[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2012203419B2 - Immunogenic composition - Google Patents

Immunogenic composition Download PDF

Info

Publication number
AU2012203419B2
AU2012203419B2 AU2012203419A AU2012203419A AU2012203419B2 AU 2012203419 B2 AU2012203419 B2 AU 2012203419B2 AU 2012203419 A AU2012203419 A AU 2012203419A AU 2012203419 A AU2012203419 A AU 2012203419A AU 2012203419 B2 AU2012203419 B2 AU 2012203419B2
Authority
AU
Australia
Prior art keywords
saccharide
menc
conjugated
immunogenic composition
carrier protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2012203419A
Other versions
AU2012203419A1 (en
Inventor
Ralph Leon Biemans
Dominique Boutriau
Carine Capiau
Philippe Denoel
Pierre Duvivier
Jan Poolman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010203115A external-priority patent/AU2010203115C1/en
Application filed by GlaxoSmithKline Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Priority to AU2012203419A priority Critical patent/AU2012203419B2/en
Publication of AU2012203419A1 publication Critical patent/AU2012203419A1/en
Application granted granted Critical
Publication of AU2012203419B2 publication Critical patent/AU2012203419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Abstract The present application discloses an immunogenic composition comprising at least 2 different N. Meningitidis capsula saccharides, wherein one or more is/are selected from 5 a first group consisting of MenA, MenC, MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are selected from a second group consisting of MenA, MenC, MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99.

