 365% or more and of raffinose be 15 tween 102% and 125% or more is conferred. [0060.0.19.19] In case the activity of the Escherichia coli proteins b0146, b0342, b0523, b0598, b0644, b0760, b1046, b1095, b1136, b1399, b1410, b1556, b1704, b1980, b2223, b2240, b2284, b2965, b3156 b3708 or their homologs, are increased advantageously in an organelle such as a plastid or mitochondria, preferably an in 20 crease of the fine chemical such as starch and/cellulose, glucose, fructose, myo inositol, sucrose, raffinose or mixtures thereof in free or bound formis conferred. In case the activity of the Saccaromyces cerevisiae protein YCR012W, YDR035W, YDR497C, YER063W, YGL065C, YGR255C, YGR262C, YHR204W, YlR020W-A, YJL1 39C, YKR043C, YLL033W, YLR1 53C, YLR174W, YNL022C, YNL241C, 25 YNR012W, YOR353C, YPL1 38C and/orYPR035W or their homologs, are increased advantageously in an organelle such as a plastid or mitochondria, preferably an in crease of the fine chemical such as starch and/cellulose, glucose, UDP-glucose, fruc tose, myo-inositol, sucrose, raffinose or mixtures thereof in free or bound form is con ferred. 30 [0061.0.0.19] and [0062.0.0.19] for the disclosure of the paragraphs [0061.0.0.19] and [0062.0.0.19] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.19.19] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the structure of the polypeptide described herein, in particular of the polypeptides compris- 1365 ing the consensus sequence shown in table IV, application no. 20, column 7 or of the polypeptide as shown in the amino acid sequences as disclosed in table II, application no. 20, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule 5 according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 20, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.19.19] / [0065.0.0.19] and [0066.0.0.19] for the disclosure of the paragraphs [0065.0.0.19] 10 and [0066.0.0.19] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.19.19] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, 15 e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 20, columns 5 and 7 or its homologs activity having herein-mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by 20 the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 20, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 20, columns 5 and 7 or its homologs activity or of 25 a mRNA encoding the polypeptide of the present invention having herein mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinoseincreasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep 30 tide of the present invention having herein-mentioned starch and/cellulose, glu cose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1366 II, application no. 20, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres 5 sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned starch and/cellulose, glu cose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 20, columns 5 and 7 or its homologs activity; and/or 10 e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 15 cation no. 20, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned 20 starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 20, columns 5 and 7 or its ho mologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a 25 nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 20, columns 5 and 7 or its ho 30 mologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 20, columns 5 and 7 or its homologs activity, by adding 1367 positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt 5 repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 10 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; 15 and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 20 polypeptide of the present invention having herein-mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raf finose increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 20, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 25 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the ac tivity of a protein as indicated in table 1l, application no. 20, columns 5 and 7 or 30 its homologs activity in plastids by the stable or transient transformation advan tageously stable transformation of organelles preferably plastids with an inven tive nucleic acid sequence preferably in form of an expression cassette contain ing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or 1368 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity, e.g. of a polypeptide having the ac 5 tivity of a protein as indicated in table II, application no. 20, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.19.19] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by 10 the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after increasing the expression or activity of the encoded polypeptide preferably in organ elles such as plastids or having the activity of a polypeptide having an activity as the 15 protein as shown in table II, application no. 20, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. [0069.0.0.19] to [0079.0.0.19] for the disclosure of the paragraphs [0069.0.0.19] to [0079.0.0.19] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.19.19] The activation of an endogenous polypeptide having above-mentioned 20 activity, e.g. having the activity of a protein as shown in table II, application no. 20, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the 25 protein as shown in table II, application no. 20, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 20, column 3. The expression of the 30 chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 20, column 3, see e.g. in WOO1/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296.
1369 [0081.0.0.19] to [0084.0.0.19] for the disclosure of the paragraphs [0081.0.0.19] to [0084.0.0.19] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.19.19] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole 5 cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably 10 novel metabolites composition in the organism, e.g. starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose or raffinose in free or bound form and mixtures thereof. [0086.0.0.19] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.19.19] By influencing the metabolism thus, it is possible to produce, in the 15 process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to starch and/cellulose, glucose, UDP-glucose, fruc tose, myo-inositol, sucrose and/or raffinose compounds such as other sugars such as galactose, mannose, xylose, maltose or cellobiose, sugar alcohols such as ribitol, amino sugars such as a-D-glucosamine or a-D-N-acetylglucosamine and/or sugar ac 20 ids such as glucoronic acid, vitamins, amino acids or fatty acids. [0088.0.19.19] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a 25 microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 20, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant 30 or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, 1370 c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 5 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.19.19] The organism, in particular the microorganism, non-human animal, the 10 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, in addition other free or/and bound sugars such as galactose, mannose, xylose, maltose or cellobiose or mixtures thereof. 15 The organism such as microorganisms or plants or the recovered, and if desired iso lated, respective fine chemical can then be processed further directly into foodstuffs or animal feeds or for other applications in nutrition or medicine or cosmetics, for example according to the disclosures made in US 6,669,962 (Starch microcapsules for delivery of active agents); US 20050042737 (Starch process); US 20050054071 (Enzymes for 20 starch processing); US 20050091716 (Novel plants and processes for obtaining them); US 5,096,594 and US 5,482,631 discloses a method of purifying cyclitols; US 4,997,489 discloses soaking almond hulls in water to obtain a syrup containing fructose, glucose, inositol, and sorbitol; US 5,296,364 discloses a microbial method for producing inositol; US 4,734,402; US. 4,788,065; US 6,465,037 and US 6,355,295 re 25 lates to soy food ingredient based on carbohydrates, US 6,653,451; US 20040128713: pertains to soybean plants having in their seeds significantly lower contents of raffi nose, stachyose and phytic acid and significantly higher contents of sucrose and inor ganic phosphate; US 20050008713 discloses compositions of plant carbohydrates for dietary supplements and nutritional support; which are expressly incorporated herein 30 by reference. The fermentation broth, fermentation products, plants or plant products can be treated and processed as described in above mentioned applications or by other methods known to the person skilled in the art and described herein below. In the method for producing carbohydrates, preferably polysaccharides, more prefera bly starch and/or cellulose and/or monosaccharides, more preferably fructose, glucose 1371 and/or myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccha rides, more preferably sucrose and/or glucose, derivatives preferably anhydroglucose and/or UDP-glucose according to the invention, the cultivation step of the genetically modified organisms, also referred to as transgenic organisms hereinbelow, is prefera 5 bly followed by harvesting said organisms and isolating the respective carbohydrate(s) from said organisms. The organisms are harvested in a manner known per se and appropriate for the par ticular organism. Microorganisms such as bacteria, mosses, yeasts and fungi or plant cells which are cultured in liquid media by fermentation may be removed, for example, 10 by centrifugation, decanting or filtration. Plants are grown on solid media in a manner known per se and harvested accordingly. Carbohydrates, preferably polysaccharides, more preferably starch and/or cellulose and/or monosaccharides, more preferably fructose, glucose and/or myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccharides, more preferably su 15 crose, derivatives preferably anhydroglucose and/or UDP-glucose are isolated from the harvested biomass in a manner known per se, for example by extraction and, where appropriate, further chemical or physical purification processes such as, for example, chemical and/or enzymatical degradation, precipitation methods, crystallography, ther mal separation methods such as rectification methods or physical separation methods 20 such as, for example, chromatography. Products of these different work-up procedures are carbohydrates, preferably polysac charides, more preferably starch and/or cellulose and/or monosaccharides, more pref erably fructose, glucose and/or myo-inositol and/or trisaccharides, more preferably raf finose and/or disaccharides, more preferably sucrose, derivatives preferably anhydro 25 glucose and/or UDP-glucose comprising compositions, e.g. compostions comprising carbohydrates, preferably polysaccharides, more preferably starch and/or cellulose and/or monosaccharides, more preferably fructose, glucose and/or myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccharides, more preferably su crose, derivatives preferably anhydroglucose and/or UDP-glucose which still comprise 30 fermentation broth, plant particles and/or cell components in different amounts, advan tageously in the range of from 0 to 99% by weight, preferably below 80% by weight, especially preferably between 50%, 40%, 30%, 20%, 20%, 10%, 5%, 3%, 2%, 1%, 05%, 0,1%, 0,01% and 0% by weight resp.. In one embodiment, preferred plants include, but are not limited to: sugar beet, sugar 35 cane, soybeans, wheat, corn, rice and/or potato ( Solanum tuberosum).
1372 [0090.0.0.19] to [0097.0.0.19] for the disclosure of the paragraphs [0090.0.0.19] to [0097.0.0.19] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.19.19] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 5 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 20, columns 5 and 7 or a derivative thereof, or 10 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 20, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 15 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 20 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.19.19] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic 25 plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 20, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, 30 application no. 20, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 20, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the 1373 stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.19] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. 5 [0101.0.19.19] In an advantageous embodiment of the invention, the organism takes the form of a plant whose starch and/cellulose, glucose, UDP-glucose, fructose, myo inositol, sucrose and/or raffinose content is modified advantageously owing to the nu cleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for animals and humans is 10 dependent on the abovementioned carbohydrates and the general amount of saccha rides such as starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, su crose and/or raffinose and the general amount of starch and/cellulose, glucose, UDP glucose, fructose, myo-inositol, sucrose and/or raffinose for example as energy source in food and feed. After the activity of the protein as shown in table 1l, application no. 20, 15 column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.19] to [0110.0.0.19] for the disclosure of the paragraphs [0102.0.0.19] 20 to [0110.0.0.19] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.19.19] In a preferred embodiment, the fine chemical (starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose) is produced in accordance with the invention and, if desired, is isolated. The production of further sugars such as such as galactose, mannose, xylose, maltose or cellobiose or mixtures 25 thereof or mixtures of other sugars by the process according to the invention is advan tageous. It may be advantageous to increase the pool of free sugars such as starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose and other sugars as aforementioned in the transgenic organisms by the process ac cording to the invention in order to isolate high amounts of the pure fine chemical. 30 [0112.0.19.19] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a nucleic acid encoding a protein or polypeptide for example another gene encoding a protein of the carbohydrate metabolism such as 1374 starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose biosynthesis, or a compound, which functions as a sink for the desired starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose in the organism is useful to increase the production of the respective fine chemical. 5 [0113.0.19.19] In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further sugars other than starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose or compounds for which the respective fine chemicals are a biosynthesis precursor compounds, e.g. organic acids such as pyruvic acid, oxaloace 10 tic acid, citric acid, cis-aconic acid, iso-citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid or malic acid, amino acids, fatty acids or mixtures thereof and/or other chemical compounds derived from sugars or mixtures with other carbohydrates such as sugars like galactose, mannose, xylose, maltose or cellobiose, in particular of galac tose, mannose, xylose, maltose or cellobiose or mixtures thereof, by the process ac 15 cording to the invention is advantageous. [0114.0.19.19] In the case of the fermentation of microorganisms, the abovemen tioned carbohydrates, preferably polysaccharides, more preferably starch and/or cellu lose and/or monosaccharides, more preferably fructose, glucose and/or myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccharides, more preferably 20 sucrose, and/or glucose derivatives such as UDP-glucose or anhydroglucose may ac cumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, the fermentation broth can be processed after the cultiva tion. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, 25 filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formulation can be added such as 30 corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, and spray granulation or by other methods. Preferably the respective fine chemical or the carbohydrates, preferably polysaccharides, more preferably starch and/or cellulose and/or monosaccharides, more preferably fructose, glucose and/or 35 myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccharides, 1375 more preferably sucrose, and/or glucose derivatives such as UDP-glucose or anhydro glucose compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, 5 distillation, crystallization, chromatography or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. [0115.0.19.19] Transgenic plants which comprise the fine chemical such as starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose 10 synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the fine chemical synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, flowers, har 15 vested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the respective fine chemical produced in the process according to the inven 20 tion can also be isolated from the organisms, advantageously plants, (in the form of carbohydrate containing aqueous solutions, containing starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the medium in which they grow, or from the field. This can be done via pressing, 25 crushing or extraction of the plant parts. The crushing process must break up the hard nodes of the sugar cane and flatten the stems. In the event sugar beets are used for the process the plant is sliced and the sugar is extracted with hot water. The sugar con taining juice is collected and filtered. Afterwards the juice is treated with chemicals to remove impurities. Thereafter the juice is boiled to drive off excess water. The sugar is 30 then extracted by controlled crystallisation. The sugar crystals are removed for example by a centrifuge and the liquid recycled in the crystalliser stages. To increase the efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material. In the case of microorganisms, the latter are, after har vesting, for example extracted directly without further processing steps or else, after 35 disruption, extracted via various methods with which the skilled worker is familiar. Thereafter, the resulting products can be processed further.
1376 Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. [0115.1.19.19] Carbohydrates, preferably polysaccharides, more preferably starch and/or cellulose or their "analytes" such as anhydroglucose and/or monosaccharides, 5 more preferably fructose, glucose and/or myo-inositol and/or trisaccharides, more pref erably raffinose and/or disaccharides, more preferably sucrose can for example be analyzed advantageously via HPLC or GC separation methods and detected by MS oder MSMS methods. The unambiguous detection for the presence of carbohydrates, preferably polysaccharides, more preferably starch and/or cellulose or their analytes 10 such as anhydroglucose and/or monosaccharides, more preferably fructose, glucose and/or myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccha rides, more preferably sucrosecontaining products can be obtained by analyzing re combinant organisms using analytical standard methods: GC, GC-MS, LC, LC-MSMS or TLC, as described on several occasions.. The carbohydrates can be analized further 15 in plant extracts by anion-exchange chromatography with pulsed amperometric detec tion (Cataldi et al., Anal Chem.;72(16):3902-7, 2000), by enzymatic "BioAnalysis" usind test kits from R-Biopharm and Roche or from Megazyme, Ireland. [0115.2.19.19] Carbohydrates can for example be detected advantageously via HPLC with reversed phase columns. The unambiguous detection for the presence of carbo 20 hydrates products can be obtained by analyzing recombinant organisms using analyti cal standard methods like HPLC-MS or HPLC-MSMS. [0116.0.19.19] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the 25 expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 20, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or 30 ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 20, columns 5 and 7; 1377 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) 10 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 15 preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or 20 ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 20, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 25 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 20, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; 1378 k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 20, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 5 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase 10 in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.19.19] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 20, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid 15 molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 20, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 20, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en 20 code a polypeptide of a sequence indicated in table II A, application no. 20, columns 5 and 7. [0116.2.19.19] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 20, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid 25 molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 20, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 20, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en 30 code a polypeptide of a sequence indicated in table II B, application no. 20, columns 5 and 7. [0117.0.19.19] In one embodiment, the nucleic acid molecule used in the process distinguishes over the sequence shown in table I, application no. 20, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli- 1379 cation no. 20, columns 5 and 7. In one embodiment, the nucleic acid molecule of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 20, columns 5 and 7. In another embodi ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown 5 in table II, application no. 20, columns 5 and 7. [0118.0.0.19] to [0120.0.0.19] for the disclosure of the paragraphs [0118.0.0.19] to [0120.0.0.19] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.19.19] Nucleic acid molecules with the sequence shown in table I, application no. 20, columns 5 and 7, nucleic acid molecules which are derived from the amino acid 10 sequences shown in table II, application no. 20, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 20, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 20, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously 15 increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.19] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.19.19] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as 20 shown in table II, application no. 20, column 3 can be determined from generally ac cessible databases. [0124.0.0.19] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.19.19]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with 25 the activity of the proteins as shown in table II, application no. 20, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.19] to [0133.0.0.19] for the disclosure of the paragraphs [0126.0.0.19] to [0133.0.0.19] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. 30 [0134.0.19.19] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or 1380 more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 20, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its 5 activity, e.g. after increasing the activity of a protein as shown in table II, application no. 20, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0135.0.0.19] to [0140.0.0.19] for the disclosure of the paragraphs [0135.0.0.19] to [0140.0.0.19] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. 10 [0141.0.19.19] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 20, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 20, columns 5 and 7 or the sequences derived from table II, application no. 20, columns 5 and 7. 15 [0142.0.19.19] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one 20 particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 20, column 7 is derived from said aligments. [0143.0.19.19] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac 25 tivity of a protein as shown in table II, application no. 20, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.19] to [0151.0.0.19] for the disclosure of the paragraphs [0144.0.0.19] to [0151.0.0.19] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.19.19] Polypeptides having above-mentioned activity, i.e. conferring the fine 30 chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 20, columns 5 and 7, preferably of table I B, application no. 20, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 1381 starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increasing activity. [0153.0.0.19] to [0159.0.0.19] for the disclosure of the paragraphs [0153.0.0.19] to [0159.0.0.19] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. 5 [0160.0.19.19] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7 is 10 one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, thereby forming a stable duplex. Preferably, the 15 hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing 20 partner. [0161.0.19.19] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide 25 sequence shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 20, column 3 by for example expression either in the cytsol or in an organelle such 30 as a plastid or mitochondria or both, preferably in plastids. [0162.0.19.19] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, or 1382 a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose increase by for example expression either in the cytsol or in an organ elle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the 5 activity of a protein as shown in table II, application no. 20, column 3. [0163.0.19.19] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en 10 coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the 15 cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 20, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a 25 nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 20, column 7 will result in a fragment of the gene product as shown in table II, column 3. 30 [0164.0.0.19] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.19.19] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 20, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine 35 chemical production, in particular a starch and/cellulose, glucose, UDP-glucose, fruc- 1383 tose, myo-inositol, sucrose and/or raffinose increasing activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.19.19] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum 5 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 20, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity 10 of a protein as shown in table II, column 3 and as described herein. [0167.0.19.19] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 15 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 20, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0168.0.0.19] and [0169.0.0.19] for the disclosure of the paragraphs [0168.0.0.19] and [0169.0.0.19] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.19.19] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 20, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly 25 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 20, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding 30 a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 20, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 20, columns 5 and 7 or the functional homologues. However, in 1384 a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table 1, application no. 20, columns 5 and 7, prefera bly as indicated in table I A, application no. 20, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid 5 molecule indicated in table I B, application no. 20, columns 5 and 7. [0171.0.0.19] to [0173.0.0.19] for the disclosure of the paragraphs [0171.0.0.19] to [0173.0.0.19] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.19.19] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un 10 der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table 1, application no. 20, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 15 [0175.0.0.19] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.19.19] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table 1, application no. 20, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 20 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 25 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.19] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.19.19]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid 30 molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 20, columns 5 and 7.
1385 [0179.0.0.19] and [0180.0.0.19] for the disclosure of the paragraphs [0179.0.0.19] and [0180.0.0.19] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.19.19] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine 5 chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 20, columns 5 and 7, preferably shown in 10 table II A, application no. 20, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 20, columns 5 and 7, preferably shown in table II A, application no. 20, columns 5 and 7 and is capa 15 ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se quence shown in table II, application no. 20, columns 5 and 7, preferably shown in ta 20 ble II A, application no. 20, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 20, columns 5 and 7, preferably shown in table II A, application no. 20, columns 5 and 7, even more prefera bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap plication no. 20, columns 5 and 7, preferably shown in table II A, application no. 20, 25 columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 20, columns 5 and 7, preferably shown in table II A, application no. 20, columns 5 and 7. [0182.0.0.19] to [0188.0.0.19] for the disclosure of the paragraphs [0182.0.0.19] to [0188.0.0.19] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. 30 [0189.0.19.19] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 20, columns 5 and 7, preferably shown in table II B, applica tion no. 20, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 35 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% 1386 homology with one of the polypeptides as shown in table II, application no. 20, columns 5 and 7, preferably shown in table II B, application no. 20, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 20, columns 5 and 7, preferably shown 5 in table II B, application no. 20, columns 5 and 7. [0190.0.19.19] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 10 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 20, columns 5 and 7, preferably shown in table II B, application no. 20, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same 15 properties as the polypeptide as shown in table II, application no. 20, columns 5 and 7, preferably shown in table II B, application no. 20, columns 5 and 7. [0191.0.0.19] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.19.19] A nucleic acid molecule encoding an homologous to a protein se quence of table II, application no. 20, columns 5 and 7, preferably shown in table II B, 20 application no. 20, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu cleic acid molecule of the present invention, in particular of table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are intro 25 duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.19] to [0196.0.0.19] for the disclosure of the paragraphs [0193.0.0.19] to 30 [0196.0.0.19] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.19.19] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, comprise also allelic variants with at least ap- 1387 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 5 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7, or from the derived nucleic acid sequences, the 10 intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.19.19] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 20, columns 5 and 7, preferably shown in 15 table I B, application no. 20, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em 20 bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 20, columns 5 and 7, preferably shown in table I B, application no. 20, columns 5 and 7. [0199.0.19.19] Also preferred is that the nucleic acid molecule used in the process of 25 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 20, columns 5 and 7, preferably shown in table II B, application no. 20, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. 30 In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 20, columns 5 and 7, preferably shown in table II B, application no. 20, columns 5 and 7. [0200.0.19.19] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, appli 35 cation no. 20, columns 5 and 7, preferably shown in table II B, application no. 20, 1388 columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 20, columns 5 and 7, preferably 5 shown in table I B, application no. 20, columns 5 and 7. [0201.0.19.19] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very 10 especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 20, columns 5 and 7 ex pressed under identical conditions. [0202.0.19.19] Homologues of table I, application no. 20, columns 5 and 7 or of the 15 derived sequences of table II, application no. 20, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences 20 stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 25 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.19] to [0215.0.0.19] for the disclosure of the paragraphs [0203.0.0.19] to [0215.0.0.19] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. 30 [0216.0.19.19] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 20, columns 5 and 7, preferably in table 1389 || B, application no. 20, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 20, columns 5 and 7, pref 5 erably in table I B, application no. 20, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener 10 acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine 15 chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 20 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which 25 is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli 30 cation no. 20, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 1390 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a 5 part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 20, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod 10 ing a domaine of the polypeptide shown in table II, application no. 20, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the 15 sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 20, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application 20 no. 20, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 20, columns 5 and 7 by 25 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 20, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 20, columns 5 30 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 20, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 20, columns 5 1391 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 20, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 20, columns 5 and 7. In a further embodi 5 ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 20, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 20, columns 5 and 7. 10 [0217.0.0.19] to [0226.0.0.19] for the disclosure of the paragraphs [0217.0.0.19] to [0226.0.0.19] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.19.19] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and 15 T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from 20 the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic 25 acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 20, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. 30 [0228.0.0.19] to [0239.0.0.19] for the disclosure of the paragraphs [0228.0.0.19] to [0239.0.0.19] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.19.19] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu- 1392 cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table 1, application no. 20, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes 5 in the organisms. Especially advantageously, additionally at least one further gene of the starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose biosynthetic pathway is expressed in the organisms such as plants or micro organisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the 10 regulatory mechanisms which exist in the organisms. This leads to an increased syn thesis of the respective desired fine chemical since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table 1, application no. 20, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, 15 for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.19.19] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the 20 carbohydrate metabolism, in particular in synthesis of starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose. Indirect overexpression might be brought about by the manipulation of the regulation of the endogenous gene, for example through promotor mutations or the expression of natural or artificial tran scriptional regulators. 25 [0242.0.19.19] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the carbohy drate metabolism such as genes for glucose phosphate isomerase, triose phosphate isomerase, phosphoglycerate mutase, pyruvate kinase, fructokinase etc.. It is also pos 30 sible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the carbohy drates, preferably starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose, as desired since, for example, feedback regulations no longer 35 exist to the same extent or not at all.
1393 [0242.1.19.19] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which advantageously simultaneously a starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose degrading protein is attenuated, in particular by reducing the rate of expres 5 sion of the corresponding gene, or by inactivating the gene for example the mutagene sis and/or selection. In another advantageous embodiment the synthesis of competitive pathways which rely on the same precoursers are down regulated or interrupted. [0242.2.19.19] The respective fine chemical produced can be isolated from the or ganism by methods with which the skilled worker are familiar, for example via extrac 10 tion, salt precipitation, and/or different chromatography methods. The process accord ing to the invention can be conducted batchwise, semibatchwise or continuously. The fine chemcical and other carbohydrates produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via for example pressing or extraction of the plant parts. 15 [0242.3.19.19] Preferrably, the compound is a composition comprising the essen tially pure starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose or a recovered or isolated starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose. [0243.0.0.19] to [0264.0.0.19] for the disclosure of the paragraphs [0243.0.0.19] to 20 [0264.0.0.19] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.19.19] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, 25 the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide 30 or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no.
1394 20, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.19] to [0287.0.0.19] for the disclosure of the paragraphs [0266.0.0.19] to [0287.0.0.19] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. 5 [0288.0.19.19] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in 10 table II, application no. 20, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 20, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. 15 [0289.0.0.19] to [0296.0.0.19] for the disclosure of the paragraphs [0289.0.0.19] to [0296.0.0.19] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.19.19] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in 20 particular, an anti-b0146, anti-b0342, anti-b0523, anti-b0598, anti-b0644, anti-b0760, anti-b1 046, anti-b1 095, anti-b1 136, anti-b1 399, anti-b1 410, anti-b1 556, anti-b1 704, anti-b1980, anti-b2223, anti-b2240, anti-b2284, anti-b2965, anti-b3156, anti-b3708, anti-YCRO12W, anti-YDR035W, anti-YDR497C, anti-YER063W, anti-YGLO65C, anti YGR255C, anti-YGR262C, anti-YHR204W, anti-YIR020W-A, anti-YJL139C, anti 25 YKR043C, anti-YLLO33W, anti-YLR153C, anti-YLR174W, anti-YNLO22C, anti YNL241C, anti-YNRO12W, anti-YOR353C, anti-YPL138C and/or anti-YPR035W pro tein antibody or an antibody against polypeptides as shown in table II, application no. 20, columns 5 and 7, which can be produced by standard techniques utilizing the poly peptid of the present invention or fragment thereof, i.e., the polypeptide of this inven 30 tion. Preferred are monoclonal antibodies. [0298.0.0.19] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.19.19] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 20, columns 5 and 7 or as coded by 1395 the nucleic acid molecule shown in table I, application no. 20, columns 5 and 7 or func tional homologues thereof. [0300.0.19.19] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus 5 sequence shown in table IV, application no. 20, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 20, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino 10 acids positions indicated can be replaced by any amino acid. [0301.0.0.19] to [0304.0.0.19] for the disclosure of the paragraphs [0301.0.0.19] to [0304.0.0.19] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.19.19] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor 15 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 20, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 20, columns 5 and 7 by more than 5, 6, 7, 8 or 9 20 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 20, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 25 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 20, columns 5 and 7. [0306.0.0.19] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.19.19] In one embodiment, the invention relates to polypeptide conferring an 30 increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 20, columns 5 and 7 by one or more amino acids. In another embodiment, 1396 said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 20, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded 5 by the nucleic acid molecules shown in table I A and/or I B, application no. 20, columns 5 and 7. [0308.0.19.19]In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 20, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli 10 cation no. 20, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred 15 are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. 20 [0309.0.0.19] to [0311.0.0.19] for the disclosure of the paragraphs [0309.0.0.19] to [0311.0.0.19] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.19.19] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in 25 table II, application no. 20, columns 5 and 7. [0313.0.19.19] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence 30 which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 20, columns 5 and 7. The 1397 preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo 5 tide sequence of table I A and/or I B, application no. 20, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.19.19] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 20, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. 10 Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 20, columns 5 and 7. 15 [0315.0.0.19] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.19.19] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 20, columns 20 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 25 or used in the process of the present invention. [0317.0.0.19] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.19.19] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 20, column 3. Differences shall mean at least one amino acid 30 different from the sequences as shown in table II, application no. 20, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 20, column 3. These proteins may be improved in efficiency or activity, 1398 may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. [0319.0.19.19] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas 5 ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 20, column 3. The 10 nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im proved. [0320.0.0.19] to [0322.0.0.19] for the disclosure of the paragraphs [0320.0.0.19] to [0322.0.0.19] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. 15 [0323.0.19.19] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 20, column 3 refers to a polypeptide having an amino acid sequence cor responding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not 20 substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 20, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.19] to [0329.0.0.19] for the disclosure of the paragraphs [0324.0.0.19] to 25 [0329.0.0.19] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.19.19] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 20, columns 5 and 7. [0331.0.0.19] to [0346.0.0.19] for the disclosure of the paragraphs [0331.0.0.19] to 30 [0346.0.0.19] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.19.19] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the 1399 fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as 5 shown in table II, application no. 20, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part 10 thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 20, col umn 3 or a protein as shown in table II, application no. 20, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids 15 or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.19] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.19.19] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 20 II, application no. 20, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.19] to [0358.0.0.19] for the disclosure of the paragraphs [0350.0.0.19] to 25 [0358.0.0.19] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.19.19] Transgenic plants comprising starch and/cellulose, glucose, UDP glucose, fructose, myo-inositol, sucrose and/or raffinose or mixtures thereof synthe sized in the process according to the invention can be marketed directly without isola tion of the compounds synthesized. In the process according to the invention, plants 30 are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this con text, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose produced in the process 1400 according to the invention may, however, also be isolated from the plant in the form of their free starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose produced by this process can be isolated by harvesting the plants ei ther from the culture in which they grow or from the field. This can be done for example 5 via expressing, grinding and/or extraction of the plant parts, preferably the plant leaves, plant fruits, flowers and the like. The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, flowers and the like as mentioned above in the case of transgenic plant organisms 10 derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, cosmet ics, pharmaceuticals or fine chemicals. [0360.0.0.19] to [0362.0.0.19] for the disclosure of the paragraphs [0360.0.0.19] to [0362.0.0.19] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. 15 [0363.0.19.19] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose produced in the process can be isolated. The resulting fine chemical can, if appropri 20 ate, subsequently be further purified, if desired mixed with other active ingredients such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, formulated. [0364.0.19.19] In one embodiment, starch and/cellulose, glucose, UDP-glucose, fruc tose, myo-inositol, sucrose and/or raffinose is the fine chemical. 25 [0365.0.19.19] The starch and/cellulose, glucose, UDP-glucose, fructose, myo inositol, sucrose and/or raffinose, in particular the respective fine chemicals obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the production of pharmaceuticals, health products, foodstuffs, animal feeds, nutrients or 30 cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, health products, food stuff, animal feeds, nutrients or cosmetics com prising the steps of the process according to the invention, including the isolation of the starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose containing, in particular starch and/cellulose, glucose, UDP-glucose, fructose, 1401 myo-inositol, sucrose and/or raffinose containing composition produced or the respec tive fine chemical produced if desired and formulating the product with a pharmaceuti cal acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the starch 5 and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose produced in the process or of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.19] to [0369.0.0.19] for the disclosure of the paragraphs [0366.0.0.19] to [0369.0.0.19] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 10 [0370.0.19.19] The fermentation broths obtained in this way, containing in particular starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose in mixtures with other organic acids, amino acids, polypeptides or polysac carides, normally have a dry matter content of from 1 to 70% by weight, preferably 7.5 to 25% by weight. Sugar-limited fermentation is additionally advantageous, e.g. at the 15 end, for example over at least 30% of the fermentation time. This means that the con centration of utilizable sugar in the fermentation medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/ during this time. The fermentation broth is then processed further. Depending on requirements, the biomass can be removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decan 20 tation, coagulation/flocculation or a combination of these methods, from the fermenta tion broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation 25 broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.19.19] Accordingly, it is possible to purify the starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose, in particular the starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose 30 produced according to the invention further. For this purpose, the product-containing composition, e.g. a total or partial extraction fraction using organic solvents, is sub jected for example to separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, 1402 using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. [0372.0.0.19] to [0376.0.0.19], [0376.1.0.19] and [0377.0.0.19] for the disclosure of the paragraphs [0372.0.0.19] to [0376.0.0.19], [0376.1.0.19] and [0377.0.0.19] see 5 paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.19.19] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 10 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 15 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 20, columns 5 and 7, preferably in table I B, application no. 20, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a 20 plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression confers an increase in the the fine chemical level in the host cell after expression 25 compared to the wild type. [0379.0.0.19] to [0383.0.0.19] for the disclosure of the paragraphs [0379.0.0.19] to [0383.0.0.19] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.19.19] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 30 microorganism in the presence of growth reducing amounts of an inhibitor of the syn- 1403 thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 5 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 20, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 20, column 3. [0385.0.0.19] to [0404.0.0.19] for the disclosure of the paragraphs [0385.0.0.19] to 10 [0404.0.0.19] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.19.19] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant 15 cell, or the part thereof of the invention, the vector of the invention, the agonist identi fied with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other carbohydrates, in particular carbohydrates such as cellobiose, mannose, trehalose, etc. 20 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the 25 invention, the antibody of the present invention, can be used for the reduction of the fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.19] to [0435.0.0.19] for the disclosure of the paragraphs [0406.0.0.19] to [0435.0.0.19] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.19.19] Production of starch and/cellulose, glucose, UDP-glucose, fructose, 30 myo-inositol, sucrose and/or raffinose in Chlamydomonas reinhard tii The starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose production can be analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below.
1404 In addition a production in other organisms such as plants or microorganisms such as yeast, Mortierella alpina, Corynebacterium glutamicum or Escherichia coli is possible. [0437.0.0.19] and [0438.0.0.19] for the disclosure of the paragraphs [0437.0.0.19] and [0438.0.0.19] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. 5 [0439.0.19.19] Example 9: Analysis of the effect of the nucleic acid molecule on the production of starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose [0440.0.10.10] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as starch and/cellulose, glucose, UDP-glucose, 10 fructose, myo-inositol, sucrose and/or raffinose) can be determined by growing the modified plant under suitable conditions (such as those described above) and analyz ing the medium and/or the cellular components for the elevated production of desired product (i.e. of starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, su crose and/or raffinose). These analytical techniques are known to the skilled worker 15 and comprise spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in 20 Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Bio 25 chemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purifi cation techniques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.19] for the disclosure of this paragraph see [0441.0.0.0] above. 30 [0442.0.19.19] Purification of and determination of the starch and/cellulose, glucose, UDP-glucose, fructose, myo-inositol, sucrose and/or raffinose content: [0443.0.19.19] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography.
1405 The unambiguous detection for the presence of carbohydrates, preferably polysaccha rides, more preferably starch and/or cellulose and/or monosaccharides, more prefera bly fructose, glucose and/or myo-inositol and/or trisaccharides, more preferably raffi nose and/or disaccharides, more preferably sucrose, glucose derivatives such as UDP 5 glucose or anhydroglucose can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS, LC, LC-MSMS or TLC, as described in: Ad vances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatogra phy/mass spectrometric methods], Lipide 33:343-353). The total carbohydrate pro 10 duced in the organism for example in yeasts used in the inventive process can be ana lysed for example according to the following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. 15 Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. [0444.0.19.19] A typical sample pretreatment consists of an extraction using solvents such as acetone or alcohols as ethanol, methanol, or ethers, preferably ethanol, and chromatography. E.g.: 20 For the identification of carbohydrates the extracts should be further cleaned up by sequentially filtering through for example a Sep-Pak Plus C18 cartridge (Waters, Mil ford, MA) and a 0.22 pm membrane filter. The eluent can is injected onto an HPLC. For the detection of carbohydrates an aminopropyl-bonded phase column with a mobile phase consisting of an isocratic acetonitrile and water solution (75:25) is useful. 25 It is advantageously to dissolve dried sugar standards in 60 % ethanol and to spike said standard solutions into the samples for the analysis to monitor recovery. The car bohydrate concentrations can be calculated based on peak area measurements. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam 30 pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. Injec tions were 20 1. [0445.0.19.19] % 1406 [0446.0.0.19] to [0496.0.0.19] for the disclosure of the paragraphs [0446.0.0.19] to [0496.0.0.19] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.19.19] As an alternative, the carbohydrates, preferably polysaccharides, more preferably starch and/or cellulose and/or monosaccharides, more preferably fruc 5 tose, glucose and/or myo-inositol and/or trisaccharides, more preferably raffinose and/or disaccharides, more preferably sucrose can be detected advantageously as for example described by Sonnebald et al., (Nat Biotechnol. 1997 Aug;15(8):794-7) ,or Panikulangara et al., Plant Physiol. 2004 Oct;136(2):3148-58. [0498.0.19.19] The results of the different plant analyses can be seen from the table, 10 which follows: Table VI ORF Metabolite Analyte Method Min Max b0146 Starch/cellulose Anhydroglucose GC 1.39 1.73 b0342 Starch/cellulose Anhydroglucose GC 1.34 1.69 b0523 Starch/cellulose Anhydroglucose GC 1.49 1.78 b0598 Glucose Glucose GC 1.58 2.04 b0644 Starch/cellulose Anhydroglucose GC 1.37 1.66 b0760 Glucose Glucose GC 1.97 4.52 b1046 Starch/cellulose Anhydroglucose GC 1.31 1.82 b1095 Fructose Fructose GC 2.13 5.78 b1095 myo-Inositol myo-Inositol GC 1.92 3.19 b1095 Glucose Glucose GC 1.72 4.58 b1136 Starch/cellulose Anhydroglucose GC 1.31 1.72 b1399 myo-Inositol myo-Inositol GC 1.27 2.08 b1410 Glucose Glucose GC 1.57 4.77 b1410 myo-Inositol myo-Inositol GC 1.34 1.49 b1410 Fructose Fructose GC 1.87 5.27 b1556 Sucrose Sucrose GC 1.31 1.37 b1556 myo-Inositol myo-Inositol GC 1.25 3.07 b1556 Raffinose Raffinose GC 1.85 4.09 b1704 Starch/cellulose Anhydroglucose GC 1.24 2.01 b1980 Raffinose Raffinose LC 1.67 2.01 b2223 myo-Inositol myo-Inositol GC 1.26 4.32 b2223 Raffinose Raffinose LC 1.72 6.17 b2223 Glucose Glucose GC 1.60 6.20 1407 ORF Metabolite Analyte Method Min Max b2284 Starch/cellulose Anhydroglucose GC 1.66 1.68 b2240 Starch/cellulose Anhydroglucose GC 1.31 1.90 b2965 Sucrose Sucrose GC 1.30 4.29 b3156 Fructose Fructose GC 2.14 2.97 b3708 Raffinose Raffinose LC 1.61 3.49 YCR012W Raffinose Raffinose LC 1.57 3.81 YDR035W Raffinose Raffinose LC 1.71 5.40 YDR497C Fructose Fructose GC 2.06 6.27 YDR497C myo-Inositol myo-Inositol GC 1.26 1.29 YER063W Fructose Fructose GC 1.68 1.80 YGL065C myo-Inositol myo-Inositol GC 1.12 1.23 YGL065C Starch/cellulose Anhydroglucose GC 1.40 1.47 YGR255C Glucose Glucose GC 1.82 4.94 YGR255C Raffinose Raffinose LC 1.72 2.51 YGR262C Fructose Fructose GC 1.58 2.06 YGR262C Glucose Glucose GC 1.65 1.77 YHR204W myo-Inositol myo-Inositol GC 1.30 1.52 YlR020W-A Fructose Fructose GC 1.84 2.07 YlR020W-A Glucose Glucose GC 1.46 1.87 YJL139C myo-Inositol myo-Inositol GC 1.27 2.35 YJL139C Glucose Glucose GC 1.64 2.57 YKR043C UDPGlucose UDPGlucose LC 1.66 1.72 YLLO33W Raffinose Raffinose LC 1.81 1.82 YLR153C Glucose Glucose GC 1.64 4.06 YLR174W Raffinose Raffinose LC 1.61 1.86 YLR174W myo-Inositol myo-Inositol GC 1.25 1.32 YNL022C Raffinose Raffinose LC 1.59 1.62 YNL241C Glucose Glucose GC 2.99 5.30 YNL241C Fructose Fructose GC 1.86 4.64 YNRO12W myo-Inositol myo-Inositol GC 1.31 1.64 YOR353C Fructose Fructose GC 1.78 3.87 YOR353C Glucose Glucose GC 1.66 2.41 YPL1 38C Starch/cellulose Anhydroglucose GC 1.31 2.14 YPR035W myo-Inositol myo-Inositol GC 1.27 4.65 YPR035W Raffinose Raffinose LC 2.02 2.25 1408 [0499.0.0.19] and [0500.0.0.19] for the disclosure of the paragraphs [0499.0.0.19] and [0500.0.0.19] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.19.19] Example 15a: Engineering ryegrass plants by over-expressing b0146 from Escherichia coli or homologs of b0146 from other 5 organisms. [0502.0.0.19] to [0508.0.0.19] for the disclosure of the paragraphs [0502.0.0.19] to [0508.0.0.19] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.19.19] Example 15b: Engineering soybean plants by over-expressing b0146 from Escherichia coli or homologs of b0146 from other 10 organisms. [0510.0.0.19] to [0513.0.0.19] for the disclosure of the paragraphs [0510.0.0.19] to [0513.0.0.19] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.19.19] Example 15c: Engineering corn plants by over-expressing b0146 from Escherichia coli or homologs of b0146 from other organ 15 isms. [0515.0.0.19] to [0540.0.0.19] for the disclosure of the paragraphs [0515.0.0.19] to [0540.0.0.19] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.19.19] Example 15d: Engineering wheat plants by over-expressing b0146 from Escherichia coli or homologs of b0146 from 20 other organisms. [0542.0.0.19] to [0544.0.0.19] for the disclosure of the paragraphs [0542.0.0.19] to [0544.0.0.19] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.19.19] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b0146 from Escherichia coli or homologs of b0146 from 25 other organisms. [0546.0.0.19] to [0549.0.0.19] for the disclosure of the paragraphs [0546.0.0.19] to [0549.0.0.19] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.19.19] Example 15f: Engineering alfalfa plants by over-expressing b0146 from Escherichia coli or homologs of b0146 from other organ 30 isms.
1409 [0551.0.0.19] to [0554.0.0.19] for the disclosure of the paragraphs [0551.0.0.19] to [0554.0.0.19] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.19.19]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. 5 Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII Table VII ORF_NAME Metabolite MIN MAX YGR255C Raffinose 2.32 3.59 YGR255C Glucose 1.86 5.59 YKR043C UDP-Glucose 2.01 3.59 YNL241C Glucose 1.66 2.27 YNRO12W myo-Inositol 1.76 6.87 10 Table VII shows the increase in raffinose, glucose, UDP-glucose and myo-inositol in genetically modified corn plants expressing the Saccharomyces cerevisiae nucleic acid sequences YGR255C, YKR043C, YNL241C and YNRO12W. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YGR255C or its homologs, e.g. a "Putative flavin-dependent monooxygenase, involved 15 in ubiquinone (Coenzyme Q) biosynthesis", is increased in corn plants, preferably, an increase of the fine chemical raffinose between 132% and 259% is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YGR255C or its homologs, e.g. a "Putative flavin-dependent monooxygenase, involved in ubiquinone (Coenzyme Q) biosynthesis", is increased in corn plants, preferably, an 20 increase of the fine chemical glucose between 86% and 459% is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YGR255C or its homologs, e.g. a "Putative flavin-dependent monooxygenase, involved in ubiquinone (Coenzyme Q) biosynthesis", is increased in corn plants, preferably, an increase of the fine chemicals raffinose between 132% and 259% or more and of glu 25 cose between 86% and 459% or more is conferred.
1410 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YKR043C or its homologs, e.g. a "phosphoglycerate mutase like protein", is increased in corn plants, preferably, an increase of the fine chemical UDP-glucose between 101% and 259% is conferred. 5 In one embodiment, in case the activity of the Saccharomyces cerevisiae protein YNL241C or its homologs, e.g. a "glucose-6-phosphate dehydrogenase", is increased in corn plants, preferably, an increase of the fine chemical glucose between 66% and 127% is conferred. In one embodiment, in case the activity of the Saccharomyces cerevisiae protein 10 YNRO12W or its homologs, e.g. a "uridine kinase", is increased in corn plants, prefera bly, an increase of the fine chemical myo-inositol between 76% and 587% is conferred. [0554.2.0.19] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.19] for the disclosure of this paragraph see [0555.0.0.0] above.
1411 [0001.0.0.20] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.20.20] Plants produce very long chain fatty acids such as behenic acid (C22:0), lignoceric acid (C24:0), cerotic acid (C26:0) and/or melissic acid (C30:0). [0003.0.20.20] Very long-chain fatty acids (VLCFAs) are synthesized by a mem 5 brane-bound fatty acid elongation complex (elongase, FAE) using acyl-CoA substrates. The first reaction of elongation involves condensation of malonyl-CoA with a long chain substrate producing a p-ketoacyl-CoA. Subsequent reactions are reduction of p hydroxyacyl-CoA, dehydration to an enoyl-CoA, followed by a second reduction to form the elongated acyl-CoA. The p-ketoacyl-CoA synthase (KCS) catalyzing the condensa 10 tion reaction plays a key role in determining the chain length of fatty acid products found in seed oils and is the rate-limiting enzyme for seed VLCFA production (Lassner et al., Plant Cell, 8(1996), 281-292). The elongation process can be repeated to yield members that are 20, 22, and 24 car bons long. Although such very long chain fatty acids are minor components of the lipid 15 membranes of the body, they undoubtedly perform valuable functions, apparently help ing to stabilize membranes, especially those in peripheral nerve cells. [0004.0.20.20] Behenic acid (22:0) (docosanoic acid) is a component of rapeseed oil (up to 2%) and peanut oil (1-5%). Behenic acid is used to give hair conditioners and moisturizers their smoothing proper 20 ties. Lignoceric acid (24:0) (tetracosanoic acid) is a component of rapeseed oil (up to 1%) and peanut oil (1-3%). Cerotic acid (26:0) (hexacosanoic acid) is a component of beeswax. Echinacea angustifolia extracts are sold as natural health products comprising the very 25 long chain fatty acid cerotic acid. Cerotic acid is used in cosmetics as a constituent in hairstyling products. [0005.0.20.20] Melissic acid (C30:0) (triacontanoic acid) is a component of beeswax. Beeswax (cera alba) is obtained from the product excreted by certain glands of the honeybee from which the honeycomb is made. It is freed of solid impurities by melting 30 and centrifugation (cera flava). Finally, it is bleached completely white (cera alba).
1412 Beeswax consists of 10-15 percent paraffin carbohydrates, 35-37 percent esters of C16 to C36 fatty acids and about 15 percent cerotic acid, melissic acid and their homo logues. Beeswax is used as a thickener and a humectant in the manufacture of oint ments, creams, lipsticks and other cosmetics and skincare products as an emulsifier, 5 emollient, moisturizer and film former. Beeswax is also used for the production of candles. Wax is a general term used to refer to the mixture of long-chain apolar lipids forming a protective coating (cutin in the cuticle) on plant leaves and fruits but also in animals (wax of honeybee, cuticular lipids of insects, spermaceti of the sperm whale, skin lipids, 10 uropygial glands of birds, depot fat of planktonic crustacea), algae, fungi and bacteria. Many of the waxes found in nature have commercial uses in the lubricant, food and cosmetic industry. Jojoba oil has long been suggested as a putative resource of wax, since this desert shrub is unusual in its capacity to produce waxes rather than triacyl glycerols (TAG) as seed storage lipids. These waxes are esters of very-long-chain-fatty 15 acids and fatty alcohols (Miwa , 1971, J Am Oil Chem Soc 48, 259-264). As the pro duction cost for jojoba wax, which is primarily used for cosmetic applications, is high, there is a need to engineer crop plants to produce high level of wax esters in its seed oil. [0006.0.20.20] Plant aerial surfaces are covered by epicuticular waxes, complex mix 20 tures of very long (C20-C34) fatty acids, alkanes, aldehydes, ketones and esters. In ad dition to repelling atmospheric water they prevent dessication and are therefore an im portant determinant of drought resistance (Riederer and Schreiber, 2001, J. Exp. Bot 52, 2023-2032). Beside abiotic stress resistance the wax layer is part of the plant de fense against biotic stressor, especially insects as for example described by Marcell 25 and Beattie, 2002, Mol Plant Microbe Interact. 15(12), 1236-44. Furthermore they pro vide stability to pollen grains, thus influencing fertility and productivity. [0007.0.20.20] Very-long-chain fatty acids (VLCFAs), consisting of more than 18 carbon atoms like behenic acid, lignoceric acid, cerotic acid and melissic acid, are es sential components for the vitality of higher plants. The key enzyme of VLCFA biosyn 30 thesis, the extraplastidary fatty acid elongase, is shown for to be the primary target site of chloroacetamide herbicides. With an analysis of the fatty acid composition and the metabolism of 14C-labelled precursors (sterate, malonate, acetate), the reduction of VLCFAs was determined in vivo. The inhibition of the recombinant protein substanti- 1413 ates the first and rate-limiting step of VLCFA biosynthesis, the condensation of acyl CoA with malonyl-CoA to p-ketoacyl-CoA, to be the primary target site of chloroacetamides (150 = 10-100 nM). The concentration of VLCFAs within the un treated cell is low, the very-long-chain compounds are found mainly in plasma mem 5 brane lipids and epicuticular waxes. A shift of fatty acids towards shorter chain length or even the complete depletion of very-long-chain components is the consequence of the inhibition of VLCFA biosynthesis. Especially the loss of plasma membrane VLCFAs is involved in phytotoxic effects of chloroacetamides such as the inhibition of mem brane biogenesis and mitosis (Matthes, B., http://www.ub.uni 10 konstanz.de/kops/volltexte/2001/661/). [0008.0.20.20] Increased wax production in transgenic plants has for example been reported by Broun et al., 2004, Proc NatI. Acad. Sci, 101, 4706-4711. The authors overexpressed the transcriptional activator WIN1 in Arabidopsis, leading to increased wax load on arial organs. As this resulted in a complex change in the wax profile and 15 the transgenic overexpressors had characteristic alterations in growth and develop ment (Broun et al., 2004, Proc NatI. Acad. Sci, 101, 4706-4711) there is still a need for a more controlled increased production of defined VLCFAs. [0009.0.20.20] Very long chain fatty alcohols obtained from plant waxes and bees wax have also been reported to lower plasma cholesterol in humans and existing data 20 support the hypothesis that VLCFA exert regulatory roles in cholesterol metabolism in the peroxisome and also alter LDL uptake and metabolism (discussed in Hargrove et al., 2004, Exp Biol Med (Maywood), 229(3): 215-26). Due to these interesting physiological roles and the nutritional, cosmetic and agrobio technological potential of behenic acid (C22:0), lignoceric acid (C24:0), cerotic acid 25 (C26:0) and melissic acid (C30:0) there is a need to identify the genes of enzymes and other proteins involved in behenic acid, lignoceric acid, cerotic acid or melissic acid metabolism, and to generate mutants or transgenic plant lines with which to modify the behenic acid, lignoceric acid, cerotic acid or melissic acid content in plants. [0010.0.20.20] One way to increase the productive capacity of biosynthesis is to ap 30 ply recombinant DNA technology. Thus, it would be desirable to produce behenic acid, lignoceric acid, cerotic acid or melissic acid in plants. That type of production permits control over quality, quantity and selection of the most suitable and efficient producer organisms. The latter is especially important for commercial production economics and therefore availability to consumers. In addition it is desirable to produce behenic acid, 1414 lignoceric acid, cerotic acid or melissic acid in plants in order to increase plant produc tivity and resistance against biotic and abiotic stress as discussed before. Therefore improving the productivity of said fatty acids and improving the quality of cosmetics, pharmaceuticals, foodstuffs and animal feeds, in particular of nutrition sup 5 plements, is an important task of the different industries. [0011.0.20.20] To ensure a high productivity of said fatty acids in plants or micro organism, it is necessary to manipulate the natural biosynthesis of said fatty acids in said organisms. Thus, it would be advantageous if an algae, plant or other microorganism were avail 10 able which produce large amounts behenic acid, lignoceric acid, cerotic acid or melissic acid. The invention discussed hereinafter relates in some embodiments to such trans formed prokaryotic or eukaryotic microorganisms. It would also be advantageous if plants were available whose roots, leaves, stem, fruits or flowers produced large amounts of behenic acid, lignoceric acid, cerotic acid or 15 melissic acid. The invention discussed hereinafter relates in some embodiments to such transformed plants. [0012.0.20.20] Accordingly, there is still a great demand for new and more suitable genes which encode enzymes or other regulators which participate in the biosynthesis of said fatty acids and make it possible to produce said fatty acids specifically on an 20 industrial scale without that unwanted byproducts are formed. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of said fatty acids on the other hand as less as possible byproducts should be produced in the production process. 25 Therefore improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. This is necessary since, for example behenic acid, lig noceric acid, cerotic acid or melissic acid, as mentioned above, which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as balanced as possible 30 a specific behenic acid, lignoceric acid, cerotic acid or melissic acid profile in the diet since an excess of behenic acid, lignoceric acid, cerotic acid or melissic acid above a specific concentration in the food has a positive effect. A further increase in quality is 1415 only possible via addition of further behenic acid, lignoceric acid, cerotic acid or melissic acid, which are limiting. To ensure a high quality of foods and animal feeds, it is therefore necessary to add behenic acid, lignoceric acid, cerotic acid or melissic acid in a balanced manner to suit 5 the organism. [0013.0.0.20] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.20.20] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is cerotic acid, lig noceric acid and/or melissic acid in free or bound form for example bound to lipids, oils 10 or fatty acids. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "cerotic acid, lignoceric acid and/or melissic acid in free or bound form". Further, the term "the fine chemicals" as used herein also relates to fine chemi cals comprising cerotic acid, lignoceric acid and/or melissic acid in free or bound form. [0015.0.20.20] In one embodiment, the term "cerotic acid, lignoceric acid and/or 15 melissic acid in free or bound form", "the fine chemical" or "the respective fine chemi cal" means at least one chemical compound selected from the group consisting of ce rotic acid, lignoceric acid, behenic acid or melissic acid or mixtures thereof in free or bound form. Throughout the specification the term "the fine chemical" or "the respective fine chemical" means a compound selected from the group cerotic acid lignoceric acid 20 or melissic acid or mixtures thereof in free form or bound to other compounds such as protein(s) such as enzyme(s), peptide(s), polypeptide(s), membranes or part thereof, or lipids, oils, waxes or fatty acids or mixtures thereof or in compositions with lipids. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen 25 tioned fine chemical. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the above men tioned fine chemical [0016.0.20.20] Accordingly, the present invention relates to a process for the produc 30 tion of cerotic acid, lignoceric acid and/or melissic acid, which comprises 1416 (a) increasing or generating the activity of a protein as shown in table II, application no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application 5 no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, cerotic acid, lignoceric acid and/or melissic acid or fine chemicals 10 comprising cerotic acid, lignoceric acid and/or melissic acid, are produced in said organism or in the culture medium surrounding the organism. [0016.1.20.20] Accordingly, the term "the fine chemical" means "cerotic acid lig noceric acid and/or melissic acid" in relation to all sequences listed in table I, applica tion no. 21, columns 5 and 7 or homologs thereof. Accordingly, the term "the fine 15 chemical" can mean "cerotic acid lignoceric acid and/or melissic acid", owing to circum stances and the context. Preferably the term "the fine chemical" means "cerotic acid lignoceric acid and/or melissic acid". In order to illustrate that the meaning of the term "the respective fine chemical" means "cerotic acid lignoceric acid and/or melissic acid in free or bound form" owing to the sequences listed in the context the term "the re 20 spective fine chemical" is also used. [0017.0.20.20] In another embodiment the present invention is related to a process for the production of cerotic acid, lignoceric acid and/or melissic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap 25 plication no. 21, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 30 (c) increasing or generating the activity of a protein as shown in table II, application no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 1417 (d) growing the organism under conditions which permit the production of cerotic acid, lignoceric acid and/or melissic acid in said organism. [0017.1.20.20] In another embodiment, the present invention relates to a process for the production of cerotic acid, lignoceric acid and/or melissic acid, which comprises 5 (a) increasing or generating the activity of a protein as shown in table II, application no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, cerotic acid, lignoceric acid and/or melissic acid or fine chemicals 15 comprising cerotic acid, lignoceric acid and/or melissic acid in said organism or in the culture medium surrounding the organism. [0018.0.20.20] Advantagously the activity of the protein as shown in table II, applica tion no. 21, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 21, column 5 is increased or generated in the abovementioned process in 20 the plastid of a microorganism or plant. [0019.0.0.20] to [0024.0.0.20] for the disclosure of the paragraphs [0019.0.0.20] to [0024.0.0.20] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.20.20] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 25 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 21, columns 5 and 7. Most preferred nucleic 30 acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin 1418 NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to 5 plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in 10 length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base 15 pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme 20 recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.20.20] As mentioned above the nucleic acid sequences coding for the pro 25 teins as shown in table 1l, application no. 21, column 3 and its homologs as disclosed in table 1, application no. 21, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably 30 linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table 1l, application no. 21, column 3 and its homologs as disclosed in table 1, application no. 21, columns 5 and 7. [0027.0.0.20] to [0029.0.0.20] for the disclosure of the paragraphs [0027.0.0.20] to [0029.0.0.20] see paragraphs [0027.0.0.0] and [0029.0.0.0] above.
