AU2013273835A1 - Timed, pulsatile release systems - Google Patents
Timed, pulsatile release systems Download PDFInfo
- Publication number
- AU2013273835A1 AU2013273835A1 AU2013273835A AU2013273835A AU2013273835A1 AU 2013273835 A1 AU2013273835 A1 AU 2013273835A1 AU 2013273835 A AU2013273835 A AU 2013273835A AU 2013273835 A AU2013273835 A AU 2013273835A AU 2013273835 A1 AU2013273835 A1 AU 2013273835A1
- Authority
- AU
- Australia
- Prior art keywords
- pharmaceutical composition
- timed
- population
- beads
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000541 pulsatile effect Effects 0.000 title claims abstract description 45
- 239000011324 bead Substances 0.000 claims abstract description 144
- 238000000576 coating method Methods 0.000 claims abstract description 83
- 239000011248 coating agent Substances 0.000 claims abstract description 76
- 239000003814 drug Substances 0.000 claims abstract description 71
- 229940079593 drug Drugs 0.000 claims abstract description 63
- 229920000642 polymer Polymers 0.000 claims abstract description 48
- 230000004888 barrier function Effects 0.000 claims abstract description 42
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 38
- 229920003176 water-insoluble polymer Polymers 0.000 claims abstract description 31
- 239000008186 active pharmaceutical agent Substances 0.000 claims abstract description 24
- 230000002378 acidificating effect Effects 0.000 claims abstract description 19
- 239000007771 core particle Substances 0.000 claims abstract description 6
- 239000012738 dissolution medium Substances 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 54
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical group CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 33
- 239000001856 Ethyl cellulose Substances 0.000 claims description 32
- 229920001249 ethyl cellulose Polymers 0.000 claims description 32
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 32
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 claims description 31
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 23
- 239000002552 dosage form Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000011230 binding agent Substances 0.000 claims description 18
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 16
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 16
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 16
- 239000003826 tablet Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 13
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 12
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 12
- 239000004014 plasticizer Substances 0.000 claims description 11
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 10
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 10
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 9
- 239000006191 orally-disintegrating tablet Substances 0.000 claims description 8
- 239000008188 pellet Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 7
- 239000002775 capsule Substances 0.000 claims description 5
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 4
- 239000001961 anticonvulsive agent Substances 0.000 claims description 4
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 4
- -1 opioid agonists Substances 0.000 claims description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 229920001800 Shellac Polymers 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 3
- 239000011118 polyvinyl acetate Substances 0.000 claims description 3
- 239000004208 shellac Substances 0.000 claims description 3
- 229940113147 shellac Drugs 0.000 claims description 3
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 claims description 3
- 235000013874 shellac Nutrition 0.000 claims description 3
- 229920002261 Corn starch Polymers 0.000 claims description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 2
- 229940127450 Opioid Agonists Drugs 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 229940035676 analgesics Drugs 0.000 claims description 2
- 239000000730 antalgic agent Substances 0.000 claims description 2
- 230000003474 anti-emetic effect Effects 0.000 claims description 2
- 230000000118 anti-neoplastic effect Effects 0.000 claims description 2
- 239000000924 antiasthmatic agent Substances 0.000 claims description 2
- 229940125681 anticonvulsant agent Drugs 0.000 claims description 2
- 239000003472 antidiabetic agent Substances 0.000 claims description 2
- 229940125708 antidiabetic agent Drugs 0.000 claims description 2
- 239000002111 antiemetic agent Substances 0.000 claims description 2
- 229940125683 antiemetic agent Drugs 0.000 claims description 2
- 229960005475 antiinfective agent Drugs 0.000 claims description 2
- 239000004599 antimicrobial Substances 0.000 claims description 2
- 229940034982 antineoplastic agent Drugs 0.000 claims description 2
- 239000002246 antineoplastic agent Substances 0.000 claims description 2
- 239000000939 antiparkinson agent Substances 0.000 claims description 2
- 239000003435 antirheumatic agent Substances 0.000 claims description 2
- 229940125692 cardiovascular agent Drugs 0.000 claims description 2
- 239000002327 cardiovascular agent Substances 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 2
- 239000008120 corn starch Substances 0.000 claims description 2
- 239000003136 dopamine receptor stimulating agent Substances 0.000 claims description 2
- 229940125695 gastrointestinal agent Drugs 0.000 claims description 2
- 239000004083 gastrointestinal agent Substances 0.000 claims description 2
- 239000003485 histamine H2 receptor antagonist Substances 0.000 claims description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 claims description 2
- 239000003158 myorelaxant agent Substances 0.000 claims description 2
- 239000003887 narcotic antagonist Substances 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 2
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 claims description 2
- 239000008213 purified water Substances 0.000 claims description 2
- 229940125706 skeletal muscle relaxant agent Drugs 0.000 claims description 2
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims 2
- 229920000881 Modified starch Polymers 0.000 claims 1
- 239000002269 analeptic agent Substances 0.000 claims 1
- 201000010099 disease Diseases 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims 1
- 239000004615 ingredient Substances 0.000 claims 1
- 239000004531 microgranule Substances 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims 1
- 239000011162 core material Substances 0.000 description 29
- 239000012528 membrane Substances 0.000 description 25
- 229960004872 nizatidine Drugs 0.000 description 25
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 description 25
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol hydrochloride Natural products C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 22
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- 230000004584 weight gain Effects 0.000 description 14
- 235000019786 weight gain Nutrition 0.000 description 14
- 239000012530 fluid Substances 0.000 description 13
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 10
- 239000001069 triethyl citrate Substances 0.000 description 10
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 10
- 235000013769 triethyl citrate Nutrition 0.000 description 10
- 229960003712 propranolol Drugs 0.000 description 9
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- MEAPRSDUXBHXGD-UHFFFAOYSA-N 3-chloro-n-(4-propan-2-ylphenyl)propanamide Chemical compound CC(C)C1=CC=C(NC(=O)CCCl)C=C1 MEAPRSDUXBHXGD-UHFFFAOYSA-N 0.000 description 7
- 238000012377 drug delivery Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000008030 elimination Effects 0.000 description 7
- 238000003379 elimination reaction Methods 0.000 description 7
- 229960004604 propranolol hydrochloride Drugs 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 239000007921 spray Substances 0.000 description 6
- 238000013268 sustained release Methods 0.000 description 6
- 239000012730 sustained-release form Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000009506 drug dissolution testing Methods 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000036470 plasma concentration Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 3
- 229960002274 atenolol Drugs 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000007884 disintegrant Substances 0.000 description 3
- 229940088679 drug related substance Drugs 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000007922 dissolution test Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000009478 high shear granulation Methods 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- 229960003943 hypromellose Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000008185 minitablet Substances 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000005563 spheronization Methods 0.000 description 2
- 239000000021 stimulant Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000007916 tablet composition Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 229920003153 Eudragit® NE polymer Polymers 0.000 description 1
- 229920003161 Eudragit® RS 30 D Polymers 0.000 description 1
- 229920003152 Eudragit® RS polymer Polymers 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 206010072064 Exposure to body fluid Diseases 0.000 description 1
- 102220570135 Histone PARylation factor 1_L30D_mutation Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920003081 Povidone K 30 Polymers 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- IYKJEILNJZQJPU-UHFFFAOYSA-N acetic acid;butanedioic acid Chemical compound CC(O)=O.OC(=O)CCC(O)=O IYKJEILNJZQJPU-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000003356 anti-rheumatic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229950010118 cellacefate Drugs 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical compound C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 description 1
- 229960003572 cyclobenzaprine Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940099371 diacetylated monoglycerides Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 238000007923 drug release testing Methods 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000009477 fluid bed granulation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 239000002357 osmotic agent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000002996 urinary tract agent Substances 0.000 description 1
Landscapes
- Medicinal Preparation (AREA)
Abstract
TIMED, PULSATILE RELEASE SYSTEMS Abstract The invention relates to a pharmaceutical composition comprising one or more populations of timed, pulsatile release beads, wherein at least one population of timed, pulsatile release beads comprises: a) a core particle comprising an acidic active pharmaceutical ingredient or a pharmaceutically acceptable salt thereof; b) an optional inner barrier coating comprising a water insoluble polymer in combination with a water-soluble/pore-forming polymer; and c) an outer lag-time coating comprising a water-insoluble polymer in combination with an enteric polymer wherein the population of timed, pulsatile release beads provides a lag time greater than 6 hours before onset of drug release when tested using USP Apparatus 1 or 2 and a two-stage dissolution medium (first two hours in 700 mL of 0. IN HCl and thereafter in 900 mL at pH 6.8).