Description

AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT ORIGINAL Name of Applicant/s: GlaxoSmithKline Biologicals S.A. Actual Inventor/s: Ralph Leon Biemans and Dominique Boutriau and Carine Capiau and Philippe Denoel and Pierre Duvivier and Jan Poolman Address for Service is: SHELSTON IP 60 Margaret Street Telephone No: (02) 9777 1111 SYDNEY NSW 2000 Facsimile No. (02) 9241 4666 CCN: 3710000352 Attorney Code: SW Invention Title: Immunogenic composition Details of Original Application No. 2010203115 dated 21 Jul 2010 The following statement is a full description of this invention, including the best method of performing it known to me/us: File: 56783AUP02 - 1a Immunogenic composition The present application is a divisional application of Australian Application No. 2010203115, which is incorporated in its entirety herein by reference. The present invention relates to immunogenic compositions comprising bacterial capsular saccharides conjugated to a carrier protein, in particular those saccharides of N. meningitidis. It additionally relates to vaccines and vaccine kits comprising such saccharide conjugates, processes for making the immunogenic compositions and vaccines and the use of the vaccines and immunogenic compositions of the invention in therapy. It also relates to methods of immunising against infection using the saccharine conjugates and the use of the saccharide conjugates in the manufacture of a medicament. Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field. Neisseria meningitidis is a Gram-negative human pathogen which causes bacterial meningitis. Based on the organism's capsular polysaccharide, twelve serogroups of N. meningitidis have been identified (A, B, C, H, I, K, L, 29E, W135, X, Y and Z). Serogroup A (MenA) is the most common cause of epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the majority of cases in developing countries, with the remaining cases being caused by W135 and Y. Immunogenic compositions comprising N. meningitidis saccharides conjugated to carrier proteins are known in the art; the carrier protein having the known effect of turning the T independent polysaccharide antigen into a T-dependent antigen capable of triggering an immune memory response. For instance WO 02/58737 discloses a vaccine comprising purified capsular polysaccharides from N. meningitidis serogroups A, C, W135 and Y conjugated to a carrier protein. However, this application teaches that all polysaccharides should essentially be conjugated in the same way (through the same liner to the same protein carrier). There remains a need to develop improved conjugate vaccines against neisserial meningitis. The present invention concerns the provision of a meningococcal polysaccharide conjugate vaccine where conjugation of each polysaccharide is tailored (rather than being uniform) to achieve an efficacious combination vaccine. In particular it is advantageous to combine certain - 1b meningococcal saccharides conjugated to their protein carriers at a high saccharide:protein ratio with others at a low ratio. According to a first aspect, the present invention provides an immunogenic composition comprising at least 4 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA, MenC, which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are selected from a second group consisting of MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99 and wherein MenC is present and the ratio of Men C saccharine to carrier protein is between 1:2.5-1:4.5 (w/w), MenA is present and the ratio of Men A saccharide to carrier protein is between 1:2.7-1:3.5 (w/w), MenY is present and the ratio of Men Y saccharide to carrier protein is between 2:1 - 1:1.99 (w/w), MenW is present and the ratio of Men W saccharide to carrier protein is between 1:1 - 1:1.7 (w/w) and wherein the composition does not include an adjuvant. According to a second aspect, the present invention provides a vaccine comprising the immunogenic composition of the invention and a pharmaceutically acceptable excipient. According to a third aspect, the present invention provides a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring protection in a host against disease caused by Bordetella pertussis., Ciostridium tetan, Corynebacterium diphtheriae, Haemophilus influenzae and Neisseria meningitidis, said kit comprising a first container comprising: tetanus toxoid (TT), diphtheria toxoid (DT), and whole-cell or acellular pertussis components and a second container comprising: the immunogenic composition of the invention. According to a fourth aspect, the present invention provides a process for making the vaccine of the invention comprising the step of mixing the immunogenic composition of the invention with a pharmaceutically acceptable excipient.
- 1c According to a fifth aspect, the present invention provides a method of treating or preventing a disease caused by Neisseria meningitidis infection said method comprising the step of administering to a subject in need thereof the immunogenic composition of the invention. According to a sixth aspect, the present invention provides use of the immunogenic composition of the invention in the manufacture of a medicament for the treatment or prevention of a disease caused by Neisseria meningitidis infection. According to a seventh aspect, the present invention provides a vaccine when prepared according to the process of the invention. Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to". In a further aspect of the present invention there is provided an immunogenic composition comprising at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA, MenC, MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are selected from a second group consisting of MenA, MenC, MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99. 5 In a MenW vaccine the ratio of Men W saccharide to carrier protein can be between 5:1 1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1:1-1:1.7, 1:1.2-1:1.6, or 1:1.4-1:1.5 (w/w). In a MenY vaccine the ratio of Men Y saccharide to carrier protein can be between 5:1-1:1.99, 2:1 1:1.99, 1.5:1-1:1.9, 1:1-1:1.8, 1:1.1-1:1.6, or 1:1.3-1:1.4 (w/w). In a MenA vaccine the ratio 10 of Men A saccharide to carrier protein can be between 1:2-1:5, 1:2.4-1:4, 1:2.7-1:3.5, or 1:2.9-1:3.1 (w/w). In a Men C vaccine the ratio of Men C saccharide to carrier protein can be between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 1.1:1-1:1.2 (w/w), or between 1:2-1:5, 1:2.5-1:4.5, 1:2.7-1:4.3, 1:3-1:4, or 1:3.3-1:3.5 (w/w). 15 The ratio of saccharide to carrier protein (w/w) in a conjugate may be determined using the sterilized conjugate. The amount of protein is determined using a Lowry assay ( for example Lowry et al (1951) J. Biol. Chem. 193, 265-275 or Peterson et al Analytical Biochemistry 100, 201-220 (1979)) and the amount of saccharide is determined using ICP-OES (inductively coupled plasma-optical emission spectroscopy) for MenA, DMAP 20 assay for MenC and Resorcinol assay for MenW and MenY (Monsigny et al (1988) Anal. Biochem. 175, 525-530). Often saccharides conjugated through a linker have higher incorporation of carrier protein than when directly linked to carrier protein. In a MenAC vaccine of the invention, for 25 example, MenA saccharide may be conjugated to a carrier protein through a linker and MenC directly. In a MenCY vaccine, MenC may be conjugated through a linker and MenY directly. In a MenACWY vaccine Men A may be conjugated through a linker and MenCWY directly, or MenAC may be conjugated through a linker and MenWY directly. 30 In a further aspect of the invention there is provided an immunogenic composition comprising at least 2 different saccharides conjugated separately to the same type of carrier protein (for instance DT, CRM197, Protein D, or TT), wherein one or more saccharde(s) is/are conjugated to the carrier protein wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are conjugated to the 35 carrier protein wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99. 2 For instance in a MenAC vaccine, MenA may be conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 1:2-1:5 and MenC conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 5:1-1:1.99. In a MenCY vaccine MenC may be conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 1:2-1:5 5 and MenY conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 5:1-1:1.99. In a MenACWY vaccine, MenAC may be conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 1:2-1:5 and MenWY conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 5:1-1:1.99., or MenA may be conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 1:2-1:5 and 10 MenCWY conjugated to the carrier protein with a saccharide:protein ratio (w/w) between 5:1-1:1.99. According to a further aspect of the invention there is provided a method of immunising a human host against disease caused by Neisseria meningitidis comprising administering 15 to the host an immunoprotective dose of the immunogenic composition or vaccine of the invention. According to a further aspect or the invention there is provided an immunogenic composition of the invention for use in the treatment or prevention of disease caused by 20 Neisseria meningitidis. According to a further aspect or the invention there is provided a use of the immunogenic composition or vaccine of the invention in the manufacture of a medicament for the treatment or prevention of diseases caused by Neisseria meningitidis. 25 Description of figures Figure 1 - A - Bar chart showing GMC responses in an anti-MenY ELISA. ENYTT012 is 30 a MenY-TT conjugate prepared from native MenY polysaccharide. ENYTT014 is a MenY TT conjugate prepared from microfluidised MenY polysaccharide which had undergone 40 cycles of microfluidisation. ENYTT015bis is a MenY-TT conjugate prepared from microfluidised MenY polysaccharide which had undergone 20 cycles of microfluidisation. 35 - B - Bar chart showing GMT responses in an anti-MenY SBA assay. ENYTT012 is a MenY-TT conjugate prepared from native MenY polysaccharide. ENYTT014 is a MenY 3 TT conjugate prepared from microfluidised MenY polysaccharide which had undergone 40 cycles of microfluidisation. ENYTT015bis is a MenY-TT conjugate prepared from microfluidised MenY polysaccharide which had undergone 20 cycles of microfluidisation. 5 Detailed description In one aspect of the present invention there is provided an immunogenic composition comprising at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA (N. meningitidis serogroup A 10 capsular saccharide), MenC (N. meningitidis serogroup C capsular saccharide), MenY (N. meningitidis serogroup Y capsular saccharide) and MenW (N. meningitidis serogroup W135 capsular saccharide) which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are selected from a second group consisting of MenA, MenC, MenY and MenW which 15 is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99. More specifically the composition comprises at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA 20 and MenC which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are selected from a second group consisting of MenC, MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99. 25 In one aspect the immunogenic composition has MenW saccharide, wherein the ratio of Men W saccharide to carrier protein is between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1:1 1:1.7, 1:1.2-1:1.6, or 1:1.4-1:1.5 (w/w). In a further aspect the immunogenic composition has MenY saccharide, wherein the ratio of Men Y saccharide to carrier protein is between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.9, 1:1-1:1.8, 1:1.1-1:1.6, or 1:1.3-1:1.4 (w/w). In a further 30 aspect the immunogenic composition comprises MenA saccharide, wherein the ratio of Men A saccharide to carrier protein is between 1:2-1:5, 1:2.4-1:4, 1:2.7-1:3.5, or 1:2.9 1:3.1 (w/w) or between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 1.1:1-1:1.2 (w/w). In a further aspect the immunogenic composition comprises MenC saccharide, wherein the ratio of Men C saccharide to carrier protein is between 5:1 35 1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 1.1:1-1:1.2 (w/w), or between 1:2-1:5, 1:2.5-1:4.5, 1:2.7-1:4.3, 1:3-1:4, or 1:3.3-1:3.5 (w/w). 4 More specifically, the first group may consist of MenA and MenC, and the second group consist of MenC, MenY and MenW. Particular embodiments of the invention are immunogenic compositions comprising: MenA capsular saccharide wherein the ratio of 5 Men A saccharide to carrier protein is between 1:2-1:5, 1:2.4-1:4, 1:2.7-1:3.5, or 1:2.9 1:3.1 (w/w) [which may optionally be conjugated through a linker to the carrier protein] and MenC capsular saccharide wherein the ratio of Men C saccharide to carrier protein is between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 1.1:1-1:1.2 (w/w) [which may optionally be directly conjugated to the carrier protein]; MenC capsular 10 saccharide wherein the ratio of Men C saccharide to carrier protein is between 1:2-1:5, 1:2.4-1:4, 1:2.7-1:3.5, or 1:2.9-1:3.1 (w/w) [which may optionally be conjugated through a linker to the carrier protein] and MenY capsular saccharide wherein the ratio of Men Y saccharide to carrier protein is between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 1.1:1-1:1.2 (w/w) [which may optionally be directly conjugated to the carrier 15 protein]; MenA and MenC capsular saccharides wherein the ratio of Men A and C saccharide to carrier protein(s) is between 1:2-1:5, 1:2.4-1:4, 1:2.7-1:3.5, or 1:2.9-1:3.1 (w/w) [and which may optionally be conjugated through a linker to the carrier protein(s)] and MenY and Men W capsular saccharides wherein the ratio of Men Y and W saccharide to carrier protein is between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 20 1.1:1-1:1.2 (w/w) [and which may optionally be directly conjugated to the carrier protein(s)]; MenA capsular saccharide wherein the ratio of Men A saccharide to carrier protein is between 1:2-1:5, 1:2.4-1:4, 1:2.7-1:3.5, or 1:2.9-1:3.1 (w/w) [which may optionally be conjugated through a linker to the carrier protein] and MenC, MenY and Men W capsular saccharides wherein the ratio of Men Y and W and C saccharide to 25 carrier protein is between 5:1-1:1.99, 2:1-1:1.99, 1.5:1-1:1.8, 1.3:1-1:1.6, 1.2:1-1:1.4, or 1.1:1-1:1.2 (w/w) [and which may optionally be directly conjugated to the carrier protein(s)]. In any of these embodiments a Hib conjugate may also be included, which is linked to a carrier protein (see list of carriers above and below, for example TT, and for saccharide:protein ratios) directly or through a linker. 30 The term "saccharide" throughout this specification may indicate polysaccharide or oligosaccharide and includes both. Polysaccharides are isolated from bacteria or isolated from bacteria and sized to some degree by known methods (see for example EP497524 and EP497525) and optionally by microfluidisation. Polysaccharides can be sized in order 35 to reduce viscosity in polysaccharide samples and/or to improve filterability for conjugated 5 products. Oligosaccharides have a low number of repeat units (typically 5-30 repeat units) and are typically hydrolysed polysaccharides. Each N. meningitidis (and/or Hib) capsular saccharide may be conjugated to a carrier 5 protein independently selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D. A more complete list of protein carriers that may be used in the conjugates of the invention is presented below. Although one or more N. meningitidis (and/or Hib) capsular saccharide may be conjugated to different carrier proteins from the others, in one embodiment they are all conjugated to the same carrier protein. For 10 instance they may all be conjugated to the same carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D. In this context CRM197 and DT may be considered to be the same carrier protein as they differ by only one amino acid. In an embodiment all the N. meningitidis (and/or Hib) capsular saccharides present are conjugated to TT. 15 If the protein carrier is the same for 2 or more saccharides in the composition, the saccharides could be conjugated to the same molecule of the protein carrier (carrier molecules having 2 more different saccharides conjugated to it) [see for instance WO 04/083251; for example, a single carrier protein might be conjugated to MenA and MenC; 20 MenA and MenW; MenA and MenY; MenC and MenW; MenC and MenY; Men W and MenY; MenA, MenC and MenW; MenA, MenC and MenY; MenA, MenW and MenY; MenC, MenW and MenY; MenA, MenC, MenW and MenY; Hib and MenA; Hib and MenC; Hib and MenW; or Hib and MenY]. Alternatively the saccharides may each be separately conjugated to different molecules of the protein carrier (each molecule of protein carrier 25 only having one type of saccharide conjugated to it). Immunogenic compositions of the first aspect of the invention may also have any or all the additional characteristics of the second aspect of the invention and vice versa. 30 In a second aspect of the invention there is presented an immunogenic composition comprising at least 2 different saccharides conjugated separately to the same type of carrier protein, wherein one or more saccharide(s) is/are conjugated to the carrier protein wherein the saccharide:protein ratio (w/w) is between 1:2-1:5 [a high ratio], and one or more different saccharides Is/are conjugated to the carrier protein wherein the 35 saccharide:protein ratio (w/w) is between 5:1-1:1.99 [a low ratio]. 6 By "conjugated separately to the same type of carrier protein" it is meant that the saccharides are conjugated to the same carrier individually (i.e. different saccharides are not conjugated to the same molecule of the same protein carrier). 5 The capsular saccharide(s) may be conjugated to the same type of carrier protein independently selected from the group consisting of TT, DT, CRM1 97, fragment C of TT and protein D. A more complete list of protein carriers that may be used in the conjugates of the invention is presented below. In this context CRM197 and DT may be considered to be the same carrier protein as they differ by only one amino acid. In an embodiment all 10 the capsular saccharides present are conjugated to TT. The high ratio (1:2-1:5) and low ratio (5:1-1:1.99) saccharides may be selected from a group consisting of: N. meningitidis serogroup A capsular saccharide (MenA), N. meningitidis serogroup C capsular saccharide (MenC), N. meningitidis serogroup Y 15 capsular saccharide (MenY), N. meningitidis serogroup W capsular saccharide (MenW), H. influenzae type b capsular saccharde (Hib), Group B Streptococcus group I capsular saccharide, Group B Streptococcus group 11 capsular saccharide, Group B Streptococcus group Ill capsular saccharide, Group B Streptococcus group IV capsular saccharide, Group B Streptococcus group V capsular saccharide, Staphylococcus aureus type 5 20 capsular saccharide, Staphylococcus aureus type 8 capsular saccharide, Vi saccharide from Salmonella typhi, N. meningitidis LPS (such as L3 and/or L2), M. catarrhalis LPS, H. influenzae LPS, and from any of the capsular pneumococcal saccharides such as from serotype: 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F or 33F. In one embodiment the immunogenic composition of the 25 invention consists of or comprises two or more different saccharides from the same genus of bacteria (e.g. Neisseria, Streptococcus, Staphylococcus, or Haemophilus). In one embodiment, MenA is a high ratio saccharide; in another Men W a low ratio saccharide; in another MenY a low ratio saccharide; in another MenC a high ratio 30 saccharide; in another MenC a low ratio saccharide; in another Hib a high ratio saccharide. Vaccines comprising MenA/C may be high/low ratio, respectively, vaccines comprising MenC/Y may be high/low ratio, respectively, vaccines comprising MenA/C/W/Y may be high/high/low/low ratio, respectively, and vaccines comprising MenA/C/W/Y may be high/low/low/low ratio, respectively. 35 General considerations in the aspects of the invention 7 The saccharides of the invention (in particular the N. meningitidis saccharides and/or the Hib capsular saccharide) included in pharmaceutical (immunogenic) compositions of the invention are conjugated to a carrier protein such as tetanus toxoid (TT), tetanus toxoid 5 fragment C, non-toxic mutants of tetanus toxin [note all such variants of TT are considered to be the same type of carrier protein for the purposes of this invention], diphtheria toxoid (DT), CRM197, other non-toxic mutants of diphtheria toxin [such as CRM176, CRM 197, CRM228, CRM 45 (Uchida et al J. Biol. Chem. 218; 3838-3844, 1973); CRM 9, CRM 45, CRM1 02, CRM 103 and CRM107 and other mutations described 10 by Nicholls and Youle in Genetically Engineered Toxins, Ed: Frankel, Maecel Dekker Inc, 1992; deletion or mutation of Glu-148 to Asp, Gin or Ser and/or Ala 158 to Gly and other mutations disclosed in US 4709017 or US 4950740; mutation of at least one or more residues Lys 516, Lys 526, Phe 530 and/or Lys 534 and other mutations disclosed in US 5917017 or US 6455673; or fragment disclosed in US 5843711] (note all such variants of 15 DT are considered to be the same type of carrier protein for the purposes of this invention), pneumococcal pneumolysin (Kuo et al (1995) Infect Immun 63; 2706-13), OMPC (meningococcal outer membrane protein - usually extracted from N. meningitidis serogroup B - EP0372501), synthetic peptides (EP0378881, EP0427347), heat shock proteins (WO 93/17712, WO 94/03208), pertussis proteins (WO 98/58668, EP0471177), 20 cytokines, lymphokines, growth factors or hormones (WO 91/01146), artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen derived antigens (Falugi et al (2001) Eur J Immunol 31; 3816-3824) such as N19 protein (Baraldoi et al (2004) Infect Immun 72; 4884-7) pneumococcal surface protein PspA (WO 02/091998), iron uptake proteins (WO 01/72337), toxin A or B of C. difficile (WO 00/61761) or Protein 25 D (EP59461 0 and WO 00/56360). In an embodiment, the immunogenic composition of the invention uses the same type of carrier protein (independently) in at least two, three, four or each of the saccharides (e.g. N. meningitidis capsular saccharides and/or Hib) contained therein. In an embodiment 30 where Hib and N. meningitidis capsular saccharides are present, Hib may be conjugated to the same carrier protein as the at least two, three, four or each of the N. meningitidis saccharides. For example, 2, 3 or 4 of the N. meningitidis saccharides (MenA,C,Y,W) are independently conjugated to tetanus toxoid to make 2, 3 or 4 conjugates, and optionally Hib is also conjugated to TT. 35 8 In an embodiment, the immunogenic composition of the invention comprises a N. meningitidis saccharide conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D. In an embodiment, the immunogenic composition of the invention comprises a Hib saccharide conjugated to a carrier protein 5 selected from the group consisting of TT, DT, CRM1 97, fragment C of TT and protein D. The immunogenic composition of the invention optionally comprises at least one meningococcal saccharide (for example MenA; MenC; MenW; MenY; MenA and MenC; MenA and MenW; MenA and MenY; MenC and Men W; Men C and MenY; Men W and 10 MenY; MenA, MenC and MenW; MenA, MenC and MenY; MenA, MenW and MenY; MenC, MenW and MenY or MenA, MenC, MenW and MenY) conjugate having a ratio of Men saccharide to carrier protein of between 1:5 and 5:1, between 1:2 and 5:1, between 1:0.5 and 1:2.5 or between 1:1.25 and 1:2.5(w/w). 