1419 [0030.0.20.20] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a 5 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences 10 derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more 15 preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be 20 also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 21, columns 5 and 7. The person skilled in the art is able to join 25 said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 21, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 30 protein metioned in table II, application no. 21, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 21, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids 35 in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six 1420 amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 21, columns 5 and 7. Fur 5 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.20.20] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.20.20] Alternatively to the targeting of the sequences shown in table 1l, ap 10 plication no. 21, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 15 21, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 20 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 25 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.20] and [0030.3.0.20] for the disclosure of the paragraphs [0030.2.0.20] and [0030.3.0.20] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.20.20] For the inventive process it is of great advantage that by transforming 30 the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 21, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 1421 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 5 scribed from the sequences depicted in table I, application no. 21, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 21, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal 10 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, 15 PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 21, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 21, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 21, columns 5 and 7 or a sequence encoding a 20 protein as depicted in table II, application no. 21, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 21, columns 5 and 7 are encoded by differ 25 ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in 30 troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the 35 nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 21, columns 5 and 7.
1422 [0030.5.20.20] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 21, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.20.20] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 21, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.20] and [0032.0.0.20] for the disclosure of the paragraphs [0031.0.0.20] and [0032.0.0.20] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.20.20] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 21, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 21, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.20.20] Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 21, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.20] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.20.20] The sequence of b1 228 (Accession number A64870) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as an "unknown protein". Accordingly, in one embodiment, the process of the present invention comprises the use of an "unknown 1423 protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of cerotic acid, in particular for increasing the amount of cerotic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1228 protein is increased or gener 5 ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1228 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 10 The sequence of b2207 (Accession number E64990) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "periplasmic nitrate reductase assembly protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "periplasmic nitrate reductase assembly protein" or its homolog, e.g. as shown herein, for the pro 15 duction of the fine chemical, meaning of cerotic acid, in particular for increasing the amount of cerotic acid in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b2207 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in 20 table V. In another embodiment, in the process of the present invention the activity of a b2207 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2965 (Accession number NP_417440) from Escherichia coli has 25 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "ornithine decarboxylase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "ornithine decarboxylase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of ce rotic acid, in particular for increasing the amount of cerotic acid in free or bound form in 30 an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2965 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2965 35 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3568 (Accession number S47789) from Escherichia coli has been 1424 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "xylose transport permease protein xylH". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "xylose transport permease protein xylH" or its homolog, e.g. as shown herein, for the production of the 5 fine chemical, meaning of lignoceric acid, in particular for increasing the amount of lig noceric acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3568 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 10 In another embodiment, in the process of the present invention the activity of a b3568 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 15 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3 deoxy-D-arabino-heptulosonate-7-phosphate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of lignoceric acid, in particular 20 for increasing the amount of lignoceric acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3 30 deoxy-D-arabino-heptulosonate-7-phosphate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of melissic acid , in particular for increasing the amount of milissic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased or generated, e.g. from Saccharomyces 35 cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. The sequence of YDR035W (Accession number NP_010320) from Saccharomyces 1425 cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3 5 deoxy-D-arabino-heptulosonate-7-phosphate synthase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of lignoceric acid and milissic acid, in particular for increasing the amount of lignoceric acid and milissic in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein is increased or 10 generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 15 The sequence of YLR1 53C (Accession number NP_013254) from Saccharomyces cerevisiae has been published in Johnston et al., Nature 387 (6632 Suppl), 87-90 (1997) and Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as a "acetyl CoA synthetase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "acetyl CoA synthetase" or its homolog, 20 e.g. as shown herein, for the production of the fine chemical, meaning of lignoceric acid in free or bound form, in particular for increasing the amount of lignoceric acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR1 53C protein is increased or gen erated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at 25 least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YLR1 53C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.20.20] In one embodiment, the homolog of the b1228, b2207, b2965 or 30 b3568 is a homolog having said acitivity and being derived from bacteria. In one em bodiment, the homolog of the b1228, b2207, b2965 or b3568 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b1228, b2207, b2965 or b3568 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the homolog of the b1228, b2207, 35 b2965 or b3568 is a homolog having said acitivity and being derived from Enterobacte riales. In one embodiment, the homolog of the b1228, b2207, b2965 or b3568 is a ho- 1426 molog having said acitivity and being derived from Enterobacteriaceae. In one em bodiment, the homolog of the b1228, b2207, b2965 or b3568 is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YDR035W or YLR1 53C is a homolog having 5 said activity and being derived from an eukaryotic. In one embodiment, the homolog of the YDR035W or YLR153C is a homolog having said activity and being derived from Fungi. In one embodiment, the homolog of the YDR035W or YLR153C is a homolog having said activity and being derived from Ascomyceta. In one embodiment, the ho molog of the YDR035W or YLR1 53C is a homolog having said activity and being de 10 rived from Saccharomycotina. In one embodiment, the homolog of the YDR035W or YLR1 53C is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the YDR035W or YLR1 53C is a homolog having said activity and being derived from Saccharomycetales. In one embodiment, the ho molog of the YDR035W or YLR1 53C is a homolog having said activity and being de 15 rived from Saccharomycetaceae. In one embodiment, the homolog of the YDR035W or YLR1 53C is a homolog having said activity and being derived from Saccharomycetes. [0038.0.0.20] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.20.20] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 21, column 3" if its de novo activ 20 ity, or its increased expression directly or indirectly leads to an increased in the fine chemical level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica tion no. 21, column 3, preferably in the event the nucleic acid sequences encoding said 25 proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 21, column 3, or which has at least 10% of 30 the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in table II, application no. 21, column 3 of Saccharomyces cerevisiae. [0040.0.0.20] to [0047.0.0.20] for the disclosure of the paragraphs [0040.0.0.20] to [0047.0.0.20] see paragraphs [0040.0.0.0] to [0047.0.0.0] above.
1427 [0048.0.20.20] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly 5 peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table 1l, application no. 21, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.20] to [0051.0.0.20] for the disclosure of the paragraphs [0049.0.0.20] to [0051.0.0.20] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 10 [0052.0.20.20] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 21, columns 5 and 7 alone 15 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 20 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.20] to [0058.0.0.20] for the disclosure of the paragraphs [0053.0.0.20] to [0058.0.0.20] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.20.20] In case the activity of the Escherichia coli protein b1228 or its ho 25 mologs, e.g. a "unknown protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of cerotic acid in free or bound form between 43% and 137% or more is conferred. In case the activity of the Escherichia coli protein b2207 or its homologs, e.g. a "perip 30 lasmic nitrate reductase assembly protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of cerotic acid in free or bound form between 41% and 55% or more is conferred. In case the activity of the Escherichia coli protein b2965 or its homologs, e.g. a "or- 1428 nithine decarboxylase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of cerotic acid in free or bound form between 55% and 191 % or more is conferred. In case the activity of the Escherichia coli protein b3568 or its homologs, e.g. a "xylose 5 transport permease protein xylH" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of lignoceric acid in free or bound form between 31% and 134% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR035W or its homologs, 10 e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of lignoceric acid in free or bound form between 87% and 101 % or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR035W or its homologs, 15 e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of mellissic acid in free or bound form between 30% and 75% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR035W or its homologs, 20 e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of lignoceric acid in free or bound form between 53% and 126% or more is conferred. In case the activity of the Saccaromyces cerevisiae protein YDR035W or its homologs, 25 e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of melissic acid in free or bound form between 30% and 75% or more and of lignoceric acid in free or bound form between 53% and 126% or more is conferred. 30 In case the activity of the Saccaromyces cerevisiae protein YLR1 53C or its homologs, e.g. a "acetyl CoA synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of lignoceric acid in free or bound form between 44% and 53% or more is conferred. 35 [0060.0.20.20] In case the activity of the Escherichia coli proteins b1228, b2207, b2965 b3568 or their homologs, are increased advantageously in an organelle such as 1429 a plastid or mitochondria, preferably an increase of the fine chemical such as cerotic acid, lignoceric acid or melissic acid or mixtures thereof in free or bound form is con ferred. In case the activity of the Saccaromyces cerevisiae protein YDR035W and/or 5 YLR1 53C or their homologs, are increased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical such as cerotic acid, lignoceric acid or melissic acid or mixtures thereof in free or bound form is con ferred. [0061.0.0.20] and [0062.0.0.20] for the disclosure of the paragraphs [0061.0.0.20] and 10 [0062.0.0.20] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.20.20] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the structure of the polypeptide described herein, in particular of the polypeptides compris ing the consensus sequence shown in table IV, application no. 21, column 7 or of the 15 polypeptide as shown in the amino acid sequences as disclosed in table 1l, application no. 21, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 1, application no. 21, columns 5 and 7 or its herein described functional homologues 20 and has the herein mentioned activity. [0064.0.20.20] / [0065.0.0.20] and [0066.0.0.20] for the disclosure of the paragraphs [0065.0.0.20] and [0066.0.0.20] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.20.20] In one embodiment, the process of the present invention comprises 25 one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, appli cation no. 21, columns 5 and 7 or its homologs activity having herein-mentioned 30 cerotic acid, lignoceric acid and/or melissic acid increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a 1430 fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 21, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 21, columns 5 and 7 or its homologs activity or of 5 a mRNA encoding the polypeptide of the present invention having herein mentioned cerotic acid, lignoceric acid and/or melissic acid increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep 10 tide of the present invention having herein-mentioned cerotic acid, lignoceric acid and/or melissic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 21, columns 5 and 7 or its ho mologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or 15 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned cerotic acid, lignoceric acid and/or melissic acid increasing activity, e.g. of a polypeptide having the activity of 20 a protein as indicated in table II, application no. 21, columns 5 and 7 or its ho mologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned cerotic acid, lignoceric acid and/or 25 melissic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table II, application no. 21, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 30 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned ce rotic acid, lignoceric acid and/or melissic acid increasing activity, e.g. of a poly peptide having the activity of a protein as indicated in table II, application no. 21, columns 5 and 7 or its homologs activity, and/or 1431 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned cerotic acid, lignoceric acid and/or melissic acid increasing activity, e.g. of a 5 polypeptide having the activity of a protein as indicated in table 1l, application no. 21, columns 5 and 7 or its homologs activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 21, columns 5 and 7 or its homologs activity, by adding 10 positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele 15 ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres 20 sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or 25 j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned cerotic acid, lig 30 noceric acid and/or melissic acid increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 21, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1432 I) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned cerotic acid, lignoceric acid and/or melissic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 5 cation no. 21, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial ex pression of the nucleic acids or polypeptides of the invention; and/or 10 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned cerotic acid, lignoceric acid and/or melissic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 21, columns 5 and 7 or its homologs activity in plastids by integration 15 of a nucleic acid of the invention into the plastidal genome under control of pref erable a plastidial promoter. [0068.0.20.20] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid 20 sequence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the fine chemical after increasing the expression or activity of the encoded polypeptide preferably in organ elles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 21, column 3 or its homologs. Preferably 25 the increase of the fine chemical takes place in plastids. [0069.0.0.20] to [0079.0.0.20] for the disclosure of the paragraphs [0069.0.0.20] to [0079.0.0.20] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.20.20] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 21, col 30 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 21, column 3 and activates its transcription.
1433 A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table 1l, application no. 21, column 3. The expression of the 5 chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table 1l, application no. 21, column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.20] to [0084.0.0.20] for the disclosure of the paragraphs [0081.0.0.20] to 10 [0084.0.0.20] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.20.20] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu 15 cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel metabolites composition in the organism, e.g. cerotic acid, lignoceric acid and/or melissic acid and mixtures thereof. 20 [0086.0.0.20] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.20.20] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to cerotic acid, lignoceric acid and/or melissic acid compounds such as other fatty acid such as palmitic acid, oleic acid, linoleic acid, lino 25 lenic acid, vitamins, amino acids or fatty acids. [0088.0.20.20] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a 30 microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 21, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present 1434 invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in 5 the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and 10 d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.20.20] The organism, in particular the microorganism, non-human animal, the 15 plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate, other free or/and bound fatty acids such as as myrisitic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, linoleic acid, lino 20 lenic acid or erucic acid or mixtures thereof. [0090.0.0.20] to [0097.0.0.20] for the disclosure of the paragraphs [0090.0.0.20] to [0097.0.0.20] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.20.20] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 25 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 21, columns 5 and 7 or a derivative thereof, or 30 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 21, columns 5 and 7 or a derivative thereof, or 1435 c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by 5 way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least 10 on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.20.20] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven 15 tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 21, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 21, columns 5 and 7 to the organelle preferentially the plastids. Altena 20 tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 21, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient 25 expression is in principal also desirable and possible. [0100.0.0.20] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.20.20] In an advantageous embodiment of the invention, the organism takes the form of a plant whose cerotic acid, lignoceric acid and/or melissic acid content is modified advantageously owing to the nucleic acid molecule of the present invention 30 expressed. This is important for plant breeders since, for example, the nutritional value of plants for animals is dependent on the abovementioned cerotic acid, lignoceric acid and/or melissic acid and the general amount of cerotic acid, lignoceric acid and/or melissic acid in feed. After the activity of the protein as shown in table 1l, application no. 21, column 3 has been increased or generated, or after the expression of nucleic acid 35 molecule or polypeptide according to the invention has been generated or increased, 1436 the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. [0102.0.0.20] to [0110.0.0.20] for the disclosure of the paragraphs [0102.0.0.20] to [0110.0.0.20] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. 5 [0111.0.20.20] In a preferred embodiment, the fine chemical (cerotic acid, lignoceric acid and/or melissic acid) is produced in accordance with the invention and, if desired, is isolated. The production of further fatty acids such as myrisitic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, linoleic acid, linolenic acid or erucic acid and mixtures thereof or mixtures of other fatty acids by the process according to the inven 10 tion is advantageous. It may be advantageous to increase the pool of free fatty acids such as cerotic acid, lignoceric acid and/or melissic acid and other as aforementioned in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.20.20] In another preferred embodiment of the invention a combination of the 15 increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a nucleic acid encoding a protein or polypeptid for example another gene of the cerotic acid, lignoceric acid and/or melissic acid biosyn thesis, or a compound, which functions as a sink for the desired cerotic acid, lignoceric acid and/or melissic acid in the organism is useful to increase the production of the 20 respective fine chemical. [0113.0.20.20] In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further fatty acids other than cerotic acid, lignoceric acid and/or melissic acid or compounds for which the respective fine chemical is a biosynthesis precursor compounds, e.g. shorter 25 fatty acids such as acetic acid, amino acids, or mixtures thereof or mixtures of other fatty acids, in particular of cerotic acid, lignoceric acid and/or melissic acid, by the process according to the invention is advantageous. [0114.0.20.20] In the case of the fermentation of microorganisms, the abovemen tioned desired fine chemical may accumulate in the medium and/or the cells. If micro 30 organisms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, 1437 or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formu 5 lation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, and spray granulation or by other meth ods. Preferably the respective fine chemical comprising compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on 10 which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. 15 [0115.0.20.20] Transgenic plants which comprise the fine chemical such as cerotic acid, lignoceric acid and/or melissic acid synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the fine chemical synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant 20 parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, em bryos, calli, cotelydons, petioles, flowers, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or 25 embryonic tissue. However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, (in the form of their organic extracts, e.g. alcohol, or other organic solvents or water containing extract and/or free cerotic acid, lignoceric acid and/or melissic acid or other extracts. The re 30 spective fine chemical produced by this process can be obtained by harvesting the organisms, either from the medium in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extrac tion it is beneficial to clean, to temper and if necessary to hull and to flake the plant material. To allow for greater ease of disruption of the plant parts, specifically the 35 seeds, they can previously be comminuted, steamed or roasted. Seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents 1438 such as organic solvents like warm hexane or water or mixtures of organic solvents. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. 5 Thereafter, the resulting products can be processed further, i.e. degummed and/or re fined. In this process, substances such as the plant mucilages and suspended matter can be first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Because cerotic acid, lignoceric acid and/or melissic acid in microorganisms are local 10 ized intracellular, their recovery essentially comes down to the isolation of the biomass. Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, ad sorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose. 15 Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, ad sorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. 20 [0115.1.20.20] The identity and purity of the compound(s) isolated can be deter mined by prior-art techniques. They encompass high-performance liquid chromatogra phy (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbi ological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. 25 Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Indus trial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. 30 (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17. [0115.2.20.20] Cerotic acid, lignoceric acid and/or melissic acid can for example be analyzed advantageously via HPLC, LC or GC separation and MS (masspectrome try)detection methods. The unambiguous detection for the presence of behenic acid, 1439 lignoceric acid, cerotic acid or melissic acid containing products can be obtained by analyzing recombinant organisms using analytical standard methods: LC, LC-MS, MS or TLC). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cooking, or via other applicable methods. 5 [0116.0.20.20] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 10 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 21, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 15 cleic acid molecule shown in table 1, application no. 21, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 20 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) 25 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 30 preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and and conferring an increase in the amount of the fine chemical in an or 35 ganism or a part thereof; 1440 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 21, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 5 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 10 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 21, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly 15 peptide shown in table II, application no. 21, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 20 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.20.20] In one embodiment, the nucleic acid molecule used in the process of 25 the invention distinguishes over the sequence indicated in table I A, application no. 21, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 21, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 30 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 21, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 21, columns 5 and 7. [0116.2.20.20] In one embodiment, the nucleic acid molecule used in the process of 35 the invention distinguishes over the sequence indicated in table I B, application no. 21, 1441 columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 21, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 5 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 21, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 21, columns 5 and 7. [0117.0.20.20] In one embodiment, the nucleic acid molecule used in the process 10 distinguishes over the sequence shown in table I, application no. 21, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 21, columns 5 and 7. In one embodiment, the nucleic acid molecule of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 21, columns 5 and 7. In another embodi 15 ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 21, columns 5 and 7. [0118.0.0.20] to [0120.0.0.20] for the disclosure of the paragraphs [0118.0.0.20] to [0120.0.0.20] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.20.20] Nucleic acid molecules with the sequence shown in table I, application 20 no. 21, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 21, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 21, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 21, column 3 or conferring the 25 fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.20] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.20.20] Nucleic acid molecules, which are advantageous for the process ac 30 cording to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 21, column 3 can be determined from generally ac cessible databases. [0124.0.0.20] for the disclosure of this paragraph see paragraph [0124.0.0.0] above.
1442 [0125.0.20.20]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 21, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or 5 ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.20] to [0133.0.0.20] for the disclosure of the paragraphs [0126.0.0.20] to [0133.0.0.20] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.20.20] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or 10 more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 21, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 15 21, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0135.0.0.20] to [0140.0.0.20] for the disclosure of the paragraphs [0135.0.0.20] to [0140.0.0.20] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.20.20] Synthetic oligonucleotide primers for the amplification, e.g. as shown 20 in table III, application no. 21, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 21, columns 5 and 7 or the sequences derived from table II, application no. 21, columns 5 and 7. [0142.0.20.20] Moreover, it is possible to identify conserved regions from various or 25 ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence 30 shown in table IV, application no. 21, column 7 is derived from said aligments. [0143.0.20.20] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac- 1443 tivity of a protein as shown in table II, application no. 21, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.20] to [0151.0.0.20] for the disclosure of the paragraphs [0144.0.0.20] to [0151.0.0.20] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 5 [0152.0.20.20] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 21, columns 5 and 7, preferably of table I B, application no. 21, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the 10 cerotic acid, lignoceric acid and/or melissic acid increasing activity. [0153.0.0.20] to [0159.0.0.20] for the disclosure of the paragraphs [0153.0.0.20] to [0159.0.0.20] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.20.20] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above 15 mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application 20 no. 21, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement 25 thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.20.20] The nucleic acid molecule of the invention comprises a nucleotide se 30 quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 21, columns 5 and 7, preferably shown in 1444 table I B, application no. 21, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 21, column 3 by for example expression either in the cytsol or in an organelle such 5 as a plastid or mitochondria or both, preferably in plastids. [0162.0.20.20] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7, or 10 a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a cerotic acid, lignoceric acid and/or melissic acid increase by for example ex pression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 21, column 3. 15 [0163.0.20.20] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a 20 polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the 25 generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo 30 tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 21, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly 35 peptide of the invention or of the polypeptide used in the process of the invention, e.g.
1445 as the primers described in the examples of the present invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 21, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.20] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. 5 [0165.0.20.20] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 21, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a cerotic acid, lignoceric acid and/or melissic acid 10 increasing activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.20.20] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue 15 which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 21, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. 20 [0167.0.20.20] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or 25 more homologous to an entire amino acid sequence of table II, application no. 21, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.20] and [0169.0.0.20] for the disclosure of the paragraphs [0168.0.0.20] 30 and [0169.0.0.20] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.20.20] The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 21, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly- 1446 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 21, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the 5 invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 21, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in 10 table II, application no. 21, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 21, columns 5 and 7, prefera bly as indicated in table I A, application no. 21, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid 15 molecule indicated in table I B, application no. 21, columns 5 and 7. [0171.0.0.20] to [0173.0.0.20] for the disclosure of the paragraphs [0171.0.0.20] to [0173.0.0.20] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.20.20] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un 20 der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 21, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. 25 [0175.0.0.20] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.20.20] Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 21, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule 30 having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the 1447 gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.20] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.20.20]For example, nucleotide substitutions leading to amino acid substitutions 5 at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 21, columns 5 and 7. [0179.0.0.20] and [0180.0.0.20] for the disclosure of the paragraphs [0179.0.0.20] and [0180.0.0.20] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. 10 [0181.0.20.20] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such 15 polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 21, columns 5 and 7, preferably shown in table II A, application no. 21, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% 20 identical to an amino acid sequence shown in table II, application no. 21, columns 5 and 7, preferably shown in table II A, application no. 21, columns 5 and 7 and is capa ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the 25 protein encoded by the nucleic acid molecule is at least about 60% identical to the se quence shown in table II, application no. 21, columns 5 and 7, preferably shown in ta ble II A, application no. 21, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 21, columns 5 and 7, preferably shown in table II A, application no. 21, columns 5 and 7, even more prefera 30 bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap plication no. 21, columns 5 and 7, preferably shown in table II A, application no. 21, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 21, columns 5 and 7, preferably shown in table II A, application no. 21, columns 5 and 7.
1448 [0182.0.0.20] to [0188.0.0.20] for the disclosure of the paragraphs [0182.0.0.20] to [0188.0.0.20] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.20.20] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 21, columns 5 and 7, preferably shown in table II B, applica 5 tion no. 21, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 21, columns 10 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the polypeptide as shown in table II, application no. 21, columns 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7. [0190.0.20.20] Functional equivalents derived from the nucleic acid sequence as 15 shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 20 99% homology with one of the polypeptides as shown in table II, application no. 21, columns 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7 resp., according to the invention and encode polypeptides having essentially the same properties as the polypeptide as shown in table II, application no. 21, columns 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7. 25 [0191.0.0.20] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.20.20] A nucleic acid molecule encoding an homologous to a protein se quence of table II, application no. 21, columns 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu 30 cleic acid molecule of the present invention, in particular of table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 21, columns 5 and 7, preferably shown in table I B, 1449 application no. 21, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. [0193.0.0.20] to [0196.0.0.20] for the disclosure of the paragraphs [0193.0.0.20] to [0196.0.0.20] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. 5 [0197.0.20.20] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% 10 or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably 15 from table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.20.20] In one embodiment of the present invention, the nucleic acid molecule 20 of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, 25 columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 21, columns 5 and 7, 30 preferably shown in table I B, application no. 21, columns 5 and 7. [0199.0.20.20] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 21, columns 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 1450 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 21, columns 5 and 7, preferably 5 shown in table II B, application no. 21, columns 5 and 7. [0200.0.20.20] In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, appli cation no. 21, columns 5 and 7, preferably shown in table II B, application no. 21, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, 10 said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 21, columns 5 and 7, preferably shown in table I B, application no. 21, columns 5 and 7. [0201.0.20.20] Polypeptides (= proteins), which still have the essential biological or 15 enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the 20 activity of a polypeptide shown in table II, application no. 21, columns 5 and 7 ex pressed under identical conditions. [0202.0.20.20] Homologues of table I, application no. 21, columns 5 and 7 or of the derived sequences of table II, application no. 21, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA 25 sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the 30 promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person 35 skilled in the art and are mentioned herein below.
1451 [0203.0.0.20] to [0215.0.0.20] for the disclosure of the paragraphs [0203.0.0.20] to [0215.0.0.20] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.20.20] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting 5 of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 21, columns 5 and 7, preferably in table || B, application no. 21, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof 10 b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 21, columns 5 and 7, pref erably in table I B, application no. 21, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; 15 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% 20 identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the 25 amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine 30 chemical in an organism or a part thereof; 1452 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; 5 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 21, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex 10 pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus 15 sequence shown in table IV, application no. 21, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 21, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ 20 ism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 25 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 21, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 21, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence 30 which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 21, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention 1453 does not consist of the sequence shown in table I A and/or I B, application no. 21, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 21, columns 5 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 21, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 21, columns 5 10 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 21, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 21, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence 15 depicted in table II A and/or II B, application no. 21, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 21, columns 5 and 7. [0217.0.0.20] to [0226.0.0.20] for the disclosure of the paragraphs [0217.0.0.20] to 20 [0226.0.0.20] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.20.20] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector 25 systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac 30 cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep 35 tides shown in table II, application no. 21, columns 5 and 7 can be cloned 3'prime to 1454 the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.20] to [0239.0.0.20] for the disclosure of the paragraphs [0228.0.0.20] to 5 [0239.0.0.20] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.20.20] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously 10 into a plant cell or a microorgansims. In addition to the sequence mentioned in Table 1, application no. 21, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the fatty acid biosynthetic pathway is expressed in the organisms such as plants or 15 microorganisms. Advantageously additional genes for the synthesis of cerotic acid, lignoceric acid and/or melissic acid are used. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organ isms. This leads to an increased synthesis of the respective desired fine chemical 20 since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table 1, application no. 21, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resis 25 tant plants. [0241.0.20.20] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous direct or indirect overexpression of at least one nucleic acid or one of the genes which code for proteins involved in the fatty acid metabolism, in particular in synthesis of cerotic acid, lignoceric acid and/or 30 melissic acid. Indirect overexpression might be brought about by the manipulation of the regulation of the endogenous gene, for example through promotor mutations or the expression of natural or artificial transcriptional regulators.
1455 [0242.0.20.20] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the acetyl-CoA or malonyl-CoA metabolic pathway or a polypeptide having a very long chain fatty acid 5 acyl (VLCFA) CoA synthase activity. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of fatty acids, fatty acids precursor or fatty acids me tabolites, preferably cerotic acid, lignoceric acid and/or melissic acid, as desired since, 10 for example, feedback regulations no longer exist to the same extent or not at all. [0242.1.20.20] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which advantageously simultaneously a cerotic acid, lignoceric acid and/or melissic acid degrading protein is attenuated, in par ticular by reducing the rate of expression of the corresponding gene, or by inactivating 15 the gene for example the mutagenesis and/or selection. In another advantageous em bodiment the synthesis of competitive pathways which rely on the same precoursers are down regulated or interrupted. [0242.2.20.20] The respective fine chemical produced can be isolated from the or ganism by methods with which the skilled worker are familiar, for example via extrac 20 tion, salt precipitation, and/or different chromatography methods. The process accord ing to the invention can be conducted batchwise, semibatchwise or continuously. The fine chemcical and other fatty acids produced by this process can be obtained by har vesting the organisms, either from the crop in which they grow, or from the field. This can be done via for example pressing or extraction of the plant parts. 25 [0242.3.20.20] Preferrably, the compound is a composition comprising the essentially pure cerotic acid, lignoceric acid and/or melissic acid or a recovered or isolated cerotic acid, lignoceric acid and/or melissic acid. [0243.0.0.20] to [0264.0.0.20] for the disclosure of the paragraphs [0243.0.0.20] to [0264.0.0.20] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. 30 [0265.0.20.20] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, 1456 the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se 5 quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with 10 the nucleic acid molecule of the present invention as shown in table 1, application no. 21, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.20] to [0287.0.0.20] for the disclosure of the paragraphs [0266.0.0.20] to [0287.0.0.20] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. 15 [0288.0.20.20] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in 20 table 1l, application no. 21, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 21, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. 25 [0289.0.0.20] to [0296.0.0.20] for the disclosure of the paragraphs [0289.0.0.20] to [0296.0.0.20] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.20.20] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in 30 particular, an anti-b1228, anti-b2207, anti-b2965, anti-b3568, anti-YDR035W and/or anti-YLR1 53C protein antibody or an antibody against polypeptides as shown in table 1l, application no. 21, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies.
1457 [0298.0.0.20] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.20.20] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 21, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 21, columns 5 and 7 or func 5 tional homologues thereof. [0300.0.20.20] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 21, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the 10 consensus sequence shown in table IV, application no. 21, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.20] to [0304.0.0.20] for the disclosure of the paragraphs [0301.0.0.20] to 15 [0304.0.0.20] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.20.20] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence 20 shown in table II A and/or II B, application no. 21, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 21, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the 25 polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 21, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or 30 11 B, application no. 21, columns 5 and 7. [0306.0.0.20] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.20.20] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid 1458 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 21, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A 5 and/or II B, application no. 21, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 21, columns 5 and 7. 10 [0308.0.20.20] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 21, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 21, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, 15 evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep 20 tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.20] to [0311.0.0.20] for the disclosure of the paragraphs [0309.0.0.20] to [0311.0.0.20] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. 25 [0312.0.20.20] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 21, columns 5 and 7. [0313.0.20.20] Further, the polypeptide can have an amino acid sequence which is 30 encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and 1459 more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 21, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 5 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 21, columns 5 and 7 or which is homologous thereto, as defined above. 10 [0314.0.20.20] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 21, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 15 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 21, columns 5 and 7. [0315.0.0.20] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.20.20] Biologically active portions of an polypeptide of the present invention 20 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 21, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 25 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.20] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. 30 [0318.0.20.20] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 21, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 21, column 3, pref- 1460 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 21, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in 5 efficiency or activity in relation to the wild type protein. [0319.0.20.20] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the 10 mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 21, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im 15 proved. [0320.0.0.20] to [0322.0.0.20] for the disclosure of the paragraphs [0320.0.0.20] to [0322.0.0.20] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.20.20] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 21, column 3 refers to a polypeptide having an amino acid sequence cor 20 responding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 25 21, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.20] to [0329.0.0.20] for the disclosure of the paragraphs [0324.0.0.20] to [0329.0.0.20] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.20.20] In an especially preferred embodiment, the polypeptide according to 30 the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 21, columns 5 and 7. [0331.0.0.20] to [0346.0.0.20] for the disclosure of the paragraphs [0331.0.0.20] to [0346.0.0.20] see paragraphs [0331.0.0.0] to [0346.0.0.0] above.
1461 [0347.0.20.20] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the 5 invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 21, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as 10 plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 21, col 15 umn 3 or a protein as shown in table II, application no. 21, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.20] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. 20 [0349.0.20.20] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 21, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described 25 (US 5,565,350; WO 00/15815; also see above). [0350.0.0.20] to [0358.0.0.20] for the disclosure of the paragraphs [0350.0.0.20] to [0358.0.0.20] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.20.20] Transgenic plants comprising cerotic acid, lignoceric acid and/or melissic acid or mixtures thereof synthesized in the process according to the invention 30 can be marketed directly without isolation of the compounds synthesized. In the proc ess according to the invention, plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue.
1462 The cerotic acid, lignoceric acid and/or melissic acid produced in the process according to the invention may, however, also be isolated from the plant in the form of their free cerotic acid, lignoceric acid and/or melissic acid produced by this process can be iso lated by harvesting the plants either from the culture in which they grow or from the 5 field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant leaves, plant fruits, flowers and the like. The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, flowers and the like as mentioned above in the case of transgenic plant organisms 10 derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, cosmet ics, pharmaceuticals or fine chemicals. [0360.0.0.20] to [0362.0.0.20] for the disclosure of the paragraphs [0360.0.0.20] to [0362.0.0.20] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. 15 [0363.0.20.20] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the cerotic acid, lignoceric acid and/or melissic acid produced in the process can be isolated. The re sulting fine chemical can, if appropriate, subsequently be further purified, if desired 20 mixed with other active ingredients such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, formulated. [0364.0.20.20] In one embodiment, cerotic acid, lignoceric acid and/or melissic acid is the fine chemical. [0365.0.20.20] The cerotic acid, lignoceric acid and/or melissic acid, in particular the 25 respective fine chemicals obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combina tion with each other or alone for the production of pharmaceuticals, health products, foodstuffs, animal feeds, nutrients or cosmetics. Accordingly, the present invention re lates a method for the production of pharmaceuticals, health products, food stuff, ani 30 mal feeds, nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of the cerotic acid, lignoceric acid and/or melissic acid containing, in particular cerotic acid, lignoceric acid and/or melissic acid containing composition produced or the respective fine chemical produced if desired and formulat ing the product with a pharmaceutical acceptable carrier or formulating the product in a 1463 form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the cerotic acid, lignoceric acid and/or melissic acid produced in the process or of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals. 5 [0366.0.0.20] to [0369.0.0.20] for the disclosure of the paragraphs [0366.0.0.20] to [0369.0.0.20] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.20.20] The fermentation broths obtained in this way, containing in particular cerotic acid, lignoceric acid and/or melissic acid in mixtures with other organic acids, amino acids, polypeptides or polysaccarides, normally have a dry matter content of 10 from 1 to 70% by weight, preferably 7.5 to 25% by weight. Sugar-limited fermentation is additionally advantageous, e.g. at the end, for example over at least 30% of the fer mentation time. This means that the concentration of utilizable sugar in the fermenta tion medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/l during this time. The fermentation broth is then processed further. Depending on requirements, the 15 biomass can be removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combi nation of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling 20 film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.20.20] Accordingly, it is possible to purify the cerotic acid, lignoceric acid and/or melissic acid, in particular the cerotic acid, lignoceric acid and/or melissic acid 25 produced according to the invention further. For this purpose, the product-containing composition, e.g. a total or partial extraction fraction using organic solvents, is sub jected for example to separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, 30 using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. [0372.0.0.20] to [0376.0.0.20], [0376.1.0.20] and [0377.0.0.20]for the disclosure of the paragraphs [0372.0.0.20] to [0376.0.0.20], [0376.1.0.20] and [0377.0.0.20] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above.
1464 [0378.0.20.20] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 5 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 10 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 21, columns 5 and 7, preferably in table I B, application no. 21, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a 15 plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 20 compared to the wild type. [0379.0.0.20] to [0383.0.0.20] for the disclosure of the paragraphs [0379.0.0.20] to [0383.0.0.20] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.20.20] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 25 microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 30 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 21, column 3, eg compar- 1465 ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 21, column 3. [0385.0.0.20] to [0404.0.0.20] for the disclosure of the paragraphs [0385.0.0.20] to [0404.0.0.20] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. 5 [0405.0.20.20] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identi 10 fied with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other fatty acids, in particular fatty acids such as myrisitic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, linoleic acid, lino lenic acid or erucic acid. 15 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the 20 invention, the antibody of the present invention, can be used for the reduction of the fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.20] to [0435.0.0.20] for the disclosure of the paragraphs [0406.0.0.20] to [0435.0.0.20] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.20.20] Production of cerotic acid, lignoceric acid and/or melissic acid in 25 Chlamydomonas reinhardtii The cerotic acid, lignoceric acid and/or melissic acid production can be analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below. In addition a production in other organisms such as plants or microorganisms such as 30 yeast, Mortierella alpina, Corynebacterium glutamicum or Escherichia coli is possible. [0437.0.0.20] and [0438.0.0.20] for the disclosure of the paragraphs [0437.0.0.20] and [0438.0.0.20] see paragraphs [0437.0.0.0] and [0438.0.0.0] above.
1466 [0439.0.20.20] Example 9: Analysis of the effect of the nucleic acid molecule on the production of cerotic acid, lignoceric acid and/or melissic acid [0440.0.10.10] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as cerotic acid, lignoceric acid and/or melissic 5 acid) can be determined by growing the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated production of desired product (i.e. of cerotic acid, lignoceric acid and/or melissic acid). These analytical techniques are known to the skilled worker and com prise spectroscopy, thin-layer chromatography, various types of staining methods, en 10 zymatic and microbiological methods and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, Encyclopedia of Indus trial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Bio chemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, 15 Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Bio chemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; 20 Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purifi cation techniques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.20] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.20.20] Purification of and determination of the cerotic acid, lignoceric acid 25 and/or melissic acid content: [0443.0.20.20] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of xanthophylls can be obtained by ana lyzing recombinant organisms using analytical standard methods: LC, LC-MSMS or 30 TLC, as described The total cerotic acid, lignoceric acid and/or melissic acid produced in the organism for example in algae used in the inventive process can be analysed for example according to the following procedure: The material such as algae or plants to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods.
1467 Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. [0444.0.20.20] A typical sample pretreatment consists of a total lipid extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponifica 5 tion , partition between phases, seperation of non-polar epiphase from more polar hy pophasic derivatives and chromatography. E.g.: For analysis, solvent delivery and aliquot removal can be accomplished with a robotic system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% 10 potassium hydroxide hydro-ethanolic solution (4 water:1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. 15 Following saponification, the supernatant can be diluted with 0.10 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, 20 vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The col umn can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile 25 phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab sorbance at 447 nm. [0445.0.20.20] One example is the analysis of the fatty acids. The unambiguous de 30 tection for the presence of the fatty acid products can be obtained by analyzing recom binant organisms using analytical standard methods, especially HPLC with UV or elec trochemical detection as for example described in The Journal of Lipid Research, Vol. 39, 2099-2105, 1998.
1468 Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. [0446.0.0.20] to [0496.0.0.20] for the disclosure of the paragraphs [0446.0.0.20] to [0496.0.0.20] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. 5 [0497.0.20.20] Usually acetone or hexane is used for the extraction of the fatty acids and further purification is achieved either by column chromatography with a suitable resin. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable 10 chromatography resin and the most effective use for a particular molecule to be puri fied. In addition depending on the produced fine chemical purification is also possible with crystallization or distillation. Both methods are well known to a person skilled in the art. [0498.0.20.20] The results of the different plant analyses can be seen from the table, 15 which follows: 1469 Table VI ORF Metabolite Method Min Max Cerotic acid b1228 GC 1.43 2.37 (C26:0) Cerotic acid b2207 GC 1.41 1.55 (C26:0) Cerotic acid b2965 GC 1.55 2.91 (C26:0) b3568 Lignoceric acid GC 1.31 2.34 (C24:0) YDR035W Lignoceric acid GC 1.53 2.26 (C24:0) Melissic Acid YDR035W GC 1.30 1.75 (C30:0) YLR153C Lignoceric acid GC 1.44 1.53 (C24:0) [0499.0.0.20] and [0500.0.0.20] for the disclosure of the paragraphs [0499.0.0.20] 5 and [0500.0.0.20] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.20.20] Example 15a: Engineering ryegrass plants by over-expressing b1228 from Escherichia coli or homologs of b1228 from other organisms. [0502.0.0.20] to [0508.0.0.20] for the disclosure of the paragraphs [0502.0.0.20] to 10 [0508.0.0.20] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.20.20] Example 15b: Engineering soybean plants by over-expressing b1228 from Escherichia coli or homologs of b1228 from other organisms. [0510.0.0.20] to [0513.0.0.20] for the disclosure of the paragraphs [0510.0.0.20] to 15 [0513.0.0.20] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.20.20]Example 15c: Engineering corn plants by over-expressing b1228 from Escherichia coli or homologs of b1228 from other organ isms.
1470 [0515.0.0.20] to [0540.0.0.20] for the disclosure of the paragraphs [0515.0.0.20] to [0540.0.0.20] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.20.20] Example 15d: Engineering wheat plants by over-expressing b1228 from Escherichia coli or homologs of b1228 from 5 other organisms. [0542.0.0.20] to [0544.0.0.20] for the disclosure of the paragraphs [0542.0.0.20] to [0544.0.0.20] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.20.20] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b1228 from Escherichia coli or homologs of b1228 from 10 other organisms. [0546.0.0.20] to [0549.0.0.20] for the disclosure of the paragraphs [0546.0.0.20] to [0549.0.0.20] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.20.20] Example 15f: Engineering alfalfa plants by over-expressing b1228 from Escherichia coli or homologs of b1228 from other organ 15 isms. [0551.0.0.20] to [0554.0.0.20] for the disclosure of the paragraphs [0551.0.0.20] to [0554.0.0.20] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.20.20]: Example 16: Metabolite Profiling Info from Zea mays Zea mays plants were engineered as described in Example 15c. 20 Metabolic results were either obtained from regenerated primary transformants (TO) or from the following progeny generation (T1) in comparison to appropiate control plants. The results are shown in table VII Table VII ORFNAME Metabolite MIN MAX YDR035W Lignoceric acid 1.27 1.76 (C24:0) 25 Table VII shows the increase in lignoceric acid in genetically modified corn plants ex pressing the Saccharomyces cerevisiae nucleic acid sequence YDR035W.
1471 In one embodiment, in case the activity of the Saccharomyces cerevisiae YDR035W or its homologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase", is increased in corn plants, preferably, an increase of the fine chemical lignoceric acid between 27% and 76% or more is conferred. 5 [0554.2.0.20] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.20] for the disclosure of this paragraph see [0555.0.0.0] above.
1472 [0001.0.0.21] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.21.21] Plants produce glycerol and glycerol-3-phosphate. Importantly lipids derived from glycerol are the major components of eukaryotic cells. In terms of dry weight they account for anywhere between 10% and 90% of the total mass of the cell. 5 Triglycerol are the major source of store energy in eucaryotic organisms. Glycerol-3-phosphate can be synthesized via two different routes in plants. In one route, it is formed from dihydroxyacetone phosphate (DHAP), an intermediate of glyco lysis, by the sequential action of triosephosphate isomerase, glyceraldehyd-phosphate phosphatase, glyeraldehyde reductase and glycerol kinase. The last enzyme of this 10 pathway has been suggested as the rate-limiting step of this route for glycerol-3 phosphate synthesis. In an second pathway glycerol-3-phosphate dehydrogenase (NAD(+)-G-3 -P oxidoreductase, EC 1.1.1.8) (GPDH) catalyses the reduction of dihy droxyacetone phosphate (DHAP) to form glycerol-3-phosphate (G-3-P). Based on en zymatic studies is has been suggested that this enzyme activity is probably the primary 15 source of glycerol-3-phosphate at least in Brassica campestris seeds (Sharma et al., 2001, Plant Sci 160, 603-610). [0003.0.21.21] In plants, at least two types of GPDH, a cytoplasmatic and a plas tidial exist, which also differ in their reducing cosubstrate. The cytsolic GPDH uses NADH as the cosubstrate. The mitochondrial FAD-dependent glycerol-3-phosphate 20 dehydrogenase (FAD-GPDH) of Arabidopsis forms a G-3-P shuttle, as previously es tablished in other eukaryotic organisms, and links cytosolic G-3-P metabolism to car bon source utilization and energy metabolism in plants - also see Shen, W. et al., FEBS Lett. 2003 Feb 11; 536(1-3): 92-6. Glycerol-insensitive Arabidopsis mutants: glil seedlings lack glycerol kinase, 25 accumulate glycerol and are more resistant to abiotic stress, see Eastmond P.J. , HYPERLINK "http://www.ingentaconnect.com/content/bsc/tpj" \o "The Plant Journal" The Plant Journal , 2004, 37(4), 617-625. These data show that glycerol kinase is required for glycerol catabolism in Arabidopsis and that the accumulation of glycerol can enhance resistance to a variety of abiotic stresses associated with dehydration. 30 [0004.0.21.21] The major storage lipids (or oils) of seeds occur in the form of triacyl glycerols (TAG), or three fatty acids linked to glycerol by ester bonds. Triacylglycerol synthesis involves diverse cellular compartments, including the cytoplasm, the mito chondria, the plastids, and the endoplasmic reticulum (ER). Glycerol-3-phosphate en- 1473 ters the ER for the final step in triacylglycerol synthesis. The newly formed triacylglyc erols accumulate between the two layers of the double membrane of the ER, forming an oil body surrounded by a single (or half) unit membrane. [0005.0.21.21] Glycerol-3-phosphate acyltransferase (GPAT) is one of the most im 5 portant enzymes in TAG biosynthesis, since it initiates TAG synthesis by catalyzing the acylation of the Sn-1 position of Sn-glycerol-3-phosphate, producing Sn-1-acyl glycerol-3-phosphate. Lyso-phosphatidic acid (LPA) is then acetylated by LPA acyl transferases to produce phosphatidic acid (PA). Then diacylglycerol (DAG) is released through the dephosphorylation of PA by PA phosphohydrolase. Finally DAG becomes 10 acylated by the activity of the DAG acyltransferase. In a second pathway phosphatidyl choline (PC) is formed and its acyl residues are desaturated further. The choline phos phate residue is then liberated by hydrolysis and the correspondinbg DAG acylated. This second pathway operates frequently in the synthesis of highly unsaturated TAG (Heldt 1997, Plant biochemistry and molecular biology. Oxford University Press, New 15 York). Additionally at present, many researches have proved that the GPAT is related to plant chilling-resistance, see Liu, Ji-Mei et al., Plant Physiol. 120(1999): 934. Glycerol-3-phosphate is a primary substrate for triacylglycerol synthesis. Vigeolas and Geigenberger (Planta 219(2004): 827-835) have shown that injection of developing 20 seeds with glycerol leads to increased glycerol-3-phosphate levels. These increased levels of glycerol-3-phosphate were accompanied by an increase in the flux of sucrose into total lipids and triacylglycerol providing evidence that the prevailing levels of glyc erol-3-phosphate co-limit triacylglycerol production in developing seeds. The direct acylation of glycerol by a glycerol: acyl-CoA acyltransferase to form mono 25 acyl-glycerol and, subsequently, diacylglycerol and triacylglycerol has been shown in myoblast and hepatocytes (Lee, D.P. et al. J. Lipid res. 42 (2001): 1979-1986). This direct acylation became more prominent when the glycerol-3-phosphate pathway was attenuated or when glycerol levels become elevated. [0006.0.21.21] Glycerol is used together with water and alcohol (ethyl alcohol) in 30 glycerinated water/alcohol plant extracts and phytoaromatic compounds. These prod ucts are used as food supplements, providing concentrates of the minerals, trace ele ments, active ingredients (alkaloids, polyphenols, pigments, etc.) and aromatic sub- 1474 stances to be found in plants. Glycerin acts as a carrier for plant extracts. It is found in the end product (the fresh plant extract) in concentrations of up to 24% or 25%. Raw glycerol is a by-product of the transesterification process of rape oil to rape methyl ester (RME) and used edible oil to used edible methyl ester (AME), both better known 5 as Biodiesel. Glycerol world production is estimated to be around 750.000 t/year. Around 90% is manufactured on the basis of natural oils and fats. [0007.0.21.21] The green alga Dunaliella, for example, recently has been estab lished in mass culture as a commercial source for glycerol. Dunaliella withstands ex 10 treme salinities while maintaing a low intracellular salt concentration. Osmotic adjust ment is achieved by intracellular accumulation of glycerol to a level counterbalancing the external osmoticum. The osmoregulatory isoform of dihydroxyacetone phosphate (DHAP) reductase (Osm DHAPR) is an enzyme unique to Dunaliella tertiolecta and is the osmoregulatory 15 isoform involved in the synthesis of free glycerol for osmoregulation in extreme environments, such as high salinity, see Ghoshal, D., et al., Protein Expression and Purification, 2002, 24, (3), 404-411. A unsolved problem in plant biochemistry is the understanding of metabolic regulation of glycerol-3-phosphate synthesis and its use in modifying glyceride metabolism or 20 glycerol production. Practically it will have significance for rationally genetically engineering of plants for increased synthesis of triacylglycerols or for other value added products, and for introducing the glycerol synthesis capability into plants of economic importance for an elevated environmental stress tolerance - see: Durba, G. et al., J. Plant Biochemistry & Biotechnology 10(2001),113-120. 25 [0008.0.21.21] One way to increase the productive capacity of biosynthesis is to ap ply recombinant DNA technology. Thus, it would be desirable to produce glycerol and/or glycerol-3-phosphate in plants. That type of production permits control over quality, quantity and selection of the most suitable and efficient producer organisms. The latter is especially important for commercial production economics and therefore 30 availability to consumers. In addition it is desirable to produce glycerol and/or glycerol 3-phosphate in plants in order to increase plant productivity and resistance against biotic and abiotic stress as discussed before.