Description
AUSTRALIA Patents Act 1990 Aptalis Pharmatech, Inc. COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Timed, Pulsatile Release Systems Divisional of Australian Patent Application No 2006242308 The following statement is a full description of this invention, including the best method of performing it known to us: TIMED, PULSATILE RELEASE SYSTEMS This application is a divisional of Australian patent application No 2006242308, which is the Australian national phase application of PCT/US2006/016538 filed 1 May 2006, which claims priority from US 11/120,139 filed 2 May 2005, the entire contents of which are incorporated by cross-reference. TECHNICAL FIELD [0001] The present invention relates to the development of timed, pulsatile release bead populations comprising one or more alkaline pharmaceutical actives exhibiting release of the drug after a predetermined delay (lag time) of more than about 5 hours and to the production of oral drug delivery systems to target PK (pharmacokinetics, i.e., plasma concentration-time) profiles suitable for a twice- or once-daily dosing regimen, thereby minimizing potential risks of adverse side effects, enhancing patient compliance and therapeutic efficacy, and reducing cost of treatment. BACKGROUND OF THE INVENTION [0002] Many therapeutic agents are most effective when made available at constant rates at or near the absorption sites. The absorption of therapeutic agents thus made available generally results in desired plasma concentrations leading to maximum efficacy, and minimum toxic side effects. Much effort has been devoted to developing sophisticated drug delivery systems such as osmotic devices for oral application. However, there are instances where maintaining a constant blood level of a drug is not desirable. For example, a major objective of chronotherapy for cardiovascular diseases is to deliver the drug in higher concentrations during the time of greatest need, e.g., the early morning hours, and in lesser concentrations when the need is less, e.g., during the late evening and early sleep hours. In addition to a properly designed drug delivery system, the time of administration is equally important. The unique pharmacokinetic profile needed can be calculated from a simulated modeling developed using the pharmacokinetic parameters, knowledge of drug solubility, absorption along the gastrointestinal tract and elimination half-life. [0003] A timed, pulsatile delivery system capable of providing one or more immediate release pulses at predetermined lag times or at specific sites result in better absorption of the active and more effective plasma profile. However, there are only a few such orally applicable pulsatile release systems due to potential limitations of the dosage form size, and/or polymeric materials and their compositions used for producing dosage forms. Ishino et la al. disclose a dry-coated tablet form in Chemical Pharm. Bull. Vol. 40 (11), p3036-3041 (1992). U.S. Pat. No. 4,871,549 assigned to Fujisawa Pharmaceutical Company discloses the preparation of a time-controlled explosion system in which rapid-release pulses at predetermined time intervals are caused by explosion of the membrane surrounding the drug cores comprising swelling agents such as disintegrants (e.g., low-substituted hydroxypropylcellulose, crospovidone, crosslinked carboxymethylcellulose, sodium starch glycolate). These systems are rather difficult to manufacture and do not consistently perform. [00041 U.S. Pat. No. 6,531,152 discloses an explosion-controlled drug delivery system comprising a core containing a drug in combination with a core material (such as a polysaccharide or a crosslinked protein and a disintegrant that swell on exposure to body fluids or water) having a rigid membrane comprising hydrophobic and hydrophilic polymers that bursts rapidly releasing the active when the core swells. The '152 patent discloses specific tablet formulations having lag-times of up to about 12 hours. U.S. Pat. No. 6,287,599 to Burnside et al. discloses a pharmaceutical composition (a tablet formulation) comprising at least one pharmaceutically active agent that has a pH dependent solubility, at least one non-pH dependent sustained release agent and at least one pH-dependent agent that increases the dissolution rate of the active at a pH in excess of 5.5. Such a system exhibits approximately pH independent drug release profile. [0005] However, monolithic drug delivery systems exhibit variable gastrointestinal transit times, and multiparticulate dosage forms containing coated drug particles (beads, pellets or micro-tablets) exhibiting consistent GI transit times are preferred. [00061 The pulsatile burst release times in the above-described delivery systems are controlled by choosing appropriate core material, and by varying the membrane composition and/or thickness. However, it is difficult to consistently manufacture quality products based on such drug delivery systems wherein the drug-release is controlled by a swelling agent, a hydrophobic excipient, an osmotic agent alone or mixtures thereof. [00071 U.S. Pat. No. 6,627,223, assigned to Eurand Pharmaceutical Limited, which is incorporated herein by reference, discloses a pulsatile release system consisting of a combination of one or more bead populations, each with a well-defined release profile. A timed, sustained-release profile (i.e., a sustained-release profile over a 12 to 24 hours after a lag-time of about 4 hours (i.e., a period of little or no release) following oral administration is 2 disclosed in U.S. Pat. No. 6,500,454, and a biphasic release profile (i.e., an immediate-release pulse and a rapid burst after a lag-time of about 3 hours) is disclosed in U.S. Pat. No. 6,663,888. Although, a lag-time of greater than 3 hours could be achieved by applying a membrane comprising a water-insoluble polymer such as ethylcellulose (Ethocel Standard Premium 10 cps available from Dow Chemical Company) and an enteric polymer such as hydroxypropyl methyleellulose phthalate (HP-55 available from Shin-Etsu Chemical Corporation, Tokyo, Japan) on drug-layered beads containing propranolol hydrochloride (56% drug-load coated on 25-30 mesh sugar spheres) at 10-15% weight gain, the same coating composition applied on drug-layered beads containing nizatidine (56% drug-load coated on 25-30 mesh sugar spheres) even at 35-39% by weight resulted in a lag-time of less than 3 hours. It was considered in the prior art that the solubility of therapeutic agent in the dissolution medium and/or the molecular weight of the agent determined the drug dissolution within the coated bead and its diffusion out of the membrane. After extensive investigations, it was surprisingly discovered that apart from pH-dependent solubility of the therapeutic agent, its acidity/alkalinity has a significant effect on the lag-time that could be achieved. Additionally, the impact of a barrier coating (i.e., an intermediate coating applied in between the inner protective seal coat and the outer lag time coating, hereafter referred to as the barrier coat) and/or its composition on lag-time that could be achieved can vary depending on the acidity/alkalinity of the actives. SUMMARY OF THE INVENTION [0008] The present invention provides a pulsatile delivery system suitable for a twice-daily or once-daily dosing regimen by oral administration of a specific therapeutic agent depending on its acidity/alkalinity, solubility in gastrointestinal fluids, and its elimination half-life. The pulsatile delivery system comprises one or more bead