15 The immunogenic composition of the invention optionally comprises a Hib saccharide conjugate having a ratio of Hib to carrier protein of between 1:5 and 5:1; 1:2 and 2:1; 1:1 and 1:4; 1:2 and 1:3.5; or around or exactly 1:2.5 or 1:3 (w/w). In an embodiment, the immunogenic composition of the invention the N. meningitidis 20 saccharide(s) and/or the Hib saccharide is conjugated to the carrier protein via a linker, for instance a bifunctional linker. The linker is optionally heterobifunctional or homobifunctional, having for example a reactive amino group and a reactive carboxylic acid group, 2 reactive amino groups or two reactive carboxylic acid groups. The linker has for example between 4 and 20, 4 and 12, 5 and 10 carbon atoms. A possible linker is 25 ADH. Other linkers include B-propionamido (WO 00/10599), nitrophenyl-ethylamine (Gever et al (1979) Med. Microbiol. Immunol. 165; 171-288), haloalkyl halides (US4057685), glycosidic linkages (US4673574, US4808700), hexane diamine and 6 aminocaproic acid (US4459286). 30 The saccharide conjugates present in the immunogenic compositions of the invention may be prepared by any known coupling technique. The conjugation method may rely on activation of the saccharide with 1-cyano-4-dimethylamino pyridinium tetrafluoroborate (CDAP) to form a cyanate ester. The activated saccharide may thus be coupled directly or via a spacer (linker) group to an amino group on the carrier protein. For example, the 35 spacer could be cystamine or cysteamine to give a thiolated polysaccharide which could be coupled to the carrier via a thioether linkage obtained after reaction with a maleimide 9 activated carrier protein (for example using GMBS) or a holoacetylated carrier protein (for example using lodoacetimide or N-succinimidyl bromoacetatebromoacetate). Optionally, the cyanate ester (optionally made by CDAP chemistry) is coupled with hexane diamine or ADH and the amino-derivatised saccharide is conjugated to the carrier protein using 5 using carbodiimide (e.g. EDAC or EDC) chemistry via a carboxyl group on the protein carrier. Such conjugates are described in PCT published application WO 93/15760 Uniformed Services University and WO 95/08348 and WO 96/29094. Other suitable techniques use carbiinides, hydrazides, active esters, norborane, p 10 nitrobenzoic acid, N-hydroxysuccinimide, S-NHS, EDC, TSTU. Many are described in WO 98/42721. Conjugation may involve a carbonyl linker which may be formed by reaction of a free hydroxyl group of the saccharide with CDI (Bethell et al J. Biol. Chem. 1979, 254; 2572-4, Heam et al J. Chromatogr. 1981. 218; 509-18) followed by reaction of with a protein to form a carbamate linkage. This may involve reduction of the anomeric terminus 15 to a primary hydroxyl group, optional protection/deprotection of the primary hydroxyl group' reaction of the primary hydroxyl group with CDI to form a CDI carbamate intermediate and coupling the CDl carbamate intermediate with an amino group on a protein. 20 The conjugates can also be prepared by direct reductive amination methods as described in US 4365170 (Jennings) and US 4673574 (Anderson). Other methods are described in EP-0-161-188, EP-208375 and EP-0-477508. A further method involves the coupling of a cyanogen bromide (or CDAP) activated 25 saccharide derivatised with adipic acid dihydrazide (ADH) to the protein carrier by Carbodlimide condensation (Chu C. et al Infect. Immunity, 1983 245 256), for example using EDAC. In an embodiment, a hydroxyl group (optionally an activated hydroxyl group for example a 30 hydroxyl group activated by a cyanate ester) on a saccharide is linked to an amino or carboxylic group on a protein either directly or indirectly (through a linker). Where a linker is present, a hydroxyl group on a saccharide is optionally linked to an amino group on a linker, for example by using CDAP conjugation. A further amino group in the linker for example ADH) may be conjugated to a carboxylic acid group on a protein, for example by 35 using carbodiimide chemistry, for example by using EDAC. In an embodiment, the Hib or N. meningitidis capsular saccharide(s) (or saccharide in general) is conjugated to the 10 linker first before the linker is conjugated to the carrier protein. Alternatively the linker may be conjugated to the carrier before conjugation to the saccharide. In general the following types of chemical groups on a protein carrier can be used for 5 coupling / conjugation: A) Carboxyl (for instance via aspartic acid or glutamic acid). In one embodiment this group is linked to amino groups on saccharides directly or to an amino group on a linker with carbodiimide chemistry e.g. with EDAC. 10 B) Amino group (for instance via lysine). In one embodiment this group is linked to carboxyl groups on saccharides directly or to a carboxyl group on a linker with carbodiimide chemistry e.g. with EDAC. In another embodiment this group is linked to hydroxyl groups activated with CDAP or CNBr on saccharides directly or to such groups 15 on a linker; to saccharides or linkers having an aldehyde group; to saccharides or linkers having a succinimide ester group. C) Sulphydryl (for instance via cysteine). In one embodiment this group is linked to a bromo or chloro acetylated saccharide or linker with maleimide chemistry. In one 20 embodiment this group is activated/modified with bis diazobenzidine. D) Hydroxyl group (for instance via tyrosine). In one embodiment this group is activated/modified with bis diazobenzidine. 25 E) Imidazolyl group (for instance via histidine). In one embodiment this group is activated/modified with bis diazobenzidine. F) Guanidyl group (for instance via arginine). 30 G) Indolyl group (for instance via tryptophan). On a saccharide, in general the following groups can be used for a coupling: OH, COOH or NH2. Aldehyde groups can be generated after different treatments known in the art such as: periodate, acid hydrolysis, hydrogen peroxide, etc. 35 11 Direct coupling approaches: Saccharide-OH + CNBr or CDAP ----- > cyanate ester + NH2-Prot ----> conjugate Saccharide-aldehyde + NH2-Prot ---- > Schiff base + NaCNBH3 --- > conjugate 5 Saccharide-COOH + NH2-Prot + EDAC --- > conjugate Saccharide-NH2 + COOH-Prot + EDAC ----> conjugate Indirect coupling via spacer (linker) approaches: 10 Saccharide-OH + CNBr or CDAP ---> cyanate ester + NH2----NH2 ---- > saccharide-- NH2 + COOH-Prot + EDAC ----- > conjugate Saccharide-OH + CNBr or CDAP ---- > cyanate ester + NH2----SH ---- > saccharide----SH + SH-Prot (native Protein with an exposed cysteine or obtained after modification of 15 amino groups of the protein by SPDP for instance) ---- > saccharide-S-S-Prot Saccharide-OH + CNBr or CDAP ---> cyanate ester + NH2----SH ------- > saccharide----SH + maleimide-Prot (modification of amino groups) --- > conjugate 20 Saccharide-COOH + EDAC + NH2---NH2 ---> saccharide-----NH2 + EDAC + COOH Prot ---- > conjugate Saccharide-COOH + EDAC+ NH2----SH --- > saccharide----SH + SH-Prot (native Protein with an exposed cysteine or obtained after modification of amino groups of the 25 protein by SPDP for instance) ---- > saccharide-S-S-Prot Saccharide-COOH + EDAC+ NH2----SH ----- > saccharide----SH + maleimide-Prot (modification of amino groups) ----> conjugate 30 Saccharide-Aldehyde + NH2----NH2 ----> saccharide---NH2 + EDAC + COOH-Prot ---- > conjugate Note: instead of EDAC above, any suitable carbodiimide may be used. 12 In summary, the types of protein carrier chemical group that may be generally used for coupling with a saccharide are amino groups (for instance on lysine residues), COOH groups (for instance on aspartic and glutamic acid residues) and SH groups (if accessible) (for instance on cysteine residues. 5 In an embodiment, the Hib saccharide, where present, is conjugated to the carrier protein using CNBr, or CDAP, or a combination of CDAP and carbodiimide chemistry (such as EDAC), or a combination of CNBr and carbodlimide chemistry (such as EDAC). Optionally Hib is conjugated using CNBr and carbodiimide chemistry, optionally EDAC. 10 For example, CNBr is used to join the saccharide and linker and then carbodiimide chemistry is used to join linker to the protein carrier. In an embodiment, at least one of the N. meningitidis capsular saccharides (or saccharide in general) is directly conjugated to a carrier protein; optionally Men W and/or 15 MenY and/or MenC saccharide(s) is directly conjugated to a carrier protein. For example MenW; MenY; MenC; MenW and MenY; MenW and MenC; MenY and MenC; or MenW, MenY and MenC are directly linked to the carrier protein. Optionally the at least one of the N. meningitidis capsular saccharides is directly conjugated by CDAP. For example MenW; MenY; MenC; MenW and MenY; MenW and MenC; MenY and MenC; or MenW, 20 MenY and MenC are directly linked to the carrier protein by CDAP (see WO 95/08348 and WO 96/29094). In an embodiment, all N. meningitidis capsular saccharides are conjugated to tetanus toxoid. Optionally the ratio of Men W and/or Y saccharide to carrier protein is between 1:0.5 and 25 1:2 (w/w) and/or the ratio of MenC saccharide to carrier protein is between1:0.5 and 1:4 or 1:0.5 and 1:1.5 (w/w), especially where these saccharides are directly linked to the protein, optionally using CDAP. In an embodiment, at least one of the N. meningitidis capsular saccharide(s) (or 30 saccharide in general) is conjugated to the carrier protein via a linker, for instance a bifunctional linker. The linker is optionally heterobifunctional or homobifunctional, having for example a reactive amine group and a reative carboxylic acid group, 2 reactive amine groups or 2 reactive carboxylic acid groups. The linker has for example between 4 and 20, 4 and 12, 5 and 10 carbon atoms. A possible linker is ADH. 35 13 in an embodiment, MenA; MenC; or MenA and MenC is conjugated to a carrier protein (for example tetanus toxoid) via a linker. In an embodiment, at least one N. meningitidis saccharide is conjugated to a carrier 5 protein via a linker using CDAP and EDAC. For example, MenA; MenC; or MenA and MenC are conjugated to a protein via a linker (for example those with two hydrazino groups at its ends such as ADH) using CDAP and EDAC as described above. For example, CDAP is used to conjugate the saccharide to a linker and EDAC is used to conjugate the linker to a protein. Optionally the conjugation via a linker results in a ratio of 10 saccharine to carrier protein of of between 1:0.5 and 1:6; 1:1 and 1:5 or 1:2 and 1:4, for MenA; MenC; or MenA and MenC. A further consideration in a combination vaccine comprising various saccharides conjugated to the same carrier is the issue of carrier immune suppression: too much 15 carrier may be used and the immune response may be dampened. With a uniform approach to conjugation the carrier will present a similar blend of B- and T- cell epitopes to the immune system. However if conjugation takes place at different chemical groups within the carrier protein for one saccharide versus another, the protein carriers are likely to be different to some extent in how they present themselves to the immune system. 20 Accordingly for all aspects of the invention herein there is also provided an immunogenic composition comprising at least 2 different saccharides conjugated separately to the same type of carrier protein (for instance tetanus toxoid), wherein one or more saccharide(s) is/are conjugated to the carrier protein via a first type of chemical group on the protein 25 carrier, and one or more saccharide(s) is/are conjugated to the carrier protein via a second (different) type of chemical group on the protein carrier. The first and second types of chemical group may be present in the protein carrier on a mutually exclusive first and second set of amino acids of the protein carrier (for instance 30 certain aspartic acid / glutamic acid residues in one set and certain lysine/arginine residues in the second). One saccharide may be conjugated to a carboxyl group on the carrier, and another on an amino group for instance. Such conjugation may involve conjugation on separate B- and/or T-cell epitopes for each different conjugate. 35 For instance in a MenAC vaccine, MenA may be linked to a first type of chemical group (such as carboxyl) on the carrier protein and MenC linked to a second (such as amino). In 14 a MenCY vaccine MenC may be linked to a first type of chemical group (such as carboxyl) on the carrier protein and MenY linked to a second (such as amino). In a MenACWY vaccine, MenAC may be linked to a first type of chemical group (such as carboxyl) on the carrier protein and MenWY linked to a second (such as amino), or MenA may be linked to 5 a first type of chemical group (such as carboxyl) on the carrier protein and MenCWY linked to a second (such as amino). In one embodiment the 2 conjugates may involve the same type of saccharide linked to the same type of carrier, but by different conjugation chemistries. In an alternative 10 embodiment 2 different saccharides are conjugated to different groups on the protein carrier. By "conjugated separately to the same type of carrier protein" it is meant that the saccharides are conjugated to the same carrier individually (i.e. both first and second chemical groups on the same molecule of protein carrier are not used to conjugate the saccharide moieties, rather the first chemical group on a first aliquot of protein carrier is 15 used in respect of conjugating a first saccharide, and a second chemical group on a second aliquot of the protein carrier is used in respect of conjugating a second saccharide). In one embodiment the first and second type of chemical group on the protein carrier are 20 present on separate B- and/or T-cell epitopes on the carrier protein. That is, they are present on a different set of B- and/or T-cell epitopes from each other. To predict B-cell epitopes for a carrier known methods may be used such as either or both of the following two methods: 2D-structure prediction and/or antigenic index prediction. 2D-structure prediction can be made using the PSIPRED program (from David Jones, Brunel 25 Bioinformatics Group, Dept. Biological Sciences, Brunel University, Uxbridge UB8 3PH, UK). The antigenic index can be calculated on the basis of the method described by Jameson and Wolf (CABIOS 4:181-186 [1988]). The parameter used in this program are the antigenic index and the minimal length for an antigenic peptide. An antigenic index of 0.9 for a minimum of 5 consecutive amino acids can be used as the thresholds in the 30 program. T-helper cell epitopes are peptides bound to HLA class II molecules and recognized by T-helper cells. The prediction of useful T-helper cell epitopes can be based on known techniques, such as the TEPITOPE method describe by Stumiolo at al. (Nature Biotech. 17: 555-561 [1999]). 35 The first and second chemical groups present on the protein carrier are optionally different from each other and are ideally natural chemical groups that may be readily used for 15 conjugation purposes. They may be selected independently from the group consisting of: carboxyl groups, amino groups, sulphydryl groups, Hydroxyl groups, Imidazolyl groups, Guanidyl groups, and Indolyl groups. In one embodiment the first chemical group is carboxyl and the second is amino, or vice versa. These groups are explained in greater 5 detail above, In a specific embodiment the immunogenic composition comprises at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA and MenC which is/are conjugated to the carrier protein via the first 10 type of chemical group on the protein carrier (for instance carboxyl), and one or more different saccharides is/are selected from a second group consisting of MenC, MenY and MenW which is/are conjugated to the carrier protein via the second type of chemical group on the protein carrier (for instance amino). 15 In a further embodiment the immunogenic composition of the invention comprises MenA conjugated via the first type of chemical group (for instance carboxyl), and MenC conjugated via the second type of chemical group (for instance amino). In another embodiment the immunogenic composition comprises MenC conjugated via 20 the first type of chemical group (for instance carboxyl), and MenY conjugated via the second type of chemical group (for instance amino). In another embodiment the immunogenic composition comprises MenA conjugated via the first type of chemical group (for instance carboxyl), and MenC, MenY and MenW 25 conjugated via the second type of chemical group (for instance amino). In another embodiment the immunogenic composition comprises MenA and MenC conjugated via the first type of chemical group (for instance carboxyl), and MenY and MenW conjugated via the second type of chemical group (for instance amino). 30 In any of the above embodiments Hib may also be present also conjugated to the same type of protein carrier. Hib may be conjugated to the carrier by the first or second type of chemical group. In one embodiment it is conjugated via a carboxyl group. 35 In an embodiment, the MenA capsular saccharide, where present, is at least partially 0 acetylated such that at least 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units 16 are 0-acetylated at at least one position. 0-acetylation is for example present at least at the 0-3 position of at least 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units. In an embodiment, the MenC capsular saccharide, where present, is is at least partially 0 5 acetylated such that at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of (a2 -+9)-linked NeuNAc repeat units are 0-acetylated at at least one or two positions. 0 acetylation is for example present at the 0-7 and/or 0-8 position of at least 30%. 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units. 10 In an embodiment, the MenW capsular saccharide, where present, is is at least partially 0-acetylated such that at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are 0-acetylated at at least one or two positions. 0-acetylation is for example present at the 0-7 and/or 0-9 position of at least 30%. 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units. 15 in an embodiment, the MenY capsular saccharide, where present, is at least partially 0 acetylated such that at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% of the repeat units are 0-acetylated at at least one or two positions. 0-acetylation is present at the 7 and/or 9 position of at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 20 98% of the repeat units. The percentage of O-acetylation refers to the percentage of the repeat units containing 0 acetylation. This may be measured in the saccharide prior to conjugate and/or after conjugation. 25 In one embodiment of the invention the immunogenic composition is such wherein each saccharide present, or each type of N. meningitidis capsular saccharide present, is conjugated to TT. In a further embodiment each type of N. meningitidis capsular saccharide is separately conjugated to a separate type of carrier protein. In a further 30 embodiment each N. meningitidis capsular saccharide conjugate has a saccharide:carrier ratio of 1:5-5:1 or 1:1-1:4(w/w). In a further embodiment at least one, two or three N. meningitidis capsular saccharide conjugate(s) is directly conjugated to a carrier protein. In a further embodiment Men W and/or MenY, MenW and/or MenC, MenY and/or MenC, or MenW and MenC and MenY are directly conjugated to a carrier protein. In a further 35 embodiment at least one, two or three N. meningitidis saccharide conjugate(s) is directly 17 conjugated by CDAP chemistry. In a further embodiment the ratio of Men W and/or Y saccharide to carrier protein is between 1:0.5 and 1:2 (w/w). In a further embodiment the ratio of MenC saccharide to carrier protein is between 1:0.5 and 1:2 (w/w). In a further embodiment at least one, two or three N. meningitidis capsular saccharide(s) are 5 conjugated to the carrier protein via a linker (which may be bifunctional such as having two reactive amino groups (such as ADH) or two reactive carboxyl groups, or a reactive amino group at one end and a reactive carboxyl group at the other). The linker can have between 4 and 12 carbon atoms. In a further embodiment the or each N. meningitidis capsular saccharide(s) conjugated via a linker are conjugated to the linker with CDAP 10 chemistry. In a further embodiment the carrier protein is conjugated to the linker using carbodiimide chemistry, optionally using EDAC. In a further embodiment the or each N. meningitidis capsular saccharide is conjugated to the linker before the carrier protein is conjugated to the linker. In a further embodiment MenA is conjugated to a carrier protein via a linker (the ratio of MenA saccharide to carrier protein may be between 1:2 and 1:5 15 (wiw)). In a further embodiment MenC is conjugated to a carrier protein via a linker (the ratio of MenC saccharide to carrier protein may be between 1:2 and 1:5 (w/w)). The immunogenic composition of the invention optionally comprise one or more saccharide conjugates wherein the average size of each saccharide before conjugation is 20 above 50kDa, 75kDa, 1OOkDa, 110kDa, 120kDa or 130kDa. In one embodiment the conjugate post conjugation should be readily filterable through a 0.2 micron filter such that a yield of more than 50, 60, 70, 80, 90 or 95% is obtained post filtration compared with the pre filtration sample. 25 In particular, the immunogenic composition of the invention comprises N. meningitidis capsular saccharides from at least one, two, three or four of serogroups A, C, W and Y conjugated to a carrier protein, wherein the average size (weight-average molecular weight; Mw) of at least one, two, three or four or each N. meningitidis saccharide is above 50kDa, 60kDa, 75kDa, 1OOkDa, 11OkDa, 120kDa or 130kDa. 30 The immunogenic composition may comprise N. meningitidis capsular saccharides from at least one, two, three or four of serogroups A, C, W and Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis saccharide is either a native saccharide or is sized by a factor up to x1.5, x2, x3, x4, x5, x6, x7, x8, x9 or 35 x1O relative to the weight average molecular weight of the native polysaccharide. 18 For the purposes of the invention, "native polysaccharide" refers to a saccharide that has not been subjected to a process, the purpose of which is to reduce the size of the saccharide. A polysaccharide can become slightly reduced in size during normal purification procedures. Such a saccharide is still native. Only if the polysaccharide has 5 been subjected to sizing techniques would the polysaccharide not be considered native. For the purposes of the invention, "sized by a factor up to x2" means that the saccharide is subject to a process intended to reduce the size of the saccharide but to retain a size more than half the size of the native polysaccharide. X3, x4 etc. are to be interpreted in 10 the same way i.e. the saccharide is subject to a process intended to reduce the size of the polysaccharide but to retain a size more than a third, a quarter etc. the size of the native polysaccharide. In an aspect of the invention, the immunogenic composition comprises N. meningitidis 15 capsular saccharides from at least one, two, three or four of serogroups A, C, W and Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis saccharide is native polysaccharide. In an aspect of the invention, the immunogenic composition comprises N. meningitidis 20 capsular saccharides from at least one, two, three or four of serogroups A, C, W and Y conjugated to a carrier protein, wherein at least one, two, three or four or each N. meningitidis saccharide is sized by a factor up to x2, x3, x4, x5, x6, x7, x8, x9 or x10. The immunogenic compositions of the invention optionally comprise conjugates of : N. 25 meningitidis serogroup C capsular saccharide (MenC), serogroup A capsular saccharide (MenA), serogroup W135 capsular saccharide (MenW), serogroup Y capsular saccharide (MenY), serogroup C and Y capsular saccharides (MenCY), serogroup C and A capsular saccharides (MenAC), serogroup C and W capsular saccharides (MenCW), serogroup A and Y capsular saccharide (MenAY), serogroup A and W capsular saccharides (MenAW), 30 serogroup W and Y capsular saccharides (Men WY), serogroup A, C and W capsular saccharide (MenACW), serogroup A, C and Y capsular saccharides (MenACY); serogroup A, W135 and Y capsular saccharides (MenAWY), serogroup C, W135 and Y capsular saccharides (MenCWY); or serogroup A, C, W135 and Y capsular saccharides (MenACWY). This is the definition of "one , two, three or four", or "at least one of" of 35 serogroups A, C, W and Y, or of each N. meningitidis saccharide where mentioned herein. 