1475 [0009.0.21.21] Thus, it would be advantageous if an algae, plant or other microor ganism were available which produce large amounts of glycerol and/or glycerol-3 phosphate. The invention discussed hereinafter relates in some embodiments to such transformed prokaryotic or eukaryotic microorganisms. 5 It would also be advantageous if plants were available whose roots, leaves, stem, fruits or flowers produced large amounts of glycerol and/or glycerol-3-phosphate. The inven tion discussed hereinafter relates in some embodiments to such transformed plants. Furthermore it would be advantageous if plants were available whose seed produced larger amounts of total lipids. The invention discussed hereinafter relates in some em 10 bodiments to such transformed plants. [0010.0.21.21] One way to increase the productive capacity of biosynthesis is to ap ply recombinant DNA technology. Thus, it would be desirable to produce glycerol and/or glycerol-3-phosphate in plants. That type of production permits control over quality, quantity and selection of the most suitable and efficient producer organisms. 15 The latter is especially important for commercial production economics and therefore availability to consumers. In addition it is desirable to produce glycerol and/or glycerol 3-phosphate in plants in order to increase plant productivity and resistance against biotic and abiotic stress as discussed before. Therefore improving the productivity of said glycerol and/or glycerol-3-phosphate and 20 improving the quality of cosmetics, pharmaceuticals, foodstuffs and animal feeds, in particular of nutrition supplements, is an important task of the different industries. [0011.0.21.21] To ensure a high productivity of glycerol and/or glycerol-3-phosphate in plants or microorganism, it is necessary to manipulate the natural biosynthesis of glycerol and/or glycerol-3-phosphate in said organisms. 25 Thus, it would be advantageous if an algae, plant or other microorganism were avail able which produce large amounts glycerol and/or glycerol-3-phosphate. The invention discussed hereinafter relates in some embodiments to such transformed prokaryotic or eukaryotic microorganisms. It would also be advantageous if plants were available whose roots, leaves, stem, fruits 30 or flowers produced large amounts of glycerol and/or glycerol-3-phosphate. The inven tion discussed hereinafter relates in some embodiments to such transformed plants.
1476 [0012.0.21.21] Accordingly, there is still a great demand for new and more suitable genes which encode enzymes or other regulators which participate in the biosynthesis of glycerol and/or glycerol-3-phosphate and make it possible to produce glycerol and/or glycerol-3-phosphate specifically on an industrial scale without that unwanted byprod 5 ucts are formed. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved proc esses for obtaining the highest possible contents of glycerol and/or glycerol-3 phosphate on the other hand as less as possible byproducts should be produced in the production process. 10 Furthermore there is still a great demand for new and more suitable genes, which en code enzymes or other proteins, which participate in the biosynthesis of total lipids and make it possible to produce them specifically on an industrial scale without unwanted byproducts forming. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved 15 processes for obtaining the highest possible contents of total lipids and especially of glycerol and/or glycerol-3-phosphate; on the other hand as less as possible byproducts should be produced in the production process. Glycerol or glycerol-3-phosphate is biosynthetic precusor for the biosynthesis of monoacylglycerols, diacylglycerols, triacylglycerols, phosphatidylglycerols and other 20 glycerolipids (e.g. glycosylglycerides, diphosphatidylglycerols, phosphonolipids, phos phatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phytoglycolipids). Therefore the analysis of the glycerol content in cells, tissues or plant parts like seeds and leaves after total lipid extraction and lipid hydrolysis directly correlates with the analysis of the total lipid content. For example if the overexpression of a gene partici 25 pating in the biosynthesis of triacylglycerols in the seed results in an increase in total lipid content in the seed or leaf this seed will also show an increased glycerol content after total lipid extraction and hydrolysis of the lipids. Therefore the method as described below which leads to an increase in glycerol in the lipid fraction after cleavage of the ester functions for example with a mixture of metha 30 nol and hydrochloric acid clearly represents a method for an increased production of triacylglycerol or total lipids. [0013.0.0.21] for the disclosure of this paragraph see [0013.0.0.0] above.
1477 [0014.0.21.21] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is glycerol and/or glyc erol-3-phosphate in free or bound form for example bound to lipids, oils or fatty acids. Accordingly, in the present invention, the term "the fine chemical" as used herein re 5 lates to "glycerol and/or glycerol-3-phosphate in free or bound form". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising glycerol and/or glycerol-3-phosphate in free or bound form. [0015.0.21.21] In one embodiment, the term "glycerol and/or glycerol-3-phosphate in free or bound form", "the fine chemical" or "the respective fine chemical" means at least 10 one chemical compound selected from the group consisting of glycerol and/or glycerol 3-phosphate, its salts, ester, thioester or mixtures thereof in free or bound form. Throughout the specification the term "the fine chemical" or "the respective fine chemi cal" means a compound selected from the group glycerol and/or glycerol-3-phosphate, its salts, ester, thioester or mixtures thereof in free form or bound to other compounds 15 such as protein(s) such as enzyme(s), peptide(s), polypeptide(s), membranes or part thereof, or lipids, oils, waxes or fatty acids or mixtures thereof or in compositions with lipids or carbohydrates such as sugars or sugarpolymers, like glucosides or polyols like myo-inositol or mixtures thereof. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an 20 activity of the abovementioned fine chemical. In one embodiment, the term "the fine chemical" means monoacylglycerols, diacylglyc erols, triacylglycerols, phosphatidylglycerols and/or other glycerolipids (e.g. but not limited to glycosylglycerides, diphosphatidylglycerols, phosphonolipids, phosphatidyl cholines, phosphatidylethanolamines, phosphatidylinositols or phytoglycolipids) and is 25 hereinafter referred to as "total lipids". [0016.0.21.21] Accordingly, the present invention relates to a process for the produc tion of glycerol and/or glycerol-3-phosphate, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap 30 plication no. 22, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap- 1478 plication no. 22, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, glycerol and/or glycerol-3-phosphate or fine chemicals comprising 5 glycerol and/or glycerol-3-phosphate, are produced in said organism or in the cul ture medium surrounding the organism. [0016.1.21.21] Accordingly, the term "the fine chemical" means "glycerol and/or glycerol-3-phosphate, its salts, ester, thioester or mixtures thereof in free or bound form" in relation to all sequences listed in table I, application no. 22, columns 3 and 7 or 10 homologs thereof. Accordingly, the term "the fine chemical" can mean "glycerol and/or glycerol-3-phosphate in free or bound form", owing to circumstances and the context. Preferably the term "the fine chemical" means "glycerol and/or glycerol-3-phosphate". In order to illustrate that the meaning of the term "the respective fine chemical" means "glycerol and/or glycerol-3-phosphate in free or bound form" owing to the sequences 15 listed in the context the term "the respective fine chemical" is also used. [0017.0.21.21] In another embodiment the present invention is related to a process for the production of glycerol and/or glycerol-3-phosphate, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap 20 plication no. 22, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 22, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 25 (c) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 22, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and 30 (d) growing the organism under conditions which permit the production of glycerol and/or glycerol-3-phosphate in said organism. [0017.1.21.21] In another embodiment, the present invention relates to a process for the production of glycerol and/or glycerol-3-phosphate, which comprises 1479 (a) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 22, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or 5 (b) increasing or generating the activity of a protein as shown in table II, application no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 22, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine 10 chemical, thus, glycerol and/or glycerol-3-phosphate or fine chemicals comprising glycerol and/or glycerol-3-phosphate in said organism or in the culture medium surrounding the organism. [0018.0.21.21] Advantagously the activity of the protein as shown in table II, applica tion no. 22, column 3 encoded by the nucleic acid sequences as shown in table I, ap 15 plication no. 22, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.21] to [0024.0.0.21] for the disclosure of the paragraphs [0019.0.0.21] to [0024.0.0.21] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.21.21] Even more preferred nucleic acid sequences are encoding transit 20 peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se 25 quences shown in table I, application no. 22, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or 30 carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 1480 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in 5 length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base 10 pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme 15 recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.21.21] As mentioned above the nucleic acid sequences coding for the pro 20 teins as shown in table 1l, application no. 22, column 3 and its homologs as disclosed in table 1, application no. 22, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably 25 linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table 1l, application no. 22, column 3 and its homologs as disclosed in table 1, application no. 22, columns 5 and 7. [0027.0.0.21] to [0029.0.0.21] for the disclosure of the paragraphs [0027.0.0.21] to [0029.0.0.21] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. 30 [0030.0.21.21] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera 35 bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 1481 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu 5 cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera 10 bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in 15 ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 22, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is 20 cleaved off from the protein part shown in table II, application no. 22, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 22, columns 5 and 7. Other short amino 25 acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 22, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= !igatation independent 30 cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the 35 expression of the genes metioned in table I, application no. 22, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes.
1482 [0030.2.21.21] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.21.21] Alternatively to the targeting of the sequences shown in table 1l, ap plication no. 22, columns 5 and 7 preferably of sequences in general encoded in the 5 nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 22, columns 5 and 7 are directly introduced and expressed in plastids. 10 The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the 15 plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea 20 tures of the integrated DNA sequence to the progeny. [0030.2.0.21] and [0030.3.0.21] for the disclosure of the paragraphs [0030.2.0.21] and [0030.3.0.21] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.21.21] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 25 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 22, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 30 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table 1, application no. 22, columns 5 and 7 or a sequence encoding a protein, as depicted in table 1l, application no. 22, columns 5 1483 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza 5 tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused 10 to the sequences depicted in table I, application no. 22, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 22, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 22, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 22, columns 5 and 7 into the chloroplasts. 15 A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 22, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in 20 corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or 25 mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as 30 disclosed in table II, application no. 22, columns 5 and 7. [0030.5.21.21] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 22, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 1484 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.21.21] For a good expression in the plastids the nucleic acid sequences as shown in table 1, application no. 22, columns 5 and 7 are introduced into an expression 5 cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.21] and [0032.0.0.21] for the disclosure of the paragraphs [0031.0.0.21] and 10 [0032.0.0.21] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.21.21] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro 15 duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table 1l, application no. 22, column 3. Preferably the modification of the activity of a protein as shown in table 1l, application no. 22, column 3 or their combination can be achieved by joining the protein to a transit peptide. 20 [0034.0.21.21] Surprisingly it was found, that the transgenic expression of the Sac caromyces cerevisiae protein as shown in table 1l, application no. 22, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. 25 [0035.0.0.21] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.21.21] The sequence of b0342 (Accession number XXECTG) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "thiogalactoside acetyltransferase". Accord ingly, in one embodiment, the process of the present invention comprises the use of a 30 "thiogalactoside acetyltransferase" or its homolog, e.g. as shown herein, for the produc tion of the fine chemical, meaning of glycerol and/or glycerol-3-phosphate, in particular for increasing the amount of glycerol and/or glycerol-3-phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of 1485 the present invention the activity of a b0342 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit pep tide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b0342 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1021 (Accession number C64844) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "proberly membrane protein ycdP". Accordingly, in one embodiment, 10 the process of the present invention comprises the use of a "proberly membrane pro tein ycdP" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glycerol and/or glycerol-3-phosphate, in particular for increasing the amount of glycerol and/or glycerol-3-phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present inven 15 tion the activity of a b1021 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b1021 protein is increased or generated in a subcellular compartment of the organism or or 20 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2022(Accession number NP_416526) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "bifunctional histidinol-phosphatase / imidazoleglycerol-phosphate dehydratase". Accordingly, in one embodiment, the process of the present invention 25 comprises the use of a "bifunctional histidinol-phosphatase / imidazoleglycerol phosphate dehydratase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glycerol and/or glycerol-3-phosphate, in particular for in creasing the amount of glycerol and/or glycerol-3-phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the 30 present invention the activity of a b2022 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2022 protein is increased or generated in a subcellular compartment of the organism or or 35 ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2818 (Accession number NP_417295) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity 1486 is being defined as "N-acetylglutamate synthase (amino acid N-acetyltransferase)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "N-acetylglutamate synthase (amino acid N-acetyltransferase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glycerol 5 and/or glycerol-3-phosphate, in particular for increasing the amount of glycerol and/or glycerol-3-phosphate in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a b2818 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in 10 table V. In another embodiment, in the process of the present invention the activity of a b2818 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3429 (Accession number NP_417887) from Escherichia coli has 15 been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "glycogen synthase (starch synthase)". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "glycogen syn thase (starch synthase)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glycerol and/or glycerol-3-phosphate, in particular for in 20 creasing the amount of glycerol and/or glycerol-3-phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3429 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 25 In another embodiment, in the process of the present invention the activity of a b3429 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3614 (Accession number S47835) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 30 being defined as "hypothetical 30.7K protein (secb-tdh intergenic region)". Accordingly, in one embodiment, the process of the present invention comprises the use of a "hypo thetical 30.7K protein (secb-tdh intergenic region)" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glycerol and/or glycerol-3 phosphate, in particular for increasing the amount of glycerol and/or glycerol-3 35 phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3614 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably 1487 linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3614 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 5 The sequence of b3708 (Accession number WZEC) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "tryptophan deaminase, PLP-dependent". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "tryptophan deaminase, PLP-dependent" or its homolog, e.g. as shown herein, for the production of 10 the fine chemical, meaning of glycerol and/or glycerol-3-phosphate, in particular for increasing the amount of glycerol and/or glycerol-3-phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide 15 as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4055 (Accession number S54790) from Escherichia coli has been 20 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "acid phosphatase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "acid phosphatase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of glycerol and/or glyc erol-3-phosphate, in particular for increasing the amount of glycerol and/or glycerol-3 25 phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b4055 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4055 30 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of YDR035W (Accession number NP_010320) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996 and Jacq et al., Nature 387 (6632 Suppl), 75-78 (1997), and its activity is being defined 35 as a " 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3 deoxy-D-arabino-heptulosonate-7-phosphate synthase" or its homolog, e.g. as shown 1488 herein, for the production of the fine chemical, meaning of glycerol and/or glycerol-3 phosphate, in particular for increasing the amount of glycerol and/or glycerol-3 phosphate in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YDR035W protein 5 is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YDR035W protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 10 [0037.0.21.21] In one embodiment, the homolog of the b0342, b1021, b2022, b2818, b3429, b3429, b3614, b3708 or b4055 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b0342, b1021, b2022, b2818, b3429, b3429, b3614, b3708 or b4055 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b0342, 15 b1021, b2022, b2818, b3429, b3429, b3614, b3708 or b4055 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one embodiment, the ho molog of the b0342, b1021, b2022, b2818, b3429, b3429, b3614, b3708 or b4055 is a homolog having said acitivity and being derived from Enterobacteriales. In one em bodiment, the homolog of the b0342, b1021, b2022, b2818, b3429, b3429, b3614, 20 b3708 or b4055 is a homolog having said acitivity and being derived from Enterobacte riaceae. In one embodiment, the homolog of the b0342, b1021, b2022, b2818, b3429, b3429, b3614, b3708 or b4055 is a homolog having said acitivity and being derived from Escherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YDR035W is a homolog having said activity 25 and being derived from an eukaryotic. In one embodiment, the homolog of the YDR035W is a homolog having said activity and being derived from Fungi. In one em bodiment, the homolog of the YDR035W is a homolog having said activity and being derived from Ascomyceta. In one embodiment, the homolog of the YDR035W is a ho molog having said activity and being derived from Saccharomycotina. In one embodi 30 ment, the homolog of the YDR035W is a homolog having said acitivity and being de rived from Saccharomycetes. In one embodiment, the homolog of the YDR035W is a homolog having said activity and being derived from Saccharomycetales. In one em bodiment, the homolog of the YDR035W is a homolog having said activity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YDR035W 35 is a homolog having said activity and being derived from Saccharomycetes.
1489 [0038.0.0.21] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.21.21] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 22, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the fine 5 chemical level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica tion no. 22, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. 10 Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 22, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par 15 ticularly preferably 40% in comparison to a protein as shown in table II, application no. 22, column 3 of Saccharomyces cerevisiae. [0040.0.0.21] to [0047.0.0.21] for the disclosure of the paragraphs [0040.0.0.21] to [0047.0.0.21] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.21.21] Preferably, the reference, control or wild type differs form the subject 20 of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a protein as shown in table II, application no. 22, column 3 its bio 25 chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.21] to [0051.0.0.21] for the disclosure of the paragraphs [0049.0.0.21] to [0051.0.0.21] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.21.21] For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 30 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table I, application no. 22, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V 1490 or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 5 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.21] to [0058.0.0.21] for the disclosure of the paragraphs [0053.0.0.21] to [0058.0.0.21] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.21.21] In case the activity of the Escherichia coli protein b0342 or its ho 10 mologs, e.g. a "thiogalactoside acetyltransferase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycerol-3-phosphate in free or bound form, prefera bly in the lipid fraction, between 19% and 71 % or more is conferred. In case the activity of the Escherichia coli protein b1 021 or its homologs, e.g. a "mem 15 brane protein ycdP" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of glycerol in free or bound form, preferably in the lipid fraction, between 47% and 89% or more is conferred. In case the activity of the Escherichia coli protein b2022 or its homologs, e.g. a "bifunc 20 tional histidinol-phosphatase / imidazoleglycerol-phosphate dehydratase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycerol in free or bound form, preferably in the lipid fraction, between 24% and 66% or more is conferred. In case the activity of the Escherichia coli protein b2818 or its homologs, e.g. a "N 25 acetylglutamate synthase (amino acid N-acetyltransferase)" is increased advanta geously in an organelle such as a plastid or mitochondria, preferably, in one embodi ment an increase of the fine chemical, preferably of glycerol in free or bound form, preferably in the lipid fraction, between 17% and 29% or more is conferred. In case the activity of the Escherichia coli protein b3429 or its homologs, e.g. a "glyco 30 gen synthase (starch synthase)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of glycerol in free or bound form in the lipid fraction between 18% and 98% or more or glycerol in free or bound form in the polar fraction between 87% and 189% is conferred. 35 In case the activity of the Escherichia coli protein b3614 or its homologs, e.g. a "hypo- 1491 thetical 30.7K protein (secb-tdh intergenic region)" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycerol-3-phosphate in free or bound form, prefera bly in the lipid fraction, between 19% and 46% or more is conferred. 5 In case the activity of the Escherichia coli protein b3708 or its homologs, e.g. a "trypto phan deaminase, PLP-dependent" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycerol in free or bound form, preferably in the lipid fraction, between 19% and 39% or more is conferred. 10 In case the activity of the Escherichia coli protein b4055 or its homologs, e.g. a "acid phosphatase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycerol in free or bound form, preferably in the lipid fraction, between 17% and 32% or more is conferred. 15 In case the activity of the Saccaromyces cerevisiae protein YDR035W or its homologs, e.g. a "3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of glycerol in free or bound form, preferably in the lipid fraction, between 20% and 31 % or more is conferred. 20 [0060.0.21.21] In case the activity of the Escherichia coli proteins b0342, b1021, b2022, b2818, b3429, b3429, b3614, b3708 and/or b4055 or their homologs, are in creased advantageously in an organelle such as a plastid or mitochondria, preferably an increase of the fine chemical such as glycerol and/or glycerol-3-phosphate or mix tures thereof in free or bound form is conferred. 25 In case the activity of the Saccaromyces cerevisiae protein YDR035W or their ho mologs, are increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical such as glycerol and/or glycerol-3 phosphate or mixtures thereof in free or bound form is conferred. [0061.0.0.21] and [0062.0.0.21] for the disclosure of the paragraphs [0061.0.0.21] and 30 [0062.0.0.21] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.21.21] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the structure of the polypeptide described herein, in particular of the polypeptides compris ing the consensus sequence shown in table IV, application no. 22, column 7 or of the 35 polypeptide as shown in the amino acid sequences as disclosed in table 1l, application 1492 no. 22, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 22, columns 5 and 7 or its herein described functional homologues 5 and has the herein mentioned activity. [0064.0.21.21] / [0065.0.0.21] and [0066.0.0.21] for the disclosure of the paragraphs [0065.0.0.21] and [0066.0.0.21] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.21.21] In one embodiment, the process of the present invention comprises 10 one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 22, columns 5 and 7 or its homologs activity having herein-mentioned 15 glycerol and/or glycerol-3-phosphate increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 22, columns 5 and 7, e.g. a nucleic 20 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 22, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned glycerol and/or glycerol-3-phosphate increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of 25 a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned glycerol and/or glycerol-3 phosphate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 22, columns 5 and 7 or its homologs activ ity, or decreasing the inhibitiory regulation of the polypeptide of the invention; 30 and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres- 1493 sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned glycerol and/or glycerol-3 phosphate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 22, columns 5 and 7 or its homologs activ 5 ity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned glycerol and/or glycerol-3 phosphate increasing activity, e.g. of a polypeptide having the activity of a protein 10 as indicated in table II, application no. 22, columns 5 and 7 or its homologs activ ity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present 15 invention or a polypeptide of the present invention, having herein-mentioned glycerol and/or glycerol-3-phosphate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 22, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a 20 nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned glycerol and/or glycerol-3-phosphate increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 22, columns 5 and 7 or its homologs activity; and/or 25 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 22, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like 30 for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated 1494 near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it 5 self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention 10 from natural or from mutagenized resources and breeding them into the target or ganisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned glycerol and/or glycerol-3-phosphate increasing activity, e.g. of polypeptide having the activity of 15 a protein as indicated in table 1l, application no. 22, columns 5 and 7 or its ho mologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 20 mentioned glycerol and/or glycerol-3-phosphate increasing activity, e.g. of a poly peptide having the activity of a protein as indicated in table 1l, application no. 22, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expres 25 sion cassette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned glycerol and/or glycerol-3-phosphate increasing activity, e.g. of a poly 30 peptide having the activity of a protein as indicated in table 1l, application no. 22, columns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter.
1495 [0068.0.21.21] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having 5 the herein mentioned activity, e.g. conferring the increase of the fine chemical after increasing the expression or activity of the encoded polypeptide preferably in organ elles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 22, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. 10 [0069.0.0.21] to [0079.0.0.21] for the disclosure of the paragraphs [0069.0.0.21] to [0079.0.0.21] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.21.21] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 22, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine 15 chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 22, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA 20 binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 22, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 22, column 3, see e.g. in 25 WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.21] to [0084.0.0.21] for the disclosure of the paragraphs [0081.0.0.21] to [0084.0.0.21] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.21.21] Owing to the introduction of a gene or a plurality of genes conferring 30 the expression of the nucleic acid molecule of the invention or the nucleic acid mole cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end 1496 product, but also to increase, modify or create de novo an advantageous, preferably novel metabolites composition in the organism, e.g. glycerol and/or glycerol-3 phosphate and mixtures thereof. [0086.0.0.21] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. 5 [0087.0.21.21] By influencing the metabolism thus, it is possible to produce, in the process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to glycerol and/or glycerol-3-phosphate compounds such as other polyols such as xylitol or sorbitol, fatty acid such as palmitic acid, oleic acid, linoleic acid, linolenic acid, vitamins, amino acids or carbohydrates. 10 [0088.0.21.21] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; 15 b) increasing the activity of a protein as shown in table 1l, application no. 22, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microor 20 ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which permit the production of the fine chemical in the organism, preferably the microor 25 ganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. 30 [0089.0.21.21] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in 1497 such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to produce, recover and, if desired isolate in addition, other free or/and bound polyols such as xylitol or sorbitol or lipids or mixtures thereof. 5 [0090.0.0.21] to [0097.0.0.21] for the disclosure of the paragraphs [0090.0.0.21] to [0097.0.0.21] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.21.21] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said 10 nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 22, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked 15 to the nucleic acid sequence as shown table 1, application no. 22, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by 20 way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least 25 on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.21.21] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven 30 tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 22, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting 1498 nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 22, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application 5 no. 22, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.21] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. 10 [0101.0.21.21] In an advantageous embodiment of the invention, the organism takes the form of a plant whose glycerol and/or glycerol-3-phosphate content is modified ad vantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for animals is dependent on the abovementioned glycerol and/or glycerol-3-phosphate and 15 the general amount of glycerol and/or glycerol-3-phosphate in feed. After the activity of the protein as shown in table 1l, application no. 22, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subsequently harvested. 20 [0102.0.0.21] to [0110.0.0.21] for the disclosure of the paragraphs [0102.0.0.21] to [0110.0.0.21] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.21.21] In a preferred embodiment, the fine chemical (glycerol and/or glyc erol-3-phosphate) is produced in accordance with the invention and, if desired, is iso lated. The production of further polyols such as xylitol or sorbitol or lipids such as gly 25 colipids, proteolipids, glycerolester and mixtures thereof or mixtures. It may be advan tageous to increase the pool of free glycerol and/or glycerol-3-phosphate and other as aforementioned in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.21.21] In another preferred embodiment of the invention a combination of the 30 increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a nucleic acid encoding a protein or polypeptid for example another gene of the glycerol and/or glycerol-3-phosphate biosynthesis, or a compound, which functions as a sink for the desired glycerol and/or glycerol-3- 1499 phosphate in the organism is useful to increase the production of the respective fine chemical. [0113.0.21.21] In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further 5 polyols other than glycerol and/or glycerol-3-phosphate or compounds for which the respective fine chemical is a biosynthesis precursor compounds, e.g. fatty acid ester, or mixtures thereof or mixtures of other polyols with the fine chemical, in particular of glycerol and/or glycerol-3-phosphate, by the process according to the invention is ad vantageous. 10 [0114.0.21.21] In the case of the fermentation of microorganisms, the abovemen tioned desired fine chemical may accumulate in the medium and/or the cells. If micro organisms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such 15 as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently be reduced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formu 20 lation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, and spray granulation or by other meth ods. Preferably the respective fine chemical comprising compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on 25 which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. 30 [0115.0.21.21] Transgenic plants which comprise the fine chemical such as glycerol and/or glycerol-3-phosphate synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the fine chemical synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, 35 stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, 1500 petioles, flowers, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. 5 However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, (in the form of their organic extracts, e.g. alcohol, or other organic solvents or water containing extract and/or free glycerol and/or glycerol-3-phosphate or other extracts. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either 10 from the medium in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material. To allow for greater ease of disruption of the plant parts, specifically the seeds, they can previously be comminuted, steamed or roasted. Seeds, which have been pretreated in this man 15 ner can subsequently be pressed or extracted with solvents such as organic solvents like warm hexane or water or mixtures of organic solvents. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. Thereafter, the resulting 20 products can be processed further, i.e. degummed and/or refined. In this process, sub stances such as the plant mucilages and suspended matter can be first removed. What is known as desliming can be affected enzymatically or, for example, chemico physically by addition of acid such as phosphoric acid. The fine chemical can than be isolated as free compound by for example alkaline or acid hydrolysis. 25 Because glycerol and/or glycerol-3-phosphate in microorganisms are localized intracel lular, their recovery essentially comes down to the isolation of the biomass. Well established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, adsorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have 30 been suggested for this purpose. Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, ad sorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose.
1501 [0115.1.21.21] The identity and purity of the compound(s) isolated can be deter mined by prior-art techniques. They encompass high-performance liquid chromatogra phy (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbi 5 ological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Indus trial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An 10 Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17. [0115.2.21.21] Glycerol and/or glycerol-3-phosphate can for example be analyzed advantageously via HPLC, LC or GC separation and MS (masspectrometry)detection 15 methods. The unambiguous detection for the presence of glycerol and/or glycerol-3 phosphate containing products can be obtained by analyzing recombinant organisms using analytical standard methods: GC; GC-MS, LC, LC-MS, MS or TLC). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding, cooking, or via other applicable methods. 20 [0116.0.21.21] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 25 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 22, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 30 cleic acid molecule shown in table 1, application no. 22, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 1502 d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi cal in an organism or a part thereof; 5 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 10 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 15 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 22, column 7 and conferring an in 20 crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism 25 or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 22, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 30 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 22, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 35 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole- 1503 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.21.21] In one embodiment, the nucleic acid molecule used in the process of 5 the invention distinguishes over the sequence indicated in table I A, application no. 22, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 22, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 10 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 22, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 22, columns 5 and 7. [0116.2.21.21] In one embodiment, the nucleic acid molecule used in the process of 15 the invention distinguishes over the sequence indicated in table I B, application no. 22, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 22, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 20 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 22, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 22, columns 5 and 7. [0117.0.21.21] In one embodiment, the nucleic acid molecule used in the process 25 distinguishes over the sequence shown in table I, application no. 22, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 22, columns 5 and 7. In one embodiment, the nucleic acid molecule of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 22, columns 5 and 7. In another embodi 30 ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 22, columns 5 and 7. [0118.0.0.21] to [0120.0.0.21] for the disclosure of the paragraphs [0118.0.0.21] to [0120.0.0.21] see paragraphs [0118.0.0.0] to [0120.0.0.0] above.
1504 [0121.0.21.21] Nucleic acid molecules with the sequence shown in table I, application no. 22, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 22, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 22, column 7, or 5 their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 22, column 3 or conferring the fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 10 [0122.0.0.21] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.21.21] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 22, column 3 can be determined from generally ac cessible databases. 15 [0124.0.0.21] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.21.21]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 22, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or 20 ganelle such as a plastid or mitochondria or both, preferably in plastids. [0126.0.0.21] to [0133.0.0.21] for the disclosure of the paragraphs [0126.0.0.21] to [0133.0.0.21] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.21.21] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or 25 more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 22, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 30 22, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids.
1505 [0135.0.0.21] to [0140.0.0.21] for the disclosure of the paragraphs [0135.0.0.21] to [0140.0.0.21] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.21.21] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 22, column 7, by means of polymerase chain reaction can be 5 generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 22, columns 5 and 7 or the sequences derived from table II, application no. 22, columns 5 and 7. [0142.0.21.21] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the 10 process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 22, column 7 is derived from said aligments. 15 [0143.0.21.21] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 22, column 3 or further functional homologs of the polypeptide of the invention from other organisms. 20 [0144.0.0.21] to [0151.0.0.21] for the disclosure of the paragraphs [0144.0.0.21] to [0151.0.0.21] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.21.21] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 22, 25 columns 5 and 7, preferably of table I B, application no. 22, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the glycerol and/or glycerol-3-phosphate increasing activity. [0153.0.0.21] to [0159.0.0.21] for the disclosure of the paragraphs [0153.0.0.21] to [0159.0.0.21] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. 30 [0160.0.21.21] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is 1506 complementary to one of the nucleotide sequences shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application 5 no. 22, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement 10 thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.21.21] The nucleic acid molecule of the invention comprises a nucleotide se 15 quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7, or a portion thereof and preferably has 20 above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 22, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0162.0.21.21] The nucleic acid molecule of the invention comprises a nucleotide se 25 quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer ring of a glycerol and/or glycerol-3-phosphate increase by for example expression ei 30 ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 22, column 3. [0163.0.21.21] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 35 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 1507 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for 5 example expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises 10 substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 22, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in 15 table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the 20 examples. A PCR with the primers shown in table III, application no. 22, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.21] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.21.21] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 25 gous to the amino acid sequence shown in table II, application no. 22, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a glycerol and/or glycerol-3-phosphate increasing activity as mentioned above or as described in the examples in plants or microorgan isms is comprised. 30 [0166.0.21.21] As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap 35 plication no. 22, columns 5 and 7 such that the protein or portion thereof is able to par- 1508 ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.21.21] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. 5 The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 22, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the 10 increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.21] and [0169.0.0.21] for the disclosure of the paragraphs [0168.0.0.21] and [0169.0.0.21] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.21.21] The invention further relates to nucleic acid molecules that differ from 15 one of the nucleotide sequences shown in table I, application no. 22, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 22, columns 5 20 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 22, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full 25 length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 22, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 22, columns 5 and 7, prefera bly as indicated in table I A, application no. 22, columns 5 and 7. Preferably the nucleic 30 acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 22, columns 5 and 7. [0171.0.0.21] to [0173.0.0.21] for the disclosure of the paragraphs [0171.0.0.21] to [0173.0.0.21] see paragraphs [0171.0.0.0] to [0173.0.0.0] above.
1509 [0174.0.21.21] Accordingly, in another embodiment, a nucleic acid molecule of the invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present 5 invention, e.g. comprising the sequence shown in table 1, application no. 22, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.21] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.21.21] Preferably, nucleic acid molecule of the invention that hybridizes under 10 stringent conditions to a sequence shown in table 1, application no. 22, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above 15 mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. 20 [0177.0.0.21] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.21.21]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table 1, application no. 22, columns 5 and 7. 25 [0179.0.0.21] and [0180.0.0.21] for the disclosure of the paragraphs [0179.0.0.21] and [0180.0.0.21] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.21.21] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol 30 or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table 1l, application no. 22, columns 5 and 7, preferably shown in 1510 table II A, application no. 22, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 22, columns 5 5 and 7, preferably shown in table II A, application no. 22, columns 5 and 7 and is capa ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se 10 quence shown in table II, application no. 22, columns 5 and 7, preferably shown in ta ble II A, application no. 22, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 22, columns 5 and 7, preferably shown in table II A, application no. 22, columns 5 and 7, even more prefera bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap 15 plication no. 22, columns 5 and 7, preferably shown in table II A, application no. 22, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 22, columns 5 and 7, preferably shown in table II A, application no. 22, columns 5 and 7. [0182.0.0.21] to [0188.0.0.21] for the disclosure of the paragraphs [0182.0.0.21] to 20 [0188.0.0.21] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.21.21] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 22, columns 5 and 7, preferably shown in table II B, applica tion no. 22, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 25 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 30 polypeptide as shown in table II, application no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7. [0190.0.21.21] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7 resp., according to the invention by substitution, 35 insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 1511 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7 5 resp., according to the invention and encode polypeptides having essentially the same properties as the polypeptide as shown in table II, application no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7. [0191.0.0.21] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.21.21] A nucleic acid molecule encoding an homologous to a protein se 10 quence of table II, application no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu cleic acid molecule of the present invention, in particular of table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7 15 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. 20 [0193.0.0.21] to [0196.0.0.21] for the disclosure of the paragraphs [0193.0.0.21] to [0196.0.0.21] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.21.21] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7, comprise also allelic variants with at least ap 25 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. 30 Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7, or from the derived nucleic acid sequences, the 1512 intention being, however, that the enzyme activity or the biological activity of the result ing proteins synthesized is advantageously retained or increased. [0198.0.21.21] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences 5 shown in any of the table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 10 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7. 15 [0199.0.21.21] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the 20 encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7. [0200.0.21.21] In one embodiment, the nucleic acid molecule of the invention or used 25 in the process encodes a polypeptide comprising the sequence shown in table II, appli cation no. 22, columns 5 and 7, preferably shown in table II B, application no. 22, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence 30 of the sequences shown in table I, application no. 22, columns 5 and 7, preferably shown in table I B, application no. 22, columns 5 and 7. [0201.0.21.21] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at 1513 least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 22, columns 5 and 7 ex 5 pressed under identical conditions. [0202.0.21.21] Homologues of table I, application no. 22, columns 5 and 7 or of the derived sequences of table II, application no. 22, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 10 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 15 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 20 [0203.0.0.21] to [0215.0.0.21] for the disclosure of the paragraphs [0203.0.0.21] to [0215.0.0.21] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.21.21] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 25 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 22, columns 5 and 7, preferably in table II B, application no. 22, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 30 cleic acid molecule shown in table I, application no. 22, columns 5 and 7, pref erably in table I B, application no. 22, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; 1514 c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) 10 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 15 preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism 20 or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 22, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 25 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 30 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 22, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; 1515 k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 22, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and 5 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table 10 1, application no. 22, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 22, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; 15 whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 22, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 22, columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in 20 vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 22, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 22, columns 5 and 7. Ac cordingly, in one embodiment, the nucleic acid molecule of the present invention en 25 codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 22, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 22, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence 30 shown in table I A and/or I B, application no. 22, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 22, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, 35 application no. 22, columns 5 and 7.
1516 [0217.0.0.21] to [0226.0.0.21] for the disclosure of the paragraphs [0217.0.0.21] to [0226.0.0.21] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.21.21] In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by 5 means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of 10 replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that 15 they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 22, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac 20 tivity. [0228.0.0.21] to [0239.0.0.21] for the disclosure of the paragraphs [0228.0.0.21] to [0239.0.0.21] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.21.21] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together 25 with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 22, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes 30 in the organisms. Especially advantageously, additionally at least one further gene of the glycerol biosynthetic pathway is expressed in the organisms such as plants or mi croorganisms. Advantageously additional genes for the synthesis of glycerol and/or glycerol-3-phosphate are used. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is 1517 no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for ex ample, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table 1, application no. 5 22, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of micro organisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.21.21] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous direct or indirect overexpression 10 of at least one nucleic acid or one of the genes which code for proteins involved in the fatty acid metabolism, in particular in synthesis of glycerol and/or glycerol-3-phosphate. Indirect overexpression might be brought about by the manipulation of the regulation of the endogenous gene, for example through promotor mutations or the expression of natural or artificial transcriptional regulators. 15 [0242.0.21.21] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the glycerol biosynthesis chain such as hexokinase, glucose-3-P-dehydrogenase, phosphofructo kinase, aldolase, glycerol-3-P-dehydrogenase etc.. It is also possible that the regulation 20 of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the or ganisms. This leads to an increased synthesis of glycerol and/or glycerol-3-phosphate precursors or glycerol and/or glycerol-3-phosphate, as desired since, for example, feedback regulations no longer exist to the same extent or not at all. 25 [0242.1.21.21] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which advantageously simultaneously a glycerol and/or glycerol-3-phosphate degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene, or by inactivating the gene for example the mutagenesis and/or selection. In another advantageous embodiment 30 the synthesis of competitive pathways which rely on the same precoursers are down regulated or interrupted. [0242.2.21.21] The respective fine chemical produced can be isolated from the or ganism by methods with which the skilled worker are familiar, for example via extrac tion, salt precipitation, and/or different chromatography methods. The process accord- 1518 ing to the invention can be conducted batchwise, semibatchwise or continuously. The fine chemcical and other polyols produced by this process can be obtained by harvest ing the organisms, either from the crop in which they grow, or from the field. This can be done via for example pressing or extraction of the plant parts. 5 [0242.3.21.21] Preferrably, the compound is a composition comprising the essentially pure glycerol and/or glycerol-3-phosphate or a recovered or isolated glycerol and/or g lycerol-3-phosphate. [0243.0.0.21] to [0264.0.0.21] for the disclosure of the paragraphs [0243.0.0.21] to [0264.0.0.21] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. 10 [0265.0.21.21] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the 15 extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid 20 transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 22, columns 5 and 7 and described herein to achieve an expression in one of said 25 compartments or extracellular. [0266.0.0.21] to [0287.0.0.21] for the disclosure of the paragraphs [0266.0.0.21] to [0287.0.0.21] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.21.21] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula 30 tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 22, columns 5 and 7 or their homologs is functionally linked to a 1519 plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 22, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. 5 [0289.0.0.21] to [0296.0.0.21] for the disclosure of the paragraphs [0289.0.0.21] to [0296.0.0.21] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.21.21] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial cells), for example using the antibody of the present invention as described below, in 10 particular, an anti-b0342, anti-b1021, anti-b2022, anti-b2818, anti-b3429, anti-b3429, anti-b3614, anti-b3708, anti-b4055 and/or anti-YDR035W protein antibody or an anti body against polypeptides as shown in table II, application no. 22, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are 15 monoclonal antibodies. [0298.0.0.21] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.21.21] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 22, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 22, columns 5 and 7 or func 20 tional homologues thereof. [0300.0.21.21] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 22, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the 25 consensus sequence shown in table IV, application no. 22, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.21] to [0304.0.0.21] for the disclosure of the paragraphs [0301.0.0.21] to 30 [0304.0.0.21] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.21.21] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor- 1520 ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 22, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown 5 in table II A and/or II B, application no. 22, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 22, columns 5 and 7 by not more than 80% or 70% of the amino 10 acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 22, columns 5 and 7. [0306.0.0.21] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. 15 [0307.0.21.21] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 22, columns 5 and 7 by one or more amino acids. In another embodiment, 20 said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 22, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 22, columns 25 5 and 7. [0308.0.21.21] In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 22, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 22, columns 5 and 7 by one or more amino acids, preferably by more than 5, 30 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention 35 takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep- 1521 tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.21] to [0311.0.0.21] for the disclosure of the paragraphs [0309.0.0.21] to 5 [0311.0.0.21] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.21.21] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 22, columns 5 and 7. 10 [0313.0.21.21] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 15 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 22, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 20 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 22, columns 5 and 7 or which is homologous thereto, as defined above. 25 [0314.0.21.21] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 22, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 30 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 22, columns 5 and 7. [0315.0.0.21] for the disclosure of this paragraph see paragraph [0315.0.0.0] above.
1522 [0316.0.21.21] Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 22, columns 5 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention 10 or used in the process of the present invention. [0317.0.0.21] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.21.21] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 22, column 3. Differences shall mean at least one amino acid 15 different from the sequences as shown in table II, application no. 22, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 22, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in 20 efficiency or activity in relation to the wild type protein. [0319.0.21.21] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the 25 mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 22, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im 30 proved. [0320.0.0.21] to [0322.0.0.21] for the disclosure of the paragraphs [0320.0.0.21] to [0322.0.0.21] see paragraphs [0320.0.0.0] to [0322.0.0.0] above.
1523 [0323.0.21.21] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 22, column 3 refers to a polypeptide having an amino acid sequence cor responding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a 5 polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 22, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. 10 [0324.0.0.21] to [0329.0.0.21] for the disclosure of the paragraphs [0324.0.0.21] to [0329.0.0.21] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.21.21] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 22, columns 5 and 7. 15 [0331.0.0.21] to [0346.0.0.21] for the disclosure of the paragraphs [0331.0.0.21] to [0346.0.0.21] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.21.21] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of 20 the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 22, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu 25 lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu 30 lation of the genome, the activity of protein as shown in table II, application no. 22, col umn 3 or a protein as shown in table II, application no. 22, column 3-like activity is in creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention.
1524 [0348.0.0.21] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.21.21] A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table 1l, application no. 22, column 3 with the corresponding encoding gene - becomes a 5 transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.21] to [0358.0.0.21] for the disclosure of the paragraphs [0350.0.0.21] to [0358.0.0.21] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. 10 [0359.0.21.21] Transgenic plants comprising glycerol and/or glycerol-3-phosphate or mixtures thereof synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact 15 plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The glycerol and/or glycerol-3-phosphate produced in the process according to the invention may, how ever, also be isolated from the plant in the form of their free glycerol and/or glycerol-3 phosphate produced by this process can be isolated by harvesting the plants either 20 from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant leaves, plant fruits, flowers and the like. The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, 25 flowers and the like as mentioned above in the case of transgenic plant organisms derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, cosmet ics, pharmaceuticals or fine chemicals. [0360.0.0.21] to [0362.0.0.21] for the disclosure of the paragraphs [0360.0.0.21] to 30 [0362.0.0.21] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.21.21] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the glycerol 1525 and/or glycerol-3-phosphate produced in the process can be isolated. The resulting fine chemical can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, formulated. 5 [0364.0.21.21] In one embodiment, glycerol and/or glycerol-3-phosphate is the fine chemical. [0365.0.21.21] The glycerol and/or glycerol-3-phosphate, in particular the respective fine chemicals obtained in the process are suitable as starting material for the synthe sis of further products of value. For example, they can be used in combination with 10 each other or alone for the production of pharmaceuticals, health products, foodstuffs, animal feeds, nutrients or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, health products, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of the glycerol and/or glycerol-3-phosphate containing, in particu 15 lar glycerol and/or glycerol-3-phosphate containing composition produced or the re spective fine chemical produced if desired and formulating the product with a pharma ceutical acceptable carrier or formulating the product in a form acceptable for an appli cation in agriculture. A further embodiment according to the invention is the use of the glycerol and/or glycerol-3-phosphate produced in the process or of the transgenic or 20 ganisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or phar maceuticals. [0366.0.0.21] to [0369.0.0.21] for the disclosure of the paragraphs [0366.0.0.21] to [0369.0.0.21] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.21.21] The fermentation broths obtained in this way, containing in particular 25 glycerol and/or glycerol-3-phosphate in mixtures with other organic acids, amino acids, polypeptides or polysaccarides, normally have a dry matter content of from 1 to 70% by weight, preferably 7.5 to 25% by weight. Sugar-limited fermentation is additionally ad vantageous, e.g. at the end, for example over at least 30% of the fermentation time. This means that the concentration of utilizable sugar in the fermentation medium is 30 kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/I during this time. The fermenta tion broth is then processed further. Depending on requirements, the biomass can be removed or isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decantation, coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it.
1526 The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by 5 other processes. [0371.0.21.21] Accordingly, it is possible to purify the glycerol and/or glycerol-3 phosphate, in particular the glycerol and/or glycerol-3-phosphate produced according to the invention further. For this purpose, the product-containing composition, e.g. a total or partial extraction fraction using organic solvents, is subjected for example to 10 separation via e.g. an open column chromatography or HPLC in which case the de sired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suit able chromatography resins and their most effective use. 15 [0372.0.0.21] to [0376.0.0.21], [0376.1.0.21] and [0377.0.0.21]for the disclosure of the paragraphs [0372.0.0.21] to [0376.0.0.21], [0376.1.0.21] and [0377.0.0.21] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.21.21] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in 20 a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven 25 tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 22, columns 5 and 7, preferably in table I B, application no. 22, columns 5 and 7, and, option 30 ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; 1527 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression 5 compared to the wild type. [0379.0.0.21] to [0383.0.0.21] for the disclosure of the paragraphs [0379.0.0.21] to [0383.0.0.21] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.21.21] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a 10 microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis 15 tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 22, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 22, column 3. [0385.0.0.21] to [0404.0.0.21] for the disclosure of the paragraphs [0385.0.0.21] to 20 [0404.0.0.21] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.21.21] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant 25 cell, or the part thereof of the invention, the vector of the invention, the agonist identi fied with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or of the fine chemical and one or more other polyols or lipids, in particular polyols such as zylitol or sorbitol. 30 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof 1528 of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.21] to [0435.0.0.21] for the disclosure of the paragraphs [0406.0.0.21] to 5 [0435.0.0.21] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. [0436.0.21.21] Production of glycerol and/or glycerol-3-phosphate in Chlamydo monas reinhardtii The glycerol and/or glycerol-3-phosphate production can be analysed as mentioned herein. 10 The proteins and nucleic acids can be analysed as mentioned below. In addition a production in other organisms such as plants or microorganisms such as yeast, Mortierella alpina, Corynebacterium glutamicum or Escherichia coli is possible. [0437.0.0.21] and [0438.0.0.21] for the disclosure of the paragraphs [0437.0.0.21] and [0438.0.0.21] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. 15 [0439.0.21.21] Example 9: Analysis of the effect of the nucleic acid molecule on the production of glycerol and/or glycerol-3-phosphate [0440.0.21.21] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as glycerol and/or glycerol-3-phosphate) can be determined by growing the modified plant under suitable conditions (such as those de 20 scribed above) and analyzing the medium and/or the cellular components for the ele vated production of desired product (i.e. of glycerol and/or glycerol-3-phosphate). These analytical techniques are known to the skilled worker and comprise spectros copy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analytical chromatography such as high-performance 25 liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Ap plications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P.A., et al. 30 (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Ma terials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical 1529 Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification tech niques in biotechnology, Noyes Publications) or the methods mentioned above. [0441.0.0.21] for the disclosure of this paragraph see [0441.0.0.0] above. 5 [0442.0.21.21] Purification of and determination of the glycerol and/or glycerol-3 phosphate content: [0443.0.21.21] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of xanthophylls can be obtained by ana 10 lyzing recombinant organisms using analytical standard methods: LC, LC-MSMS or TLC, as described The total glycerol and/or glycerol-3-phosphate produced in the or ganism for example in algae used in the inventive process can be analysed for exam ple according to the following procedure: The material such as algae or plants to be analyzed can be disrupted by sonication, 15 grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. [0444.0.21.21] A typical sample pretreatment consists of a total lipid extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponifica 20 tion , partition between phases, seperation of non-polar epiphase from more polar hy pophasic derivatives and chromatography. E.g.: For analysis, solvent delivery and aliquot removal can be accomplished with a robotic system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% 25 potassium hydroxide hydro-ethanolic solution (4 water:1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. 30 Following saponification, the supernatant can be diluted with 0.10 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity.
1530 Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam 5 pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The col umn can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT 10 (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab sorbance at 447 nm. [0445.0.21.21] If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the glycerol and/or glycerol-3-phosphate can be 15 further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloro form/acetonitrile mixtures can be used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is fa miliar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be purified.. 20 [0446.0.0.21] to [0496.0.0.21] for the disclosure of the paragraphs [0446.0.0.21] to [0496.0.0.21] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. [0497.0.21.21] Usually acetone or hexane is used for the extraction of the lipds and further purification is achieved either by column chromatography with a suitable resin. If necessary, these chromatography steps may be repeated, using identical or other 25 chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be puri fied. In addition depending on the produced fine chemical purification is also possible with crystallization or distillation. Both methods are well known to a person skilled in the art. 30 [0498.0.21.21] The results of the different plant analyses can be seen from the table, which follows: 1531 Table VI ORF Metabolite Method Min Max b0342 Glycerol-3- GC 1.19 1.71 phosphate, lipid fraction b1021 Glycerol, polar frac- GC 1.47 1.89 tion b2022 Glycerol, lipid frac- GC 1.24 1.66 tion b2818 Glycerol, lipid frac- GC 1.17 1.29 tion b3429 Glycerol, lipid frac- GC 1.18 1.98 tion b3429 Glycerol, polar frac- GC 1.87 2.89 tion b3614 Glycerol-3- GC 1.19 1.46 phosphate, lipid fraction b3708 Glycerol, lipid frac- GC 1.19 1.39 tion b4055 Glycerol, lipid frac- GC 1.17 1.32 tion YDR035W Glycerol, lipid frac- GC 1.20 1.31 tion [0499.0.0.21] and [0500.0.0.21] for the disclosure of the paragraphs [0499.0.0.21] 5 and [0500.0.0.21] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.21.21] Example 15a: Engineering ryegrass plants by over-expressing b0342 from Escherichia coli or homologs of b0342 from other organisms. [0502.0.0.21] to [0508.0.0.21] for the disclosure of the paragraphs [0502.0.0.21] to 10 [0508.0.0.21] see paragraphs [0502.0.0.0] to [0508.0.0.0] above.
1532 [0509.0.21.21] Example 15b: Engineering soybean plants by over-expressing b0342 from Escherichia coli or homologs of b0342 from other organisms. [0510.0.0.21] to [0513.0.0.21] for the disclosure of the paragraphs [0510.0.0.21] to 5 [0513.0.0.21] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.21.21]Example 15c: Engineering corn plants by over-expressing b0342 from Escherichia coli or homologs of b0342 from other organ isms. [0515.0.0.21] to [0540.0.0.21] for the disclosure of the paragraphs [0515.0.0.21] to 10 [0540.0.0.21] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.21.21] Example 15d: Engineering wheat plants by over-expressing b0342 from Escherichia coli or homologs of b0342 from other organisms. [0542.0.0.21] to [0544.0.0.21] for the disclosure of the paragraphs [0542.0.0.21] to 15 [0544.0.0.21] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.21.21] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b0342 from Escherichia coli or homologs of b0342 from other organisms. [0546.0.0.21] to [0549.0.0.21] for the disclosure of the paragraphs [0546.0.0.21] to 20 [0549.0.0.21] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.21.21]Example 15f: Engineering alfalfa plants by over-expressing b0342 from Escherichia coli or homologs of b0342 from other organ isms. [0551.0.0.21] to [0554.0.0.21] for the disclosure of the paragraphs [0551.0.0.21] to 25 [0554.0.0.21] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.21.21]: % [0554.2.0.21] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.21] for the disclosure of this paragraph see [0555.0.0.0] above.