populations, such as immediate release (IR) Beads and timed, pulsatile-release (TPR) bead populations. Each TPR bead population releases the drug as a rapid burst or as a sustained-telease profile after a pre-determined lag time (for example, 10 hours or longer is achievable) upon oral administration. The IR Beads may be simply drug cores coated with a protective membrane (for example, a coating with Opadry Clear). These IR Beads with a barrier coating are coated with a functional membrane of a mixture of water insoluble and enteric polymers, a plasticized polymeric system being applied from aqueous or solvent based composition. The finished dosage form may be a 3 modified-release (MR) capsule, a standard (conventional) tablet or an orally disintegrating tablet (ODT) comprising a coated spherical bead population containing the active substance alone or a combination of two or more coated bead populations to provide target plasma concentrations suitable for a once or twice-daily dosing regimen. For example, a once-daily dosage form of an active with an elimination half-life of about 7 hours may contain a mixture of an IR bead population which allows immediate release, a second, TPR bead population with a shorter lag-time (about 3-4 hours), which allows a delayed "burst" release and a third, TPR bead population with a longer lag-time (about 6-9 hours), which allows a delayed, typically sustained-release profile of an active with an elimination half-life of about 7 hours, thus enhancing safety, therapeutic efficacy and patient compliance while reducing cost of treatment. The achievable lag time depends on the composition and thickness of the barrier coating, the composition and thickness of the lag-time coating, as well as the nature of the therapeutic agent. Specific factors that can affect the lag-time include, but are not limited to, the therapeutic agent's alkalinity/acidity, solubility, elimination half-life, and dosing (twice daily or once-daily) regimen. BRIEF DESCRIPTION OF THE FIGURES [0009] The invention will be described in further detail with reference to the accompanying Figures wherein: Figure 1 shows drug release profiles of nizatidine IR beads (without a barrier coating) coated with EC/HPMCP at 20, 25 and 30% by weight of Example 1C. Figure 2 shows drug-release profiles of propranolol hydrochloride IR beads (without a barrier coating) coated with EC/HPMCP at 20, 30 and 40% by weight of Example 2C. Figure 3 shows drug release profiles of IR beads (without a barrier coating) coated with EC/HPMCP at 20% by weight (a) propranolol hydrochloride and (b) nizatidine and at 30% by weight (c) propranolol hydrochloride and (d) nizatidine. 4 Figure 4 shows drag release profiles of nizatidine IR beads coated first with a barrier coating of IPMCP and then coated with a lag-time coating at 20, 30 and 40% by weight of Example ID. Figure 5 shows drag release profiles of nizatidine IR beads coated first with a barrier coating of EC/HPC and then coated with a lag-time coating at 20, 30 and 40% by weight of Example IE. Figure 6 shows the effect of the barrier coating applied on nizatidine IR beads on the lag time achieved at a lag-time coating of 30% by weight: (A) None, (B) 10% HPMCP and (C) 5% 70/30 EC/HPC. DETAILED DESCRIPTION OF THE INVENTION [0010] Active pharmaceutical ingredients (API) typically are either slightly acidic or basic when suspended in purified water (see Table 1). The extent of acidity or alkalinity varies significantly. For example, the pH can range from as low as 5.7-6.5 for propranolol hydrochloride to a pH of 6.5-8.7 for nizatidine to as high as a pH of 7.9-11.0 for atenolol. An active pharmaceutical ingredient exhibiting a pH of 7.0, or less, when suspended in water at a solid content of 2 g/mL is designated as an acidic drug in this invention disclosure while an API exhibiting a pH of 7.0, or greater, is designated as an alkaline drug. Table 1: pH of representative drags suspended in water Drug Acidity/Alkalinity pH of Solution/Suspension Drug Concentration (solid content) 0.2 g/mL 2.0 g/mL 20 g/mL Propranolol Acidic pH=5.7 pH=6.0 pH=6.5 Hydrochloride 5 Nazitidine Alkaline pH=6.5 pH=7.4 pH=8.7 Drug concentration (solid content) 0.1 g/mL 1.0 g/mL 10 g/mL Cyclobenzaprine Acidic pH=6.1 pH=6.5 pH=6.7 Hydrochloride Atenolol Alkaline pH=7.9 pH=10.9 pH=11.0 [0011] Since the polymer blend system typically utilized to delay the onset of drag release by several hours upon oral administration is a mixture of water-insoluble and enteric polymers, the extent of delayed onset depends on the acidity/alkalinity of the API. The present invention provides a method for manufacturing a pharmaceutically elegant multiparticulate dosage form having timed, pulsatile release profiles, i.e., a well time-controlled single pulse or a series of pulses occurring several hours after oral administration. The present invention also provides a multicoated, multiparticulate dosage form having an active core, an intermediate barrier-coating and an outer membrane of a mixture of water-insoluble polymer and an enteric polymer. A barrier coating applied on IR beads may comprise an enteric polymer, a water-insoluble polymer or a mixture of water-insoluble and water-soluble polymers. The polymers used in forming the barrier coating and the outer membrane may be plasticized. [0012] In accordance with one aspect of the present invention, the active core of the dosage form may comprise an inert particle, which is coated with a drag-containing film-forming formulation and, in accordance with certain embodiments, an inert particle is coated with a water-soluble film forming composition to form a water soluble/dispersible particle. The amount of drag in the core will depend on the drag and the dose that is desired. Generally, the core in accordance with this aspect of the invention will contain about 5 to 60% by weight of the drag based on the total weight of the core. Those skilled in the art will be able to select an appropriate amount of drag for coating or incorporation into the core to achieve the desired dosage form. [0013] The active core of the dosage form of certain embodiments of the present invention may comprise an inert particle such as a sugar sphere with a desired mean particle size. In 6 one embodiment, the inactive core may be a sugar sphere, a cellulose sphere, a spheroidal silicon dioxide bead, a buffer crystal or an encapsulated buffer crystal, such as calcium carbonate, sodium bicarbonate, fumaric acid, tartaric acid, etc. Buffer crystals are useful to alter the microenvironment. Alternatively in accordance with other embodiments, drug containing microgranules or pellets may be prepared by rotogranulation, high-shear granulation and extrusion-spheronization or compression (as mini-/micro-tablets (about one/two mm in diameter)) of the drug, a polymeric binder and optionally fillers/diluents. [0014] Active cores comprising an inert particle coated with a drug-containing film forming binder can be prepared in accordance with the following process. An aqueous or a pharmaceutically acceptable solvent medium may be used for preparing core particles based on coated inert particles. The type of inert binder that is used to bind the water-soluble drug to the inert particle is not critical but usually water soluble or alcohol soluble binders, such as polyvinylpyrrolidone (PVP or povidone) or hydroxypropylcellulose may be used. The binder may be used at any concentration capable of being applied to the inert particle. Typically, the binder is used at a concentration of about 0.5 to 10% by