19 In an embodiment, the average size of at least one, two, three, four or each N. meningitidis saccharide is between 50KDa and 1500kDa, 50kDa and 500kDa, 50 kDa and 300 KDa, 101kDa and 1500kDa, 101kDa and 500kDa, 101kDa and 300kDa as determined by MALLS. 5 In an embodiment, the MenA saccharide, where present, has a molecular weight of 50 500kDa, 50-100kDa, 100-500kDa, 55-90KDa, 60-7OkDa or 70-8OkDa or 60-8OkDa by MALLS. 10 In an embodiment, the MenC saccharide, where present, has a molecular weight of 100 200kDa, 50-100kDa, 100-150kDa, 101-130kDa, 150-210kDa or 180-210kDa by MALLS. In an embodiment the MenY saccharide, where present, has a molecular weight of 60 190kDa, 70-180kDa, 80-170kDa, 90-160kDa, 100-150kDa or 110-140kDa, 50-100kDa, 15 100-140kDa, 140-170kDa or 150-160kDa by MALLS. In an embodiment the MenW saccharide, where present, has a molecular weight of 60 19OkDa, 70-180kDa, 80-170kDa, 90-1160kDa, 100-150kDa, 110-140kDa, 50-1100kDa or 120-140kDa by MALLS. 20 The molecular weight or average molecular weight of a saccharide herein refers to the weight-average molecular weight (Mw) of the saccharide measured prior to conjugation and is measured by MALLS. 25 The MALLS technique is well known in the art and is typically carried out as described in example 2. For MALLS analysis of meningococcal saccharides, two columns (TSKG6000 and 5000PWxI TOSOH Bioscience) may be used in combination and the saccharides are eluted in water. Saccharides are detected using a light scattering detector (for instance Wyatt Dawn DSP equipped with a 10mW argon laser at 488nm) and an inferometric 30 refractometer (for instance Wyatt Otilab DSP equipped with a P100 cell and a red filter at 498nm). In an embodiment the N. meningitidis saccharides are native polysaccharides or native polysaccharides which have reduced in size during a normal extraction process. 35 20 In an embodiment, the N. meningitidis saccharides are sized by mechanical cleavage, for instance by microfluidisation or sonication. Microfluidisation and sonication have the advantage of decreasing the size of the larger native polysaccharides sufficiently to provide a filterable conjugate. Sizing is by a factor of no more than x20, x1O, x8, x6, x5, 5 x4, x3 or x2. In an embodiment, the immunogenic composition comprises N. meningitidis conjugates that are made from a mixture of native polysaccharides and saccharides that are sized by a factor of no more than x20. For example, saccharides from MenC and/or MenA are 10 native. For example, saccharides from MenY and/or MenW are sized by a factor of no more than x20, x10, x8, x6, x5, x4, x3 or x2. For example, an immunogenic composition contains a conjugate made from MenY and/or MenW and/or MenC and/or MenA which is sized by a factor of no more then x10 and/or is microfluidised. For example, an immunogenic composition contains a conjugate made from native MenA and/or MenC 15 and/or MenW and/or MenY. For example, an immunogenic composition comprises a conjugate made from native MenC. For example, an immunogenic composition comprises a conjugate made from native MenC and MenA which is sized by a factor of no more then x1O and/or is microfluidised. For example, an immunogenic composition comprises a conjugate made from native MenC and MenY which is sized by a factor of no more then 20 x1 0 and/or is microfluidised. In an embodiment, the polydispersity of the saccharide is 1-1.5, 1-1.3, 1-1.2, 1-1.1 or 1 1.05 and after conjugation to a carrier protein, the polydispersity of the conjugate is 1.0 2,5, 1.0-2.0. 1.0-1.5, 1.0-1.2, 1.5-2.5, 1.7-2.2 or 1.5-2.0. All polydispersity measurements 25 are by MALLS. Saccharides are optionally sized up to 1.5, 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20 times from the size of the polysaccharide isolated from bacteria. 30 In one embodiment each N. meningitidis saccharide is either a native polysaccharide or is sized by a factor of no more than x1O. In a further embodiment each N. meningitidis capsular saccharide is a native polysaccharide. In a further embodiment at least one, two, three or four N. meningitidis capsular saccharide(s) is sized by microfluidization. In a further embodiment each N. meningitidis capsular saccharide is sized by a factor of no 35 more than x1O. In a further embodiment the N. meningitidis conjugates are made from a mixture of native polysaccharides and saccharides that are sized by a factor of no more 21 than x1O. In a further embodiment the capsular saccharide from serogroup Y is sized by a factor of no more than x1O. In a further embodiment capsular saccharides from serogroups A and C are native polysaccharides and saccharides from serogroups W135 and Y are sized by a factor of no more than x1O. In a further embodiment the average size 5 of each N. meningitidis capular saccharide is between 50 kDa and 300 KDa or 50kDa and 200kDa. In a further embodiment the immunogenic composition comprises a MenA capsular saccharide having an average size of above 50kDa, 75kDa, 1OOkDa or an average size of between 50-100kDa or 55-90KDa or 60-8OkDa. In a further embodiment the immunogenic composition comprises a MenC capsular saccharide having an average 10 size of above 50kDa, 75kDa, 1OOkDa or between 100-200kDa, 100-150kDa, 80-120kDa , 90-110kDa, 150-200kDa, 120-24OkDa, 140-22OkDa, 160-200kDa or 190-200kDa. In a further embodiment the immunogenic composition comprises a MenY capsular saccharide, having an average size of above 5OkDa, 75kDa, 1OOkDa or between 60 190kDa or 70-180kDa or 80-170kDa or 90-160kDa or 100-150kDa , 110-145kDa or 120 15 140kDa. In a further embodiment the immunogenic composition comprises a MenW capsular saccharide having an average size of above 50kDa, 75kDa, 1 OOkDa or between 60-190kDa or 70-180kDa or 80-170kDa or 90-160kDa or 100-150kDa, 140-180kDa, 150 170kDa or 110-140kDa. 20 The immunogenic composition of the invention may comprise a H. influenzae b capsular saccharide (Hib) conjugated to a carrier protein. This may be conjugated to a carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D, for instance TT. The Hib saccharide may be conjugated to the same carrier protein as for at least one, two, three or all of the N. meningitidis capsular saccharide 25 conjugates, for instance TT. The ratio of Hib to carrier protein in the Hib capsular saccharide conjugate may be between 1:5 and 5:1 (w/w), for instance between 1:1 and 1:4, 1:2 and 1:3.5 or around 1:3 (w/w). The Hib capsular saccharide may be conjugated to the carrier protein via a linker (see above). The linker may be bifunctional (with two reactive amino groups, such as ADH, or two reactive carboxylic acid groups, or a reactive 30 amino group at one end and a reactive carboxylic acid group at the other end). It may have between 4 and 12 carbon atoms. Hib saccharide may be conjugated to the carrier protein or linker using CNBr or CDAP. The carrier protein may be conjugated to the Hib saccharide via the linker using a method comprising carbodiimide chemistry, optionally EDAC chemistry (thus using the carboxyl chemical group on the carrier). The dose of the 35 Hib saccharide conjugate may be between 0.1 and 9 ±g, 1 and 5 g or 2 and 3 g of saccharide. 22 In a further embodiment, the immunogenic composition of the invention comprises a Hib saccharide conjugate and at least two N. meningitidis saccharide conjugates wherein the Hib conjugate is present in a lower saccharide dose than the mean saccharide dose of the 5 at least two N. meningitidis saccharide conjugates. Alternatively, the Hib conjugate is present in a lower saccharide dose than the saccharide dose of each of the at least two N. meningitidis saccharide conjugates. For example, the dose of the Hib conjugate may be at least 10%, 20%, 30%, 40%, 50%, 60%, 70% or 80% lower than the mean or lowest saccharide dose of the at least two further N. meningitidis saccharide conjugates. 10 The mean dose is determined by adding the doses of all the further saccharides and dividing by the number of further saccharides. Further saccharides are all the saccharides within the immunogenic composition apart from Hib and can include N. meningitidis capsular saccharides. The 'dose" is in the amount of immunogenic composition or 15 vaccine that is administered to a human. A Hib saccharide is the polyribosyl phosphate (PRP) capsular polysaccharide of Haemophilus influenzae type b or an oligosaccharide derived therefrom. 20 "At least two further bacterial saccharide conjugates" is to be taken to mean two further bacterial saccharide conjugates in addition to a Hib conjugate. The two further bacterial conjugates may include N. meningitidis capular saccharide conjugates. The immunogenic compositions of the invention may comprise further saccharide 25 conjugates derived from one or more of Neisseria meningitidis, Streptococcus pneumoniae, Group A Streptococci, Group B Streptococci, S. typhi, Staphylococcus aureus or Staphylococcus epidermidis. In an embodiment, the immunogenic composition comprises capsular saccharides derived from one or more of serogroups A, C, W135 and Y of Neisseria meningitidis. A further embodiment comprises capsular saccharides 30 derived from Streptococcus pneumoniae. The pneumococcal capsular saccharide antigens are optionally selected from serotypes 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F (optionally from serotypes 1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F). A further embodiment comprises the Type 5, Type 8 or 336 capsular saccharides of Staphylococcus aureus. A further embodiment 35 comprises the Type I, Type Il or Type Ill capsular saccharides of Staphylococcus epidermidis. A further embodiment comprises the Vi saccharide from S. typhi. A further 23 embodiment comprises the Type la, Type Ic, Type 11, Type Ill or Type V capsular saccharides of Group B streptocoocus. A further embodiment comprises the capsular saccharides of Group A streptococcus, optionally further comprising at least one M protein and more optionally multiple types of M protein. 5 The immunogenic compositions of the invention may also comprise a DTPa or DTPw vaccine (for instance one containing DT, TT, and either a whole cell pertussis (Pw) vaccine or an acellular pertussis (Pa) vaccine (comprising for instance pertussis toxoid, FHA, pertactin, and, optionally agglutinogins 2 and 3). Such combinations may also 10 comprise a vaccine against hepatitis B (for instance it may comprise hepatitis B surface antigen [HepB], optionally adsorbed onto aluminium phosphate). In one embodiment the immunogenic composition of the invention comprises a DTPwHepBHibMenAC vaccine where the MenAC component is as described herein. 15 In an embodiment, the immunogenic composition of the invention further comprises an antigen from N. meningitidis serogroup B. The antigen is optionally a capsular polysaccharide from N. meningitidis serogroup B (MenB) or a sized polysaccharide or oligosaccharide derived therefrom, which may be conjugated to a protein carrier. The antigen is optionally an outer membrane vesicle preparation from N. meningitidis 20 serogroup B as described in EP301992, WO 01/09350, WO 04/14417, WO 04/14418 and WO 04/14419. In general, the immunogenic composition of the invention may comprise a dose of each saccharide conjugate between 2 and 20pg, 3 and 1 Opg or 4 and 7pg of saccharide. 25 In an embodiment, the immunogenic composition of the invention contains each N. meningitidis capsular saccharide at a dose of between 0.1-20pg; 1-1 Ogg; 2-1 Ogg, 2.5-5jg, around or exactly 5pg; or around or exactly 2.5pg. 30 In an embodiment, the immunogenic composition of the invention for example contains the Hib saccharide conjugate at a saccharide dose between 0.1 and 911g; 1 and 5jig or 2 and 3pg or around or exactly 2.5pg. In a further embodiment the immunogenic composition of the Invention for example contains the Hib saccharide conjugate at a saccharide dose between 0.1 and 9g; 1 and 5pg or 2 and 3gg or around or exactly 2.5 g 24 and each of the N. meningitidis polysaccharide conjugates at a saccharide dose of between 2 and 20gg, 3 and 10 gg, or between 4 and 7pg or around or exactly 5sg. "Around" or "approximately" are defined as within 10% more or less of the given figure for 5 the purposes of the invention. In an embodiment, the immunogenic composition of the invention may contain a saccharide dose of the Hib saccharide conjugate which is for example less than 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the mean saccharide dose of at 10 least two, three, four or each of the N. meningitidis saccharde conjugates. The saccharide dose of the Hib saccharide is for example between 20% and 60%, 30% and 60%, 40% and 60% or around or exactly 50% of the mean saccharide dose of at least two, three, four or each of the N. meningitidis saccharide conjugates. 15 In an embodiment, the immunogenic composition of the invention contains a saccharide dose of the Hib saccharide conjugate which is for example less than 90%, 80%, 75%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the lowest saccharide dose of the at least two, three, four or each of the N. meningitidis saccharide conjugates. The saccharide dose of the Hib saccharide is for example between 20% and 60%, 30% and 60%, 40% 20 and 60% or around or exactly 50% of the lowest saccharide dose of the at least two, three, four or each of the N. meningitidis saccharide conjugates. In an embodiment of the invention, the saccharide dose of each of the at least two, three, four or each of the N. meningitidis saccharide conjugates is optionally the same, or 25 approximately the same. Examples of immunogenic compositions of the invention are compositions consisting of or comprising: Hib conjugate and MenA conjugate and MenC conjugate, optionally at saccharide dose 30 ratios of 1:2:2, 1:2:1, 1:4:2, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally, the saccharide dose of MenA is greater than the saccharide dose of MenC. Hib conjugate and MenC conjugate and MenY conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally, the saccharide dose of MenC is greater than the saccharide dose of MenY. 35 Hib conjugate and MenC conjugate and MenW conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally the saccharide dose of MenC is greater than the saccharide dose of MenW. 25 Hib conjugate and MenA conjugate and MenW conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8;4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally, the saccharide dose of MenA is greater than the saccharide dose of MenW. Hib conjugate and MenA conjugate and MenY conjugate, optionally at saccharide dose 5 ratios of 1:2:2, 1:2:1, 1:4:2, 1:4:1, 1:8:4, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally the saccharide dose of MenA is greater than the saccharide dose of MenY. Hib conjugate and MenW conjugate and MenY conjugate, optionally at saccharide dose ratios of 1:2:2, 1:2:1, 1:1:2, 1:4:2, 1:2:4, 1:4:1, 1:1:4, 1:3;6, 1:1:3, 1:6:3, 1:3:3, 1:4:4, 1:5:5, 1:6:6 (w/w). Optionally the saccharide dose of MenY is greater than the saccharide 10 dose of MenW. MenA, MenC, MenW and MenY at saccharide dose ratios of 1:1:1:1 or 1:2:1:1 or 2:1:1:1 or 2:2:1:1 or 1:3:1:1 or 1:4:1:1 (w/w). A further aspect of the invention is a vaccine comprising the immunogenic composition of 15 the invention and a pharmaceutically acceptable excipient. In an embodiment, the immunogenic composition of the invention is buffered at, or adjusted to, between pH 7.0 and 8.0, pH 7.2 and 7.6 or around or exactly pH 7.4. 20 The immunogenic composition or vaccines of the invention are optionally lyophilised in the presence of a stabilising agent for example a polyol such as sucrose or trehalose. Optionally, the immunogenic composition or vaccine of the invention contains an amount of an adjuvant sufficient to enhance the immune response to the immunogen. Suitable 25 adjuvants include, but are not limited to, aluminium salts (aluminium phosphate or aluminium hydroxide), squalene mixtures (SAF-1), muramyl peptide, saponin derivatives, mycobacterium cell wall preparations, monophosphoryl lipid A, mycolic acid derivatives, non-ionic block copolymer surfactants, Quil A, cholera toxin B subunit, polyphosphazene and derivatives, and immunostimulating complexes (ISCOMs) such as those described by 30 Takahashi et al. (1990) Nature 344:873-875. For the N. meningitidis or HibMen combinations discussed above, it may be advantageous not to use any aluminium salt adjuvant or any adjuvant at all. 35 As with all immunogenic compositions or vaccines, the immunologically effective amounts of the immunogens must be determined empirically. Factors to be considered include the immunogenicity, whether or not the immunogen will be complexed with or covalently 26 attached to an adjuvant or carrier protein or other carrier, route of administrations and the number of immunising dosages to be administered. The active agent can be present in varying concentrations in the pharmaceutical 5 composition or vaccine of the invention. Typically, the minimum concentration of the substance is an amount necessary to achieve its intended use, while the maximum concentration is the maximum amount that will remain in solution or homogeneously suspended within the initial mixture. For instance, the minimum amount of a therapeutic agent is optionally one which will provide a single therapeutically effective dosage. For 10 bioactive substances, the minimum concentration is an amount necessary for bioactivity upon reconstitution and the maximum concentration is at the point at which a homogeneous suspension cannot be maintained. In the case of single-dosed units, the amount is that of a single therapeutic application. Generally, it is expected that each dose will comprise 1-100 g of protein antigen, optionally 5-50pg or 5-25pg. Examples of doses 15 of bacterial saccharides are 10-20pg, 5-10I.Lg, 2.5-54g or 1-2.5kg of saccharide in the conjugate. The vaccine preparations of the present invention may be used to protect or treat a mammal (for example a human patient) susceptible to infection, by means of 20 administering said vaccine via systemic or mucosal route. A human patient is optionally an infant (under 12 months), a toddler (12-24, 12-16 or 12-14 months), a child (2-12, 3-8 or 3-5 years) an adolescent (12-20, 14-20 or 15-19 years) or an adult. These administrations may include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory, 25 genitourinary tracts. Intranasal administration of vaccines for the treatment of pneumonia or otitis media is preferred (as nasopharyngeal carriage of pneumococci can be more effectively prevented, thus attenuating infection at its earliest stage). Although the vaccine of the invention may be administered as a single dose, components thereof may also be co-administered together at the same time or at different times (for instance if 30 saccharides are present in a vaccine these could be administered separately at the same time or 1-2 weeks after the administration of a bacterial protein vaccine for optimal coordination of the immune responses with respect to each other). In addition to a single route of administration, 2 different routes of administration may be used. For example, viral antigens may be administered ID (intradermal), whilst bacterial proteins may be 35 administered IM (intramuscular) or IN (intranasal). If saccharides are present, they may be administered IM (or ID) and bacterial proteins may be administered IN (or ID). In 27 addition, the vaccines of the invention may be administered IM for priming doses and IN for booster doses. Vaccine preparation is generally described in Vaccine Design ("The subunit and adjuvant 5 approach" (eds Powell M.F. & Newman M.J.) (1995) Plenum Press New York). Encapsulation within liposomes is described by Fullerton, US Patent 4,235,877. A further aspect of the invention is a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring 10 protection in a host against disease caused by Bordetella perussis, Clostridium tetani, Corynebacterium diphtheriae and Neisseria meningitidis and optionally Haemophilus influenzae. For example, the kit optionally comprises a first container comprising one or more of: 15 tetanus toxoid (TT), diphtheria toxoid (DT), and whole cell or acellular pertussis components and a second container comprising: 20 an immunogenic composition of the invention as described above (for instance those comprising Men or HibMen saccharide conjugate combinations). A further aspect of the invention is a vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring 25 protection in a host against diease caused by Streptococcus pneumoniae and Neisseria meningitidis and optionally Haemophilus influenzae. For example, the kit optionally comprises a first container comprising: one or more conjugates of a carrier protein and a capsular saccharide from Streptococcus 30 pneumoniae [where the capsular saccharide is optionally from a pneumococcal serotype selected from the group consisting of 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F]. and a second container comprising: 35 an immunogenic composition of the invention as described above (for instance those comprising Men or HibMen saccharide conjugate combinations). Examples of the Hib conjugate and the N. meningitidis polysaccharide conjugates are as described above. 28 Typically the Streptococcus pneumoniae vaccine in the vaccine kit of the present invention (or in any of the immunogenic compositions of the invention described above) will comprise saccharide antigens (optionally conjugated), wherein the saccharides are 5 derived from at least four serotypes of pneumococcus chosen from the group consisting of 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F. Optionally the four serotypes include 6B, 14, 19F and 23F. More optionally, at least 7 serotypes are included in the composition, for example those derived from serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F. Optionally more than 7 serotypes are 10 included in the composition, for instance at least 10, 11, 12, 13 or 14 serotypes. For example the composition in one embodiment includes 10 or 11 capsular saccharides derived from serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F, and optionally 3 (all optionally conjugated). In an embodiment of the invention at least 13 saccharide antigens (optionally conjugated) are included, although further saccharide antigens, for example 23 15 valent (such as serotypes 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F), are also contemplated by the invention. The pneumococcal saccharides are independently conjugated to any known carrier protein, for example CRM197, tetanus toxoid, diphtheria toxoid, protein D or any other 20 carrier proteins as mentioned above. Optionally, the vaccine kits of the invention comprise a third component. For example, the kit optionally comprises a first container comprising one or more of: 25 tetanus toxoid (TT), diphtheria toxoid (DT), and whole cell or acellular pertussis components and a second container comprising: 30 one or more conjugates of a carrier protein and a capsular saccharide from Streptococcus pneumoniae [where the capsular saccharide is optionally from a pneumococcal serotype selected from the group consisting of 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F]. 