1533 [0001.0.0.22] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.22.22] Lipids differ markedly from other groups of biomolecules and metabo lites. By definition, lipids are water-insoluble biomolecules that are highly soluble in organic solvents such as chloroform. Lipids have a variety of biological roles: they 5 serve as fuel molecules, highly concentrated energy stores, signal molecules, and components of membranes. The major kinds of membrane lipids are phospholipids, glycolipids, and cholesterol. Glycolipids are sugar-containing lipids. The term glycolipid designates any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a 10 hydrophobic moiety such as an acylglycerol, a sphingoid, a ceramide (N-acylsphingoid) or a prenyl phosphate. [0003.0.22.22] Galactose-containing lipids are the predominant nonproteinaceous components of photosynthetic membranes in plants, algae, and a variety of bacteria. In higher plants, the galactolipids contain a high proportion of polyunsaturated fatty acids, 15 up to 95% of which can be linolenic acid (18:3(n-3)). In non-photosynthetic tissues, such as tubers or roots, the C18 fatty acids are usually more saturated. In plants, especially photosynthetic tissues, a substantial proportion of the lipids con sists of 1,2-diacyl-sn-glycerols joined by a glycosidic linkage at position sn-3 to a car bohydrate moiety. The two most common galactolipids are monogalactosyl diacylglyc 20 erol and digalactosyl diacylglycerol. Up to 80% of all lipids in plants are associated with photosynthetic membranes, and monogalactosyl diacylglycerol is widely considered to be the most abundant membrane lipid on earth. Monogalactosyldiacylglycerols are not solely plant lipids as they have been found in small amounts in brain and nervous tissue in some animal species. 25 Related compounds of those main components of plant glycolipids, e.g. mono- and digalactosyldiacylglycerols, have been found with up to four galactose units, or in which one or more of these is replaced by glucose moieties. In addition, a 6-0-acyl monogalactosyldiacylglycerol is occasionally a component of plant tissues. [0004.0.22.22] The final step in monogalactosyl diacylglycerol biosynthesis occurs in 30 the plastid envelope and is catalyzed by monogalactosyl diacylglycerol synthase (EC 2.4.1.46). This enzyme transfers D-galactose from UDP-galactose to sn-1,2- 1534 diacylglycerol (DAG) (Joyard, J. & Douce, R. Stumpf, P. K., ed. (1987) in Biochemistry of Plants (Academic, New York). Digalactosyl diacylglycerol synthase catalyzes the transfer of galactose from one mole cule of monogalactosyl diacylglycerol to another, producing digalactosyl diacylglycerol 5 and DAG in equimolar amounts. [0005.0.22.22] Even if some details are known, galactolipid biosynthesis in plants is highly complex. It involves multiple pathways giving rise to different molecular species. Recent studies indicate that the amounts of the lipids sulfolipid sulfoquinovosyl diacylglycerol (SQDG) and digalactosyldiacylglycerol and DGDG increase strongly dur 10 ing phosphate deprivation (Hartel et al., Proc. NatI. Acad. Sci., 97, 10649-10654, 2000). When phosphate is limiting, phospholipids in plant membranes are reduced and at least in part replaced by glycolipids (i.e., SQDG and DGDG). In addition to serving as a surrogate lipid for phospholipids, galactolipids were found to be critical for the stabilization of photosynthetic complexes in the thylakoids (Dbrmann 15 and Benning, Trends Plant Sci. 7, 112-118, 2002). [0006.0.22.22] In contrast to plants, which contain high amounts of glycolipids, which carry a sugar moiety in the head group, in animals and yeast phospholipids are very abundant. Nevertheless, one type of glycolipids to be found in mammalians are galac tosylceramide (cerebroside), which is prevalent in brain and the central nervous 20 system. The cerebrosides have been localized to the outer leaflet of the plasma mem brane, exposed on the cell surface. They seem to be responsible for the different blood types. Blood group antigens include cerebrosides with multiple sugars attached. [0007.0.22.22] It has long been recognized that many complex glycolipid antigens are involved in the binding of lectins and antibodies at the cell surface glycolipids, con 25 taining only a single sugar headgroup, may play a combination of immunological, regu latory and structural roles in the membrane (Varki et al., Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York, 1999). The glycosphingolipid, galactosylceramide, has been shown to be a key activator of triggered cell death (Zhao et al., Cancer Res. 59, 482-486,1999) and may play a role 30 in the inhibition of virus replication (Kakimi et al., J. Exp. Med. 192, 921-930, 2000).
1535 It has recently been demonstrated that galactolipids are also responsible for preventing cell damage and the high resistance to oxidation and heat in the membranes of some microorganisms (Nakata, J. Biochem. 127, 731-737, 2000). [0008.0.22.22] Other glycoglycerolipids, such as the 1,2-di-Oacyl- 3-O-(D 5 galactopyranosyl)-sn-glycerols, are found widely in nature as structural components of the photosynthetic membranes of higher plants in the cell membranes of prokaryotic blue-green algae and several other microorganisms and in the seeds of cereals, such as wheat and oats. [0009.0.22.22] Galactolipids are one of the more abundant lipid classes in nature. 10 Sources for the galactolipids are foodstuffs, such as certain grains (oat, wheat, barley, and maize), which have been a significant part of the human diet since the beginning of time. In addition galactolipids contain important fatty acids like linoleic acid, linolenic acids and others which have numerous applications in the food and feed industry, in 15 cosmetics and in the drug sector. For example for cyanobacterium and marine green algae fermentation it has been described that the gamma-linolenic acid (GLA) was restricted the the galactolipid fraction (Cohen et al., J.Appl.Phycol.; (1993) 5, 1, 109-15; FEMS-Microbiol.Lett.; (1993) 107, 2-3, 163-67), meaning that increasing the concentration of galactolipids can be another method for increasing the concentration 20 of interesting fatty acids like linoleic acid, linolenic acid, stearic acid and palmitic acid in some production systems. [0010.0.22.22] Most vegetables and fruits in human and animal diets contain galac tolipids, and their breakdown products represent an important dietary source of galac tose and polyunsaturated fatty acids. 25 [0011.0.22.22] On account of the positive properties and interesting physiological roles potential of galactose and galactose comprising lipids there is a need to produce those compounds in large amounts and well defined quality and composition. Thus, it would be desirable to produce galactolipids, in a defined proportion in microor ganisms or plants. This should be in way, which is not dependent on the availability of 30 phosphate, in particular on phosphate deprivation. One way to increase the productive capacity of biosynthesis is to apply recombinant DNA technology. That type of produc tion permits control over quality, quantity and selection of the most suitable and effi- 1536 cient producer organisms. The latter is especially important for commercial production economics and therefore availability to consumers. [0012.0.22.22] Accordingly, there is still a great demand for new and more suitable genes which encode enzymes or other regulators which participate in the biosynthesis 5 of said galactolipids and make it possible to produce said galactolipids specifically on an industrial scale without that unwanted byproducts are formed. In the selection of genes for biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of said galactolipids on the other hand as less as possible byprod 10 ucts should be produced in the production process. [0013.0.0.22] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.22.22] Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is is a lipid, preferably a glycolipid containing galactose, glucose, mannose, rhamnose or xylose, more pref 15 erably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose. Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "lipid, preferably a glycolipid containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose in free or bound form". 20 Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising lipid, preferably a glycolipid, a glycolipid containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose. [0015.0.22.22] In one embodiment, the term "lipid, preferably a glycolipid, a glycolipid 25 containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galac tolipid containing galactose or glucose, most preferably a galactolipid containing galac tose in free or bound form", "the fine chemical" or "the respective fine chemical" means at least one chemical compound selected from the group consisting of glycolipids con taining galactose, glucose, mannose, rhamnose or xylose, more preferably a galac 30 tolipid containing galactose or glucose, most preferably a galactolipid containing galac tose. Throughout the specification the term "the fine chemical" or "the respective fine chemical" means a compound selected from the group of glycolipids containing galac tose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose or mixtures 1537 thereof in free form or bound to other compounds. In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the abovemen tioned fine chemical. 5 In one embodiment, the term "the fine chemical" and the term "the respective fine chemical" mean at least one chemical compound with an activity of the above men tioned fine chemical [0016.0.22.22] Accordingly, the present invention relates to a process for the produc tion of glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more 10 preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 23, column 5, in an organelle of a microorganism or plant, or 15 (b) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 23, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and (c) growing the organism under conditions which permit the production of the fine 20 chemical, thus, glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose or fine chemicals comprising glycol ipids containing galactose, glucose, mannose, rhamnose or xylose, more pref erably a galactolipid containing galactose or glucose, most preferably a galac 25 tolipid containing galactose, are produced in said organism or in the culture me dium surrounding the organism. [0016.1.22.22] Accordingly, the term "the fine chemical" means "a lipid, preferably a glycolipid, a glycolipid containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose" in relation to all se 30 quences listed in table I, application no. 23, columns 5 and 7 or homologs thereof. Ac cordingly, the term "a lipid, preferably a glycolipide,a glycolipid containing galactose, more preferably a galactolipid or cerebroside", owing to circumstances and the context. Preferably the term "the fine chemical" means preferably a "glycolipide containing ga- 1538 lactose or glucose, more preferably a galactolipide". In order to illustrate that the mean ing of the term "the respective fine chemical" means a "lipid, preferably a glycolipide,a glycolipid containing galactose, more preferably a galactolipide in free or bound form" owing to the sequences listed in the context the term "the respective fine chemical" is 5 also used. Whereas glycolipids are any lipid containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol, a sphingoid, a ceramide (N-acylsphingoid) or a prenyl phosphate. The term "glycosphin golipid" in the sense of the invention means lipids containing at least one monosaccha 10 ride residue and either a sphingoid or a ceramide. [0017.0.22.22] In another embodiment the present invention is related to a process for the production of glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose, which comprises 15 (a) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 23, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap 20 plication no. 23, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 23, column 5, which are joined to a nucleic acid sequence encoding 25 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid con 30 taining galactose in said organism. [0017.1.22.22] In another embodiment, the present invention relates to a process for the production of glycolipids containing galactose, glucose, mannose, rhamnose or 1539 xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap 5 plication no. 23, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 23, column 5 in the plastid of a microorganism or plant, or in one or 10 more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most pref erably a galactolipid containing galactose or fine chemicals comprising glycolipids 15 containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid con taining galactose in said organism or in the culture medium surrounding the or ganism. [0018.0.22.22] Advantagously the activity of the protein as shown in table II, applica 20 tion no. 23, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 23, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.22] to [0024.0.0.22] for the disclosure of the paragraphs [0019.0.0.22] to [0024.0.0.22] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. 25 [0025.0.22.22] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to 30 link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 23, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, 1540 ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro 5 teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac 10 ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en 15 coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any 20 case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. 25 [0026.0.22.22] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 23, column 3 and its homologs as disclosed in table I, application no. 23, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex 30 pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod ing for proteins as shown in table II, application no. 23, column 3 and its homologs as disclosed in table I, application no. 23, columns 5 and 7. [0027.0.0.22] to [0029.0.0.22] for the disclosure of the paragraphs [0027.0.0.22] to 35 [0029.0.0.22] see paragraphs [0027.0.0.0] and [0029.0.0.0] above.
1541 [0030.0.22.22] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a 5 linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences 10 derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more 15 preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be 20 also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 23, columns 5 and 7. The person skilled in the art is able to join 25 said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 23, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the 30 protein metioned in table II, application no. 23, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 23, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids 35 in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six 1542 amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table 1, application no. 23, columns 5 and 7. Fur 5 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.22.22] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.22.22] Alternatively to the targeting of the sequences shown in table 1l, ap 10 plication no. 23, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table 1, application no. 15 23, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 20 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 25 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.22] and [0030.3.0.22] for the disclosure of the paragraphs [0030.2.0.22] and [0030.3.0.22] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.22.22] For the inventive process it is of great advantage that by transforming 30 the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table 1, application no. 23, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen 1543 of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran 5 scribed from the sequences depicted in table I, application no. 23, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 23, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal 10 may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, 15 PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table I, application no. 23, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 23, columns 5 and 7 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table I, application no. 23, columns 5 and 7 or a sequence encoding a 20 protein as depicted in table II, application no. 23, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 23, columns 5 and 7 are encoded by differ 25 ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in 30 troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the 35 nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 23, columns 5 and 7.
1544 [0030.5.22.22] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 23, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, 5 most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. [0030.6.22.22] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 23, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids 10 preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.22] and [0032.0.0.22] for the disclosure of the paragraphs [0031.0.0.22] and [0032.0.0.22] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. 15 [0033.0.22.22] Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that 20 means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 23, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 23, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.22.22] Surprisingly it was found, that the transgenic expression of the Sac 25 caromyces cerevisiae protein as shown in table II, application no. 23, column 3 in plas tids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence for example as mentioned in table V conferred an increase in the fine chemical content of the transformed plants. [0035.0.0.22] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. 30 [0036.0.22.22] The sequence of b3708 (Accession number WZEC) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "tryptophan deaminase, PLP-dependent". Accordingly, in one embodiment, the process of the present invention comprises the 1545 use of a "tryptophan deaminase, PLP-dependent" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of galactolipids, in particular for in creasing the amount of galactolipids in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the 5 activity of a b3708 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b3708 protein is increased or generated in a subcellular compartment of the organism or or 10 ganism cell such as in an organelle like a plastid or mitochondria. [0037.0.22.22] In one embodiment, the homolog of the b3708 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the b3708 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the b3708 is a homolog having said acitivity and being 15 derived from Gammaproteobacteria. In one embodiment, the homolog of the b3708 is a homolog having said acitivity and being derived from Enterobacteriales. In one em bodiment, the homolog of the b3708 is a homolog having said acitivity and being de rived from Enterobacteriaceae. In one embodiment, the homolog of the b3708 is a ho molog having said acitivity and being derived from Escherichia, preferably from Es 20 cherichia coli. [0038.0.0.22] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.22.22] In accordance with the invention, a protein or polypeptide has the "ac tivity of an protein as shown in table II, application no. 23, column 3" if its de novo activ ity, or its increased expression directly or indirectly leads to an increased in the fine 25 chemical level in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism and the protein has the above mentioned activities of a protein as shown in table II, applica tion no. 23, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. 30 Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table II, application no. 23, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par- 1546 ticularly preferably 40% in comparison to a protein as shown in table 1l, application no. 23, column 3 of Saccharomyces cerevisiae. [0040.0.0.22] to [0047.0.0.22] for the disclosure of the paragraphs [0040.0.0.22] to [0047.0.0.22] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 5 [0048.0.22.22] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav 10 ing the activity of a protein as shown in table 1l, application no. 23, column 3 its bio chemical or genetical causes and the increased amount of the fine chemical. [0049.0.0.22] to [0051.0.0.22] for the disclosure of the paragraphs [0049.0.0.22] to [0051.0.0.22] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.22.22] For example, the molecule number or the specific activity of the poly 15 peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 23, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V 20 or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, 25 which is directed for example to the plastids. [0053.0.0.22] to [0058.0.0.22] for the disclosure of the paragraphs [0053.0.0.22] to [0058.0.0.22] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.22.22] In case the activity of the Escherichia coli protein b3708 or its ho mologs, e.g. a "tryptophan deaminase, PLP-dependent" is increased advantageously in 30 an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of galactolipids in free or bound form between 14% and 34% or more is conferred.
1547 [0060.0.22.22] In case the activity of the Escherichia coli proteins b3708 or their ho mologs, are increased advantageously in an organelle such as a plastid or mitochon dria, preferably an increase of the fine chemical such as glycolipids containing galac tose or glucose or mixtures thereof in free or bound form is conferred. 5 [0061.0.0.22] and [0062.0.0.22] for the disclosure of the paragraphs [0061.0.0.22] and [0062.0.0.22] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.22.22] A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids preferably has the structure of the polypeptide described herein, in particular of the polypeptides compris 10 ing the consensus sequence shown in table IV, application no. 23, column 7 or of the polypeptide as shown in the amino acid sequences as disclosed in table II, application no. 23, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table 15 1, application no. 23, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.22.22] / [0065.0.0.22] and [0066.0.0.22] for the disclosure of the paragraphs [0065.0.0.22] and [0066.0.0.22] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. 20 [0067.0.22.22] In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 25 cation no. 23, columns 5 and 7 or its homologs activity having herein-mentioned glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a ga lactolipid containing galactose increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by 30 the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 23, columns 5 and 7, e.g. a nucleic 1548 acid sequence encoding a polypeptide having the activity of a protein as indi cated in table 1l, application no. 23, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned glycolipids containing galactose, glucose, mannose, rhamnose or xy 5 lose, more preferably a galactolipid containing galactose or glucose, most pref erably a galactolipid containing galactose increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned glycolipids containing ga 10 lactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galac tose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 23, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or 15 d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned glycolipids containing ga lactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid 20 containing galactose or glucose, most preferably a galactolipid containing galac tose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 23, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein 25 encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention having herein-mentioned glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose in creasing activity, e.g. of a polypeptide having the activity of a protein as indicated 30 in table 1l, application no. 23, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present 1549 invention or a polypeptide of the present invention, having herein-mentioned gly colipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a ga lactolipid containing galactose increasing activity, e.g. of a polypeptide having the 5 activity of a protein as indicated in table 1l, application no. 23, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned 10 glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a ga lactolipid containing galactose increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 23, columns 5 and 7 or its homologs activity; and/or 15 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 23, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like 20 for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated 25 near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam 30 ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or 1550 j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 5 polypeptide of the present invention having herein-mentioned glycolipids contain ing galactose, glucose, mannose, rhamnose or xylose, more preferably a galac tolipid containing galactose or glucose, most preferably a galactolipid containing galactose increasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 23, columns 5 and 7 or its homologs activ 10 ity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned glycolipids containing galactose, glucose, mannose, rhamnose or xy lose, more preferably a galactolipid containing galactose or glucose, most pref 15 erably a galactolipid containing galactose increasing activity, e.g. of a polypep tide having the activity of a protein as indicated in table 1l, application no. 23, col umns 5 and 7 or its homologs activity in plastids by the stable or transient trans formation advantageously stable transformation of organelles preferably plastids with an inventive nucleic acid sequence preferably in form of an expression cas 20 sette containing said sequence leading to the plastidial expression of the nucleic acids or polypeptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned glycolipids containing galactose, glucose, mannose, rhamnose or xy 25 lose, more preferably a galactolipid containing galactose or glucose, most pref erably a galactolipid containing galactose increasing activity, e.g. of a polypep tide having the activity of a protein as indicated in table 1l, application no. 23, col umns 5 and 7 or its homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial 30 promoter. [0068.0.22.22] Preferably, said mRNA is the nucleic acid molecule of the present in vention and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid sequence or transit peptide encoding nucleic acid sequence or the polypeptide having 1551 the herein mentioned activity, e.g. conferring the increase of the fine chemical after increasing the expression or activity of the encoded polypeptide preferably in organ elles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 23, column 3 or its homologs. Preferably 5 the increase of the fine chemical takes place in plastids. [0069.0.0.22] to [0079.0.0.22] for the disclosure of the paragraphs [0069.0.0.22] to [0079.0.0.22] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.22.22] The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 23, col 10 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the fine chemical after increase of expression or activity in the cytsol and/or in an organelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene encoding the protein as shown in table II, application no. 23, column 3 and activates its transcription. 15 A chimeric zinc finger protein can be constructed, which comprises a specific DNA binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encod ing the protein as shown in table II, application no. 23, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific 20 expression of the protein as shown in table II, application no. 23, column 3, see e.g. in WO01/52620, Oriz, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.22] to [0084.0.0.22] for the disclosure of the paragraphs [0081.0.0.22] to [0084.0.0.22] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. 25 [0085.0.22.22] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with 30 other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel metabolites composition in the organism, e.g. glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing ga- 1552 lactose or glucose, most preferably a galactolipid containing galactose and mixtures thereof. [0086.0.0.22] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.22.22] By influencing the metabolism thus, it is possible to produce, in the 5 process according to the invention, further advantageous compounds. Examples of such compounds are, in addition to glycolipids containing galactose, glucose, man nose, rhamnose or xylose, more preferably a galactolipid containing galactose or glu cose, most preferably a galactolipid containing galactose compounds such as other glycolipids such as glycosphingolipids, sulfoglycosphingolipids, phosphoglyco 10 sphingolipids, glycophosphatidyl inositol, vitamins, amino acids or fatty acids. [0088.0.22.22] Accordingly, in one embodiment, the process according to the inven tion relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a 15 microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 23, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the fine chemical in the organism, preferably in the microorganism, the non-human animal, the plant 20 or animal cell, the plant or animal tissue or the plant, more preferably a microor ganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 25 permit the production of the fine chemical in the organism, preferably the microor ganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organ ism, the microorganism, the non-human animal, the plant or animal cell, the plant 30 or animal tissue or the plant.
1553 [0089.0.22.22] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the fine chemical or the free and bound the fine chemical but as option it is also possible to 5 produce, recover and, if desired isolate, other free or/and bound glycolipids such as glycosphingolipids, sulfoglycosphingolipids, phosphoglycosphingolipids, glycophos phatidyl inositol or mixtures thereof. The fermentation broth, fermentation products, plants or plant products can be purified in the customary manner by hydrolysis with strong bases, extraction and crystallization 10 or via thin layer chromatography and other methods known to the person skilled in the art and described herein below. Products of these different work-up procedures are fatty acids or fatty acid compositions which still comprise fermentation broth, plant par ticles and cell components in different amounts, advantageously in the range of from 0 to 99% by weight, preferably below 80% by weight, especially preferably between be 15 low 50% by weight. [0090.0.0.22] to [0097.0.0.22] for the disclosure of the paragraphs [0090.0.0.22] to [0097.0.0.22] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.22.22] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= 20 transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 23, columns 5 and 7 or a derivative thereof, or 25 b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 23, columns 5 and 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by 30 means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the 1554 organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, 5 particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.22.22] The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as 10 depicted in the sequence protocol and disclosed in table 1, application no. 23, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 23, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid 15 sequences as depicted in the sequence protocol and disclosed in table 1, application no. 23, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. 20 [0100.0.0.22] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.22.22] In an advantageous embodiment of the invention, the organism takes the form of a plant whose glycolipid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for animals is dependent on 25 the abovementioned glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose and the general amount of glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid con taining galactose or glucose, most preferably a galactolipid containing galactose in 30 feed. After the activity of the protein as shown in table 1l, application no. 23, column 3 has been increased or generated, or after the expression of nucleic acid molecule or polypeptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subse quently harvested.
1555 [0102.0.0.22] to [0110.0.0.22] for the disclosure of the paragraphs [0102.0.0.22] to [0110.0.0.22] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.22.22] In a preferred embodiment, the fine chemical (glycolipid) is produced in accordance with the invention and, if desired, is isolated. The production of further 5 glycolipids such as glycosphingolipids, sulfoglycosphingolipids, phosphoglyco sphingolipids, glycophosphatidyl inositol or mixtures thereof or mixtures of other glycol ipids by the process according to the invention is advantageous. It may be advanta geous to increase the pool of free glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, 10 most preferably a galactolipid containing galactose and others as aforementioned in the transgenic organisms by the process according to the invention in order to isolate high amounts of the pure fine chemical. [0112.0.22.22] In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to 15 gether with the transformation of a nucleic acid encoding a protein or polypeptid for example another gene of the glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose biosynthesis, or a compound, which functions as a sink for the desired glycolipids containing galactose, glucose, mannose, 20 rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose in the organism is useful to increase the production of the respective fine chemical. [0113.0.22.22] In a preferred embodiment, the respective fine chemical is produced in accordance with the invention and, if desired, is isolated. The production of further 25 glycolipids other then glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose or compounds for which the respective fine chemi cal is a biosynthesis precursor compounds, e.g. carbohydrates monosaccharides or sugar alcohols, or mixtures thereof or mixtures of other glycolipids, in particular of gly 30 cosphingolipids, sulfoglycosphingolipids, phosphoglycosphingolipids or glycophos phatidyl inositol, by the process according to the invention is advantageous. [0114.0.22.22] In the case of the fermentation of microorganisms, the abovemen tioned desired fine chemical may accumulate in the medium and/or the cells. If micro organisms are used in the process according to the invention, the fermentation broth 1556 can be processed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can 5 subsequently be reduced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formu lation can be added such as corn starch or silicates. This concentrated fermentation broth advantageously together with compounds for the formulation can subsequently 10 be processed by lyophilization, spray drying, and spray granulation or by other meth ods. Preferably the respective fine chemical comprising compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromato 15 graphy or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concentration methods. [0115.0.22.22] Transgenic plants which comprise the fine chemical such as glycolip ids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a 20 galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the fine chemical synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, 25 tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, flowers, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. 30 However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, (in the form of their organic extracts, e.g. alcohol, or other organic solvents or water containing extract and/or free glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a ga 35 lactolipid containing galactose or other extracts. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the medium 1557 in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. To increase the efficiency of extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material. To allow for greater ease of dis ruption of the plant parts, specifically the seeds, they can previously be comminuted, 5 steamed or roasted. Seeds, which have been pretreated in this manner can subse quently be pressed or extracted with solvents such as organic solvents like warm hex ane or water or mixtures of organic solvents. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted di rectly without further processing steps or else, after disruption, extracted via various 10 methods with which the skilled worker is familiar. Thereafter, the resulting products can be processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter can be first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. 15 Well-established approaches for the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, ad sorbed on the cells, has to be removed. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. 20 [0115.1.22.22] The identity and purity of the compound(s) isolated can be deter mined by prior-art techniques. They encompass high-performance liquid chromatogra phy (HPLC), gas chromatography (GC), spectroscopic methods, mass spectrometry (MS), staining methods, thin-layer chromatography, NIRS, enzyme assays or microbi ological assays. These analytical methods are compiled in: Patek et al. (1994) Appl. 25 Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Indus trial Chemistry (1996) Bd. A27, VCH Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. 30 (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17. [0115.2.22.22] In yet another aspect, the invention also relates to harvestable parts and to propagation material of the transgenic plants according to the invention which either contain transgenic plant cells expressing a nucleic acid molecule according to 35 the invention or which contains cells which show an increased cellular activity of the 1558 polypeptide of the invention or the polypeptide used in the method of the invention, e.g. an increased expression level or higher activity of the described protein. Harvestable parts can be in principle any useful parts of a plant, for example, flowers, pollen, seedlings, tubers, leaves, stems, fruit, seeds, roots etc. Propagation material 5 includes, for example, seeds, fruits, cuttings, seedlings, tubers, rootstocks etc. Pre ferred are seeds, fruits, seedlings or tubers as harvestable or propagation material. [0116.0.22.22] In a preferred embodiment, the present invention relates to a process for the production of the fine chemical comprising or generating in an organism or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the 10 expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 23, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an or 15 ganism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 23, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen 20 eracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemi 25 cal in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by 30 substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 1559 preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 5 (c) and and conferring an increase in the amount of the fine chemical in an or ganism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 23, column 7 and conferring an in 10 crease in the amount of the fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the fine chemical in an organism 15 or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 23, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en 20 coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 23, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic 25 acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. 30 [0116.1.22.22] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 23, 1560 columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 23, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 5 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 23, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 23, columns 5 and 7. [0116.2.22.22] In one embodiment, the nucleic acid molecule used in the process of 10 the invention distinguishes over the sequence indicated in table I B, application no. 23, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I B, application no. 23, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 15 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 23, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 23, columns 5 and 7. [0117.0.22.22] In one embodiment, the nucleic acid molecule used in the process 20 distinguishes over the sequence shown in table I, application no. 23, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, appli cation no. 23, columns 5 and 7. In one embodiment, the nucleic acid molecule of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I, application no. 23, columns 5 and 7. In another embodi 25 ment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 23, columns 5 and 7. [0118.0.0.22] to [0120.0.0.22] for the disclosure of the paragraphs [0118.0.0.22] to [0120.0.0.22] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.22.22] Nucleic acid molecules with the sequence shown in table I, application 30 no. 23, columns 5 and 7, nucleic acid molecules which are derived from the amino acid sequences shown in table II, application no. 23, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, application no. 23, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 23, column 3 or conferring the 1561 fine chemical increase after increasing its expression or activity are advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0122.0.0.22] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. 5 [0123.0.22.22] Nucleic acid molecules, which are advantageous for the process ac cording to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 23, column 3 can be determined from generally ac cessible databases. [0124.0.0.22] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. 10 [0125.0.22.22]The nucleic acid molecules used in the process according to the inven tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 23, column 3 and confer ring the fine chemical increase increase by expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. 15 [0126.0.0.22] to [0133.0.0.22] for the disclosure of the paragraphs [0126.0.0.22] to [0133.0.0.22] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.22.22] However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu 20 lar from the polypeptide sequences shown in table II, application no. 23, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring the fine chemical increase after increasing its activity, e.g. after increasing the activity of a protein as shown in table II, application no. 23, column 3 by for example expression either in the cytsol or in an organelle such as a 25 plastid or mitochondria or both, preferably in plastids. [0135.0.0.22] to [0140.0.0.22] for the disclosure of the paragraphs [0135.0.0.22] to [0140.0.0.22] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.22.22] Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 23, column 7, by means of polymerase chain reaction can be 30 generated on the basis of a sequence shown herein, for example the sequence shown 1562 in table I, application no. 23, columns 5 and 7 or the sequences derived from table II, application no. 23, columns 5 and 7. [0142.0.22.22] Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the 5 process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 23, column 7 is derived from said aligments. 10 [0143.0.22.22] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 23, column 3 or further functional homologs of the polypeptide of the invention from other organisms. 15 [0144.0.0.22] to [0151.0.0.22] for the disclosure of the paragraphs [0144.0.0.22] to [0151.0.0.22] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. [0152.0.22.22] Polypeptides having above-mentioned activity, i.e. conferring the fine chemical increase, derived from other organisms, can be encoded by other DNA se quences which hybridize to the sequences shown in table I, application no. 23, 20 columns 5 and 7, preferably of table I B, application no. 23, columns 5 and 7 under relaxed hybridization conditions and which code on expression for peptides having the glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more pref erably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose increasing activity. 25 [0153.0.0.22] to [0159.0.0.22] for the disclosure of the paragraphs [0153.0.0.22] to [0159.0.0.22] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.22.22] Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is 30 complementary to one of the nucleotide sequences shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application 1563 no. 23, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple 5 ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. 10 [0161.0.22.22] The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 23, columns 5 and 7, preferably shown in 15 table I B, application no. 23, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 23, column 3 by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. 20 [0162.0.22.22] The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer 25 ring of a glycolipid increase by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the activity of a protein as shown in table II, application no. 23, column 3. [0163.0.22.22] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 30 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the fine chemical if its activity is increased by for 35 example expression either in the cytsol or in an organelle such as a plastid or mito- 1564 chondria or both, preferably in plastids. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer typically comprises 5 substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleo tides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 23, columns 5 and 7, an anti-sense sequence of one of the sequences, e.g., set forth in 10 table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the poly peptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present invention, e.g. as shown in the 15 examples. A PCR with the primers shown in table III, application no. 23, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.22] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.22.22] The nucleic acid molecule of the invention encodes a polypeptide or portion thereof which includes an amino acid sequence which is sufficiently homolo 20 gous to the amino acid sequence shown in table II, application no. 23, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular a glycolipid increasing activity as mentioned above or as described in the examples in plants or microorganisms is comprised. [0166.0.22.22] As used herein, the language "sufficiently homologous" refers to pro 25 teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 23, columns 5 and 7 such that the protein or portion thereof is able to par 30 ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.22.22] In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 1565 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 23, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the 5 increase of the fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids. [0168.0.0.22] and [0169.0.0.22] for the disclosure of the paragraphs [0168.0.0.22] and [0169.0.0.22] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.22.22] The invention further relates to nucleic acid molecules that differ from 10 one of the nucleotide sequences shown in table I, application no. 23, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 23, columns 5 15 and 7 or the functional homologues. Advantageously, the nucleic acid molecule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid sequence shown in table II, application no. 23, columns 5 and 7 or the functional homologues. In a still further embodiment, the nucleic acid molecule of the invention encodes a full 20 length protein which is substantially homologous to an amino acid sequence shown in table II, application no. 23, columns 5 and 7 or the functional homologues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 23, columns 5 and 7, prefera bly as indicated in table I A, application no. 23, columns 5 and 7. Preferably the nucleic 25 acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 23, columns 5 and 7. [0171.0.0.22] to [0173.0.0.22] for the disclosure of the paragraphs [0171.0.0.22] to [0173.0.0.22] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.22.22] Accordingly, in another embodiment, a nucleic acid molecule of the 30 invention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes un der stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 23, columns 5 1566 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.22] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.22.22] Preferably, nucleic acid molecule of the invention that hybridizes under 5 stringent conditions to a sequence shown in table I, application no. 23, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above 10 mentioned activity, e.g. conferring the fine chemical increase after increasing the ex pression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. 15 [0177.0.0.22] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.22.22]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 23, columns 5 and 7. 20 [0179.0.0.22] and [0180.0.0.17] for the disclosure of the paragraphs [0179.0.0.22] and [0180.0.0.22] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.22.22] Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the fine chemical in an organisms or parts thereof by for example expression either in the cytsol 25 or in an organelle such as a plastid or mitochondria or both, preferably in plastids that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a sequence contained in the se quences shown in table II, application no. 23, columns 5 and 7, preferably shown in table II A, application no. 23, columns 5 and 7 yet retain said activity described herein. 30 The nucleic acid molecule can comprise a nucleotide sequence encoding a polypep tide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 23, columns 5 and 7, preferably shown in table II A, application no. 23, columns 5 and 7 and is capa- 1567 ble of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% identical to the se 5 quence shown in table II, application no. 23, columns 5 and 7, preferably shown in ta ble II A, application no. 23, columns 5 and 7, more preferably at least about 70% iden tical to one of the sequences shown in table II, application no. 23, columns 5 and 7, preferably shown in table II A, application no. 23, columns 5 and 7, even more prefera bly at least about 80%, 90%, 95% homologous to the sequence shown in table II, ap 10 plication no. 23, columns 5 and 7, preferably shown in table II A, application no. 23, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the sequence shown in table II, application no. 23, columns 5 and 7, preferably shown in table II A, application no. 23, columns 5 and 7. [0182.0.0.22] to [0188.0.0.22] for the disclosure of the paragraphs [0182.0.0.22] to 15 [0188.0.0.22] see paragraphs [0182.0.0.0] to [0188.0.0.0] above. [0189.0.22.22] Functional equivalents derived from one of the polypeptides as shown in table II, application no. 23, columns 5 and 7, preferably shown in table II B, applica tion no. 23, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 20 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 25 polypeptide as shown in table II, application no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7. [0190.0.22.22] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7 resp., according to the invention by substitution, 30 insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7 35 resp., according to the invention and encode polypeptides having essentially the same 1568 properties as the polypeptide as shown in table II, application no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7. [0191.0.0.22] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.22.22] A nucleic acid molecule encoding an homologous to a protein se 5 quence of table II, application no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7 resp., can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the nu cleic acid molecule of the present invention, in particular of table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7 10 resp., such that one or more amino acid substitutions, additions or deletions are intro duced into the encoded protein. Mutations can be introduced into the encoding se quences of table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7 resp., by standard techniques, such as site directed mutagenesis and PCR-mediated mutagenesis. 15 [0193.0.0.22] to [0196.0.0.22] for the disclosure of the paragraphs [0193.0.0.22] to [0196.0.0.22] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.22.22] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7, comprise also allelic variants with at least ap 20 proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived nucleic acid sequences or their homologues, derivatives or analogues or parts of these. 25 Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7, or from the derived nucleic acid sequences, the intention being, however, that the enzyme activity or the biological activity of the result 30 ing proteins synthesized is advantageously retained or increased. [0198.0.22.22] In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 23, columns 5 and 7, preferably shown in 1569 table I B, application no. 23, columns 5 and 7. It is preferred that the nucleic acid mole cule comprises as little as possible other nucleotides not shown in any one of table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 5 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further em bodiment, the nucleic acid molecule comprises less than 30, 20 or 10 further nucleo tides. In one embodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7. 10 [0199.0.22.22] Also preferred is that the nucleic acid molecule used in the process of the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the 15 encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. In one embodiment used in the inventive process, the encoded polypeptide is identical to the sequences shown in table II, application no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7. [0200.0.22.22] In one embodiment, the nucleic acid molecule of the invention or used 20 in the process encodes a polypeptide comprising the sequence shown in table II, appli cation no. 23, columns 5 and 7, preferably shown in table II B, application no. 23, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence 25 of the sequences shown in table I, application no. 23, columns 5 and 7, preferably shown in table I B, application no. 23, columns 5 and 7. [0201.0.22.22] Polypeptides (= proteins), which still have the essential biological or enzymatic activity of the polypeptide of the present invention conferring an increase of the fine chemical i.e. whose activity is essentially not reduced, are polypeptides with at 30 least 10% or 20%, by preference 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 23, columns 5 and 7 ex pressed under identical conditions.
1570 [0202.0.22.22] Homologues of table I, application no. 23, columns 5 and 7 or of the derived sequences of table II, application no. 23, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva 5 tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as 10 terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. 15 [0203.0.0.22] to [0215.0.0.22] for the disclosure of the paragraphs [0203.0.0.22] to [0215.0.0.22] see paragraphs [0203.0.0.0] to [0215.0.0.0] above. [0216.0.22.22] Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: 20 a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table II, application no. 23, columns 5 and 7, preferably in table II B, application no. 23, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 25 cleic acid molecule shown in table I, application no. 23, columns 5 and 7, pref erably in table I B, application no. 23, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 30 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 1571 d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 5 e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 10 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 15 (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof ; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 23, column 7 and conferring an increase in the amount of the fine 20 chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a 25 part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 23, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod 30 ing a domaine of the polypeptide shown in table 1l, application no. 23, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organ ism or a part thereof; and 1572 I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid 5 molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 23, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 23, columns 5 and 7, and conferring an increase in the amount of the fine chemical in an organism or a part thereof; or which encompasses a sequence 10 which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 23, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 23, 15 columns 5 and 7. In another embodiment, the nucleic acid molecule of the present in vention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the sequence shown in table I A and/or I B, application no. 23, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypep tide sequence shown in table II A and/or II B, application no. 23, columns 5 and 7. Ac 20 cordingly, in one embodiment, the nucleic acid molecule of the present invention en codes in one embodiment a polypeptide which differs at least in one or more amino acids from the polypeptide shown in table II A and/or II B, application no. 23, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, appli cation no. 23, columns 5 and 7. Accordingly, in one embodiment, the protein encoded 25 by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 23, columns 5 and 7. In a further embodi ment, the protein of the present invention is at least 30 % identical to protein sequence depicted in table II A and/or II B, application no. 23, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 30 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 23, columns 5 and 7. [0217.0.0.22] to [0226.0.0.22] for the disclosure of the paragraphs [0217.0.0.22] to [0226.0.0.22] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.22.22] In general, vector systems preferably also comprise further cis 35 regulatory regions such as promoters and terminators and/or selection markers by 1573 means of which suitably transformed organisms can be identified. While vir genes and T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this 5 fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci 10 ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic acids of the invention, preferentially the nucleic acid sequences encoding the polypep tides shown in table II, application no. 23, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di 15 rected to the plastids and which means that the mature protein fulfills its biological ac tivity. [0228.0.0.22] to [0239.0.0.22] for the disclosure of the paragraphs [0228.0.0.22] to [0239.0.0.22] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.22.22] The abovementioned nucleic acid molecules can be cloned into the 20 nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 23, columns 5 and 7 25 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of the glycolipids biosynthetic pathway is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject 30 to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the respective desired fine chemical since, for example, feedback regula tions no longer exist to the same extent or not at all. In addition it might be advanta geously to combine the sequences shown in Table I, application no. 23, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target or- 1574 ganismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resistant plants. [0241.0.22.22] In a further embodiment of the process of the invention, therefore, organisms are grown, in which there is simultaneous direct or indirect overexpression 5 of at least one nucleic acid or one of the genes which code for proteins involved in the glycolipids metabolism, in particular in synthesis of glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing ga lactose or glucose, most preferably a galactolipid containing galactose. Indirect over expression might be brought about by the manipulation of the regulation of the en 10 dogenous gene, for example through promotor mutations or the expression of natural or artificial transcriptional regulators. [0242.0.22.22] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the glycolipid 15 biosynthetic pathway. [0242.1.22.22] In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which advantageously simultaneously a glycolipid degrading protein is attenuated, in particular by reducing the rate of expres sion of the corresponding gene, or by inactivating the gene for example the mutagene 20 sis and/or selection. In another advantageous embodiment the synthesis of competitive pathways which rely on the same precoursers are down regulated or interrupted. [0242.2.22.22] The respective fine chemical produced can be isolated from the or ganism by methods with which the skilled worker are familiar, for example via extrac tion, salt precipitation, and/or different chromatography methods. The process accord 25 ing to the invention can be conducted batchwise, semibatchwise or continuously. The fine chemcical and other glycolipids produced by this process can be obtained by har vesting the organisms, either from the crop in which they grow, or from the field. This can be done via for example pressing or extraction of the plant parts. [0242.3.22.22] Preferrably, the compound is a composition comprising the essentially 30 pure glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose or a recovered or isolated glycolipids containing galactose, glu- 1575 cose, mannose, rhamnose or xylose, more preferably a galactolipid containing galac tose or glucose, most preferably a galactolipid containing galactose. [0243.0.0.22] to [0264.0.0.22] for the disclosure of the paragraphs [0243.0.0.22] to [0264.0.0.22] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. 5 [0265.0.22.22] Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the 10 extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid 15 transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 23, columns 5 and 7 and described herein to achieve an expression in one of said 20 compartments or extracellular. [0266.0.0.22] to [0287.0.0.22] for the disclosure of the paragraphs [0266.0.0.22] to [0287.0.0.22] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.22.22] Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regula 25 tory sequences which permit the expression in a prokaryotic or eukaryotic or in a pro karyotic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 23, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 30 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table 1l, application no. 23, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids.
1576 [0289.0.0.22] to [0296.0.0.22] for the disclosure of the paragraphs [0289.0.0.22] to [0296.0.0.22] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.22.22] Moreover, native polypeptide conferring the increase of the fine chemical in an organism or part thereof can be isolated from cells (e.g., endothelial 5 cells), for example using the antibody of the present invention as described below, in particular, an anti-b3708 protein antibody or an antibody against polypeptides as shown in table II, application no. 23, columns 5 and 7, which can be produced by stan dard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this invention. Preferred are monoclonal antibodies. 10 [0298.0.0.22] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.22.22] In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 23, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 23, columns 5 and 7 or func tional homologues thereof. 15 [0300.0.22.22] In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 23, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 23, column 7 whereby 20 or 20 less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. [0301.0.0.22] to [0304.0.0.22] for the disclosure of the paragraphs [0301.0.0.22] to [0304.0.0.22] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. 25 [0305.0.22.22] In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 23, columns 5 and 7 by one or more 30 amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 23, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the 1577 polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 23, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said 5 polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 23, columns 5 and 7. [0306.0.0.22] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.22.22] In one embodiment, the invention relates to polypeptide conferring an increase in the fine chemical in an organism or part being encoded by the nucleic acid 10 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 23, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 23, columns 5 and 7. In a further embodiment, said polypep 15 tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 23, columns 5 and 7. [0308.0.22.22]In one embodiment, the present invention relates to a polypeptide hav 20 ing the activity of the protein as shown in table II A and/or II B, application no. 23, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 23, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred 25 by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from 30 which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle for example into the plastid or mitochondria. [0309.0.0.22] to [0311.0.0.22] for the disclosure of the paragraphs [0309.0.0.22] to [0311.0.0.22] see paragraphs [0309.0.0.0] to [0311.0.0.0] above.
1578 [0312.0.22.22] A polypeptide of the invention can participate in the process of the present invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 23, columns 5 and 7. 5 [0313.0.22.22] Further, the polypeptide can have an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 10 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 23, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 15 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 23, columns 5 and 7 or which is homologous thereto, as defined above. 20 [0314.0.22.22] Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 23, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 25 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 23, columns 5 and 7. [0315.0.0.22] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.22.22] Biologically active portions of an polypeptide of the present invention 30 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 23, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 1579 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 5 [0317.0.0.22] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.22.22] Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 23, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 23, column 3, pref 10 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 23, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 15 [0319.0.22.22] Any mutagenesis strategies for the polypeptide of the present inven tion or the polypeptide used in the process of the present invention to result in increas ing said activity are not meant to be limiting; variations on these strategies will be read ily apparent to one skilled in the art. Using such strategies, and incorporating the mechanisms disclosed herein, the nucleic acid molecule and polypeptide of the inven 20 tion may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 23, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is im proved. 25 [0320.0.0.22] to [0322.0.0.22] for the disclosure of the paragraphs [0320.0.0.22] to [0322.0.0.22] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.22.22] In one embodiment, a protein (= polypeptide) as shown in table II, ap plication no. 23, column 3 refers to a polypeptide having an amino acid sequence cor responding to the polypeptide of the invention or used in the process of the invention, 30 whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no.
1580 23, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.22] to [0329.0.0.22] for the disclosure of the paragraphs [0324.0.0.22] to [0329.0.0.22] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. 5 [0330.0.22.22] In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 23, columns 5 and 7. [0331.0.0.22] to [0346.0.0.22] for the disclosure of the paragraphs [0331.0.0.22] to [0346.0.0.22] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. 10 [0347.0.22.22] Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the fine chemical in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep 15 tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 23, column 3. Due to the above mentioned activity the fine chemical content in a cell or an organism is increased. For example, due to modu lation or manupulation, the cellular activity is increased preferably in organelles such as plastids or mitochondria, e.g. due to an increased expression or specific activity or spe 20 cific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipu lation of the genome, the activity of protein as shown in table II, application no. 23, col umn 3 or a protein as shown in table II, application no. 23, column 3-like activity is in 25 creased in the cell or organism or part thereof especially in organelles such as plastids or mitochondria. Examples are described above in context with the process of the in vention. [0348.0.0.22] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.22.22] A naturally occurring expression cassette - for example the naturally 30 occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 23, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" 1581 methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.22] to [0358.0.0.22] for the disclosure of the paragraphs [0350.0.0.22] to [0358.0.0.22] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. 5 [0359.0.22.22] Transgenic plants comprising glycolipids containing galactose, glu cose, mannose, rhamnose or xylose, more preferably a galactolipid containing galac tose or glucose, most preferably a galactolipid containing galactose or mixtures thereof synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, 10 plants are understood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing ga 15 lactose or glucose, most preferably a galactolipid containing galactose produced in the process according to the invention may, however, also be isolated from the plant in the form of their free glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose produced by this process can be isolated by har 20 vesting the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, pref erably the plant leaves, plant fruits, flowers and the like. The invention furthermore relates to the use of the transgenic plants according to the invention and of the cells, cell cultures, parts - such as, for example, roots, leaves, 25 flowers and the like as mentioned above in the case of transgenic plant organisms derived from them, and to transgenic propagation material such as seeds or fruits and the like as mentioned above, for the production of foodstuffs or feeding stuffs, cosmet ics, pharmaceuticals or fine chemicals. [0360.0.0.22] to [0362.0.0.22] for the disclosure of the paragraphs [0360.0.0.22] to 30 [0362.0.0.22] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.22.22] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the glycolipids produced in the process can be isolated. The resulting fine chemical can, if appropri- 1582 ate, subsequently be further purified, if desired mixed with other active ingredients such as other xanthophylls, fatty acids, vitamins, amino acids, carbohydrates, antibiotics and the like, and, if appropriate, formulated. [0364.0.22.22] In one embodiment, glycolipids containing galactose, glucose, man 5 nose, rhamnose or xylose, more preferably a galactolipid containing galactose or glu cose, most preferably a galactolipid containing galactose is the fine chemical. [0365.0.22.22] The glycolipids, in particular the respective fine chemicals obtained in the process are suitable as starting material for the synthesis of further products of value. For example, they can be used in combination with each other or alone for the 10 production of pharmaceuticals, health products, foodstuffs, animal feeds, nutrients or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, health products, food stuff, animal feeds, nutrients or cosmetics com prising the steps of the process according to the invention, including the isolation of the glyclolipids containing, in particular glycolipids containing galactose, glucose, mannose, 15 rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose containing composition produced or the respective fine chemical produced if desired and formulating the product with a pharmaceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use 20 of the glycolipids produced in the process or of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.22] to [0369.0.0.22] for the disclosure of the paragraphs [0366.0.0.22] to [0369.0.0.22] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. [0370.0.22.22] The fermentation broths obtained in this way, containing in particular 25 glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more pref erably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose in mixtures with other organic acids, amino acids, polypeptides or polysaccarides, normally have a dry matter content of from 1 to 70% by weight, pref erably 7.5 to 25% by weight. Sugar-limited fermentation is additionally advantageous, 30 e.g. at the end, for example over at least 30% of the fermentation time. This means that the concentration of utilizable sugar in the fermentation medium is kept at, or reduced to, 0 to 10 g/l, preferably to 0 to 3g/I during this time. The fermentation broth is then processed further. Depending on requirements, the biomass can be removed or iso lated entirely or partly by separation methods, such as, for example, centrifugation, 1583 filtration, decantation, coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can then be thickened or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling 5 film evaporator, by reverse osmosis or by nanofiltration. This concentrated fermentation broth can then be worked up by freeze-drying, spray drying, spray granulation or by other processes. [0371.0.22.22] Accordingly, it is possible to purify the glycolipids, in particular the glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more pref 10 erably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose produced according to the invention further. For this purpose, the product-containing composition, e.g. a total or partial extraction fraction using organic solvents, is subjected for example to separation via e.g. an open column chromatogra phy or HPLC in which case the desired product or the impurities are retained wholly or 15 partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. [0372.0.0.22] to [0376.0.0.22], [0376.1.0.22] and [0377.0.0.22]for the disclosure of the paragraphs [0372.0.0.22] to [0376.0.0.22], [0376.1.0.22] and [0377.0.0.22] see 20 paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.22.22] In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, 25 tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the fine chemical after expression, with the nucleic acid molecule of the present inven tion; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent 30 conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 23, columns 5 and 7, preferably in table I B, application no. 23, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; 1584 (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the fine chemical level in the host cells; and 5 (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the fine chemical level in the host cell after expression compared to the wild type. [0379.0.0.22] to [0383.0.0.22] for the disclosure of the paragraphs [0379.0.0.22] to [0383.0.0.22] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. 10 [0384.0.22.22] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in comparison to the control under such conditions would identify a gene or gene product 15 or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 23, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 20 II, application no. 23, column 3. [0385.0.0.22] to [0404.0.0.22] for the disclosure of the paragraphs [0385.0.0.22] to [0404.0.0.22] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.22.22] Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement se 25 quences thereof, the polypeptide of the invention, the nucleic acid construct of the in vention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identi fied with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the fine chemical or 30 of the fine chemical and one or more other glycolipids, in particular glycolipids such as glycosphingolipids, sulfoglycosphingolipids, phosphoglycosphingolipids or glycophos phatidyl inositol.