weight. The drug substance may be present in this coating formulation in solution form or may be suspended. The drug concentration may vary depending on the application but typically will be used at concentrations from about 10 to 30% by weight depending on the viscosity of the coating formulation. [0015] In accordance with other embodiments, the active core may be prepared by rotogranulation, or by granulation followed by extrusion-spheronization or tableting into micro-/mini-tablets. The drug substance, a binder, an optional dissolution rate controlling polymer, and optionally other pharmaceutically acceptable excipients (e.g., diluents/fillers) may be blended together in a high-shear granulator, such as Fielder granulator, or a fluid bed granulator, such as Glatt GPCG granulator, and granulated to form agglomerates by adding/spraying a granulating fluid such as water or alcohol and dried. The wet mass can be extruded and spheronized to produce spherical particles (pellets) using an extruder/marumerizer. The blend comprising drug particles, a binder and optionally a filler/diluent or drug-containing granules can also be compressed into mini-tablets (about 2 mm in diameter) or micro-tablets (about 1 mm in diameter) to produce IR pellets. In these embodiments, the drug load could be as high as 95% by weight based on the total weight of the extruded or granulated core. 7 [00161 Generally, the individual polymeric coatings on the active core will vary from about 1.5 to 60% by weight depending on the nature of the active, composition of the barrier coat, and required lag-time. In one embodiment, the core with a high drug-load may be provided with a barrier-coat of a plasticized water-insoluble polymer, such as ethylcellulose (EC), at about 1.5-15% by weight to sustain the drug-release over about 5-20 hours. In certain other embodiments, the core with a high drug-load may be provided with a barrier-coat of a plasticized enteric polymer, such as hydroxypropyl methylcellulose phthalate (HPMCP), at about 5-20% by weight. In yet another embodiment of the present invention, the active core may be provided with an outer lag-time coating of EC/HPMCP/plasticizer at about 45.5/40/14.5 for a weight gain of about 30-60% by weight to lengthen the lag-time up to about 10 hours or longer. [0017] Both the barrier and outer (hereafter referred to as lag-time) membrane coatings on water-soluble/dispersible drug containing particles (IR beads) may comprise a plasticizer. The intermediate or barrier membrane may comprise an enteric polymer such as hydroxypropyl methylcellulose phthalate (HPMCP) or a water-insoluble polymer (e.g., ethylcellulose) alone or in combination with one or more water-soluble/pore-forming polymer such as HPMC, methyl cellulose, hydroxypropyl cellulose (HPC), polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP). When the barrier coating comprises a water insoluble polymer in combination with a water-soluble/pore-forming polymer, the polymers are typically present at a ratio from about 9:1 to 5:5, water-insoluble polymer to water soluble polymer. The barrier coating is typically applied for a weight gain of from about 1.5 to 15% by weight. [00181 The outer lag-time membrane may comprise a plasticized mixture of a water insoluble polymer and an enteric polymer wherein the water-insoluble polymer and the enteric polymer may be present at a weight ratio of about 10:1 to 1:2 and typically about 3:1 to 1:1. The total weight of the lag coating varies from about 30 to 60% and more particularly from about 40 to 55% by weight based on the weight of the coated bead. [00191 Cores comprising a slightly basic drug, such as nizatidine, may be provided with only the lag-time coating (no barrier coating) of EC/HPMCP/plasticizer at about 45.5/40/14.5 for a weight gain of about 40% by weight, which may result in a lag-time of about 3 hours or less. In contrast, cores comprising a slightly acidic drug, such as propranolol hydrochloride, may be provided with only the lag-time coating of EC/HPMCP/plasticizer at about 8 45.5/40/14.5 for a weight gain of about 40% by weight, which could result in a lag-time of about 6 hours or longer. Those skilled in the art will be able to select an appropriate amount of active for coating onto or incorporating into the core to achieve the desired dosage. [0020] In accordance with one particular embodiment of the present invention, the water soluble/dispersible drug-containing particle is coated with a mixture of a water insoluble polymer and an enteric polymer. The water insoluble polymer and enteric polymer may be present at a weight ratio of from about 10:1 to 1:2, more particularly from about 2:1 to 1:1, and the total weight of the coatings is about 30 to 60% by weight based on the total weight of the coated beads. The polymeric coatings typically contain plasticizers and may be applied from aqueous and/or solvent-based systems. [00211 The composition of the membrane layer and the individual weights of the polymers are important factors to be considered for achieving a desired lag time prior to appreciable drug release. The coated beads may optionally have a barrier layer of pharmaceutical glaze (shellac) under the lag-time coating, which basically dictates the lag time. 100221 The invention also provides a method of making timed, pulsatile release beads comprising the steps of: 1. preparing drug-containing cores by coating inert particles, such as sugar spheres or cellulose spheres, with one or more active pharmaceutical ingredients from a polymeric binder solution/suspension and applying a protective seal-coat to form immediate release (IR) beads; 2. coating the IR beads with a plasticized a) water-insoluble polymer alone or in combination with a water-soluble polymer or b) enteric polymer to form barrier coated beads with a membrane thickness of from about 1.5% to 20% by weight; 3. coating the barrier-coated beads with a plasticized mixture of a water-insoluble polymer and an enteric polymer with a membrane thickness of from about 40% to 60% by weight to form TPR (Timed Pulsatile Release) beads exhibiting a lag-time of up to about 10 hours or longer; and 4. filling two or more bead populations - IR beads and one or more TPR bead populations, wherein each TPR bead population may exhibit different lag-times 9 into hard gelatin capsules, or compressing into conventional tablets or orally disintegrating tablets, to produce a once-daily or twice-daily capsule formulation. [00231 The release profiles for IR, barrier-coated and TPR beads may be determined according to the following procedure: [00241 Dissolution testing of IR beads and enteric coated beads (for acid resistance testing) is conducted with a USP Apparatus 1 (baskets at 100 rpm) or Apparatus 2 (paddles at 50 rpm) in 900 mL of 0.lN HCl at 37'C while the dissolution testing of TPR beads is conducted in a USP apparatus using a two-stage dissolution medium (first 2 hours in 700 mL of 0. IN HCl at 37'C followed by dissolution testing at pH = 6.8 obtained by the addition of 200 mL of pH modifier). Drug release with time is determined by HPLC on samples pulled at selected intervals. [00251 The TPR Beads prepared in accordance with present invention may be designed to provide a target drug-release profile, such as a rapid pulse or a sustained-release profile following a pre-determined lag-time. Even in the absence of the barrier coating, thicker lag time coatings typically provide moderately sustained rather than rapid pulses (see Figure 3 for details). The multiparticulate dosage form may be provided as a single TPR bead population alone or a TPR bead population combined with an IR bead population and/or one or more additional TPR bead populations providing different release profiles. In accordance with one embodiment, a multiparticulate dosage form is provided with at least an IR bead population, a first TPR population and a second TPR population werein the ratio of IR bead to the first and second TPR bead population varies from about 10/20/70 to about 30/60/10, respectively, depending on factors such as alkalinity, pH-depedent solubility, and/or elimination half-life of the active ingredient. [0026] There are instances wherein the onset of drug release should begin several hours following oral administration to provide adequate plasma concentration to be suitable for a once-daily dosing regimen, depending on the elimination half-life of the active. In accordance with particular aspects of the invention, drug release may be delayed for up to about 10-15 hours after oral administration. 