35 and a third container comprising: 29 an immunogenic composition of the invention as described above (for instance those comprising Men or HibMen saccharide conjugate combinations). A further aspect of the invention is a process for making the immunogenic composition or 5 vaccine of the invention, comprising the step of mixing the saccharides of the invention, for instance mixing N. meningitidis capsular saccharides from at least one, two, three or all four of serogroups A, C, W and Y conjugated to a carrier protein with a pharmaceutically acceptable excipient. 10 A further aspect of the invention is a method of immunising a human host against disease caused by N. meningitidis and optionally Haemophilus influenzae infection comprising administering to the host an immunoprotective dose of the immunogenic composition or vaccine or kit of the invention optionally using a single dose. 15 An independent aspect of the invention Is a method of Immunising a human host with an immunogenic composition comprising at least 2 different N. meningitidis capsular saccharide conjugates selected from the group consisting of serogroup A, C, W and Y (optionally MenA, C, W and Y) wherein a single dose administration (optionally to teenagers, aldults or children) results in a blood test taken one month after administration 20 giving over 50%, 60%, 70%, 80%, 90% or 95% responders in an SBA assay measuring levels of response against MenA, MenC, MenW and/or MenY. Optionally the SBA assay is as described in Example 9 with responder assessed as described in Example 9. A further independent aspect of the invention is an immunogenic composition comprising 25 MenA , MenC, MenW and/or MenY conjugates which is capable of eliciting an immune response after a single dose such that over 50%, 60%, 70%, 80%, 90% or 95% of human subjects (children, teenagers or adults) inoculated are classified as responders in an SBA assay on blood extracted a month after inoculation (optionally using the criteria described in example 9). 30 Such an immunogenic composition optionally has the further structural characteristics described herein. 30 A further aspect of the invention is an immunogenic composition of the invention for use in the treatment or prevention of disease caused by N. meningitidis and optionally Haemophilus influenzae infection. 5 A further aspect of the invention is use of the immunogenic composition or vaccine or kit of the invention in the manufacture of a medicament for the treatment or prevention of diseases caused by N. meningitidis and optionally Haemophilus influenzae infection. The terms "comprising', "comprise" and "comprises" herein are intended by the inventors 10 to be optionally substitutable with the terms "consisting of, "consist of' and "consists of, respectively, in every instance. All references or patent applications cited within this patent specification are incorporated by reference herein. 15 The invention is illustrated in the accompanying examples. The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative , but do not limit the invention. 20 31 Examples Example 1 - preparation of polysaccharide conjugates 5 The covalent binding of Haemophilus influenzae (Hib) PRP polysaccharide to TT was carried out by a coupling chemistry developed by Chu et al (Infection and Immunity 1983, 40 (1); 245-256). Hib PRP polysaccharide was activated by adding CNBr and incubating at pHl10.5 for 6 minutes. The pH was lowered to pH8.75 and adipic acid dihyrazide (ADH) was added and incubation continued for a further 90 minutes. The activated PRP was 10 coupled to purifed tetanus toxoid via carbodiimide condensation using 1-ethyl-3-(3 dimethyl-aminopropyl)carbodiimide (EDAC). EDAC was added to the activated PRP to reach a final ratio of 0.6mg EDAC/mg activated PRP. The pH was adjusted to 5.0 and purified tetanus toxoid was added to reach 2mg TT/mg activated PRP. The resulting solution was left for three days with mild stirring. After filtration through a 0.45pm 15 membrane, the conjugate was purifed on a sephacryl S500HR (Pharmacia, Sweden) column equilibrated in 0.2M NaCI. MenC -TT conjugates were produced using native polysaccharides ( of over 150kDa as measured by MALLS) or were slightly microfluidised. MenA-TT conjugates were produced 20 using either native polysaccharide or slightly microfluidised polysaccharide of over 60kDa as measured by the MALLS method of example 2. MenW and MenY-TT conjugates were produced using sized polysaccharides of around 100-200kDa as measured by MALLS (see example 2). Sizing was by microfluidisation using a homogenizer Emulsiflex C-50 apparatus. The polysaccharides were then filtered through a 0.2pm filter. 25 Activation and coupling were performed as described in W096/29094 and WO 00/56360. Briefly, the polysaccharide at a concentration of 10-20mg/ml in 2M NaCl pH 5.5-6.0 was mixed with CDAPsolution (100mg/mI freshly prepared in acetonitrile/WFI, 50/50) to a final CDAP/polysaccharide ratio of 0.75/1 or 1.5/1. After 1.5 minutes, the pH was raised with 30 sodium hydroxide to pH 10.0. After three minutes tetanus toxoid was added to reach a protein/polysaccharide ratio of 1.5/1 for MenW, 1.2/1 for MenY, 1.5/1 for MenA or 1.5/1 for MenC. The reaction continued for one to two hours. After the coupling step, glycine was added to a final ratio of glycine/PS (w/w) of 7.5/1 and 35 the pH was adjusted to pH9.0. The mixture was left for 30 minutes. The conjugate was clarified using a 10pm Kleenpak filter and was then loaded onto a Sephacryl S400HR column using an elution buffer of 150mM NaCl, 10mM or 5mM Tris pH7.5. Clinical lots were filtered on an Opticap 4 sterilizing membrane. The resultant conjugates had an average polysaccharide:protein ratio of 1:1-1:5 (w/w). 40 32 Example la - preparation of MenA and MenC polysaccharide conjugates of the invention MenC -TT conjugates were produced using native polysaccharides (of over 150kDa as measured by MALLS) or were slightly microfluidised. MenA-TT conjugates were produced 5 using either native polysaccharide or slightly microfluidised polysaccharide of over 60kDa as measured by the MALLS method of example 2. Sizing was by microfluidisation using a homogenizer Emulsiflex C-50 apparatus. The polysaccharides were then filtered through a 0.2gm filter. 10 In order to conjugate MenA capsular polysaccharide to tetanus toxoid via a spacer, the following method was used. The covalent binding of the polysaccharide and the spacer (ADH) is carried out by a coupling chemistry by which the polysaccharide is activated under controlled conditions by a cyanylating agent, 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate (CDAP). The spacer reacts with the cyanylated PS through its hydrazino 15 groups, to form a stable isourea link between the spacer and the polysaccharide. A 10mg/ml solution of MenA (pH 6.0) [3.5 g] was treated with a freshly prepared 100mg/ml solution of CDAP in acetonitrile/water (50/50 (v/v)) to obtain a CDAP/MenA ratio of 0.75 (w/w). After 1.5 minutes, the pH was raised to pH 10.0. Three minutes later, 20 ADH was added to obtain an ADH/MenA ratio of 8.9. The pH of the solution was decreased to 8.75 and the reaction proceeded for 2 hours maintaining this pH (with temperature kept at 25 *C). The PSAAH solution was concentrated to a quarter of its initial volume and then diafiltered with 30 volumes of 0.2M NaCl using a Filtron Omega membrane with a cut-off of 10kDa, 25 and the retentate was filtered. Prior to the conjugation (carbodiimide condensation) reaction, the purified TT solution and the PSAAH solution were diluted to reach a concentration of 10 mg/ml for PSAAH and 10mg/mi for TT. EDAC (1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide) was added to the PSAH solution 30 (2g saccharide) in order to reach a final ratio of 0.9 mg EDAC/mg PSAAH. The pH was adjusted to 5.0. The purified tetanus toxoid was added with a peristaltic pump (in 60 minutes) to reach 2 mg TT/mg PSAAH. The resulting solution was left 60 min at +25 0 C under stirring to obtain a final coupling time of 120 min. The solution was neutralised by addition of 1M Tris-Hcl pH 7.5 (1/10 of the final volume) and left 30 minutes at +25 0 C then 35 overnight at +2 0 C to +8 0 C. The conjugate was clarified using a 10ptm filter and was purified using a Sephacryl S400HR column (Pharmacia, Sweden). The column was equilibrated in 10 mM Tris-HCI (pH 7.0), 0.075 M NaCl and the conjugate (approx. 660mL) was loaded on the column (+2*C to +8 0 C). The elution pool was selected as a function of optical density at 280 nm. 40 Collection started when absorbance increased to 0.05. Harvest continued until the Kd reached 0.30. The conjugate was filter sterilised at +20 0 C, then stored at +2 0 C to +8 0 C. The resultant conjugate had a polysaccharide:protein ratio of 1:2-1:4 (w/w). In order to conjugate MenC capsular polysaccharide to tetanus toxoid via a spacer, the 45 following method was used. The covalent binding of the polysaccharide and the spacer (ADH) is carried out by a coupling chemistry by which the polysaccharide is activated under controlled conditions by a cyanylating agent, 1-cyano-4-dimethylamino-pyridinium tetrafluoroborate (CDAP). The spacer reacts with the cyanylated PS through its hydrazino groups, to form a stable isourea link between the spacer and the polysaccharide. 33 A 20mg/mi solution of MenC (pH6.0) (3.5 g) was treated with a freshly prepared 100mg/ml solution of CDAP in acetonitrile/water (50/50 (v/v)) to obtain a CDAP/MenC ratio of 1.5 (w/w). After 1.5 minutes, the pH was raised to pH 10.0. At activation pH 5M NaCl was added to achieve a final concentration of 2M NaCl. Three minutes later, ADH was added 5 to obtain an ADH/MenC ratio of 8.9. The pH of the solution was decreased to 8.75 and the reaction proceeded for 2 hours (retained at 25 *C). The PSCAH solution was concentrated to a minimum of 150 mL and then diafiltered with 30 volumes of 0.2M NaCl using a Filtron Omega membrane with a cut-off of 10kDa, and the retentate was filtered. 10 Prior to the conjugation reaction, the purified TT solution and the PSCAH solution (2g scale) were diluted in 0.2M NaCl to reach a concentration of 15 mg/ml for PSCAH and 20mg/ml for TT. The purified tetanus toxoid was added to the PSCAH solution in order to reach 2 mg TT/mg PSCAH. The pH was adjusted to 5.0. EDAC (16.7 mg/ml in Tris 0.1M pH 7.5) was 15 added with a peristaltic pump (in 10 minutes) to reach a final ratio of 0.5 mg EDAC/mg PSCAH. The resulting solution was left 110 min at +25 0 C under stirring and pH regulation to obtain a final coupling time of 120 min. The solution was then neutralized by addition of 1M Tris-Hcl pH 9.0 (1/10 of final volume) and left 30 minutes at +25 0 C then overnight at +20C to +80C. 20 The conjugate was clarified using a 10pam filter and was purified using a Sephacryl S400HR column (Pharmacia, Sweden). The column was equilibrated in 10 mM Tris-HCI (pH 7.0), 0.075 M NaCl and the conjugate (approx. 460mL) was loaded on the column (+2 0 C to +8 0 C). The elution pool was selected as a function of optical density at 280 nm. Collection started when absorbance increased to 0.05. Harvest continued until the Kd 25 reached 0.20. The conjugate was filter sterilised at +200C, then stored at +20C to +8*C. The resultant conjugate had a polysaccharide:protein ratio of 1:2-1:4 (w/w). Example 2 - determination of molecular weight usinq MALLS 30 Detectors were coupled to a HPLC size exclusion column from which the samples were eluted. On one hand, the laser light scattering detector measured the light intensities scattered at 16 angles by the macromolecular solution and on the other hand, an interferometric refractometer placed on-line allowed the determination of the quantity of sample eluted. From these intensities, the size and shape of the 35 macromolecules in solution can be determined. The mean molecular weight in weight (Mw) is defined as the sum of the weights of all the species multiplied by their respective molecular weight and divided by the sum of weights of all the species. 40 a) Weight-average molecular weight: -Mw I W.. Mi m2 M W m 45 b) Number-average molecular weight: -Mn 34 " ENi mO c) Root mean square radius: -Rw- and R 2 w is the square radius defined by: 5 Zn2
R
2 w or (r 2 )w = Em, (-m- is the mass of a scattering centre i and -ri- is the distance between the 10 scattering centre i and the center of gravity of the macromolecule). d) The polydispersity is defined as the ratio -Mw / Mn-. 15 Meningococcal polysaccharides were analysed by MALLS by loading onto two HPLC columns (TSKG6000 and 5000PWx1) used in combination. 25gi of the polysaccharide were loaded onto the column and was eluted with 0.75ml of filtered water. The polyaccharides are detected using a light scattering detector ( Wyatt Dawn DSP equipped with a 10mW argon laser at 488nm) and an inferometric refractometer (Wyatt Otilab DSP 20 equipped with a P100 cell and a red filter at 498nm). The molecular weight polydispersities and recoveries of all samples were calculated by the Debye method using a polynomial fit order of 1 in the Astra 4.72 software. 25 Example 3 - clinical trial comparing immunisation with Meninqitec or a larger sized MenC TT coniuqate 30 A phase II , open, controlled study was carried out to compare GSK Biologicals meningococcal serogroup C conjugate vaccine (MenC) with GSK Biological's Haemophilus influenzae b-meningococcal serogroup C conjugate vaccine (Hib-MenC) or Meningitec @. Each dose of Meningitec @ contains 1 Opg of meningococcal serogroup C oligosaccharide conjugated to 15pg of CRM197 and is produced by Wyeth. The GSK 35 MenC conjugates contained native polysaccharides of about 200kDa conjugated to tetanus toxoid (TT). The study consisted of five groups, each planned to contain 100 subjects, allocated to two parallel arms as follws: 40 In this present study, all subjects in both arms received one-fifth (1/5) of a dose of Mencevaxm ACWY and a concomitant dose of lnfanrixTM hexa at 12-15 months of age 35 (Study Month 0). Two blood samples were collected from all subjects (Study Month 0 and Study Month 1). Arm 1 consisted of four groups from a primary vaccination study who were primed at their age of 3, 4 and 5 months with the following vaccines: e Group K: MenC (10 pg), non-adsorbed to aluminium salts (non-ads), tetanus 5 toxoid (TT) conjugate and InfanrixTm hexa (MenC10-TT + InfanrixTM hexa) " Group L: Hib (10 pg)-MenC (10 pg), non-ads TT conjugate and Infanrix T M penta (Hibl0-MenClO-TT + Infanrx7" penta) * Group M: Hib (5 pg)-MenC (5 pg), non-ads, TT conjugate and InfanrixTM penta (Hib5-MenC5-TT + Infanrixrm penta) 10 0 Group N: MeningitecTM and InfanrixTm hexa (MeningitecTM + Infanrix TM hexa) The two Hib-MenC-TT vaccine groups (Groups L and M) were kept blinded in the booster study as to the exact formulation of the candidate vaccine. Arm 2-(Group 0) consisted of age-matched subjects not previously vaccinated with a 15 meningococcal serogroup C vaccine (naive) but who had received routine pediatric vaccines according to the German Permanent Commission on Immunization. Criteria for evaluation: Immunogenicity Determination of bactericidal antibody titers against meningococcal C 20 (SBA-MenC) by a bactericidal test (cut-off: a dilution of 1:8) and ELISA measurement of antibodies against meningococcal serogroup C (assay cut-off : 0.3 pg/ml), the Hib polysaccharide PRP (assay cut-off: 0.15 pg/ml) and tetanus toxoid (assay cut-off: 0.1 IU/ml) in blood samples obtained prior to vaccination and approximately one month after vaccination in all subjects. 25 Statistical methods: Demographics: Determination of mean age in months (with median, range and standard deviation [SD]), and racial and gender composition of the ATP and Total vaccinated 30 cohorts. Immunogenicity' Two analyses of immunogenicity were performed based on the ATP cohort for immunogenicity (for analyses of immune memory and booster response) or the ATP cohort for safety (for analysis of persistence). These included: 35 Evaluation of immune memory for MenC and booster response for Hib and Tetanus (before and one month after administration of 1/5 dose of the plain polysaccharide vaccine): 0 Determination of geometric mean titers and concentrations (GMTs and GMCs) with 95% confidence intervals (95% Cl) 40 e Determination of the percentage of subjects with antibody titer/concentration above the proposed cutoffs with exact 95% Cl (seropositivity/seroprotection rates) * Investigation of antibody titers/concentration after vaccination using reverse cumulative curves e Computation of standardized asymptotic 95% Cl for the difference in 45 seropositivity/seroprotection rate * between the primed group (Groups K, L, M and N) and the unprimed group (Group 0) e Determination of the geometric mean of individual ratio of SBA-MenC titer over anti-PSC concentration, with 95% Cl 50 - Determination of the 95% Cl for the post-vaccination GMT/C ratio between the groups K, L, M and the control group N for anti-PRP and anti-tetanus and between each primed group (Groups K, L, M and N) and the unprimed group (Group 0) for SBA-MenC and anti-PSC using an ANOVA model 36 Results Table 1. SBA-MenC titres and anti-PSC antibody concentration after booster vaccination 5 Antibody Group N GMT/C 95% CL LL 95% CL UL SBA-MenC K -MenC-TT 71 3508.9 2580.1 4772.2 L - HibMenC 79 2530.1 1831.7 3494.7 M-HibMenC 81 5385.4 4425.0 6554.2 N -Meningitec 85 1552.6 1044.4 2307.9 0 - Control 91 9.3 6.3 13.6 Anti-PSC K -MenC-TT 70 28.10 22.59 34.95 L - HibMenC 71 30.01 24.09 37.38 M-HibMenC 76 34.58 29.10 41.09 N -Meningitec 78 16.59 12.98 21.21 0 - Control 94 3.05 2.36 3.93 Group K: subjects primed with MenC1O-TT + Infanrix. hexa; Group L: subjects primed with HiblO-MenClO-TT + Infanrix. penta; Group M: subjects primed with Hib5-MenC5-TT + Infanrix. penta; Group N: subjects primed with Meningitec. + Infanrix. hexa; Group 0: 10 control subjects (i.e. subjects not primed with MenC conjugate vaccine) N: number of subjects with available results Higher titres of antibodies against MenC and higher SBA titres were achieved by priming with the larger sized MenC polysaccharide conjugate vaccines (groups K, L and M) 15 compared with the Meningitec oligosaccharide conjugate vaccine. Table 2: Geometric mean ratio for SBA MenC titre/anti-PSC concentration Group Timing N GMR LL UL K Pre 70 49.470 34.939 70.044 Post 66 126.138 101.419 156.882 L Pre 76 36.528 25.849 51.621 Post 70 90.200 70.153 115.975 M Pre 77 51.298 36.478 72.139 Post 74 164.950 139.304 195.318 N Pre 84 22.571 16.521 30.837 Post 76 90.168 67.757 119.991 0 Pre 3 91.634 0.651 12889.8 Post 87 2.708 1.767 4.149 20 In all four primed groups (Groups K, L, M and N), the GMR increased significantly from pre to post booster vaccination indicating the presence of antibody maturation and functionality. GMR in the Group M (primed with Hib5-MenC5-TT) was higher than in the Group N (primed with Meningitec
TM
). 25 Table 3: Persistence at 12-15 months of aqe just prior to administration of the booster vaccines Endpoints Group N % Group N % Difference Value% SBAMenC K 79 88.6 N 91 80.2 N-K -8.4 t 1:8 L 84 93.3 N 91 80.2 N-L -3.1 M 85 87.1 N 91 80.2 N-M -6.8 37 SBAMenC K 79 65.8 N 91 51.6 N-K -14.2 z 1:128 L 84 56.0 N 91 51.6 N-L -4.3 M 85 64.7 N 91 51.6 N-M -13.1 Anti-PSC K 79 100.0 N 91 100.0 N-K 0.0 20.3ig/ml L 84 100.0 N 91 100.0 N-L 0.0 M 88 98.9 N 91 100.0 N-M 1.1 Anti-PSC K 79 72.2 N 91 81.3 N-K 9.2 2pg/ml L 84 64.3 N 91 81.3 N-L 17.0 M 88 64.3 N 91 81.3 N-M 8.6 Anti-PRP K 81 88.9 N 91 85.7 N-K -3.2 20.15pg/ml L 86 96.5 N 91 85.7 N-L -10.8 M 90 98.9 N 91 85.7 N-M -13.2 Anti-PRP K 81 33.3 N 91 28.6 N-K -4.8 21pg/ml L 86 55.8 N 91 28.6 N-L -27.2 M 90 74.4 N 91 28.6 N-M -45.9 Anti-tetanus K 81 100.0 N 91 96.7 N-K -3.3 0.1 lu/mI L 86 100.0 N 91 96.7 N-L -3.3 M 90 100.0 N 91 96.7 N-M -3.3 Group K: subjects primed with MenCl0-TT + lnfanrix T M hexa; Group L: subjects primed with Hibl0-MenCl0-TT + Infanrx T M penta; Group M: subjects primed with Hib5-MenC5 TT + InfanrixTM penta; Group N: subjects primed with MeningitecTm + InfanrixTM hexa; 5 N: number of subjects with available results Higher SBA titres against MenC were achieved by priming with the larger size of MenC (groups K, L and M) compared to priming with the MenC-oligosaccharide conjugate Meningitec. 10 Immune memory (ATP cohort for immunogenicity) Administration of 1/5 dose of the plain polysaccharide ACWY vaccine elicited very high SBA-MenC titer in all four primed groups with 98.7-100% and 97.5-100% of subjects primed with a candidate vaccine regimen exhibiting titers 21:8 and 21:128, respectively. In 15 the group primed with the MeningitecTM regimen, there was a trend for a lower percentage of subjects with titers 21:128 (91.8%). In comparison, 17.6% of unprimed subjects had SBA MenC titers 2 1:8 and 21:128. Example 4 Phase I clinical trial on HibMenAC -TT conuqate vaccine mixed with DTPw 20 HepB Study design: Open, randomized (1:1:1:1:1), single centre study with five groups. The five groups received the following vaccination regimen respectively, at 6, 10 and 14 weeks of age. 25 * Tritanrix T M -HepB/Hib-MenAC 2.5/2.5/2.5: henceforth referred to as 2.5/2.5/2.5 38 * Tritanrix
TM
-HepB/Hib-MenAC 2.5/5/5: henceforth referred to as 2.5/5/5 * TrtanrixTM-HepB/Hib-MenAC 5/5/5: henceforth referred to as 5/5/5 * TritanrixTM-HepB + HiberixTM: henceforth referred to as Hiberix STritanrix.-HepB/HiberixTM + Meningitecm: henceforth referred to as Meningitec 5 Blood samples were taken at the time of the first vaccine dose (Pre) and one month after the third vaccine dose (Post-dose 3). Tritanrix is a DTPw vaccine marketted by GlaxoSmithKline Biologicals S.A. 10 105 subjects were used in each of the five groups giving a total of 525 subjects in the study. Table 4 Content of GSK vaccine formulations Components per dose (0.5ml) 2.5/2.5/2.5* 2.5/5/5 5/5/5 Hib capsular polysaccharide PRP 2.5pg 2.5pg 5pag conjugated to tetanus toxoid (TT) Neisseria meningitidis A capsular 2.5gg 5gg 5pg polysaccharide (PSA) conjugated to TT Neisseria meningitidis C capsular 2.5pg 5pg 5pg polysaccharide (PSC) conjugated to TT 15 The 2.5/2.5/2.5 vaccine was a dose dilution of GSK Biologicals' Hib-MenAC 5/5/5 vaccine containing 2.5pag of each of PRP-TT, MenA-TT and MenC-TT. The Hib-MenAC vaccine formulations were mixed extemporaneously with Tritanirix-HepB. 20 GSK Biologicals' combined diphtheria-tetanus-whole cell Bordetella pertussis - hepatitis B (DTPw-HB) vaccine (Trtanrix-HepB) contains not less than 30 International Units (IU) of diphtheria toxoid, not less than 60 IU of tetanus toxoid, not less than 41U of killed Bordetella pertussis and 10lg of recombinant hepatitis B surface antigen. 25 Reference therapy, dose, mode of administration, lot No.: Vaccination schedule/site: One group received Tritanrix l-HepB vaccine intramuscularly in the left thigh and HiberixTM intramuscularly in the right thigh at 6, 10 and 14 weeks of age. Another group received TritanrixTm-HepB/HiberixTM vaccine intramuscularly in the left thigh and Meningitec. vaccine intramuscularly in the right thigh at 6, 10 and 14 weeks of 30 age. 39 Vaccine/composition/dose/lot number: The TritanrixTM-HepB vaccine used was as described above. One dose (0.5 ml) of GSK Biologicals' Haemophilus influenzae type b conjugate vaccine: HiberxTM contained 10 pg of PRP conjugated to tetanus toxoid. In the HiberixTM Group, it 5 was mixed with sterile diluent and in the MeningitecTM Group it was mixed with Tritanrix