1585 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof 5 of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the fine chemical in an organism or part thereof, e.g. in a cell. [0406.0.0.22] to [0435.0.0.22] for the disclosure of the paragraphs [0406.0.0.22] to [0435.0.0.22] see paragraphs [0406.0.0.0] to [0435.0.0.0] above. 10 [0436.0.22.22] Production of glycolipids containing galactose in Chlamydomonas reinhardtii The glycolipids production can be analysed as mentioned herein. The proteins and nucleic acids can be analysed as mentioned below. In addition a production in other organisms such as plants or microorganisms such as 15 yeast, Mortierella or Escherichia coli is possible. [0437.0.0.22] and [0438.0.0.22] for the disclosure of the paragraphs [0437.0.0.22] and [0438.0.0.22] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.22.22] Example 9: Analysis of the effect of the nucleic acid molecule on the production of glycolipids 20 [0440.0.10.10] The effect of the genetic modification of plants or algae on the pro duction of a desired compound (such as glycolipids containing galactose, glucose, mannose, rhamnose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose) can be determined by growing the modified plant under suitable conditions (such as those described above) 25 and analyzing the medium and/or the cellular components for the elevated production of desired product (i.e. of glycolipids containing galactose, glucose, mannose, rham nose or xylose, more preferably a galactolipid containing galactose or glucose, most preferably a galactolipid containing galactose). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, various 30 types of staining methods, enzymatic and microbiological methods and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: 1586 Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469 714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream process 5 ing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications) or the 10 methods mentioned above. [0441.0.0.22] for the disclosure of this paragraph see [0441.0.0.0] above. [0442.0.22.22] Purification of and determination of the glycolipid content: [0443.0.22.22] One example is the analysis of glycolipids containing galactose, glu cose, mannose, rhamnose or xylose, more preferably a galactolipid containing galac 15 tose or glucose, most preferably a galactolipid containing galactose (abbreviations: FAME, fatty acid methyl ester; GC-MS, gas liquid chromatography/mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography). The unambiguous detection for the presence of fatty acid products can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or 20 TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chroma tography/mass spectrometric methods], Lipide 33:343-353). The total fatty acids produced in the organism for example in yeasts used in the inven 25 tive process can be analysed for example according to the following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. After disruption, the material must be centrifuged (1000 x g, 10 min., 4'C) and washed once with 100 mM NaHCO 3 , pH 8.0 to remove residual medium and fatty 30 acids. For preparation of the fatty acid methyl esters (FAMES) the sediment is resus pended in distilled water, heated for 10 minutes at 100 C, cooled on ice and recentri fuged, followed by extraction for one hour at 90'C in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane, which leads to hydrolyzed oil and lipid compounds, which give transmethylated lipids. 35 The FAMES are then extracted twice with 2 ml petrolether, washed once with 100 mM 1587 NaHCO 3 , pH 8.0 and once with distilled water and dried with Na 2
SO
4 . The organic sol vent can be evaporated under a stream of Argon and the FAMES were dissolved in 50 pl of petrolether. The samples can be separated on a ZEBRON ZB-Wax capillary col umn (30 m, 0,32 mm, 0,25 pm; Phenomenex) in a Hewlett Packard 6850 gas chro 5 matograph with a flame ionisation detector. The oven temperature is programmed from 70'C (1 min. hold) to 200'C at a rate of 20'C/min., then to 250'C (5 min. hold) at a rate of 5 0 C/min and finally to 260'C at a rate of 5 0 C/min. Nitrogen is used as carrier gas (4,5 ml/min. at 70'C). The identity of the resulting fatty acid methyl esters can be identi fied by comparison with retention times of FAME standards, which are available from 10 commercial sources (i.e. Sigma). Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. This is followed by heating at 100 C for 10 minutes and, after cooling on ice, by resedimentation. The cell sediment is hydrolyzed for one hour at 90'C with 1 M 15 methanolic sulfuric acid and 2% dimethoxypropane, and the lipids are transmethylated. The resulting fatty acid methyl esters (FAMEs) are extracted in petroleum ether. The extracted FAMEs are analyzed by gas liquid chromatography using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0.32 mm) and a temperature gradient of from 170'C to 240'C in 20 minutes and 5 minutes at 240'C. The identity of 20 the fatty acid methyl esters is confirmed by comparison with corresponding FAME standards (Sigma). The identity and position of the double bond can be analyzed further by suitable chemical derivatization of the FAME mixtures, for example to give 4,4-dimethoxyoxazoline derivatives (Christie, 1998) by means of GC-MS. The methodology is described for example in Napier and Michaelson, 2001, Lipids. 25 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581 1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2): 293-298 and Michaelson et al., 1998, FEBS Letters. 439(3): 215-218. If required and desired, further chromatography steps with a suitable resin may follow. Advantageously the lipid, preferably a glycolipid, glycolipid containing galactose, more 30 preferably a galactolipide and/or cerebroside can be further purified with a so-called RTHPLC. As eluent different an acetonitrile/water or chloroform/acetonitrile mixtures are advantageously is used. For the analysis of the fatty acids an ELSD detector (evaporative light-scattering detector) is used. MPLC, dry-flash chromatography or thin layer chromatography are other beneficial chromatography methods for the purification 1588 of glycolipids. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be purified. 5 [0444.0.22.22] A typical sample pretreatment consists of a total lipid extraction using such polar organic solvents as acetone or alcohols as methanol, or ethers, saponifica tion , partition between phases, seperation of non-polar epiphase from more polar hy pophasic derivatives and chromatography. E.g.: For analysis, solvent delivery and aliquot removal can be accomplished with a robotic 10 system comprising a single injector valve Gilson 232XL and a 402 2S1V diluter [Gilson, Inc. USA, 3000 W. Beltline Highway, Middleton, WI]. For saponification, 3 ml of 50% potassium hydroxide hydro-ethanolic solution (4 water:1 ethanol) can be added to each vial, followed by the addition of 3 ml of octanol. The saponification treatment can be conducted at room temperature with vials maintained on an IKA HS 501 horizontal 15 shaker [Labworld-online, Inc., Wilmington, NC] for fifteen hours at 250 move ments/minute, followed by a stationary phase of approximately one hour. Following saponification, the supernatant can be diluted with 0.10 ml of methanol. The addition of methanol can be conducted under pressure to ensure sample homogeneity. Using a 0.25 ml syringe, a 0.1 ml aliquot can be removed and transferred to HPLC vials 20 for analysis. For HPLC analysis, a Hewlett Packard 1100 HPLC, complete with a quaternary pump, vacuum degassing system, six-way injection valve, temperature regulated autosam pler, column oven and Photodiode Array detector can be used [Agilent Technologies available through Ultra Scientific Inc., 250 Smith Street, North Kingstown, RI]. The col 25 umn can be a Waters YMC30, 5-micron, 4.6 x 250 mm with a guard column of the same material [Waters, 34 Maple Street, Milford, MA]. The solvents for the mobile phase can be 81 methanol: 4 water: 15 tetrahydrofuran (THF) stabilized with 0.2% BHT (2,6-di-tert-butyl-4-methylphenol). Injections were 20 pl. Separation can be isocratic at 30'C with a flow rate of 1.7 ml/minute. The peak responses can be measured by ab 30 sorbance at 447 nm. [0445.0.22.22] One example is the analysis of the coenzymes. The unambiguous detection for the presence of the coenzymes products can be obtained by analyzing recombinant organisms using analytical standard methods, especially HPLC with UV or 1589 electrochemical detection as for example described in The Journal of Lipid Research, Vol. 39, 2099-2105, 1998. Possible methods for the production and preparation of coenzymes like Coenzyme Q10 has also been described for example in W02003056024, J57129695, J57202294, 5 DE3416853 and DD-229152. Further methods for the isolation of the respective fine chemical can also been found in WO 9500634, Fat-Sci.Technol.; (1992) 94, 4, 153-57, DD-294280, DD-293048, JP-145413, DD-273002, DD-271128, SU1406163, JP 166837, JP-1 76705, Acta-Biotechnol.; (1986) 6, 3, 277-79, DD-229152, DE3416854, DE3416853, JP-202840, JP-048433, JP-125306, JP-087137, JP-014026, 10 W02003056024 and W0200240682. Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. [0446.0.0.22] to [0496.0.0.22] for the disclosure of the paragraphs [0446.0.0.22] to [0496.0.0.22] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. 15 [0497.0.22.22] In order to analyze glycolipids being present in the transgenic organ ism by the means of gas chromatography-mass spectrometry, material from the trans genic organisms have to be extracted and the extracts subsequently being hydrolyzed in the presence of methanol and an inorganic acid, yielding the corresponding fatty acid methyl esters and the respective monosaccharid moietye as its methylhexopyranoside. 20 Primary and secondary amino functions, hydroxy groups and free carboxylic functions eventually will be trimethylsilylated by reaction with N-Methyl-N-trimethylsilyltrifluoro acetamide, yielding the trimethylsilyl (TMS) derivatives of the methylhexopyranosides formed in the previous hydrolysis step (eg methylgalactopyranoside 4TMS in the case of a galactolipid). These compounds are accessible to gas chromatographic-mass 25 spectrometric analysis. Therefore, an increased content of the trimethylsilylated methylhexopyranosides di rectly correlates to an increased content of glycolipids in the transgenic organism. [0498.0.22.22] The results of the different plant analyses can be seen from the table, which follows: 30 Table VI 1590 ORF Metabolite Method Min Max b3708 Methylgalac- GC 1.14 1.34 topyranosid , from Galactolipids [0499.0.0.22] and [0500.0.0.22] for the disclosure of the paragraphs [0499.0.0.22] and [0500.0.0.22] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.22.22] Example 15a: Engineering ryegrass plants by over-expressing b3708 5 from Escherichia coli or homologs of b3708 from other organisms. [0502.0.0.22] to [0508.0.0.22] for the disclosure of the paragraphs [0502.0.0.22] to [0508.0.0.22] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.22.22] Example 15b: Engineering soybean plants by over-expressing b3708 10 from Escherichia coli or homologs of b3708 from other organisms. [0510.0.0.22] to [0513.0.0.22] for the disclosure of the paragraphs [0510.0.0.22] to [0513.0.0.22] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.22.22] Example 15c: Engineering corn plants by over-expressing b3708 from 15 Escherichia coli or homologs of b3708 from other organ isms. [0515.0.0.22] to [0540.0.0.22] for the disclosure of the paragraphs [0515.0.0.22] to [0540.0.0.22] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.22.22] Example 15d: Engineering wheat plants by over-expressing 20 b3708 from Escherichia coli or homologs of b3708 from other organisms. [0542.0.0.22] to [0544.0.0.22] for the disclosure of the paragraphs [0542.0.0.22] to [0544.0.0.22] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.22.22] Example 15e: Engineering Rapeseed/Canola plants by over-expressing 25 b3708 from Escherichia coli or homologs of b3708 from other organisms.
1591 [0546.0.0.22] to [0549.0.0.22] for the disclosure of the paragraphs [0546.0.0.22] to [0549.0.0.22] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.22.22] Example 15f: Engineering alfalfa plants by over-expressing b3708 from Escherichia coli or homologs of b3708 from other organ 5 isms. [0551.0.0.22] to [0554.0.0.22] for the disclosure of the paragraphs [0551.0.0.22] to [0554.0.0.22] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.1.22.22]: % [0554.2.0.22] for the disclosure of this paragraph see [0554.2.0.0] above. 10 [0555.0.0.22] for the disclosure of this paragraph see [0555.0.0.0] above.
1592 [0001.0.0.23] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.9.23] Salicylic acid is common throughout the plant kingdom and is also found in bacteria. It is an important regulator of induced plant resistance to pathogens. Small amounts of salicylic acid are known to be present in plants. Originally salicylic 5 acid was extracted from the willow bark to make the well-known pain relief medication Aspirin. Salicylic acid is thought to promote disease resistance, increase flower life, inhibit seed germination, and promote ethylene synthesis. Salicylic acid can be synthesized from cinnamate. Previous isotope feeding experi ments in tobacco and other higher plants, including rice, demonstrated that the direct 10 precursor of salicylic acid is free benzoic acid. Benzoic acid is synthesized by cinna mate chain shortening reactions via the so-called beta-oxidation, analogous to fatty acid beta-oxidation. Benzoic acid is then converted to salicylic acid by benzoic acid 2 hydroxylase. Recent studies in tobacco indicated that conjugated benzoic acid, CoA thioesters or glucose esters, are more likely to be the precursors of salicylic acid. More 15 recent genetic studies in Arabidopsis have shown that salicylic acid can also be syn thesized from chorismate and that the bulk of salicylic acid is produced from choris mate. Plants react to pathogen attack by activating elaborate defense mechanisms. The de fense response is activated not only at the sites of infection, but also in neighboring 20 and even distal uninfected parts of the plant, leading to systemic acquired resistance. Plant resistance is associated with activated expression of a large number of defense related genes, whose products may play important roles in the restriction of pathogen growth and spread. During the past several years, evidence has accumulated which indicates that salicylic acid (SA) acts as an endogenous signal for plant defense re 25 sponses. In most plants, exposure to powdery mildew and other pathogens triggers the plant defense pathway, a series of biochemical events that occur in succession and help the plant resist infection. Salicylic acid governs this pathway. Where resistance to a pathogen is associated with a localised necrotic lesion, the plant 30 will subsequently be systemically "immunized" so that further infection will either exhibit increased resistance or reduced disease symptoms (reviewed by Ryals et al., 1996). This "systemic acquired resistance" (SAR) is associated with the systemic expression of a subset of defence genes, e.g. the acidic forms of pathogenesis-related PR1-5 pro teins (Ward et al., 1992). Search for a signal that may be mobilised from the lesion to 35 elicit systemic resistance has led to the identification of salicylic acid (SA) as the most likely candidate. SA is synthesised to high levels around the necrotic lesion, before 1593 being (possibly) mobilised through the phloem to accumulate, at much lower levels, systemically. [0003.0.23.23] When faced with a fungus or bacteria, most plants turn up their pro duction of salicylic acid, which then interacts with other molecules in the plant, eventu 5 ally turning on the genes that produce the proteins involved in fighting infection. These infection-fighting proteins also turn off salicylic acid production, a phenomenon known as negative feedback. In this way, plants can turn the pathogen defense pathway on and off as needed. The basic idea to enhance plant disease resistance by overproduction of salicylic acid 10 has already been published years ago for example by Verberne et al., Pharm.World Sci.; (1995) 17, 6. Later on in 2000 is was published that the expression of the Es cherichia coli isochorismate-synthase and Pseudomonas fluorescence isochorismate pyruvate-lyase in transgenic tobacco can lead to improved disease-resistance (Ver berne, M et al., Nat.Biotechnol.; (2000) 18, 7, 779-83. The two enzymes converted cho 15 rismate into SA by a 2-step process. When the enzymes were targeted to the chloro plasts, the transgenic plants showed a 500- to 1,000-fold increased accumulation of SA and SA glucoside compared to control plants. These plants showed a resistance to viral (tobacco-mosaic virus) and fungal (Oidium lycopersicon) infection resembling SAR in nontransgenic plants. As the effect was the result of the plastidal expression of two 20 heterologous genes, there is the obvious need for alternative and more simple methods for enhanced salicylic acid production in plants by the cytosolic expression of individual genes. For individual cases or specific plant species a more moderate salicylic acid increase may also be useful and desired. Additionally salicylic acid binding proteins have been described as useful for the pro 25 duction of transgenic plants with increased resistance to disease (W02003016551). Most plants maintain very low levels of salicylic acid in their tissues unless they are fighting an infection. Metal hyperaccumulators, however, have significantly elevated salicylic acid in their tissues all the time - see: www.newswise.com/articles/view/510423/ 30 Recent results also suggest that in some plant species high level of endogenous sali cylic acid protects the plants from oxidative stress caused for example by aging or bi otic or abiotic stress (Yang et al., Plant J. 2004 Dec; 40 (6): 909-19). [0004.0.23.23] Aspirin was introduced into clinical practice more than 100 years ago. This unique drug belongs to a family of compounds called the salicylates, the 35 simplest of which is salicylic acid, the principal metabolite of aspirin. Salicylic acid is 1594 responsible for the anti-inflammatory action of aspirin, and may cause the reduced risk of colorectal cancer observed in those who take aspirin. Yet salicylic acid and other salicylates occur naturally in fruits and plants, while diets rich in these are believed to reduce the risk of colorectal cancer. Serum salicylic acid concentrations are greater in 5 vegetarians than non-vegetarians, and there is overlap between concentrations in vegetarians and those taking low-dose aspirin. It is proposed that the cancer-preventive action of aspirin is due to its principal metabolite, salicylic acid, and that dietary salicylates can have the same effect. It is also possible that natural salicylates contribute to the other recognized benefits of a healthy diet. 10 [0005.0.23.23] The hydroxyl group of salicylic acid reacts with acetic acid to form the acetate ester, acetylsalicylic acid (see aspirin). Several useful esters are formed by reaction of the carboxyl group with alcohols. The methyl ester, methyl salicylate (also called oil of wintergreen since it produces the fragrance of wintergreen), is formed with methanol; it is used in food flavorings and in liniments. The phenyl ester, phenyl 15 salicylate, or salol, is formed with phenol; it is used in medicine as an antiseptic and antipyretic. This ester hydrolyzes, not in the acidic stomach, but in the alkaline intestines, releasing free salicylic acid. The menthyl ester, menthyl salicylate, which is used in suntan lotions, is formed with menthol. Salicylic acid possesses bacteriostatic, fungicidal, and keratolytic actions. 20 [0006.0.23.23] Salicylic acid is used as a food preservative and as an antiseptic in toothpaste. It is a peeling agent in ointments, creams, gels, and shampoos applied to reduce the scaling of the skin or scalp in psoriasis. It is the active ingredient in many skin products for the treatment of acne since it causes skin cells to slough off more readily, preventing them from clogging up the pores. 25 [0007.0.23.23] Salicylic acid belongs to the group of medicines known as kerato lytics. Salicylic acid works by breaking down keratin, a protein, which forms part of the skin structure. This results in the shedding of skin cells from the affected area. In the treatment of warts, calluses and verrucae the effect of salicylic acid is to remove the affected skin over a period of time. If successful, the new skin, which grows underneath 30 will be healthy. [0008.0.23.23] One way to increase the productive capacity of biosynthesis is to apply recombinant DNA technology. Thus, it would be desirable to produce salicylic acid and/or salicylic acid esters in plants. That type of production permits control over quality, quantity and selection of the most suitable and efficient producer organisms.
1595 The latter is especially important for commercial production economics and therefore availability to consumers. In addition it is desirable to produce salicylic acid in plants in order to increase plant productivity and resistance against biotic and abiotic stress as discussed before. 5 Methods of recombinant DNA technology have been used for some years to improve the production of fine chemicals in microorganisms and plants by amplifying individual biosynthesis genes and investigating the effect on production of fine chemicals. It is for example reported, that the xanthophyll astaxanthin could be produced in the nectaries of transgenic tobacco plants. Those transgenic plants were prepared by Argobacterium 10 tumifaciens-mediated transformation of tobacco plants using a vector that contained a ketolase-encoding gene from H. pluvialis denominated crtO along with the Pds gene from tomato as the promoter and to encode a leader sequence. Those results indicated that about 75 percent of the carotenoids found in the flower of the transformed plant contained a keto group. 15 [0009.0.23.23] Thus, it would be advantageous if algae, plant or other microorganism were available which produce large amounts of salicylic acid. The invention discussed hereinafter relates in some embodiments to such transformed prokaryotic or eukaryotic microorganisms. It would also be advantageous if plants were available whose roots, leaves, stems, 20 fruits, seeds or flowers produced large amounts of salicylic acid. The invention dis cussed hereinafter relates in some embodiments to such transformed plants. [0010.0.23.23] Therefore improving the quality of foodstuffs and animal feeds is an important task of the food-and-feed industry. This is necessary since, for example, sali cylic acid, which occur in plants and some microorganisms are limited with regard to 25 the supply of mammals. Especially advantageous for the quality of foodstuffs and ani mal feeds is as balanced as possible a specific salicylic acid profile in the diet in order to avoid side effects. [0011.0.23.23] To ensure a high quality of foods and animal feeds, it is therefore necessary to add salicylic acid in a balanced manner to suit the organism. 30 [0012.0.23.23]Accordingly, there is still a great demand for new and more suitable genes which encode proteins which participate in the biosynthesis of salicylic acid and/or salicylic acid esters and make it possible to produce certain salicylic acid and/or salicylic acid esters specifically on an industrial scale without unwanted byproducts 1596 forming. In the selection of genes for or regulators of biosynthesis two characteristics above all are particularly important. On the one hand, there is as ever a need for im proved processes for obtaining the highest possible contents of salicylic acid and/or salicylic acid esters on the other hand as less as possible byproducts should be pro 5 duced in the production process. [0013.0.0.23] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.23.23]Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is salicylic acid and/or salicylic acid esters. Accordingly, in the present invention, the term "the fine chemical" 10 as used herein relates to "salicylic acid" and/or "salicylic acid esters". Further, the term "the fine chemicals" as used herein also relates to fine chemicals comprising salicylic acid . [0015.0.23.23]I n one embodiment, the term "salicylic acid" or "the fine chemical" or "the respective fine chemical" means at least one chemical compound with salicylic 15 acid activity. An increased salicylic acid content normally means an increased total salicylic acid content. However, an increased salicylic acid content also means, in particular, a modi fied content of the of a salicylic acid esters, without the need for an inevitable increase in the total salicylic acid content. In a preferred embodiment, the term "the fine chemi 20 cal" means salicylic acid in free form or its salts or its ester or bound. [0016.0.23.23]Accordingly, the present invention relates to a process for the production of salicylic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 24, column 3 encoded by the nucleic acid sequences as shown in table I, ap 25 plication no. 24, column 5, in an organelle of a microorganism or plant, or (b) increasing or generating the activity of a protein as shown in table II, application no. 24, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 24, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 30 (c) growing the organism under conditions which permit the production of the fine chemical, thus, salicylic acid or fine chemicals comprising salicylic acid, in said organism or in the culture medium surrounding the organism.
1597 [0016.1.23.23] Accordingly, the term "the fine chemical" means in one embodi ment "salicylic acid" in relation to all sequences listed in Table I to IV, application num ber 24 or homologs thereof. ; [0017.0.23.23]In another embodiment the present invention is related to a process for 5 the production of salicylic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 24 column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 24, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application 10 no. 24, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 24, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or (c) increasing or generating the activity of a protein as shown in table II, application no. 24, column 3 encoded by the nucleic acid sequences as shown in table I, ap 15 plication no. 24, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of salicylic acid in said organism. 20 [0017.1.23.23]In another embodiment, the present invention relates to a process for the production of salicylic acid, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 24, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 24, column 5, in an organelle of a microorganism or plant through the 25 transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 24, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 24, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and 1598 (c) growing the organism under conditions which permit the production of the fine chemical, thus, salicylic acid or fine chemicals comprising salicylic acid, in said organism or in the culture medium surrounding the organism. [0018.0.23.23]Advantagously the activity of the protein as shown in table 1l, application 5 no. 24, column 3 encoded by the nucleic acid sequences as shown in table 1, applica tion no. 24, column 5 is increased or generated in the abovementioned process in the plastid of a microorganism or plant. [0019.0.0.23] to [0024.0.0.23] for the disclosure of the paragraphs [0019.0.0.23] to [0024.0.0.23] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. 10 [0025.0.23.23] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to the disclosure of the invention especially in the examples the skilled worker is able to 15 link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table 1, application no. 24, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein 1l, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin 20 NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of 25 other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to 30 the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use 35 ful for the molecular joining of the different nucleic acid molecules. This procedure 1599 might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of 5 stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. [0026.0.23.23] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 24, column 3 and its homologs as disclosed in 10 table I, application no. 24, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod 15 ing for proteins as shown in table II, application no. 24, column 3 and its homologs as disclosed in table I, application no. 24, columns 5 and 7. [0027.0.0.23] to [0029.0.0.23] for the disclosure of the paragraphs [0027.0.0.23] to [0029.0.0.23] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. [0030.0.23.23] Alternatively, nucleic acid sequences coding for the transit peptides 20 may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 25 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu cleic acid sequence derived from the amino-terminal region of the mature protein, 30 which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even 35 shorter or longer stretches are also possible. In addition target sequences, which facili- 1600 tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic 5 acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 24, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is cleaved off from the protein part shown in table II, application no. 24, columns 5 and 7 10 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 24, columns 5 and 7. Other short amino acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 15 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 24, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent cloning) cassette. Said short amino acid sequence is preferred in the case of the ex 20 pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the expression of the genes metioned in table I, application no. 24, columns 5 and 7. Fur 25 thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.0.24] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. [0030.1.23.23] Alternatively to the targeting of the sequences shown in table II, ap 30 plication no. 24, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore in a preferred embodiment the nucleic acid sequences shown in table I, application no. 35 24, columns 5 and 7 are directly introduced and expressed in plastids.
1601 The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably 5 foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a chloroplast origin of replication). "Stably" integrated DNA sequences are those, which 10 are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny. [0030.2.0.23] and [0030.3.0.23] for the disclosure of the paragraphs [0030.2.0.23] and [0030.3.0.23] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.23.23] For the inventive process it is of great advantage that by transforming 15 the plastids the intraspecies specific transgene flow is blocked, because a lot of spe cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 24, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. 20 A further preferred embodiment of the invention relates to the use of so called "chloro plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table 1, application no. 24, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 24, columns 5 25 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole 30 cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table, 1, application no. 24, columns 5 and 7 or a se 35 quence encoding a protein, as depicted in table II, application no. 24, columns 5 and 7 1602 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table 1 application no. 24, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 24, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 5 2000 Mar 1; 268(1): 218-25). In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 24, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the 10 translocation of an RNA corresponding to a gene or gene fragment into the chloroplast by means of a chloroplast localization sequence. The genes, which should be ex pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a 15 ribozyme fused at one end to an RNA encoding a fragment of a protein used in the inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 24, columns 5 and 7. 20 [0030.5.23.23] In a preferred embodiment of the invention the nucleic acid se quences as shown in table I, application no. 24, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle 25 dons or in seeds. [0030.6.23.23] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 24, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro 30 moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter from corn. [0031.0.0.23] and [0032.0.0.23] for the disclosure of the paragraphs [0031.0.0.23] and [0032.0.0.23] see paragraphs [0031.0.0.0] and [0032.0.0.0] above.
1603 [0033.0.23.23]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro 5 duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 24, column 3. Preferably the modification of the activity of a protein as shown in table II, application no. 24, column 3 or their combination can be achieved by joining the protein to a transit peptide. 10 [0034.0.23.23] Surprisingly it was found, that the transgenic expression of the E. coli proteins shown in table II, application no. 24, column 3 in plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V - conferred an increase in the respective fine chemical indicated in column 6 "metabolite" of each table I to IV in the transformed 15 plant. Surprisingly it was found, that the transgenic expression of the E. coli protein b1 704, b2040, b3337, b3616 and/or b4039 and/or of the Saccaromyces cerevisiae protein YLLO33W in Arabidopsis thaliana conferred an increase in the salicylic acid content.. For example, in one embodiment the level of salicylic acid and/or salicylic acid esters 20 is increased in combination with the modulation of the expression of other genes of the biosynthesis of salicylic acid and/or salicylic acid esters , in particular of genes of the cinnamate and/or chorismate biosynthetic pathway. [0035.0.0.23] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.23.23] The sequence of b1704 (Accession numberNP_416219) from Es 25 cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "3-deoxy-D-arabinoheptulosonate-7 phosphate synthase (DAHP synthetase), tryptophanrepressible". Accordingly, in one embodiment, the process of the present invention comprises the use of a "3-deoxy-D arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophanrepressi 30 ble" or its homolog, e.g. as shown herein, for the production of the fine chemical, mean ing of salicylic acid, in particular for increasing the amount of salicylic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1704 protein is increased or gener ated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one 35 transit peptide as mentioned for example in table V.
1604 In another embodiment, in the process of the present invention the activity of a b1704 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2040 (Accession number G64969) from Escherichia coli has been 5 published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "TDP-rhamnose synthase, NAD(P)-binding". Accordingly, in one em bodiment, the process of the present invention comprises the use of a "TDP-rhamnose synthase, NAD(P)-binding" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of salicylic acid, in particular for increasing the amount of 10 salicylic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2040 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b2040 15 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b3337 (Accession number QQECBB7) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "yheA protein". Accordingly, in one embodiment, the process of the 20 present invention comprises the use of a "yheA protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of salicylic acid, in particular for increasing the amount of salicylic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b3337 protein is increased or generated, e.g. from Escherichia coli or a 25 homolog thereof, preferably linked at least to one transit peptide as mentioned for ex ample in table V. In another embodiment, in the process of the present invention the activity of a b3337 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 30 The sequence of b3616 (Accession number NP_418073) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "threonine 3-dehydrogenase, NAD(P)-binding". Accordingly, in one embodiment, the process of the present invention comprises the use of a "threonine 3 dehydrogenase, NAD(P)-binding" or its homolog, e.g. as shown herein, for the produc 35 tion of the fine chemical, meaning of salicylic acid, in particular for increasing the amount of salicylic acid in free or bound form in an organism or a part thereof, as men tioned. In one embodiment, in the process of the present invention the activity of a 1605 b3616 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b3616 5 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b4039 (Accession number S25660) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is being defined as "4-hydroxybenzoate synthetase". Accordingly, in one embodiment, the 10 process of the present invention comprises the use of a "4-hydroxybenzoate syn thetase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of salicylic acid, in particular for increasing the amount of salicylic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b4039 protein is increased or gen 15 erated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of a b4039 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. 20 The sequence of YLLO33W (Accession number S64784 ) from Saccharomyces cere visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "uncharacterized protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterized protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning 25 of salicylic acid, in particular for increasing the amount of salicylic acid in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the proc ess of the present invention the activity of a YLLO33Wprotein is increased or gener ated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 30 In another embodiment, in the process of the present invention the activity of an YLLO33Wprotein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. [0037.0.23.23] In one embodiment, the homolog of the YLLO33W protein, is a ho molog having said acitivity and being derived from Eukaryot. In one embodiment, the 35 homolog of the b1704, b2040, b3337, b3616 and/or b4039 protein is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the 1606 YLL033W is a homolog having said acitivity and being derived from Fungi. In one em bodiment, the homolog of the b1704, b2040, b3337, b3616 and/or b4039 is a homolog having said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YLL033W is a homolog having said acitivity and being derived from 5 Ascomycota. In one embodiment, the homolog of the b1704, b2040, b3337, b3616 and/or b4039 is a homolog having said acitivity and being derived from Gammaproteo bacteria. In one embodiment, the homolog of the YLL033W is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b1704, b2040, b3337, b3616 and/or b4039 is a homolog having said acitivity and 10 being derived from Enterobacteriales. In one embodiment, the homolog of the YLL033W is a homolog having said acitivity and being derived from Saccharomycetes. In one embodiment, the homolog of the b1704, b2040, b3337, b3616 and/or b4039 is a homolog having said acitivity and being derived from Enterobacteriaceae. In one em bodiment, the homolog of the YLL033W is a homolog having said acitivity and being 15 derived from Saccharomycetales. In one embodiment, the homolog of the b1704, b2040, b3337, b3616 and/or b4039 is a homolog having said acitivity and being de rived from Escherichia, preferably from Escherichia coli. In one embodiment, the ho molog of the YLL033W is a homolog having said acitivity and being derived from Sac charomycetaceae. In one embodiment, the homolog of the YLL033W is a homolog 20 having said acitivity and being derived from Saccharomycetes, preferably from Sac charomyces cerevisiae. [0037.1.23.23]Homologs of the polypeptide table II, application no. 24, column 3 may be the polypetides encoded by the nucleic acid molecules indicated in table I , applica tion no. 24, column 7, resp., or may be the polypeptides indicated in table II, application 25 no. 24, column 7, resp. [0038.0.0.23] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. [0039.0.23.23]In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 24, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the level of the 30 fine chemical indicated in the respective line of table II, application no. 24, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said organism, more preferably in an organelle such as a plastid or mitochondria of said organism.The protein has the above mentioned activities of a protein as shown in table II, application no. 24, column 3, preferably in the event the nucleic acid sequences encoding said 35 proteins is functionally joined to the nucleic acid sequence of a transit peptide.
1607 Throughout the specification the activity or preferably the biological activity of such a protein or polypeptide or an nucleic acid molecule or sequence encoding such protein or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table 1l, application no. 24, column 3, or which has at least 10% of 5 the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in the respective line of table 1l, application no. 24, column 3 . [0040.0.0.23] to [0047.0.0.23] for the disclosure of the paragraphs [0040.0.0.23] to [0047.0.0.23] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. 10 [0048.0.23.23]Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav 15 ing the activity of a respective protein as shown in table 1l, application no. 24, column 3 its biochemical or genetical causes and the increased amount of the respective fine chemical. [0049.0.0.23] to [0051.0.0.23] for the disclosure of the paragraphs [0049.0.0.23] to [0051.0.0.23] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. 20 [0052.0.23.23]For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 24, columns 5 and 7 alone 25 or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se 30 quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. [0053.0.0.23] to [0058.0.0.23] for the disclosure of the paragraphs [0053.0.0.23] to [0058.0.0.23] see paragraphs [0053.0.0.0] to [0058.0.0.0] above.
1608 [0059.0.23.23]In case the activity of the Escherichia coli protein b1704or its homologs, e.g. a "3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP synthetase), tryptophanrepressible " is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, pref 5 erably of salicylic acid between 25% and 266% or more is conferred. In case the activity of the Escherichia coli protein b2040 or its homologs, e.g. a "TDP rhamnose synthetase, NAD(P)-binding" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of salicylic acid between 41% and 81% or more is conferred. 10 In case the activity of the Escherichia coli protein b3337 or its homologs, e.g. a "yheA protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of salicylic acid between 73% and 104% or more is conferred. In case the activity of the Escherichia coli protein b3616 or its homologs, e.g. a 15 "threonine 3-dehydrogenase, NAD (P)-binding" is increased advantageously in an or ganelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of salicylic acid between 49% and 75% or more is con ferred. In case the activity of the Escherichia coli protein b4039 or its homologs, e.g. a "4 20 hydroxybenzoate synthetase" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of salicylic acid between 44 % and 173 % or more is conferred. In case the activity of the Escherichia coli protein YLL033W or its homologs, e.g. a "un characterized protein" is increased advantageously in an organelle such as a plastid or 25 mitochondria, preferably, in one embodiment an increase of the fine chemical, prefera bly of salicylic acid between 40 % and 59 % or more is conferred. [0060.0.23.23] In one embodiment, the activity of any on of the Escherichia coli pro teins b1 704, b2040, b3337, b3616 and/or b4039 and/or of the Saccaromyces cere visiae protein YLL033W f or their homologs, is advantageously increased in an organ 30 elle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical indicated in column 6 "metabolites" for application no. 24 in any one of Tables I to IV, resp., [0061.0.0.23] and [0062.0.0.23] for the disclosure of the paragraphs [0061.0.0.23] and [0062.0.0.23] see paragraphs [0061.0.0.0] and [0062.0.0.0] above.
1609 [0063.0.23.23]A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in one embodiment the structure of the polypeptide described herein, in particular of the polypeptides com prising the consensus sequence shown in table IV, application no. 24, column 7 or of 5 the polypeptide as shown in the amino acid sequences as disclosed in table II, applica tion no. 24, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 24, columns 5 and 7 or its herein described functional 10 homologues and has the herein mentioned activity. [0064.0.23.23] For the purposes of the present invention, the reference to the fine chemical, e.g. to the term "salicylic acid", also encompasses the corresponding salts, such as, for example, the potassium or sodium salts or the salts with amines and/ sali cylic acid esters, e.g. but not limited to the methyl ester, the phenyl ester or the menthol 15 ester. [0065.0.0.23] and [0066.0.0.23] for the disclosure of the paragraphs [0065.0.0.23] and [0066.0.0.23] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. [0067.0.23.23]In one embodiment, the process of the present invention comprises one or more of the following steps 20 a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 24, columns 5 and 7 or its homologs activity having herein-mentioned salicylic acid increasing activity; and/or 25 b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 24, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi 30 cated in table II, application no. 24, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein mentioned salicylic acid increasing activity; and/or 1610 c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep tide of the present invention having herein-mentioned salicylic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, 5 application no. 24, columns 5 and 7 or its homologs activity, or decreasing the inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the 10 polypeptide of the invention having herein-mentioned salicylic acid increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 24, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 15 the present invention having herein-mentioned salicylic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli cation no. 24, columns 5 and 7 or its homologs activity, by adding one or more exogenous inducing factors to the organismus or parts thereof; and/or f) expressing a transgenic gene encoding a protein conferring the increased ex 20 pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned sali cylic acid increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 24, columns 5 and 7 or its homologs activ ity, and/or 25 g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned salicylic acid increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table II, application no. 24, columns 5 and 7 or its homologs 30 activity; and/or h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table II, application no. 24, columns 5 and 7 or its homologs activity, by adding 1611 positive expression or removing negative expression elements, e.g. homologous recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt 5 repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or 10 i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; 15 and/or j) selecting of organisms with expecially high activity of the proteins of the invention from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the 20 polypeptide of the present invention having herein-mentioned salicylic acid in creasing activity, e.g. of polypeptide having the activity of a protein as indicated in table 1l, application no. 24, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of 25 the invention or of the polypeptide of the present invention having herein mentioned salicylic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table 1l, application no. 24, columns 5 and 7 or its homologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive 30 nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or 1612 m) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein mentioned salicylic acid increasing activity, e.g. of a polypeptide having the activ ity of a protein as indicated in table II, application no. 24, columns 5 and 7 or its 5 homologs activity in plastids by integration of a nucleic acid of the invention into the plastidal genome under control of preferable a plastidial promoter. [0068.0.23.23] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se 10 quence or transit peptide encoding nucleic acid sequence or the polypeptide having the herein mentioned activity, e.g. conferring the increase of the respective fine chemical as indicated in column 6 of application no. 24 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plas tids or having the activity of a polypeptide having an activity as the protein as shown in 15 table II, application no. 24, column 3 or its homologs. Preferably the increase of the fine chemical takes place in plastids. [0069.0.0.23] to [0079.0.0.23] for the disclosure of the paragraphs [0069.0.0.23] to [0079.0.0.23] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.23.23]The activation of an endogenous polypeptide having above-mentioned 20 activity, e.g. having the activity of a protein as shown in table II, application no. 24, col umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec tive fine chemical after increase of expression or activity in the cytsol and/or in an or ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en 25 coding the protein as shown in table II, application no. 24, column 3 and activates its transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA-binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 24, column 3. The 30 expression of the chimeric transcription factor in a organism, in particular in a plant, leads to a specific expression of the protein as shown in table II, application no. 24, column 3, see e.g. in WOO1/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13296.
1613 [0081.0.0.23] to [0084.0.0.23] for the disclosure of the paragraphs [0081.0.0.23] to [0084.0.0.23] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.23.23] Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid mole 5 cule used in the method of the invention or the polypeptide of the invention or the poly peptide used in the method of the invention as described below, for example the nu cleic acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably 10 novel metabolites composition in the organism, e.g. an advantageous salicylic acid, composition comprising a higher content of (from a viewpoint of nutritional physiology limited) salicylic acid and/or the above mentioned salts and/or esters. [0086.0.0.23] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.23.23]By influencing the metabolism thus, it is possible to produce, in the 15 process according to the invention, further advantageous compounds. Examples of such compounds are salicylic acid salt and/or esters, cinnamate, coumarate, choris mate and/or phenylpyruvate. [0088.0.23.23]Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: 20 e) providing a non-human organism, preferably a microorganism, a non-human ani mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a mi croorganism, a plant or a plant tissue; f) increasing the activity of a protein as shown in table 1l, application no. 24, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present in 25 vention and described below, e.g. conferring an increase of the respective fine chemical as indicated in any one of Tables I to IV, application no. 24, column 6 "metabolite" in the organism, preferably in the microorganism, the non-human ani mal, the plant or animal cell, the plant or animal tissue or the plant, more preferably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, preferen 30 tially in the plastids, g) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 1614 permit the production of the respective fine chemical in the organism, preferably the microorganism, the plant cell, the plant tissue or the plant; and h) if desired, revovering, optionally isolating, the resepctive free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the 5 organism, the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant. [0089.0.23.23] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the 10 respective fine chemical or the free and bound the resepctive fine chemical but as op tion it is also possible to produce, recover and, if desired isolate, other free or/and bound salicylic acid salt and/or esters, cinnamate, coumarate, chorismate and/or phenylpyruvate. [0090.0.0.23] to [0097.0.0.23] for the disclosure of the paragraphs [0090.0.0.23] to 15 [0097.0.0.23] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.23.23] With regard to the nucleic acid sequence as depicted a nucleic acid construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been 20 brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 24, columns 5 and 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 24, columns 5 and 25 7 or a derivative thereof, or c) (a) and (b) is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by way of example, a substitution, addition, deletion, inversion or insertion of one or more 30 nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic 1615 library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. 5 [0099.0.23.23]The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 24, columns 10 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, application no. 24, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application 15 no. 24, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.23] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. 20 [0101.0.23.23]In an advantageous embodiment of the invention, the organism takes the form of a plant whose salicylic acid content is modified advantageously owing to the nucleic acid molecule of the present invention expressed, hence it enhance plant dis ease resistance.. Further, An increased content in salicylic acid or its salts or esters in plants is important because of the multiple use of these compounds as food flavorings 25 and preservatives; antiseptic, anti-infectives, antipyretic, antipyretic, analgesic, fungi cidal, keratinolytic and antipyretic agent and as pharmaceutically active ingredients including against colds, flu, or other virus infections, which can be achieved by working up the genetically modified plants. After the activity of the protein as shown in table 1l, application no. 24, column 3 has 30 been increased or generated, or after the expression of nucleic acid molecule or poly peptide according to the invention has been generated or increased, the transgenic plant generated thus is grown on or in a nutrient medium or else in the soil and subse quently harvested.
1616 [0102.0.0.23] to [0110.0.0.23] for the disclosure of the paragraphs [0102.0.0.23] to [0110.0.0.23] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. [0111.0.23.23]In a preferred embodiment, the respective fine chemical as indicated in any one of Tables I to IV, application no. 24, column 6 "metabolite" (salicylic acid) is 5 produced in accordance with the invention and, if desired, is isolated. The production of further salts or esters of salicylic acid or mixtures thereof or mixtures with other com pounds by the process according to the invention is advantageous. Thus, the content of plant components and preferably also further impurities is as low as possible, and the abovementioned fine chemicals are obtained in as pure form as 10 possible. In these applications, the content of plant components advantageously amounts to less than 10%, preferably 1%, more preferably 0.1%, very especially pref erably 0.01% or less. [0112.0.23.23]In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to 15 gether with the transformation of a protein or polypeptid or a compound, which func tions as a sink for the desired fine chemical, for example salicylic acid in the organism, is useful to increase the production of the respective fine chemical. [0113.0.23.23]In the case of the fermentation of microorganisms, the abovementioned salicylic acid may accumulate in the medium and/or the cells. If microorganisms are 20 used in the process according to the invention, the fermentation broth can be proc essed after the cultivation. Depending on the requirement, all or some of the biomass can be removed from the fermentation broth by separation methods such as, for exam ple, centrifugation, filtration, decanting or a combination of these methods, or else the biomass can be left in the fermentation broth. The fermentation broth can subsequently 25 be reduced, or concentrated, with the aid of known methods such as, for example, ro tary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formulation can be added such as corn starch or silicates. This concentrated fermentation broth advanta geously together with compounds for the formulation can subsequently be processed 30 by lyophilization, spray drying, spray granulation or by other methods. Preferably the the respective fine chemical or the salicylic acid comprising compositions are isolated from the organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture me dium, in the known manner, for example via extraction, distillation, crystallization, 35 chromatography or a combination of these methods. These purification methods can 1617 be used alone or in combination with the aforementioned methods such as the separa tion and/or concentration methods. [0114.0.23.23]Transgenic plants which comprise the salicylic acid and/or salicylic acid esters synthesized in the process according to the invention can advantageously be 5 marketed directly without there being any need for salicylic acid and/or salicylic acid esters synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotely dons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures 10 which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, in the form of 15 their oils, fats, lipids as extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free salicylic acid and/or salicylic acid esters. The respective fine chemical produced by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably the plant seeds. To increase the efficiency of 20 oil extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material expecially the seeds. E.g the oils, fats, lipids, extracts, e.g. ether, alcohol, or other organic solvents or water containing extract and/or free salicylic acid and/or salicylic acid esters can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifi 25 cally the seeds, they are previously comminuted, steamed or roasted. The seeds, which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as preferably warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various 30 methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the process can be isolated. Thereafter, the resulting products are processed further, i.e. degummed and/or refined. In this process, substances such as the plant mucilages and suspended matter are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition 35 of acid such as phosphoric acid.
1618 [0115.0.23.23] Salicylic acid and/or salicylic acid esters can for example be analyzed advantageously via HPLC, LC or GC separation and MS (masspectrometry) detection methods. The unambiguous detection for the presence of salicylic acid and/or salicylic acid containing products can be obtained by analyzing recombinant organisms 5 using analytical standard methods: LC, LC-MS, MS or TLC). The material to be ana lyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grind ing, cooking, or via other applicable methods. [0116.0.23.23]In a preferred embodiment, the present invention relates to a process for the production of the respective fine chemical comprising or generating in an organism 10 or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 24, columns 5 and 7 or a fragment 15 thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 24, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 20 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 25 molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 30 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), 1619 preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 5 (c) and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers shown in table III, application no. 24, column 7 and conferring an in 10 crease in the amount of the respective fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), 15 and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 24, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part 20 thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table 1l, application no. 24, columns 5 and 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 25 I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase 30 in the amount of the respective fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto.
1620 [0116.1.9.23] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 24, columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 5 cated in table I A, application no. 24, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 24, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 24, columns 5 10 and 7. [0116.2.9.23] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 24, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 15 cated in table I B, application no. 24, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 24, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 24, columns 5 20 and 7. [0117.0.23.23]In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 24, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 24, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre 25 sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 24, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 24, columns 5 and 7. [0118.0.0.23] to [0120.0.0.23] for the disclosure of the paragraphs [0118.0.0.23] to 30 [0120.0.0.23] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.23.23]The expression of nucleic acid molecules with the sequence shown in table I, application no. 24, columns 5 and 7, or nucleic acid molecules which are de rived from the amino acid sequences shown in table II, application no. 24, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, 1621 application no. 24, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 24, column 3, and conferring an increase of the respective fine chemical (column 6 of application no. 24 in any one of Tables I to IV) after increasing its plastidic and/or spe 5 cific activity in the plastids is advantageously increased in the process according to the invention by expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. [0122.0.0.23] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.23.23]Nucleic acid molecules, which are advantageous for the process accord 10 ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 24, column 3 can be determined from generally ac cessible databases. [0124.0.0.23] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.23.23]The nucleic acid molecules used in the process according to the inven 15 tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 24, column 3 and which confer an increase in the level of the respective fine chemical indicated in table II, ap plication no. 24, column 6 by being expressed either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product 20 being localized in the plastid and other parts of the cell or in the plastid as described above. [0126.0.0.23] to [0133.0.0.23] for the disclosure of the paragraphs [0126.0.0.23] to [0133.0.0.23] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. 25 [0134.0.23.23]However, it is also possible to use artificial sequences, which differ in one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 24, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring 30 above-mentioned activity, i.e. conferring an increase of the respective fine chemical after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table II, application no. 24, column 3 by - for example - expression either in 1622 the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0135.0.0.23] to [0140.0.0.23] for the disclosure of the paragraphs [0135.0.0.23] to 5 [0140.0.0.23] see paragraphs [0135.0.0.0] to [0140.0.0.0] above. [0141.0.23.23]Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 24, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 24, columns 5 and 7 or the sequences derived from table II, 10 application no. 24, columns 5 and 7. [0142.0.23.23]Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. 15 Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 24, column 7 is derived from said aligments. [0143.0.23.23] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 20 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 24, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.23] to [0151.0.0.23] for the disclosure of the paragraphs [0144.0.0.23] to [0151.0.0.23] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 25 [0152.0.23.23]Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no. 24, column 6,, and being derived from other organisms, can be encoded by other DNA sequences which hybridize to the sequences shown in table I, application no. 24, columns 5 and 7, preferably of table I B, application no. 24, columns 5 and 7 under relaxed hybridization 30 conditions and which code on expression for peptides having the the respective fine chemical, i.e. salicylic acid resp., in particular, of salicylic acid increasing activity.
1623 [0153.0.0.23] to [0159.0.0.23] for the disclosure of the paragraphs [0153.0.0.23] to [0159.0.0.23] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. [0160.0.23.23]Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above 5 mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application 10 no. 24, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement 15 thereto according to the base pairing of nucleic acid molecules well known to the skilled person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.23.23]The nucleic acid molecule of the invention comprises a nucleotide se 20 quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7, or a portion thereof and preferably has 25 above mentioned activity, in particular having a respective fine chemical increasing activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 24, column 3 by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or 30 in the plastid as described above. [0162.0.23.23]The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7, or 35 a portion thereof and encodes a protein having above-mentioned activity, e.g. confer- 1624 ring of a salicylic acid and/or salicylic acid esters increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids, and optionally, the activity of a protein as shown in table II, application no. 24, column 3, and the gene product, e.g. the polypeptide, being localized in the 5 plastid and other parts of the cell or in the plastid as described above. [0163.0.23.23]Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en 10 coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, application no. 24, column 6, if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in 15 plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer 20 typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 24, columns 5 and 7, an anti-sense sequence of one of the se 25 quences, e.g., set forth in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present 30 invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 24, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.23] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.23.23]The nucleic acid molecule of the invention encodes a polypeptide or 35 portion thereof which includes an amino acid sequence which is sufficiently homolo- 1625 gous to the amino acid sequence shown in table II, application no. 24, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular an activity increasing the level of salicylic acid, in creasing the activity as mentioned above or as described in the examples in plants or 5 microorganisms is comprised. [0166.0.23.23]As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the 10 polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 24, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity of a protein as shown in table II, column 3 and as described herein. [0167.0.23.23]In one embodiment, the nucleic acid molecule of the present invention 15 comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 24, 20 columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. 25 [0168.0.0.23] and [0169.0.0.23] for the disclosure of the paragraphs [0168.0.0.23] and [0169.0.0.23] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.23.23]The invention further relates to nucleic acid molecules that differ from one of the nucleotide sequences shown in table I, application no. 24, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly 30 peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 24, columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole cule of the invention comprises, or in an other embodiment has, a nucleotide sequence 1626 encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 24, columns 5 and 7 or the functional homo logues. In a still further embodiment, the nucleic acid molecule of the invention en codes a full length protein which is substantially homologous to an amino acid se 5 quence shown in table II, application no. 24, columns 5 and 7 or the functional homo logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table I, application no. 24, columns 5 and 7, preferably as indicated in table I A, application no. 24, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or 10 identical to a nucleic acid molecule indicated in table I B, application no. 24, columns 5 and 7. [0171.0.0.23] to [0173.0.0.23] for the disclosure of the paragraphs [0171.0.0.23] to [0173.0.0.23] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.23.23]Accordingly, in another embodiment, a nucleic acid molecule of the in 15 vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present invention, e.g. comprising the sequence shown in table I, application no. 24, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more 20 nucleotides in length. [0175.0.0.23] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.23.23]Preferably, nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence shown in table I, application no. 24, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used 25 herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above mentioned activity, e.g. conferring the respective fine chemical increase after increas ing the expression or activity thereof or the activity of a protein of the invention or used 30 in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. [0177.0.0.23] for the disclosure of this paragraph see paragraph [0177.0.0.0] above.
1627 [0178.0.23.23]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 24, columns 5 and 7. 5 [0179.0.0.23] and [0180.0.0.23] for the disclosure of the paragraphs [0179.0.0.23] and [0180.0.0.23] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. [0181.0.23.23]Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression 10 either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids (as described), that contain changes in amino acid residues that are not essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table II, application no. 24, columns 5 and 7, preferably shown in table II A, application no. 24, columns 5 and 7 yet retain 15 said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 24, columns 5 and 7, preferably shown in table II A, application no. 24, columns 5 and 7 and is capable of participation in the increase of production of the fine 20 chemical after increasing its activity, e.g. its expression by for example expression ei ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence 25 shown in table II, application no. 24, columns 5 and 7, preferably shown in table II A, application no. 24, columns 5 and 7, more preferably at least about 70% identical to one of the sequences shown in table II, application no. 24, columns 5 and 7, preferably shown in table II A, application no. 24, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 30 24, columns 5 and 7, preferably shown in table II A, application no. 24, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se quence shown in table II, application no. 24, columns 5 and 7, preferably shown in ta ble II A, application no. 24, columns 5 and 7. [0182.0.0.23] to [0188.0.0.23] for the disclosure of the paragraphs [0182.0.0.23] to 35 [0188.0.0.23] see paragraphs [0182.0.0.0] to [0188.0.0.0] above.
1628 [0189.0.23.23]Functional equivalents derived from one of the polypeptides as shown in table II, application no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 5 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 10 polypeptide as shown in table II, application no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7. [0190.0.23.23] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7 resp., according to the invention by substitution, insertion or 15 deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7 resp., ac 20 cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 24, columns 5 and 7, pref erably shown in table II B, application no. 24, columns 5 and 7. [0191.0.0.23] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.23.23]A nucleic acid molecule encoding an homologous to a protein sequence 25 of table II, application no. 24, columns 5 and 7, preferably shown in table II B, applica tion no. 24, columns 5 and 7 resp., can be created by introducing one or more nucleo tide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7 resp., such 30 that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
1629 [0193.0.0.23] to [0196.0.0.23] for the disclosure of the paragraphs [0193.0.0.23] to [0196.0.0.23] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.23.23] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, 5 application no. 24, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 10 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 24, columns 5 and 7, preferably shown in table I B, applica tion no. 24, columns 5 and 7, or from the derived nucleic acid sequences, the intention 15 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.23.23]In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 24, columns 5 and 7, preferably shown in table I B, 20 application no. 24, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the 25 nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 24, columns 5 and 7, preferably shown in table I B, application no. 24, columns 5 and 7. [0199.0.23.23]Also preferred is that the nucleic acid molecule used in the process of 30 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. 35 In one embodiment used in the inventive process, the encoded polypeptide is identical 1630 to the sequences shown in table II, application no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7. [0200.0.23.23]In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica 5 tion no. 24, columns 5 and 7, preferably shown in table II B, application no. 24, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 24, columns 5 and 7, preferably 10 shown in table I B, application no. 24, columns 5 and 7. [0201.0.23.23]Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the respective fine chemical indicated in column 6 of Table I, application no. 24, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by pref 15 erence 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 24, columns 5 and 7 expressed under identical conditions. [0202.0.23.23]Homologues of table I, application no. 24, columns 5 and 7 or of the 20 derived sequences of table II, application no. 24, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences 25 stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 30 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.23] to [0215.0.0.23] for the disclosure of the paragraphs [0203.0.0.23] to [0215.0.0.23] see paragraphs [0203.0.0.0] to [0215.0.0.0] above.
1631 [0216.0.23.23]Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 5 peptide shown in table II, application no. 24, columns 5 and 7, preferably in table II B, application no. 24, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 10 cleic acid molecule shown in table I, application no. 24, columns 5 and 7, pref erably in table I B, application no. 24, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 15 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% 20 identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) 25 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 30 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; 1632 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 24, column 6 in an organism or a part thereof ; 5 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 24, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; 10 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 15 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 24, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 24, columns 5 20 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 25 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 24, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 24, columns 5 and 7, and conferring an increase in the amount of the fine 30 chemical according to table II B, application no. 24, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 24, columns 5 and 7 by 1633 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 24, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 5 99% identical to the sequence shown in table I A and/or I B, application no. 24, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypeptide sequence shown in table II A and/or II B, application no. 24, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present inven tion encodes in one embodiment a polypeptide which differs at least in one or more 10 amino acids from the polypeptide shown in table II A and/or II B, application no. 24, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, application no. 24, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 24, columns 5 and 7. In a fur 15 ther embodiment, the protein of the present invention is at least 30 % identical to pro tein sequence depicted in table II A and/or II B, application no. 24, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 24, columns 5 and 7. 20 [0217.0.0.23] to [0226.0.0.23] for the disclosure of the paragraphs [0217.0.0.23] to [0226.0.0.23] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.23.23]In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and 25 T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from 30 the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic 35 acids of the invention, preferentially the nucleic acid sequences encoding the polypep- 1634 tides shown in table 1l, application no. 24, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. 5 [0228.0.0.23] to [0239.0.0.23] for the disclosure of the paragraphs [0228.0.0.23] to [0239.0.0.23] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.23.23] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu 10 cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table 1, application no. 24, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of 15 the cinnamate and/or chorismate biosynthetic pathway such as for a salicylic acid pre cursor, is expressed in the organisms such as plants or microorganisms. It is also pos sible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the amino acids 20 desired since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table 1, application no. 24, columns 5 and 7 with genes which generally support or en hances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or 25 herbicide resistant plants. [0241.0.23.23]In a further embodiment of the process of the invention, therefore, or ganisms are grown, in which there is simultaneous overexpression of at least one nu cleic acid or one of the genes which code for proteins involved in the salicylic acidme tabolism, in particular in synthesis of salicylic acid. 30 [0242.0.23.23] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the salicylic acid biosynthetic pathway, genes of the glutamic acid metabolism, the phosphoenolpy- 1635 ruvate metabolism, the amino acid metabolism, of glycolysis, of the tricarboxylic acid metabolism or their combinations.. These genes can lead to an increased synthesis of the essential salicylic acid resp., in particular, of the fine chemical indicated in column 6, application no. 24 of any one of Tables I to IV. 5 [0242.1.23.23]In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a salicylic acid degrading protein is attenuated, in particular by reducing the rate of expression of the corresponding gene. [0242.2.23.23]for the disclosure of the paragraph [0242.2.0.23] see paragraph 10 [0242.2.0.9] [0243.0.0.23] to [0264.0.0.23] for the disclosure of the paragraphs [0243.0.0.23] to [0264.0.0.23] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.23.23]Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene 15 product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are 20 sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a 25 lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no. 24, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.23] to [0287.0.0.23] for the disclosure of the paragraphs [0266.0.0.23] to 30 [0287.0.0.23] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. [0288.0.23.23]Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary- 1636 otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 24, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to 5 a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 2410, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. [0289.0.0.23] to [0296.0.0.23] for the disclosure of the paragraphs [0289.0.0.23] to [0296.0.0.23] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. 10 [0297.0.23.23] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo thelial cells), for example using the antibody of the present invention as described herein, in particular, an antibody against polypeptides as shown in table II, application no. 24, columns 5 and 7, which can be produced by standard techniques utilizing the 15 polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. [0298.0.0.23] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. [0299.0.23.23]In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 24, columns 5 and 7 or as coded by 20 the nucleic acid molecule shown in table I, application no. 24, columns 5 and 7 or func tional homologues thereof. [0300.0.23.23]In one advantageous embodiment, in the method of the present inven tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 24, columns 7 and in one another em 25 bodiment, the present invention relates to a polypeptide comprising or consisting of the consensus sequence shown in table IV, application no. 24, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. 30 [0301.0.0.23] to [0304.0.0.23] for the disclosure of the paragraphs [0301.0.0.23] to [0304.0.0.23] see paragraphs [0301.0.0.0] to [0304.0.0.0] above.
1637 [0305.0.23.23]In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. In one embodiment, said polypeptide of the invention distinguishes over the sequence 5 shown in table II A and/or II B, application no. 24, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 24, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the 10 polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 24, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or 15 II B, application no. 24, columns 5 and 7. [0306.0.0.23] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.23.23]In one embodiment, the invention relates to polypeptide conferring an increase of level of the respective fine chemical indicated in Table II A and/or II B, ap plication no. 24, column 6 in an organism or part being encoded by the nucleic acid 20 molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 24, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 24, columns 5 and 7. In a further embodiment, said polypep 25 tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 24, columns 5 and 7. [0308.0.23.23]In one embodiment, the present invention relates to a polypeptide hav 30 ing the activity of the protein as shown in table II , application no. 24, column 3, which distinguishes over the sequence depicted in table II A and/or II B, application no. 24, columns 5 and 7 by one or more amino acids, preferably by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre ferred are more than 40, 50, or 60 amino acids but even more preferred by less than 35 70% of the amino acids, more preferred by less than 50%, even more preferred my 1638 less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypeptide having the activity of the protein as shown in table II A and/or II B, column 3, from which the 5 transitpeptide is preferably cleaved off upon transport of the preprotein into the organ elle, for example into the plastid or mitochondria. [0309.0.0.23] to [0311.0.0.23] for the disclosure of the paragraphs [0309.0.0.23] to [0311.0.0.23] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.23.23]A polypeptide of the invention can participate in the process of the pre 10 sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 24, columns 5 and 7. [0313.0.23.23] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin 15 gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably 20 at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 24, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se 25 quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 24, columns 5 and 7 or which is homologous thereto, as defined above. [0314.0.23.23]Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 24, columns 5 and 7 in amino 30 acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most 1639 preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 24, columns 5 and 7. [0315.0.0.23] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. [0316.0.23.23]Biologically active portions of an polypeptide of the present invention 5 include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 24, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include fewer amino acids than a full length polypeptide of the present invention or used in the 10 process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. [0317.0.0.23] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. 15 [0318.0.23.23]Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 24, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 24, column 3, pref erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 20 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 24, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. [0319.0.23.23]Any mutagenesis strategies for the polypeptide of the present invention 25 or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated 30 proteins of the proteins as shown in table II, application no. 24, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the yield, production, and/or efficiency of production of a desired compound is improved.
1640 [0319.1.23.23] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. salicylic acid or a recovered or isolated salicylic acid, respec tively, e.g. in free or in protein- or membrane-bound form. [0320.0.0.23] to [0322.0.0.23] for the disclosure of the paragraphs [0320.0.0.23] to 5 [0322.0.0.23] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.23.23]In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 24, column 3 refers to a polypeptide having an amino acid sequence corre sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a 10 polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 24, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. 15 [0324.0.0.23] to [0329.0.0.23] for the disclosure of the paragraphs [0324.0.0.23] to [0329.0.0.23] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.23.23]In an especially preferred embodiment, the polypeptide according to the invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 24, columns 5 and 7. 20 [0331.0.0.23] to [0346.0.0.23] for the disclosure of the paragraphs [0331.0.0.23] to [0346.0.0.23] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.23.23]Accordingly the present invention relates to any cell transgenic for any nucleic acid characterized as part of the invention, e.g. conferring the increase of the respective fine chemical indicated in column 6 of application no. 24 in any one of Tal 25 bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 24, column 3. Due to the above mentioned activity the 30 respective fine chemical content in a cell or an organism is increased. For example, due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an 1641 organism or a part thereof especially in organelles such as plastids or mitochondria. Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 24, column 3 or a protein as shown in table II, application no. 24, col 5 umn 3-like activity is increased in the cell or organism or part thereof especially in or ganelles such as plastids or mitochondria. Examples are described above in context with the process of the invention. [0348.0.0.23] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.23.23]A naturally occurring expression cassette - for example the naturally 10 occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 24, column 3 with the corresponding encoding gene - becomes a transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). 15 [0350.0.0.23] to [0358.0.0.23] for the disclosure of the paragraphs [0350.0.0.23] to [0358.0.0.23] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. [0359.0.23.23]Transgenic plants comprising the respective fine chemical synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are un 20 derstood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The respective fine chemical indicated in column 6 of any one of Tables I to IV, application no. 24, e.g. salicylic acid resp., and 25 being produced in the process according to the invention may, however, also be iso lated from the plant and can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant seeds, plant fruits, plant tubers and the like. 30 [0360.0.0.23] to [0364.0.0.23] for the disclosure of the paragraphs [0360.0.0.23] to [0364.0.0.23] see paragraphs [0360.0.0.0] to [0364.0.0.0] above. [0365.0.23.23] The fine chemical indicated in column 6 of application no. 24 in Ta ble I, in particular salicylic acid resp., and being obtained in the process of the invention 1642 are suitable as starting material for the synthesis of further products of value. For ex ample, they can be used in combination with each other or alone for the production of pharmaceuticals, foodstuffs, animal feeds or cosmetics. Accordingly, the present inven tion relates a method for the production of pharmaceuticals, food stuff, animal feeds, 5 nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of a composition comprising the fine chemical, e.g. salicylic acid, or the isolated respective fine chemical produced, if desired, and formulating the prod uct with a pharmaceutical acceptable carrier or formulating the product in a form ac ceptable for an application in agriculture. A further embodiment according to the inven 10 tion is the use of the respective fine chemical indicated in application no. 24, Table 1, column 6, and being produced in the process or the use of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.23] to [0369.0.0.23] for the disclosure of the paragraphs [0366.0.0.23] to [0369.0.0.23] see paragraphs [0366.0.0.0] to [0369.0.0.0] above. 15 [0370.0.23.23]The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; application no. 24 or containig mixtures with other compounds, in particular with salicylic acid and/or salicylic acid salts and/or salicylic acid esters or containing microorganisms or parts of microorganisms, like plastids, , normally have a dry matter content of from 7.5 20 to 25% by weight. The fermentation broth can be processed further. Depending on re quirements, the biomass can be separated, such as, for example, by centrifugation, filtration, decantation coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can be thickened or concentrated by known methods, such as, for example, with the aid of a rotary 25 evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nano filtration. This concentrated fermentation broth can then be worked up by extraction, freeze-drying, spray drying, spray granulation or by other processes. [0371.0.23.23] Accordingly, it is possible to purify the salicylic acid and/or salicylic acid esters produced according to the invention further. For this purpose, the product 30 containing composition is subjected for example to separation via e.g. an open column chromatography or HPLC in which case the desired product or the impurities are re tained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The skilled worker is familiar with the choice of suitable chromatography resins and their 35 most effective use.
1643 [0372.0.0.23] to [0376.0.0.23], [0376.1.0.23] and [0377.0.0.23] for the disclosure of the paragraphs [0372.0.0.23] to [0376.0.0.23], [0376.1.0.23] and [0377.0.0.23] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. [0378.0.23.23]In one embodiment, the present invention relates to a method for the 5 identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a candidate gene encoding a gene product conferring an increase in the respective 10 fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to the nucleic acid molecule sequence shown in table 1, application no. 24, columns 15 5 and 7, preferably in table I B, application no. 24, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the respective fine chemical; (d) expressing the identified nucleic acid molecules in the host cells; 20 (e) assaying the the respective fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical level in the host cell after ex pression compared to the wild type. [0379.0.0.23] to [0383.0.0.23] for the disclosure of the paragraphs [0379.0.0.23] to 25 [0383.0.0.23] see paragraphs [0379.0.0.0] to [0383.0.0.0] above. [0384.0.23.23] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in 30 comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production.
1644 One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 24, column 3, eg compar ing near identical organisms with low and high acitivity of the proteins as shown in table 5 II, application no. 24, column 3. [0385.0.0.23] to [0404.0.0.23] for the disclosure of the paragraphs [0385.0.0.23] to [0404.0.0.23] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.23.23]Accordingly, the nucleic acid of the invention, the polypeptide of the in vention, the nucleic acid construct of the invention, the organisms, the host cell, the 10 microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the respective fine chemicalindicated in Column 6, Table 1, appli cation no. 24 or for the production of the respective fine chemical and one or more 15 other carotenoids, vitamins or fatty acids. In one embodiment, in the process of the present invention, the produced salicylic acid is used as food flavorings and preserva tives; antiseptic, anti-infectives, antipyretic, antipyretic, analgesic, fungicidal, kerati nolytic and antipyretic agent and as pharmaceutically active ingredients including against colds, flu, or other virus infections 20 Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the 25 invention, the antibody of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. [0406.0.0.23] to [0416.0.0.23] for the disclosure of the paragraphs [0406.0.0.23] to [0416.0.0.23] see paragraphs [0406.0.0.0] to [0416.0.0.0] above. [0417.0.23.23] An in vivo mutagenesis of organisms such as algae (e.g. Spongio 30 coccum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedac tylum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which are beneficial for the production of salicylic acid can be carried out by passing a plas mid DNA (or another vector DNA) containing the desired nucleic acid sequence or nu- 1645 cleic acid sequences, e.g. the nucleic acid molecule of the invention or the vector of the invention, through E. coli and other microorganisms (for example Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of maintaining the integrity of its genetic information. Usual mutator strains have mutations in the genes 5 for the DNA repair system [for example mutHLS, mutD, mutT and the like; for compari son, see Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmo nella, pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strategies 7; 32-34. 10 In-vitro mutation methods such as increasing the spontaneous mutation rates by chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran dom in-vitro mutagensis. The most common physical method for mutagensis is the 15 treatment with UV irradiation. Another random mutagenesis technique is the error prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized DNA sequences are cloned into expression vectors and the resulting mutant libraries 20 screened for altered or improved protein activity as described below. Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic acid sequence of the invention into an M13 or phagemid vector, which permits recovery 25 of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather than the original. The mutagenic oligonucleotide is then allowed to prime new DNA 30 synthesis to create a complementary full-length sequence containing the desired muta tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site directed mutagenesis kit protocol. A huge number of other methods are also known 35 and used in common practice. Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical.
1646 [0418.0.0.23] to [0427.0.0.23] for the disclosure of the paragraphs [0418.0.0.9] to [0427.0.0.9] see paragraphs [0418.0.0.0] to [0427.0.0.0] above. [0428.0.0.23] to [0435.0.0.23] for the disclosure of the paragraphs [0428.0.0.23] to [0435.0.0.23] see paragraphs [0428.0.0.0] to [0435.0.0.0] above. 5 [0436.0.23.23] Salicylic acid production Salicylic acid, can be detected and analysed as mentioned above. The proteins and nucleic acids can be analysed as mentioned below. [0437.0.0.23] and [0438.0.0.923 for the disclosure of the paragraphs [0437.0.0.23] and [0438.0.0.23] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. 10 [0439.0.23.23] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the respective fine chemical indicated in Ta ble 1, application no. 24, column 6 [0440.0.23.23]The effect of the genetic modification in plants, fungi, algae or ciliates on the production of a desired compound can be determined by growing the modified mi 15 croorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated pro duction of desired product (i.e. of the lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analyti 20 cal chromatography such as high-performance liquid chromatography (see, for exam ple, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemis try" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469 25 714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream process ing for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) 30 Separation and purification techniques in biotechnology, Noyes Publications). [0441.0.0.23] for the disclosure of this paragraph see [0441.0.0.0] above.
1647 [0442.0.23.23]Example 9: Purification of the salicylic acid [0443.0.23.23] Abbreviations:; GC-MS, gas liquid chromatography/mass spectrome try; TLC, thin-layer chromatography. The unambiguous detection for the presence of salicylic acid and/or salts and/or esters 5 of salicylic acidcan be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as described (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschro matographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectromet ric methods], Lipide 33:343-353). 10 The total salicylic acid produced in the organism for example in yeasts used in the in ventive process can be analysed for example according to the following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. 15 Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. A typical sample pretreatment consists of a total lipid extraction using such polar or ganic solvents as acetone or alcohols as methanol, or ethers, saponification , partition between phases, seperation of non-polar epiphase from more polar hypophasic deriva 20 tives and chromatography. [0443.1.23.23] Characterization of the transgenic plants In order to confirm that salicylic acid biosynthesis in the transgenic plants is influenced by the expression of the polypeptides described herein, the tocopherol/vitamin E con tent in leaves and seeds of the plants transformed with the described constructs 25 (Arabidopsis.thaliana, Brassica napus and Nicotiana tabacum) is analyzed. For this purpose, the transgenic plants are grown in a greenhouse, and plants which express the gene coding for polypeptide of the invention or used in the method of the invention are identified at the Northern level. The tocopherol content or the vitamin E content in leaves and seeds of these plants is measured. In all, the tocopherol concentration is 30 raised by comparison with untransformed plants. [0444.0.23.23] If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, the salicylic acid, can be further purified with a so called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be 1648 used. If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be puri fied. 5 [0445.0.23.23]In addition depending on the produced fine chemical purification is also possible with cristalisation or destilation. Both methods are well known to a person skilled in the art. [0446.0.0.23] to [0496.0.0.23] for the disclosure of the paragraphs [0446.0.0.23] to [0496.0.0.23] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. 10 [0497.0.23.23]% [0498.0.23.23] The results of the different plant analyses can be seen from the table, which follows: 1649 Table VI Min.- Max.
ORF Metabolite Method/Analytics Value Value b1704 Salicylic acid LC 1.25 3.66 b2040 Salicylic acid LC 1.41 1.81 b3337 Salicylic acid LC 1.73 2.04 b3616 Salicylic acid LC 1.49 1.75 b4039 Salicylic acid LC 1.44 2.73 YLL033WSalicylic acid LC 1.40 1.59 In the context of this table "salicylic acid" means the total amount salicylic acid. [0499.0.0.23] and [0500.0.0.23] for the disclosure of the paragraphs [0499.0.0.23] 5 and [0500.0.0.23] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.23.23] Example 15a: Engineering ryegrass plants by over-expressing b1704 from E. coli or homologs of b1704 from other organisms. [0502.0.0.23] to [0508.0.0.23] for the disclosure of the paragraphs [0502.0.0.23] to [0508.0.0.23] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. 10 [0509.0.23.23] Example 15b: Engineering soybean plants by over-expressing b1704 from E. coli or homologs of b1704 from other organisms. [0510.0.0.23] to [0513.0.0.23] for the disclosure of the paragraphs [0510.0.0.23] to [0513.0.0.23] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.23] Example 15c: Engineering corn plants by over-expressing b1704 from 15 E. coli or homologs of b1 704 from other organisms. [0515.0.0.23] to [0540.0.0.23] for the disclosure of the paragraphs [0515.0.0.23] to [0540.0.0.23] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.9.9] Example 15d: Engineering wheat plants by over-expressing b1704 from E. coli or homologs of b1704 from other or 20 ganisms.
1650 [0542.0.0.23] to [0544.0.0.23] for the disclosure of the paragraphs [0542.0.0.23] to [0544.0.0.23] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.23.23] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b1704 from E. coli or homologs of b1704 from other or 5 ganisms. [0546.0.0.23] to [0549.0.0.23] for the disclosure of the paragraphs [0546.0.0.23] to [0549.0.0.23] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.23.23] Example 15f: Engineering alfalfa plants by over-expressing b1704 from E. coli or homologs of b1 704 from other organisms. 10 [0551.0.0.23] to [0554.0.0.23] for the disclosure of the paragraphs [0551.0.0.23] to [0554.0.0.23] see paragraphs [0551.0.0.0] to [0554.0.0.0] above. [0554.2.0.23] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.23] for the disclosure of this paragraph see [0555.0.0.0] above.
1651 [0001.0.0.24] for the disclosure of this paragraph see [0001.0.0.0]. [0002.0.24.24 to [0009.0.24.24] for the disclosure of the paragraphs [0002.0.0.9] to [0009.0.0.9] see paragraphs [0002.0.10.10] and [0009.0.10.10] above. [0010.0.24.24]Therefore improving the quality of foodstuffs and animal feeds is an im 5 portant task of the food-and-feed industry. This is necessary since, for example, caro tenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), which occur in plants and some microorganisms are limited with regard to the supply of mammals. Especially advantageous for the quality of foodstuffs and animal feeds is as balanced as possible a cartenoid profile in the diet since a great excess of some caro 10 tenoids above a specific concentration in the food has only some or little or no positive effect. A further increase in quality is only possible via addition of further carotenoids, which are limiting. [0011.0.24.24]for the disclosure of the paragraph [0011.0.24.24] see paragraph [0011.0.10.10]. 15 [0012.0.24.24]Accordingly, there is still a great demand for new and more suitable genes which encode proteins which participate in the biosynthesis of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP) and make it possible to produce certain carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP)specifically on an industrial scale without unwanted by 20 products forming. In the selection of genes for or regulators of biosynthesis two charac teristics above all are particularly important. On the one hand, there is as ever a need for improved processes for obtaining the highest possible contents of carotenoids, like beta-carotene or its/their precursor, like isopentyl pyrophosphate (IPP)on the other hand as less as possible byproducts should be produced in the production process. 25 [0013.0.0.24] for the disclosure of this paragraph see [0013.0.0.0] above. [0014.0.24.24]Accordingly, in a first embodiment, the invention relates to a process for the production of a fine chemical, whereby the fine chemical is carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP). Accordingly, in the present invention, the term "the fine chemical" as used herein relates to "carotenoids", 30 e.g. "beta-carotene" or its/their precursor, e.g. "isopentyl pyrophosphate" ("IPP")". Fur ther, the term "the fine chemicals" as used herein also relates to fine chemicals com prising carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophos phate (IPP).
1652 [0015.0.24.24] I n one embodiment, the term "carotenoids", "beta-carotene" or its/their precursor, e.g. "isopentyl pyrophosphate (IPP)"" or "the fine chemical" or "the respective fine chemical" means at least one chemical compound with carotenoids, preferably beta-carotene or its/their precursor, preferably isopentyl pyrophosphate 5 (IPP) activity selected from the group Isopentenylpyrophosphate (IPP) Geranylger anylpyrophosphate (GGPP), Phytoene, Lycopene, zeta-carotene, beta-carotene. In another embodiment, the term " carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP)" or "the fine chemical" or "the respective fine chemi cal" means at least one chemical compound with carotenoids, e.g. beta-carotene or 10 its/their precursor, e.g. isopentyl pyrophosphate (IPP) activity selected from the group Isopentenylpyrophosphate (IPP) Geranylgeranylpyrophosphate (GGPP), Phytoene, Lycopene, zeta-carotene, beta-carotene. In an preferred embodiment, the term "the fine chemical" or the term "carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP)" or the term "the respective fine chemical" means at 15 least one chemical compound with carotenoids, e.g. beta-carotene or its/their precur sor, e.g. isopentyl pyrophosphate (IPP) activity selected from the group "Isopentenylpy rophosphate (IPP) ", "Geranylgeranylpyrophosphate (GGPP) ", "Phytoene", "Lyco pene", "zeta-carotene ", and/or "beta-carotene". An increased carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro 20 phosphate (IPP) content normally means an increased total carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP) content. However, an increased carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro phosphate (IPP) content also means, in particular, a modified content of the above described 6 compounds with carotenoids, e.g. beta-carotene or its/their precursor, e.g. 25 isopentyl pyrophosphate (IPP) activity, without the need for an inevitable increase in the total carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophos phate (IPP) content. In a preferred embodiment, the term "the fine chemical" means carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP) in free form or its salts or its ester or bound. 30 [0016.0.24.24] Accordingly, the present invention relates to a process for the produc tion of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophos phate (IPP), which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, ap 35 plication no. 125, column 5, in an organelle of a microorganism or plant, or 1653 (b) increasing or generating the activity of a protein as shown in table II, application no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 25, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and 5 (c) growing the organism under conditions which permit the production of the fine chemical, thus, carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopen tyl pyrophosphate (IPP) or fine chemicals comprising carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in said organ ism or in the culture medium surrounding the organism. 10 [0016.1.24.24] Accordingly, the term "the fine chemical" means in one embodiment "carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP)" in relation to all sequences listed in Table I to IV, application no. 25 or homologs thereof; Accordingly, in one embodiment the term "the fine chemical" means "carotenoids, e.g. 15 beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP)" in relation to all sequences listed in Table I to IV, application no. 25. Accordingly, the term "the fine chemical" can mean "Isopentenylpyrophosphate (IPP) "Geranylgeranylpyrophosphate (GGPP) ", "Phytoene", "Lycopene", "zeta-carotene and/or "beta-carotene"., owing to circumstances and the context. 20 [0017.0.24.24]In another embodiment the present invention is related to a process for the production of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, which comprises (a) increasing or generating the activity of a protein as shown in table II, application no. 6 column 3 encoded by the nucleic acid sequences as shown in table I, appli 25 cation no. 25, column 5, in an organelle of a non-human organism, or (b) increasing or generating the activity of a protein as shown in table II, application no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 125, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or 30 (c) increasing or generating the activity of a protein as shown in table II, application no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 25, column 5, which are joined to a nucleic acid sequence encoding 1654 chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and (d) growing the organism under conditions which permit the production of carote noids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate 5 (IPP), in said organism. [0017.1.24.24]In another embodiment, the present invention relates to a process for the production of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, which comprises (a) increasing or generating the activity of a protein as shown in table II, application 10 no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, ap plication no. 25, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or (b) increasing or generating the activity of a protein as shown in table II, application no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, ap 15 plication no. 250, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and (c) growing the organism under conditions which permit the production of the fine chemical, thus, carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopen tyl pyrophosphate (IPP), or fine chemicals comprising carotenoids, e.g. beta 20 carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, in said organ ism or in the culture medium surrounding the organism. [0018.0.24.24]Advantagously the activity of the protein as shown in table II, application no. 25, column 3 encoded by the nucleic acid sequences as shown in table I, applica tion no. 25, column 5 is increased or generated in the abovementioned process in the 25 plastid of a microorganism or plant. [0019.0.0.24] to [0024.0.0.24] for the disclosure of the paragraphs [0019.0.0.24] to [0024.0.0.24] see paragraphs [0019.0.0.0] and [0024.0.0.0] above. [0025.0.24.24] Even more preferred nucleic acid sequences are encoding transit peptides as disclosed by von Heijne et al. [Plant Molecular Biology Reporter, Vol. 9 (2), 30 1991: 104 - 126], which are hereby incorparated by reference. Table V shows some examples of the transit peptide sequences disclosed by von Heijne et al. According to 1655 the disclosure of the invention especially in the examples the skilled worker is able to link other nucleic acid sequences disclosed by von Heijne et al. to the nucleic acid se quences shown in table I, application no. 25, columns 5 and 7. Most preferred nucleic acid sequences encoding transit peptides are derived from the genus Spinacia such as 5 chlorplast 30S ribosomal protein PSrp-1, root acyl carrier protein II, acyl carrier protein, ATP synthase: y subunit, ATP synthase: 6 subunit, cytochrom f, ferredoxin I, ferredoxin NADP oxidoreductase (= FNR), nitrite reductase, phosphoribulokinase, plastocyanin or carbonic anhydrase. The skilled worker will recognize that various other nucleic acid sequences encoding transit peptides can easely isolated from plastid-localized pro 10 teins, which are expressed from nuclear genes as precursors and are then targeted to plastids. Such transit peptides encoding sequences can be used for the construction of other expression constructs. The transit peptides advantageously used in the inventive process and which are part of the inventive nucleic acid sequences and proteins are typically 20 to 120 amino acids, preferably 25 to 110, 30 to 100 or 35 to 90 amino ac 15 ids, more preferably 40 to 85 amino acids and most preferably 45 to 80 amino acids in length and functions post-tranlationally to direct the protein to the plastid preferably to the chloroplast. The nucleic acid sequences encoding such transit peptides are local ized upstream of nucleic acid sequence encoding the mature protein. For the correct molecular joining of the transit peptide encoding nucleic acid and the nucleic acid en 20 coding the protein to be targeted it is sometimes necessary to introduce additional base pairs at the joining position, which forms restriction enzyme recognition sequences use ful for the molecular joining of the different nucleic acid molecules. This procedure might lead to very few additional amino acids at the N-terminal of the mature imported protein, which usually and preferably do not interfer with the protein function. In any 25 case, the additional base pairs at the joining position which forms restriction enzyme recognition sequences have to be choosen with care, in order to avoid the formation of stop codons or codons which encode amino acids with a strong influence on protein folding, like e.g. proline. It is preferred that such additional codons encode small n.d. structural flexible amino acids such as glycine or alanine. 30 [0026.0.24.24] As mentioned above the nucleic acid sequences coding for the pro teins as shown in table II, application no. 25, column 3 and its homologs as disclosed in table I, application no. 25, columns 5 and 7 are joined to a nucleic acid sequence en coding a transit peptide, This nucleic acid sequence encoding a transit peptide ensures transport of the protein to the plastid. The nucleic acid sequence of the gene to be ex 35 pressed and the nucleic acid sequence encoding the transit peptide are operably linked. Therefore the transit peptide is fused in frame to the nucleic acid sequence cod- 1656 ing for proteins as shown in table II, application no. 25, column 3 and its homologs as disclosed in table I, application no. 25, columns 5 and 7. [0027.0.0.24] to [0029.0.0.24] for the disclosure of the paragraphs [0027.0.0.24] to [0029.0.0.24] see paragraphs [0027.0.0.0] and [0029.0.0.0] above. 5 [0030.0.24.24] Alternatively, nucleic acid sequences coding for the transit peptides may be chemically synthesized either in part or wholly according to structure of transit peptide sequences disclosed in the prior art. Said natural or chemically synthesized sequences can be directly linked to the sequences encoding the mature protein or via a linker nucleic acid sequence, which may be typically less than 500 base pairs, prefera 10 bly less than 450, 400, 350, 300, 250 or 200 base pairs, more preferably less than 150, 100, 90, 80, 70, 60, 50, 40 or 30 base pairs and most preferably less than 25, 20, 15, 12, 9, 6 or 3 base pairs in length and are in frame to the coding sequence. Furthermore favorable nucleic acid sequences encoding transit peptides may comprise sequences derived from more than one biological and/or chemical source and may include a nu 15 cleic acid sequence derived from the amino-terminal region of the mature protein, which in its native state is linked to the transit peptide. In a preferred empodiment of the invention said amino-terminal region of the mature protein is typically less than 150 amino acids, preferably less than 140, 130, 120, 110, 100 or 90 amino acids, more preferably less than 80, 70, 60, 50, 40, 35, 30, 25 or 20 amino acids and most prefera 20 bly less than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 amino acids in length. But even shorter or longer stretches are also possible. In addition target sequences, which facili tate the transport of proteins to other cell compartments such as the vacuole, endo plasmic reticulum, Golgi complex, glyoxysomes, peroxisomes or mitochondria may be also part of the inventive nucleic acid sequence. The proteins translated from said in 25 ventive nucleic acid sequences are a kind of fusion proteins that means the nucleic acid sequences encoding the transit peptide for example the ones shown in table V, preferably the last one of the table are joint to the nucleic acid sequences shown in table I, application no. 25, columns 5 and 7. The person skilled in the art is able to join said sequences in a functional manner. Advantageously the transit peptide part is 30 cleaved off from the protein part shown in table II, application no. 25, columns 5 and 7 during the transport preferably into the plastids. All products of the cleavage of the pre ferred transit peptide shown in the last line of table V have preferably the N-terminal amino acid sequences QIA CSS or QIA EFQLTT in front of the start methionine of the protein metioned in table II, application no. 25, columns 5 and 7. Other short amino 35 acid sequences of an range of 1 to 20 amino acids preferable 2 to 15 amino acids, 1657 more preferable 3 to 10 amino acids most preferably 4 to 8 amino acids are also possi ble in front of the start methionine of the protein metioned in table II, application no. 25, columns 5 and 7. In case of the amino acid sequence QIA CSS the three amino acids in front of the start methionine are stemming from the LIC (= ligatation independent 5 cloning) cassette. Said short amino acid sequence is preferred in the case of the ex pression of E. coli genes. In case of the amino acid sequence QIA EFQLTT the six amino acids in front of the start methionine are stemming from the LIC cassette. Said short amino acid sequence is preferred in the case of the expression of S. cerevisiae genes. The skilled worker knowns that other short sequences are also useful in the 10 expression of the genes metioned in table I, application no. 25, columns 5 and 7. Fur thermore the skilled worker is aware of the fact that there is not a need for such short sequences in the expression of the genes. [0030.2.0.24] Table V: Examples of transit peptides disclosed by von Heijne et al. for the disclosure of Table V see paragraph [0030.2.0.0] above. 15 [0030.1.24.24] Alternatively to the targeting of the sequences shown in table II, ap plication no. 25, columns 5 and 7 preferably of sequences in general encoded in the nucleus with the aid of the targeting sequences mentioned for example in table V alone or in combination with other targeting sequences preferably into the plastids, the nu cleic acids of the invention can directly introduced into the plastidal genome. Therefore 20 in a preferred embodiment the nucleic acid sequences shown in table I, application no. 25, columns 5 and 7 are directly introduced and expressed in plastids. The term "introduced" in the context of this specification shall mean the insertion of a nucleic acid sequence into the organism by means of a "transfection", "transduction" or preferably by "transformation". 25 A plastid, such as a chloroplast, has been "transformed" by an exogenous (preferably foreign) nucleic acid sequence if nucleic acid sequence has been introduced into the plastid that means that this sequence has crossed the membrane or the membranes of the plastid. The foreign DNA may be integrated (covalently linked) into plastid DNA making up the genome of the plastid, or it may remain unintegrated (e.g., by including a 30 chloroplast origin of replication). "Stably" integrated DNA sequences are those, which are inherited through plastid replication, thereby transferring new plastids, with the fea tures of the integrated DNA sequence to the progeny.
1658 [0030.2.0.24] and [0030.3.0.24] for the disclosure of the paragraphs [0030.2.0.24] and [0030.3.0.24] see paragraphs [0030.2.0.0] and [0030.3.0.0] above. [0030.4.24.24] For the inventive process it is of great advantage that by transforming the plastids the intraspecies specific transgene flow is blocked, because a lot of spe 5 cies such as corn, cotton and rice have a strict maternal inheritance of plastids. By placing the genes specified in table I, application no. 25, columns 5 and 7 or active fragments thereof in the plastids of plants, these genes will not be present in the pollen of said plants. A further preferred embodiment of the invention relates to the use of so called "chloro 10 plast localization sequences", in which a first RNA sequence or molecule is capable of transporting or "chaperoning" a second RNA sequence, such as a RNA sequence tran scribed from the sequences depicted in table 1, application no. 25, columns 5 and 7 or a sequence encoding a protein, as depicted in table II, application no. 25, columns 5 and 7, from an external environment inside a cell or outside a plastid into a chloroplast. 15 In one embodiment the chloroplast localization signal is substantially similar or com plementary to a complete or intact viroid sequence. The chloroplast localization signal may be encoded by a DNA sequence, which is transcribed into the chloroplast localiza tion RNA. The term "viroid" refers to a naturally occurring single stranded RNA mole cule (Flores, C R Acad Sci III. 2001 Oct; 324(10): 943-52). Viroids usually contain 20 about 200-500 nucleotides and generally exist as circular molecules. Examples of vi roids that contain chloroplast localization signals include but are not limeted to ASBVd, PLMVd, CChMVd and ELVd. The viroid sequence or a functional part of it can be fused to the sequences depicted in table, 1, application no. 25, columns 5 and 7 or a se quence encoding a protein, as depicted in table II, application no. 25, columns 5 and 7 25 in such a manner that the viroid sequence transports a sequence transcribed from a sequence as depicted in table 1 application no. 25, columns 5 and 7 or a sequence encoding a protein as depicted in table II, application no. 25, columns 5 and 7 into the chloroplasts. A preferred embodiment uses a modified ASBVd (Navarro et al., Virology. 2000 Mar 1; 268(1): 218-25). 30 In a further specific embodiment the protein to be expressed in the plastids such as the proteins depicted in table II, application no. 25, columns 5 and 7 are encoded by differ ent nucleic acids. Such a method is disclosed in WO 2004/040973, which shall be in corporated by reference. WO 2004/040973 teaches a method, which relates to the translocation of an RNA corresponding to a gene or gene fragment into the chloroplast 35 by means of a chloroplast localization sequence. The genes, which should be ex- 1659 pressed in the plant or plants cells, are split into nucleic acid fragments, which are in troduced into different compartments in the plant e.g. the nucleus, the plastids and/or mitochondria. Additionally plant cells are described in which the chloroplast contains a ribozyme fused at one end to an RNA encoding a fragment of a protein used in the 5 inventive process such that the ribozyme can trans-splice the translocated fusion RNA to the RNA encoding the gene fragment to form and as the case may be reunite the nucleic acid fragments to an intact mRNA encoding a functional protein for example as disclosed in table II, application no. 25, columns 5 and 7. [0030.5.24.24] In a preferred embodiment of the invention the nucleic acid se 10 quences as shown in table I, application no. 25, columns 5 and 7 used in the inventive process are transformed into plastids, which are metabolical active. Those plastids should preferably maintain at a high copy number in the plant or plant tissue of interest, most preferably the chloroplasts found in green plant tissues, such as leaves or cotyle dons or in seeds. 15 [0030.6.24.24] For a good expression in the plastids the nucleic acid sequences as shown in table I, application no. 25, columns 5 and 7 are introduced into an expression cassette using a preferably a promoter and terminater, which are active in plastids preferably a chloroplast promoter. Examples of such promoters include the psbA pro moter from the gene from spinach or pea, the rbcL promoter, and the atpB promoter 20 from corn. [0031.0.0.24] and [0032.0.0.24] for the disclosure of the paragraphs [0031.0.0.24] and [0032.0.0.24] see paragraphs [0031.0.0.0] and [0032.0.0.0] above. [0033.0.24.24]Advantageously the process for the production of the fine chemical leads to an enhanced production of the fine chemical. The terms "enhanced" or "in 25 crease" mean at least a 10%, 20%, 30%, 40% or 50%, preferably at least 60%, 70%, 80%, 90% or 100%, more preferably 150%, 200%, 300%, 400% or 500% higher pro duction of the fine chemical in comparison to the reference as defined below, e.g. that means in comparison to an organism without the aforementioned modification of the activity of a protein as shown in table II, application no. 25, column 3. Preferably the 30 modification of the activity of a protein as shown in table II, application no. 25, column 3 or their combination can be achieved by joining the protein to a transit peptide. [0034.0.24.24] Surprisingly it was found, that the transgenic expression of the E. coli or Saccharomyces cerevisiae proteins shown in table II, application no. 25, column 3 in 1660 plastids of a plant such as Arabidopsis thaliana for example through the linkage to at least one targeting sequence - for example as mentioned in table V - conferred an in crease in the respective fine chemical indicated in column 6 "metabolite" of each table I to IV in the transformed plant. 5 Surprisingly it was found, that the transgenic expression of the E. coli protein b0931, b1868and/or b2032 and of the Saccaromyces cerevisiae protein YLR099C and/or YPL080C in Arabidopsis thaliana conferred an increase in the isopentyl pyrophosphate (IPP) content,, which is a precursor in the biosynthesis of carotenoids, e.g. beta carotene or its/their precursors like Geranylgeranylpyrophosphate (GGPP), Phytoene, 10 Lycopene, zeta-carotene, , in particular of isopentyl pyrophosphate (IPP),and thus of carotenoids, e.g. beta-carotene or its/their precursor. Thus, an increase in the level of this precursor of the carotenoids, e.g. beta-carotene bioynthesis can be advantageous for the production of carotenoids, e.g. beta-carotene or its/their precursor Geranylger anylpyrophosphate (GGPP), Phytoene, Lycopene, zeta-carotene. For example, in one 15 embodiment the level of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),is increased in combination with the modulation of the expression of other genes of the biosynthesis of other carotenoids, e.g. alpha-carotene, lutein, zeaxanthine or its/their precursors, in particular of genes encoding enzymes metabolising carotenoids or a precursor thereof, such as the Isopentenyl diphosphate 20 isomerase, Geranylgeranyl diphosphate synthase, Phytoene synthase, Phytoene de saturase, zeta-Carotene desaturase, beta-Cyclase, beta-Hydroxylase. [0035.0.0.24] for the disclosure of this paragraph see paragraph [0035.0.0.0] above. [0036.0.24.24] The sequence of b0931 (Accession number JQ0756) from Es cherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 25 (1997), and its activity is being defined as "nicotinate phosphoribosyltransferase". Ac cordingly, in one embodiment, the process of the present invention comprises the use of a "nicotinate phosphoribosyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in particular for increasing the amount of 30 carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in free or bound form in an organism or a part thereof, as mentioned. In one em bodiment, in the process of the present invention the activity of a b0931 protein is in creased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 35 In another embodiment, in the process of the present invention the activity of a b0931 1661 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b1868 (Accession number D64949) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 5 being defined as "yecE protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "yecE protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in particular for in creasing the amount of carotenoids, e.g. beta-carotene or its/their precursor, e.g. 10 isopentyl pyrophosphate (IPP), in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b1868 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 15 In another embodiment, in the process of the present invention the activity of a b1868 protein is increased or generated in a subcellular compartment of the organism or or ganism cell such as in an organelle like a plastid or mitochondria. The sequence of b2032 (Accession number 169647) from Escherichia coli has been published in Blattner et al., Science 277 (5331), 1453-1474 (1997), and its activity is 20 being defined as "glycosyltransferase". Accordingly, in one embodiment, the process of the present invention comprises the use of a "glycosyltransferase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in particular for increasing the amount of carotenoids, e.g. beta-carotene or its/their precursor, e.g. 25 isopentyl pyrophosphate (IPP), in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a b2032 protein is increased or generated, e.g. from Escherichia coli or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V.In another embodiment, in the process of the present invention the activity of a 30 b2032 protein is increased or generated in a subcellular compartment of the organism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YLR099C (Accession number NP_013200) from Saccharomyces cerevisiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its activity is being defined as "lipase". Accordingly, in one embodiment, the proc- 1662 ess of the present invention comprises the use of a "lipase" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in particular for increasing the amount of carotenoids, e.g. beta-carotene or its/their precursor, e.g. 5 isopentyl pyrophosphate (IPP) in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YLR0990C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog thereof, preferably linked at least to one transit peptide as mentioned for example in table V. 10 In another embodiment, in the process of the present invention the activity of an YLR099C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. The sequence of YPL080C (Accession number S61107) from Saccharomyces cere visiae has been published in Goffeau et al., Science 274 (5287), 546-547, 1996, and its 15 activity is being defined as "uncharacterised I protein". Accordingly, in one embodiment, the process of the present invention comprises the use of a "uncharacterised protein" or its homolog, e.g. as shown herein, for the production of the fine chemical, meaning of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid, in particular for increasing the amount of meaning of carotenoids, e.g. beta-carotene or 20 its/their precursor, e.g. isopentyl pyrophosphate (IPP), in particular for increasing the amount of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro phosphate (IPP) in free or bound form in an organism or a part thereof, as mentioned. In one embodiment, in the process of the present invention the activity of a YPL080C protein is increased or generated, e.g. from Saccharomyces cerevisiae or a homolog 25 thereof, preferably linked at least to one transit peptide as mentioned for example in table V. In another embodiment, in the process of the present invention the activity of an YPL080C protein is increased or generated in a subcellular compartment of the organ ism or organism cell such as in an organelle like a plastid or mitochondria. 30 [0037.0.24.24] In one embodiment, the homolog of the YLR099C and/or YPL080C, is a homolog having said acitivity and being derived from Eukaryot. In one embodi ment, the homolog of the b0931, bl868and/or b2032 is a homolog having said acitivity and being derived from bacteria. In one embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Fungi. In 35 one embodiment, the homolog of the b0931, b1868and/or b2032 is a homolog having 1663 said acitivity and being derived from Proteobacteria. In one embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Ascomycota. In one embodiment, the homolog of the b0931, b1868and/or b2032 is a homolog having said acitivity and being derived from Gammaproteobacteria. In one 5 embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Saccharomycotina. In one embodiment, the homolog of the b0931, b1868and/or b2032 is a homolog having said acitivity and being derived from Enterobacteriales. In one embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Saccharomycetes. 10 In one embodiment, the homolog of the b0931, b1 868and/or b2032 is a homolog hav ing said acitivity and being derived from Enterobacteriaceae. In one embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Saccharomycetales. In one embodiment, the homolog of the b0931, b1868and/or b2032 is a homolog having said acitivity and being derived from Es 15 cherichia, preferably from Escherichia coli. In one embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Saccharomycetaceae. In one embodiment, the homolog of the YLR099C and/or YPL080C is a homolog having said acitivity and being derived from Saccharomycetes, preferably from Saccharomyces cerevisiae. 20 [0037.1.24.24]Homologs of the polypeptide table II, application no. 25, column 5 may be the polypetides encoded by the nucleic acid molecules indicated in table I , applica tion no. 25, column 7, resp., or may be the polypeptides indicated in table II, application no. 25, column 7, resp. [0038.0.0.24] for the disclosure of this paragraph see paragraph [0038.0.0.0] above. 25 [0039.0.24.24]In accordance with the invention, a protein or polypeptide has the "activ ity of an protein as shown in table II, application no. 25, column 3" if its de novo activity, or its increased expression directly or indirectly leads to an increased in the level of the fine chemical indicated in the respective line of table II, application no. 25, column 6 "metabolite" in the organism or a part thereof, preferably in a cell of said organism, 30 more preferably in an organelle such as a plastid or mitochondria of said organism .The protein has the above mentioned activities of a protein as shown in table II, application no. 25, column 3, preferably in the event the nucleic acid sequences encoding said proteins is functionally joined to the nucleic acid sequence of a transit peptide. Throughout the specification the activity or preferably the biological activity of such a 35 protein or polypeptide or an nucleic acid molecule or sequence encoding such protein 1664 or polypeptide is identical or similar if it still has the biological or enzymatic activity of a protein as shown in table 1l, application no. 25, column 3, or which has at least 10% of the original enzymatic activity, preferably 20%, particularly preferably 30%, most par ticularly preferably 40% in comparison to a protein as shown in the respective line of 5 table 1l, application no. 25, column 3 of E. coli. [0040.0.0.24] to [0047.0.0.24] for the disclosure of the paragraphs [0040.0.0.24] to [0047.0.0.24] see paragraphs [0040.0.0.0] to [0047.0.0.0] above. [0048.0.24.24] Preferably, the reference, control or wild type differs form the subject of the present invention only in the cellular activity, preferably of the plastidial acitvity of 10 the polypeptide of the invention, e.g. as result of an increase in the level of the nucleic acid molecule of the present invention or an increase of the specific activity of the poly peptide of the invention, e.g. by or in the expression level or activity of an protein hav ing the activity of a respective protein as shown in table 1l, application no. 25, column 3 its biochemical or genetical causes and the increased amount of the respective fine 15 chemical. [0049.0.0.24] to [0051.0.0.24] for the disclosure of the paragraphs [0049.0.0.24] to [0051.0.0.24] see paragraphs [0049.0.0.0] to [0051.0.0.0] above. [0052.0.24.24]For example, the molecule number or the specific activity of the poly peptide or the nucleic acid molecule may be increased. Larger amounts of the fine 20 chemical can be produced if the polypeptide or the nucleic acid of the invention is ex pressed de novo in an organism lacking the activity of said protein, preferably the nu cleic acid molecules as mentioned in table 1, application no. 25, columns 5 and 7 alone or preferably in combination with a transit peptide for example as mentioned in table V or in another embodiment by introducing said nucleic acid molecules into an organelle 25 such as an plastid or mitochondria in the transgenic organism. However, it is also pos sible to modifiy the expression of the gene which is naturally present in the organisms, for example by integrating a nucleic acid sequence, encoding a plastidic targeting se quence in front (5 prime) of the coding sequence, leading to a functional preprotein, which is directed for example to the plastids. 30 [0053.0.0.24] to [0058.0.0.24] for the disclosure of the paragraphs [0053.0.0.24] to [0058.0.0.24] see paragraphs [0053.0.0.0] to [0058.0.0.0] above. [0059.0.24.24] In case the activity of the Escherichia coli protein b0931 or its ho mologs, e.g. a "nicotinate phosphoribosyltransferase" is increased advantageously in 1665 an organelle such as a plastid or mitochondria, preferably, in one embodiment an in crease of the fine chemical, preferably of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP)between 60% and 148% or more is con ferred. 5 In case the activity of the Escherichia coli protein b1 868 or its homologs, e.g. a "yecE protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemical, preferably of carote noids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP) be tween 35% and 40% or more is conferred. 10 In case the activity of the Escherichia coli protein b2032 or its homologs, e.g. a "glyco syltransferase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP) between 40% and 68% or more is conferred. 15 In case the activity of the Saccharomyces cerevisiae protein YLR099C or its homologs, e.g. a "lipase" is increased advantageously in an organelle such as a plastid or mito chondria, preferably, in one embodiment an increase of the fine chemical, preferably of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP) between 218% and 351% or more is conferred. 20 In case the activity of the Saccharomyces cerevisiae protein YPL080C or its homologs, e.g. a "uncharacterized protein" is increased advantageously in an organelle such as a plastid or mitochondria, preferably, in one embodiment an increase of the fine chemi cal, preferably of linoleic acid and/or tryglycerides, lipids, oils and/or fats containing linoleic acid between 50% and 146% or more is conferred. 25 [0060.0.24.24] In one embodiment, the activity of any on of the Escherichia coli pro teins b0931, b1868 and/or b2032 and/or of the Saccaromyces cerevisiae proteins YLR099C and/or YPL080C or their homologs," is advantageously are increased in an organelle such as a plastid or mitochondria, preferably conferring an increase of the fine chemical indicated in column 6 "metabolites" for application no. 25 in any one of 30 Tables I to IV, resp., [0061.0.0.24] and [0062.0.0.24] for the disclosure of the paragraphs [0061.0.0.24] and [0062.0.0.24] see paragraphs [0061.0.0.0] and [0062.0.0.0] above. [0063.0.24.24]A protein having an activity conferring an increase in the amount or level of the fine chemical, preferably upon targeting to the plastids, has in one embodiment 35 the structure of the polypeptide described herein, in particular of the polypeptides com- 1666 prising the consensus sequence shown in table IV, application no. 250, column 7 or of the polypeptide as shown in the amino acid sequences as disclosed in table II, applica tion no. 250, columns 5 and 7 or the functional homologues thereof as described herein, or is encoded by the nucleic acid molecule characterized herein or the nucleic 5 acid molecule according to the invention, for example by the nucleic acid molecule as shown in table I, application no. 10, columns 5 and 7 or its herein described functional homologues and has the herein mentioned activity. [0064.0.24.24] For the purposes of the present invention, the reference to the fine chemical, e.g. to the term "carotenoids", e.g. "beta-carotene" or "its/their precursor", 10 e.g. "isopentyl pyrophosphate (IPP)",", also encompasses the corresponding salts, such as, for example, the potassium or sodium salts or the salts with amines such as diethylamine as well as their ester, or glucoside thereof, e.g the diglucoside thereof[0065.0.0.24] and [0066.0.0.24] for the disclosure of the paragraphs [0065.0.0.24] and [0066.0.0.24] see paragraphs [0065.0.0.0] and [0066.0.0.0] above. 15 [0067.0.24.24]In one embodiment, the process of the present invention comprises one or more of the following steps a) stabilizing a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptid of the invention, e.g. of a polypeptide having the activity of a protein as indicated in table II, appli 20 cation no. 25, columns 5 and 7 or its homologs activity having herein-mentioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophos phate (IPP), increasing activity; and/or b) stabilizing a mRNA conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention, which is in the sense of the invention a 25 fusion of a nucleic acid sequence encoding a transit peptide and of a nucleic acid sequence as shown in table I, application no. 25, columns 5 and 7, e.g. a nucleic acid sequence encoding a polypeptide having the activity of a protein as indi cated in table II, application no. 25, columns 5 and 7 or its homologs activity or of a mRNA encoding the polypeptide of the present invention having herein 30 mentioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing activity; and/or c) increasing the specific activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the invention or of the polypep- 1667 tide of the present invention having herein-mentioned carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 25, columns 5 and 7 or its homologs activity, or decreasing the 5 inhibitiory regulation of the polypeptide of the invention; and/or d) generating or increasing the expression of an endogenous or artificial transcrip tion factor mediating the expression of a protein conferring the increased expres sion of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the invention having herein-mentioned carotenoids, e.g. beta 10 carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing ac tivity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 25, columns 5 and 7 or its homologs activity; and/or e) stimulating activity of a protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention or a polypeptide of 15 the present invention having herein-mentioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 25, columns 5 and 7 or its homologs activity, by adding one or more exoge nous inducing factors to the organismus or parts thereof; and/or 20 f) expressing a transgenic gene encoding a protein conferring the increased ex pression of a polypeptide encoded by the nucleic acid molecule of the present invention or a polypeptide of the present invention, having herein-mentioned ca rotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing activity, e.g. of a polypeptide having the activity of a protein as 25 indicated in table II, application no. 25, columns 5 and 7 or its homologs activity, and/or g) increasing the copy number of a gene conferring the increased expression of a nucleic acid molecule encoding a polypeptide encoded by the nucleic acid mole cule of the invention or the polypeptide of the invention having herein-mentioned 30 carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophos phate (IPP),increasing activity, e.g. of a polypeptide having the activity of a pro tein as indicated in table II, application no. 25, columns 5 and 7 or its homologs activity; and/or 1668 h) increasing the expression of the endogenous gene encoding the polypeptide of the invention, e.g. a polypeptide having the activity of a protein as indicated in table 1l, application no. 25, columns 5 and 7 or its homologs activity, by adding positive expression or removing negative expression elements, e.g. homologous 5 recombination can be used to either introduce positive regulatory elements like for plants the 35S enhancer into the promoter or to remove repressor elements form regulatory regions. Further gene conversion methods can be used to disrupt repressor elements or to enhance to acitivty of positive elements. Positive ele ments can be randomly introduced in plants by T-DNA or transposon mutagene 10 sis and lines can be identified in which the positive elements have be integrated near to a gene of the invention, the expression of which is thereby en hanced;and/or i) modulating growth conditions of an organism in such a manner, that the expres sion or activity of the gene encoding the protein of the invention or the protein it 15 self is enhanced for example microorganisms or plants can be grown for exam ple under a higher temperature regime leading to an enhanced expression of heat shock proteins, which can lead an enhanced fine chemical production; and/or j) selecting of organisms with expecially high activity of the proteins of the invention 20 from natural or from mutagenized resources and breeding them into the target organisms, eg the elite crops; and/or k) directing a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein-mentioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increas 25 ing activity, e.g. of polypeptide having the activity of a protein as indicated in ta ble 1l, application no. 25, columns 5 and 7 or its homologs activity, to the plastids by the addition of a plastidial targeting sequence; and/or 1) generating the expression of a protein encoded by the nucleic acid molecule of the invention or of the polypeptide of the present invention having herein 30 mentioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table 1l, application no. 25, columns 5 and 7 or its ho mologs activity in plastids by the stable or transient transformation advanta geously stable transformation of organelles preferably plastids with an inventive 1669 nucleic acid sequence preferably in form of an expression cassette containing said sequence leading to the plastidial expression of the nucleic acids or poly peptides of the invention; and/or m) generating the expression of a protein encoded by the nucleic acid molecule of 5 the invention or of the polypeptide of the present invention having herein mentioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), increasing activity, e.g. of a polypeptide having the activity of a protein as indicated in table II, application no. 25, columns 5 and 7 or its ho mologs activity in plastids by integration of a nucleic acid of the invention into the 10 plastidal genome under control of preferable a plastidial promoter. [0068.0.24.24] Preferably, said mRNA is the nucleic acid molecule of the present inven tion and/or the protein conferring the increased expression of a protein encoded by the nucleic acid molecule of the present invention alone or link to a transit nucleic acid se quence or transit peptide encoding nucleic acid sequence or the polypeptide having the 15 herein mentioned activity, e.g. conferring the increase of the respective fine chemical as indicated in column 6 of application no. 25 in Table I to IV, resp., after increasing the expression or activity of the encoded polypeptide preferably in organelles such as plastids or having the activity of a polypeptide having an activity as the protein as shown in table II, application no. 25, column 3 or its homologs. Preferably the increase 20 of the fine chemical takes place in plastids. [0069.0.0.24] to [0079.0.0.24] for the disclosure of the paragraphs [0069.0.0.24] to [0079.0.0.24] see paragraphs [0069.0.0.0] to [0079.0.0.0] above. [0080.0.24.24]The activation of an endogenous polypeptide having above-mentioned activity, e.g. having the activity of a protein as shown in table II, application no. 10, col 25 umn 3 or of the polypeptide of the invention, e.g. conferring the increase of the respec tive fine chemical after increase of expression or activity in the cytsol and/or in an or ganelle like a plastid, preferentially in the plastid, can also be increased by introducing a synthetic transcription factor, which binds close to the coding region of the gene en coding the protein as shown in table II, application no. 25, column 3 and activates its 30 transcription. A chimeric zinc finger protein can be constructed, which comprises a specific DNA-binding domain and an activation domain as e.g. the VP16 domain of Herpes Simplex virus. The specific binding domain can bind to the regulatory region of the gene encoding the protein as shown in table II, application no. 25, column 3. The expression of the chimeric transcription factor in a organism, in particular in a plant, 1670 leads to a specific expression of the protein as shown in table 1l, application no. 25, column 3, see e.g. in WO01/52620, Oriz, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13290 or Guan, Proc. NatI. Acad. Sci. USA, 2002, Vol. 99, 13296. [0081.0.0.24] to [0084.0.0.24] for the disclosure of the paragraphs [0081.0.0.24] to 5 [0084.0.0.24] see paragraphs [0081.0.0.0] to [0084.0.0.0] above. [0085.0.24.24]Owing to the introduction of a gene or a plurality of genes conferring the expression of the nucleic acid molecule of the invention or the nucleic acid molecule used in the method of the invention or the polypeptide of the invention or the polypep tide used in the method of the invention as described below, for example the nucleic 10 acid construct mentioned below into an organism alone or in combination with other genes, it is possible not only to increase the biosynthetic flux towards the end product, but also to increase, modify or create de novo an advantageous, preferably novel me tabolites composition in the organism, e.g. an advantageous carotinoid composition comprising a higher content of (from a viewpoint of nutrional physiology limited) caroti 15 noids, like xanthopylls, like violaxanthin, antheraxanthin, lutein, astaxanthin, canthaxan thin and/or fucoxanthin or its precursor like Isopentenylpyrophosphate (IPP) Geranyl geranylpyrophosphate (GGPP), Phytoene, Lycopene, zeta-carotene, beta-carotene or. [0086.0.0.24] for the disclosure of this paragraph see paragraph [0086.0.0.0] above. [0087.0.24.24]By influencing the metabolism thus, it is possible to produce, in the 20 process according to the invention, further advantageous compounds. Examples of such compounds are further vitamins or provitamins or carotenoids. [0088.0.24.24]Accordingly, in one embodiment, the process according to the invention relates to a process, which comprises: a) providing a non-human organism, preferably a microorganism, a non-human ani 25 mal, a plant or animal cell, a plant or animal tissue or a plant, more preferably a microorganism, a plant or a plant tissue; b) increasing the activity of a protein as shown in table 1l, application no. 25, column 3 or of a polypeptide being encoded by the nucleic acid molecule of the present invention and described below, e.g. conferring an increase of the respective fine 30 chemical as indicated in any one of Tables I to IV, application no. 25, column 6 "metabolite" in the organism, preferably in the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant, more pref- 1671 erably a microorganism, a plant or a plant tissue, in the cytsol or in the plastids, preferentially in the plastids, c) growing the organism, preferably the microorganism, the non-human animal, the plant or animal cell, the plant or animal tissue or the plant under conditions which 5 permit the production of the respective fine chemical in the organism, preferably the microorganism, the plant cell, the plant tissue or the plant; and d) if desired, revovering, optionally isolating, the resepctive free and/or bound the fine chemical and, optionally further free and/or bound amino acids synthetized by the organism, the microorganism, the non-human animal, the plant or animal cell, 10 the plant or animal tissue or the plant. [0089.0.24.24] The organism, in particular the microorganism, non-human animal, the plant or animal cell, the plant or animal tissue or the plant is advantageously grown in such a way that it is not only possible to recover, if desired isolate the free or bound the respective fine chemical or the free and bound the resepctive fine chemical but as op 15 tion it is also possible to produce, recover and, if desired isolate, other free or/and bound carotenoids, vitamins, provitamins etc.l [0090.0.0.24] to [0097.0.0.24] for the disclosure of the paragraphs [0090.0.0.24] to [0097.0.0.24] see paragraphs [0090.0.0.0] to [0097.0.0.0] above. [0098.0.24.24] With regard to the nucleic acid sequence as depicted a nucleic acid 20 construct which contains a nucleic acid sequence mentioned herein or an organism (= transgenic organism) which is transformed with said nucleic acid sequence or said nucleic acid construct, "transgene" means all those constructs which have been brought about by genetic manipulation methods,preferably in which either a) the nucleic acid sequence as shown in table 1, application no. 25, columns 5 and 25 7 or a derivative thereof, or b) a genetic regulatory element, for example a promoter, which is functionally linked to the nucleic acid sequence as shown table 1, application no. 25, columns 5 and 7 or a derivative thereof, or c) (a) and (b) 30 is/are not present in its/their natural genetic environment or has/have been modified by means of genetic manipulation methods, it being possible for the modification to be, by 1672 way of example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide. "Natural genetic environment" means the natural chromosomal locus in the organism of origin or the presence in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at 5 least partially still preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. [0099.0.24.24]The use of the nucleic acid sequence according to the invention or of the nucleic acid construct according to the invention for the generation of transgenic 10 plants is therefore also subject matter of the invention. As mentioned above the inven tive nucleic acid sequence consists advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 25, columns 5 and 7 joined to a nucleic acid sequence encoding a transit peptide, or a targeting nucleic acid sequence which directs the nucleic acid sequences disclosed in table 1, 15 application no. 25, columns 5 and 7 to the organelle preferentially the plastids. Altena tively the inventive nucleic acids sequences consist advantageously of the nucleic acid sequences as depicted in the sequence protocol and disclosed in table 1, application no. 25, columns 5 and 7 joined preferably to a nucleic acids sequence mediating the stable integration of nucleic acids into the plastidial genome and optionally sequences 20 mediating the transcription of the sequence in the plastidial compartment. A transient expression is in principal also desirable and possible. [0100.0.0.24] for the disclosure of this paragraph see paragraph [0100.0.0.0] above. [0101.0.24.24]In an advantageous embodiment of the invention, the organism takes the form of a plant whose carotenoids, e.g. beta-carotene or its/their precursor, e.g. 25 isopentyl pyrophosphate (IPP), content is modified advantageously owing to the nucleic acid molecule of the present invention expressed. This is important for plant breeders since, for example, the nutritional value of plants for poultry is dependent on the abovementioned carotenoids as vitamin source, free radical scavenger and/or dye source in feed. Further, this is also important for the production of cosmetic 30 compostions since, for example, the antioxidant level of plant extracts is depending on the abovementioned carotenoids and the general amount of vitamins e.g. as antioxidants. After the activity of the protein as shown in table 1l, application no. 25, column 3 has been increased or generated, or after the expression of nucleic acid molecule or poly 35 peptide according to the invention has been generated or increased, the transgenic 1673 plant generated thus is grown on or in a nutrient medium or else in the soil and subse quently harvested. [0102.0.0.24] to [0110.0.0.24] for the disclosure of the paragraphs [0102.0.0.24] to [0110.0.0.24] see paragraphs [0102.0.0.0] to [0110.0.0.0] above. 5 [0111.0.24.24]In a preferred embodiment, the respective fine chemical (carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),) is pro duced in accordance with the invention and, if desired, is isolated. The production of further vitamins, provitam ins or carotenoids, e.g. carotenes or xanthophylls, or mixtures thereof or mixtures with other compounds by the process according to the invention is 10 advantageous. Thus, the content of plant components and preferably also further impurities is as low as possible, and the abovementioned carotenoids, e.g. beta-carotene or its/their pre cursor, e.g. isopentyl pyrophosphate (IPP), are obtained in as pure form as possible. In these applications, the content of plant components advantageously amounts to less 15 than 10%, preferably 1%, more preferably 0.1%, very especially preferably 0.01% or less. [0112.0.24.24]In another preferred embodiment of the invention a combination of the increased expression of the nucleic acid sequence or the protein of the invention to gether with the transformation of a protein or polypeptid or a compound, which func 20 tions as a sink for the desired fine chemical, for example carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), in the organism, is useful to increase the production of the respective fine chemical. [0113.0.24.24]In the case of the fermentation of microorganisms, the abovementioned carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate 25 (IPP),may accumulate in the medium and/or the cells. If microorganisms are used in the process according to the invention, the fermentation broth can be processed after the cultivation. Depending on the requirement, all or some of the biomass can be re moved from the fermentation broth by separation methods such as, for example, cen trifugation, filtration, decanting or a combination of these methods, or else the biomass 30 can be left in the fermentation broth. The fermentation broth can subsequently be re duced, or concentrated, with the aid of known methods such as, for example, rotary evaporator, thin-layer evaporator, falling film evaporator, by reverse osmosis or by nanofiltration. Afterwards advantageously further compounds for formulation can be added such as corn starch or silicates. This concentrated fermentation broth advanta- 1674 geously together with compounds for the formulation can subsequently be processed by lyophilization, spray drying, spray granulation or by other methods. Preferably the the respective fine chemical or the carotenoids, e.g. beta-carotene or its/their precur sor, e.g. isopentyl pyrophosphate (IPP), comprising compositions are isolated from the 5 organisms, such as the microorganisms or plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in the known manner, for example via extraction, distillation, crystallization, chromatography or a combination of these methods. These purification methods can be used alone or in combination with the aforementioned methods such as the separation and/or concen 10 tration methods. [0114.0.24.24]Transgenic plants which comprise the carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), synthesized in the process ac cording to the invention can advantageously be marketed directly without there being any need for carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro 15 phosphate (IPP), synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, em bryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used 20 for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The site of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro phosphate (IPP), biosynthesis in plants is, inter alia, the leaf tissue or florescence so 25 that the isolation of these tissues makes sense. However, this is not limiting, since the expression may also take place in a tissue-specific manner in all of the remaining parts of the plant, in particular in fat-containing seeds. A further preferred embodiment there fore relates to a seed-specific isolation of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),. 30 However, the respective fine chemical produced in the process according to the inven tion can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids, glycosides as extracts, e.g. ether, alcohol, or other organic sol vents or water containing extract and/or free carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),. The respective fine chemical produced 35 by this process can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the 1675 plant parts, preferably the plant seeds. To increase the efficiency of oil extraction it is beneficial to clean, to temper and if necessary to hull and to flake the plant material expecially the seeds. E.g the oils, fats, lipids, extracts, e.g. ether, alcohol, or other or ganic solvents or water containing extract and/or free carotenoids, e.g. beta-carotene 5 or its/their precursor, e.g. isopentyl pyrophosphate (IPP), can be obtained by what is known as cold beating or cold pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds, which have been pretreated in this manner can sub sequently be pressed or extracted with solvents such as preferably warm hexane. The 10 solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further processing steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the process can be iso lated. Thereafter, the resulting products are processed further, i.e. degummed and/or 15 refined. In this process, substances such as the plant mucilages and suspended matter are first removed. What is known as desliming can be affected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Because carotenoids in microorganisms are localized intracellular, their recovery es sentials comes down to the isolation of the biomass. Well-established approaches for 20 the harvesting of cells include filtration, centrifugation and coagulation/flocculation as described herein. Of the residual hydrocarbon, adsorbed on the cells, has to be re moved. Solvent extraction or treatment with surfactants have been suggested for this purpose. However, it can be advantageous to avoid this treatment as it can result in cells devoid of most carotenoids. 25 [0115.0.24.24] Carotenoids, can for example be analyzed advantageously via HPLC or GC or LC separation methods and detected by MS oder MSMS methods. The unambiguous detection for the presence of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),containing products can be obtained by analyzing recombinant organisms using analytical standard methods: LC, LC-MS, GC, 30 GC-MS or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometric methods], Lipide 33:343-353). The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and 35 grinding, cooking, or via other applicable methods; see also Biotechnology of Vitamins, 1676 Pigments and Growth Factors, Edited by Erik J. Vandamme, London, 1989, p.96 to 103. [0116.0.24.24]In a preferred embodiment, the present invention relates to a process for the production of the respective fine chemical comprising or generating in an organism 5 or a part thereof, preferably in a cell compartment such as a plastid or mitochondria, the expression of at least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly peptide shown in table 1l, application no. 25, columns 5 and 7 or a fragment 10 thereof, which confers an increase in the amount of the respective fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising, preferably at least the mature form, of the nu cleic acid molecule shown in table 1, application no. 25, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 15 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degen eracy of the genetic code and conferring an increase in the amount of the re spective fine chemical in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid 20 molecule of (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under under stringent hybridisation conditions and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 25 f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c) and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; 30 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to 1677 (c) and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using 5 the primers shown in table III, application no. 25, column 7 and conferring an in crease in the amount of the respective fine chemical in an organism or a part thereof; i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from an ex pression library, with the aid of monoclonal antibodies against a polypeptide en 10 coded by one of the nucleic acid molecules of (a) to (h), preferably to (a) to (c), and and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 25, column 7 and conferring an in 15 crease in the amount of the respective fine chemical in an organism or a part thereof ; k) nucleic acid molecule comprising one or more of the nucleic acid molecule en coding the amino acid sequence of a polypeptide encoding a domain of the poly peptide shown in table II, application no. 25, columns 5 and 7 and conferring an 20 increase in the amount of the fine chemical in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable library under stringent conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k), preferably to (a) to (c), or with a fragment of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid mole 25 cule characterized in (a) to (k), preferably to (a) to (c), and conferring an increase in the amount of the respective fine chemical in an organism or a part thereof; or which comprises a sequence which is complementary thereto. [0116.1.9.24] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I A, application no. 25, 30 columns 5 and 7 by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi cated in table I A, application no. 25, columns 5 and 7. In one embodiment, the nucleic 1678 acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I A, application no. 25, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II A, application no. 10, columns 5 5 and 7. [0116.2.9.24] In one embodiment, the nucleic acid molecule used in the process of the invention distinguishes over the sequence indicated in table I B, application no. 25, columns 5 and 7, by one or more nucleotides. In one embodiment, the nucleic acid molecule used in the process of the invention does not consist of the sequence indi 10 cated in table I B, application no. 25, columns 5 and 7. In one embodiment, the nucleic acid molecule used in the process of the invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to a sequence indicated in table I B, application no. 25, columns 5 and 7. In another embodiment, the nucleic acid molecule does not en code a polypeptide of a sequence indicated in table II B, application no. 25, columns 5 15 and 7. [0117.0.24.24]In one embodiment, the nucleic acid molecule used in the process dis tinguishes over the sequence shown in table I, application no. 25, columns 5 and 7 by one or more nucleotides or does not consist of the sequence shown in table I, applica tion no. 25, columns 5 and 7. In one embodiment, the nucleic acid molecule of the pre 20 sent invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% identical to the se quence shown in table I, application no. 25, columns 5 and 7. In another embodiment, the nucleic acid molecule does not encode a polypeptide of the sequence shown in table II, application no. 25, columns 5 and 7. [0118.0.0.24] to [0120.0.0.24] for the disclosure of the paragraphs [0118.0.0.24] to 25 [0120.0.0.24] see paragraphs [0118.0.0.0] to [0120.0.0.0] above. [0121.0.24.24]The expression of nucleic acid molecules with the sequence shown in table I, application no. 25, columns 5 and 7, or nucleic acid molecules which are de rived from the amino acid sequences shown in table II, application no. 25, columns 5 and 7 or from polypeptides comprising the consensus sequence shown in table IV, 30 application no. 25, column 7, or their derivatives or homologues encoding polypeptides with the enzymatic or biological activity of a protein as shown in table II, application no. 25, column 3, and conferring an increase of the respective fine chemical (column 6 of application no. 25 in any one of Tables I to IV) after increasing its plastidic and/or spe cific activity in the plastids is advantageously increased in the process according to the 1679 invention by expression either in the cytsol or in an organelle such as a plastid or mito chondria or both, preferably in plastids. [0122.0.0.24] for the disclosure of this paragraph see paragraph [0122.0.0.0] above. [0123.0.24.24]Nucleic acid molecules, which are advantageous for the process accord 5 ing to the invention and which encode polypeptides with the activity of a protein as shown in table II, application no. 25, column 3 can be determined from generally ac cessible databases. [0124.0.0.24] for the disclosure of this paragraph see paragraph [0124.0.0.0] above. [0125.0.24.24]The nucleic acid molecules used in the process according to the inven 10 tion take the form of isolated nucleic acid sequences, which encode polypeptides with the activity of the proteins as shown in table II, application no. 25, column 3 and which confer an increase in the level of the respective fine chemical indicated in table II, ap plication no. 25, column 6 by being expressed either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product 15 being localized in the plastid and other parts of the cell or in the plastid as described above. [0126.0.0.24] to [0133.0.0.24] for the disclosure of the paragraphs [0126.0.0.24] to [0133.0.0.24] see paragraphs [0126.0.0.0] to [0133.0.0.0] above. [0134.0.24.24]However, it is also possible to use artificial sequences, which differ in 20 one or more bases from the nucleic acid sequences found in organisms, or in one or more amino acid molecules from polypeptide sequences found in organisms, in particu lar from the polypeptide sequences shown in table II, application no. 25, columns 5 and 7 or the functional homologues thereof as described herein, preferably conferring above-mentioned activity, i.e. conferring an increase of the respective fine chemical 25 after increasing its plastidic activity, e.g. after increasing the activity of a protein as shown in table II, application no. 25, column 3 by - for example - expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. 30 [0135.0.0.24] to [0140.0.0.24] for the disclosure of the paragraphs [0135.0.0.24] to [0140.0.0.24] see paragraphs [0135.0.0.0] to [0140.0.0.0] above.
1680 [0141.0.24.24]Synthetic oligonucleotide primers for the amplification, e.g. as shown in table III, application no. 25, column 7, by means of polymerase chain reaction can be generated on the basis of a sequence shown herein, for example the sequence shown in table I, application no. 25, columns 5 and 7 or the sequences derived from table II, 5 application no. 25, columns 5 and 7. [0142.0.24.24]Moreover, it is possible to identify conserved regions from various or ganisms by carrying out protein sequence alignments with the polypeptide used in the process of the invention, in particular with sequences of the polypeptide of the inven tion, from which conserved regions, and in turn, degenerate primers can be derived. 10 Conserved regions are those, which show a very little variation in the amino acid in one particular position of several homologs from different origin. The consenus sequence shown in table IV, application no. 25, column 7 is derived from said aligments. [0143.0.24.24] Degenerated primers can then be utilized by PCR for the amplification of fragments of novel proteins having above-mentioned activity, e.g. conferring the in 15 crease of the fine chemical after increasing the expression or activity or having the ac tivity of a protein as shown in table II, application no. 25, column 3 or further functional homologs of the polypeptide of the invention from other organisms. [0144.0.0.24] to [0151.0.0.24] for the disclosure of the paragraphs [0144.0.0.24 to [0151.0.0.24] see paragraphs [0144.0.0.0] to [0151.0.0.0] above. 20 [0152.0.24.24]Polypeptides having above-mentioned activity, i.e. conferring the in crease of the respective fine chemical indicated in table I, application no.25, column 6,, and being derived from other organisms, can be encoded by other DNA sequences which hybridize to the sequences shown in table I, application no. 25, columns 5 and 7, preferably of table I B, application no. 25, columns 5 and 7 under relaxed hybridization 25 conditions and which code on expression for peptides having the the respective fine chemical, i.e. carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro phosphate (IPP), increasing activity. [0153.0.0.24] to [0159.0.0.24] for the disclosure of the paragraphs [0153.0.0.24] to [0159.0.0.24] see paragraphs [0153.0.0.0] to [0159.0.0.0] above. 30 [0160.0.24.24]Further, the nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences of above mentioned nucleic acid molecules or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in table I, application no. 25, 1681 columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7 is one which is sufficiently complementary to one of the nucleotide sequences shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7 such that it can hybridize to one of the nucleotide sequences 5 shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7, thereby forming a stable duplex. Preferably, the hybridisation is performed under stringent hybrization conditions. However, a comple ment of one of the herein disclosed sequences is preferably a sequence complement thereto according to the base pairing of nucleic acid molecules well known to the skilled 10 person. For example, the bases A and G undergo base pairing with the bases T and U or C, resp. and visa versa. Modifications of the bases can influence the base-pairing partner. [0161.0.24.24]The nucleic acid molecule of the invention comprises a nucleotide se quence which is at least about 30%, 35%, 40% or 45%, preferably at least about 50%, 15 55%, 60% or 65%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7, or a portion thereof and preferably has above mentioned activity, in particular having a respective fine chemical increasing 20 activity after increasing the acitivity or an activity of a gene product as shown in table II, application no. 25, column 3 by for example expression either in the cytsol or in an or ganelle such as a plastid or mitochondria or both, preferably in plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. 25 [0162.0.24.24]The nucleic acid molecule of the invention comprises a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions as defined herein, to one of the nucleotide sequences shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7, or a portion thereof and encodes a protein having above-mentioned activity, e.g. confer 30 ring of a carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophos phate (IPP),, increase by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and optionally, the ac tivity of a protein as shown in table II, application no. 25, column 3, and the gene prod uct, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in 35 the plastid as described above.
1682 [0163.0.24.24]Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7, for example a fragment which can be used as a probe or primer or a fragment en 5 coding a biologically active portion of the polypeptide of the present invention or of a polypeptide used in the process of the present invention, i.e. having above-mentioned activity, e.g.conferring an increase of the respective fine chemical indicated in Table I, application no. 25, column 6, if its activity is increased by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in 10 plastids, and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. The nucleotide sequences determined from the cloning of the present protein-according-to-the-invention-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning its homologues in other cell types and organisms. The probe/primer 15 typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 15 preferably about 20 or 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth, e.g., in table I, application no. 25, columns 5 and 7, an anti-sense sequence of one of the se 20 quences, e.g., set forth in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7, or naturally occurring mutants thereof. Primers based on a nucleotide of invention can be used in PCR reactions to clone homologues of the polypeptide of the invention or of the polypeptide used in the process of the invention, e.g. as the primers described in the examples of the present 25 invention, e.g. as shown in the examples. A PCR with the primers shown in table III, application no. 25, column 7 will result in a fragment of the gene product as shown in table II, column 3. [0164.0.0.24] for the disclosure of this paragraph see paragraph [0164.0.0.0] above. [0165.0.24.24]The nucleic acid molecule of the invention encodes a polypeptide or 30 portion thereof which includes an amino acid sequence which is sufficiently homolo gous to the amino acid sequence shown in table II, application no. 25, columns 5 and 7 such that the protein or portion thereof maintains the ability to participate in the fine chemical production, in particular an activity increasing the level of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, resp., increas- 1683 ing the activity as mentioned above or as described in the examples in plants or micro organisms is comprised. [0166.0.24.24]As used herein, the language "sufficiently homologous" refers to pro teins or portions thereof which have amino acid sequences which include a minimum 5 number of identical or equivalent amino acid residues (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one of the sequences of the polypeptide of the present invention) to an amino acid sequence shown in table II, ap plication no. 25, columns 5 and 7 such that the protein or portion thereof is able to par ticipate in the increase of the fine chemical production. For examples having the activity 10 of a protein as shown in table II, column 3 and as described herein. [0167.0.24.24]In one embodiment, the nucleic acid molecule of the present invention comprises a nucleic acid that encodes a portion of the protein of the present invention. The protein is at least about 30%, 35%, 40%, 45% or 50%, preferably at least about 55%, 60%, 65% or 70%, and more preferably at least about 75%, 80%, 85%, 90%, 15 91%, 92%, 93% or 94% and most preferably at least about 95%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of table II, application no. 25, columns 5 and 7 and having above-mentioned activity, e.g.conferring preferably the increase of the respective fine chemical by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably in plastids, and 20 the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. [0168.0.0.24] and [0169.0.0.24] for the disclosure of the paragraphs [0168.0.0.24] and [0169.0.0.24] see paragraphs [0168.0.0.0] and [0169.0.0.0] above. [0170.0.24.24]The invention further relates to nucleic acid molecules that differ from 25 one of the nucleotide sequences shown in table I, application no. 25, columns 5 and 7 (and portions thereof) due to degeneracy of the genetic code and thus encode a poly peptide of the present invention, in particular a polypeptide having above mentioned activity, e.g. conferring an increase in the respective fine chemical in a organism, e.g. as that polypeptides depicted by the sequence shown in table II, application no. 25, 30 columns 5 and 7 or the functional homologues. Advantageously, the nucleic acid mole cule of the invention comprises, or in an other embodiment has, a nucleotide sequence encoding a protein comprising, or in an other embodiment having, an amino acid se quence shown in table II, application no. 25, columns 5 and 7 or the functional homo logues. In a still further embodiment, the nucleic acid molecule of the invention en- 1684 codes a full length protein which is substantially homologous to an amino acid se quence shown in table 1l, application no. 25, columns 5 and 7 or the functional homo logues. However, in a preferred embodiment, the nucleic acid molecule of the present invention does not consist of the sequence shown in table 1, application no. 25, 5 columns 5 and 7, preferably as indicated in table I A, application no. 25, columns 5 and 7. Preferably the nucleic acid molecule of the invention is a functional homologue or identical to a nucleic acid molecule indicated in table I B, application no. 25, columns 5 and 7. [0171.0.0.24] to [0173.0.0.24] for the disclosure of the paragraphs [0171.0.0.24] to 10 [0173.0.0.24] see paragraphs [0171.0.0.0] to [0173.0.0.0] above. [0174.0.24.24]Accordingly, in another embodiment, a nucleic acid molecule of the in vention is at least 15, 20, 25 or 30 nucleotides in length. Preferably, it hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the nucleic acid molecule of the present invention or used in the process of the present 15 invention, e.g. comprising the sequence shown in table 1, application no. 25, columns 5 and 7. The nucleic acid molecule is preferably at least 20, 30, 50, 100, 250 or more nucleotides in length. [0175.0.0.24] for the disclosure of this paragraph see paragraph [0175.0.0.0] above. [0176.0.24.24]Preferably, nucleic acid molecule of the invention that hybridizes under 20 stringent conditions to a sequence shown in table 1, application no. 25, columns 5 and 7 corresponds to a naturally-occurring nucleic acid molecule of the invention. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). Preferably, the nucleic acid molecule encodes a natural protein having above 25 mentioned activity, e.g. conferring the respective fine chemical increase after increas ing the expression or activity thereof or the activity of a protein of the invention or used in the process of the invention by for example expression the nucleic acid sequence of the gene product in the cytsol and/or in an organelle such as a plastid or mitochondria, preferably in plastids. 30 [0177.0.0.24] for the disclosure of this paragraph see paragraph [0177.0.0.0] above. [0178.0.24.24]For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of the nucleic acid 1685 molecule of the invention or used in the process of the invention, e.g. shown in table I, application no. 25, columns 5 and 7. [0179.0.0.24] and [0180.0.0.24] for the disclosure of the paragraphs [0179.0.0.24] and [0180.0.0.24] see paragraphs [0179.0.0.0] and [0180.0.0.0] above. 5 [0181.0.24.24]Accordingly, the invention relates to nucleic acid molecules encoding a polypeptide having above-mentioned activity, e.g. conferring an increase in the the respective fine chemical in an organisms or parts thereof by for example expression either in the cytsol or in an organelle such as a plastid or mitochondria or both, prefera bly in plastids (as described), that contain changes in amino acid residues that are not 10 essential for said activity. Such polypeptides differ in amino acid sequence from a se quence contained in the sequences shown in table II, application no. 25, columns 5 and 7, preferably shown in table II A, application no. 25, columns 5 and 7 yet retain said activity described herein. The nucleic acid molecule can comprise a nucleotide sequence encoding a polypeptide, wherein the polypeptide comprises an amino acid 15 sequence at least about 50% identical to an amino acid sequence shown in table II, application no. 25, columns 5 and 7, preferably shown in table II A, application no. 25, columns 5 and 7 and is capable of participation in the increase of production of the fine chemical after increasing its activity, e.g. its expression by for example expression ei ther in the cytsol or in an organelle such as a plastid or mitochondria or both, preferably 20 in plastids and the gene product, e.g. the polypeptide, being localized in the plastid and other parts of the cell or in the plastid as described above. Preferably, the protein en coded by the nucleic acid molecule is at least about 60% identical to the sequence shown in table II, application no. 25, columns 5 and 7, preferably shown in table II A, application no. 25, columns 5 and 7, more preferably at least about 70% identical to 25 one of the sequences shown in table II, application no. 25, columns 5 and 7, preferably shown in table II A, application no. 25, columns 5 and 7, even more preferably at least about 80%, 90%, 95% homologous to the sequence shown in table II, application no. 25, columns 5 and 7, preferably shown in table II A, application no. 25, columns 5 and 7, and most preferably at least about 96%, 97%, 98%, or 99% identical to the se 30 quence shown in table II, application no. 25, columns 5 and 7, preferably shown in ta ble II A, application no. 25, columns 5 and 7. [0182.0.0.24] to [0188.0.0.24] for the disclosure of the paragraphs [0182.0.0.24] to [0188.0.0.24] see paragraphs [0182.0.0.0] to [0188.0.0.0] above.
1686 [0189.0.24.24]Functional equivalents derived from one of the polypeptides as shown in table II, application no. 10, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7 resp., according to the invention by substitution, insertion or deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 5 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 25, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7 resp., ac cording to the invention and are distinguished by essentially the same properties as the 10 polypeptide as shown in table II, application no. 25, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7. [0190.0.24.24] Functional equivalents derived from the nucleic acid sequence as shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7 resp., according to the invention by substitution, insertion or 15 deletion have at least 30%, 35%, 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70% by preference at least 80%, especially preferably at least 85% or 90%, 91%, 92%, 93% or 94%, very especially preferably at least 95%, 97%, 98% or 99% homology with one of the polypeptides as shown in table II, application no. 25, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7 resp., ac 20 cording to the invention and encode polypeptides having essentially the same proper ties as the polypeptide as shown in table II, application no. 25, columns 5 and 7, pref erably shown in table II B, application no. 25, columns 5 and 7. [0191.0.0.24] for the disclosure of this paragraph see paragraph [0191.0.0.0] above. [0192.0.24.24]A nucleic acid molecule encoding an homologous to a protein sequence 25 of table II, application no. 25, columns 5 and 7, preferably shown in table II B, applica tion no. 25, columns 5 and 7 resp., can be created by introducing one or more nucleo tide substitutions, additions or deletions into a nucleotide sequence of the nucleic acid molecule of the present invention, in particular of table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7 resp., such 30 that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the encoding sequences of table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7 resp., by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
1687 [0193.0.0.24] to [0196.0.0.24] for the disclosure of the paragraphs [0193.0.0.24] to [0196.0.0.24] see paragraphs [0193.0.0.0] to [0196.0.0.0] above. [0197.0.24.24] Homologues of the nucleic acid sequences used, with the sequence shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, 5 application no. 25, columns 5 and 7, comprise also allelic variants with at least ap proximately 30%, 35%, 40% or 45% homology, by preference at least approximately 50%, 60% or 70%, more preferably at least approximately 90%, 91%, 92%, 93%, 94% or 95% and even more preferably at least approximately 96%, 97%, 98%, 99% or more homology with one of the nucleotide sequences shown or the abovementioned derived 10 nucleic acid sequences or their homologues, derivatives or analogues or parts of these. Allelic variants encompass in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from the sequences shown, preferably from table I, application no. 25, columns 5 and 7, preferably shown in table I B, applica tion no. 25, columns 5 and 7, or from the derived nucleic acid sequences, the intention 15 being, however, that the enzyme activity or the biological activity of the resulting pro teins synthesized is advantageously retained or increased. [0198.0.24.24]In one embodiment of the present invention, the nucleic acid molecule of the invention or used in the process of the invention comprises the sequences shown in any of the table I, application no. 25, columns 5 and 7, preferably shown in table I B, 20 application no. 25, columns 5 and 7. It is preferred that the nucleic acid molecule com prises as little as possible other nucleotides not shown in any one of table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7. In one embodiment, the nucleic acid molecule comprises less than 500, 400, 300, 200, 100, 90, 80, 70, 60, 50 or 40 further nucleotides. In a further embodiment, the 25 nucleic acid molecule comprises less than 30, 20 or 10 further nucleotides. In one em bodiment, the nucleic acid molecule use in the process of the invention is identical to the sequences shown in table I, application no. 25, columns 5 and 7, preferably shown in table I B, application no. 25, columns 5 and 7. [0199.0.24.24]Also preferred is that the nucleic acid molecule used in the process of 30 the invention encodes a polypeptide comprising the sequence shown in table II, appli cation no. 25, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7. In one embodiment, the nucleic acid molecule encodes less than 150, 130, 100, 80, 60, 50, 40 or 30 further amino acids. In a further embodiment, the encoded polypeptide comprises less than 20, 15, 10, 9, 8, 7, 6 or 5 further amino acids. 35 In one embodiment used in the inventive process, the encoded polypeptide is identical 1688 to the sequences shown in table II, application no. 25, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7. [0200.0.24.24]In one embodiment, the nucleic acid molecule of the invention or used in the process encodes a polypeptide comprising the sequence shown in table II, applica 5 tion no. 25, columns 5 and 7, preferably shown in table II B, application no. 25, columns 5 and 7 comprises less than 100 further nucleotides. In a further embodiment, said nucleic acid molecule comprises less than 30 further nucleotides. In one embodi ment, the nucleic acid molecule used in the process is identical to a coding sequence of the sequences shown in table I, application no. 25, columns 5 and 7, preferably 10 shown in table I B, application no. 25, columns 5 and 7. [0201.0.24.24]Polypeptides (= proteins), which still have the essential biological or en zymatic activity of the polypeptide of the present invention conferring an increase of the respective fine chemical indicated in column 6 of Table I, application no. 25, i.e. whose activity is essentially not reduced, are polypeptides with at least 10% or 20%, by pref 15 erence 30% or 40%, especially preferably 50% or 60%, very especially preferably 80% or 90 or more of the wild type biological activity or enzyme activity, advantageously, the activity is essentially not reduced in comparison with the activity of a polypeptide shown in table II, application no. 25, columns 5 and 7 expressed under identical conditions. [0202.0.24.24]Homologues of table I, application no. 25, columns 5 and 7 or of the 20 derived sequences of table II, application no. 25, columns 5 and 7 also mean truncated sequences, cDNA, single-stranded DNA or RNA of the coding and noncoding DNA sequence. Homologues of said sequences are also understood as meaning deriva tives, which comprise noncoding regions such as, for example, UTRs, terminators, en hancers or promoter variants. The promoters upstream of the nucleotide sequences 25 stated can be modified by one or more nucleotide substitution(s), insertion(s) and/or deletion(s) without, however, interfering with the functionality or activity either of the promoters, the open reading frame (= ORF) or with the 3'-regulatory region such as terminators or other 3'regulatory regions, which are far away from the ORF. It is fur thermore possible that the activity of the promoters is increased by modification of their 30 sequence, or that they are replaced completely by more active promoters, even pro moters from heterologous organisms. Appropriate promoters are known to the person skilled in the art and are mentioned herein below. [0203.0.0.24] to [0215.0.0.24] for the disclosure of the paragraphs [0203.0.0.24] to [0215.0.0.24] see paragraphs [0203.0.0.0] to [0215.0.0.0] above.
1689 [0216.0.24.24]Accordingly, in one embodiment, the invention relates to a nucleic acid molecule, which comprises a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding, preferably at least the mature form, of the poly 5 peptide shown in table II, application no. 25, columns 5 and 7, preferably in table II B, application no. 25, columns 5 and 7; or a fragment thereof conferring an in crease in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof b) nucleic acid molecule comprising, preferably at least the mature form, of the nu 10 cleic acid molecule shown in table I, application no. 25, columns 5 and 7, pref erably in table I B, application no. 25, columns 5 and 7 or a fragment thereof con ferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; c) nucleic acid molecule whose sequence can be deduced from a polypeptide se 15 quence encoded by a nucleic acid molecule of (a) or (b) as result of the degener acy of the genetic code and conferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; d) nucleic acid molecule encoding a polypeptide whose sequence has at least 50% 20 identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) 25 under under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; f) nucleic acid molecule encoding a polypeptide, the polypeptide being derived by substituting, deleting and/or adding one or more amino acids of the amino acid 30 sequence of the polypeptide encoded by the nucleic acid molecules (a) to (d), preferably to (a) to (c), and conferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; 1690 g) nucleic acid molecule encoding a fragment or an epitope of a polypeptide which is encoded by one of the nucleic acid molecules of (a) to (e), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical according to ta ble II B, application no. 25, column 6 in an organism or a part thereof ; 5 h) nucleic acid molecule comprising a nucleic acid molecule which is obtained by amplifying a cDNA library or a genomic library using the primers in table III, appli cation no. 25, column 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; 10 i) nucleic acid molecule encoding a polypeptide which is isolated, e.g. from a ex pression library, with the aid of monoclonal antibodies against a polypeptide en coded by one of the nucleic acid molecules of (a) to (g), preferably to (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 15 j) nucleic acid molecule which encodes a polypeptide comprising the consensus sequence shown in table IV, application no. 25, column 7 and conferring an in crease in the amount of the fine chemical in an organism or a part thereof; k) nucleic acid molecule encoding the amino acid sequence of a polypeptide encod ing a domaine of the polypeptide shown in table II, application no. 252, columns 5 20 and 7 and conferring an increase in the amount of the fine chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; and I) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (k) or with a fragment of at least 25 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) or of the nucleic acid molecule shown in table I, application no. 25, columns 5 and 7 or a nucleic acid molecule encoding, pref erably at least the mature form of, the polypeptide shown in table II, application no. 25, columns 5 and 7, and conferring an increase in the amount of the fine 30 chemical according to table II B, application no. 25, column 6 in an organism or a part thereof; or which encompasses a sequence which is complementary thereto; whereby, preferably, the nucleic acid molecule according to (a) to (1) distinguishes over the sequence depicted in table I A and/or I B, application no. 25, columns 5 and 7 by 1691 one or more nucleotides. In one embodiment, the nucleic acid molecule of the invention does not consist of the sequence shown in table I A and/or I B, application no. 25, columns 5 and 7. In an other embodiment, the nucleic acid molecule of the present invention is at least 30 % identical and less than 100%, 99,999%, 99,99%, 99,9% or 5 99% identical to the sequence shown in table I A and/or I B, application no. 25, columns 5 and 7. In a further embodiment the nucleic acid molecule does not encode the polypeptide sequence shown in table II A and/or II B, application no. 25, columns 5 and 7. Accordingly, in one embodiment, the nucleic acid molecule of the present inven tion encodes in one embodiment a polypeptide which differs at least in one or more 10 amino acids from the polypeptide shown in table II A and/or II B, application no. 252, columns 5 and 7 does not encode a protein of the sequence shown in table II A and/or II B, application no. 25, columns 5 and 7. Accordingly, in one embodiment, the protein encoded by a sequence of a nucleic acid accoriding to (a) to (1) does not consist of the sequence shown in table I A and/or I B, application no. 25, columns 5 and 7. In a fur 15 ther embodiment, the protein of the present invention is at least 30 % identical to pro tein sequence depicted in table II A and/or II B, application no. 25, columns 5 and 7 and less than 100%, preferably less than 99,999%, 99,99% or 99,9%, more preferably less than 99%, 985, 97%, 96% or 95% identical to the sequence shown in table II A and/or II B, application no. 25, columns 5 and 7. 20 [0217.0.0.24] to [0226.0.0.24] for the disclosure of the paragraphs [0217.0.0.24] to [0226.0.0.24] see paragraphs [0217.0.0.0] to [0226.0.0.0] above. [0227.0.24.24]In general, vector systems preferably also comprise further cis regulatory regions such as promoters and terminators and/or selection markers by means of which suitably transformed organisms can be identified. While vir genes and 25 T-DNA sequences are located on the same vector in the case of cointegrated vector systems, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and capable of replication in E. coli and in Agrobacterium. These binary vectors include vectors from 30 the series pBIB-HYG, pPZP, pBecks, pGreen. Those which are preferably used in ac cordance with the invention are Bin1 9, pBI1 01, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is given by Hellens et al, Trends in Plant Sci ence (2000) 5, 446-451. The vectors are preferably modified in such a manner, that they already contain the nucleic acid coding for the transitpeptide and that the nuleic 35 acids of the invention, preferentially the nucleic acid sequences encoding the polypep- 1692 tides shown in table II, application no. 25, columns 5 and 7 can be cloned 3'prime to the transitpeptide encoding sequence, leading to a functional preprotein, which is di rected to the plastids and which means that the mature protein fulfills its biological ac tivity. 5 [0228.0.0.24] to [0239.0.0.24] for the disclosure of the paragraphs [0228.0.0.24] to [0239.0.0.24] see paragraphs [0228.0.0.0] to [0239.0.0.0] above. [0240.0.24.24] The abovementioned nucleic acid molecules can be cloned into the nucleic acid constructs or vectors according to the invention in combination together with further genes, or else different genes are introduced by transforming several nu 10 cleic acid constructs or vectors (including plasmids) into a host cell, advantageously into a plant cell or a microorgansims. In addition to the sequence mentioned in Table I, application no. 25, columns 5 and 7 or its derivatives, it is advantageous additionally to express and/or mutate further genes in the organisms. Especially advantageously, additionally at least one further gene of 15 the isoprenoid or carotene biosynthetic pathway such as for a carotenoid precursor, , is expressed in the organisms such as plants or microorganisms. It is also possible that the regulation of the natural genes has been modified advantageously so that the gene and/or its gene product is no longer subject to the regulatory mechanisms which exist in the organisms. This leads to an increased synthesis of the amino acids desired 20 since, for example, feedback regulations no longer exist to the same extent or not at all. In addition it might be advantageously to combine the sequences shown in Table I, application no. 25, columns 5 and 7 with genes which generally support or enhances to growth or yield of the target organismen, for example genes which lead to faster growth rate of microorganisms or genes which produces stress-, pathogen, or herbicide resis 25 tant plants. [0241.0.24.24]In a further embodiment of the process of the invention, therefore, or ganisms are grown, in which there is simultaneous overexpression of at least one nu cleic acid or one of the genes which code for proteins involved in the isoprenoid or beta-carotene metabolism, in particular in synthesis of carotenoids, e.g. beta-carotene 30 or its/their precursor, e.g. isopentyl pyrophosphate (IPP),. [0242.0.24.24] Further advantageous nucleic acid sequences which can be ex pressed in combination with the sequences used in the process and/or the abovemen tioned biosynthesis genes are the sequences encoding further genes of the beta- 1693 carotene biosynthetic pathway, such as the Isopentenyl diphosphate isomerase, Geranylgeranyl diphosphate synthase, Phytoene synthase, Phytoene desaturase, zeta Carotene desaturase, beta-Cyclase, beta-Hydroxylase and others. These genes can lead to an increased synthesis of the carotenoids, e.g. beta-carotene or its/their precur 5 sor, e.g. isopentyl pyrophosphate (IPP),, in particular, of the fine chemical indicated in column 6 of any one of Tables I to IV. [0242.1.24.24]In a further advantageous embodiment of the process of the invention, the organisms used in the process are those in which simultaneously a carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), degrading 10 protein is attenuated, in particular by reducing the rate of expression of the correspond ing gene. [0242.2.24.24]The respective fine chemical produced can be isolated from the organ ism by methods with which the skilled worker is familiar. For example, via extraction, salt precipitation, and/or different chromatography methods. The process according to 15 the invention can be conducted batchwise, semibatchwise or continuously. The respec tive fine chemcical produced by this process can be obtained by harvesting the organ isms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts. [0243.0.0.24] to [0264.0.0.24] for the disclosure of the paragraphs 20 [0243.0.0.24] to [0264.0.0.24] see paragraphs [0243.0.0.0] to [0264.0.0.0] above. [0265.0.24.24]Other preferred sequences for use in operable linkage in gene expres sion constructs are targeting sequences, which are required for targeting the gene product into specific cell compartments (for a review, see Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, 25 the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, elaioplasts, perox isomes, glycosomes, and other compartments of cells or extracellular preferred are sequences, which are involved in targeting to plastids as mentioned above. Se quences, which must be mentioned in this context are, in particular, the signal-peptide 30 or transit-peptide-encoding sequences which are known per se. For example, plastid transit-peptide-encoding sequences enable the targeting of the expression product into the plastids of a plant cell. Targeting sequences are also known for eukaryotic and to a lower extent for prokaryotic organisms and can advantageously be operable linked with the nucleic acid molecule of the present invention as shown in table 1, application no.
1694 25, columns 5 and 7 and described herein to achieve an expression in one of said compartments or extracellular. [0266.0.0.24] to [0287.0.0.24] for the disclosure of the paragraphs [0266.0.0.24] to [0287.0.0.24] see paragraphs [0266.0.0.0] to [0287.0.0.0] above. 5 [0288.0.24.24]Accordingly, one embodiment of the invention relates to a vector where the nucleic acid molecule according to the invention is linked operably to regulatory sequences which permit the expression in a prokaryotic or eukaryotic or in a prokary otic and eukaryotic host. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in 10 table II, application no. 25, columns 5 and 7 or their homologs is functionally linked to a plastidial targeting sequence. A further preferred embodiment of the invention relates to a vector in which a nucleic acid sequence encoding one of the polypeptides shown in table II, application no. 25, columns 5 and 7 or their homologs is functionally linked to a regulatory sequences which permit the expression in plastids. 15 [0289.0.0.24] to [0296.0.0.24] for the disclosure of the paragraphs [0289.0.0.24] to [0296.0.0.24] see paragraphs [0289.0.0.0] to [0296.0.0.0] above. [0297.0.24.24] Moreover, a native polypeptide conferring the increase of the respec tive fine chemical in an organism or part thereof can be isolated from cells (e.g., endo thelial cells), for example using the antibody of the present invention as described 20 herein, in particular, an antibody against polypeptides as shown in table II, application no. 25, columns 5 and 7, which can be produced by standard techniques utilizing the polypeptid of the present invention or fragment thereof, i.e., the polypeptide of this in vention. Preferred are monoclonal antibodies. [0298.0.0.24] for the disclosure of this paragraph see paragraph [0298.0.0.0] above. 25 [0299.0.24.24]In one embodiment, the present invention relates to a polypeptide hav ing the sequence shown in table II, application no. 25, columns 5 and 7 or as coded by the nucleic acid molecule shown in table I, application no. 25, columns 5 and 7 or func tional homologues thereof. [0300.0.24.24]In one advantageous embodiment, in the method of the present inven 30 tion the activity of a polypeptide is increased comprising or consisting of the consensus sequence shown in table IV, application no. 25, columns 7 and in one another em bodiment, the present invention relates to a polypeptide comprising or consisting of the 1695 consensus sequence shown in table IV, application no. 25, column 7 whereby 20 or less, preferably 15 or 10, preferably 9, 8, 7, or 6, more preferred 5 or 4, even more pre ferred 3, even more preferred 2, even more preferred 1, most preferred 0 of the amino acids positions indicated can be replaced by any amino acid. 5 [0301.0.0.24] to [0304.0.0.24] for the disclosure of the paragraphs [0301.0.0.24] to [0304.0.0.24] see paragraphs [0301.0.0.0] to [0304.0.0.0] above. [0305.0.24.24]In one advantageous embodiment, the method of the present invention comprises the increasing of a polypeptide comprising or consisting of plant or microor ganism specific consensus sequences. 10 In one embodiment, said polypeptide of the invention distinguishes over the sequence shown in table II A and/or II B, application no. 25, columns 5 and 7 by one or more amino acids. In one embodiment, polypeptide distinguishes form the sequence shown in table II A and/or II B, application no. 25, columns 5 and 7 by more than 5, 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore pre 15 ferred are more than 40, 50, or 60 amino acids and, preferably, the sequence of the polypeptide of the invention distinguishes from the sequence shown in table II A and/or II B, application no. 25, columns 5 and 7 by not more than 80% or 70% of the amino acids, preferably not more than 60% or 50%, more preferred not more than 40% or 30%, even more preferred not more than 20% or 10%. In an other embodiment, said 20 polypeptide of the invention does not consist of the sequence shown in table II A and/or II B, application no. 25, columns 5 and 7. [0306.0.0.24] for the disclosure of this paragraph see paragraph [0306.0.0.0] above. [0307.0.24.24]In one embodiment, the invention relates to polypeptide conferring an increase of level of the respective fine chemical indicated in Table II A and/or II B, ap 25 plication no. 25, column 6 in an organism or part being encoded by the nucleic acid molecule of the invention or used in the process of the invention and having a se quence which distinguishes from the sequence as shown in table II A and/or II B, appli cation no. 25, columns 5 and 7 by one or more amino acids. In another embodiment, said polypeptide of the invention does not consist of the sequence shown in table II A 30 and/or II B, application no. 25, columns 5 and 7. In a further embodiment, said polypep tide of the present invention is less than 100%, 99,999%, 99,99%, 99,9% or 99% iden tical. In one embodiment, said polypeptide does not consist of the sequence encoded by the nucleic acid molecules shown in table I A and/or I B, application no. 25, columns 5 and 7.
1696 [0308.0.24.24]In one embodiment, the present invention relates to a polypeptide hav ing the activity of the protein as shown in table II A and/or II B, application no. 25, col umn 3, which distinguishes over the sequence depicted in table II A and/or II B, appli cation no. 25, columns 5 and 7 by one or more amino acids, preferably by more than 5, 5 6, 7, 8 or 9 amino acids, preferably by more than 10, 15, 20, 25 or 30 amino acids, evenmore preferred are more than 40, 50, or 60 amino acids but even more preferred by less than 70% of the amino acids, more preferred by less than 50%, even more pre ferred my less than 30% or 25%, more preferred are 20% or 15%, even more preferred are less than 10%. In a further preferred embodiment the polypeptide of the invention 10 takes the form of a preprotein consisting of a plastidial transitpeptide joint to a polypep tide having the activity of the protein as shown in table II A and/or II B, column 3, from which the transitpeptide is preferably cleaved off upon transport of the preprotein into the organelle, for example into the plastid or mitochondria. [0309.0.0.24] to [0311.0.0.24] for the disclosure of the paragraphs [0309.0.0.24] to 15 [0311.0.0.24] see paragraphs [0309.0.0.0] to [0311.0.0.0] above. [0312.0.24.24]A polypeptide of the invention can participate in the process of the pre sent invention. The polypeptide or a portion thereof comprises preferably an amino acid sequence, which is sufficiently homologous to an amino acid sequence shown in table II, application no. 25, columns 5 and 7. 20 [0313.0.24.24] Further, the polypeptide can have an amino acid sequence which is en coded by a nucleotide sequence which hybridizes, preferably hybridizes under strin gent conditions as described above, to a nucleotide sequence of the nucleic acid mole cule of the present invention. Accordingly, the polypeptide has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 35%, 40%, 45%, 25 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid se quences as shown in table II A and/or II B, application no. 25, columns 5 and 7. The preferred polypeptide of the present invention preferably possesses at least one of the 30 activities according to the invention and described herein. A preferred polypeptide of the present invention includes an amino acid sequence encoded by a nucleotide se quence which hybridizes, preferably hybridizes under stringent conditions, to a nucleo tide sequence of table I A and/or I B, application no. 25, columns 5 and 7 or which is homologous thereto, as defined above.
1697 [0314.0.24.24]Accordingly the polypeptide of the present invention can vary from the sequences shown in table II A and/or II B, application no. 25, columns 5 and 7 in amino acid sequence due to natural variation or mutagenesis, as described in detail herein. Accordingly, the polypeptide comprise an amino acid sequence which is at least about 5 35%, 40%, 45%, 50%, 55%, 60%, 65% or 70%, preferably at least about 75%, 80%, 85% or 90, and more preferably at least about 91%, 92%, 93%, 94% or 95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in table II A and/or II B, application no. 25, columns 5 and 7. [0315.0.0.24] for the disclosure of this paragraph see paragraph [0315.0.0.0] above. 10 [0316.0.24.24]Biologically active portions of an polypeptide of the present invention include peptides comprising amino acid sequences derived from the amino acid se quence of the polypeptide of the present invention or used in the process of the present invention, e.g., the amino acid sequence shown in table II, application no. 25, columns 5 and 7 or the amino acid sequence of a protein homologous thereto, which include 15 fewer amino acids than a full length polypeptide of the present invention or used in the process of the present invention or the full length protein which is homologous to an polypeptide of the present invention or used in the process of the present invention depicted herein, and exhibit at least one activity of polypeptide of the present invention or used in the process of the present invention. 20 [0317.0.0.24] for the disclosure of this paragraph see paragraph [0317.0.0.0] above. [0318.0.24.24]Manipulation of the nucleic acid molecule of the invention may result in the production of a protein having differences from the wild-type protein as shown in table II, application no. 25, column 3. Differences shall mean at least one amino acid different from the sequences as shown in table II, application no. 25, column 3, pref 25 erably at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids, more preferably at least 15, 20, 25, 30, 35, 40, 45 or 50 amino acids different from the sequences as shown in table II, application no. 25, column 3. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity in relation to the wild type protein. 30 [0319.0.24.24]Any mutagenesis strategies for the polypeptide of the present invention or the polypeptide used in the process of the present invention to result in increasing said activity are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incorporating the mecha- 1698 nisms disclosed herein, the nucleic acid molecule and polypeptide of the invention may be utilized to generate plants or parts thereof, expressing wildtype proteins or mutated proteins of the proteins as shown in table II, application no. 25, column 3. The nucleic acid molecules and polypeptide molecules of the invention are expressed such that the 5 yield, production, and/or efficiency of production of a desired compound is improved. [0319.1.24.24] Preferably, the compound is a composition comprising the essentially pure fine chemical, i.e. carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, respectively or a recovered or isolated carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, respec 10 tively, e.g. in free or in protein- or membrane-bound form. [0320.0.0.24] to [0322.0.0.24] for the disclosure of the paragraphs [0320.0.0.24] to [0322.0.0.24] see paragraphs [0320.0.0.0] to [0322.0.0.0] above. [0323.0.24.24]In one embodiment, a protein (= polypeptide) as shown in table II, appli cation no. 25, column 3 refers to a polypeptide having an amino acid sequence corre 15 sponding to the polypeptide of the invention or used in the process of the invention, whereas a "non- inventive protein or polypeptide" or "other polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to a polypeptide of the invention, preferably which is not sub stantially homologous to a polypeptide or protein as shown in table II, application no. 20 25, column 3, e.g., a protein which does not confer the activity described herein and which is derived from the same or a different organism. [0324.0.0.24] to [0329.0.0.24] for the disclosure of the paragraphs [0324.0.0.24] to [0329.0.0.24] see paragraphs [0324.0.0.0] to [0329.0.0.0] above. [0330.0.24.24]In an especially preferred embodiment, the polypeptide according to the 25 invention furthermore also does not have the sequences of those proteins, which are encoded by the sequences shown in table II, application no. 25, columns 5 and 7. [0331.0.0.24] to [0346.0.0.24] for the disclosure of the paragraphs [0331.0.0.24] to [0346.0.0.24] see paragraphs [0331.0.0.0] to [0346.0.0.0] above. [0347.0.24.24]Accordingly the present invention relates to any cell transgenic for any 30 nucleic acid characterized as part of the invention, e.g. conferring the increase of the respective fine chemical indicated in column 6 of application no. 25 in any one of Tal bes I to IV in a cell or an organism or a part thereof, e.g. the nucleic acid molecule of 1699 the invention, the nucleic acid construct of the invention, the antisense molecule of the invention, the vector of the invention or a nucleic acid molecule encoding the polypep tide of the invention, e.g. encoding a polypeptide having an activity as the protein as shown in table II, application no. 25, column 3. Due to the above mentioned activity the 5 respective fine chemical content in a cell or an organism is increased. For example, due to modulation or manupulation, the cellular activity is increased preferably in or ganelles such as plastids or mitochondria, e.g. due to an increased expression or spe cific activity or specific targeting of the subject matters of the invention in a cell or an organism or a part thereof especially in organelles such as plastids or mitochondria. 10 Transgenic for a polypeptide having a protein or activity means herein that due to modulation or manipulation of the genome, the activity of protein as shown in table II, application no. 25, column 3 or a protein as shown in table II, application no. 25, col umn 3-like activity is increased in the cell or organism or part thereof especially in or ganelles such as plastids or mitochondria. Examples are described above in context 15 with the process of the invention. [0348.0.0.24] for the disclosure of this paragraph see paragraph [0348.0.0.0] above. [0349.0.24.24]A naturally occurring expression cassette - for example the naturally occurring combination of the promoter of the gene encoding a protein as shown in table II, application no. 25, column 3 with the corresponding encoding gene - becomes a 20 transgenic expression cassette when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815; also see above). [0350.0.0.24] to [0358.0.0.24] for the disclosure of the paragraphs [0350.0.0.24] to [0358.0.0.24] see paragraphs [0350.0.0.0] to [0358.0.0.0] above. 25 [0359.0.24.24]Transgenic plants comprising the respective fine chemical synthesized in the process according to the invention can be marketed directly without isolation of the compounds synthesized. In the process according to the invention, plants are un derstood as meaning all plant parts, plant organs such as leaf, stalk, root, tubers or seeds or propagation material or harvested material or the intact plant. In this context, 30 the seed encompasses all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. The respective fine chemical indicated in column 6 of any one of Tables I to IV, application no. 25, e.g. carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),., and being pro duced in the process according to the invention may, however, also be isolated from 1700 the plant and can be isolated by harvesting the plants either from the culture in which they grow or from the field. This can be done for example via expressing, grinding and/or extraction of the plant parts, preferably the plant seeds, plant fruits, plant tubers and the like. 5 [0360.0.0.24] to [0362.0.0.24] for the disclosure of the paragraphs [0360.0.0.24] to [0362.0.0.24] see paragraphs [0360.0.0.0] to [0362.0.0.0] above. [0363.0.0.24] In this manner, more than 50% by weight, advantageously more than 60% by weight, preferably more than 70% by weight, especially preferably more than 80% by weight, very especially preferably more than 90% by weight, of the respective 10 fine chemical produced in the process can be isolated. The resulting composition or fraction comprising the respective fine chemical can, if appropriate, subsequently be further purified, if desired mixed with other active ingredients such as fatty acids, vita mins, amino acids, carbohydrates, antibiotics, covitamins, antioxidants, carotenoids, and the like, and, if appropriate, formulated. 15 [0364.0.0.24] In one embodiment, the composition is the fine chemical. [0365.024.24] The fine chemical indicated in column 6 of application no. 25 in Table 1, in particular carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro phosphate (IPP),., and being obtained in the process of the invention are suitable as starting material for the synthesis of further products of value. For example, they can 20 be used in combination with each other or alone for the production of pharmaceuticals, foodstuffs, animal feeds or cosmetics. Accordingly, the present invention relates a method for the production of pharmaceuticals, food stuff, animal feeds, nutrients or cosmetics comprising the steps of the process according to the invention, including the isolation of a composition comprising the fine chemical, e.g. carotenoids, e.g. beta 25 carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, or the isolated re spective fine chemical produced, if desired, and formulating the product with a phar maceutical acceptable carrier or formulating the product in a form acceptable for an application in agriculture. A further embodiment according to the invention is the use of the respective fine chemical indicated in application no. 25, Table 1, column 6, and be 30 ing produced in the process or the use of the transgenic organisms in animal feeds, foodstuffs, medicines, food supplements, cosmetics or pharmaceuticals. [0366.0.0.24] to [0369.0.0.24] for the disclosure of the paragraphs [0366.0.0.24] to [0369.0.0.24] see paragraphs [0366.0.0.0] to [0369.0.0.0] above.
1701 [0370.0.24.24]The fermentation broths obtained in this way, containing in particular the respective fine chemical indicated in column 6 of any one of Tables I to IV; application no. 25 or containig mixtures with other compounds, in particular with other vitamins or e.g. with carotenoids, e.g. with astaxanthin, or fatty acids or containing microorganisms 5 or parts of microorganisms, like plastids, , normally have a dry matter content of from 7.5 to 25% by weight. The fermentation broth can be processed further. Depending on requirements, the biomass can be separated, such as, for example, by centrifugation, filtration, decantation coagulation/flocculation or a combination of these methods, from the fermentation broth or left completely in it. The fermentation broth can be thickened 10 or concentrated by known methods, such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling film evaporator, by reverse osmosis or by nano filtration. This concentrated fermentation broth can then be worked up by extraction, freeze-drying, spray drying, spray granulation or by other processes. [0371.0.24.24]As carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl 15 pyrophosphate (IPP), is often localized in membranes or plastids, in one embodiment it is advantageous to avoid a leaching of the cells when the biomass is isolated entirely or partly by separation methods, such as, for example, centrifugation, filtration, decan tation, coagulation/flocculation or a combination of these methods, from the fermenta tion broth. The dry biomass can directly be added to animal feed, provided the carote 20 noids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), concentration is sufficiently high and no toxic compounds are present. In view of the instability of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyro phosphate (IPP),, conditions for drying, e.g. spray or flash-drying, can be mild and can be avoiding oxidation and cis/trans isomerization. For example antioxidants, e.g. BHT, 25 ethoxyquin or other, can be added. In case the carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), concentration in the biomass is to dilute, solvent extraction can be used for their isolation, e.g. with alcohols, ether or other organic solvents, e.g. with methanol, ethanol, aceton, alcoholic potassium hy droxide, glycerol-fenol, liquefied fenol or for example with acids or bases, like tri 30 chloroacetatic acid or potassium hydroxide. A wide range of advantageous methods and techniques for the isolation of vitamin E can be found in the state of the art. Accordingly, it is possible to further purify the produced carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, resp. For this purpose, the product-containing composition, e.g. a total or partial lipid extraction fraction using or 35 ganic solvents, e.g. as described above, is subjected for example to a saponification to remove triglycerides, partition between e.g. hexane/methanol (seperation of non-polar 1702 epiphase from more polar hypophasic derivates) and separation via e.g. an open col umn chromatography or HPLC in which case the desired product or the impurities are retained wholly or partly on the chromatography resin. These chromatography steps can be repeated if necessary, using the same or different chromatography resins. The 5 skilled worker is familiar with the choice of suitable chromatography resins and their most effective use. [0372.0.0.24] to [0376.0.0.24], [0376.1.0.24] and [0377.0.0.24]for the disclosure of the paragraphs [0372.0.0.24] to [0376.0.0.24], [0376.1.0.24] and [0377.0.0.24] see paragraphs [0372.0.0.0] to [0376.0.0.0], [0376.1.0.0] and [0377.0.0.0] above. 10 [0378.0.24.24]In one embodiment, the present invention relates to a method for the identification of a gene product conferring an increase in the fine chemical production in a cell, comprising the following steps: (a) contacting- e.g. hybridising, the nucleic acid molecules of a sample, e.g. cells, tissues, plants or microorganisms or a nucleic acid library , which can contain a 15 candidate gene encoding a gene product conferring an increase in the respective fine chemical after expression, with the nucleic acid molecule of the present in vention; (b) identifying the nucleic acid molecules, which hybridize under relaxed stringent conditions with the nucleic acid molecule of the present invention in particular to 20 the nucleic acid molecule sequence shown in table 1, application no. 25, columns 5 and 7, preferably in table I B, application no. 25, columns 5 and 7, and, option ally, isolating the full length cDNA clone or complete genomic clone; (c) introducing the candidate nucleic acid molecules in host cells, preferably in a plant cell or a microorganism, appropriate for producing the respective fine chemical; 25 (d) expressing the identified nucleic acid molecules in the host cells; (e) assaying the the respective fine chemical level in the host cells; and (f) identifying the nucleic acid molecule and its gene product which expression con fers an increase in the the respective fine chemical level in the host cell after ex pression compared to the wild type. 30 [0379.0.0.24] to [0383.0.0.24] for the disclosure of the paragraphs [0379.0.0.24] to [0383.0.0.24] see paragraphs [0379.0.0.0] to [0383.0.0.0] above.
1703 [0384.0.24.24] The screen for a gene product or an agonist conferring an increase in the fine chemical production can be performed by growth of an organism for example a microorganism in the presence of growth reducing amounts of an inhibitor of the syn thesis of the fine chemical. Better growth, eg higher dividing rate or high dry mass in 5 comparison to the control under such conditions would identify a gene or gene product or an agonist conferring an increase in fine chemical production. One can think to screen for increased fine chemical production by for example resis tance to drugs blocking fine chemical synthesis and looking whether this effect is de pendent on the proteins as shown in table 1l, application no. 25, column 3, eg compar 10 ing near identical organisms with low and high acitivity of the proteins as shown in table 1l, application no. 25, column 3. [0385.0.0.24] to [0404.0.0.24] for the disclosure of the paragraphs [0385.0.0.24] to [0404.0.0.24] see paragraphs [0385.0.0.0] to [0404.0.0.0] above. [0405.0.24.24]Accordingly, the nucleic acid of the invention, the polypeptide of the in 15 vention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof of the invention, the vector of the invention, the agonist identified with the method of the invention, the nucleic acid molecule identified with the method of the present invention, can be used for the production of the respective fine chemicalindicated in Column 6, Table 1, appli 20 cation no. 25 or for the production of the respective fine chemical and one or more other carotenoids, vitamins or fatty acids. In one embodiment, in the process of the present invention, the produced carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), is used to protect fatty acids against oxidization, e.g. it is in a further step added in a pure form or only partly isolated to a composition 25 comprising fatty acids.. Accordingly, the nucleic acid of the invention, or the nucleic acid molecule identified with the method of the present invention or the complement sequences thereof, the polypeptide of the invention, the nucleic acid construct of the invention, the organisms, the host cell, the microorgansims, the plant, plant tissue, plant cell, or the part thereof 30 of the invention, the vector of the invention, the agonist identified with the method of the invention, the antibody of the present invention, can be used for the reduction of the respective fine chemical in a organism or part thereof, e.g. in a cell. [0405.1.24.24]The nucleic acid molecule of the invention, the vector of the invention or the nucleic acid construct of the invention may also be useful for the production of or 35 ganisms resistant to inhibitors of the carotenoids, e.g. beta-carotene or its/their precur- 1704 sor, e.g. isopentyl pyrophosphate (IPP), production biosynthesis pathways. In particu lar, the overexpression of the polypeptide of the present invention may protect an or ganism such as a microorganism or a plant against inhibitors, which block the carote noids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, in 5 particular the respective fine chemical synthesis in said organism. As carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), can protect organisms against damages of oxidative stress, especially singlet oxygens, a increased level of the respective fine chemical can protect plants against herbicides which cause the toxic buildup of oxidative compounds,e.g. singlet oxygens. 10 For example, inhibition of the protoporphorineogen oxidase (Protox), an enzyme impor tant in the synthesis of chlorophyll and heme biosynthesis results in the loss of chloro phyll and carotenoids and in leaky membranes; the membrane destruction is due to creation of free oxygen radicals (which is also reported for other classic photosynthetic inhibitor herbicides). 15 Accordingly, in one embodiment, the increase of the level of the respective fine chemi cal is used to protect plants against herbicides destroying membranes due to the crea tion of free oxygen radicals. Examples of inhibitors or herbicides building up oxidative stress are aryl triazion, e.g. sulfentrazone, carfentrazone; or diphenylethers, e.g. acifluorfen, lactofen, or oxyfluor 20 fen; or N-Phenylphthalimide, e.g. flumiclorac or flumioxazin; substituted ureas, e.g. fluometuron, tebuthiuron, diuron, or linuron; triazines, e.g. atrazine, prometryn, ametryn, metributzin, prometon, simazine, or hexazinone: or uracils, e.g. bromacil or terbacil. [0405.2.24.24]In a further embodiment the present invention relates to the use of the 25 antagonist of the present invention, the plant of the present invention or a part thereof, the microorganism or the host cell of the present invention or a part thereof for the pro duction a cosmetic composition or a pharmaceutical compostion. Such a composition has an antioxidative activity, photoprotective activity, can be used to protect, treat or heal the above mentioned diseases, e.g. rhypercholesterolemic or cardiovascular dis 30 eases, certain cancers, and cataract formation or as as immunostimulatory agent. The carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), can be also used as stabilizer of other colours or oxygen senitive compounds, like fatty acids, in particular unsaturated fatty acids. The carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate 1705 (IPP), of the present invention can be further used for coloring cosmetics or feed and food, specially for coloring food by coloring the feed of for example poultry or lobsters. [0406.0.0.24] to [0416.0.0.24] for the disclosure of the paragraphs [0406.0.0.24] to [0416.0.0.24] see paragraphs [0406.0.0.0] to [0416.0.0.0] above. 5 [0417.0.24.24]An in vivo mutagenesis of organisms such as algae (e.g. Spongiococ cum sp, e.g. Spongiococcum exentricum, Chlorella sp., Haematococcus, Phaedacty lum tricornatum, Volvox or Dunaliella), Synechocystis sp. PCC 6803, Physcometrella patens, Saccharomyces, Mortierella, Escherichia and others mentioned above, which are beneficial for the production of carotenoids, e.g. beta-carotene or its/their precur 10 sor, e.g. isopentyl pyrophosphate (IPP), can be carried out by passing a plasmid DNA (or another vector DNA) containing the desired nucleic acid sequence or nucleic acid sequences, e.g. the nucleic acid molecule of the invention or the vector of the inven tion, through E. coli and other microorganisms (for example Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are not capable of maintaining the integrity 15 of its genetic information. Usual mutator strains have mutations in the genes for the DNA repair system [for example mutHLS, mutD, mutT and the like; for comparison, see Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM: Washington]. The skilled worker knows these strains. The use of these strains is illustrated for example in Greener, A. and Callahan, M. (1994) Strate 20 gies 7; 32-34. In-vitro mutation methods such as increasing the spontaneous mutation rates by chemical or physical treatment are well known to the skilled person. Mutagens like 5 bromo-uracil, N-methyl-N-nitro-N-nitrosoguanidine (= NTG), ethyl methanesulfonate (= EMS), hydroxylamine and/or nitrous acid are widly used as chemical agents for ran 25 dom in-vitro mutagensis. The most common physical method for mutagensis is the treatment with UV irradiation. Another random mutagenesis technique is the error prone PCR for introducing amino acid changes into proteins. Mutations are deliberately introduced during PCR through the use of error-prone DNA polymerases and special reaction conditions known to a person skilled in the art. For this method randomized 30 DNA sequences are cloned into expression vectors and the resulting mutant libraries screened for altered or improved protein activity as described below. Site-directed mutagensis method such as the introduction of desired mutations with an M13 or phagemid vector and short oligonucleotides primers is a well-known approach for site-directed mutagensis. The clou of this method involves cloning of the nucleic 35 acid sequence of the invention into an M13 or phagemid vector, which permits recovery 1706 of single-stranded recombinant nucleic acid sequence. A mutagenic oligonucleotide primer is then designed whose sequence is perfectly complementary to nucleic acid sequence in the region to be mutated, but with a single difference: at the intended mu tation site it bears a base that is complementary to the desired mutant nucleotide rather 5 than the original. The mutagenic oligonucleotide is then allowed to prime new DNA synthesis to create a complementary full-length sequence containing the desired muta tion. Another site-directed mutagensis method is the PCR mismatch primer mutagensis method also known to the skilled person. DpnI site-directed mutagensis is a further known method as described for example in the Stratagene QuickchangeTM site 10 directed mutagenesis kit protocol. A huge number of other methods are also known and used in common practice. Positive mutation events can be selected by screening the organisms for the produc tion of the desired fine chemical. [0418.0.0.24] to [0435.0.0.24] for the disclosure of the paragraphs [0418.0.0.24] to 15 [0435.0.0.24] see paragraphs [0418.0.0.0] to [0435.0.0.0] above. [0436.0.24.24] Carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), production Carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),, can be detected advantageously as desribed in Deli,J. & Molnar,P., Paprika 20 carotenoids: Analysis, isolation, structure elucidation. Curr. Org. Chem. 6, 1197-1219 (2004) or Fraser,P.D., Pinto,M.E., Holloway,D.E. & Bramley,P.M. Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551-558 (2000). [0437.0.0.24] and [0438.0.0.24] for the disclosure of the paragraphs [0437.0.0.24] 25 and [0438.0.0.24] see paragraphs [0437.0.0.0] and [0438.0.0.0] above. [0439.0.24.24] Example 8: Analysis of the effect of the nucleic acid molecule on the production of the respective fine chemical indicated in Table 1, applica tion no. 25, column 6 [0440.0.0.24] for the disclosure of the paragraph [0440.0.0.24] see paragraph 30 [0440.0.0.10] above. [0441.0.0.24] for the disclosure of this paragraph see [0441.0.0.0] above.
1707 [0442.0.24.24]Example 9: Purification of the carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), [0443.0.24.24]Abbreviations:; GC-MS, gas liquid chromatography/mass spectrometry; TLC, thin-layer chromatography. 5 The unambiguous detection for the presence of carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as described (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren 10 [Gas chromatography/mass spectrometric methods], Lipide 33:343-353). The total vitamin E produced in the organism for example in yeasts used in the inven tive process can be analysed for example according to the following procedure: The material such as yeasts, E. coli or plants to be analyzed can be disrupted by soni cation, grinding in a glass mill, liquid nitrogen and grinding or via other applicable 15 methods. Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction. A typical sample pretreatment consists of a total lipid extraction using such polar or ganic solvents as acetone or alcohols as methanol, or ethers, saponification , partition 20 between phases, seperation of non-polar epiphase from more polar hypophasic deriva tives and chromatography. [0443.1.24.24] Characterization of the transgenic plants In order to confirm that carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),biosynthesis in the transgenic plants is influenced by the 25 expression of the polypeptides described herein, the tocopherol/ carotenoids, e.g. beta carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP), content in leaves and seeds of the plants transformed with the described constructs (Arabidop sis.thaliana, Brassica napus and Nicotiana tabacum) is analyzed. For this purpose, the transgenic plants are grown in a greenhouse, and plants which express the gene cod 30 ing for polypeptide of the invention or used in the method of the invention are identified at the Northern level. The tocopherol content or the carotenoids, e.g. beta-carotene or its/their precursor, e.g. isopentyl pyrophosphate (IPP),content in leaves and seeds of these plants is measured. In all, the tocopherol concentration is raised by comparison with untransformed plants.
1708 [0444.0.24.24]If required and desired, further chromatography steps with a suitable resin may follow. Advantageously, carotenoids, e.g. beta-carotene or its/their precur sor, e.g. isopentyl pyrophosphate (IPP),, can be further purified with a so-called RTHPLC. As eluent acetonitrile/water or chloroform/acetonitrile mixtures can be used. 5 If necessary, these chromatography steps may be repeated, using identical or other chromatography resins. The skilled worker is familiar with the selection of suitable chromatography resin and the most effective use for a particular molecule to be puri fied. In addition depending on the produced fine chemical purification is also possible with 10 cristalisation or destilation. Both methods are well known to a person skilled in the art. [0445.0.0.24] for the disclosure of the paragraph [0445.0.0.24] see paragraph [0450.0.10.10] above. [0446.0.0.24] to [0496.0.0.24 for the disclosure of the paragraphs [0446.0.0.24] to [0496.0.0.24] see paragraphs [0446.0.0.0] to [0496.0.0.0] above. 15 [0497.0.24.24]As an alternative, the carotenoids, e.g. beta-carotene or its/their precur sor, e.g. isopentyl pyrophosphate (IPP),, can be detected advantageously as desribed in Deli,J. & Molnar,P., Paprika carotenoids: Analysis, isolation, structure elucidation. Curr. Org. Chem. 6, 1197-1219 (2004) or Fraser,P.D., Pinto,M.E., Holloway,D.E. & Bramley,P.M. Technical advance: application of high-performance liquid chromatogra 20 phy with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551-558 (2000). [0498.0.24.24] The results of the different plant analyses can be seen from the table, which follows: Table VI Min.- Max.
ORF Metabolite Method/Analytics Value Value b0931 Isopentenyl PyrophosphateLC 1.60 2.48 b1868 Isopentenyl PyrophosphateLC 1.35 1.40 b2032 Isopentenyl PyrophosphateLC 1.40 1.68 YLR099CIsopentenyl PyrophosphateLC 3.18 4.51 YPL080C Isopentenyl PyrophosphateLC 1.50 2.46 25 1709 [0499.0.0.24] and [0500.0.0.24] for the disclosure of the paragraphs [0499.0.0.24] and [0500.0.0.24] see paragraphs [0499.0.0.0] and [0500.0.0.0] above. [0501.0.24.24] Example 15a: Engineering ryegrass plants by over-expressing b0931from E. coli or homologs of b0931 from other or 5 ganisms. [0502.0.0.24] to [0508.0.0.24] for the disclosure of the paragraphs [0502.0.0.24] to [0508.0.0.24] see paragraphs [0502.0.0.0] to [0508.0.0.0] above. [0509.0.24.24] Example 15b: Engineering soybean plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. 10 [0510.0.0.24] to [0513.0.0.24] for the disclosure of the paragraphs [0510.0.0.24] to [0513.0.0.24] see paragraphs [0510.0.0.0] to [0513.0.0.0] above. [0514.0.0.24] Example 15c: Engineering corn plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0515.0.0.24] to [0540.0.0.24] for the disclosure of the paragraphs [0515.0.0.24] to 15 [0540.0.0.24] see paragraphs [0515.0.0.0] to [0540.0.0.0] above. [0541.0.24.24] Example 15d: Engineering wheat plants by over-expressing b0931 from E. coli or homologs of b0931 from other or ganisms. [0542.0.0.24] to [0544.0.0.24] for the disclosure of the paragraphs [0542.0.0.24] to 20 [0544.0.0.24] see paragraphs [0542.0.0.0] to [0544.0.0.0] above. [0545.0.24.24] Example 15e: Engineering Rapeseed/Canola plants by over-expressing b0931 from E. coli or homologs of b0931 from other or ganisms. [0546.0.0.24] to [0549.0.0.24] for the disclosure of the paragraphs [0546.0.0.24] to 25 [0549.0.0.24] see paragraphs [0544.0.0.0] to [0549.0.0.0] above. [0550.0.24.24] Example 15f: Engineering alfalfa plants by over-expressing b0931 from E. coli or homologs of b0931 from other organisms. [0551.0.0.24] to [0554.0.0.24] for the disclosure of the paragraphs [0551.0.0.24] to [0554.0.0.24] see paragraphs [0551.0.0.0] to [0554.0.0.0] above.
1710 [0554.1.0.24]: % [0554.2.0.24] for the disclosure of this paragraph see [0554.2.0.0] above. [0555.0.0.24] for the disclosure of this paragraph see [0555.0.0.0] above.
Claims (30)
1. A process for the production of the fine chemical, which comprises a) increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table 1, column 5, in an organelle of a non human organism, or b) increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table 1, column 5, which are joined to a nucleic acid sequence encoding a transit peptide in a non-human organism, or in one or more parts thereof; or c) or increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table 1, column 5, which are joined to a nucleic acid sequence encoding chloroplast localization sequence, in a non-human organism, or in one or more parts thereof, and d) growing the organism under conditions which permit the production of the fine chemical in said organism.
2. The process of claim 1, wherein the activity of a protein as shown in table Il, column 5 is increased or generated in the plastid of a microorganism or plant.
3. The process of claim 1 or 2, wherein the transit peptide is derived from a nucleic acid sequence encoding a protein finally resided in the plastid stemming from an organism selected from the group consisting of the genera: Acetabularia, Arabidopsis, Brassica, Capsicum, Chlamydomonas, Cururbita, Dunaliella, Euglena, Flaveria, Glycine, Helianthus, Hordeum, Lemna, Lolium, Lycopersion, Malus, Mesembryanthemum, Nicotiana, Oenotherea, Oryza, Petunia, Phaseolus, Physcomitrella, Pinus, Pisum, Raphanus, Silene, Sinapis, Solanum, Spinacea, Synechococcus, Triticum and Zea. 2849
4. The process of any one of claims 1 to 3, wherein the transit peptide is derived from the nucleic acid sequence encoding a protein selected from the group consisting of ribulose bisphosphate carboxylase/oxygenase, 5-enolpyruvyl-shikimate-3 phosphate synthase, acetolactate synthase, chloroplast ribosomal protein CS17, Cs protein, ferredoxin, plastocyanin, ribulose bisphosphate carboxylase activase, tryptophan synthase, acyl carrier protein, plastid chaperonin-60, cytochrome c 552 , 22-kDA heat shock protein, 33-kDa Oxygen-evolving enhancer protein 1, ATP synthase y subunit, ATP synthase J subunit, chlorophyll-a/b-binding proteinll-1, Oxygen-evolving enhancer protein 2, Oxygen-evolving enhancer protein 3, photosystem 1: P21, photosystem 1: P28, photosystem 1: P30, photosystem I: P35, photosystem I: P37, glycerol-3-phosphate acyltransferases, chlorophyll a/b binding protein, CAB2 protein, hydroxymethyl-bilane synthase, pyruvate orthophosphate dikinase, CAB3 protein, plastid ferritin, ferritin, early light inducible protein, glutamate-1-semialdehyde aminotransferase, protochlorophyllide reductase, starch-granule-bound amylase synthase, light-harvesting chlorophyll a/b-binding protein of photosystem II, major pollen allergen Lol p Sa, plastid ClpB ATP-dependent protease, superoxide dismutase, ferredoxin NADP oxidoreductase, 28-kDa ribonucleoprotein, 31 -kDa ribonucleoprotein, 33-kDa ribonucleoprotein, acetolactate synthase, ATP synthase CFO subunit 1, ATP synthase CFO subunit 2, ATP synthase CFO subunit 3, ATP synthase CFo subunit 4, cytochrome f, ADP glucose pyrophosphorylase, glutamine synthase, glutamine synthase 2, carbonic anhydrase, GapA protein, heat-shock-protein hsp2l, phosphate translocator, plastid CIpA ATP-dependent protease, plastid ribosomal protein CL24, plastid ribosomal protein CL9, plastid ribosomal protein PsCL18, plastid ribosomal protein PsCL25, DAHP synthase, starch phosphorylase, root acyl carrier protein 11, betaine-aldehyde dehydrogenase, GapB protein, glutamine synthetase 2, phosphoribulokinase, nitrite reductase, ribosomal protein L12, ribosomal protein L13, ribosomal protein L21, ribosomal protein L35, ribosomal 2850 protein L40, triose phosphate-3-phosphoglyerate-phosphate translocator, ferredoxin-dependent glutamate synthase, glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent malic enzyme and NADP-malate dehydrogenase.
5. A process for the production of the fine chemical, which comprises a) increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table I, column 5, in an organelle of a microorganism or plant, or b) increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table 1, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof; and c) growing the organism under conditions which permit the production of the fine chemical in said organism.
6. The process of claim 5, which comprises a) increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table 1, column 5, in an organelle of a microorganism or plant through the transformation of the organelle, or b) increasing or generating the activity of a protein encoded by the nucleic acid sequences as shown in table 11, column 5 in the plastid of a microorganism or plant, or in one or more parts thereof through the transformation of the plastids; and c) growing the organism under conditions which permit the production of the fine chemical in said organism or in the culture medium surrounding the organism.
7. The process of any one of claims 1 to 6, comprising increasing or generating in a non-human organism or a part thereof the expression of at 2851 least one nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding of the polypeptide shown in table 11, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising of the nucleic acid molecule shown in table I, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide sequence encoded by a nucleic acid molecule of (a) or (b) as a result of the degeneracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule which encodes a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a) to (c) under stringent hybridization conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule which encompasses a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers as shown in table Ill, column 7 and conferring an increase in the amount of the the fine chemical in an organism or a part thereof; 2852 g) nucleic acid molecule encoding a polypeptide which is isolated with the aid of monoclonal antibodies against a polypeptide encoded by one of the nucleic acid molecules of (a) to (f) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; h) nucleic acid molecule encoding a polypeptide comprising the consensus sequence shown in table IV, column 7 and conferring an increase in the amount of the the fine chemical in an organism or a part thereof; and i) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (h) or with a fragment thereof having at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) and conferring an increase in the amount of the the fine chemical in an organism or a part thereof. or comprising a sequence which is complementary thereto.
8. The process of any one of claims 1 to 7, comprising recovering of the free or bound the fine chemical.
9. The process of any one of claim 1 to 8, comprising the following steps: a) selecting an organism or a part thereof expressing a polypeptide encoded by the nucleic acid molecule characterized in claim 7; b) mutagenizing the selected organism or the part thereof; c) comparing the activity or the expression level of said polypeptide in the mutagenized organism or the part thereof with the activity or the expression of said polypeptide of the selected organisms or the part thereof; 2853 d) selecting the mutated organisms or parts thereof, which comprise an increased activity or expression level of said polypeptide compared to the selected organism or the part thereof; e) optionally, growing and cultivating the organisms or the parts thereof; and f) recovering, and optionally isolating, the free or bound fine chemical produced by the selected mutated organisms or parts thereof.
10. The process of any one of claims 1 to 9, wherein the activity of said protein or the expression of said nucleic acid molecule is increased or generated transiently or stably.
11. An isolated nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: a) nucleic acid molecule encoding of the polypeptide shown as shown in table 11, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an organism or a part thereof; b) nucleic acid molecule comprising of the nucleic acid molecule shown in table 1, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide sequence encoded by a nucleic acid molecule of (a) or (b) as a result of the degeneracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule which encodes a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; 2854 e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule which encompasses a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers as shown in table Ill, column 7 and conferring an increase in the amount of the the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a polypeptide which is isolated with the aid of monoclonal antibodies against a polypeptide encoded by one of the nucleic acid molecules of (a) to (f) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; h) nucleic acid molecule encoding a polypeptide comprising the consensus sequence shown in table IV, column 7 and conferring an increase in the amount of the the fine chemical in an organism or a part thereof; and i) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (h) or with a fragment thereof having at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) and conferring an increase in the amount of the the fine chemical in an organism or a part thereof, whereby the nucleic acid molecule distinguishes over the sequence as shown in table I A or I B, columns 5 and 7 by one or more nucleotides.
12. An isolated nucleic acid molecule comprising a nucleic acid molecule selected from the group consisting of: 2855 a) nucleic acid molecule encoding of the polypeptide shown in table 11, columns 5 and 7 or a fragment thereof, which confers an increase in the amount of the fine chemical in an organism or a part thereof; nucleic acid b) molecule comprising of the nucleic acid molecule shown in table 1, columns 5 and 7; c) nucleic acid molecule whose sequence can be deduced from a polypeptide sequence encoded by a nucleic acid molecule of (a) or (b) as a result of the degeneracy of the genetic code and conferring an increase in the amount of the fine chemical in an organism or a part thereof; d) nucleic acid molecule which encodes a polypeptide which has at least 50% identity with the amino acid sequence of the polypeptide encoded by the nucleic acid molecule of (a) to (c) and conferring an increase in the amount of the fine chemical in an organism or a part thereof; e) nucleic acid molecule which hybidizes with a nucleic acid molecule of (a) to (c) under stringent hybridisation conditions and conferring an increase in the amount of the fine chemical in an organism or a part thereof; f) nucleic acid molecule which encompasses a nucleic acid molecule which is obtained by amplifying nucleic acid molecules from a cDNA library or a genomic library using the primers as shown in table 111, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; g) nucleic acid molecule encoding a polypeptide which is isolated with the aid of monoclonal antibodies against a polypeptide encoded by one of the nucleic acid molecules of (a) to (f) and conferring an increase in the amount of the fine chemical in an organism or a pat thereof; h) nucleic acid molecule encoding a polypeptide comprising the consensus sequence shown in table IV, column 7 and conferring an increase in the amount of the fine chemical in an organism or a part thereof; and 2856 i) nucleic acid molecule which is obtainable by screening a suitable nucleic acid library under stringent hybridization conditions with a probe comprising one of the sequences of the nucleic acid molecule of (a) to (h) or with a fragment thereof having at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt of the nucleic acid molecule characterized in (a) to (h) and conferring an increase in the amount of the fine chemical in an organism or a part thereof, whereby the nucleic acid molecule is joined to a nucleic acid sequence encoding a transit peptide or to a chloroplast localization signal.
13. The isolated nucleic acid molecule of claim 12, wherein the transit peptide is derived from a nucleic acid sequence encoding a protein finally resided in the plastid stemming from an organism selected from the group consisting of the Genera Acetabularia, Arabidopsis, Brassica, Chiamydomonas, Cururbita, Dunaliella, Euglena, Flaveria, Glycine, Helianthus, Hordeum, Lemna, Lolium, Lycopersion, Malus, Mesembryanthemum, Nicotiana, Oenotherea, Oryza, PetOnia, Phaseolus, Physcomitrella, Pinus, Pisum Raphanus, Silene, Sinapis, Solanum, Spinacea, Triticum and Zea.
14. The isolated nucleic acid molecule of claim 12, wherein the chloroplast localisation signal originates from a viroid.
15. The isolated nucleic acid molecule of claims 12 to 13, wherein the transit peptide is derived from the nucleic acid sequence encoding a protein selected from the group consisting of 2857 ribulose bisphosphate carboxylase/oxygenase, 5-enolpyruvyl-shikimate-3 phosphate synthase, acetolactate synthase, chloroplast ribosomal protein CS17, Cs protein, ferredoxin, plastocyanin, ribulose bisphosphate carboxylase activase, tryptophan synthase, acyl carrier protein, plastid chaperonin-60, cytochrome c 552 , 22-kDA heat shock protein, 33-kDa Oxygen-evolving enhancer protein 1, ATP synthase y subunit, ATP synthase 6 subunit, chlorophyll-a/b-binding proteinll-1, Oxygen-evolving enhancer protein 2, Oxygen-evolving enhancer protein 3, photosystem 1: P21, photosystem 1: P28, photosystem 1: P30, photosystem 1: P35, photosystem 1: P37, glycerol-3-phosphate acyltransferases, chlorophyll a/b binding protein, CAB2 protein, hydroxymethyl-bilane synthase, pyruvate orthophosphate dikinase, CAB3 protein, plastid ferritin, ferritin, early light inducible protein, glutamate-1-semialdehyde aminotransferase, protochlorophyllide reductase, starch-granule-bound amylase synthase, light-harvesting chlorophyll a/b-binding protein of photosystem 11, major pollen allergen Lol p 5a, plastid ClpB ATP-dependent protease, superoxide dismutase, ferredoxin NADP oxidoreductase, 28-kDa ribonucleoprotein, 31 -kDa ribonucleoprotein, 33-kDa ribonucleoprotein, acetolactate synthase, ATP synthase CFO subunit 1, ATP synthase CFo subunit 2, ATP synthase CFo subunit 3, ATP synthase CFO subunit 4, cytochrome f, ADP glucose pyrophosphorylase, glutamine synthase, glutamine synthase 2, carbonic anhydrase, GapA protein, heat-shock-protein hsp2l, phosphate translocator, plastid CIpA ATP-dependent protease, plastid ribosomal protein CL24, plastid ribosomal protein CL9, plastid ribosomal protein PsCL18, plastid ribosomal protein PsCL25, DAHP synthase, starch phosphorylase, root acyl carrier protein II, betaine-aldehyde dehydrogenase, GapB protein, glutamine synthetase 2, phosphoribulokinase, nitrite reductase, ribosomal protein L12, ribosomal protein L13, ribosomal protein L21, ribosomal protein L35, ribosomal protein L40, triose phosphate-3-phosphoglyerate-phosphate translocator, ferredoxin-dependent glutamate synthase, glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent malic enzyme and NADP-malate dehydrogenase. 2858
16. A nucleic acid construct which confers the expression of the nucleic acid molecule of any of the claims 11 to 15, comprising one or more regulatory elements.
17. A vector comprising the nucleic acid molecule as claimed in any of the claims 11 to 15 or the nucleic acid construct of claim 16.
18. The vector as claimed in claim 17, wherein the nucleic acid molecule is in operable linkage with regulatory sequences for the expression in a prokaryotic or eukaryotic, or in a prokaryotic and eukaryotic, host.
19. A host cell, which has been transformed stably or transiently with the vector as claimed in claim 17 or 18 or the nucleic acid molecule as claimed in any of the claims 11 to 15 or the nucleic acid construct of claim 16.
20. The host cell of claim 19, which is a plant cell or a microorganism.
21. A process for producing a polypeptide, wherein the polypeptide is expressed in a host cell as claimed in claim 19 or 20.
22. A polypeptide produced by the process as claimed in claim 21 or encoded by the nucleic acid molecule as claimed in claim 11 whereby the polypeptide distinguishes over the sequence as shown in table II A or II B, columns 5 and 7 by one or more amino acids
23. An antibody, which binds specifically to the polypeptide as claimed in claim 22.
24. A plant tissue, propagation material, harvested material or a plant comprising the host cell as claimed in claim 19 or 20. 2859
25. A process for the identification of a compound conferring increased the fine chemical production in a plant or microorganism, comprising the steps: a) culturing a plant cell or tissue or microorganism or maintaining a plant expressing the polypeptide encoded by the nucleic acid molecule of claim 11 or 15 conferring an increase in the amount of the fine chemical in an organism or a part thereof and a readout system capable of interacting with the polypeptide under suitable conditions which permit the interaction of the polypeptide with dais readout system in the presence of a compound or a sample comprising a plurality of compounds and capable of providing a detectable signal in response to the binding of a compound to said polypeptide under conditions which permit the expression of said readout system and of the polypeptide encoded by the nucleic acid molecule of claim 11 or 15 conferring an increase in the amount of the fine chemical in an organism or a part thereof; b) identifying if the compound is an effective agonist by detecting the presence or absence or increase of a signal produced by said readout system.
26. A method for the production of an agricultural composition comprising the steps of the method of claim 25 and formulating the compound identified in claim 25 in a form acceptable for an application in agriculture.
27. A composition comprising the nucleic acid molecule of any of the claims 11 to 15, the polypeptide of claim 22, the nucleic acid construct of claim 16, the vector of any one of claims 17 or 18, the compound of claim 25, the antibody of claim 23, and optionally an agricultural acceptable carrier.
28. Use of the nucleic acid molecule as claimed in claim 11 or 15 for the identification of a nucleic acid molecule conferring an increase of the fine chemical after expression. 2860
29. Cosmetic, pharmaceutical, food or feed composition comprising the nucleic acid molecule of claim 11 or 15, the polypeptide of claim 22, the nucleic acid construct of claim 16, the vector of claim 17 or 18, the antibody of claim 23, the plant or plant tissue of claim 24, the harvested material of claim 24 or the host cell of claim 19 to 20.
30. Use of the nuclei acid molecule of claim 11 or 15, the polypeptide of claim 22, the nucleic acid construct of claim 16, the vector of claim 17 or 18, the plant or plant tissue of claim 24, or the host cell of claim 19 to 20 for the production of plant resistant to a herbicide inhibiting the production of the fine chemical. METANOMICS GMBH WATERMARK PATENT & TRADE MARK ATTORNEYS P29213AU00
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013200435A AU2013200435A1 (en) | 2005-03-02 | 2013-01-25 | Process for the production of fine chemicals |
Applications Claiming Priority (29)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05101600.4 | 2005-03-02 | ||
EP05104101.0 | 2005-05-17 | ||
EP05104335.4 | 2005-05-23 | ||
EP05104336.2 | 2005-05-23 | ||
EP05109592.5 | 2005-10-14 | ||
EP05110433.9 | 2005-11-07 | ||
EP05110441.2 | 2005-11-08 | ||
EP05111170.6 | 2005-11-17 | ||
EP05111910.5 | 2005-12-01 | ||
EP05112039.2 | 2005-12-12 | ||
EP05112431.1 | 2005-12-15 | ||
EP05113027.6 | 2005-12-22 | ||
EP06101589.7 | 2006-02-07 | ||
EP06110211.7 | 2006-02-14 | ||
EP06110005.3 | 2006-02-16 | ||
EP06110215.8 | 2006-02-21 | ||
EP06110289.3 | 2006-02-22 | ||
EP06110327.1 | 2006-02-23 | ||
EP06110325.5 | 2006-02-23 | ||
EP06110959.1 | 2006-02-24 | ||
EP06110426.1 | 2006-02-24 | ||
EP06110367.7 | 2006-02-24 | ||
EP06110378.4 | 2006-02-24 | ||
EP06110423.8 | 2006-02-24 | ||
EP06110383.4 | 2006-02-24 | ||
EP06110425.3 | 2006-02-24 | ||
EP06110579.7 | 2006-02-28 | ||
AU2006219823A AU2006219823A1 (en) | 2005-03-02 | 2006-02-28 | Process for the production of fine chemicals |
AU2013200435A AU2013200435A1 (en) | 2005-03-02 | 2013-01-25 | Process for the production of fine chemicals |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2006219823A Division AU2006219823A1 (en) | 2005-03-02 | 2006-02-28 | Process for the production of fine chemicals |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2013200435A1 true AU2013200435A1 (en) | 2013-02-28 |
Family
ID=47748293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013200435A Abandoned AU2013200435A1 (en) | 2005-03-02 | 2013-01-25 | Process for the production of fine chemicals |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2013200435A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113024661A (en) * | 2021-03-02 | 2021-06-25 | 徐文霞 | Insulin purification equipment |
CN113281119A (en) * | 2021-05-13 | 2021-08-20 | 中国水稻研究所 | Separation and extraction method of fillers among rice starch granules |
CN116103323A (en) * | 2023-02-16 | 2023-05-12 | 安徽中医药大学 | Polygonum multiflorum phenylalanine ammonia lyase gene FmPAL, and encoding product and application thereof |
EP4059951A4 (en) * | 2021-01-29 | 2023-09-06 | CJ Cheiljedang Corporation | Novel membrane protein terc variant, and method for producing l-lysine using same |
CN117050208A (en) * | 2023-09-14 | 2023-11-14 | 成都大学 | Young kiwi fruit polysaccharide extract and preparation method and application thereof |
-
2013
- 2013-01-25 AU AU2013200435A patent/AU2013200435A1/en not_active Abandoned
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4059951A4 (en) * | 2021-01-29 | 2023-09-06 | CJ Cheiljedang Corporation | Novel membrane protein terc variant, and method for producing l-lysine using same |
CN113024661A (en) * | 2021-03-02 | 2021-06-25 | 徐文霞 | Insulin purification equipment |
CN113024661B (en) * | 2021-03-02 | 2023-01-06 | 上海凯贤流体科技有限公司 | Insulin purification equipment |
CN113281119A (en) * | 2021-05-13 | 2021-08-20 | 中国水稻研究所 | Separation and extraction method of fillers among rice starch granules |
CN113281119B (en) * | 2021-05-13 | 2022-04-15 | 中国水稻研究所 | Separation and extraction method of fillers among rice starch granules |
CN116103323A (en) * | 2023-02-16 | 2023-05-12 | 安徽中医药大学 | Polygonum multiflorum phenylalanine ammonia lyase gene FmPAL, and encoding product and application thereof |
CN117050208A (en) * | 2023-09-14 | 2023-11-14 | 成都大学 | Young kiwi fruit polysaccharide extract and preparation method and application thereof |
CN117050208B (en) * | 2023-09-14 | 2024-03-22 | 成都大学 | Young kiwi fruit polysaccharide extract and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8952217B2 (en) | Process for decreasing verbascose in a plant by expression of a chloroplast-targeted fimD protein | |
US20140199313A1 (en) | Process for the Production of Fine Chemicals | |
US20140259212A1 (en) | Process for the Production of Fine Chemicals | |
US20140325709A1 (en) | Process for the production of fine chemicals | |
EP2096177A2 (en) | Process for the production of lutein | |
WO2008034648A1 (en) | Process for the production of a fine chemical | |
AU2008281754B2 (en) | Desaturases and methods for producing polyunsaturated fatty acids in transgenic organisms | |
EP3543324B1 (en) | Method for producing polyunsaturated fatty acids in transgenic plants | |
CN107532179B (en) | Materials and methods for producing PUFAs and compositions containing PUFAs | |
CN102066564B (en) | Desaturase and method for the production of polyunsaturated fatty acids in transgenic organisms | |
BRPI0009763B1 (en) | nucleic acid sequence encoding a prenyltransferase, constructing the same, as well as methods for altering tocopherol content, producing a tocopherol compound, and increasing biosynthetic flow in a cell | |
AU2016200386A1 (en) | Nucleic acids encoding desaturases and modified plant oil | |
EP1953235A2 (en) | New genes related to a process for the production of fine chemicals | |
CN101675069A (en) | Method for producing fine chemicals | |
CN101421412A (en) | Process for the production of fine chemicals | |
CN102597242B (en) | New fats acid extends composition and use thereof | |
AU2013200435A1 (en) | Process for the production of fine chemicals | |
US8362324B2 (en) | Nucleic acid sequences to proteins involved in tocopherol synthesis | |
EP1274850B1 (en) | Nucleic acid sequences to proteins involved in tocopherol synthesis | |
AU2001253543A1 (en) | Nucleic acid sequences to proteins involved in tocopherol synthesis | |
AU2002213478A1 (en) | Nucleic acid sequences to proteins involved in tocopherol synthesis | |
EP2368905A2 (en) | Process for the control of production of fine chemicals | |
EP1991689A1 (en) | Process for the production of a fine chemical | |
MXPA06014967A (en) | Process for the production of fine chemicals | |
AU2014253548A1 (en) | Desaturases and process for the production of polyunsaturated fatty acids in transgenic organisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application |