10 [00271 A single targeted sustained-release profile over several hours after oral administration, with or without an immediate release pulse, is provided in accordance with certain of the timed pulsatile release drug delivery systems of the present invention. [00281 In accordance with one aspect of the invention, one or more active ingredients, a binder such as hydroxypropylcellulose (Klucel LF), a dissolution rate controlling polymer (if used), and optionally other pharmaceutically acceptable excipients are blended together in a high shear granulator such as Fielder or a fluid bed granulator such as Glatt GPCG 5 and granulated to form agglomerates by adding/spraying a granulating fluid such as water or alcohol and dried. The wet mass can be extruded and spheronized to produce spherical particles (beads) using an extruder/marumerizer. In accordance with another embodiment of the invention, dried granules may be compressed into pellets (i.e., mini or micro-tablets) with a diameter of about 1 mm to 2 mm. In these embodiments, the drug load could be as high as 95% by weight based on the total weight of the extruded/spheronized or mini-/micro-tablet core. [00291 In accordance with a specific embodiment, the active containing cores (beads, pellets, mini-/micro-tablets or granular particles) thus obtained are coated with a lag-time coating comprising a water-insoluble polymer and an enteric polymer, such as ethylcellulose and hypromellose phthalate (i.e., hydroxypropyl methylcellulose phthalate or HPMCP) at a thickness from about 10 to 60%, more particularly from about 30% to 60%, by weight based on the total weight of the coated beads. The ratio of water insoluble polymer to enteric polymer may vary from about 10:1 to 1:2, more particularly from about 2:1 to 1:1. [0030] An aqueous or a pharmaceutically acceptable solvent medium may be used for preparing core particles. The type of inert binder that is used to bind the water-soluble drug to the inert particle is not critical but usually water-soluble or alcohol soluble binders are used. Representative examples of binders include, but are not limited to, polyvinylpyrrolidone (PVP), hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose, carboxyalkylcelluloses, polyethylene oxide, polysaccharides such as dextran, corn starch, which may be dissolved or dispersed in water, alcohol, acetone or mixtures thereof. The binders are typically used at a concentration of from about 0.5 to 10% by weight. 11 [0031] Representative examples of enteric polymers useful in the invention include esters of cellulose and its derivatives (cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose acetate succinate), polyvinyl acetate phthalate, pH sensitive methacrylic acid-methamethacrylate copolymers and shellac. These polymers may be used as a dry powder or an aqueous dispersion. Some commercially available materials that may be used are methacrylic acid copolymers sold under the trademark Eudragit (,100, S100, L30D) manufactured by Rohm Pharma, Cellacefate (cellulose acetate phthalate) from Eastman Chemical Co., Aquateric (cellulose acetate phthalate aqueous dispersion) from FMC Corp. and Aqoat (hydroxypropyl methylcellulose acetate succinate aqueous dispersion) from Shin Etsu K.K. [00321 Representative examples of water-insoluble polymers useful in the invention include ethylcellulose, polyvinyl acetate (for example, Kollicoat SR#30D from BASF), cellulose acetate, cellulose acetate butyrate, neutral copolymers based on ethyl acrylate and methylmethacrylate, copolymers of acrylic and methacrylic acid esters with quaternary ammonium groups such as Eudragit NE, RS and RS30D, RL or RL30D and the like. [00331 Dissolution rate controlling polymers suitable for incorporating in the formulation for producing granules by high shear or fluid bed granulation or by dry granulation include high molecular weight hydroxypropyl methylcellulose, hydroxypropyl cellulose, ethyl cellulose, sodium carboxymethyl cellulose, alginic acid, polymethylmethacrylate copolymers and polyvinyl acetate/crotonic acid copolymer or combinations thereof. 100341 Both enteric and water-insoluble polymers used in forming the membranes are usually plasticized. Representative examples of plasticizers that may be used to plasticize the membranes include triacetin, tributyl citrate, triethyl citrate, acetyl tri-n-butyl citrate, diethyl phthalate, castor oil, dibutyl sebacate, acetylated monoglycerides, acetylated diglycerides and the like or mixtures thereof. The plasticizer, when used, may comprise about 3 to 30 wt.% and more typically about 10 to 25 wt.% based on the polymer. The type of plasticizer and its content depends on the polymer or polymers and nature of the coating system (e.g., aqueous or solvent based, solution or dispersion based and the total solids). [00351 In general, it is desirable to prime the surface of the particle before applying the membrane coatings or to separate the different membrane layers by applying a thin 12 hydroxypropyl methylcellulose (HPMC) (Opadry Clear) film. While HPMC is typically used, other primers such as hydroxypropylcellulose (HPC) can also be used. [00361 The active pharmaceutical ingredients suitable for incorporation into these time controlled pulsatile release systems include basic bioactive molecules or their salts. The drug substance can be selected from the group of pharmaceutically acceptable chemical entities with proven pharmacological activity in humans. Reprentative examples include analgesics, anticonvulsants, antidiabetic agents, anti-infective agents, antineoplastics, antiParkinsonian agents, antirheumatic stimulants, cardio vascular agents, CNS (central nervous system) stimulants, dopamine receptor agonists, gastrointestinal agents, psychetherapeutic agents, opioid agonists, opioid antagonists, urinary tract agents, antiemetics, anti-epileptic drugs, histamine H2 antagonists, skeletal muscle relaxants, and antiasthmatic agents. [00371 The membrane coatings can be applied to the core using any of the coating techniques commonly used in the pharmaceutical industry, but fluid bed coating is particularly useful. The present invention is directed to multi-dose forms, i.e., drug products in the form of multi-particulate dosage forms (hard gelatin capsules, conventional tablets or ODTs (orally disintegrating tablets)) comprising one or more bead populations for oral administration to provide target PK profiles in patients in need of treatment. The conventional tablets rapidly disperse on entry into the stomach while ODTs rapidly disintegrate