TM
-HepB. One dose (0.5 ml) of Wyeth Lederle's MENINGITEC
T
m vaccine contained: 10 pg of capsular oligosaccharide of meningococcal group C conjugated to 15 pg of Corynebacterium diphtheria CRM197 protein and aluminium as salts. 10 Results - immune responses generated against Hib, MenA and MenC Table 5a Anti - PRP (gq/ml) Group 2.5/2.5/2.5 2.5/5/5 5/5/5 HiberixTM MeningitecTm % 95%CL % 95%CL % 95%CL % 95%CL % 95%CL GMCir LL UL GMC/r LL UL GMCir LL UL GMC/T LL UL GMC/T LL UL %20.15 100 96.5 100 99.0 94.8 100 100 96.5 100 100 96.5 100 100 96.5 100 GIMC 20.80 15.96 27.10 22.62 17.72 28.88 19.36 15.33 24.46 38.55 29.93 49.64 10.94 8.62 13.88 15 Table 5b SBA -MenC Group 2.5/2.5/2.5 2.5/5/5 5/5/5 HiberixTM MeningitecTm % 95%CL % 95%CL % 95%CL % 95%CL % 95%CL GMC/r LL UL GMCiT LL UL GMC/r LL UL GMC/T LL UL GMCir LL UL %21:8 99 94.7 100 100 96.5 100 100 96.5 100 2.9 0.6 8.4 100 96.5 100 GMT 3132 2497 3930 4206 3409 5189 3697 3118 4354 4.7 3.9 5.6 4501 3 Table 5c SBA MenA 20 Group 2.5/2.5/2.5 2.5/5/5 5/5/5 Hiberix"m MeningitecTm % 95%CL % 95%CL % 95%CL % 95%CL % 95%CL GMC/T LL UL GMCir LL UL GMCir LL UL GMCIr LL UL GMCir LL UL %_1:8 99.7 91.9 99.7 100 95.8 100 100 96.2 100 6.8 2.5 14.3 9.1 4.0 17.1 GMT 316.7 251.4 398.9 418.5358.6 488.5 363 310.5 424.4 5.6 4.3 7.4 5.6 4.4 7.2 Table 5d Anti-PSC (pg/ml) Group 2.5/2.5/2.5 2.5/5/5 5/5/5 HiberixTM MeningitecTm % 95%CL % 95%CL % 95%CL 95%CL % 95%CL 0GMC/T LL UL 40 GMC/T LL UL GMC/T LL UL GMCIT LL UL GMC/r LL UL %20.3 100 96.5 100 100 96.4 100 100 96.5 100 8.2 3.6 15.6 100 96.5 100 GMC 49.03 43.24 55.59 71.11 62.49 80.92 61.62 54.88 69.20 0.17 0.15 0.19 58.02 51.42 65.46 Table 5e Anti - PSA (gq/ml) Group 2.5/2.5/2.5 2.5/5/5 5/5/5 HiberixTM MeningitecTM % 95%CL % 95%CL % 95%CL % 95%CL % 95%CL GMC/T LL UL GMC/T LL UL GMCfr LL UL GMC/T LL UL GMC/T LL UL %20.3 100 96.4 100 100 96.5 100 99.0 94.8 100 1.0 0.0 5.4 5.9 2.2 12.5 GMC 18.10 15.34 21.35 26.51 22.93 30.79 23.40 20.05 27.30 1 0.15 0.15 0.15 10.17 1.15 0.18 5 Conclusion A comparison of the immunogenicity results achieved using the oligosaccharide MenC CRM197 conjugate vaccine and the three GSK formulations which contain polysacharide MenA-TT and MenC -TT conjugates showed that the polysaccharide Men conjugates 10 were able to elicit a good immunogenic response similar to that achieved using the oligosaccharide conjugate vaccine Meningitec. All formulations tested gave a response to MenC in 100% of patients. Example 5 - Phase il clinical trial administering Hib MenCY concomitantly with InfanrixTM 15 penta according to a 2. 3 and 4 month schedule Study design: A Phase 11, open (partially double-blind*) randomized controlled multi center study with 5 groups receiving a three-dose primary schedule with vaccines as follows: 20 Group Hib-MenCY 2.5/5/5: Hib-MenCY (2.5/5/5 ) + InfanrixTM penta Group Hib-MenCY 5/10/10: Hib-MenCY (5/10/10) + Infanrix TM penta Group Hib-MenCY 5/5/5: Hib-MenCY (5/5/5) + lnfanrixTm penta Group Hib-MenC: Hib-MenC (5/5) + Infanrix TM penta Group Menjugate: Menjugate TM** + lnfanriXTM hexa (control). 25 *Hib-MerlCY 2.5/5/5, Hib-MenCY 5/10/10 and Hib-MenC were administered in a double blind manner while the Hib-MenCY 5/5/5 group and the Menjugate TM group were open. The 2.5/5/5, 5/10/10 and 5/5/5 formulations of Hib-MenCY contain MenC native polysaccharides and MenY polysaccharides which are microfluidized. **Menjugate T M contains 10kg of MenC oligosaccharides conjugated to 12.5-25pg of 30 CRM197 per dose and is produced by Chiron. 41 Vaccination at +/- 2, 3, 4 months of age (Study Month 0, Month 1 and Month 2), and blood samples (3.5ml) from all subjects prior to and one month post primary vaccination (Study Month 0 and Month 3). 5 Study vaccine, dose, mode of administration, lot number: Three doses injected intramuscularly at one month intervals, at approximately 2, 3 and 4 months of age as follows: Table 6: Vaccines administered (study and control), group, schedule/site and dose 10 Group Schedule Vaccine dose Concomitant vaccine (months of age) administered administered Site- Left upper thigh Site Right upper thigh Hib-MenCY 2.5/5/5 2, 3, and 4 Hib (2.5pg)- MenC-TT DTPa-HBV-IPV (5pg)-MenY-TT (5 pg) (InfandxTm penta) Hib-MenCY 5/10/10 2, 3, and 4 Hib (5pg)-MenC-TT DTPa-HBV-IPV (10pg)-MenY-TT (10 Ig) (InfanrixTM penta) Hib-MenCY 5/5/5 2, 3, and 4 Hib (5pg)-MenC-TT ( DTPa-HBV-IPV 5pg)-MenY-TT (5pg) (Infandxm penta) Hib-MenC 2, 3, and 4 Hib (5pg)-Men C (5pg) DTPa-HBV-IPV (InfannxM penta) Menjugate" 2, 3, and 4 Menjugate" DTPa-HBV-IPV/Hib (infanrixTMhexa) Immunogenicity: Measurement of antibody titres/concentrations against each vaccine 15 antigen: Prior to the first dose (Month 0) and approximately one month after the third dose (Month 3) in all subjects for: SBA-MenC and SBA-MenY, anti-PSC and anti-PSY, anti-PRP, anti T, anti-FHA, anti-PRN and anti-PT. Using serum bactericidal activity against N. meningitidis serogroups C and Y (SBA-MenC and SBA-MenY cut-off: 1:8 and 1:128); 20 ELISA assays with cut-offs: 20.3 jig/ml and 22 jg/ml for anti- N. meningitidis serogroups C and Y polysaccharides (anti-PSC IgG and anti-PSY IgG); 20.15 jig/ml and 21.0pg/ml for Hib polysaccharide polyribosil-ribitol-phosphate (anti-PRP IgG); 5EL.U/mI for anti-FHA, anti-PRN, anti-PT; 20.1 IU/ml anti-tetanus toxoid (anti-TT). Only at one month after the third dose (Month 3) in all subjects for: anti-D, anti-HBs and anti-polio 1, 2 and 3. Using 25 ELISA assays with cut-offs: 0.1 lU/mi for anti-diphtheria (anti-D); 210 mlU/mI for 42 antihepatitis B (anti-H Bs); and microneutralization test cut-off: 1:8 for anti-polio type 1, 2 and 3 (anti-polio 1, 2 and 3). Statistical methods: 5 The seroprotection/seropositivity rates and geometric mean concentrations/titres (GMCs/GMTs) with 95% confidence intervals (95% CI) were computed per group, for SBA-MenC, anti-PSC, SBA-MenY, anti-PSY, anti-PRP, anti-Tetanus, anti-PT, anti-FHA and anti-PRN prior to and one month after vaccination; for anti-Diphtheria, anti-HBs, anti Polio 1, anti-Polio 2 and anti-Polio 3 one month after vaccination. Vaccine response 10 (appearance of antibodies in subjects initially seronegative or at least maintenance of antibody concentrations in subjects initially seropositive) with 95% Cl for anti-PT, anti PRN and anti-FHA were also computed one month after vaccination. Reverse cumulative curves for each antibody at Month 3 are also presented. The differences between the Hib MenCY and the Hib- MenC groups, compared with the Menjugate TM control group were 15 evaluated in an exploratory manner for each antibody, except for SBA-MenY and anti PSY, in terms of (1) the difference between the Menjugate T M group (minus) the Hib MenCY and Hib-MenC groups for the percentage of subjects above the specified cut-offs or with a vaccine response with their standardized asymptotic 95% CI, (2) the GMC or GMT ratios of the Menjugate T M group over the Hib-MenCY and Hib-MenC groups with 20 their 95% Cl. The same comparisons were done to evaluate the difference between each pair of Hib-MenCY formulations for anti-PRP, SBA-MenC, anti-PSC, SBA-MenY, anti-PSY and anti-TT antibodies. The overall incidences of local and general solicited symptoms were computed by group according to the type of symptom, their intensity and relationship to vaccination (as 25 percentages of subjects reporting general, local, and any solicited symptoms within the 8 days following vaccination and their exact 95% Cl). Incidences of unsolicited symptoms were computed per group. For Grade 3 symptoms, onset S48 hours, medical attention, duration, relationship to vaccination and outcomes were provided. Serious Adverse Events were fully described. 30 Seroprotection/seropositivity rates &GMC/Ts (ATP cohort for immunogenicity) Table 7a Anti - PRP (pq/ml) 35 Group N %2 0.15 LL UL 121 LL UL GMC LL UL Hib MenCY 2.5/5/5 67 100.0 94.6 100.0 98.5 92.0 100.0 9.01 7.25 11.21 43 9.49 7.72 11.65 Hib MenCY 5/10110 67 100.0 94.6 100.0 98.5 92.0 100.0 8.08 6.53 9.98 Hib MenCY 5/5/5 70 100.0 94.9 100.0 98.6 92.3 100.0 10.44 8.49 12.83 Hib MenC 74 100.0 95.1 100.0 98.6 92.7 100.0 Menjugate" 71 100.0 94.9 100.0 80.3 69.1 88.8 2.60 1.97 3.43 Table 7b SBA -MenC (Titre) 5 Group N %2 1:8 LL UL ?1:128 LL UL GMT LL UL 1005.8 773.5 1308.0 Hib MenCY 2.5/5/5 70 100.0 94.9 100.0 95.7 88.0 99.1 1029.8 799.7 1326.0 Hib MenCY 5/10/10 67 100.0 94.6 100.0 94.0 85.4 98.3 906.9 691.3 1189.8 Hib MenCY 5/5/5 71 100.0 94.9 100.0 94.4 86.2 98.4 Hib MenC 74 100.0 95.1 100.0 95.9 88.6 99.2 871.0 677.3 1120.0 Menjgat TM3557.6 2978.8 4248.8 Menjugate TM 71 100.0 94.9 100.0 100.0 94.9 100.0 35. 988 44. Table 7c Anti-PSC (ug/ml) Group N %2 0.3 LL UL 22 LL UL GMC LL UL Hib MenCY 2.5/5/5 69 100.0 94.8 100.0 100.0 94.8 100.0 21.70 18.36 25.65 Hib MenCY 5/10/10 66 100.0 94.6 100.0 100.0 94.6 100.0 27.26 23.26 31.95 Hib MenCY 5/5/5 70 100.0 94.9 100.0 100.0 94.9 100.0 19.02 16.49 21.93 Hib MenC 74 100.0 95.1 100.0 100.0 95.1 100.0 21.08 18.24 24.35 MenjugateTM 71 100.0 94.9 100.0 100.0 94.9 100.0 38.49 33.64 44.05 10 Table 7d SBA-MenY (Titre) Group N %? 1:8 LL UL ?1:128 LL UL GMT LL UL Hib MenCY 2.5/5/5 69 97.1 89.9 99.6 92.8 83.9 97.6 470.7 351.1 631.2 Hib MenCY 5/10/10 66 97.0 89.5 99.6 86.4 75.7 93.6 437.1 322.0 593.4.8 635.3 501.5 804.8 Hib MenCY 5/5/5 71 98.6 92.4 100.0 95.8 88.1 99.1 Hib MenC 74 21.6 12.9 32.7 13.5 6.7 23.5 9.3 6.3 13.7 MenjugateTm 71 19.7 11.2 30.9 9.9 4.1 19.3 7.5 5.4 10.4 Table 7e Anti - PSY ( ig/ml) Group N %20.3 LL UL 22 LL UL GMC LL UL Hib MenCY 2.5/5/5 69 100.0 94.8 100.0 100.0 94.8 100.0 26.86 22.86 31.56 Hib MenCY 5/10/10 66 100.0 94.6 100.0 100.0 94.6 100.0 37.02 31.84 43.04 Hib MenCY 5/5/5 70 100.0 94.9 100.0 100.0 94.9 100.0 23.57 19.94 27.86 44 Hib MenC 74 8.1 3.0 16.8 4.1 0.8 11.4 0.19 0.15 0.25 MenjugateTM 71 5.6 1.6 13.8 1.4 0.0 7.6 0.17 0.15 0.19 Table 7f Anti-tetanus (IU/mi) Group N % 0.1 LL UL GMC LL UL Hib MenCY 2.5/515 68 100.0 94.7 100.0 3.06 2.63 3.55 Hib MenCY 5/10/10 67 100.0 94.6 100.0 3.25 2.88 3.68 Hib MenCY 5/5/5 70 100.0 94.9 100.0 2.97 2.59 3.41 Hib MenC 74 100.0 95.1 100.0 3.15 2.73 3.64 MenjugateTM 71 100.0 94.9 100.0 1.66 1.39 1.97 Group Hib-MenCY 2.5/5/5: Hib-MenCY (2.5/5/5) + Infanrix TM penta 5 Group Hib-MenCY 5/10/10: Hib-MenCY (5/10/10) + Infanrx TM penta Group Hib-MenCY 5/5/5: Hib-MenCY (5/5/5) +Infanrix TM penta Group HIb-MenC: Hib-Men (5/5)+ Infanrix T M hexa Group Menjugate: MenjugateTM + InfanrixTM penta N = number of subjects with available results.% = percentage of subjects with 10 concentration/titre within the specified range GMCIT: geometric mean concentration/titre 95% Cl = 95% confidence interval; LL = Lower Limit; UL = Upper Limit Conclusion 15 The MenC and Y polysaccharide conjugates produced a good immune response in all subjects with 100% of subjects producing above 0.3 pg/ml responses against MenC and MenY. 20 Example 6 - Phase 11 clinical trial comparing three formulations of MenACWY-TT with Meninqitec MenC-CRM197 oliqosacchardde-conjugate vaccine. This example reports a phase 11, open (partially-blind), randomized, controlled dose-range study to evaluate the Immunogenicity of three different formulations of GlaxoSmithKline 25 Biological's meningococcal serogroups A, C, W-135, Y tetanus toxoid conjugate (MenACWY-TT) vaccine in comparison to a MenC oligosaccharide-CRM197 conjugate vaccine (MeningitecTM) when given as one dose to children aged 12-14 months. The clinical trial was an open (partially double-blind*), controlled, multicentric study in 30 which eligible subjects of 12-14 months were randomized (1:1:1:1) to one of four parallel groups of 50 subjects to receive a single primary dose at Visit 1 as follows: Form IT: MenACWY-TT at a dose of 2.5pLg of MenA polysaccharide conjugated to tetanus toxoid (TT), 2.5ptg of MenC polysaccharide conjugated to TT, 2.5pg of MenW 35 polysaccharide conjugated to TT and 2.5kg of MenY polysaccharide conjugated to TT. 45 Form 2T: MenACWY-TT at a dose of 5pg of MenA polysaccharide conjugated to TT, 5pg of MenC polysaccharide conjugated to TT, 5pag of MenW polysaccharide conjugated to TT and 5 g of MenY polysaccharide conjugated to TT. Form 3T: MenACWY-TT at a dose of 2.5sg of MenA polysaccharide conjugated to TT, 5 10pig of MenC polysaccharide conjugated to TT, 2.5pg of MenW polysaccharide conjugated to TT and 2.5jig of MenY polysaccharide conjugated to TT. Ctrl T: 104g MenC oligosaccharide conjugated to 12.5-25gg CRM197 (Meningitec). *The three different MenACWY-TT formulations were administered in a double-blind 10 manner. Vaccination schedu/e/site: A single vaccine dose was administered intramuscularly in the left deltoid at Visit 1 (Study Month 0) according to randomized assignment. All candidate vaccines were supplied as a lyophilized pellet in a monodose vial (0.5 ml after 15 reconstitution with the supplied saline diluent). Immunogenicity Measurement of titers/concentrations of antibodies against meningococcal vaccine antigen components in blood samples obtained prior to the study vaccine dose (Month 0) and approximately one month after the study vaccine dose 20 (Month 1) in all subjects. Determination of bactericidal antibody titers against N. meningitidis serogroups A, C, W-135 and Y (SBA-MenA, SBA-MenC, SBA-MenW and SBA-MenY) by a bactericidal test (assay cut-offs: a dilution of 1:8 and 1:128) and ELISA measurement of antibodies against N. meningitidis serogroups A, C, W-135 and Y (anti PSA, anti-PSC, anti-PSW and anti-PSY, assay cut-offs 20.3pg/ml and 22pg/ml), and 25 tetanus toxoid (anti-tetanus, assay cut-off 0.1 IU/ml). Results Antibody response in terms of the percentage of SBA-MenA, SBA-MenC, SBA-MenW and 30 SBA-MenY responders one month after vaccination (the primary endpoint) is shown in Table 8. A response is defined as greater than or equal to a 4-fold increase for seropositive subjects or seroconversion for seronegative subjects before vaccination. Table 8: Vaccine responses for SBA antibody one month after vaccination 35 Antibody Group N % LL UL SBA-MenA Form 1T 42 61.9 45.6 76.4 Form 2T 39 82.1 66.5 92.5 Form 3T 40 62.5 45.8 77.3 Meningitec Tm 36 11.1 3.1 26.1 SBA-MenC Form 1T 46 97.8 88.5 99.9 Form 2T 43 100.0 91.8 100.0 46 Form 3T 44 95.5 84.5 99.4 Meningitec T m 49 91.8 80.4 97.7 SBA-MenW Form 1T 45 100.0 92.1 100.0 Form 2T 43 97.7 87.7 99.9 Form 3T 45 100.0 92.1 100.0 Meningitec T M 46 15.2 6.3 28.9 SBA-MenY Form 1T 47 97.9 88.7 99.9 Form 2T 44 88.6 75.4 96.2 Form 3T 45 93.3 81.7 98.6 Meningitec tm 49 4.1 0.5 14.0 Table 9 shows the numbers of subjects achieving SBA titres over cutoff points of 1:8 and 1:128 as well as GMTs. 5 Table 9: Seropositivity rates and GMTs for SBA antibodies one month after vaccination Group N 1:8 k1 % LL UL % UL GMT SBA- Form 1T 46 100 92.3 100 100 92.3 100 1457.3 MenA Form2T 45 100 92.1 100 97.8 88.2 99.9 1776.9 Fdrm3T 48 97.9 88.9 99.9 97.9 88.9 99.9 1339.5 Meningitec TM 41 51.2 35.1 67.1 43.9 28.5 60.3 42.8 SBA- Form 1T 47 97.9 88.7 99.9 78.7 64.3 89.3 281.3 MenC Form2T 45 100 92.1 100 84.4 70.5 93.5 428.6 Form3T 47 95.7 85.5 99.5 85.1 71.7 93.8 478.4 Meningitec T M 50 94.0 83.5 98.7 62.0 47.2 75.3 200.1 SBA- Form 1T 47 100 92.5 100 100 92.5 100 2529.1 Men Form2T 45 100 92.1 100 100 92.1 100 2501.6 W Form3T 48 100 92.6 100 97.9 88.9 99.9 2300.2 Meningitec T M 48 27.1 15.3 41.8 6.3 1.3 17.2 9.4 SBA- Form 1T 47 100 92.5 100 100 92.5 100 1987.4 MenY Form2T 45 100 92.1 100 100 92.1 100 2464.8 Form3T 48 100 92.6 100 97.9 88.9 99.9 2033.7 Meningitec TM 49 49.0 34.4 63.7 28.6 16.6 43.3 25.0 Vaccination with all three formulations of the ACWY-TT polysaccharide conjugate led to 10 good SBA responses against MenA, MenC, MenW and MenY with 95-100% of subjects with titres greater than 1:8. In particular, the 5/5/5/5 and 2.5/10/2.5/2.5 formulations of the polysaccharide conjugates produced a higher response against MenC than the oligosaccharide MeningitecTm vaccine as seen by a higher proportion of subjects having a titre greater than 1:128 and the GMT readings. 47 Table 10 Seropositivity rates and GMCs for anti Polysaccharide antibodies one month after vaccination 5 Group N IN M1 GMC % LL UL % LL UL gg/mi Anti- Form 1T 47 93.6 82.5 98.7 68.1 52.9 80.9 2.35 MenA Form2T 45 100 92.1 100 64.4 48.8 78.1 3.11 Form3T 48 95.8 85.7 99.5 37.5 24.0 52.6 1.65 MeningitecTm 50 10.0 3.3 21.8 2.0 0.1 10.6 0.18 Anti- Form 1T 47 100 92.5 100 100 92.5 100 9.57 MenC Form2T 45 100 92.1 100 100 92.1 100 12.53 Form3T 47 100 92.5 100 97.9 88.7 99.9 19.29 Meningitec T M 49 98.0 89.1 99.9 93.9 83.1 98.7 7.95 Anti- Form 1T 47 100 92.5 100 80.9 66.7 90.9 4.56 Men Form2T 45 100 92.1 100 93.3 81.7 98.6 6.83 W Form3T 48 93.8 82.8 98.7 72.9 58.2 84.7 2.88 Meningitec T M 50 0.0 0.0 7.1 0.0 0.0 7.1 0.15 Anti- Form 1T 47 100 92.5 100 97.9 88.7 99.9 8.90 MenY Form2T 45 100 92.1 100 100 92.1 100 12.78 Form3T 47 97.9 88.7 99.9 87.2 74.3 95.2 5.67 MeningitecTM 50 2.0 0.1 10.6 0.0 0.0 7.1 0.15 All three formulations of the ACWY-TT polysaccharide conjugate vaccine produced good immune responses against MenA, MenC, MenW and MenY with between 93% and 100% of subjects achieving titres grater than 0.3pg/ml. Higher GMC readings were achieved 10 using the 5/5/5/5 and 2/5/10/2.5/2.5 formulations of the ACWY-TT polysaccharide conjugate vaccine in comparison with Meningitec. Example 7 - comparison of immunogenicity of native and sized MenY polysaccharide coniugates 15 Mice (female DBA/2 of 6-8 wk) received two injections, 2 weeks apart, of PSY-TT by the subcutaneous route. Blood samples were taken 14 days after the second injection in order to perform anti-PSY ELISA and SBA using S1975 menY strain. Per Injection, mice received 1 pg of PSY-TT( lyo non-ads formulation). 20 The conjugates described in table 11 were used. Table 11 Conjugates ENYTT012 ENYTT014 ENYTT015 bis 48 PSY NO Yes (40 cycles) Yes (20 cycles) microfluidisation TT/PS ratio 1/1 1/1 1/1 Results The results (Figure 1) show a trend towards higher immunogenicity for conjugates prepared using sized PSY. Figure 1A shows the GMC results obtained in an ELISA for 5 antisera raised against conjugates prepared from native MenY (ENYTT012), microfluidised MenY - 40 cycles (ENYTT014) and microfluidised MenY - 20 cycles (ENYTT015 bis). Higher GMCs were obtained where the MenY-TT was prepared from microfluidised MenY. 10 Similar results were obtained when the antisera were assessed by SBA assay (Figure 1B). Again the higher GMT values were achieved using conjugates prepared from microfluidised MenY. Example 8 - Clinical trial assessing the effect of a linker in MenA in a MenACWY 15 conjuqate vaccine A single dose of different formulations of MenACWY vaccine was administered to teenagers of 15-19 years in 5 groups of 25 subjects in a 1:1:1:1:1 randomised trial. The formulations tested were: 20 F1 - MenACWY conjugated to tetanus toxoid with the MenA conjugate containing an AH spacer - 5/5I5/5pg F2 - MenACWY conjugated to tetanus toxoid with the MenA conjugate containing an AH spacer - 2.5/5/2.5/2.5pg 25 F3 - MenACWY conjugated to tetanus toxoid with the MenA conjugate containing an AH spacer - 5/5/2.5/2.5pg F4 - MenACWY conjugated to tetansus toxoid with no spacer in any conjugate 5/5/5/5pg Control group - Mencevax ACWY 30 On day 30 after inoculation, a blood sample was taken from the patients. The blood samples were used to asess the percentage of SBA-MenA, SBA-MenC, SBA MenWl35 and SBA-MenY responders one month after the vaccine dose. A vaccine 35 response was defined as 1) for initially seronegative subjects - a post-vaccination antibody titre 1/32 at 1 month or 2) for initially seropositive subjects - antibody titre of 2 4 fold the pre-vaccination antibody titre. Results 40 49 As shown in Table 13, the use of a spacer in the MenA conjugate led to an Increased immune response against MenA. The percentage of responders rose from 66% to 90 95% when the AH spacer was added. This was reflected in an increase in SBA GMT from 4335 to 10000 and an increase in GMC from 5 to 20-40. Surprisingly, the use of a AH 5 spacer also led to an increased immune response against MenC as seen by an increase in the percentage of responders and an increase in the SBA GMT. An increase could also be seen in the SBA-GMT against MenY (6742-7122) and against MenW (4621-5418) when a spacer was introduced. 10 Table 12 Formulation % SBA MenA SBA-MenA GMT Anti-PSA GMC responders pg/ml ELISA F 1 5AH/5/5/5 90.9 9805 20.38 F2 2.5AH/5/2.5/2.5 75 8517 29.5 F3 5AH/5/2.5/2.5 95.5 10290 47.83 F4 5/5/5/5 66.7 4335 5.46 Mencevax TM 85.7 8022 27.39 Formulation % SBA MenC SBA-MenC GMT Anti-PSC GMC responders pg/ml ELISA F 1 5AH/5/5/5 69.6 3989 12.11 F2 2.5AH/5/2.5/2.5 81.8 3524 12.78 F3 5AH/5/2.5/2.5 81.8 3608 8.4 F4 5/5/5/5 73.9 2391 8.84 MencevaxTM 90.0 5447 38.71 Formulation % SBA MenW SBA-MenW GMT Anti-PSW GMC responders gg/ml ELISA F 1 5AH/5/5/5 95 5418 9.65 F2 2.5AH/5/2.5/2.5 85 4469 14.55 F3 5AH/512.5/2.5 95.5 4257 6.39 F4 5/5/5/5 95.5 4621 10.7 MencevaxTM 86.4 2714 13.57 Formulation % SBY MenY SBA-MenY GMT Anti-PSY GMC responders j.g/ml ELISA F 1 5AH/5/5/5 91.3 7122 16.3 F2 2.5AH/5/2.5/2.5 87.5 5755 12.52 F3 5AH/5/2.5/2.5 80 5928 8.88 F4 5/515/5 91.3 6742 13.88 Mencevax T m 91.7 4854 21.02 50 Example 9 - Clinical trial assessing the effect of a linker in MenA and MenC conjuqates in a MenACWY conjuqate vaccine 5 A single dose of different formulations of MenACWY vaccine was administered to teenagers of 15-19 years in 5 groups of 25 subjects in a 1:1:1:1:1 randomised trial. The formulations tested were: F1 - MenACWY conjugated to tetanus toxoid with the MenA and MenC conjugates 10 containing an AH spacer - 2.5/2.5/2.5/2.5pg F2 - MenACWY conjugated to tetanus toxoid with the MenA and MenC conjugates containing an AH spacer - 5/5/2.5/2.5pg F3 - MenACWY conjugated to tetanus toxoid with the MenA and MenC conjugates containing an AH spacer - 5/5/5/5pg 15 F4 - MenACWY conjugated to tetansus toxoid with the MenA conjugate containing an AH spacer- 5/5/5/5gg Control group - Mencevax ACWY On day 30 after inoculation, a blood sample was taken from the patients. 20 The blood samples were used to asess the percentage of SBA-MenA, SBA-MenC, SBA MenW1 35 and SBA-MenY responders one month after the vaccine dose. A vaccine response was defined as 1) for initially seronegative subjects - a post-vaccination antibody titre 1/32 at 1 month or 2) for initially seropositive subjects - antibody titre of 2 25 4 fold the pre-vaccination antibody titre. Results The introduction of an AH spacer into the MenC conjugate led to an increase in the 30 immune response against MenC as shown in Table 14. This is demonstrated by an increase in SBA GMT from 1943 to 4329 and an increase in anti-PSC GMC from 7.65 to 13.13. Good immune responses against MenA, MenW and MenY were maintained. Table 13 35 _ _ _ _ _ _ _ _ _ Formulation % SBA MenA SBA-MenA GMT Anti-PSA GMC responders gg/ml ELISA F 12.5AH/2.5AH/2.52.5 75 8417 20.23 F2 5AH/5AH/2.5/2.5 72 6299 16.07 F3 5AH/5AH/5/5 87 9264 27.26 F4 5AH/5/5/5 77.3 9632 20.39 Mencevaxm 78.3 8284 12.93 Formulation % SBA MenC SBA-MenC GMT Anti-PSC GMC 51 responders 4g/mi ELISA F 12.5AH/2.5AH/2.5/2.5 88 3619 12.82 F2 5AH/5AH/2.5/2.5 88 2833 13.32 F3 5AH/5AH/5/5 95.8 4329 13.13 F4 5AH/5/5/5 95.8 1943 7.65 Mencevax'1" 91.7 1567 16.55 Formulation % SBA MenW SBA-MenW GMT Anti-PSW GMC responders 4g/ml ELISA F 12.5AH/2.5AH/2.5/2.5 100 5656 7 F2 5AH/5AH/2.5/2.5 96 4679 5.4 F3 5AH/5AH/515 91.3 4422 4.45 F45AH/5/5/5 88 4947 7.67 Mencevax Tm 96 3486 11.93 Formulation % SBY MenY SBA-MenY GMT Anti-PSY GMC responders _g/ml ELISA F 1 2.5AH/2.5AH/2.5/2.5 75 3891 17.81 F2 5AH/5AH/2.5/2.5 92 3968 11.96 F3 5AH/5AH/515 79.2 2756 9.51 F4 5AH/5/5/5 80 3914 16.76 Mencevax" 88 3056 21.41 52

Claims (20)

1. An immunogenic composition comprising at least 4 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA, MenC, which is/are conjugated to a protein carriers) wherein the saccharide:protein ratio (w/w) is between 1:2-1:5, and one or more different saccharides is/are selected from a second group consisting of MenY and MenW which is/are conjugated to a protein carrier(s) wherein the saccharide:protein ratio (w/w) is between 5:1-1:1.99 and wherein MenC is present and the ratio of Men C saccharide to carrier protein is between 1:2.5-1:4.5 (w/w), MenA is present and the ratio of Men A saccharide to carrier protein is between 1:2.7-1:3.5 (w/w), MenY is present and the ratio of Men Y saccharide to carrier protein is between 2:1 - 1:1.99 (w/w), MenW is present and the ratio of Men W saccharide to carrier protein is between 1:1 - 1:1.7 (w/w) and wherein the composition does not include an adjuvant.
2. The immunogenic composition of claim 1 or claim 2, wherein MenW is present and the ratio of Men W saccharide to carrier protein is between 1:1.2-1:1.6, or 1:1.4-1:1 .5 (w/w).
3. The immunogenic composition of claim I or claim 2 wherein MenY is present and the ratio of Men Y saccharide to carrier protein is between 1.5:1-1:1.9, 1:1-1:1.8, 1:1.1-1:1.6, or 1:1.3-1:1.4 (w/w).
4. The immunogenic composition of claim I or claim 2 wherein MenA is present and the ratio of Men A saccharide to carrier protein is between 1:2.9-1:3.1 (w/w).
5. The immunogenic composition of claim 1 or claim 2, wherein MenC is present and the ratio of Men C saccharine to carrier protein is between 1:2.7-1:4.3 or 1:3-1:4, or 1:3.3-1:3.5 (w/w).
6. The immunogenic composition of claim 1 or claim 2 comprising at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA, MenC, MenY and MenW which is/are conjugated through a linker to a carrier protein(s), and one or more different saccharides is/are selected from a second group consisting of MenA, MenC, MenY and MenW which is/are directly conjugated to a carrier protein(s).
7. The immunogenic composition of claim 6 comprising at least 2 different N. meningitidis capsular saccharides, wherein one or more is/are selected from a first group consisting of MenA and MenC which is/are conjugated through a linker to a carrier protein(s), and one or - 54 more different saccharides is/are selected from a second group consisting of MenC, MenY and MenW which is/are directly conjugated to a carrier protein(s).
8. The immunogenic composition of claim 1 or claim 2 wherein each N. meningitidis capsular saccharide is conjugated to the same carrier protein selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D.
9. The immunogenic composition of claim 1 or claim 2 wherein at least one, two or three N. meningitidis capsular saccharide conjugate(s) is directly conjugated to a carrier protein.
10. The immunogenic composition of claim 1, wherein at least one, two or three N. meningitidis capsular saccharide(s) are conjugated to the carrier protein via a liner.
11. The immunogenic composition of claim 1 comprising N. meningitidis capsular saccharides from at least two of serogroups A, C, W135 and Y conjugated to a carrier protein to produce a N. neningitidis capsular saccharine conjugate, wherein the average size of each N. meningitidis saccharide is above 5OkDa, 75kDa, 100 kDa, 11 0kDa, 120kDa or 130kDa.
12. The immunogenic composition of claim 1 or claim 2 further comprising a H. influenzae b capsular saccharine (Hib) conjugated to a carrier protein said carrier protein being optionally selected from the group consisting of TT, DT, CRM197, fragment C of TT and protein D.
13. The immunogenic composition of claim 1 comprising a N. meningitidis serogroup B outer membrane vesicle preparation or capsular saccharide.
14. A vaccine comprising the immunogenic composition of any one of claims I to 13 and a pharmaceutically acceptable excipient.
15. A vaccine kit for concomitant or sequential administration comprising two multi-valent immunogenic compositions for conferring protection in a host against disease caused by Bordetella pertussis, Clostridium tetani, Corynebacterium diphtheriae, Haemophilus influenzae and Neisseria meningitidis, said kit comprising a first container comprising: tetanus toxoid (TT), diphtheria toxoid (DT), and whole-cell or acellular pertussis components and a second container comprising: the immunogenic composition of any one of claims 1 to 13. - 55
16. A process for making the vaccine of claim 14 comprising the step of mixing the immunogenic composition of any one of claims 1 to 13 with a pharmaceutically acceptable excipient.
17. A method of treating or preventing a disease caused by Neisseria meningitidis infection said method comprising the step of administering to a subject in need thereof the immunogenic composition of any one of claims I to 13.
18. Use of the immunogenic composition of any one of claims 1 to 13 in the manufacture of a medicament for the treatment or prevention of a disease caused by Neisseria meningitidis infection.
19. A vaccine when prepared according to the process of claim 16.
20. An immunogenic composition according to any one of claims 1 to 13; a vaccine according to claim 14 or claim 19; a vaccine kit according to claim 15; a process for making a vaccine according to claim 16; a method of making or preventing a disease caused by Neisseria meningitidis infection according to claim 17; or use according to claim 18, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
AU2012203419A 2005-06-27 2012-06-12 Immunogenic composition Active AU2012203419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012203419A AU2012203419B2 (en) 2005-06-27 2012-06-12 Immunogenic composition

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB0513071.1 2005-06-27
GB0513069.5 2005-06-27
GB0515556.9 2005-07-28
GB0524204.5 2005-11-28
GB0526041.9 2005-12-21
GB0526040.1 2005-12-21
AU2010203115A AU2010203115C1 (en) 2005-06-27 2010-07-21 Immunogenic composition
AU2012203419A AU2012203419B2 (en) 2005-06-27 2012-06-12 Immunogenic composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2010203115A Division AU2010203115C1 (en) 2005-06-27 2010-07-21 Immunogenic composition

Publications (2)

Publication Number Publication Date
AU2012203419A1 AU2012203419A1 (en) 2012-07-05
AU2012203419B2 true AU2012203419B2 (en) 2014-06-26

Family

ID=46642895

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012203419A Active AU2012203419B2 (en) 2005-06-27 2012-06-12 Immunogenic composition

Country Status (1)

Country Link
AU (1) AU2012203419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4309670A3 (en) * 2016-09-02 2024-07-17 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2976101T3 (en) * 2013-03-18 2020-11-23 Glaxosmithkline Biologicals Sa Treatment procedure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094834A2 (en) * 2002-05-14 2003-11-20 Universiteit Leiden Mucosal vaccines with chitosan adjuvant and meningococcal antigens
WO2004067030A2 (en) * 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
WO2005032583A2 (en) * 2003-10-02 2005-04-14 Chiron Srl Liquid vaccines for multiple meningococcal serogroups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094834A2 (en) * 2002-05-14 2003-11-20 Universiteit Leiden Mucosal vaccines with chitosan adjuvant and meningococcal antigens
WO2004067030A2 (en) * 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
WO2005032583A2 (en) * 2003-10-02 2005-04-14 Chiron Srl Liquid vaccines for multiple meningococcal serogroups

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4309670A3 (en) * 2016-09-02 2024-07-17 Sanofi Pasteur, Inc. Neisseria meningitidis vaccine

Also Published As

Publication number Publication date
AU2012203419A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
AU2010203115C1 (en) Immunogenic composition
AU2012203419B2 (en) Immunogenic composition

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)