in the oral cavity forming a suspension of coated beads for easy swallowing. One or more coated bead populations may be compressed together with appropriate excipients into tablets (for example, a binder, a diluent/filler, and a disintegrant for conventional tablets while a rapidly dispersing granulation may replace the binder diluent/filler combination in ODTs). [00381 The following non-limiting examples illustrate the capsule dosage forms comprising one or more pulses, each with a predetermined delayed-onset and the totality of the in vitro drug-release profile or the ensuing in vivo plasma concentration profile upon oral administration of the dosage form should mimic the desired profile to achieve maximum therapeutic efficacy to enhance patient compliance and quality of life. Such dosage forns, when administered at the 'right time', would enable maintaining drug plasma concentration at a level potentially beneficial in minimizing the occurrence of side-effects associated with Cmax or Cmin. 13 Example 1 (Inventive): A. IR Beads of Nizatidine [00391 Nizatidine (168 kg) was slowly added to an aqueous solution of hydroxypropylcellulose such as Klucel LF (18.6 kg) and mixed well. # 25-30 mesh sugar spheres (107.4 kg) were coated with the drug suspension in a Glatt fluid bed coater, equipped with a 32" bottom spray Wurster insert. The drug containing particles were dried, and a seal coat of Opadry Clear (2% w/w) was first applied and dried in the Glatt fluid bed unit as a precautionary measure to drive off excessive surface moisture. The drug load was 56% w/w. B. Nizatidine Beads with a Barrier-coating of HPMCP: [00401 IR beads produced above were coated in Glatt GPCG 5 equipped with a bottom spray Wurster insert with HPMCP (e.g., hypromellose phthalate, HP-55 commercially available from Shin Etsu) and triethyl citrate (TEC) as a plasticizer at a ratio of 90/10 dissolved in 98/2 acetone/water for a weight gain of 10% based on the weight of the coated beads. C. Nizatidine TPR Beads without a Barrier-coating of HPMCP: [00411 Drug containing IR Beads from Step A above were provided with an outer membrane by spraying a solution of 45.5/40/14.5 EC/HPMCP/TEC (ethylcellulose / HPMCP / triethylcitrate) in 98/2 acetone/water in a fluid bed coater for a weight gain of approximately 20%, 25% and 30%. The coated particles were unit cured at 60'C for 10 minutes to produce TPR Beads (batch size: 4 kg). D. Nizatidine TPR Beads with a Barrier-coating of HPMCP: [00421 The enteric-coated beads from Step B above were provided with an outer membrane by spraying a solution of 45.5/40/14.5 EC/HPMCP/TEC in 98/2 acetone/water in a fluid bed coater for a weight gain of approximately 20%, 30%, and 40%. The coated particles were unit cured at 601C for 10 minutes to produce TPR Beads (batch size: 4 kg). 14 E. Nizatidine TPR Beads with a Barrier-coating of EC/HPC: [0043] IR beads produced above (Step A) were coated in Glatt GPCG 5 equipped with a bottom spray Wurster insert with ethylcellulose and hydroxypropylcelluse (e.g., Klucel LF commercially available from Aqualon) at a ratio of 70/30 dissolved in acetone/water plasticized with TEC for a weight gain of 5% based on the weight of the coated beads. These barrier-coated beads were provided with an outer membrane by spraying a solution of 45.5/40/14.5 EC/HPMCP/TEC in 98/2 acetone/water in a fluid bed coater for a weight gain of approximately 20%, 30% and 40%. The coated particles were unit cured at 60'C for 10 minutes to produce TPR Beads (batch size: 4 kg). Example 2 (Comparative): A. IR Beads of Propranolol HCI: [00441 Propranolol HCi (168 kg) was slowly added to an aqueous solution of polyvinylpyrrolidone (8.8 kg Povidone K-30) and mixed well. 25-30 mesh sugar spheres (117.2 kg) were coated with the drug solution in a Glatt fluid bed granulator equipped with 32" bottom spray Wurster insert. The drug containing pellets were dried, and a seal coat of Opadry Clear (6.0 kg) was first applied and dried in the Glatt fluid-bed unit as a precautionary measure to drive off excessive surface moisture. The drug load was 56% w/w. B. Propranolol HCl Beads with a Barrier-coating of HPMCP: [0045] IR beads produced above were coated in Glatt GPCG 5 equipped with a bottom spray Wurster insert with HPMCP and TEC at a ratio of 90/10 dissolved in 98/2 acetone/water for a weight gain of 10% based on the weight of the coated beads. C. Propranolol HCl TPR Beads (without barrier-coating): [0046] IR beads produced in Step A above were coated in Glatt GPCG 5 with ethylcellulose, HPMCP and triethyl citrate at a ratio of 45.5/40/14.5 dissolved in 98/2 15 acetone/water for a weight gain of 20%, 30% and 40% based on the weight of the coated beads. D. Propranolol HC1 TPR Beads (with a barrier-coat of EC): [00471 IR beads produced in Step Aabove were coated in fluid-bed equipment (Fluid Air FA0300 equipped with a 32" bottom spray Wurster insert) with ethylcellulose and diethyl phthalate (DEP) as a plasticizer at a ratio of 90/10 for a weight gain of 1.8% by weight. This coating was followed by a lag-time coating of EC/HPMCP/DEP at a ratio of 45.5/40/14.5 dissolved in 98/2 acetone/water for a weight gain of 15%, based on the weight of the coated beads. [0048] Drug Release Testing: The drug release profiles were generated by dissolution testing per US Pharmacopoeia method (Apparatus 1 with baskets at 100 rpm or Apparatus 2 with paddles at 50 rpm) using 700 mL of p H 1.2 buffer for 2 hours followed by testing in 900 mL of pH 6.8 for the remaining time-points). The IR and enteric-coated beads were tested in 900 mL of 0.1N HC1 for 1 and 1.5 hrs, respectively. The samples pulled at different time-points were quantified by HPLC. Example 3 Stability of Coated Beads: 100491 Nizatidine TPR beads of Example ID coated with EC/HPMCP at 40% were packaged in induction-sealed HDPE bottles, placed on stability at 40'C/75%RH and samples were pulled at 1, 2, 3 and 6-month time points. Dissolution tests were performed using the procedures detailed above. The TPR beads stored at accelerated stability conditions exhibited acceptable stability for at least 6 months. Drug Release Profile: [0050] Finished capsules may comprise one or more TPR bead populations with desired lag-times or in combination with IR beads at a desired ratio and in sufficient quantities to provide target in vitro drug-release profiles and hence target pharmacokinetics (PK) profiles suitable for a twice-daily or once-daily dosing regimen. When tested under in vitro 16 conditions following the dissolution test procedure listed above, the IR beads which are designed to provide a loading dose typically release substantially all of the drug within the first hour, preferably within the first 30 minutes. The Timed Pulsatile Release (TPR) Beads are designed to begin releasing the drug after a lag-time of up to several hours (a period of minimal drug-release (less than about 10% of the dose) following oral administration). The pulse may be a rapid burst or spread over a period ranging from about 2 hours to about 20 hours depending on the thickness of the lag-time coating and/or the barrier-coat. Acid-resistance of Nizatidine and Propranolol Beads Coated with HPMCP (00511 The enteric polymer coating applied on nizatidine IR beads of Example lB more or less disintegrated within an hour releasing most of the dose in the acidic buffer although the enteric polymer was not supposed to dissolve. In contrast, the enteric-coated beads of propranolol hydrochloride of Example 2B exhibited the expected acid-resistant property by releasing not more than 1% of the dose in 1.5 hours of dissolution testing at pH 1.2. Although not wishing to be bound by theory, it appears the water imbibed into the core of coated nizatidine beads dissolves some nizatidine creating an alkaline pH environment, which tends to destroy the enteric polymer membrane on the enteric coated IR beads, even though the dissolution medium is acidic. Effect of Barrier-coat on Lag-time: 10052] From a comparison of Figures 1 and 2, which depict the drug-release profiles of TPR beads without a barrier coat, it is clear that the TPR beads of nizatidine, a slightly alkaline drug, coated with EC/HPMCP at 30% by weight exhibits a lag-time of less than 3 hours. In contrast, the TPR beads of propranolol HCl, a slightly acidic drug, coated with the same polymer blend at the same coating thickness exhibits a lag-time of about 5 hours. From a comparison of the lag-times observed from Nizatidine and propranolol HCI TPR beads at identical coating conditions and compositions, it is evident that the acidity/alkalinity plays a major role in providing the lag time (Fig. 3). [0053] Figs. 4 and 5 demonstrate the effect of a barrier coating on the lag time that can be achieved for nizatidine beads. For example, at the coating of 40% by weight, an enteric 17 polymer barrier provides a lag time of about 5 hours while a more hydrophobic barrier of EC/HPC enables achieving a lag time of about 8 hours. These differences become clearer from Fig. 6, which shows the drug-release profiles from TPR beads at 30% coating: i) with no barrier coating; ii) with a barrier coating of an enteric polymer; or iii) a hydrophobic polymer blend. It is evident that a barrier coating with a hydrophobic water-insoluble polymer such as ethylcellulose provides longer lag times as compared to a barrier coating of an enteric polymer from TPR beads of alkaline drugs. [0054] From these demonstrations, it is apparent that the alkalinity/acidity of the active pharmaceutical ingredient has a significant impact on the lag time that can be achieved at given coating conditions. Another active such as atenolol which is more alkaline than nizatidine would be expected to show shorter lag time than nizatidine. Of course, the lag time can be increased by providing a barrier coating comprising an appropriate polymer alone or in combination with a membrane modifier (for example, hydrophobic ethylcellulose alone or together with water-soluble hydroxypropylcellulose). The membrane thickness can be varied to further fine-tune the lag time. [0055] While the invention has been described in detail and with respect to specific embodiments thereof, it will be apparent that numerous modifications and variations are possible without departing from the scope of the invention as defined by the following claims. 18
Claims (39)
1. A pharmaceutical composition comprising one or more populations of timed, pulsatile release beads, wherein at least one population of timed, pulsatile release beads comprises: a) a core particle comprising an acidic active pharmaceutical ingredient or a pharmaceutically acceptable salt thereof; b) an optional inner barrier coating comprising a water insoluble polymer in combination with a water-soluble/pore-forming polymer; and c) an outer lag-time coating comprising a water-insoluble polymer in combination with an enteric polymer wherein the population of timed, pulsatile release beads provides a lag time greater than 6 hours before onset of drug release when tested using USP Apparatus 1 or 2 and a two-stage dissolution medium (first two hours in 700 mL of 0. IN HCl and thereafter in 900 mL at pH 6.8).
2. The pharmaceutical composition of claim 1, wherein said acidic active pharmaceutical ingredient when suspended in purified or de-ionized water at a drug content of 1 g/ml or more exhibits a more acidic pH compared to that of the de-ionized water, is selected from the group consisting of analgesics, anticonvulsants, antidiabetic agents, anti infective agents, antineoplastics, anti-Parkinsonian agents, antirheumatic agents, cardiovascular agents, central nervous system stimulants, dopamine receptor agonists, anti emetics, gastrointestinal agents, psychotherapeutic agents, opioid agonists, opioid antagonists, anti-epileptic drugs, histamine H2 antagonists, anti-asthmatic agents, and skeletal muscle relaxants and mixtures thereof
3. The pharmaceutical composition of claim 1 or 2, comprising two or more timed, pulsatile release bead populations to provide target pharmacokinetic profiles suitable for a once or twice-daily dosing regimen.
4. The pharmaceutical composition of any one of claims 1 to 3, wherein said core particle comprises: i) an inert particle coated with said acidic active pharmaceutical ingredient and 20 optionally a polymeric binder; or ii) a pellet, or mini- or micro-tablet, a microgranule, or a granular particle containing said acidic active pharmaceutical ingredient.
5. The pharmaceutical composition of claim 4, wherein said polymeric binder is selected from the group consisting of polyvinylpyrrolidone, methylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, corn starch, pregelatinized starch, and mixtures thereof
6. The pharmaceutical composition of any one of claims 1 to 5, wherein said enteric polymer is selected from the group consisting of cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, hydroxypropyl methylcellulose succinate, polyvinyl acetate phthalate, pH-sensitive methacrylic acid-methylmethacrylate copolymers, shellac, and mixtures thereof
7. The pharmaceutical composition of any one of claims 1 to 6, wherein said inner barrier coating comprises from about 1.5% to 20% by weight of the barrier coated bead.
8. The pharmaceutical composition of any one of claims 1 to 7, wherein the ratio by weight of said water insoluble polymer to said enteric polymer in said outer lag-time coating ranges from about 10:1 to 1:3.
9. The pharmaceutical composition of any one of claims 1 to 8, wherein said water-insoluble polymer is selected from the group consisting of ethylcellulose, cellulose acetate, cellulose acetate butyrate, polyvinyl acetate, methylmethacrylate ester polymers, neutral copolymers of ethylacrylate and methylmethacrylate, copolymers of acrylic and methacrylic acid esters, and mixtures thereof
10. The pharmaceutical composition of any one of claims 1 to 9, wherein at least one of the inner barrier coating and the outer lag-time coating comprises a plasticizer.
11. The pharmaceutical composition of any one of claims 1 to 10, wherein the ratio by 21 weight of said water insoluble polymer to water-soluble / pore-forming polymer in said inner coating ranges from approximately 9:1 to approximately 1:1.
12. The pharmaceutical composition of any one of claims 1 to 11, further comprising immediate release beads, each immediate release bead comprising a core particle comprising said acidic active pharmaceutical ingredient or a pharmaceutically acceptable salt thereof; wherein said immediate release beads release not less than about 90% of said acidic active pharmaceutical ingredient contained therein within the first hour after oral administration of the dosage form.
13. The pharmaceutical composition of any one of claims I to 12, further comprising (1) a second population of timed, pulsatile release beads, or (2) a population of immediate release beads, or (3) a second population of timed, pulsatile release beads and a population of immediate release beads, wherein said first and second timed, pulsatile release bead populations exhibit different release characteristics.
14. The pharmaceutical composition of any one of claims I to 13, wherein said outer lag time coating comprises ethylcellulose in combination with hydroxypropyl methylcellulose phthalate.
15. The pharmaceutical composition of any one of claims I to 14, wherein the ratio by weight of said water insoluble polymer to said enteric polymer in said outer lag-time coating ranges from about 10:1 to 1:2.
16. The pharmaceutical composition of any one of claims 1 to 15, wherein the amount of said outer lag-time coating is about 20% to 60% by weight of said timed, pulsatile release bead.
17. The pharmaceutical composition of claim 13, comprising an immediate-release bead population and two timed, pulsatile release populations, wherein the ratio by weight of the 22 immediate release bead population to the first timed, pulsatile release bead population to the second timed, pulsatile release bead population ranges from about 10/20/70 to about 30/60/10.
18. The pharmaceutical composition of claim 13, wherein said pharmaceutical composition takes the form of a capsule, a tablet, or an orally disintegrating tablet.
19. The pharmaceutical composition of any one of claims 1 to 18, wherein said outer lag time coating consists essentially of a water-insoluble polymer in combination with an enteric polymer.
20. The pharmaceutical composition of any one of claims 1 to 19, wherein the lag time is about 7 hours.
21. The pharmaceutical composition of any one of claims 1 to 19, wherein the lag time is about 8 hours.
22. The pharmaceutical composition of any one of claims 1 to 19, wherein the lag time is about 9 hours.
23. The pharmaceutical composition of any one of claims 1 to 19, wherein the lag time ranges from greater than about 6 to about 9 hours.
24. The pharmaceutical composition of claim 13, wherein the first population of timed, pulsatile release beads exhibits a lag time greater than about 6 hours, and the second population of timed, pulsatile release beads exhibits a lag time of about 3 to about 5 hours.
25. The pharmaceutical composition of claim 24, comprising more than one active pharmaceutical ingredient.
26. The pharmaceutical composition of claim 23, comprising a first population of timed, 23 pulsatile release beads and a second population of timed, pulsatile release beads, wherein the first and second timed, pulsatile release bead populations exhibit different release characteristics.
27. The pharmaceutical composition of claim 26, comprising more than one active pharmaceutical ingredient.
28. The pharmaceutical composition of claim 13, comprising a first population of timed, pulsatile release beads and a population of immediate release beads, wherein said composition comprises more than one active pharmaceutical ingredient.
29. The pharmaceutical composition of claim 13, comprising a first population of timed, pulsatile release beads and a second population of timed, pulsatile release beads and a population of immediate release beads, wherein the first and second timed, pulsatile release bead populations exhibit different release characteristics.
30. The pharmaceutical composition of claim 29, comprising more than one active pharmaceutical ingredient.
31. The pharmaceutical composition of any one of claims 1 to 30, comprising the inner barrier coating.
32. The pharmaceutical composition of claim 31, wherein said water-soluble/pore forming polymer is selected from the group consisting of polyvinylpyrrolidone, methylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, polyethylene glycol, and mixtures thereof
33. A pharmaceutical dosage form comprising the pharmaceutical composition of any one of claims I to 32.
34. The pharmaceutical dosage form of claim 33, comprising more than one acidic active 24 pharmaceutical ingredient.
35. A method for preparing the pharmaceutical composition of any one of claims I to 32, the method comprising: a) preparing immediate-release beads comprising an acidic active pharmaceutical ingredient or a pharmaceutically acceptable salt thereof; b) optionally applying an inner barrier coating on said immediate release beads, said inner barrier coating comprising a water-insoluble polymer in combination with a water soluble/pore-forming polymer c) applying an outer lag-time coating comprising a water-insoluble polymer in combination with an enteric polymer onto inner barrier coated beads of step b) or onto said immediate-release beads of step a) to form a population of timed, pulsatile release beads; and d) combining one or more populations of timed, pulsatile release beads and immediate release beads in the form of a capsule or a tablet.
36. The method of claim 35, further comprising: e) incorporating said timed, pulsatile release beads into a pharmaceutical dosage form.
37. A method of treating a disease or medical condition comprising administering to a patient in need thereof the composition of any one of claims 1 to 32 or a dosage form of claim 33 or 34.
38. A method comprising orally administering to a patient the pharmaceutical composition of any one of claims 1 to 32 or a dosage form of claim 33 or 34, wherein said composition or dosage form comprises a population of immediate-release beads and one or more populations of timed, pulsatile release beads comprising one or more acidic active pharmaceutical ingredients.
39. The method of claim 35, wherein said outer lag-time coating consists essentially of a water-insoluble polymer in combination with an enteric polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013273835A AU2013273835B2 (en) | 2005-05-02 | 2013-12-23 | Timed, pulsatile release systems |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/120,139 | 2005-05-02 | ||
AU2006242308A AU2006242308B2 (en) | 2005-05-02 | 2006-05-01 | Timed, pulsatile release systems |
AU2013273835A AU2013273835B2 (en) | 2005-05-02 | 2013-12-23 | Timed, pulsatile release systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2006242308A Division AU2006242308B2 (en) | 2005-05-02 | 2006-05-01 | Timed, pulsatile release systems |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2013273835A1 true AU2013273835A1 (en) | 2014-01-16 |
AU2013273835B2 AU2013273835B2 (en) | 2016-07-07 |
Family
ID=49921042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013273835A Ceased AU2013273835B2 (en) | 2005-05-02 | 2013-12-23 | Timed, pulsatile release systems |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2013273835B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2778848B1 (en) * | 1998-05-20 | 2001-11-23 | Prographarm Lab | MULTIPARTICULATE PHARMACEUTICAL FORMULA WITH PULSED RELEASE AND ITS PREPARATION METHOD |
US6627223B2 (en) * | 2000-02-11 | 2003-09-30 | Eurand Pharmaceuticals Ltd. | Timed pulsatile drug delivery systems |
US6500457B1 (en) * | 2000-08-14 | 2002-12-31 | Peirce Management, Llc | Oral pharmaceutical dosage forms for pulsatile delivery of an antiarrhythmic agent |
US6500454B1 (en) * | 2001-10-04 | 2002-12-31 | Eurand Pharmaceuticals Ltd. | Timed, sustained release systems for propranolol |
US6663888B2 (en) * | 2001-12-14 | 2003-12-16 | Eurand Pharmaceuticals Ltd. | Pulsatile release histamine H2 antagonist dosage form |
-
2013
- 2013-12-23 AU AU2013273835A patent/AU2013273835B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU2013273835B2 (en) | 2016-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11147772B2 (en) | Timed, pulsatile release systems | |
AU2009236271B2 (en) | Compositions comprising weakly basic drugs and controlled-release dosage forms | |
DK2265261T3 (en) | Medicinindgivelsessystemer comprising weakly basic drugs and organic acids | |
AU2007211091A1 (en) | Drug delivery systems comprising weakly basic selective serotonin 5-HT3 blocking agent and organic acids | |
AU2013273835B2 (en) | Timed, pulsatile release systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |