AU2011212928A1 - Dihydropyridophthalazinone inhibitors of poly(ADP-ribose) polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency - Google Patents
Dihydropyridophthalazinone inhibitors of poly(ADP-ribose) polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency Download PDFInfo
- Publication number
- AU2011212928A1 AU2011212928A1 AU2011212928A AU2011212928A AU2011212928A1 AU 2011212928 A1 AU2011212928 A1 AU 2011212928A1 AU 2011212928 A AU2011212928 A AU 2011212928A AU 2011212928 A AU2011212928 A AU 2011212928A AU 2011212928 A1 AU2011212928 A1 AU 2011212928A1
- Authority
- AU
- Australia
- Prior art keywords
- dihydro
- phenyl
- pyrido
- methyl
- phthalazin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
- A61K31/5025—Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/06—Peri-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1098—Enhancing the effect of the particle by an injected agent or implanted device
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Endocrinology (AREA)
- Physical Education & Sports Medicine (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Dermatology (AREA)
- Reproductive Health (AREA)
- Pulmonology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
- Rheumatology (AREA)
- Diabetes (AREA)
- Neurosurgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
A compound having the structure set forth in Formula (I) and Formula (II) wherein the substituents Y, Z, A, B, R, R, R, R and R are as defined herein Provided herein are inhibitors of poly(ADP-ribose)polymerase activity Also described herein are pharmaceutical compositions that include at least one compound described herein and the use of a compound or pharmaceutical composition described herein to treat diseases, disorders and conditions associated with a PTEN deficiency that are ameliorated by the inhibition of PARP activity
Description
WO 2011/097334 PCT/US20111/023532 DIHYDROPYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) FOR USE IN TREATMENT OF DISEASES ASSOCIATED WITH A PTEN DEFICIENCY FIELD OF THE INVENTION [00011 Described herein are compounds, methods of making such compounds, pharmaceutical compositions and medicaments containing such compounds, and methods of using such compounds to modulate the activity of PARP to treat or prevent diseases or conditions associated with a deficiency in the enzyme phosphatase and tensin homolog deleted on chromosome 10 (PTEN). BACKGROUND OF THE INVENTION 100021 The family of poly(ADP-ribose)polymerases (PARP) includes approximately 18 proteins, which all display a certain level of homology in their catalytic domain but differ in their cellular functions (Ame et al., BioEssavs., 26(8), 882-893 (2004)). PARP-1 and PARP-2 are unique members of the family, in that their catalytic activities are stimulated by the occurrence of DNA strand breaks. 100031 PARP has been implicated in the signaling of DNA damage through its ability to recognize and rapidly bind to DNA single or double strand breaks (D'Amours, et al., Biochem. J., 342, 249-268 (1999)). It participates in a variety of DNA-related functions including gene amplification, cell division, differentiation, apoptosis, DNA base excision repair as well as effects on telomere length and chromosome stability (d'Adda di Fagagna, et al., Nature Gen., 23(1), 76-80 (1999)). 100041 Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase. PTEN functions as a protein phosphatase by dephosphorylating protein substrates on shrine, threonine, and tyrosine residues (Myers et al., Proc Natl Acad Sci USA 94:9052-9057 (1997)). PTEN functions as a lipid phospatase by dephosphorylating phophoinosital 3,4,5-triphosphate (PIP3), a key signaling component of the phosphoinositol-3-kinase (P13-kinase) pathway (Maehama and Dixon, J Biol Chem 273:13375-13378 (1998)). 100051 PTEN is a known tumor suppressor that has been implicated in cellular processes including mediation of the MAP kinase signaling pathway, centromeric maintenance, and is implicated in DNA repair pathways through mediation of Rad5l gene expression. (Gu et al., J Cell Bio 143:1375-1383 (1998); Weng et al., Hum Adol Genet (200 1); and Shen et al., Cell 128:157-170 (2007)). SUMMARY OF THE INVENTION [00061 Provided herein are compounds, compositions and methods for modulating the activity of PARP to treat or prevent diseases or conditions associated with a PTFN deficiency. Among the compounds that are provided herein, are compounds that are inhibitors of PARP. Also described herein is the use of such compounds, compositions and methods for the treatment of diseases, disorders or conditions associated with a PTEN deficiency.
WO 2011/097334 PCT/US20111/023532 [00071 In one aspect is a method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease or disorder associated with a PTEN deficiency comprising administering to the subject a therapeutically effective amount of a compound of Formula (I) or Formula (II): R4 0 N, NN RY A Y B N Z N Z
R
3 R, R 2 H Formula (1) Formula (11); 100081 where R 1 , R2, R 3 , R 4 , R 5 , A, B, Y, and Z are as defined in the Detailed Description of the Invention. In still another aspect is a method of treating a disease, disorder or condition associated with a PTEN deficiency which is ameliorated by the inhibition of PARP comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I) or Formula (1I). [00091 In one aspect is a method of treating a cancer associated with a PTEN deficiency comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I) or Formula (II). In certain aspects, the cancer is endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer or melanoma. 100101 In certain other aspects, provided herein are methods of treating a cancer associated with a PTEN deficiency wherein one or more cancer cells have an abrogated or reduced ability to control the phosphoinositide 3-kinase signaling pathway, comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I) or Formula (II). In certain embodiments, the cancer comprises one or more cancer cells having a reduced or abrogated ability to control the phosphoinositide 3-kinase signaling pathway for regulation of cell growth relative to normal cells. 100111 In yet another aspect is a method of treating a cancer deficient in Homologous Recombination (HR) dependent DNA double strand break (DSB) repair pathway, comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I) or Formula (II). In certain embodiments the cancer comprises one or more cancer cells having a reduced or abrogated ability to repair DNA DSB by HR relative to normal cells. In one embodiment the cancer cells have a PTEN deficient phenotype. In yet another embodiment the cancer cells are deficient in PTEN. In a further embodiment the subject is heterozygous for a mutation in a gene encoding a component of the HR dependent DNA DSB repair pathway. In yet a further embodiment the subject is heterozygous for a mutation in PTEN. In certain aspects, the cancer is endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic 2 WO 2011/097334 PCT/US2011/023532 astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer or melanoma. 100121 In another aspect is a method of treating cancer, comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I)or Formula (11) in combination with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof. [00131 In one embodiment the compound of Formula (I) or Formula (II) is administered simultaneously with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof. In another embodiment the compound of Formula (I) or Formula (II) is administered sequentially with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof. 100141 In one aspect is the use of a compound of Formula (I) or Formula (II) in the formulation of a medicament for the treatment of a poly(ADP-ribose)polymerase mediated disease or condition associated with a PTEN deficiency. [00151 In another aspect is an article of manufacture, comprising packaging material, a compound of Formula (I) or Formula (II), and a label, wherein the compound is effective for modulating the activity of the enzyme poly(ADP-ribose)polymerase, or for treatment, prevention or amelioration of one or more symptoms of a disease or condition associated with a PTEN deficiency, wherein the compound is packaged within the packaging material, and wherein the label indicates that the compound, or pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate thereof, or a pharmaceutical composition comprising such a compound is used for modulating the activity of poly(ADP-ribose)polymerase, or for treatment, prevention or amelioration of one or more symptoms of a disease or condition associated with a PTEN deficiency. BRIEF DESCRIPTION OF THE DRAWINGS 100161 The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which: 100171 Figure 1 provides the results of the in vitro cytotoxicity assays performed on PTEN -/- (PTEN deficient) tumor cell lines treated with a PARP inhibitor described herein (Compound X). (-e-) LNCap tumor cell line; (-n-) PC-3 tumor cell line; and (- A-) MDA-MB-468 tumor cell line. 100181 Figure 2 provides the results of the in vitro cytotoxicity assays performed on tumor cell lines wild type for PTEN treated with a PARP inhibitor described herein (Compound X). (-e-) MDA-MB-231 tumor cell line; and (-m-) LoVo tumor cell line. 100191 Figure 3 provides the results of an in vivo efficacy study of a PARP inhibitor (Compound X) in a PTEN deficient LNCap Xenograft model. 3 WO 2011/097334 PCT/US2011/023532 100201 Figure 4 provides the results of an in vivo efficacy study of a PARP inhibitor (Compound X)in a PTEN deficient MDA-MB-668 Xenograft model. [00211 Figure 5 provides the results of an in vivo efficacy study of a PARP inhibitor (Compound X)in a PTEN deficient PC-3 Xenograft model. DETAILED DESCRIPTION OF THE INVENTION 100221 Provided herein are methods for the treatment of diseases or disorders associated with a PTEN deficiency, including certain cancers, comprising the administration of the poly(ADP-ribose)polymerases (PARP) inhibitors described herein. In some embodiments, the methods presented herein comprise the administration of a PARP inhibitor described herein to a subject in need thereof having a disease or disorder associated with a PTEN deficiency. In some embodiments, the disease or disorder associated with a PTEN deficiency is cancer. In certain embodiments, the disease or disorder associated with a PTEN deficiency is endometrial carcinoma. In certain embodiments, the disease or disorder associated with a PTEN deficiency is glioblastoma. In certain embodiments, the disease or disorder associated with a PTEN deficiency is prostate cancer. In certain embodiments, the disease or disorder associated with a PTEN deficiency is bladder cancer. In certain embodiments, the disease or disorder associated with a PTEN deficiency is breast cancer. In certain embodiments, the disease or disorder associated with PTEN deficiency is colorectal cancer. In certain embodiments, the disease or disorder associated with a PTEN deficiency is melanoma. POLY(ADP-RIBOSE)POLYMERASES (PARP) 100231 The mammalian enzyme PARP-1 is a multidomain protein. PARP-1 is implicated in the signaling of DNA damage through its ability to recognize and rapidly bind to DNA single or double strand breaks. D'Amours, et al., Biochem. J., 342, 249-268 (1999); and Virag et al. Pharmacological Reviews, vol. 54, no. 3, 375-429 (2002) are hereby incorporated by reference for such disclosure. 100241 The family of poly(ADP-ribose)polymcrases includes approximately 18 proteins, which all display a certain level of homology in their catalytic domain but differ in their cellular functions. PARP-1 and PARP-2 are unique members of the family, in that their catalytic activities are stimulated by the occurrence of DNA strand breaks. Ame et al., BioEssays 26(8), 882-893 (2004) is hereby incorporated by reference for such disclosure. [00251 PARP-I participates in a variety of DNA-related functions including gene amplification, cell division, differentiation, apoptosis, DNA base excision repair as well as effects on telomere length and chromosome stability. d'Adda di Fagagna, et al., Nature Gen., 23(1), 76-80 (1999) is hereby incorporated by reference for such disclosure. 100261 Studies on the mechanism by which PARP- 1 modulates DNA repair and other processes identifies its importance in the formation of poly(ADP-ribose) chains within the cellular nucleus. The DNA-bound, activated PARP-1 utilizes NAD+ to synthesize poly(ADP-ribose) on a variety of nuclear target proteins, 4 WO 2011/097334 PCT/US2011/023532 including topoisomerases, histones and PARP itself. Althaus, F. R. and Richter, C., ADP-Ribosylation of Proteins: Enzymology and Biological Significance, Springer-Verlag, Berlin (1987); and Rhun, et al, Biochem. Biophvs. Res. Commun., 245, 1-10 (1998) are hereby incorporated by reference for such disclosure. 100271 Poly(ADP-ribosyl)ation is also associated with malignant transformation. For example, PARP-1 activity is higher in the isolated nuclei of SV40-transformcd fibroblasts, while both leukemic cells and colon cancer cells show higher enzyme activity than the equivalent normal leukocytes and colon mucosa. Furthermore, malignant prostate tumors have increased levels of active PARP as compared to benign prostate cells, which is associated with higher levels of genetic instability. Miwa, et al, Arch. Biochem. Biophys., 181, 313-321 (1977); Burzio, et al., Proc. Soc. Exp. Biol. Med., 149, 933-938 (1975); Hirai, et a., Cancer Res., 43, 3441-3446 (1983); and Mcnealy, et al., Anticancer Res., 23, 1473-1478 (2003) are hereby incorporated by reference for such disclosure. 100281 In cells treated with alkylating agents, the inhibition of PARP leads to a marked increase in DNA strand breakage and cell killing. PARP- I inhibitors also enhance the effects of radiation response by suppressing the repair of potentially lethal damage. PARP inhibitors are also effective in radio-sensitizing hypoxic tumor cells. In certain tumor cell lines, chemical inhibition of PARP activity is also associated with marked sensitization to very low doses of radiation. 100291 Furthermore, PARP-1 knockout (PARP -/-) animals exhibit genomic instability in response to alkylating agents and 7-irradiation. Data indicates that PARP- 1 and PARP-2 possess both overlapping and non-redundant functions in the maintenance of genomic stability, making them both interesting targets. Wang, et al., Genes Dev., 9, 509-520 (1995); Menissier de Murcia, et al., Proc. Vatl. Acad. Sci. USA, 94, 7303-7307 (1997); and Menissier de Murcia, et aL, EMBO. J., 22(9), 2255-2263 (2003) are hereby incorporated by reference for such disclosure. PHOSPHATASE AND TENSIN HOMOLOGUE DELETED ON CHROMOSOME 10 (PTEN) [00301 There are two major domains of PTEN, the N-terminal phosphatase domain and the C-terminal domain (Lee et al., 1999). While the role of PTEN in tumor suppression has been mostly attributed to its N terminal lipid phosphatase activity (Cantley and Neel, Proc Natl Acad Sci USA 96:4240-4245 (1999)), more than 40% of PTEN tumorigenic mutations occur in the C-terminal domain (Waite and Eng, Am J Hum Gen 70:829-844 (2002)). This fact indicates that PTEN may have additional functions through its C-terminal domain, which is significant in tumor suppression. The C-terminal domain contains both a C2 domain and a tail region that may be related to PTEN stability (Georgescu et al., Proc Natil Acd Sci USA 96:10182-10187 (1999)) and protein-protein interaction (Fanning and Anderson, Curr Opin Cell Biol 11:432-439 (1999)). The C2 domain is understood to play a role in PTEN stability (Georgescu et al., Cancer Res 60:7033-7038 (2000)) and its recruitment to phospholipid membranes (Das et al., Proc Natil Acd Sci USA 100:7491-7496 (2003)). Crystal structure analysis of this domain revealed a s-sandwich structure (Lee et al., Cell 99:323-334 (1999)), 5 WO 2011/097334 PCT/US2011/023532 suggesting a basis for its interaction with DNA and other proteins. Additionally, it is known that PTEN uses the C2 domain to interact with the centromere (Shen et aL, Cell 128:157-170 (2007)). PTEN ACTIVITY 100311 PTEN is a lipid and protein phosphatase. PTEN protein phosphatase can dephosphorylate protein substrates on serine, threonine and tyrosine residues. The lipid phosphatase activity of PTEN is known to act upon the substrate phosphoinositol 3,4,5- triphosphate (PIP3), a key signaling component of the phosphoinositol-3-kinase (P13-kinase) pathway (Maehama and Dixon, JBiol Chem 273:13375-13378 (1998)). The P13-kinase/Akt pathway is regarded as the primary physiological target of PTEN. 100321 PTEN phosphatase also targets different proteins. Focal adhesion kinase (FAK), a nonreceptor protein tyrosine kinase, has been identified as a direct protein target of PTEN. Similarly, PTEN also reduces the tyrosine phosphorylation of p1 30Cas, a FAK downstream effector. By targeting and dephosphorylating FAK and p13OCas, PTEN regulates dynamic cell surface interactions and inhibits cell migration and invasion. Additionally, PTEN lipid phosphatase activity is understood to be involved in the inhibition of cell motility and phosphorylation of both RacI and Cdc42 (Liliental et al., Curr Biol 10:401-404 (2000)). In addition to FAK/p130Cas, Rac1 and Cdc42, PTEN can also regulate cell motility by directly targeting and dephosphorylating She kinase, thereby inhibiting the mitogen-activated protein (MAP) kinase signaling pathway. 100331 As an important intracellular signaling pathway, the MAP kinase cascade provides multiple potential targets for PTEN. PTEN can inactivate multiple membraneproximal proteins upstream of MAP kinase such as Ras and IRS-1 (Gu et al., J Cell Bio 143:1375-1383 (1998); Weng et al., Hum Mol Genet 10:605-616 (200 lb)). The prototypical MAP kinase, extracellular signal-regulated kinase, is often affected by PTEN status. The protein phosphatase activity of PTEN is known to inhibit FAK and extracellular signal-regulated kinase and subsequently block the expression and secretion of matrix metalloproteinase-9, which may contribute to the suppression of glioblastoma invasion. PTEN also inhibits phosphorylation of proteins downstream of MAP kinases. One prominent example is ETS-2, a nuclear target of the MAP kinase pathway and a transcription factor whose DNA-binding ability is controlled by phosphorylation. PTEN also regulates phosphorylation of another transcription factor SpI, likely through its protein phosphatase activity. 100341 In addition to intracellular signaling molecules, receptor tyrosine kinases also can serve as direct protein targets of PTEN. PTEN physically associates with the receptor of platelet-derived growth factor and directly dephosphorylates the receptor, whereas the phosphatase-deficient PTEN mutant (C 124S) not only fails to dephosphorylate the platelet-derived growth factor receptor but also acts in a dominant-negative fashion to increase its phosphorylation (Mahimainathan and Choudhury, JBiol Chem 279:15258-15268 (2004)). 6 WO 2011/097334 PCT/US2011/023532 PTEN AND DISEASE 100351 Genome or chromosome instability is a hallmark of cancers. Tumor suppressors play roles in maintaining genome stability, and loss of function of these tumor suppressors is known to result in genomic instability. Genetic instability represents an inevitable consequence of the loss of tumor suppressors. Indeed, the frequent occurrence of PTEN mutation and genetic instability is found in a large range of PTEN-deficient cancers. Likewise, it is known that several tumor cell lines are PTEN deficient. PTEN-null embryonic stem cells were shown to exhibit DNA repair checkpoint defects in response to ionizing radiation, which results in the accumulation of unrepaired chromosomes with DNA double-strand gaps and breaks. Further mechanistic study revealed that the observed G2 checkpoint defects may result from functional impairment of the checkpoint protein, CHK 1, due to lack of PTEN. PTEN deficiency directly elevates AKT kinase activity, which triggers CHKl phosphorylation. Phosphorylated CHKl undergoes ubiquitination, which prevents its entry into the nucleus. Sequestering CHKl in the cytoplasm impairs its normal function in initiating a DNA repair checkpoint. In addition, CHKI inactivation in PTEN-deficient cells leads to the accumulation of DNA double-strand breaks (Puc and Parsons, Cell Cycle 4:927-929 (2005)). Examination of CHKI localization in a large panel of primary human breast carcinomas indicates an increased cytoplasmic level of CHK 1 in tumor cells with lower expression of PTEN and elevated AKT phosphorylation. Furthermore, aneuploidy was frequently observed in both human breast carcinomas with low expression of PTEN and prostatic intraepithelial neoplasia from Pten '/~mice (Puc and Parsons, Cell Cycle 4:927-929 (2005)). Such in vitro and in vivo observations indicate that PTEN deficiencies are involved in initiation of an oncogenic signaling process by causing dysfunction of important checkpoint proteins. [00361 Additionally, the role of nuclear PTEN in the maintenance of chromosomal stability has been demonstrated in both mouse and human systems (Shen et al, Cell 128:157-170 (2007)). First, PTEN interacts with centromeres and maintains their stability. It is believed that PTEN does so through its C2 domain, as mutant PTEN without this C2 domain loses the capability to interact with centromeres. Second, PTEN may be necessary for DNA repair because loss of PTEN results in a high frequency of double-strand breaks. PTEN affects double-strand breaks through regulation of Rad5 1, a key component for homologous recombination repair of DNA double-strand breaks. It has also been demonstrated that PTEN physically associates with an integral component of centromeres in the nucleus, disruption of which causes centromere breakage and massive chromosomal aberrations (Shen et al., Cell 128:157-170( 2007)). 100371 The cytoplasm has been considered as the primary site for PTEN to elicit its tumor-suppressive function, and the ability of PTEN to block the P13-kinase pathway through its phosphatase activity has been regarded as the key mechanism by which PTEN suppresses carcinogenesis. Although the cellular distribution of PTEN varies in different tissues, endogenous PTEN in neurons, gliomas and cells of the thyroid, pancreas and skin is found mostly in the nuclear compartment (Yin and Shen, Oncogene 27:5443-5453 (2008)). Growing evidence indicate that malignancies may be accompanied by translocation of PTEN from the 7 WO 2011/097334 PCT/US2011/023532 nucleus to the cytoplasm. The function of nuclear PTEN may deviate from its role in regulating PIP3 at the plasma membrane, but is consistent with an alternative role in controlling genetic stability and involving chromatin function. In addition, high expression levels of nuclear PTEN have recently been associated with cell cycle arrest at the GO/GI phase (Ginn-Pease and Eng, Cancer Res 63:282-286 (2003)), indicating a likely role of nuclear PTEN in cell growth inhibition. Similarly, multiple aspects of the anti-oncogenic function of PTEN, such as regulation of cell growth and migration, are found independent of its phosphatase activity. Indeed, somatic PTEN mutations do occur outside the phosphatase domain, implying that PTEN can function in tumor suppression through additional activities besides antagonism of the P13-kinase pathway. 100381 Inactivation of PTEN, either by mutations, deletions, or promoter hypermethylation, has been identified in a wide variety of tumors. The most common way to detect PTEN deficiency is by immunohistochemistry (IHC) staining of paraffin-embedded patient tumor sections (Pallares et al., Modern Pathology 18:719-727 (2005)). It is also possible to utilize commercial laboratories, such as Quest Diagnostics (Madison, NJ USA) or Quintiles (Durham, NC USA), which provide services to analyze tumor samples by IHC for PTEN. PTEN mutations may also be identified in human tumors samples by examining the PTEN gene by single-strand conformational polymorphism (SSCP) analysis and DNA sequencing (Minaguchi et al., Cancer Lett. 210:57-62 (2004)). This method is particularly useful for PTEN-deficient tumors that still make a mutant protein that will show up on IHC. In addition, the expression level of PTEN can be determined using reverse transcription coupled with PCR (RT-PCR) (Mutter et al., J. Clin. Endocrin. & Metab. 85:2334-2338, (2000)). PARP INHIBITORS 100391 A PTEN deficiency in certain tumor cells results in homologous recombination defects which sensitize tumor cells to treatment with PARP inhibitors. The present invention is directed to the used of a PARP inhibitor described herein for the treatment of diseases or disorders associated with a PTEN deficiency, including certain cancers. In some embodiments, a PARP inhibitor described herein reduces or inhibits the activity of one or both of PARP 1 and/or PARP2. In some embodiments, a PARP inhibitor described herein reduces or inhibits the activity of PARP1 while not affecting the activity of PARP2. In some embodiments, a PARP inhibitor described herein reduces or inhibits the activity of PARP2 while not affecting the activity of PARP 1. In some embodiments, a PARP inhibitor described herein is a substantially complete inhibitor of one or more PARPs. As used herein, "substantially complete inhibition" means, for example, >95% inhibition of one or more targeted PARPs. In other embodiments, "substantially complete inhibition" means, for example, >90% inhibition of one or more targeted PARPs. In other embodiments, "substantially complete inhibition" means, for example, >80% inhibition of one or more targeted PARPs. In other embodiments, a PARP inhibitor described herein is a partial inhibitor of one or more PARPs. As used herein, "partial inhibition" means, for example, between about 40% and about 60% inhibition of one or more targeted PARPs. In other 8 WO 2011/097334 PCT/US2011/023532 embodiments, "partial inhibition" means, for example, between about 50% and about 70% inhibition of one or more targeted PARPs. 100401 In some embodiments, compounds provided herein have the structure of Formula (I) and Formula(II) and pharmaceutically acceptable salts, solvates, esters, acids and prodrugs thereof. In certain embodiments, provided herein are compounds having the structure of Fornula (I) and Formula (II) that are inhibitors of the enzyme poly(ADP-ribose)polymerase (PARP). 100411 Described herein are 8-BZ-2-R 4 -4-R-5-R 2 -6R 3 -7Rs-9-A,Y-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-ones, 8-B,Z-5-R 2 -9-A,Y-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-ones, in which A, B, Z, Y, Rt, R 2 , R 3 , R 4 and R 5 are further described herein. In certain embodiments, isomers including enantiomers and diastereoisomers, and chemically protected forms of compounds having a structure represented by Formula (I) and Formula (II) are also provided. 100421 Formula (I) is as follows: R4 N | A B R, N Z
R
3
R
5 Formula (I) wherein: Y and Z are each independently selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 R6; wherein each R 6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C-C 6 alkyl, C 3
-C
8 cycloalkyl, C-Cgheterocycloalkyl; C 2
-C
6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2 -Ccalkynyl, aryl, arylalkyl, C 3 C 8 cycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarvlthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)C -C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRAR)sulfonyl, and (NRARB)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 R6; c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRARB)alkylene, (NR.RB)carbonyl, (NRARB)carbonylalkylene, (NRAR)sulfonyl, and (NRARs)sulfonylalkylene; 9 WO 2011/097334 PCT/US2011/023532 RI, R 2 , and R 3 are each independently selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARB, NRARBalkylene, and (NRARB)carbonyl; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, C 1
-C
6 alkyl, C 3
-C
8 cvcloalkyl, alkoxy, alkoxyalkyl wherein CI-C 6 alkyl, C 3 -Cgcycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, CI-C(alkyl, and C 3 -Cgcycloalkyl, wherein B is not 011; RA, and RB are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -- , -NH, -N(CI-C 6 -alkyl)-, -NCO(C-C 6 -alkyl)-, -N(aryl)-, -N(aryl-C-C 6 -alkyl-)-, N(substituted-aryl-C -C 6 -alkyl-)-, -N(heteroaryl)-, -N(heteroaryl-C -C 6 -alkyl-)-, -N(substituted-heteroaryl-C
C
6 -alkyl-)-, and -S- or S(O),- , wherein q is I or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; R4 and R 5 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRARs)alkylene; and isomers, salts, solvates, chemically protected forms, and prodrugs thereof 100431 Formula (11) is as follows: O N A Y B N Z R2 H Formula (II); wherein: Y is an aryl or heteroaryl group optionally substituted with at least one R6; Z is an aryl group optionally substituted with at least one R 6 ; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, Cl-C 6 alkyl, C 3 -Cgcycloalkyl, alkoxy, alkoxyalkyl wherein C-C 6 alkyl, Cr-Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, 1, C 1 -Csalkyl, and C 3 -Cscycloalkyl, wherein B is not OH;
R
6 is selected from OH, NO2, CN, Br, Cl, F, I, CrC-alkyl, C-Cgcycloalkyl, C 2 -Csheterocycloalkyl; C 2 C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2 -Calkynyl, aryl, arylalkyl, C 3 Cecycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, 10 WO 2011/097334 PCT/US2011/023532 heterocyclothio, NRARB, (NRARB)C -Calkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene;
R
2 is selected from hydrogen, Br, Cl, I, or F; RA. and R1 are independently selected from the group consisting of hydrogen, C -C 6 alkyl, C 3
-C
8 cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -O-, -NH, -N(C 1
-C
6 alkyl)-, -NCO(Cj-Calkyl)-, -NCO(C-Ccycloalkyl)- -N(aryl)-, N(aryl-C -C 6 alkyl-)-, -N(substituted-aryl-C -C 6 alkyl-)-, -N(heteroaryl)-, -N(heteroary-C-C 6 alkyl-)-, N(substituted-heteroaryl-C-C 6 alkyl-)-, and-S- or S(O)- , wherein q is 1 or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; or a pharmaceutically acceptable salt, solvate or prodrug thereof 100441 In certain embodiments are provided compounds of Formula (I) or a therapeutically acceptable salt thereof wherein R 1 , R 2 , R 3 are independently selected from a group consisting of hydrogen, alkyl, and halogen; R 4 is hydrogen and R 5 is selected from the group consisting hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRARB)alkylene; RA. and RB are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and R1 taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalitics selected from the group consisting of -O-, -NH, -N(C 1
-C
6 -alkyl)-, -NCO(CI-C 6 -alkyl)-, -N(aryl)-, -N(aryl- C -C 6 -alkyl-)-, -N(substituted-aryl- Cl-C 6 -alkyl-)-, -N(heteroaryl)-, -N(heteroaryl- C1-C 6 alkyl-)-, -N(substituted-heteroaryl- C 1
-C
6 -alkyl-)-, and -S- or S(O),-, wherein q is 1 or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents. 100451 In one embodiment is a compound of Formula (I) wherein Y is an aryl group. In another embodiment the aryl group is a phenyl group. In yet another embodiment the phenyl group is substituted with at least one
R
6 selected from Br, Cl, F, or I. In one embodiment R 6 is F. In one embodiment the phenyl group is substituted with at least one R 6 selected from (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In one embodiment R 6 is
(NRARB)CI-C
6 aikylene. In another embodiment C-C 6 alkyl is selected from methylene, ethylene, n propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet another embodiment C-C 6 alkyl is methylene. In yet a further embodiment RA and RB are each independently hydrogen, C-Coalkyl, or Cr
C
8 cycloalkyl. In one embodiment C-Csalkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In one embodiment C 1
-C
6 alkyl is methyl. In another embodiment C-C-alkyl is ethyl. In yet another embodiment CrCscycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. In a further embodiment C 3
-C
8 cycloalkyl is cyclopropyl. In yet a further embodiment R 6 is hydroxyalkylene. In one embodiment hydroxyalkylene is selected from CH 2 OH, CH 2
CH
2 OH, CH 2
CH
2
CH
2 OH, CH(OH)CH 3 ,
CH(OH)CH
2
CH
3 , CH 2
CH(OH)CH
3 , and CH 2
CH
2
CH
2
CH
2 OH. In another embodiment RA and R 8 taken 11 WO 2011/097334 PCT/US2011/023532 together with the nitrogen to which they are attached form a 6 membered heterocycle ring having 1 heteroatom or hetero functionality selected from the group consisting of-O-, -NH, or -N(C-C-alkyl). In yet another embodiment the hetero functionality is -N(CrC-alkyl). In a further embodiment C-Coalkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment CrCalkyl is methyl. In one embodiment Y is a heteroaryl group optionally substituted with at least one R- 6 . In another embodiment the heteroaryl group is selected from furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4 oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In yet another embodiment the heteroaryl group is imidazole. In a further embodiment imidazole is substituted with CrC-alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C-C 6 alkyl is methyl. In one embodiment the heteroaryl group is furan. In another embodiment the heteroaryl group is thiazole. In yet another embodiment the heteroaryl group is 1,3,4-oxadiazole. In a further embodiment heteroaryl group is substituted with C-C-alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso butyl, and tert-butyl. In yet a further embodiment C-C 6 alkyl is methyl. In one embodiment Z is an aryl group. In another embodiment the aryl group is a phenyl group. In yet another embodiment the phenyl group is substituted with at least one R 6 selected from Br, Cl, F, or I. In a further embodiment R6 is F. In yet a further embodiment R 6 is Cl. In one embodiment the phenyl group is substituted with at least one R- 6 selected from (NRARB)CI-C 6 alkylene, (NRARs)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In another embodiment R 6 is (NRARB)CI-C 6 alkylene. In yet another embodiment Cl-Coalkyl is selected from methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet a further embodiment C 1
-C
6 alkyl is methylene. In a further embodiment RA and R13 are each independently hydrogen, C 1
-C
6 alkyl, or C 3 -Cgcycloalkyl. In one embodiment Cj-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In another embodiment C-C(alkyl is methyl. In yet another embodiment RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having 1 heteroatom or hetero functionality selected from the group consisting of-O-, -NH, or -N(C-Coalkyl). In a further embodiment the hetero functionality is -N(C 1 Calkyl). In one embodiment C-C-alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso butyl, and tert-butyl. In yet a further embodiment C 1
-C
6 alkyl is methyl. In one embodiment Z is a heteroaryl group optionally substituted with at least one R 5 . In another embodiment the heteroaryl group is selected from furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In yet another embodiment the heteroaryl group is imidazole. In a further embodiment imidazole is substituted with CIC-alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, 12 WO 2011/097334 PCT/US2011/023532 and tert-butyl. In yet a further embodiment C-Coalkyl is methyl. In one embodiment the heteroaryl group is furan. In another embodiment the heteroaryl group is thiazole. In yet another embodiment the heteroaryl group is I,3,4-oxadiazole. In a further embodiment heteroaryl group is substituted with C 1
-C
6 alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C 1 C 6 alkyl is methyl. In another embodiment R 2 is hydrogen. In yet another embodiment R, is selected from F, Cl, Br, and I. In a further embodiment R, is F. 100461 In one embodiment is a compound of Formula (I) wherein A is hydrogen. In another embodiment A is CI-C 6 alkyl. In a further embodiment, A is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso butyl, tert-butyl, n-pentyl, and n-hexyl. In yet another embodiment, methyl, ethyl, n-propyl, iso-propyl, n butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl are optionally substituted with OH, NO 2 , CN, Br, Cl, F, and . In a further embodiment A is methyl. In yet another embodiment, A is selected from F, Cl, Br, and I. In another embodiment, A is C 3
-C
8 cycloalkyl. In another embodiment, A is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In one embodiment, A is substituted with OH, NO,, or CN. In a further embodiment, B is C 1
-C
6 alkyl. In a further embodiment, B is selected from methyl, ethyl, n-propyl, iso propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl. In yet another embodiment, methyl, ethyl, n propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl are optionally substituted with OH, NO,, CN, Br, Cl, F, and I. In one embodiment is a compound of Formula (I) wherein B is hydrogen. In a further embodiment B is methyl. In yet another embodiment, B is selected from F, Cl, Br, and I. In another embodiment, B is CrC 8 cycloalkyl. In another embodiment, B is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In one embodiment, A is substituted with OH, NO 2 , or CN. In a further embodiment, is a compound of Formula (I) wherein A is hydrogen and B is selected from Br, Cl, F, I, C-COalkyl, C 3 Cscycloalkyl, alkoxy, alkoxyalkyl wherein Cl-Cealkyl, C 3 -Cgcycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO,, CN, Br, Cl, F, I, C-C 6 alkyl, and C 3 Cgcycloalkyl. In another embodiment, is a compound of Formula (I) wherein B is hydrogen and A is selected from Br, Cl, F, I, C 1
-C
6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl wherein C-C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C 1
-C
6 alkyl, and C 3
-C
8 cycloalkyl. In yet another embodiment, both A and B are hydrogen. In a further embodiment, both A and B are selected from Br, Cl, F, I, C 1 -Coalkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl wherein C-Csalkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C-C-alkyl, and C 3 -Cscycloalkyl. 100471 In one embodiment is a compound of Formula (II) wherein Y is an aryl group. In another embodiment the aryl group is a phenyl group. In yet another embodiment the phenyl group is substituted with at least one R6 selected from Br, Cl, F, or I. In one embodiment R6 is F. In one embodiment the phenyl group is substituted with at least one RK selected from (NRARH)C1-C 6 alkylene, (NRARs)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In one embodiment R- is 13 WO 2011/097334 PCT/US2011/023532 (NRARB)CI-Coalkylene. In another embodiment C-C(alkyl is selected from methylene, ethylene, n propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet another embodiment Cj
C
6 alkylene is methylene. In yet a further embodiment RA and RB are each independently hydrogen, Cr
C
6 alkyl, or C 3 -cycloalkyl. In one embodiment C-Coalkyl is selected from methyl, ethyl, n-propyl, iso propyl, n-butyl, iso-butyl, and tert-butyl. In one embodiment -C 6 alkyl is methyl. In another embodiment
C
1
-C
6 alkyl is ethyl. In yet another embodiment C 3
-C
8 cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. In a further embodiment C 3
-C
8 cycloalkyl is cyclopropyl. In yet a further embodiment R 6 is hydroxyalkylene. In one embodiment hydroxyalkylene is selected from CH 2 OH, CH 2
CH
2 OH,
CH
2
CH
2
CH
2 OH, CH(OH)CH 3 , CH(OH)CH 2
CH
3 , CH 2
CH(OH)CH
3 , and CH 2
CH
2
CH
2
CH
2 OH. In another embodiment RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having 1 heteroatom or hetero functionality selected from the group consisting of -O-, -NH, or -N(C -C 6 alkyl). In yet another embodiment the hetero functionality is -N(C-C 6 alkyl). In a further embodiment C 1 -Coalkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment CrC-alkyl is methyl. In one embodiment Y is a heteroaryl group optionally substituted with at least one R6. In another embodiment the heteroaryl group is selected from furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In yet another embodiment the heteroaryl group is imidazole. In a further embodiment imidazole is substituted with
CI-C
6 alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C 1
-C
6 alkyl is methyl. In one embodiment the heteroaryl group is furan. In another embodiment the heteroaryl group is thiazole. In yet another embodiment the heteroaryl group is 1,3,4-oxadiazole. In a further embodiment heteroaryl group is substituted with Cl-C 6 alkyl selected from methyl, ethyl, n-propyl, iso propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C 1
-C
6 alkyl is methyl. In one embodiment Z is an aryl group. In another embodiment the aryl group is a phenyl group. In yet another embodiment the phenyl group is substituted with at least one R6 selected from Br, Cl, F, or I. In a further embodiment R, is F. In yet a further embodiment R is Cl. In one embodiment the phenyl group is substituted with at least one R 6 selected from (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARs)sulfonylalkylene. In another embodiment R 6 is
(NRAR
8
)CI-C
6 alkylene. In yet another embodiment C-Coalkylene is selected from methylene, ethylene, n propylene. iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet a further embodiment C-Coalkyl is methylene. In a further embodiment RA and RB are each independently hydrogen, C-Coalkyl, or C 3 Cscycloalkyl. In one embodiment C 1
-C
6 alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In another embodiment C 1
-C
6 alkyl is methyl. In yet another embodiment RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having 1 14 WO 2011/097334 PCT/US2011/023532 heteroatom or hetero functionality selected from the group consisting of -- , -NH, or -N(C 1 -Coalkyl). In a further embodiment the hetero functionality is -N(CI-Chalkyl). In one embodiment C-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C 1 C(alkyl is methyl. In another embodiment R 2 is hydrogen. In yet another embodiment R 2 is selected from F, Cl, Br, and 1. In a further embodiment R, is F. 100481 In one embodiment is a compound of Formula (II) wherein A is hydrogen. In another embodiment A is C -C 6 alkyl. In a further embodiment, A is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso butyl, tert-butyl, n-pentyl, and n-hexyl. In yet another embodiment, methyl, ethyl, n-propyl, iso-propyl, n butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl are optionally substituted with OH, NO 2 , CN, Br, Cl, F, and I. In a further embodiment A is methyl. In yet another embodiment, A is selected from F, Cl, Br, and I. In another embodiment, A is C 3 -Cscycloalkyl. In another embodiment, A is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In one embodiment, A is substituted with OH, NO 2 , or CN. In one embodiment is a compound of Formula (II) wherein B is hydrogen. In a further embodiment, B is C-C 6 alkyl. In a further embodiment, B is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl. In yet another embodiment, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n pentyl, and n-hexyl are optionally substituted with OH, NO 2 , CN, Br, Cl, F, and . In a further embodiment B is methyl. In yet another embodiment, B is selected from F, Cl, Br, and I. In another embodiment, B is C 3 Cxcycloalkyl. In another embodiment, B is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In one embodiment, A is substituted with OH, NO 2 , or CN. In a further embodiment, is a compound of Formula (II) wherein A is hydrogen and B is selected from Br, Cl, F, I, CI-C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein C-C 6 alkyl, C 3 -Cxcvcloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, Cl-C 6 alkyl, and C 3 -Cgcycloalkyl. In another embodiment, is a compound of Formula (II) wherein B is hydrogen and A is selected from Br, Cl, F, I, Cj
C
6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein -C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO,, CN, Br, Cl, F, I, CI-C 6 alkyl, and
C
3 -Ccycloalkyl. In yet another embodiment, both A and B are hydrogen. In a further embodiment, both A and B are selected from Br, Cl, F, I, CI-C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein C-C-alkyl, C 3 Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH,
NO
2 , CN, Br, Cl, F, I, C 1
-C
6 alkyl, and C 3 -CScycloalkyl. 100491 In yet a further aspect is a compound selected from: 15 WO 2011/097334 PCT/US2O1 1/023532 H H H H H o N 0 N, 0 N, ~N'~ 0 ~N 07, N N. 7 N,N N N N N-HN-H F H IH HH H H F H 0 N\N 0 NTNN 0 N, N 1 , 0 N,~ 7 0 N,~ HN N N N NN HF N H 7 H N-. H H HH N~ r N N F H 0, 0 N o N" N NN r NNn or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100501 In yet another aspect is a compound selected from: 16 WO 2011/097334 PCT/US2011/023532
-
0 - Y NH NH H N HN ~N AN H HN / \ - N \ H N O N 4N HN ON\ON2 N O H7 NH OH HN N / H HN-N NH 0 N'N - o N \N NNN H , 7 N N N N -, O O N ON0 N H H HN NO N\ 0 N\ O N N N N-/ H HN / /0 0 0 0 N /-\N HN HO NH . HN-N - 0 HO _ rN O O N NH OH' NH N o/ N N 0 F N N 0 H H or a pharmaceutically acceptable salt, solvate or prodrug thereof. [00511 In yet another aspect is a compound selected from: 17 WO 2011/097334 PCT/US2011/023532 H HN o N'N HN-N HN-N F NH N-- NH HN K F F NH H F F H o NN H 0 N N N N F N F N N ( N N N -- O N < F N N F N N H ,N N n-N N- N N H H H H H H HN-N NN NN NN N- N NH N O= N NH N/ N.N- S NiNN NN 0 N 0 N \r HH H H N or ahamcetcal acetbeHatolaeo prdugtero NN N HN-N NH N N 'N I o I f N NH N H N8 F NH H H 0 H N N N N N N N\ H SN N I, H N NN N N I I N N-N\N- N N N N- N N 0N 0 HN0 H N H H ~ HH 0 NNNH NN N H N NN -N N N~ H N - N 0 Iy H 0 N or a pharmaceutically acceptable salt, solvate or prodrug thereof 100521 In yet a further embodiment is a compound selected from: is WO 2011/097334 PCT/US2011/023532 0 F H HN ONN N HN-N ~ H NH 0, N N N- N-NH N O NH N- NN NN FN 0 N H H H \ O N F -HN- ~ HNN - N N N NH N N H H/ 0 ,N F HN-N N H NN N 0 -NH ~and0 N N-NH H ,, N(AD/N " or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100531 In yet a further embodiment is a compound selected from: (8S,9R)-5-fluoro-9-(1-methyl-lH-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-delphthalazin 3(7H)-one, (8R,9S)-5-fluoro-9-(1-methyl-1H-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-lH-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 delphthalazin-3(7H)-one, (8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 dejphthalazin-3(7H)-one, (8S,9R)- 8-(4-fluorophenyl)-9-(1-methyl-i H-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, (8R,9S)- 8-(4-fluorophenyl)-9-(1-methyl-1H-imidazol-2-yl) -8,9-dihydro-2H1-pyrido(4,3,2-de]phthalazin 3(7H)-one, (8S,9R)-5-fluoro-9-(1-methyl- 1H-1,2,4-triazol-5-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H9)-one, (8R,9S)-5-fluoro-9-(1-methyl-lH-1,2,4-triazol-5-yl) -8-phenyl-8,9-dihydro-2H-pyrido(4,3,2-de]phthalazin 3(711)-one, (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-IH-1,2,4-triazol-5-yI) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one, 19 WO 2011/097334 PCT/US2011/023532 (8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-I H-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido(4,3,2 delphthalazin-3(7MH-one, (8S,9R)- 8-(4-fluorophenyl)-9-( 1-methyl- 1H-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, (8R,9S)- 8-(4-fluorophenyl)-9-(1-methyl-i H-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(17H)-one, (8S,9R)-8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-(1-methyl-iH-1,2,4-triazol-5-yl)-8,9-dihydro-2H pyrido[4,3,2-de]phthalazin-3(7H)-one, and (8R,9S)-8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-(1 -methyi- Il-,2,4-triazol-5-yl)-8,9-dihydro-2H pyrido[4,3,2-de]phthalazin-3(7H)-one, or a pharmaceutically acceptable salt, solvate or prodrug thereof 100541 In another aspect is a pharmaceutical composition comprising a compound of Formula (I) or Formula (1I) or a pharmaceutically acceptable salt, pharmaceutically acceptable solvate, or pharmaceutically acceptable prodrug and a pharmaceutically acceptable carrier, excipient, binder or diluent thereof. [00551 In certain embodiments are provided PARP inhibitor compounds of Formula (I) R4 O N,N | A I B 2N Z
R
3
R
5 Formula (I) or a therapeutically acceptable salt thereof wherein Rt, R 2 , and R 3 are each independently selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARR, NRARsalkylene, and (NRARB)carbonyl; RA and RB are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -O-, -NH, -N(C 1
-C
6 -alkyl)-, -NCO(C 1
-C
6 -alkyl)-, -N(aryl)-, -N(aryl-Cl-C 6 -alkyl-)-, N(substituted-aryl-C -C 6 -alkyl-)-, -N(hetcroaryl)-, -N(heteroaryl-C -C 6 -alkyl-)-, -N(substituted-heteroary-C
C
6 -alkyl-)-, and -S- or S(O), , wherein q is I or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; R 4 and R 5 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRARs)alkylene; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, Cl-C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein C-C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with 20 WO 2011/097334 PCT/US2011/023532 at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, 1, C 1
-C
6 alkyl, and C 3 -Cgcycloalkyl, wherein B is not OH; Y and Z are each independently selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 substituents R 6 ; R 6 is selected from OHl, NO 2 , CN, Br, Cl, F, I, C-C 6 alkyl, C 3 -Cacycloalkyl, C 2 -Csheterocycloalkyl; C-C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C 3 -Cscycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRARs)carbonylalkylene, (NRARB)sulfonyl, and (NRARe)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 substituents R 6 ; R is previously as defined; c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRARB)alkylene, (NRARs)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARD)sulfonylalkylene; or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100561 In certain embodiments are provided PARP inhibitor compounds of Formula (I) or a therapeutically acceptable salt thereof wherein R 1 , R 2 , R 3 are independently selected from a group consisting of hydrogen, alkyl, and halogen; R4 is hydrogen and R 5 is selected from the group consisting hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRARB)alkylene; RA, and RB are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and Re taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three hetcroatoms or hetero functionalities selected from the group consisting of -O-, -NH, -N(CI-C 6 -alkyl)-, NCO(CI-C 6 -alkyl)-, -N(aryl)-, -N(aryl- C-C-alkyl-)-, -N(substituted-aryl- C-C 6 -alkyl-)-, -N(heteroaryl)-, N(heteroaryl- Cl-C 6 -alkyl-)-, -N(substituted-heteroaryl- C,-C,-alkyl-)-, and -S- or S(O)- , wherein q is I or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, C-Coalkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein C-Coalkyl, C-Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C-C 6 alkyl, and C 3 -Cscycloalkyl, wherein B is not OH; Y and Z are each independently selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 R 6 ; wherein each R 6 is selected from OH, NO2, CN, Br, Cl, F, I, C-C 6 alkyl, C 3
-C
8 cycloalkyl, C,-C 8 heterocycloalkyl; C 2
-C
6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C 3 Cgcycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, 21 WO 2011/097334 PCT/US2011/023532 heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Cgheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARa)C-Coalkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRARs)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 R6, c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, hetcroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRAR)alkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene; or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100571 In certain embodiments are provided PARP inhibitor compounds of Formula (I) or a therapeutically acceptable salt thereof wherein RI, R 2 , and R 3 are independently selected from a group consisting of hydrogen, alkyl, and halogen; R 4 and R 5 are hydrogen; RA and R 8 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalitics selected from the group consisting of -O-, -NH, -N(C -C 6 -alkyl)-, -NCO(C 1
-C
6 -alkyl)-, -N(aryl)-, -N(aryl-Cl-C 6 -alkyl-)-, -N(substituted-aryl-C -C 6 -alkyl-)-, -N(heteroaryl)-, -N(heteroaryl-C -C 6 alkyl-)-, -N(substituted-heteroaryl-C-C 6 -alkyl-)-, and -S- or S(O),- , wherein q is 1 or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; A and B are each independently selected from hydrogen, Br, Cl, F, I, C-C-alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein C -C 6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C-Calkyl, and C 3
-C
8 cycloalkyl; Y and Z are each independently selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 R6; wherein each R 6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C-C-alkyl, C 3 -Cgcycloalkyl, C 2 -Csheterocycloalkyl; C 2
-C
6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C 3 Cgcycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARs)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 R 6 ; c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, 22 WO 2011/097334 PCT/US2011/023532 (NRARs)alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene; or a pharmaceutically acceptable salt, solvate or prodrug thereof. [00581 In certain embodiments are provided PARP inhibitor compounds of Formula (I) or a therapeutically acceptable salt thereof wherein R1, R 2 , R 3 , R 4 and R 5 are hydrogen; RA, and RH are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -0-, -NH, -N(Cf-C 6 -alkyl)-, NCO(C,-C 6 -alkyl)-, -N(aryl)-, -N(aryl- C -C 6 -alkyl-)-, -N(substituted-aryl- C 1
-C
6 -alkyl-)-, -N(heteroaryl)-, N(heteroaryl- Cj-C 6 -alkyl-)-, -N(substituted-heteroaryl- C-C 6 -alkyl-)-, and -S- or S(O), , wherein q is I or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, C-C 6 alkyl, C 3 -Cgcycloalkyl, alkoxy, alkoxyalkyl wherein C I-C 6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C1-C 6 alkyl, and C 3 -Cscycloalkyl, wherein B is not OH; Y and Z are each independently selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 &4; wherein each R 6 is selected from OH, N02, CN, Br, Cl, F, I, Ci-C 6 alkyl, C-Cscycloalkyl, C 2 -Csheterocycloalkyl; C 2
-C
6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl., aryl, arylalkyl, C 3 Cacycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)C -C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARs)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 R 6 ; c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRARB)alkylene, (NRAR)carbonyl, (NRARB)carbonylalkylene, (NRAR)sulfonyl, and (NRAR)sulfonylalkylene; or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100591 In one embodiment is a PARP inhibitor compound of Formula (I) wherein R 1 , R 2 , R 3 are each independently selected from a group consisting of hydrogen, alkyl, and halogen; R 4 is hydrogen and R 5 is selected from the group consisting hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRARR)alkylene; and isomers, salts, solvates, chemically protected forms, and prodrugs thereof. 100601 In another embodiment is a PARP inhibitor compound of Formula (I) wherein R 1 , R 2 , R 3 are each independently selected from a group consisting of hydrogen, alkyl, and halogen; R 4 and R, are hydrogen; and isomers, salts, solvates, chemically protected forms, and prodrugs thereof. 23 WO 2011/097334 PCT/US2011/023532 100611 In a further embodiment is a compound of PARP inhibitor Formula (I) wherein R 1 , R 2 , R 3 , R4 are each hydrogen and Rs is alkyl. 100621 In yet another embodiment is a PARP inhibitor compound of Formula (1) wherein R 1 , R 2 , R 3 , R 4 are each hydrogen; and R, is methyl. 100631 In one embodiment is a PARP inhibitor compound of Formula (I) wherein R 1 , R 2 , and R 3 are each hydrogen. 100641 In another embodiment is a PARP inhibitor compound of Formula (I) wherein Y and Z are each independently selected from the group consisting of: a) a phenyl group optionally substituted with t, 2, or 3 R6; b) a pyridyl group optionally substituted with 1, 2, or 3 R 6 ; and c) a substituent independently selected from the group consisting of hydrogen, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylearbonyl, arylcarbonyl, heteroarylcarbonyl, (NRAR)alkylene, (NRARB)carbonyl, and (NRAR)carbonylalkylene. 100651 In a further embodiment is a PARP inhibitor compound of Formula (I) wherein Y and Z are each independently selected from the group consisting of a) a phenyl group optionally substituted with 1, 2, or 3 Rh; b) a imidazole group optionally substituted with 1, 2, or 3 R 6 ; and c) a substituent independently selected from the group consisting of hydrogen, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, (NRARB)alkylene (NRAR)carbonyl, and (NRARB)carbonylalkylene. 100661 In a further embodiment is a PARP inhibitor compound of Formula (I) wherein Y and Z are each independently selected from the group consisting of d) a phenyl group optionally substituted with 1, 2, or 3 R6; e) a triazole group optionally substituted with 1, 2, or 3 R 6 ; and f) a substituent independently selected from the group consisting of hydrogen, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, (NRARB)alkylene (NRARB)carbonyl, and (NRARB)carbonylalkylene. [00671 In one embodiment is a PARP inhibitor compound of Formula (I) wherein R 5 is hydrogen or an alkyl group. In another embodiment, R 5 is hydrogen. In a further embodiment, R 5 is C 1
-C
6 alkyl. In yet a further embodiment, R 5 is CHI. In another embodiment, R 5 is CH 2 CIH3. 100681 In another embodiment is a PARP inhibitor compound of Formula (I) wherein R4 is hydrogen or an alkyl group. In yet another embodiment, R4 is hydrogen. 24 WO 2011/097334 PCT/US2011/023532 100691 In one embodiment, R 2 is selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARB, NRARaalkylene, and (NRARD)carbonyl. In a further embodiment R 2 is a halogen selected from F, Cl, Br, and I. In yet a further embodiment, R 2 is fluorine. In one embodiment, R 2 is hydrogen. 100701 In another embodiment, R 3 is selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARB, NRARBalkylene, and (NRARB)carbonyl. In a further embodiment, R 3 is hydrogen. In some embodiments, R, is selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARB, NRARBalkylene, and (NRARs)carbonyl. In a further embodiment, R, is hydrogen. [00711 Also disclosed herein are PARP inhibitor compounds of Formula (I) wherein Z is an aryl group optionally substituted with 1, 2, or 3 R6; wherein each R 6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C 1 Calkyl, C 3 -CScycloalkyl, C 2 -Cxhctcrocycloalkyl; C 2
-C
6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C 3 -Cscycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Cgheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI
C
6 alkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRAR)sulfonylalkylene. In one embodiment is a compound of Formula (I) wherein Z is an optionally substituted phenyl group. In one embodiment, Z is a phenyl group. In another embodiment, the phenyl group is optionally substituted with at least one R 6 selected from OH, NO 2 , CN, Br, Cl, F, I, C 1
-C
6 alkyl, C 3 -Cscycloalkyl, C 2 -Csheterocycloalkyl;
C
2 -Calkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C 3 C 8 cycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2
-C
8 heterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI-Calkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In another embodiment, R 6 is (NRARB)alkylene. In a further embodiment, R 6 is CH 2 (NRARB). In a further embodiment, R is CH 2 (NRARB) wherein NRARB is azetidine, pyrrolidine, piperidine or morpholine. In yet a further embodiment, RA is H or alkyl. In another embodiment, RA is C 1
-C
6 alkyl. In yet another embodiment, RA is CH 3 . In another embodiment, RB is H or alkyl. In one embodiment, RB is C 1
-C
6 alkyl. In yet another embodiment, R1 is CH 3 . In a further embodiment, R 6 is CH2NICII 3 . In yet a further embodiment, R 6 is CH 2
NCH
3
CH
3 . In one embodiment, R 6 is (C=O)heterocycloalkyl(C=O)alkyl. In one embodiment R is (C=O)heterocycloalkyl(C=O)alkyl wherein the heterocycloalkyl group has at least one heteroatom selected from 0, N, and S. In another embodiment, the heterocycloalkyl group has two N atoms. In a further embodiment, R 6 is (C=O)heterocycloalkyl(C=O)alkyl wherein alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, and t-butyl. 25 WO 2011/097334 PCT/US2011/023532 In one embodiment, the alkyl group is cyclopropyl. In another embodiment, the alkyl group is iso-propyl. In N N X N Y N one embodiment, R 6 is 0 In another embodiment, R 6 is 0 100721 Presented herein are PARP inhibitor compounds of Formula (1) wherein Z is an optionally substituted heteroaryl group. In one embodiment, the heteroaryl group is selected from pyridine, pyrimidine, pyrazine, pyrazole, oxazole, thiazole, isoxazole, isothiazole, 1,3,4 -oxadiazole, pyridazine, 1,3,5-trazine, 1,2,4-triazine, quinoxaline, benzimidazole, benzotriazole, purine, 1 H-[ 1,2,3 ]triazolo[4,5-d]pyrimidine, triazole, imidazole, thiophene, furan, isobenzofuran, pyrrole, indolizine, isoindole, indole, indazole, isoquinoline, quinoline, phthalazine, naphthyridine, quinazoline, cinnoline, and pteridine. In one embodiment, Z is pyridine. In another embodiment, Z is optionally substituted pyridine. 100731 Also disclosed herein are PARP inhibitor compounds of Formula (I) wherein Y is an aryl group optionally substituted with 1, 2, or 3 R 6 ; wherein each R 6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C 1 C 6 alkyl, C 3
-C
8 cycloalkyl, C 2 -Csheterocycloalkyl; C-C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C-C 6 alkynyl, aryl, arvlalkyl, C 3 -Cgcycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, hetcrocyclothio, NRARB, (NRARB)Cl
C
6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRAR9)sulfonyl, and (NRARB)sulfonylalkylene. In one embodiment is a compound of Formula (I) wherein Y is an optionally substituted phenyl group. In one embodiment, Y is a phenyl group. In another embodiment, the phenyl group is optionally substituted with at least one R 6 selected from OH, NO 2 , CN, Br, Cl, F, I, C-C 6 alkyl, C 3 -Cscycloalkyl, C 2
-C
8 heterocycloalkyl;
C
2
-C
6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C
C
8 cycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)C-Calkylene, (NRAR)carbonyl, (NRARB)carbonylalkylene, (NRARs)sulfonyl, and (NRARs)sulfonylalkylene. In a further embodiment, R 6 is CH 2 (NRARB). In yet a further embodiment, RA is H or alkyl. In another embodiment, RA is C -C 6 alkyl. In yet another embodiment, RA is CH 3 . In another embodiment, R 8 is H or alkyl. In one embodiment, RB is C-C 6 alkyl. In yet another embodiment, RB is CH 3 . In a further embodiment, R 6 is CH 2
NHCH
3 . In yet a further embodiment, R 6 is
CH
2
NCH
3
CH
3 . In one embodiment, R is (C=O)heterocycloalkyl(C=O)alkyl. In one embodiment R is (C=O)heterocycloalkyl(C=O)alkyl wherein the heterocycloalkyl group has at least one heteroatom selected from 0, N, and S. In another embodiment, the heterocycloalkyl group has two N atoms. In a further embodiment, R 6 is (C=O)heterocycloalkyl(C=O)alkyl wherein alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, and t-butyl. In one embodiment, the alkyl group is cyclopropyl. 26 WO 2011/097334 PCT/US2011/023532 N N In another embodiment, the alkyl group is iso-propyl. In one embodiment, Ra is 0 In N N another embodiment, R 6 is 0 100741 Presented herein are PARP inhibitor compounds of Formula (I) wherein Y is an optionally substituted heteroaryl group. In one embodiment, the heteroaryl group is selected from pyridine, pyrimidine, pyrazine, pyrazole, oxazole, thiazole, isoxazole, isothiazole, 1,3.4 -oxadiazole, pyridazine, 1,3,5-trazine, 1,2,4-triazine, quinoxaline, benzimidazole, benzotriazole, purine, 1H-[1,2,3]triazolo[4,5-d]pyrimidine, triazole, imidazole, thiophene, furan, isobenzofuran, pyrrole, indolizine, isoindole, indole, indazole, isoquinoline, quinoline, phthalazine, naphthyridine, quinazoline, cinnoline, and pteridine. In one embodiment, Y is pyridine. In another embodiment, Y is optionally substituted pyridine. In one embodiment, Y is imidazole. In another embodiment, Y is optionally substituted imidazole. In one embodiment, Y is triazole. In another embodiment, Y is optionally substituted triazole. 100751 In one embodiment, Y is a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRARB)alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARR)sulfonyl, and (NRARB)sulfonylalkylene. In one embodiment, Y is alkyl. In another embodiment, Y is C]-C 6 alkyl. In a further embodiment, Y is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl. In another embodiment, Y is iso propyl. 100761 Also disclosed herein are compounds of Formula (I) wherein Y is an optionally substituted heterocycloalkyl group. In one embodiment, the heterocycloalkyl group is selected from pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidino, morpholino, thiomorpholino, thioxanyl, piperazinyl, azetidinyl, oxetanyl, thietanyl, homopiperidinyl, oxepanyl, thiepanyl, oxazepinyl, diazepinyl, thiazepinyl, 1,2,3,6 tetrahydropyridinyl, 2-pyrrolinyl, 3-pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1,3-dioxolanyl, pyrazolinyl, dithianyl, dithiolanyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, 3-azabicyclo[3. 1.0]hexanyl, 3-azabicyclo[4. 1.0]heptanyl, 3H-indolyl and quinolizinyl. In another embodiment the heterocycloalkyl group is selected from pyrrolidinyl, imidazolidinyl, 27 WO 2011/097334 PCT/US2011/023532 piperidinyl, piperazinyl, pyrazolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, 1,3-oxathiolanyl, indolinyl, isoindolinyl, morpholinyl, and pyrazolinyl. In another embodiment, the heterocycloalkyl group is piperidinyl. 100771 In another aspect is a PARP inhibitor compound of Formula (IA): 0 NN "N A R Y B R, N '(R6)n, Rt N R 3
R
5 N Formula (IA) or a therapeutically acceptable salt, solvate or prodrug thereof wherein R 1 , R 2 , and R 3 are each independently selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARB, NRARBalkylene, and (NRARB)carbonyl; RA. and RB are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -)-, -NH, -N(C-C 6 -alkyl)-, -NCO(C-C 6 -alkyl)-, -N(aryl)-, -N(aryl-C 1
-C
6 -alkyl-)-, N(substituted-aryl-C -C 6 -alkyl-)-, -N(heteroaryl)-, -N(heteroaryl-C -C 6 -alkyl-)-, -N(substituted-heteroaryl-C C 6 -alkyl-)-, and -S- or S(O),- , wherein q is 1 or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; R4 and R 5 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRARB)alkylene; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, C 1 -Calkyl, C 3 -Ccycloalkyl, alkoxy, alkoxyalkyl wherein C 1
-C
6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO2, CN, Br, Cl, F, I, C-Coalkyl, and C 3 -Cscycloalkyl, wherein B is not OH; Y is selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 substituents R&; R6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C 1
-C
6 alkyl, C 3 -Cacycloalkyl, C 2 -Cgheterocycloalkyl; C 2 -Calkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C-C 6 alkynyl, aryl, arylalkyl, C 3 -Cscycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2
-C
8 heterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI-Calkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRAR)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 substituents R 6 ; R 6 is selected independently from the group consisting of alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, 28 WO 2011/097334 PCT/US2011/023532 alkyl, alkynyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cyano, haloalkoxy, haloalkyl, halogen, hydroxyl, hydroxyalkylene, nitro, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkyl, heterocycloalkoxy, heterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRAR)sulfonyl, and (NRAR)sulfonylalkylene; c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRARB)alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARS)sulfonylalkylene; and n is an integer from 0-4; or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100781 In another embodiment is a PARP inhibitor compound of Formula (IA) having the structure: R4
R
4 0 NN 0 N. N |A |IA R, Y R Y B IB R2 N R, N N
R
3
R
5 /Nor R 3 R / or a pharmaceutically acceptable salt, solvate, or prodrug thereof. 100791 In one embodiment is a PARP inhibitor compound of Formula (IA) wherein Y is an aryl group. In another embodiment, Y is a heteroaryl group. In a further embodiment, the aryl group is a phenyl group. In yet a further embodiment is a compound of Formula (IA) wherein the phenyl group is substituted with at least one R 6 . In yet another embodiment the phenyl group is substituted with at least one R 6 selected from Br, Cl, F, or I. In one embodiment R 6 is F. In one embodiment is a compound of Formula (IA) wherein the phenyl group is substituted with at least one R 6 selected from (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In one embodiment R is
(NRARB)C-C
6 alkylene. In another embodiment C 1 -Calkylenc is selected from methylene, ethylene, n propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet another embodiment C
C
6 alkylene is methylene. In yet a further embodiment RA and RB are each independently hydrogen, C 1 r
C
6 alkyl, or C 3 -Cgcycloalkyl. In one embodiment C-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso propyl, n-butyl, iso-butyl, and tert-butyl. In one embodiment CI-C 6 alkyl is methyl. In another embodiment
C
1 -Coalkyl is ethyl. In one embodiment is a compound of Formula (IA) wherein C-Cscycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. In a further embodiment C 3
-C
8 cycloalkyl is cyclopropyl. In one embodiment is a compound of Formula (IA) wherein R 6 is hydroxyalkylene. In one embodiment hydroxyalkylene is selected from C1 2 011, CHJ 2
CF
2 OHI, CH 2
CH
2
CH
2 OH, CH(OH)CH 3 , 29 WO 2011/097334 PCT/US2011/023532
CH(OH)CH
2
CH
3 , CH 2
CH(OH)CH
3 , and CH 2
CH
2
CH
2
CH
2 OH. In another embodiment RA and RH taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having I heteroatom or hetero functionality selected from the group consisting of -- , -NH, or -N(CI-C 6 alkyl). In yet another embodiment the hetero functionality is -N(CI-C 6 alkyl). In a further embodiment Cj-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment Cl-C 6 alkyl is methyl. 100801 In one embodiment is a PARP inhibitor compound of Formula (IA) wherein Y is a heteroaryl group optionally substituted with at least one R 6 . In another embodiment the heteroaryl group is selected from furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In yet another embodiment the heteroaryl group is imidazole. In a further embodiment imidazole is substituted with C-C 6 alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C-C(alkyl is methyl. In one embodiment the heteroaryl group is furan. In another embodiment the heteroaryl group is thiazole. In yet another embodiment the heteroaryl group is 1,3,4-oxadiazole. In a further embodiment heteroaryl group is substituted with C-C 6 alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C
C
6 alkyl is methyl. 100811 In one embodiment is a PARP inhibitor compound of Formula (IA) wherein A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, C 1 -Coalkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl wherein C-C 6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C-Coalkyl, and C-Cscycloalkyl and B is not OH. 100821 In yet another embodiment is a PARP inhibitor compound selected from: 30 WO 2011/097334 PCT/US2011/023532 OH NH N H HN H H 0 N,. H O N, N I N 0 N, rN , O N N NN N NN N 0 H IN H N H .N H N N NH N H HN O NO O N.. N H NN N N ,-NN H H N 0 H N N H N OH N NN H H N H O N 0 N.0 NON N N NN N' IN N N HN H H N N N-N N-N NH H H -~H HN O0 . N N H 0 N. NR g N I I N 0) N 0 H a or N ahraet- H H N o df 3 H N Ni H N N H. FH 0 N N N"~ i RN H N FN N.N 0 -'N. N 0 K H F N NH F N H 'N H KN H N O N.. N . N 1 H H N NN. N RN H 'NN 0 N 0 H H or a pharmaceutically acceptable salt, solvate or prodnig thereof. 31 WO 2011/097334 PCT/US2011/023532 100831 In one embodiment is a PARP inhibitor compound of Formula (I) wherein Y is a heteroaryl group selected from furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In another embodiment, Y is an imidazole group. In yet another embodiment, the imidazole group is substituted with a C-C 6 alkyl group. In another embodiment, the Ci-C 6 alkyl group is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In a further embodiment C 1
-C
6 alkyl is methyl. In another embodiment is a compound of Formula (I) wherein Y is a substituted imidazole group and Z is selected from an aryl group or a heteroaryl group. In a further embodiment, Z is an aryl group. In yet a further embodiment, the aryl group is a phenyl group. In yet a further embodiment, the aryl group is a phenyl group substituted by a halogen. In yet a further embodiment Z is a heteroaryl group. In another embodiment, the heteroaryl group is furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In a further embodiment, the heteroaryl group is imidazole. In another embodiment, the imidazole group is substituted with a C 1
-C
6 alkyl group. In another embodiment, the C Calkyl group is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In a further embodiment C 1
-C
6 alkyl is methyl. 100841 In another embodiment is a PARP inhibitor compound of Formula (I) wherein Y is a triazole group. In yet another embodiment, the triazole group is substituted with a Cl-C(alkyl group. In another embodiment, the C-Calkyl group is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In a further embodiment C 1
-C
6 alkyl is methyl. In another embodiment is a compound of Formula (I) wherein Y is a substituted triazole group and Z is selected from an aryl group or a heteroaryl group. In a further embodiment, Z is an aryl group. In yet a further embodiment, the aryl group is a phenyl group. In yet a further embodiment, the aryl group is a phenyl group substituted by a halogen. In yet a further embodiment Z is a heteroaryl group. In another embodiment, the heteroaryl group is furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4 oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In a further embodiment, the heteroaryl group is triazole. In another embodiment, the triazole group is substituted with a Cl-C 6 alkyl group. In another embodiment, the C 1
-C
6 alkyl group is methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In a further embodiment C-C 6 alkyl is methyl. 32 WO 2011/097334 PCT/US2011/023532 100851 In another embodiment is a PARP inhibitor compound selected or NsN -N N, N, N N O N 0 from H H or a pharmaceutically acceptable salt, solvate or prodrug thereof. 100861 In one aspect is a PARP inhibitor compound of Formula (11): 0 'N A B N Z R2 H Formula (II); wherein: Y is an aryl or heteroaryl group optionally substituted with at least one R6; Z is an aryl group optionally substituted with at least one R6; R6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C 1
-C
6 alkyl, C 3 -Cscycloalkyl, C-C 8 heterocycloalkyl; C 2 C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C-C(alkynyl, aryl, arylalkyl, C 3 Cscycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Cgheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI -C 6 alkylene, (NRARs)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene; R2 is selected from hydrogen, Br, Cl, I, or F; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, Cl-C(alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl wherein C-Csalkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C 1
-C
6 alkyl, and C 3 -Cscycloalkyl, wherein B is not OH; RA and RB are independently selected from the group consisting of hydrogen, Cl-C 6 alkyl, C 3
-C
8 cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of-O-, -NH, -N(C-C 6 alkyl)-, -NCO(C 1 -Calkyl)-, -NCO(C-Cscycloalkyl)- -N(aryl)-, N(aryl-Cj-C 6 alkyl-)-, -N(substituted-ary-C-C 6 alkyl-)-, -N(heteroaryl)-, -N(heteroaryl-CI-C 6 alkyl-)-, N(substituted-heteroary-C-C 6 alkyl-)-, and -S- or S(O),- , wherein q is 1 or 2 and the 3-10 membered 33 WO 2011/097334 PCT/US2011/023532 heterocycle ring is optionally substituted with one or more substituents; or a pharmaceutically acceptable salt, solvate or prodrug thereof. 10087] In one embodiment is a PARP inhibitor compound of Formula (1I) wherein Y is an aryl group. In another embodiment the aryl group is a phenyl group. In yet another embodiment the phenyl group is substituted with at least one R 6 selected from Br, Cl, F, or I. In one embodiment R 6 is F. In one embodiment the phenyl group is substituted with at least one R 6 selected from (NRARB)CI-C 6 alkylene, (NRARe)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In one embodiment R 6 is
(NRARB)C
1
-C
6 alkylene. In another embodiment C 1 -Coalkylene is selected from methylene, ethylene, n propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet another embodiment Cj
C
6 alkylene is methylene. In yet a further embodiment RA and RB are each independently hydrogen, C C 6 alkyl, or C 3
-C
8 cycloalkyl. In one embodiment Cl-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso propyl, n-butyl, iso-butyl, and tert-butyl. In one embodiment C-Calkyl is methyl. In another embodiment
C
1
-C
6 alkyl is ethyl. In yet another embodiment C-Cscycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. In a further embodiment C 3 -Ccycloalkyl is cyclopropyl. In yet a further embodiment R 6 is hydroxyalkylene. In one embodiment hydroxyalkylene is selected from CH 2 OH, CH 2
CH
2 OH,
CH
2
CH
2 CH2OH, CH(OH)CH 3 , CH(OH)CH 2
CH
3 , CH 2
CH(OH)CH
3 , and CH 2
CH
2
CH
2
CH
2 OH. In another embodiment RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having I heteroatom or hetero functionality selected from the group consisting of -O-, -NH, or -N(C-C 6 alkyl). In yet another embodiment the hetero functionality is -N(C 1 C-alkyl). In a further embodiment Cl-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C-C 6 alkyl is methyl. [00881 In one embodiment is a PARP inhibitor compound of Formula (II) wherein Y is a heteroaryl group optionally substituted with at least one R 6 . In another embodiment the heteroaryl group is selected from furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline. In yet another embodiment the heteroaryl group is imidazole. In a further embodiment imidazole is substituted with CI-C 6 alkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C-Coalkyl is methyl. In one embodiment the heteroaryl group is furan. In another embodiment the heteroaryl group is thiazole. In yet another embodiment the heteroaryl group is 1,3,4-oxadiazole. In a further embodiment heteroaryl group is substituted with C-Coalkyl selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In yet a further embodiment C 1 Calkyl is methyl. 100891 In one embodiment is a PARP inhibitor compound of Formula (II) wherein Z is an aryl group. In another embodiment the aryl group is a phenyl group. In yet another embodiment the phenyl group is 34 WO 2011/097334 PCT/US2011/023532 substituted with at least one R6 selected from Br, Cl, F, or I. In a further embodiment R 6 is F. In yet a further embodiment R6 is Cl. In one embodiment the phenyl group is substituted with at least one R6 selected from (NRAR,)C -C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene. In another embodiment R 6 is (NRAR)CI-COalkylene. In yet another embodiment
C
1
-C
6 alkylene is selected from methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene. In yet a further embodiment C-Coalkylene is methylene. In a further embodiment RA and Rs are each independently hydrogen, Cl-C 6 alkyl, or C 3
-C
8 cycloalkyl. In one embodiment C-C 6 alkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl. In another embodiment C-C(,alkyl is methyl. In yet another embodiment RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having 1 heteroatom or hetero functionality selected from the group consisting of-O-, -NH, or -N(C 1
-C
6 alkyl). In a further embodiment the hetero functionality is -N(C
C
6 alkyl). In one embodiment C-Csalkyl is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso butyl, and tert-butyl. In yet a further embodiment C 1
-C
6 alkyl is methyl. In a further embodiment, R( is CH2(NRARB) wherein NRARB is azetidine, pyrrolidine, piperidine or morpholine. In another embodiment R2 is hydrogen. In yet another embodiment R2 is selected from F, Cl, Br, and I. In a further embodiment R2 is F. 100901 In one embodiment is a PARP inhibitor compound of Formula (II) wherein A and B are hydrogen. In another embodiment A and B are independently selected from hydrogen and CI-C 6 alkyl. 100911 In a further embodiment is a PARP inhibitor compound of Formula (II) wherein Z is aryl and Y is independently selected from the group consisting of a) phenyl group optionally substituted with 1, 2, or 3 R6; b) a imidazole group optionally substituted with 1, 2, or 3 R6; c) a triazole group optionally substituted with 1, 2, or 3 R6; and d) a substituent independently selected from the group consisting of hydrogen, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, (NRARB)alkylene (NRARB)carbonyl. 100921 In a further embodiment is a PARP inhibitor compound of Formula (II) wherein Z is phenyl and Y is independently selected from the group consisting of e) phenyl group optionally substituted with 1, 2, or 3 RE4; f) a imidazole group optionally substituted with 1, 2, or 3 R 6 ; g) a triazole group optionally substituted with 1, 2, or 3 R(; and h) a substituent independently selected from the group consisting of hydrogen, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbony I, (NRARB)alkylene (NRARB)carbonyl. 35 WO 2011/097334 PCT/US2011/023532 100931 In a further embodiment is a PARP inhibitor compound of Formula (II) wherein Z is phenyl substituted with 1, 2, or 3 R 6 and Y is independently selected from the group consisting of i) phenyl group optionally substituted with 1, 2, or 3 R 6 ; j) a imidazole group optionally substituted with 1, 2, or 3 R 6 ; k) a triazole group optionally substituted with 1, 2, or 3 Re,, and 1) a substituent independently selected from the group consisting of hydrogen, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, (NRARB)alkylene (NRARB)carbonyl. [00941 In a further embodiment, A is selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl. In yet another embodiment, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso butyl, tert-butyl, n-pentyl, and n-hexyl are optionally substituted with OH, NO 2 , CN, Br, Cl, F, and I. In a further embodiment A is methyl. In yet another embodiment, A is selected from F, Cl, Br, and I. In another embodiment, A is C 3 -Cscycloalkyl. In a further embodiment, A is OH. In another embodiment, A is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In one embodiment, A is substituted with OH, NO 2 , or CN. In a further embodiment, A is hydrogen. In a further embodiment, B is hydrogen. In a further embodiment, B is C-Coalkyl. In a further embodiment, B is selected from methyl, ethyl, n-propyl, iso propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl. In yet another embodiment, methyl, ethyl, n propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-pentyl, and n-hexyl are optionally substituted with OH,
NO
2 , CN, Br, Cl, F, and I. In a further embodiment B is methyl. In yet another embodiment, B is selected from F, Cl, Br, and I. In another embodiment, B is C 3
-C
8 cycloalkyl. In another embodiment, B is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In one embodiment, A is substituted with OH, NO 2 , or CN. In a further embodiment, is a compound of Formula (II) wherein A is hydrogen and B is selected from Br, Cl, F, I, C-Coalkyl, C-Cscycloalkyl, alkoxy, alkoxyalkyl wherein CI-C 6 alkyl, C-C 8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, CrCealkyl, and C 3
-C
8 cycloalkyl. In another embodiment, is a compound of Formula (II) wherein B is hydrogen and A is selected from Br, Cl, F, I, C 1
-C
6 alkyl, C-Cscycloalkyl, alkoxy, alkoxyalkyl wherein C 1 C 6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, 1, C-C 6 alkyl, and C 3
-C
8 cycloalkyl. In yet another embodiment, both A and B are hydrogen. In a further embodiment, both A and B are selected from Br, Cl, F, I, OH, C-Calkyl, C 3 Cscycloalkyl, alkoxy, alkoxyalkyl wherein Cl-C 6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from OH, NO 2 , CN, Br, Cl, F, I, C 1 -C(alkyl, and Cr Cscycloalkyl wherein B is not OH. 36 WO 2011/097334 PCT/US2011/023532 100951 Also described herein are stereoisomers of PARP inhibitor compounds of Formula (1), (IA), or (11), such as enantiomers, diastereomers, and mixtures of enantiomers or diastereomers. In one embodiment is a stereoisomer of a compound of Formula (II) having the structures: H H H H O N A O N'N A N N O N, A" AN lyy ,'A ' A I Bor N N"Z ".B N "N 'B
R
2 HB R2 HZ R2 HB RH Z wherein: Y is an aryl or heteroaryl group optionally substituted with at least one R 6 ; Z is an aryl group optionally substituted with at least one R ; A and B are each independently selected from hydrogen, Br, Cl, F, I, OH, C 1
-C
6 alkyl, C 3
-C
8 cycloalkyl, alkoxy, alkoxyalkyl wherein Cl-C 6 alkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substitucnt selected from OH, NO 2 , CN, Br, Cl, F, I, C-C 6 alkyl, and C 3 -Cgcycloalkyl, wherein B is not OH;
R
6 is selected from OH, NO 2 , CN, Br, Cl, F, I, C 1 -Csalkyl, C 3 -Cscycloalkyl, C 2 -Csheterocycloalkyl; C 2 C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2
-C
6 alkynyl, aryl, arylalkyl, C 3 Cgcycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI-C 6 alkylene, (NRARs)carbonyl, (NRARB)carbonylalkylene, (NRARn)sulfonyl, and (NRAR)sulfonylalkylene;
R
2 is selected from hydrogen, Br, Cl, I, or F; RA, and R1 are independently selected from the group consisting of hydrogen, Ci-C 6 alkyl, C 3
-C
8 cycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -O-, -NE, -N(CI-C 6 alkyl)-, -NCO(CI-C 6 alkyl)-, -NCO(C 3 -C8cycloalkyl)- -N(aryl)-, N(aryl-Cl-C 6 alkyl-)-, -N(substituted-aryl-C 1 Calkyl-)-, -N(heteroaryl)-, -N(heteroaryl-C -Coalkyl-)-, N(substituted-heteroaryl-C 1
-C
6 alkyl-)-, and -S- or S(O),- , wherein q is 1 or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; or a pharmaceutically acceptable salt, solvate or prodrug thereof. [00961 In one embodiment is the stercoisomer of the PARP inhibitor compound of Formula (II) shown above, having the substituents shown above, wherein R 2 is fluorine. In another embodiment is the compound of Formula (II) shown above, having the substituents shown above, wherein Y is an imidazole group. In another embodiment is the compound of Formula (II) shown above, having the substituents shown above, wherein the imidazole group of Y is substituted with a C-Calkyl group. In a further embodiment, the C 37 WO 2011/097334 PCT/US2011/023532
C
6 alkyl is methyl. In yet another embodiment is a compound of Formula (II), shown above, having the substituents shown above, wherein Y is a triazole group. In another embodiment is the compound of Formula (II) shown above, having the substituents shown above, wherein the triazole group of Y is substituted with a Cl-C 6 alkyl group. In a further embodiment, the C 1
-C
6 alkyl is methyl. In yet a further embodiment is the compound of Formula (II) shown above, having the substituents above, wherein the Y group is an aryl group. In a further embodiment is the compound of Formula (II) shown above, having the substituents shown above, wherein the aryl group of Y is a phenyl group. In a further embodiment, the phenyl group is substituted with a halogen. In yet a further embodiment, the halogen is F. In yet another embodiment the halogen is selected from Br, Cl, and I. In yet another embodiment, is the compound of Formula (II) shown above, having the substituents shown above, wherein Z is an aryl group. In yet another embodiment is the compound of Formula (II) shown above, having the substituents shown above, wherein the aryl group of Z is a phenyl group. In a further embodiment, the phenyl group of Z is substituted with a halogen, selected from F, Br, Cl, and I. In yet another embodiment, the phenyl group of Z is substituted with F. In yet a further embodiment the phenyl group of Z is substituted with CI-C 6 alkylene(NRARB). In yet a further embodiment, the Cj
C
6 alkylene group is methylene. In yet another embodiment NRARB is azetidine. 100971 In one embodiment is a PARP inhibitor compound selected from: (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one, (8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-IH-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3 (7H)-one, (8S,9R)- 8-(4-fluorophenyl)-9-(1-methyl-1H-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, (8R,9S)- 8-(4-fluorophenyl)-9-(1-methyl-i H-imidazol-2-yl) -8,9-dihydro-2H-pyrido(4,3,2-de]phthalazin 3(7H)-one, (8S,9R)- 8-(4-fluorophenyl)-9-(I-methyl-IH-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, (8R,9S)- 8-(4-fluorophenyl)-9-(I-methyl-IH-1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl- IH-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one, (8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-I H-inidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one, (8S,9R)-5-fluoro-9-(I-methyl-I H-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-delphthalazin 3(7H)-one, 38 WO 2011/097334 PCT/US2011/023532 (8R,9S)-5-fluoro-9-(1-methyl-1H-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(71)-one, (8S,9R)- 8-(4-(azetidin- 1 -ylmethyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, and (8R,9S)- 8-(4-(azetidin-1-ylmethyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, or a pharmaceutically acceptable salt, solvate or prodrug thereof 100981 In one aspect is a compound selected from: 9-diphenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8,9-bis(4-((methylamino)methyl)phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8,9-di(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8,9-di(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7N)-one; 8,9-di(pyridin-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-isopropyl-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-((methylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido4,3,2-de]phthalazin-3(7H)-one; 9-(4-((dimethylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido4,3,2-de]phthalazin-3(7H)-one; 9-(3-((methylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8-(4-((methylamino)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8,9-bis(3-((methylamino)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-(hydroxymethyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(3-(4-isobutyrylpiperazine-l-carbonyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H) one; 8,9-bis(3-(4-isobutyrylpiperazine-l-carbonyl)phenyl) -8,9-dihydro-21-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(piperidin-3-yl)-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(piperidin-4-yl)-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8,9-bis(4-((dimethylamino)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-(4-(cyclopropanecarbonyl)piperazine- 1 -carbonyl)phenyl)-8-(4((methylamino)methyl)phenyl)-8,9 dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-(4-(cyclopropanecarbonyl)piperazine- 1 -carbonyl)phenyl)-8-(4((dimethylamino)methyl)phenyl)-8,9 dihydro-2H-pyrido[4,3,2-delphthalazin-3(7H)-one; 8-(4-(hydroxymethyl)phenyl)-9-(4-(4-isobutyrylpiperazine- 1 -carbonyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; 8-(4-((dimethylamino)methyl)phenyl)-9-(4-(4-isobutyrylpiperazine- 1 -carbonyl)phenyl)-8,9-dihydro-2H pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-(4-(cyclopropanecarbonyl)piperazine- 1 -carbonyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; 39 WO 2011/097334 PCT/US2O1 1/023532 9-(3-(4-(cyclopropanecarbonyl)piperazine-l1-carbonyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7TH-one; 9-(3-((dimethylamino)methy1)phenyI)-8-pheny-8,9-dihydro-2H-pyrdo{4,3,2-dephthaazifl-3( 71)-one; 8-(3-((methylamino)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyfdo[4,3 ,2-delphthalazin-3(7TH-one; 8-(4-((dimethylamino)methy1)pheny1)-9-pheny1-8,9-dfihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7H-)-one; 8-(4-(morpholinomethy1)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3,2-delphthalazifl3(7TH-ofe; 8-(4-(hydroxymethyl)pbenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4.3 .2-dejphthalazin-3(711)-onc, 9-(3-(4-(cyclopropanecarbonyl)piperazine-l1-carbonyl)phenyl)-8-(4-((dimethylamino)methyl)phenyl)-8,9 dihydro-2H-pyridol4,3 ,2 -de]phthalazin-3(711)-one; 9-(3-(4-(cyclopropanearbonyl)piperazme-l1 carbonyI)pheniyI)-8-(4-(hydroxymethylphenyI)-8,9-dihydro-2H pyrido[4,3,2-de]phthalazin-3 (711)-one; 9-(4-(4-isobutyrylpiperazine- 1 -carbonyl)phenyl)-8-(4-((mcthylamino)methyl)phenyl)-8,9-dihydro-2H pyrido[4,3,2-de]phthalazin-3(7TH-one; 9-( 3-(4-isobutyrylpiperazine- 1 -carbonyI)phenyl)-8-(pyridin-4-y)-8,9-dihydro-2H-pyridoI4,3,2-de]phthaazil 3(711)-one; 9-(3-((dimethylamino)methyl)phenyl)-8-(pyridil-4-y)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7TH one; 9-(4-((dmethylamino)methyl)phenyl)-8-(pyridif-4-y)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7Th-; one; 9-(3-(hydroxymethyl)phenyl)-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrdo[4,3 ,2-delphthalazin-3(711)-onc; 9-(4-((methylamino)methy)phenyl)-8-(pyridfl-4-yl)-8,9-dhydro-2H-pyrdo[4,3 ,2-de]phthalazin-3(7Th-one; 9-( 3-((dirnethylamino)methyl)phenyl)-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(711) one; 9-(4-((dmethyamino)methy)phenyl)-8-(pyidin-3-y1)-8,9-dihydro-2H-pyrido[4,3 ,2-dephthalazin-3( 71)-e one; 9-(3-(( hyoxmen~thyl)phenyl)-8-(pyridin-3-yl)-8,9-dihydro-2H-pyr[4,3 2-dephthalazin-3(7)-one; 9-(3-(h(dmetylaomethyl)phenyl)-8-(pyridin-2y1)-8,9-dihydrO-2H-py O[4,3,2-de llphthalain-3(7 Th-e one; 9-(3((methylamino)methyl)phenyl)-8-(pyridin-2-y)-8,9-dihydro-2H-pyrdoII4,3 ,2-de]phthalazin-3(7N)-one; 9-(3-(hydroxymcthyl)phenyl)-8-(pyridin-2-yI )-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(711)-one; 9-(4-((dimethylamino)methvl)pheniyl)-8-( pyridin-2-yl)-8,9-dihydro-211-pyrido[4,3 ,2-de~phthalazin-3(71-I) one; 40 WO 2011/097334 PCT/US2O1 1/023532 9-(4-((methylamino)methyl)phenyl)-8-(pyridin-2-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazinl-3( 7H)-one; 9-phcnyl-8-(pyridin-2-yl)-8,9-dihydro-211-pyrido4,3 ,2-de]phthalazin-3(7H)-one; 9-phenyl-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H)-one; 9-phenyl-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 5-fluoro-9-phenyl-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(3-((dimethylamino)methyl)phenyl)-5-fluoro-8-(pyridin-4-yl)-8,9-dihydro-2H-prido[4,3 ,2-de]phthalazin 3(7TH-one; 5-fluoro-9-(3-((methylamino)methyl)phenyl)-8-(pyridin-4-y)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin 3(711)-one; 9-(4-((dimethylamino)methyl)phenyl)-5-fluoro-8-(pyridin-4-yl)-8.9-dihydro-2H-pyrido[4,3 ,2-deJphthalazin 3(711)-one; 5-fluoro-8,9-diphenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(71)-one; 9-(4-((dimethylamino)mcthy1)phenyI)-5-fluoro-8-phenyl-8,9-dihydro-2H-pyrido[43,2-dephthaazin-one, 5-fluoro-9-(4-((rniethylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-one; 9-(3-((dimethylaminol)methyl)phenyl)-5-fluoro-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-delphthalazin-one; 8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-one; 5-fluoro-9-(3-((methylamino)methyl)pheny)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin-one; 5-fluoro-8-(4-((methylamino)methyl)pheny)-9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-onc; 7-methyl-8,9-diphenyl-8,9-dihydro-211-pyrido[4,3 ,2-dejphthalazin-3(711)-oine; 7-ethyl-8,9-diphenyl-8,9-dihydro-2H-pyrido[4,3 ,2-deJphthalazin-3(711)-one; 5-fluoro-9-( 1-methyl- IH-imidazol-2-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(71)-one; 5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- lH-imidazol-2-yI) -8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3 (7h-one; 8-(4-((dimethylamino)methyl)phenyl)-9-( 1-methyl- lH-iniidazol-2-yI)- 8,9-dihydro-2H-pyrido[4,3 ,2 delphthalazin-3(7H)-one; 9-(1I -isopropyl- 1 H-imidazol-5-yi)- 8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-methyl- IH-imidazol-2-yl)- 8-phenyl-8,9-dihydro-211-pyrido[4,3 ,2-delphthalazin-3(7Th-one; 8-phenyl-9-(thiazo1-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H)-one; 9-(furan-3-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7H)-one, 8-(4-((4-ethylpiperazin- 1-yl)methyl)phenyl)-9-phenyL-8,9-dihydro-2Hf-pyrido[4,3,2-dIejphthalazin-3(7H)-one; 9-phenyl-8-(4-(piperazin-1I-ylmethyl)phenyl)-8,9-dihydro-2H-pyridof4,3,2-dephthalazin-3(7TH-one; 8-( 1-methyl- lH-imidazol-2-yl)-9-pheny-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7H)-one; 9-( I-miethyl-I H-iniidazol-2-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7Th-one; 8,9-bis(I1-methyl- lH-imidazol-2-y1) -8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H)-one; 9-( I JI-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7TH-one;I 41 WO 2011/097334 PCT/US2O1 1/023532 9-(i -ethyl- IH-irnidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-deIphthalazifl-3(7TH-ofe; 8-phenyl-9-( 1-propyl- I H-imidazol-2-yl) -,9-dihydro-2H-pyrido[4,3,2-de~phthalazin-3(7i-oflC; 9-( 1-methyl- iH-imidazol-5-yl) -8-phenyI-8,9-dihydro-2H-pyrido[4,3,2-delphthaazil-3(7TH-ole; 9-3(dehlmn~ehlpey)8(-(ityain~ehlpey)89dhdo2-yio432 dejphthalazin-3(711)-one; 9-(3-((4-methylpiperazin- 1-yi) mehlpey)8pey-,-iyr-Hprio432dlhhlzn37) one; 8-(4-(4-(cyclopropanccarbonyl) piperazine- I -carbonyI)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4, 3 ,2 delphthalazin-3(7H)-one; 9-phenyl-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrdo[ 4 ,3 ,2-delphthalazin-3(7TH-one; 9-phenyl-8-(piperidin-4-yl)-89-diydro-2H-pyrdoII 4
,
3 ,2-de]phthalazin-3(7TH-one; 9-phenyl-8-(pyridin-2-yl)-8,9-diydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7H)-onc; 8-(4-((4-methylpiperazin- 1 -yl)methyI)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[ 4 ,3 ,2-delphithalazin-3(711) one; 8,9-bis(4-fluorophenyl)- 8,9-dihydro-2H-pyrido[4,3,2-de~phthalazin-3(7JI)-ofe; 8-(4-((dinethylamino)methy)pheny)-9-(4-fluoropheflyl)- 8,9-dihydro-2H-pyridol4,3 ,2-de]phthalazin-3(7H) one; 8-(4-fluorophenyl)-9-( 1-methyl-I H- imidazol-2-yl)- 8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(71J)-one; 8,-i(-(iehlmn~ehlpey)89dhdo2-yio432d~hhlzn37)oe 9-3(ccorplmn~mty~hnl -hnl8,-iyr-Hprd[,,2-delphthalazin-3(7TH-one; 8-( 3-((dimethylamnino)methyl)phenyl)-9-phel-S,9-dihydro-2H-pyfdo[4,3,2de]phthalazifl 3
(
7 J)-one; 8-3(opoiochlpey)9pey-,-iyr-Hprd[,,-eptaai-(H)oe 8-(4-(azetidin- I -ylmethyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[ 4
,
3 ,2-de]phthalazin-3(7H)-one; 5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- I H-i ,2,4-triazoi-S-yI)-8,9-dihydro-2H-pyridoI4,3,2-dephthalazil 3(7H)-one, 9-(l 1-methyl- I H-i 1,,-rao--l--hnl89dhdo2-yio432d~hhlzn37)oe 8-(4-((dimethylamino)methyl)phenyi)-9-( 1-methyl- I H-i ,2,4-triazoi-5-yl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; 8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-( 1-methyl- I H-i ,2,4-triazol-5-yl)-8,9-dihydro-2H pyrido[4,3,2-de]phithalazin-3(7H)-one; 8-(4-fluorophenyl)-9-methyl-9-( i-methyl- I H-I ,2,4-triazol-5-yl)-8,9-dihydro-2H-pyido[4,3,2-dephthalazifl 3(7H,)-one; 8-(4-fluorophenyl)-9-(1I 4,5-trimethyl- 1 H-imidazoi-2-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin-3(7H) one; 42 WO 2011/097334 PCT/US2O1 1/023532 8-(4-fluorophenyl)-9-( 1-methyl-It H-I ,2,3-triazol-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3( 7H)-one; 9-(4,5-dimethyl-4H- 1 ,2,4-triazol-3-y1)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin-3(7H)-one; 9-(4,5-dimethyl-4H- 1, ,4-triazoL-3-y)-8-(4-fluoropheny)-89-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H) one; 8-(4-chlorophenyl)-9-( 1-methyl-i H-imidazol-2-yI)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin-3(7H)-one;I 9-( 1-methyl- LH-imidazol-2-yl)-8-(4-(trifluoromethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3(711)-one; 8-(4-fluorophenyl)-9-(thiazol-2-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7TH-one; 9-(l1 -ethyl- 1H-imidazol-2-yl)-8-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin-3(7TH-one; 8-(4-((4-ethyl-3-methvlpiperazin- 1 -yl)methyl)phenyl)-9-phenyl-8,9-dihvdro-2H-pyrido[4,3 .2-de]phthalazin 3(711)-one; 8-(4-((4-ethylpiperazin- 1 -yl)methyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3(711)-one; 9-(4-fluorophenyl)-8-(4-((4-methylpiperazin- I -yl)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2 dejphthalazin-3(711)-one; 9-(4-fluorophenyl)-8-(4-(piperazin- I -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazim-3(7H) one; 9-(4-fluorophenyl)-8-(4-((3-methylpiperazm- 1 -yI)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3 ,2 de]phthalazin-3(7TH-one; 9-(4-fluorophenvl)-8-(4-(pyrrolidin- 1 -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7-) one; 9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(711)-one; 8-(4-Fluorophenyl)-9-(4-methyl-4H- 1 ,2,4-triazol-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-dephthalazin-3( 71) one; 8-(4-fluorophenyl)-9-( 1-methyl- 1H- 1 ,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(711)-one; 8-(4-fluorophenyl)-9-( 1-methyl- LH-imidazof 4,5-clpyridin-2-yl)-8,9-dihydro-2H-pyrido(4,3 ,2-de]phthalazin 3(711)-one; 5-chloro-9-( 1-methyl- 1H-imidazo1-2-y)-8-pheny-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7I-f-one; 8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-(4-fluorophenyl)-8,9-dihydro-2.H-pyrido[4,3,2 delphthalazin-3(711)-one; 8,9-bis(4-((dimethylamino)methyl)phenyl)-5-fluoro-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7I1)-one; 8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-pheny-8,9-dihydro-2H-pyrido[4,3 .2-de]phthalazin-3(7c) one; 43 WO 2011/097334 PCT/US2011/023532 8-(4-((3,4-dimethylpiperazin- 1 -yl)methyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; 8-(4-((3,5-dimethylpiperazin- 1 -yl)methyi)phenyl)-9-(4-fluoropheny)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; 9-phenyl-8-(4-(pyrrolidin- 1 -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido(4,3,2-de]phthalazin-3(7H)-one; 9-phenyl-8-(4-(pyrrolidin- 1 -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-delphthalazin-3(7H)-one; 9-(1-methyl-i H-imidazol-2-yl)-8-(4-(pyrrolidin- 1 -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; 9-(4-fluorophenyl)-8-(1-methyl-i H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-fluorophenyl)-8-(quinolin-6-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8-(4-((dimethylamino)methyl)phenyl)-9-p-tolyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin- 3
(
7 H)-one; 9-(4-chlorophenyl)-8-(4-((dimethylamino)methyl)pheny)-8,9-dihydro-2H-pyrido[ 4 ,3,2-de]phthalazin-3(7H) one; 8-(4-((dimethylamino)methyl)phenyl)-9-(4-methoxyphenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one; 8-(4-((diethylamino)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 8-(4-((diethylamino)methyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3,2-deJphthalazin-3(7H) one; 9-(4-chlorophenyl)-8-(4-((diethylamino)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H) one; (E)-6-fluoro-4-(( i-methyl-I H-iimidazol-2-yl)methyleneamino)isobenzofuran- 1 (3H)-one; 5-fluoro-9-(4-fluorophenyl)-8-( i-methyl-I H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one; 8-(4-((dimethylamino)methyl)phenyl)-9-(4-ethylphenyl)-8,9-dihydro-2H-pyrido(4,3,2-de]phthalazin-3(7H) one; 8-(4-((dimethylamino)methyl)phenyl)-9-(4-isopropylphenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one; 8-(4-((dimethylamino)methyl)phenyl)-9-(4-(trifluoromethyl)phenyl)-8,9-dihydro- 2 H-pyrido[ 4
,
3 ,2 dejphthalazin-3(7H)-one; 8-(4-((diethylamino)methyl)pheny)-9-p-tolyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 9-(4-fluorophenyl)-8-(4-(1 -methylpyrrolidin-2-yl)phnyl)-8,9-dihydro-2H-pyrido(4,3,2-delphthalazin-3(7H) one; 9-(4-fluorophenyl)-8-(4-(pyrrolidin-2-y)pheny)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one; 44 WO 2011/097334 PCT/US2O1 1/023532 8-(4-fiuorophenyl)-9-methyl-9-( I-methyl-I H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin 3 (711)-one; 9-(4-fluorophenyl)-8-( IH-imidazol-2-yl)-8,9-dihydro-2H-pyridoi4,3,2-delphthalazin-3(7H)-one; 5-fluoro-9-( 1-methyl- I H-i ,2,4-triazol-5-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7H)-one; 9-(4-fluorophenyl)-9-hydroxy-8-( 1-methyl- I Uf-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3(711)-one; (8S.9R)-5-fluoro-9-( 1-methyl- IH-imidazol-2-yI) -8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3(711)-one; (SR,9S)-5-fluoro-9-( 1-methyl- lH-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyridol4,3 ,2-dellphthalazin 3(711)-one; (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- 1H-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(711)-one; (8R, 9S)-5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- LH-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one; (8S,9R)- 8-(4-fluorophenyl)-9-( 1-methyl- lH-imidazol-2-yl) -8,9-dihydro-2H-pyrido[j4,3 ,2-de]phthalazin 3(71)-one; (8R, 95)- 8-(4-fluorophenyl)-9-( 1-methyl- IH-imiidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3(7H)-one; (8S,9R)-5-fluoro-9-( 1-methyl- lH- 1,2,4-triazol-5-yl) -8-phenyl-8,9-dihydro-2H-pyridoj4,3,2-delphthalazin 3(711)-one; (8R,9S)-5-fluoro-9-( i-methyl- 1H- 1,2,4-triazol-5-yl) -8-phenyl-8.9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3 (711)-one; (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- lH- 1,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2 dlelphthalazin-3(7H)-one; (8R, 9S)-5-fluoro-8-(4-fluorophenyl)-9-( I-methyl-i H-I ,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3 .2 de]phthalazin-3(711)-one; (8S,9R)- 8-(4-fluorophenyl)-9-( 1-methyl-I H-i ,2,4-triazol-5-yl) -8,9-dihydro-2f1-pyrido[4,3,2-dejphthalazi n 3(711)-one; (SR. 95)- 8-(4-fluorophenyl)-9-( 1-methyl- 1H- 1,2,4-triazol-5-yl) -8,9-dihydro-211-pyrido[4,3,2-de]phthalazin 3(711)-one; (8S,9R)-8-(4-((dimethylamno )methyl)phcnyl)-5-fluoro-9-( 1-methyl- 11-1 ,2,4-triazol-5-yi)-8,9-dihydro-2H pyrido[4,3,2-dejphthaiazin-3(711)-one- and (8R,9S)-8-(4-((dimethylamno )methyl)phenyl)-5-fluoro-9-( 1-methyl- lH-1I,2,4-triazol-5-yl)-8,9-dihydro-2H pyrido[4,3 ,2-delphithalazin-3(711)-one: or a pharmaceutical acceptable salt, solvate or prodrug therefore. 45 WO 2011/097334 PCT/US2011/023532 100991 In some embodiments, provided herein is a pharmaceutical composition comprising of a compound of Formula (I), (IA) or (II) or stereoisomers, or a pharmaceutically acceptable salt, a pharmaceutically acceptable solvate, pharmaceutically acceptable prodrug thereof and a pharmaceutically acceptable carrier, excipient, binder or diluent. 1001001 Certain embodiments provide a method of inhibiting PARP in a subject having a disease, disorder, or condition associated with a PTEN deficiency recognized to be in need of such treatment comprising administering to the subject a therapeutically acceptable amount of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof. 1001011 In one aspect is a method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease, disorder, or condition associated with a PTEN deficiency comprising administering to the subject a therapeutically effective amount of a compound of Formula (I), (IA) or Formula (II). 1001021 In still another aspect is a method of treating a disease, disorder or condition associated with a PTEN deficiency which is ameliorated by the inhibition of PARP comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I), (IA) or Formula (II). In certain embodiments, the disease, disorder or condition is related to Cowden Syndrome. In other embodiments, the disease, disorder or condition is related to Bannayan-Riley-Ruvalcaba syndrome. In still other embodiments, the disease, disorder or condition is Lhermitte-Duclos disease. 1001031 In certain aspects, provided herein are methods for the treatment of a cancer associated with a PTEN deficiency, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of Formula (I), (IA) or (II). In certain embodiments, the cancer cells have a PTEN deficient phenotype. In certain embodiments, the cancer is endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer or melanoma, 1001041 In certain other aspects, provided herein are methods of treating a cancer associated with a PTEN deficiency wherein one or more cancer cells have an abrogated or reduced ability to control the phosphoinositide 3-kinase signaling pathway, comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I), (IA) or Formula (II). In certain embodiments, the cancer comprises one or more cancer cells having a reduced or abrogated ability to control the phosphoinositide 3-kinase signaling pathway for regulation of cell growth relative to normal cells. 1001051 In yet another aspect is a method of treating a cancer associated with a PTEN deficiency wherein one or more cancer cells is deficient in Homologous Recombination (HR) dependent DNA double strand break (DSB) repair pathway, comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of Formula (I), (IA) or Formula (II). In certain embodiments the cancer comprises one or more cancer cells having a reduced or abrogated ability to repair DNA DSB by HR relative to normal cells. In a further embodiment the subject is heterozygous for a mutation in a gene encoding a component of 46 WO 2011/097334 PCT/US2011/023532 the HR dependent DNA DSB repair pathway. In certain embodiments, one or more cancer cells have a RAD51 deficient phenotype. In yet another embodiment, the cancer cells are deficient in RAD51. In yet another embodiment, the subject is heterozygous for a mutation in RAD5 1. In another embodiment, the cancer cells have a BRCA1 or BRCA2 deficient phenotype. In yet another embodiment, the cancer cells are deficient in BRCA I or BRCA2. In yet another embodiment, the subject is heterozygous for a mutation in BRCA 1 and/or BRCA2. In yet a further embodiment the subject is heterozygous for a mutation in PTEN. [001061 In some embodiments, the method of treatment of a cancer includes treatment of endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer or melanoma. In some embodiments, the method of treatment of a cancer further includes administration of ionizing radiation or a chemotherapeutic agent. 1001071 In some embodiments, provided herein is a method for the treatment of a cancer associated with a PTEN deficiency, comprising administering to a subject in need of treatment a therapeutically-effective amount of a compound of Formula (I), (IA) or (II) in combination with ionizing radiation or one or more chemotherapeutic agents. In some embodiments, the compound described herein is administered simultaneously with ionizing radiation or one or more chemotherapeutic agents. In other embodiments, the compound described herein is administered sequentially with ionizing radiation or one or more chemotherapeutic agents. 1001081 In one embodiment the compound of Formula (I), (IA) or Formula (II) is administered simultaneously with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof. In another embodiment the compound of Formula (I), (IA) or Formula (II) is administered sequentially with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof 1001091 In one aspect is the use of a compound of Formula (I), (IA) or Formula (II) in the formulation of a medicament for the treatment of a poly(ADP-ribose)polymerase mediated disease or condition associated with a PTEN deficiency. [001101 Certain embodiments provide a method of potentiation of cytotoxic cancer therapy in a subject in recognized need of such treatment comprising administering to the subject a therapeutically acceptable amount of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof Certain embodiments provide a method of treating endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer or melanoma in a subject in recognized need of such treatment comprising administering to the subject a therapeutically acceptable amount of a compound of Formula (I), (IA) or (II) or therapeutically acceptable salt thereof. 47 WO 2011/097334 PCT/US2011/023532 [00111I Certain embodiments provide a use of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof, to prepare a medicament for inhibiting the PARP enzyme in a subject having a disease or disorder associated with a PTEN deficiency recognized to be in need of such treatment. 1001121 Certain embodiments provide a use of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof, to prepare a medicament for inhibiting tumor growth in a subject having a disease or disorder associated with a PTEN deficiency recognized to be in need of such treatment. 1001131 Certain embodiments provide a use of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof, to prepare a medicament for treating cancer in a subject having a disease or disorder associated with a PTEN deficiency recognized to be in need of such treatment. 1001141 Certain embodiments provide a use of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof, to prepare a medicament for treating certain cancers including, but not limited to, endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer or melanoma in a subject in recognized need of such treatment. [001151 Certain embodiments provide a use of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof, to prepare a medicament for potentiation of cytotoxic cancer therapy in a subject in recognized need of such treatment comprising administering to the subject a therapeutically acceptable amount of a compound of Formula (I), (IA) or (II) or a therapeutically acceptable salt thereof. 1001161 Articles of manufacture, comprising packaging material, a compound provided herein that is effective for modulating the activity of the enzyme poly(ADP-ribose)polymerase, or for treatment, prevention or amelioration of one or more symptoms of a disease or condition associated with a PTEN deficiency, wherein the compound is packaged within the packaging material, and wherein the label indicates that the compound, or pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate thereof, or a pharmaceutical composition comprising such a compound is used for modulating the activity of poly(ADP ribose)polymerase, or for treatment, prevention or amelioration of one or more symptoms of a disease or condition associated with a PTEN deficiency are provided. 1001171 Any combination of the groups described above for the various variables is contemplated herein. [001181 In one embodiment, disclosed herein is a pharmaceutical composition comprising a compound, pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate of any of the compounds disclosed herein. In some embodiments, the pharmaceutical compositions further comprises a pharmaceutically acceptable diluent, excipient or binder. In certain embodiments, the pharmaceutical composition further comprises a second pharmaceutically active ingredient. 48 WO 2011/097334 PCT/US2011/023532 1001191 In one embodiment, the disease or condition associated with a PTEN deficiency in a patient, or the PTEN-deficient dependent disease or condition in a patient is cancer or a non-cancerous disorder. In some embodiments, the disease or condition is iatrogenic. [001201 In some embodiments are methods for reducing/inhibiting the activity of PARP in a subject having a disease or disorder associated with a PTEN deficiency that include administering to the subject at least once an effective amount of a compound described herein. [001211 Certain embodiments provided herein are methods for modulating, including reducing and/or inhibiting the activity of PARP, directly or indirectly, in a subject having a disease or disorder associated with a PTEN deficiency comprising administering to the subject at least once an effective amount of at least one compound described herein. 1001221 In further embodiments are methods for treating diseases or conditions associated with a PTEN deficiency, comprising administering to the subject at least once an effective amount of at least one compound described herein. 1001231 Some embodiments include the use of a compound described herein in the manufacture of a medicament for treating a disease or condition associated with a PTEN deficiency in a subject in which the PTEN deficiency contributes to the pathology and/or symptoms of the disease or condition. 1001241 In any of the aforementioned embodiments are further embodiments in which administration is enteral, parenteral, or both, and wherein: (a) the effective amount of the compound is systemically administered to the subject; (b) the effective amount of the compound is administered orally to the subject; (c) the effective amount of the compound is intravenously administered to the subject; (d) the effective amount of the compound administered by inhalation; (e) the effective amount of the compound is administered by nasal administration; (f) the effective amount of the compound is administered by injection to the subject; (g) the effective amount of the compound is administered topically (dermal) to the subject; (h) the effective amount of the compound is administered by ophthalmic administration; and/or (i) the effective amount of the compound is administered rectally to the subject. 1001251 In any of the aforementioned embodiments are further embodiments that include single administrations of the effective amount of the compound, including further embodiments in which the compound is administered to the subject (i) once; (ii) multiple times over the span of one day; (iii) continually; or (iv) continuously. 1001261 In any of the aforementioned embodiments are further embodiments that include multiple administrations of the effective amount of the compound, including further embodiments wherein: (i) the compound is administered in a single dose; (ii) the time between multiple administrations is every 6 hours; 49 WO 2011/097334 PCT/US2011/023532 (iii) the compound is administered to the subject every 8 hours. 1001271 In further or alternative embodiments, the method includes a drug holiday, wherein the administration of the compound is temporarily suspended or the dose of the compound being administered is temporarily reduced; at the end of the drug holiday, dosing of the compound is resumed. In some embodiments, the length of the drug holiday varies from 2 days to 1 year. 1001281 In any of the aforementioned embodiments involving the treatment of proliferative disorders, including cancer, are further embodiments that include administering at least one additional agent selected from among aleintuzumab, arsenic trioxide, asparaginase (pegylated or non-), bevacizumab, cetuximab, trastuzumab, platinum-based compounds such as cisplatin, cladribine, daunorubicin/doxorubicin/idarubicin, irinotecan, fludarabine, 5-fluorouracil, gemcitabine, toptecan, cyclophosphamide, gemtuzumab, methotrexate, paclitaxel (Taxol@W), temozolomide, thioguanine, and classes of drugs including hormones (an antiestrogen, an antiandrogen, or gonadotropin releasing hormone analogues, interferons such as, for example, alpha interferon, nitrogen mustards such as, for example, busulfan, melphalan or mechlorethamine, retinoids such as, for example, tretinoin, topoisomerase inhibitors such as, for example, irinotecan or topotecan, tyrosine kinase inhibitors such as, for example, gefitinib, erlotinib or imatinib, mTOR inhibitors such as, for example temsirolimus or everolimus and agents to treat signs or symptoms induced by such therapy including allopurinol, filgrastim, granisetron/ondansetron/palonosetron, and/or dronabinol. 1001291 Other objects, features and advantages of the compounds, methods and compositions described herein will become apparent from the following description. It should be understood, however, that the description and the specific examples, while indicating specific embodiments, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present description will become apparent from this detailed description. 1001301 Described herein are compounds, methods of making such compounds, pharmaceutical compositions and medicaments that include such compounds, and methods of using such compounds to treat or prevent diseases or conditions associated with a PTEN deficiency. 1001311 In certain embodiments, PARP inhibitors, such as those of Formula (I), (IA) or (II), have utility in: (a) preventing or inhibiting poly(ADP-ribose) chain formation by, e.g., inhibiting the activity of cellular PARP (PARP- I and/or PARP-2); (b) treating diseases or conditions associated with PTEN deficiency including, but not limited to, Cowden's Syndrome, Lhermitte-Duclos disease or Bannayan-Riley-Ruvalcaby syndrome; cancer or other proliferative disorders including, but not limited to, glioblastoma, endometrial carcinoma, melanoma, prostate cancer, colorectal cancer, breast cancer, and bladder cancers; (c) use as an adjunct in cancer therapy or for potentiating tumor cells for treatment with ionizing radiation and/or chemotherapeutic agents. 1001321 In specific embodiments, compounds provided herein, such as, for example, Formula (I), (IA) or (II), are used in anti-cancer combination therapies (or as adjuncts) along with alkylating agents, such as methyl 50 WO 2011/097334 PCT/US2011/023532 methanesulfonate (MMS), temozolomide and dacarbazine (DTIC), also with topoisomerase- 1 inhibitors like Topotecan, Irinotecan, Rubitecan, Exatecan, Lurtotecan, Gimetecan, Diflomotecan (hoinocamptothecins); as well as 7-substituted non-silatecans; the 7-silyl camptothecins, BNP 1350; and non-camptothecin topoisomerase-I inhibitors such as indolocarbazoles also dual topoisomerase-I and II inhibitors like the benzophenazines, XR 1 1576/MLN 576 and benzopyridoindoles. In certain embodiments, such combinations are given, for example, as intravenous preparations or by oral administration as dependent on the method of administration for the particular agent. [001331 In some embodiments, PARP inhibitors, such as, for example, compounds of Formula (I), (IA) or (II), are used in the treatment of disease or disorder associated with a PTEN deficiency ameliorated by the inhibition of PARP, which includes administering to a subject in need of treatment a therapeutically-effective amount of a compound provided herein, and in one embodiment in the form of a pharmaceutical composition. In certain embodiments, PARP inhibitors, such as, for example, compounds of Formula (I), (IA) or (11), are used in the treatment of cancer, which includes administering to a subject in need of treatment a therapeutically-effective amount of a compound provided herein in combination, and in one embodiment in the form of a pharmaceutical composition, simultaneously or sequentially with radiotherapy (ionizing radiation) or chemotherapeutic agents. 1001341 In certain embodiments, PARP inhibitors, such as, for example, compounds of Formula (I), (IA) or (II), are used in the preparation of a medicament for the treatment of cancer associated with a PTEN deficiency which is deficient in Homologous Recombination (HR) dependent DNA double strand break (DSB) repair activity, or in the treatment of a patient with a cancer which is deficient in HR dependent DNA DSB repair activity, which includes administering to said patient a therapeutically-effective amount of the compound. 1001351 The HR dependent DNA DSB repair pathway repairs double-strand breaks (DSBs) in DNA via homologous mechanisms to reform a continuous DNA helix. The components of the HR dependent DNA DSB repair pathway include, but are not limited to, ATM (NM_000051), RAD5l (NM_002875), RAD51LI (NM 002877), RAD51C (NM_002876), RAD5lL3 (NM_002878), DMCI (NM 007068), XRCC2 (NM 005431), XRCC3 (NM_005432), RAD52 (NM_002879), RAD54L (NM 003579), RAD54B (NM_012415), BRCAI (NM_007295), BRCA2 (NM_000059), RAD50 (NM_005732), MRE1 1A (NM 005590) and NBS I (NM_002485). Other proteins involved in the HR dependent DNA DSB repair pathway include regulatory factors such as EMSY. HR components are also described in Wood, et al., Science, 291, 1284-1289 (2001), which is hereby incorporated by reference for such disclosure. K. K. Khanna and S. P. Jackson, Nat. Genet. 27(3): 247-254 (200 1); and Hughes-Davies, et al., Cell, 115, pp 523 535 are also incorporated herein by reference for such disclosure. 1001361 In some embodiments, a cancer associated with a PTEN deficiency which is deficient in HR dependent DNA DSB repair includes one or more cancer cells which have a reduced or abrogated ability to 51 WO 2011/097334 PCT/US2011/023532 repair DNA DSBs through that pathway, relative to normal cells, i.e. the activity of the HR dependent DNA DSB repair pathway are reduced or abolished in the one or more cancer cells. 1001371 In certain embodiments, the activity of one or more components of the HR dependent DNA DSB repair pathway is abolished in the one or more cancer cells of an individual having a cancer which is deficient in HR dependent DNA DSB repair. Components of the HR dependent DNA DSB repair pathway include the components listed above. [001381 In some embodiments, the cancer cells have a PTEN deficient phenotype, i.e., PTEN activity is reduced or abolished in the cancer cells. In certain embodiments, cancer cells with this phenotype are deficient in PTEN, i.e., expression and/or activity of PTEN is reduced or abolished in the cancer cells, for example by means of mutation or polymorphism in the encoding nucleic acid, or by means of amplification, mutation or polymorphism in a gene encoding a regulatory factor specific for PTEN. 1001391 In some embodiments, the cancer cells have a BRCAI and/or a BRCA2 deficient phenotype, i.e., BRCAl and/or BRCA2 activity is reduced or abolished in the cancer cells. In certain embodiments, cancer cells with this phenotype are deficient in BRCA1 and/or BRCA2, i.e., expression and/or activity of BRCA1 and/or BRCA2 is reduced or abolished in the cancer cells, for example by means of mutation or polymorphism in the encoding nucleic acid, or by means of amplification, mutation or polymorphism in a gene encoding a regulatory factor, for example the EMSY gene which encodes a BRCA2 regulatory factor or by an epigenetic mechanism such as gene promoter methylation. 1001401 In certain instances, mutations and polymorphisms associated with cancer are detected at the nucleic acid level by detecting the presence of a variant nucleic acid sequence or at the protein level by detecting the presence of a variant (i.e. a mutant or allelic variant) polypeptide. DEFINITIONS [001411 Unless defined otherwise, all technical and scientific terms used herein have the standard meaning pertaining to the claimed subject matter belongs. In the event that there is a plurality of definitions for terms herein, those in this section prevail. Where reference is made to a URL or other such identifier or address, it understood that such identifiers can change and particular information on the internet can come and go, but equivalent information can be found by searching the internet. Reference thereto evidences the availability and public dissemination of such information. [001421 It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. In this application, the use of "or" means "and/or" unless stated otherwise. Furthermore, use of the term "including" as well as other forms, such as "include", "includes," and "included," is not limiting. 52 WO 2011/097334 PCT/US2011/023532 1001431 Unless otherwise indicated, conventional methods of mass spectroscopy, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA techniques and pharmacology are employed. Unless specific definitions are provided, the standard nomenclature employed in connection with, and the standard laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry are employed. In certain instances, standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients. In certain embodiments, standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). In some embodiments, reactions and purification techniques are performed e.g., using kits of manufacturer's specifications or as commonly accomplished or as described herein. 1001441 As used throughout this application and the appended claims, the following terms have the following meanings: 1001451 The term "alkenyl" as used herein, means a straight, branched chain, or cyclic (in which case, it would also be known as a "cycloalkenyl") hydrocarbon containing from 2-10 carbons and containing at least one carbon-carbon double bond formed by the removal of two hydrogens. In some embodiments, depending on the structure, an alkenyl group is a monoradical or a diradical (i.e., an alkenylene group). In some embodiments, alkenyl groups are optionally substituted. Illustrative examples of alkenyl include, but are not limited to, ethenyl, 2-propenyl, 2-methyl-2-propenyl, 3-butenyl, 4-pentenyl, 5-hexenyl, 2-heptenyl, 2-methyl 1-heptenyl, and 3-cecenyl. 1001461 The term "alkoxy" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Illustrative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy. [001471 The term "alkyl" as used herein, means a straight, branched chain, or cyclic (in this case, it would also be known as "cycloalkyl") hydrocarbon containing from 1-10 carbon atoms. Illustrative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylhexyl, n-heptyl, n octyl, n-nonyl, and n-decyl. 1001481 The term "C -C 6 -alkyl" as used herein, means a straight, branched chain, or cyclic (in this case, it would also be known as "cycloalkyl") hydrocarbon containing from 1-6 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, cyclopyl, n-butyl, sec butyl, tert-butyl, cyclobutyl, n-pentyl, isopentyl, neopentyl, cyclopentyl, and n-hexyl. [001491 The term "cycloalkyl" as used herein, means a monocyclic or polycyclic radical that contains only carbon and hydrogen, and includes those that are saturated, partially unsaturated, or fully unsaturated. Cycloalkyl groups include groups having from 3 to 10 ring atoms. Representative examples of cyclic include but are not limited to, the following moieties: 53 WO 2011/097334 PCT/US2011/023532 F-> 0, 0, 0 CC) . In some embodiments, depending on the structure, a cycloalkyl group is a monoradical or a diradical (e.g., a cycloalkylene group). 1001501 The term "cycloalkyl groups" as used herein refers to groups which are optionally substituted with 1, 2, 3, or 4 substituents selected from alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylthio, alkylthioalkyl, alkynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxyl, hydroxyalkylene, mercapto, oxo, -NRARA, and (NRARB)carbonyl. 1001511 The term "cycloalkylalkyl" as used herein, means a cycloalkyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of cycloalkylalkyl include, but are not limited to, cyclopropylmethyl, 2-cyclobutylethyl, cyclopentylmethyl, cyclohexylmethyl, and 4-cycloheptylbutyl. 1001521 The term "carbocyclic" as used herein, refers to a compound which contains one or more covalently closed ring structures, and that the atoms forming the backbone of the ring are all carbon atoms 1001531 The term "carbocycle" as used herein, refers to a ring, wherein each of the atoms forming the ring is a carbon atom. Carbocylic rings include those formed by three, four, five, six, seven, eight, nine, or more than nine carbon atoms. Carbocycles are optionally substituted. 1001541 The term "alkoxyalkyl" as used herein, means at least one alkoxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Illustrative examples of alkoxyalkyl include, but are not limited to, 2-methoxyethyl, 2-ethoxyethyl, tert-butoxyethyl and methoxymethyl. 1001551 The term "alkoxycarbonyl" as used herein, means an alkoxy group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Illustrative examples of alkoxycarbonyl include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, and tert-butoxycarbonyl. 1001561 The term "alkoxycarbonylalkyl" as used herein, means an alkoxycarbonyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. 54 WO 2011/097334 PCT/US2011/023532 1001571 The term "alkylcarbonyl" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Illustrative examples of alkylcarbonyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl. 1001581 The term "alkylcarbonyloxy" as used herein, means an alkylcarbonyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Illustrative examples of alkylcarbonyloxy include, but are not limited to, acetyloxy, ethylcarbonyloxy, and tert-butylcarbonyloxy. 1001591 The term "alkylthio" or "thioalkoxy" as used herein, means an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. Illustrative examples of alkylthio include, but are not limited to, methylthio, ethylthio, butylthio, tert-butylthio, and hexylthio. 1001601 The term "alkylthioalkyl" as used herein, means an alkylthio group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Illustrative examples of alkylthioalkyl include, but are not limited to, methylthiomethyl, 2-(ethylthio)ethyl, butylthiomethyl, and hexylthioethyl. [001611 The term "alkynyl" as used herein, means a straight, branched chain hydrocarbon containing from 2 10 carbons and containing at least one carbon-carbon triple bond. In some embodiments, alkynyl groups are optionally substituted. Illustrative examples of alkynyl include, but are not limited to, acetylenyl, 1-propynyl, 2-propynyl, 3-butynyl, 2-pentynyl, and 1-butynyl. [001621 The term "aromatic" as used herein, refers to a planar ring having a delocalized nt-electron system containing 4n+2 n electrons, where n is an integer. In some embodiments, aromatic rings are formed by five, six, seven, eight, nine, or more than nine atoms. In other embodiments, aromatics are optionally substituted. The term includes monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups. 1001631 The term "aryl" as used herein, refers to an aromatic ring wherein each of the atoms forming the ring is a carbon atom. In some embodiments, aryl rings are formed by five, six, seven, eight, nine, or more than nine carbon atoms. Examples of aryl groups include, but are not limited to phenyl, naphthalenyl, phenanthrenyl, anthracenyl, fluorenyl, and indenyl. 1001641 In some embodiments, the term "aryl" as used herein means an aryl group that is optionally substituted with one, two, three, four or five substituents independently selected from the group consisting of alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylthio, alkylthioalkyl, alkynyl, carbonyl, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxyl, hydroxyalkylene, mercapto, nitro, -NRARA, and (NRARB)carbonyl. 1001651 The term "arylalkyl" as used herein, means an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Illustrative examples of arylalkyl include, but are not limited to benzyl, 2-phenylethyl, -phenylpropyl, I-methyl-3-phenylpropyl, and 2-naphth-2-ylethyl. 1001661 The term "carbonyl" as used herein, means a -C(O)- group. 1001671 The term "carboxy" as used herein, means a -COOH group. 55 WO 2011/097334 PCT/US2011/023532 1001681 The term "cyano" as used herein, means a -CN group. 1001691 The term "formyl" as used herein, means a -C(O)H group. 1001701 The term "halo" or "halogen" as used herein, means a -Cl, -Br, -I or -F. 1001711 The term "mercapto" as used herein, means a -SH group. 1001721 The term "nitro" as used herein, means a -NO 2 group. [001731 The term "hydroxy" as used herein, means a -OH group. [001741 The term "oxo" as used herein, means a =O group. 1001751 The term "bond" or "single bond" as used herein, refers to a chemical bond between two atoms, or two moieties when the atoms joined by the bond are considered to be part of larger substructure. 1001761 The terms "haloalkyl," "haloalkenyl," "haloalkynyl" and "haloalkoxy" as used herein, include alkyl, alkenyl, alkynyl and alkoxy structures in which at least one hydrogen is replaced with a halogen atom. In certain embodiments in which two or more hydrogen atoms are replaced with halogen atoms, the halogen atoms are all the same as one another. In other embodiments in which two or more hydrogen atoms are replaced with halogen atoms, the halogen atoms are not all the same as one another. The terms "fluoroalkyl" and "fluoroalkoxy" include haloalkyl and haloalkoxy groups, respectively, in which the halo is fluorine. In certain embodiments, haloalkyls are optionally substituted. 1001771 The term "alkylanine" refers to the -N(alkyl),Hy group, where x and y are selected from among x=1, y=1 and x=2, y=O. In some embodiments, when x=2, the alkyl groups, taken together with the N atom to which they are attached, optionally form a cyclic ring system. [001781 The term "amide" as used herein, is a chemical moiety with the formula -C(O)NHR or -NHC(O)R, where R is selected from among hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocycloalkyl (bonded through a ring carbon). In some embodiments, an amide moiety forms a linkage between an amino acid or a peptide molecule and a compound described herein, thereby forming a prodrug. In some embodiments, any amine, or carboxyl side chain on the compounds described herein is amidified. [001791 The term "ester" refers to a chemical moiety with formula -COOR, where R is selected from among alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocycloalkyl (bonded through a ring carbon). In some embodiments, any hydroxy, or carboxyl side chain on the compounds described herein is esterified. 1001801 The terms "heteroalkyl" "heteroalkenyl" and "heteroalkynyl" as used herein, include optionally substituted alkyl, alkenyl and alkynyl radicals in which one or more skeletal chain atoms are selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, silicon, phosphorus or combinations thereof. 1001811 The term "heteroatom" as used herein refers to an atom other than carbon or hydrogen. Heteroatoms are typically independently selected from among oxygen, sulfur, nitrogen, silicon and phosphorus, but are not limited to these atoms. In embodiments in which two or more heteroatoms are present, the two or more 56 WO 2011/097334 PCT/US2011/023532 heteroatoms are all the same as one another, or some or all of the two or more heteroatoms are each different from the others. 1001821 The term "ring" as used herein, refers to any covalently closed structure. Rings include, for example, carbocycles (e.g., aryls and cycloalkyls), heterocycles (e.g., heteroaryls and heterocycloalkyls), aromatics (e.g. aryls and heteroaryls), and non-aromatics (e.g., cycloalkyls and heterocycloalkyls). In some embodiments, rings are optionally substituted. In some embodiments, rings form part of a ring system. 1001831 As used herein, the term "ring system" refers to two or more rings, wherein two or more of the rings are fused. The term "fused" refers to structures in which two or more rings share one or more bonds. 1001841 The terms "heteroaryl" or, alternatively, "heteroaroinatic" refers to an aryl group that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur. An N-containing "heteroaromatic" or "heteroaryl" moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom. In some embodiments, the polycyclic heteroaryl group is fused or non-fused. Illustrative of heteroaryl groups include, but are not limited to, the following moieties: N ' N / NH N' N O '7 N / \N~ , (:: N N N N / N N N S . In some embodiments, depending on the structure, a heteroaryl group is a monoradical or a diradical (i.e., a heteroarylene group). 1001851 The term "heteroaryl" means heteroaryl groups that are substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylthio, alkylthioalkyl, alynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxyl, hydroxyalkylene, mercapto, nitro, -NRAR, and -(NRARs)carbonyl. 1001861 The term "heteroarylalkyl" as used herein, means a heteroaryl, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Illustrative examples of heteroarylalkyl include, but are not limited to, pyridinylmethyl. 57 WO 2011/097334 PCT/US2011/023532 1001871 The term "heterocycloalkyl" or "non-aromatic heterocycle" as used herein, refers to a non-aromatic ring wherein one or more atoms forming the ring is a heteroatom. A "heterocycloalkyl" or "non-aromatic heterocycle" group refers to a cycloalkyl group that includes at least one heteroatom selected from nitrogen, oxygen and sulfur. In some embodiments, the radicals are fused with an aryl or heteroaryl. In some embodiments, heterocycloalkyl rings are formed by three, four, five, six, seven, eight, nine, or more than nine atoms. In some embodiments, heterocycloalkyl rings are optionally substituted. In certain embodiments, heterocycloalkyls contain one or more carbonyl or thiocarbonyl groups such as, for example, oxo- and thio containing groups. Examples of heterocycloalkyls include, but are not limited to, lactams, lactones, cyclic imides, cyclic thioimides, cyclic carbamates, tetrahydrothiopyran, 4H-pyran, tetrahydropyran, piperidine, 1,3 dioxin, 1,3-dioxane, 1,4-dioxin, 1,4-dioxane, piperazine, 1,3-oxathiane, 1,4-oxathiin, 1,4-oxathiane, tetrahydro-1,4-thiazine, 2H-1,2-oxazine , maleimide, succinimide, barbituric acid, thiobarbituric acid, dioxopiperazine, hydantoin, dihydrouracil, morpholine, trioxane, hexahydro-1,3,5-triazine, tetrahydrothiophene, tetrahydrofuran, pyrroline, pyrrolidine, pyrrolidone, pyrrolidione, pyrazoline, pyrazolidine, imidazoline, imidazolidine, 1,3-dioxole, 1,3-dioxolane, 1,3-dithiole, 1,3-dithiolane, isoxazoline, isoxazolidine, oxazoline, oxazolidine, oxazolidinone, thiazoline, thiazolidine, and 1,3-oxathiolane. Illustrative examples of heterocycloalkyl groups, also referred to as non-aromatic heterocycles, include, but are not limited to 0 0 0 0 0 0 0 S N>N N 0 0 0 N Nt 0, >0 >K0N HO N H H H H 0 No O . The term heterocycloalkyl also includes all ring forms of the carbohydrates, including but not limited to the monosaccharides, the disaccharides and the oligosaccharides. 58 WO 2011/097334 PCT/US2011/023532 [001881 The term "heterocycle" refers to heteroaryl and heterocycloalkyl used herein, refers to groups containing one to four heteroatoms each selected from 0, S and N, wherein each heterocycle group has from 4 to 10 atoms in its ring system, and with the proviso that the ring of said group does not contain two adjacent 0 or S atoms. Herein, whenever the number of carbon atoms in a heterocycle is indicated (e.g., CI-C 6 heterocycle), at least one other atom (the heteroatom) must be present in the ring. Designations such as "Cl-C 6 heterocycle" refer only to the number of carbon atoms in the ring and do not refer to the total number of atoms in the ring. In some embodiments, it is understood that the heterocycle ring has additional heteroatoms in the ring. Designations such as "4-6 membered heterocycle" refer to the total number of atoms that are contained in the ring (i.e., a four, five, or six membered ring, in which at least one atom is a carbon atom, at least one atom is a heteroatom and the remaining two to four atoms are either carbon atoms or heteroatoms). In some embodiments, in heterocycles that have two or more heteroatoms, those two or more heteroatoms are the same or different from one another. In some embodiments, heterocycles are optionally substituted. In some embodiments, binding to a heterocycle is at a heteroatom or via a carbon atom. Heterocycloalkyl groups include groups having only 4 atoms in their ring system, but heteroaryl groups must have at least 5 atoms in their ring system. The heterocycle groups include benzo-fused ring systems. An example of a 4-membered heterocycle group is azetidinyl (derived from azetidine). An example of a 5-membered heterocycle group is thiazolyl. An example of a 6-membered heterocycle group is pyridyl, and an example of a 1 0-membered heterocycle group is quinolinyl. Examples of heterocycloalkyl groups are pyrrolidinyl, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothienyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidino, morpholino, thiomorpholino, thioxanyl, piperazinyl, azetidinyl, oxetanyl, thietanyl, homopiperidinyl, oxepanyl, thiepanyl, oxazepinyl, diazepinyl, thiazepinyl, 1,2,3,6-tetrahydropyridinyl, 2-pyrrolinyl, 3 pyrrolinyl, indolinyl, 2H-pyranyl, 4H-pyranyl, dioxanyl, 1,3-dioxolanyl, pyrazolinvl, dithianyl, dithiolanyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, 3 azabicyclo[3.1.0]hexanyl, 3-azabicyclo[4. 1.0]heptanyl, 3H-indolyl and quinolizinyl. Examples of heteroaryl groups are pyridinyl, imidazolyl, pyrimidinyl, pyrazolyl, triazolyl, pyrazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, oxazolyl, isothiazolyl, pyrrolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, cinnolinyl, indazolyl, indolizinyl, phthalazinyl, pyridazinyl, triazinyl, isoindolyl, pteridinyl, purinyl, oxadiazolyl, thiadiazolyl, furazanyl, benzofurazanyl, benzothiophenyl, benzothiazolyl, benzoxazolyl, quinazolinyl, quinoxalinyl, naphthyridinyl, and furopyridinyl. In some embodiments, the foregoing groups, as derived from the groups listed above, are C-attached or N-attached where such is possible. For instance, in some embodiments, a group derived from pyrrole is pyrrol- l-yl (N-attached) or pyrrol-3-yl (C-attached). Further, in some embodiments, a group derived from imidazole is imidazol-I-yl or imidazol-3-yl (both N attached) or imidazol-2-yl, imidazol-4-yl or imidazol-5-yl (all C-attached). The heterocycle groups include benzo-fused ring systems and ring systems substituted with one or two oxo (=0) moieties such as pyrrolidin 59 WO 2011/097334 PCT/US2011/023532 2-one. In some embodiments, depending on the structure, a heterocycle group is a monoradical or a diradical (i.e., a heterocyclene group). 1001891 The heterocycles described herein are substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, alkylcarbonyl, alkylcarbonyloxy, alkylthio, alkylthioalkyl, alynyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxyl, hydroxyalkylene, mercapto, nitro, -NRARB, and -(NRARB)carbonyl. 1001901 The term "heterocycloalkoxy" refers to a heterocycloalkyl group, as defined herein, appended to the parent molecular moiety through an alkoxy group. 1001911 The term "heterocycloalkylthio" refers to a heterocycloalkyl group, as defined herein, appended to the parent molecular moiety through an alkylthio group. [001921 The term "heterocyclooxy" refers to a heterocycloalkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. 1001931 The term "heterocyclothio" refers to a heterocycloalkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. 1001941 The term "heteroarylalkoxy" refers to a heteroaryl group, as defined herein, appended to the parent molecular moiety through an alkoxy group. [001951 The term "heteroarylalkylthio" refers to a heteroaryl group, as defined herein, appended to the parent molecular moiety through an alkylthio group. 1001961 The term "heteroaryloxy" refers to a heteroaryl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. 1001971 The term "hcteroarylthio" refers to a heteroaryl group, as defined herein, appended to the parent molecular moiety through a sulfur atom. 1001981 In some embodiments, the term "membered ring" embraces any cyclic structure. The term "membered" is meant to denote the number of skeletal atoms that constitute the ring. Thus, for example, cyclohexyl, pyridine, pyran and thiopyran are 6-membered rings and cyclopentyl, pyrrole, furan, and thiophene are 5-membered rings. [001991 The term "non-aromatic 5, 6, 7, 8, 9, 10, I1 or 12- bicyclic heterocycle" as used herein, means a heterocycloalkyl, as defined herein, consisting of two carbocyclic rings, fused together at the same carbon atom (forming a spiro structure) or different carbon atoms (in which two rings share one or more bonds), having 5 to 12 atoms in its overall ring system, wherein one or more atoms forming the ring is a heteroatom. Illustrative examples of non-aromatic 5, 6, 7, 8, 9, 10, 11, or 12- bicyclic heterocycle ring include, but are not limited to, 2- azabicyclo[2.2. I ]heptanyl, 7- azabicyclo(2.2. I 1heptanyl, 2- azabicyclo[3.2.0]heptanyl, 3 azabicyclo[3.2.0]heptanyl, 4- azaspiro[2.4]heptanyl, 5- azaspiro[2.4]heptanyl, 2-oxa-5 azabicyclo[2.2. 1 ]hcptanyl, 4- azaspiro[2.5]octanyl, 5- azaspiro[2.5]octanyl, 5- azaspiro[3.4]octanyl, 6 azaspiro[3.4]octanyl, 4- oxa-7- azaspiro[2.5]octanyl, 2- azabicyclo[2.2.2]octanyl, 1,3 60 WO 2011/097334 PCT/US2011/023532 diazabicyclo[2.2.2]octanyl, 5- azaspiro[3.5]nonanyl, 6- azaspiro[3.5]nonanyl, 5-oxo-8- azaspiro[3.5]nonanyl, octahydrocyclopenta[c]pyrrolyl, octahydro-IH-quinolizinyl, 2,3,4,6,7,9a-hexahydro-IH-quinolizinyl, decahydropyrido[ 1,2-alazepinyl, decahydro- 1H-pyrido( 1,2-alazocinyl, 1 -azabicyclo[2.2. I ]heptanyl, I azabicyclo[3.3.1]nonanyl, quinuclidinyl, and 1-azabicyclo[4.4.0]decanyl. 1002001 The term hydroxyalkylene" as used herein, means at least one hydroxyl group, as defined herein, is appended to the parent molecular moiety through an alkylene group, as defined herein. Illustrative examples of hydroxyalkylene include, but not limited to hydroxymethylene, 2-hydroxy-ethylene, 3-hydroxypropylene and 4-hydroxyheptylene. 1002011 The term "NRANRB" as used herein, means two group, RA and RR, which are appended to the parent molecular moiety through a nitrogen atom. RA and RB are each independently hydrogen, alkyl, and alkylcarbonyl. Illustrative examples of NRARB include, but are not limited to, amino, methylamino, acetylamino, and acetylmethylamino. 1002021 The term "(NRANRB)carbonyl" as used herein, means a RARB, group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Illustrative examples of (NRRn)carbonyl include, but are not limited to, aminocarbonyl, (methylamino)carbonyl, (dimethylamino)carbonyl, and (ethylmethylamino)carbonyl. 1002031 The term "NRcNRD" as used herein, means two group, Rc and RD, which are appended to the parent molecular moiety through a nitrogen atom. Rc and RD are each independently hydrogen, alkyl, and alkylcarbonyl. Illustrative examples of NRcRD include, but are not limited to, amino, methylamino, acetylamino, and acetylmethylamino. 1002041 The term "(NRcNRD)carbonyl" as used herein, means a RcRD, group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Illustrative examples of (NRcRD)carbonyl include, but are not limited to, aminocarbonyl, (methylamino)carbonyl, (dimethylamino)carbonyl, and (ethylmethylamino)carbonyl. 1002051 As used herein, the term "mercaptyl" refers to a (alkyl)S- group. 1002061 As used herein, the term "moiety" refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule. 1002071 As used herein, the term "sulfinyl" refers to a -S(=O)-R, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocycloalkyl (bonded through a ring carbon). [002081 As used herein, the term "sulfonyl" refers to a -S(=0) 2 -R, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocycloalkyl (bonded through a ring carbon). 1002091 As used herein, the term "0 carboxy" refers to a group of formula RC(=O)O-. [002101 As used herein, the term "C carboxy" refers to a group of formula -C(=O)OR. 61 WO 2011/097334 PCT/US2011/023532 1002111 As used herein, the term "acetyl" refers to a group of formula -C(=0)CH3. 1002121 As used herein, the term "trihalomethanesulfonyl" refers to a group of formula X 3 CS(=0)2- where X is a halogen. 1002131 As used herein, the term "isocyanato" refers to a group of formula -NCO. 1002141 As used herein, the term "thiocyanato" refers to a group of formula -CNS. 1002151 As used herein, the term "isothiocyanato" refers to a group of formula -NCS. 1002161 As used herein, the term "S sulfonamido" refers to a group of formula -S(=0) 2
NR
2 . 1002171 As used herein, the term "N sulfonamido" refers to a group of formula RS(=0) 2 NH-. 1002181 As used herein, the term "trihalomethanesulfonamido" refers to a group of formula X 3
CS(=O)
2 NR-. 1002191 As used herein, the term "0 carbamyl" refers to a group of formula -OC(=O)NR 2 . 1002201 As used herein, the term "N carbamyl" refers to a group of formula ROC(=O)NH-. 1002211 As used herein, the term "0 thiocarbamyl" refers to a group of formula -OC(=S)NR 2 . 1002221 As used herein, the term "N thiocarbamyl" refers to a group of formula ROC(=S)NH-. 1002231 As used herein, the term "C amido" refers to a group of formula -C(=0)NR 2 . 1002241 As used herein, the term "N amido" refers to a group of formula RC(=O)NIH-. 1002251 As used herein, the substituent "R" appearing by itself and without a number designation refers to a substituent selected from among from alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and non-aromatic heterocycle (bonded through a ring carbon). 1002261 The term "substituted" means that the referenced group is optionally substituted (substituted or unsubstituted) with one or more additional group(s) individually and independently selected from alkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, cyano, halo, carbonyl, thiocarbonyl, isocyanato, thiocyanato, isothiocyanato, nitro, perhaloalkyl, perfluoroalkyl, silyl, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. By way of example an optional substituents is LsR,, wherein each L, is independently selected from a bond, -0-, -C(=0)-, -S-, -S(=0)-, S(=0)2-, -NH-, -NHC(O)-, -C(O)NH-, S(=0) 2 NH-, -NHS(=0) 2 , -OC(O)NH-, -NHC(0)0-, -(substituted or unsubstituted C-C 6 alkyl), or -(substituted or unsubstituted C 2 -C, alkenyl); and each R, is independently selected from H, (substituted or unsubstituted lower alkyl), (substituted or unsubstituted lower cycloalkyl), heteroaryl, or heteroalkyl. [002271 The term "protecting group" refers to a removable group which modifies the reactivity of a functional group, for example, a hydroxyl, ketone or amine, against undesirable reaction during synthetic procedures and to be later removed. Examples of hydroxy-protecting groups include, but not limited to, methylthiomethyl, tert-dimethylsilyl, tert-butyldiphenylsilyl, ethers such as methoxymethyl, and esters including acetyl, benzoyl, and the like. Examples of ketone protecting groups include, but not limited to, ketals, oximes, 0-substituted oximes for example 0-benzyl oxime, 0-phenylthiomethyl oxime, I 62 WO 2011/097334 PCT/US2011/023532 isopropoxycyclohexyl oxime, and the like. Examples of amine protecting groups include, but are not limited to, tert-butoxycarbonyl (Boc) and carbobenzyloxy (Cbz). [002281 The term "optionally substituted" as defined herein, means the referenced group is substituted with zero, one or more substituents as defined herein. [002291 The term "protected-hydroxy" refers to a hydroxy group protected with a hydroxy protecting group, as defined above. 1002301 In some embodiments, compounds of the described herein exist as stereoisomers, wherein asymmetric or chiral centers are present. Stereoisomers are designated (R) or (S) depending on the configuration of substituents around the chiral carbon atom. The term (R) and (S) used herein are configurations as defined in IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., (1976), 45:13-30, hereby incorporated by reference. The embodiments described herein specifically include the various stereoisomers and mixtures thereof. Stereoisomers include enantiomers, diastereomers, and mixtures of enantiomers or diastereomers. In some embodiments, individual stereoisomers of compounds are prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral axillary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary or (2) direct separation of the mixture of optical enantiomers on chiral chromatographic column. [0023t The methods and formulations described herein include the use of N-oxides, crystalline forms (also known as polymorphs), or pharmaceutically acceptable salts of compounds described herein, as well as active metabolites of these compounds having the same type of activity. In some situations, compounds exist as tautomers. All tautomers are included within the scope of the compounds presented herein. In some embodiments, the compounds described herein exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. The solvated forms of the compounds presented herein are also considered to be disclosed herein. 1002321 Throughout the specification, groups and substituents thereof are chosen, in certain embodiments, to provide stable moieties and compounds. Preparation of Compounds described herein [002331 In certain embodiments, the compounds described herein are synthesized using any synthetic techniques including standard synthetic techniques and the synthetic processes described herein. In specific embodiments, the following synthetic processes are utilized. Formation of Covalent Linkages by Reaction of an Electrophile with a Nucleophile 1002341 Selected examples of covalent linkages and precursor functional groups which yield them are given in the Table entitled "Examples of Covalent Linkages and Precursors Thereof." Precursor functional groups are 63 WO 2011/097334 PCT/US2011/023532 shown as electrophilic groups and nucleophilic groups. In certain embodiments, a functional group on an organic substance is attached directly, or attached via any useful spacer or linker as defined below. Table 1: Examples of Covalent Linkages and Precursors Thereof Covalent Linkage Product Electrophile Nucleophile Carboxamides Activated esters amines/anilines Carboxamides acyl azides amines/anilines Carboxamides acyl halides amines/anilines Esters acyl halides alcohols/phenols Esters acyl nitriles alcohols/phenols Carboxamides acyl nitriles amines/anilines Imines Aldehydes amines/anilines Hydrazones aldehydes or ketones Hydrazines Oximes aldehydes or ketones Hydroxylamines Alkyl amines alkyl halides amines/anilines Esters alkyl halides carboxylic acids Thioethers alkyl halides Thiols Ethers alkyl halides alcohols/phenols Thioethers alkyl sulfonates Thiols Esters alkyl sulfonates carboxylic acids Ethers alkyl sulfonates alcohols/phenols Esters Anhydrides alcohols/phenols Carboxamides Anhydrides amines/anilines Thiophenols aryl halides Thiols Aryl amines aryl halides Amines Thioethers Azindines Thiols Boronate esters Boronates Glycols Carboxamides carboxylic acids amines/anilines Esters carboxylic acids Alcohols hydrazines Hydrazides carboxylic acids N-acylureas or Anhydrides carbodiimides carboxylic acids Esters diazoalkanes carboxylic acids Thioethers Epoxides Thiols Thioethers haloacetamides Thiols Ammotriazines halotriazines amines/anilines Triazinyl ethers halotriazines alcohols/phenols Amidines imido esters amines/anilines Ureas Isocyanates amines/anilines Urethanes Isocyanates alcohols/phenols Thioureas isothiocyanates amines/anilines Thioethers Maleimides Thiols Phosphite esters phosphoramidites Alcohols Silyl ethers silyl halides Alcohols Alkyl amines sulfonate esters amines/anilines Thioethers sulfonate esters Thiols Esters sulfonate esters carboxylic acids Ethers sulfonate esters Alcohols Sulfonamides sulfonyl halides amines/anilines Sulfonate esters sulfonyl halides phenols/alcohols 64 WO 2011/097334 PCT/US2011/023532 1002351 In general, carbon electrophiles are susceptible to attack by complementary nucleophiles, including carbon nucleophiles, wherein an attacking nucleophile brings an electron pair to the carbon electrophile in order to form a new bond between the nucleophile and the carbon electrophile. 1002361 Suitable carbon nucleophiles include, but are not limited to alkyl, alkenyl, aryl and alkynyl Grignard, organolithium, organozinc, alkyl-, alkenyl , aryl- and alkynyl-tin reagents (organostannanes), alkyl-, alkenyl-, aryl- and alkynyl-borane reagents (organoboranes and organoboronates); these carbon nucleophiles have the advantage of being kinetically stable in water or polar organic solvents. Other carbon nucleophiles include phosphorus ylids, enol and enolate reagents; these carbon nucleophiles have the advantage of being relatively easy to generate from precursors. Carbon nucleophiles, when used in conjunction with carbon electrophiles, engender new carbon-carbon bonds between the carbon nucleophile and carbon electrophile. [002371 Non-carbon nucleophiles suitable for coupling to carbon electrophiles include but are not limited to primary and secondary amines, thiols, thiolates, and thioethers, alcohols, alkoxides, azides, semicarbazides, and the like. These non-carbon nucleophiles, when used in conjunction with carbon electrophiles, typically generate heteroatom linkages (C-X-C), wherein X is a heteroatom, e. g, oxygen or nitrogen. Use of Protecting Groups 1002381 The term "protecting group" refers to chemical moieties that block some or all reactive moieties and prevent such groups from participating in chemical reactions until the protective group is removed. In specific embodiments, more than one protecting group is utilized. In more specific embodiments, each protective group is removable by a different process. Protective groups that are cleaved under totally disparate reaction conditions fulfill the requirement of differential removal. In various embodiments, protective groups are removed by acid, base, or hydrogenolysis. Groups such as trityl, dimethoxytrityl, acetal and t butyldimethylsilyl are acid labile and are, in some embodiments, used to protect carboxy and hydroxy reactive moieties in the presence of amino groups protected with Cbz groups, which are removable by hydrogenolysis, and Fmoc groups, which are base labile. In some embodiments, carboxylic acid and hydroxy reactive moieties are blocked with base labile groups such as, without limitation, methyl, ethyl, and acetyl in the presence of amines blocked with acid labile groups such as t-butyl carbamate or with carbamates that are both acid and base stable but hydrolytically removable. 1002391 In certain embodiments, carboxylic acid and hydroxy reactive moieties are blocked with hydrolytically removable protective groups such as the benzyl group, while, in some embodiments, amine groups capable of hydrogen bonding with acids are blocked with base labile groups such as Fmoc. In various embodiments, carboxylic acid reactive moieties are protected by conversion to simple ester derivatives as exemplified herein, or they are blocked with oxidatively-removable protective groups such as 2,4 dimethoxybenzyl, while, in some embodiments, co-existing amino groups are blocked with fluoride labile silyl carbamates. 65 WO 2011/097334 PCT/US2011/023532 [002401 In certain instances, allyl blocking groups are useful in the presence of acid- and base- protecting groups since the former are stable. In some embodiments, such groups are subsequently removed by metal or pi-acid catalysts. For example, in some embodiments, an allyl-blocked carboxylic acid is deprotected with a Pd4-catalyzed reaction in the presence of acid labile t-butyl carbamate or base-labile acetate amine protecting groups. In some embodiments, a protecting group is a resin to which a compound or intermediate is attached. As long as the residue is attached to the resin, that functional group is blocked and cannot react. Once released from the resin, the functional group is available to react. 1002411 In some embodiments, blocking/protecting groups are selected from, by way of non-limiting example:
H
2
H
2 0 HHH
H
2 C 2C
H
2 C H 2
H
3 C
H
2 0 allyl Bn Cbz alloc Me
H
2 H3C. /CH 3
H
2
H
3 C C (H3C)3C (H3C)3C (CH 3
)
3 C 0 Et t-butyl TBDMS Teoc 0
H
2 C O H2C- (CH3)3CH 3
(CH
5
)
3 C- H 3 C Boc pMBn trityl acetyl Fmoc 1002421 Other protecting groups are described in Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, NY, 1999. Compounds of Formula (1) 1002431 Preparations of compounds used in the invention are described in W02010/017055. [002441 In certain embodiments, compounds of Formula (I), composing of la to If, are prepared in various ways, as outlined in Synthetic Schemes 1 and 2. In each scheme, the variables (e.g., R 1 , R 2 , R 3 , R4, Rs, Y, and Z) correspond to the same definitions as those recited above while R is alkyl and Y' is the same or different group defined by Y and Z' is the same or different group defined by Z. In some embodiments, compounds are synthesized using methodologies analogous to those described below by the use of appropriate alternative starting materials. 1002451 In certain embodiments, compounds of Formula (Ia, and Tb) wherein Y is identical to Z are synthesized according to Synthetic Scheme 1. Thus, the preparation of the intermediate 3 wherein R 5 is hydrogen is achieved by condensation of 4-aminoisobenzofuran-l(3H)-one 1 with an aldehyde 2 in the 66 WO 2011/097334 PCT/US2011/023532 presence of a base preferably alkaline alkoxides in appropriate solvents such as ethyl acetate or ethyl propionate at either ambient or elevated temperature. Compounds of Formula [a wherein R 5 is hydrogen is prepared by treating the intermediate 3 with hydrazine hydrate at ambient or elevated temperature. Compounds of Formula Ia wherein R 5 is alkyl or substituted alkyl is prepared from compound of Formula Ia wherein R 5 is hydrogen by reductive amination reaction with R 7 -CHO wherein R 7 is alkyl, substituted alkyl. In some embodiments, the preparation of the compounds in Formula lb is accomplished by further modification of Ia. Through appropriate functional group transformations on the moiety of Y and Z, one affords the compounds of Formula Ib with different entities of Y' and Z' at 2- or 3-positions. Synthetic Scheme 1
R
2 R,
R
2 R,
R
2 R, RI 0 R COOR - 0 0 O+ C RONa, ROH R O H 2
NNH
2 , H Transformation NH
R
3
R
5 - N R-N N
NH
2 z Y Z Y Z' Y' 1 2 3 Ia Ib 1002461 In certain embodiments, compounds of Formula (Ic, and Id) are synthesized according to Synthetic Scheme 2. For example, the intermediate 5 is prepared by condensation of the reagent 1 with an aldehyde 4 in the presence of water absorbent such sodium sulfate or magnesium sulfate at elevated temperature. A subsequent condensation reaction of this intermediate with another aldehyde in the presence of a base preferably alkaline alkoxides in appropriate solvents such as ethyl acetate or ethyl propionate at either ambient or elevated temperature gives the intermediate 6 wherein Rs is hydrogen. Compounds of Formula Ic wherein R 5 is hydrogen is prepared by treating the intermediate 6 with hydrazine hydrate at ambient or elevated temperature. Compounds of Formula Ic wherein R 5 is alkyl, substituted alkyl are prepared from compounds of Formula Ic wherein R 5 is hydrogen by reductive amination reaction with R 7 -CHO wherein R 7 is alkyl, or substituted alkyl. In some embodiments, the preparation of compounds of Formula Id are accomplished by further modification of Ic. Through appropriate functional group transformations on the moiety of Y and Z, one could afford the compounds of Formula Ic with different entities of Y' and Z' at 2- or 3-positions. Synthetic Scheme 2
R
2 R, R2 R, R 2 R 1 R, 0 R1 0 2N MeOH, NaSO N R ' HC-Y R\ COOR H2NNH. R, Transformation R 3 NH R, Heat R, RONa, ROH RN O RefluN RN NN R,-N N NH2 N ) , 1 4 5z 6 IC Id Certain Pharmaceutical Terminology 1002471 The term "acceptable" with respect to a formulation, composition or ingredient, as used herein, means having no persistent detrimental effect on the general health of the subject being treated. 67 WO 2011/097334 PCT/US2011/023532 1002481 As used herein, the term "selective binding compound" refers to a compound that selectively binds to any portion of one or more target proteins. 1002491 As used herein, the term "selectively binds" refers to the ability of a selective binding compound to bind to a target protein, such as, for example, PARP, with greater affinity than it binds to a non-target protein. In certain embodiments, specific binding refers to binding to a target with an affinity that is at least about 10, about 50, about 100, about 250, about 500, about 1000 or more times greater than the affinity for a non-target. 1002501 As used herein, the term "target protein" refers to a molecule or a portion of a protein capable of being bound by a selective binding compound. In certain embodiments, a target protein is the enzyme poly(ADP-ribose)polymerase (PARP). 1002511 As used herein, the terms "treating" or "treatment" encompass either or both responsive and prophylaxis measures, e.g., designed to inhibit, slow or delay the onset of a symptom of a disease or disorder, achieve a full or partial reduction of a symptom or disease state, and/or to alleviate, ameliorate, lessen, or cure a disease or disorder and/or its symptoms. [002521 As used herein, amelioration of the symptoms of a particular disorder by administration of a particular compound or pharmaceutical composition refers to any lessening of severity, delay in onset, slowing of progression, or shortening of duration, whether permanent or temporary, lasting or transient that can be attributed to or associated with administration of the compound or composition. 1002531 As used herein, the term "modulator" refers to a compound that alters an activity of a molecule. For example, a modulator includes a compound that causes an increase or a decrease in the magnitude of a certain activity of a molecule compared to the magnitude of the activity in the absence of the modulator. In certain embodiments, a modulator is an inhibitor, which decreases the magnitude of one or more activities of a molecule. In certain embodiments, an inhibitor completely prevents one or more activities of a molecule. In certain embodiments, a modulator is an activator, which increases the magnitude of at least one activity oF a molecule. In certain embodiments the presence of a modulator results in an activity that does not occur in the absence of the modulator. 1002541 As used herein, the term "selective modulator" refers to a compound that selectively modulates a target activity. 1002551 As used herein, the term "PARP " refers to the family of the enzyme poly(ADP-ribose)polymerase which includes approximately 18 proteins, particularly poly(ADP-ribose)polymerase- I (PARP- 1) and poly(ADP-ribose)polymerase-2 (PARP-2). 1002561 As used herein, the term "selective PARP modulator" refers to a compound that selectively modulates at least one activity associated with the enzyme poly(ADP-ribose)polymerase (PARP). In various embodiments, the selective modulator selectively modulates the activity of PARP -1, PARP-2, both PARP-1 and PARP-2 or several members of the family of the enzyme poly(ADP-ribose)polymerase (PARP). 68 WO 2011/097334 PCT/US2011/023532 1002571 As used herein, the term "method of inhibiting PARP" refers to a method of inhibiting the activity of either one or more of the family of enzyme poly(ADP-ribose)polymerase (PARP). As used herein, the term "inhibition of PARP" refers to inhibition of the activity of either one or more of the family of enzyme poly(ADP-ribose)polymerase (PARP). 1002581 As used herein, the term "modulating the activity of the enzyme poly(ADP-ribose)polymerase" refers to a modulating the activity of either one or more of the family of enzyme poly(ADP-ribose)polymerase (PARP). 1002591 As used herein, the term "selectively modulates" refers to the ability of a selective modulator to modulate a target activity to a greater extent than it modulates a non-target activity. In certain embodiments the target activity is selectively modulated by, for example about 2 fold up to more that about 500 fold, in some embodiments, about 2, 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450 or more than 500 fold. [002601 As used herein, the term "target activity" refers to a biological activity capable of being modulated by a selective modulator. Certain exemplary target activities include, but are not limited to, binding affinity, signal transduction, enzymatic activity, tumor growth, inflammation or inflammation-related processes, and amelioration of one or more symptoms associated with a disease or condition. 1002611 As used herein, the term "agonist" refers to a compound, the presence of which results in a biological activity of a protein that is the same as the biological activity resulting from the presence of a naturally occurring ligand for the protein, such as, for example, PARP. [002621 As used herein, the term "partial agonist" refers to a compound the presence of which results in a biological activity of a protein that is of the same type as that resulting from the presence of a naturally occurring ligand for the protein, but of a lower magnitude. 1002631 As used herein, the term "antagonist" or "inhibitor" refers to a compound, the presence of which results in a decrease in the magnitude of a biological activity of a protein. In certain embodiments, the presence of an antagonist results in complete inhibition of a biological activity of a protein, such as, for example, the enzyme poly(ADP-ribose)polymerase (PARP). 1002641 As used herein, the IC 50 refers to an amount, concentration or dosage of a particular test compound that achieves a 50% inhibition of a maximal response, such as modulation of PARP, in an assay that measures such response. 1002651 As used herein, EC5 0 refers to a dosage, concentration or amount of a particular test compound that elicits a dose-dependent response at 50% of maximal expression of a particular response that is induced, provoked or potentiated by the particular test compound. 1002661 The term "cancer", as used herein refers to an abnormal growth of cells which tend to proliferate in an uncontrolled way and, in some cases, to metastasize (spread). The types of cancer include, but are not limited to, solid tumors (such as those of the bladder, bowel, brain, breast, endometrium, heart, kidney, lung, 69 WO 2011/097334 PCT/US2011/023532 lymphatic tissue (lymphoma), ovary, pancreas or other endocrine organ (thyroid), prostate, skin (melanoma) or hematological tumors (such as the leukemias). 1002671 The terms "disease, condition or disorder associated with a PTEN deficiency" or "disease or disorder associated with a PTEN deficiency", as used herein refer to diseases, conditions or disorders that are caused by, mediated by or related to pathways that are affected (either positively or negatively) by the partial and/or complete loss of PTEN activity (e.g., PTEN deficiency). In some embodiments, a disease or disorder associated with a PTEN deficiency refers to a disease or disorder involving an abnormal ability to control the phosphoinositide 3-kinase signaling pathway. In other embodiments, a disease or disorder associated with a PTEN deficiency refers to a disease or disorder involving a deficiency in Homologous Recombination (HR) dependent DNA double strand break (DSB) repair pathway. In still other embodiments, a disease or disorder associated with a PTEN deficiency refers to a disease or disorder related to abnormal regulation of centromere stability. 1002681 The term "carrier," as used herein, refers to relatively nontoxic chemical compounds or agents that facilitate the incorporation of a compound into cells or tissues. 1002691 The terms "co-administration" or the like, as used herein, are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are administered by the same or different route of administration or at the same or different time. 1002701 The term "diluent" refers to chemical compounds that are used to dilute the compound of interest prior to delivery. Diluents include chemicals used to stabilize compounds because they provide a more stable environment. Salts dissolved in buffered solutions (which also can provide pH control or maintenance) are utilized as diluents in certain embodiments, including, but not limited to a phosphate buffered saline solution. [002711 The terms "radiation therapy" (radiotherapy) or "ionizing radiation therapy", as used herein, refer to the use of ionizing radiation as part of a cancer treatment to control the proliferation of cancer cells. Ionizing radiation therapy may be used for curative or adjuvant cancer treatment. Additionally, it can be used as a palliative treatment (where cure is not possible and the aim is for local disease control or symptomatic relief) or as a therapeutic treatment (where the therapy has survival benefit and it can be curative). The precise treatment intent (curative, adjuvant, neoadjuvant, therapeutic, or palliative) will depend on the tumour type, location, and stage, as well as the general health of the patient. 1002721 The terms "effective amount" or "therapeutically effective amount," as used herein, refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result includes reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an "effective amount" for therapeutic uses is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in disease symptoms. An 70 WO 2011/097334 PCT/US2011/023532 appropriate "effective" amount in any individual case is determined using any suitable technique, such as a dose escalation study. 1002731 The terms "enhance" or "enhancing," as used herein, means to increase or prolong either in potency or duration a desired effect. Thus, in regard to enhancing the effect of therapeutic agents, the term "enhancing" refers to the ability to increase or prolong, either in potency or duration, the effect of other therapeutic agents on a system. An "enhancing-effective amount," as used herein, refers to an amount adequate to enhance the effect of another therapeutic agent in a desired system. 1002741 The term "enzymatically cleavable linker," as used herein refers to unstable or degradable linkages which are degraded by one or more enzymes. [002751 The term "inflammatory disorders" refers to those diseases or conditions that are characterized by one or more of the signs of pain (dolor, from the generation of noxious substances and the stimulation of nerves), heat (calor, from vasodilatation), redness (rubor, from vasodilatation and increased blood flow), swelling (tumor, from excessive inflow or restricted outflow of fluid), and loss of function (functio laesa, which may be partial or complete, temporary or permanent). Inflammation takes many forms and includes, but is not limited to, inflammation that is one or more of the following: acute, adhesive, atrophic, catarrhal., chronic, cirrhotic, diffuse, disseminated, exudative, fibrinous, fibrosing, focal., granulomatous, hyperplastic, hypertrophic, interstitial., metastatic, necrotic, obliterative, parenchymatous, plastic, productive, proliferous, pseudomembranous, purulent, sclerosing, scroplastic, scrous, simple, specific, subacute, suppurative, toxic, traumatic, and/or ulcerative. Inflammatory disorders further include, without being limited to those affecting the blood vessels (polyarteritis, temporal arteritis); joints (arthritis: crystalline, osteo-, psoriatic, reactive, rheumatoid, Reiter's); gastrointestinal tract (Chrohn's Disease, ulcerative colitis); skin (dermatitis); or multiple organs and tissues (systemic lupus erythematosus). 1002761 The terms "kit" and "article of manufacture" are used as synonyms. 1002771 A "metabolite" of a compound disclosed herein is a derivative of that compound that is formed when the compound is metabolized. The term "active metabolite" refers to a biologically active derivative of a compound that is formed when the compound is metabolized. The term "metabolized," as used herein, refers to the sum of the processes (including, but not limited to, hydrolysis reactions and reactions catalyzed by enzymes) by which a particular substance is changed by an organism. Thus, in certain instances, enzymes produce specific structural alterations to a compound. In some embodiments, metabolites of the compounds disclosed herein are identified either by administration of compounds to a host and analysis of tissue samples from the host, or by incubation of compounds with hepatic cells in vitro and analysis of the resulting compounds. 1002781 The term "modulate," as used herein, means to interact with a target either directly or indirectly so as to alter the activity of the target, including, by way of example only, to enhance the activity of the target, to inhibit the activity of the target, to limit the activity of the target, or to extend the activity of the target. 71 WO 2011/097334 PCT/US2011/023532 1002791 By "pharmaceutically acceptable" or "therapeutically acceptable", as used herein, refers a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the compound, and is relatively nontoxic. In certain instances, nontoxic and non-abrogative materials includes materials that when administered to an individual do not cause substantial, undesirable biological effects and/or do not interact in a deleterious manner with any of the components of the composition in which it is contained. [002801 The term "pharmaceutically acceptable salt" or "therapeutically acceptable salt", refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. In certain instances, pharmaceutically acceptable salts are obtained by reacting a compound described herein, with acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. In some instances, pharmaceutically acceptable salts are obtained by reacting a compound having acidic group described herein with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N methyl-D-glucamine, tris(hydroxymethyl)methylamine, and salts with amino acids such as arginine, lysine, and the like, or by other methods previously determined. 1002811 The term "pharmaceutical combination" as used herein, means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term "fixed combination" means that the active ingredients, e.g. a compound described herein and a co-agent, are both administered to a patient simultaneously in the form of a single entity or dosage. The term "non-fixed combination" means that the active ingredients, e.g. a compound described herein and a co-agent, are administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific intervening time limits, wherein such administration provides effective levels of the two compounds in the body of the patient. The latter also applies to cocktail therapy, e.g. the administration of three or more active ingredients. 1002821 The term "pharmaceutical composition" refers to a mixture of a compound described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of the compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to: intravenous, oral, aerosol, parenteral, ophthalmic, pulmonary and topical administration. 1002831 A "prodrug" refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they are easier to administer than the parent drug. In certain instances, a prodrug is bioavailable by oral administration whereas the parent is not. In some instances, a prodrug has improved solubility in pharmaceutical compositions over the parent drug. An example, without limitation, of a prodrug is a compound described herein, which is administered as an ester (the "prodrug") to facilitate 72 WO 2011/097334 PCT/US2011/023532 transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water-solubility is beneficial. A further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid or amino group where the peptide is metabolized to reveal the active moiety. In certain embodiments, upon in vivo administration, a prodrug is chemically converted to the biologically, pharmaceutically or therapeutically more active form of the compound. In certain embodiments, a prodrug is enzymatically metabolized by one or more steps or processes to the biologically, pharmaceutically or therapeutically active form of the compound. To produce a prodrug, a pharmaceutically active compound is modified such that the active compound will be regenerated upon in vivo administration. In some embodiments, the prodrug is designed to alter the metabolic stability or the transport characteristics of a drug, to mask side effects or toxicity, to improve the flavor of a drug or to alter other characteristics or properties of a drug. [002841 The term "subject" or "patient" encompasses mammals and non-mammals. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. Examples of non-mammals include, but are not limited to, birds, fish and the like. In one embodiment of the methods and compositions provided herein, the mammal is a human. 1002851 The terms "treat," "treating" or "treatment," as used herein, include alleviating, abating or ameliorating a disease or condition symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition either prophylactically and/or therapeutically. Pharmaceutical Composition/Formulation [002861 In certain embodiments, pharmaceutical compositions are formulated in any manner, including using one or more physiologically acceptable carriers comprising excipients and/or auxiliaries which facilitate processing of the active compounds into pharmaceutical preparations. In some embodiments, proper formulation is dependent upon the route of administration chosen. In various embodiments, any techniques, carriers, and excipients are used as suitable. 1002871 Provided herein are pharmaceutical compositions that include a compound described herein and a pharmaceutically acceptable diluent(s), excipient(s), and/or carrier(s). In addition, in some embodiments, the compounds described herein are administered as pharmaceutical compositions in which compounds described herein are mixed with other active ingredients, as in combination therapy. 1002881 A pharmaceutical composition, as used herein, refers to a mixture of a compound described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, 73 WO 2011/097334 PCT/US2011/023532 thickening agents, and/or excipients. In certain embodiments, a pharmaceutical composition facilitates administration of the compound to an organism. In some embodiments, practicing the methods of treatment or use provided herein, includes administering or using a pharmaceutical composition comprising a therapeutically effective amount of a compound provided herein. In specific embodiments, the methods of treatment provided for herein include administering such a pharmaceutical composition to a mammal having a disease or condition to be treated. In one embodiment, the mammal is a human. In some embodiments, the therapeutically effective amount varies widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. In various embodiments, the compounds described herein are used singly or in combination with one or more therapeutic agents as components of mixtures. 1002891 In certain embodiments, the pharmaceutical compositions provided herein are formulated for intravenous injections. In certain aspects, the intravenous injection formulations provided herein are formulated as aqueous solutions, and, in some embodiments, in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer. In certain embodiments, the pharmaceutical compositions provided herein are formulated for transmucosal administration. In some aspects, transmucosal formulations include penetrants appropriate to the barrier to be permeated. In certain embodiments, the pharmaceutical compositions provided herein are formulated for other parenteral injections, appropriate formulations include aqueous or nonaqueous solutions, and in one embodiment, with physiologically compatible buffers or excipients. 1002901 In certain embodiments, the pharmaceutical compositions provided herein are formulated for oral administration. In certain aspects, the oral formulations provided herein comprise compounds described herein that are formulated with pharmaceutically acceptable carriers or excipients. Such carriers enable the compounds described herein to be formulated as tablets, powders, pills, dragees, capsules, liquids, gels, syrups, elixirs, slurries, suspensions and the like, for oral ingestion by a patient to be treated. 1002911 In some embodiments, pharmaceutical preparations for oral use are obtained by mixing one or more solid excipient with one or more of the compounds described herein, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients include, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as: for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methylcellulose, microcrystalline cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose; or others such as: polyvinylpyrrolidone (PVP or povidone) or calcium phosphate. If desired, disintegrating agents are optionally added, such as the cross-linked croscarmellose sodium, polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. 74 WO 2011/097334 PCT/US2011/023532 1002921 In certain embodiments, provided herein is a pharmaceutical composition formulated as dragee cores with suitable coatings. In certain embodiments, concentrated sugar solutions are used in forming the suitable coating, and optionally contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. In some embodiments, dyestuffs and/or pigments are added to tablets, dragees and/or the coatings thereof for, e.g., identification or to characterize different combinations of active compound doses. 1002931 In certain embodiments, pharmaceutical preparations which are used include orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. In some embodiments, the push-fit capsules contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In certain embodiments, in soft capsules, the active compounds are dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers are optionally added. In certain embodiments, the formulations for oral administration are in dosages suitable for such administration. 1002941 In certain embodiments, the pharmaceutical compositions provided herein are formulated for buccal or sublingual administration. In certain embodiments, buccal or sublingual compositions take the form of tablets, lozenges, or gels formulated in a conventional manner. In certain embodiments, parenteral injections involve bolus injection or continuous infusion. In some embodiments, formulations for injection are presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. In some embodiments, the pharmaceutical composition described herein is in a form suitable for parenteral injection as a sterile suspensions, solutions or emulsions in oily or aqueous vehicles, and optionally contains formulatory agents such as suspending, stabilizing and/or dispersing agents. Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. In some embodiments, suspensions of the active compounds are prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. In certain embodiments, aqueous injection suspensions contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspensions also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. In alternative embodiments, the active ingredient is in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use. 1002951 In some embodiments, the compounds described herein are administered topically. In specific embodiments, the compounds described herein are formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams or 75 WO 2011/097334 PCT/US2011/023532 ointments. Such pharmaceutical compounds optionally contain solubilizers, stabilizers, tonicity enhancing agents, buffers and/or preservatives. 1002961 In certain embodiments, the pharmaceutical compositions provided herein are formulated for transdermal administration of compounds described herein. In some embodiments, administration of such compositions employs transdermal delivery devices and transdermal delivery patches. In certain embodiments, the compositions are lipophilic emulsions or buffered, aqueous solutions, dissolved and/or dispersed in a polymer or an adhesive. Such patches include those constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents. In some embodiments, transdermal delivery of the compounds described herein is accomplished by use of iontophoretic patches and the like. In certain embodiments, transdermal patches provide controlled delivery of the compounds provided herein, such as, for example, compounds of Formula (I), (IA) or (II). In certain embodiments, the rate of absorption is slowed by using rate-controlling membranes or by trapping the compound within a polymer matrix or gel. Conversely, absorption enhancers are optionally used to increase absorption. Absorption enhancer and carrier include absorbable pharmaceutically acceptable solvents that assist in passage of the compound through the skin. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin. 1002971 In certain embodiments, the pharmaceutical compositions provided herein are formulated for administration by inhalation. In certain embodiments, in such pharmaceutical compositions formulated for inhalation, the compounds described herein are in a form as an aerosol, a mist or a powder. In some embodiments, pharmaceutical compositions described herein are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In certain aspects of a pressurized aerosol, the dosage unit is determined by providing a valve to deliver a metered amount. In certain embodiments, capsules and cartridges of, such as, by way of example only, gelatin for use in an inhaler or insufflator is formulated containing a powder mix of the compound described herein and a suitable powder base such as lactose or starch. 1002981 In some embodiments, the compounds described herein are formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas. In certain embodiments, rectal compositions optionally contain conventional suppository bases such as cocoa butter or other glycerides, as well as synthetic polymers such as polyvinylpyrrolidone, PEG, and the like. In certain suppository forms of the compositions, a low-melting wax such as, but not limited to, a mixture of fatty acid glycerides, optionally in combination with cocoa butter is first melted. 76 WO 2011/097334 PCT/US2011/023532 [002991 In various embodiments provided herein, the pharmaceutical compositions are formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into pharmaceutically acceptable preparations. In certain embodiments, proper formulation is dependent upon the route of administration chosen. In various embodiments, any of the techniques, carriers, and excipients is used as suitable. In some embodiments, pharmaceutical compositions comprising a compound described herein are manufactured in a conventional manner, such as, by way of example only, by means of conventional mixing, dissolving, granulating, dragee making, levigating, emulsifying, encapsulating, entrapping or compression processes. 1003001 In certain embodiments, the pharmaceutical compositions include at least one pharmaceutically acceptable carrier, diluent or excipient and a compound described herein described herein as an active ingredient in free-acid or free-base form, or in a pharmaceutically acceptable salt form. In addition, the methods and pharmaceutical compositions described herein include the use of N-oxides, crystalline forms (also known as polymorphs), as well as active metabolites of these compounds having the same type of activity. In some situations, compounds described herein exist as tautomers. All tautomers are included within the scope of the compounds presented herein. Additionally, included herein are the solvated and unsolvated forms of the compounds described herein. Solvated compounds include those that are solvated with pharmaceutically acceptable solvents such as water, ethanol, and the like. The solvated forms of the compounds presented herein are also considered to be disclosed herein. In some embodiments, the pharmaceutical compositions described herein include other medicinal or pharmaceutical agents, carriers, adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure, and/or buffers. In additional embodiments, the pharmaceutical compositions described herein also contain other therapeutically valuable substances. 1003011 Methods for the preparation of compositions containing the compounds described herein include formulating the compounds with one or more inert, pharmaceutically acceptable excipients or carriers to form a solid, semi-solid or liquid. Solid compositions include, but are not limited to, powders, tablets, dispersible granules, capsules, cachets, and suppositories. Liquid compositions include solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein. Semi-solid compositions include, but are not limited to, gels, suspensions and creams. In various embodiments, the compositions are in liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. These compositions optionally contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and so forth. 1003021 In some embodiments, a composition comprising a compound described herein takes the form of a liquid where the agents are present in solution, in suspension or both. In some embodiments, when the composition is administered as a solution or suspension a first portion of the agent is present in solution and a 77 WO 2011/097334 PCT/US2011/023532 second portion of the agent is present in particulate form, in suspension in a liquid matrix. In some embodiments, a liquid composition includes a gel formulation. In other embodiments, the liquid composition is aqueous. 1003031 Useful aqueous suspensions optionally contain one or more polymers as suspending agents. Useful polymers include water-soluble polymers such as cellulosic polymers, e.g., hydroxypropyl methylcellulose, and water-insoluble polymers such as cross-linked carboxyl-containing polymers. Useful compositions optionally comprise an mucoadhesive polymer, selected for example from carboxymethylcellulose, carbomer (acrylic acid polymer), poly(methylmethacrylate), polyacrylamide, polycarbophil, acrylic acid/butyl acrylate copolymer, sodium alginate and dextran. 1003041 Useful compositions optionally include solubilizing agents to aid in the solubility of a compound described herein. The term "solubilizing agent" generally includes agents that result in formation of a micellar solution or a true solution of the agent. Solubilizing agents include certain acceptable nonionic surfactants, for example polysorbate 80, and ophthalmically acceptable glycols, polyglycols, e.g., polyethylene glycol 400, and glycol ethers. 1003051 Useful compositions optionally include one or more pH adjusting agents or buffering agents, including acids such as acetic, boric, citric, lactic, phosphoric and hydrochloric acids; bases such as sodium hydroxide, sodium phosphate, sodium borate, sodium citrate, sodium acetate, sodium lactate and tris hydroxymethylaminomethane; and buffers such as citrate/dextrose, sodium bicarbonate and ammonium chloride. Such acids, bases and buffers are included in an amount required to maintain pH of the composition in an acceptable range. 1003061 Useful compositions optionally include one or more salts in an amount required to bring osmolality of the composition into an acceptable range. Such salts include those having sodium, potassium or ammonium cations and chloride, citrate, ascorbate, borate, phosphate, bicarbonate, sulfate, thiosulfate or bisulfite anions; suitable salts include sodium chloride, potassium chloride, sodium thiosulfate, sodium bisulfite and ammonium sulfate. 1003071 Certain useful compositions optionally include one or more preservatives to inhibit microbial activity. Suitable preservatives include mercury-containing substances such as merfen and thiomersal; stabilized chlorine dioxide; and quaternary ammonium compounds such as benzalkonium chloride, cetyltrimethylammonium bromide and cetylpyridinium chloride. [003081 Some useful compositions optionally include one or more surfactants to enhance physical stability or for other purposes. Suitable nonionic surfactants include polyoxyethylene fatty acid glycerides and vegetable oils, e.g., polyoxyethylene (60) hydrogenated castor oil; and polyoxyethylene alkylethers and alkylphenyl ethers, e.g., octoxynol 10, octoxynol 40. 1003091 Certain useful compositions optionally one or more antioxidants to enhance chemical stability where required. Suitable antioxidants include, by way of example only, ascorbic acid and sodium metabisulfite. 78 WO 2011/097334 PCT/US2011/023532 [003101 In some embodiments, aqueous suspension compositions are packaged in single-dose non-reclosable containers. In alternative embodiments, multiple-dose reclosable containers are used, in which case it is typical to include a preservative in the composition. 1003111 In various embodiments, any delivery system for hydrophobic pharmaceutical compounds is employed. Liposomes and emulsions are examples of delivery vehicles or carriers for hydrophobic drugs. In certain embodiments, certain organic solvents such as N-methylpyrrolidone are employed. In some embodiments, the compounds are delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials are utilized in the embodiments herein. In certain embodiments, sustained-release capsules release the compounds for a few weeks up to over 100 days. In some embodiments, depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization are employed. 1003121 In certain embodiments, the formulations or compositions described herein benefit from and/or optionally comprise antioxidants, metal chelating agents, thiol containing compounds and other general stabilizing agents. Examples of such stabilizing agents, include, but are not limited to: (a) about 0,5% to about 2% w/v glycerol, (b) about 0.1% to about 1% w/v methionine, (c) about 0.10% to about 2% w/v monothioglycerol, (d) about 1 mM to about 10 mM EDTA, (e) about 0.0 1% to about 2% w/v ascorbic acid, (f) 0.003% to about 0.02% w/v polysorbate 80, (g) 0.001% to about 0.05% w/v. polysorbate 20, (h) arginine, (i) heparin, (j) dextran sulfate, (k) cyclodextrins, (1) pentosan polysulfate and other heparinoids, (in) divalent cations such as magnesium and zinc; or (n) combinations thereof. Methods of Dosing and Treatment Regimens 1003131 In certain embodiments, the compounds described herein are used in the preparation or manufacture of medicaments for the treatment of diseases or conditions associated with a PTEN deficiency in which inhibition of the enzyme poly(ADP-ribose)polymerase (PARP) ameliorates the disease or condition. In some embodiments, a method for treating any of the diseases or conditions described herein in a subject in need of such treatment, involves administration of pharmaceutical compositions containing at least one compound described herein, or a pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate thereof, in therapeutically effective amounts to said subject. 1003141 In certain embodiments, the compositions containing the compound(s) described herein are administered for prophylactic and/or therapeutic treatments. In certain therapeutic applications, the compositions are administered to a patient already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition. In some embodiments, amounts effective for this use will depend on the severity and course of the disease or condition, previous therapy, the patient's health status, weight, and response to the drugs, and the judgment of the treating 79 WO 2011/097334 PCT/US2011/023532 physician. In certain instances, it is considered appropriate for the caregiver to determine such therapeutically effective amounts by routine experimentation (including, but not limited to, a dose escalation clinical trial). 1003151 In certain prophylactic applications, compositions containing the compounds described herein are administered to a patient susceptible to or otherwise at risk of a particular disease, disorder or condition. In some embodiments, the amount administered is defined to be a "prophylactically effective amount or dose." In certain embodiments of this use, the precise amounts of compound administered depend on the patient's state of health, weight, and the like. In some embodiments, it is considered appropriate for the caregiver to determine such prophylactically effective amounts by routine experimentation (e.g., a dose escalation clinical trial). In certain embodiments, when used in a patient, effective amounts for this use will depend on the severity and course of the disease, disorder or condition, previous therapy, the patient's health status and response to the drugs, and the judgment of the treating physician. 1003161 In certain instances, a patient's condition does not improve or does not significantly improve following administration of a compound or composition described herein and, upon the doctor's discretion the administration of the compounds is optionally administered chronically, that is, for an extended period of time, including throughout the duration of the patient's life in order to ameliorate or otherwise control or limit the symptoms of the patient's disease or condition. 1003171 In certain cases wherein the patient's status does improve or does not substantially improve, upon the doctor's discretion the administration of the compounds are optionally given continuously; alternatively, the dose of drug being administered is optionally temporarily reduced or temporarily suspended for a certain length of time (i.e., a "drug holiday"). In certain embodiments, the length of the drug holiday varies between 2 days and 1 year, including by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 280 days, 300 days, 320 days, 350 days, or 365 days. The dose reduction during a drug holiday includes a reduction from about 10% to about 100%, including, by way of example only, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%. [003181 In certain embodiments, once improvement of the patient's conditions has occurred, a maintenance dose is administered if necessary. In some embodiments, the dosage, e.g., of the maintenance dose, or the frequency of administration, or both, are reduced, as a function of the symptoms, to a level at which the improved disease, disorder or condition is retained. In certain embodiments, however, patients are optionally given intermittent treatment on a long-term basis upon any recurrence of symptoms. [003191 In certain embodiments, the amount of a given agent that corresponds to an effective amount varies depending upon factors such as the particular compound, disease or condition and its severity, the identity (e.g., weight) of the subject or host in need of treatment. In some embodiments, the effective amount is, nevertheless, determined according to the particular circumstances surrounding the case, including, e.g., the 80 WO 2011/097334 PCT/US2011/023532 specific agent that is administered, the route of administration, the condition being treated, and the subject or host being treated. In certain embodiments, however, doses employed for adult human treatment is in the range of about 0.02 to about 5000 mg per day, in a specific embodiment about 1 to about 1500 mg per day. In various embodiments, the desired dose is conveniently presented in a single dose or as divided doses administered simultaneously (or over a short period of time) or at appropriate intervals, for example as two, three, four or more sub-doses per day. 1003201 In some embodiments, the pharmaceutical compositions described herein are in a unit dosage form suitable for single administration of precise dosages. In some instances, in unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compound. In certain embodiments, the unit dosage is in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules. In some embodiments, aqueous suspension compositions are packaged in single-dose non-reclosable containers. In alternative embodiments, multiple-dose reclosable containers are used, in which case it is typical to include a preservative in the composition. By way of example only, formulations for parenteral injection are, in some embodiments, presented in unit dosage form, which include, but are not limited to ampoules, or in multi-dose containers, with an added preservative. [003211 In certain embodiments, the daily dosages appropriate for the compounds described herein described herein are from about 0.01 to about 2.5 mg/kg per body weight. In some embodiments, an indicated daily dosage in the larger subject, including, but not limited to, humans, is in the range from about 0.5 mg to about 100 mg, conveniently administered in divided doses, including, but not limited to, up to four times a day or in extended release form. In certain embodiments, suitable unit dosage forms for oral administration comprise from about 1 to about 50 mg active ingredient. The foregoing ranges are merely suggestive, as the number of variables in regard to an individual treatment regime is large, and considerable excursions from these recommended values are not uncommon. In certain embodiments, the dosages are altered depending on a number of variables, not limited to the activity of the compound used, the disease or condition to be treated, the mode of administration, the requirements of the individual subject, the severity of the disease or condition being treated, and the judgment of the practitioner. 1003221 In certain embodiments, toxicity and therapeutic efficacy of such therapeutic regimens are determined by standard pharmaceutical procedures in cell cultures or experimental animals, including, but not limited to, the determination of the LDo (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population). The dose ratio between the toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD 50 and ED 5 . In certain embodiments, compounds exhibiting high therapeutic indices are preferred. In some embodiments, the data obtained from cell culture assays and animal studies is used in formulating a range of dosage for use in human. In specific embodiments, the dosage of such compounds lies within a range of circulating concentrations that include the ED 5 0 with 81 WO 2011/097334 PCT/US2011/023532 minimal toxicity. In certain embodiments, the dosage varies within this range depending upon the dosage form employed and the route of administration utilized. Combination Treatments 1003231 In certain instances, it is appropriate to administer at least one compound described herein in combination with another therapeutic agent. By way of example only, if one of the side effects experienced by a patient upon receiving one of the compounds herein is inflammation, then, in some embodiments, it is appropriate to administer an anti-inflammatory agent in combination with the initial therapeutic agent. In some embodiments, the therapeutic effectiveness of one of the compounds described herein is enhanced by administration of an adjuvant (i.e., in some embodiments, by itself the adjuvant has minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced). In certain embodiments, the benefit experienced by a patient is increased by administering one of the compounds described herein with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit. In some embodiments, regardless of the disease, disorder or condition being treated, the overall benefit experienced by the patient as a result of a combination treatment is additive or synergistic. 1003241 In certain embodiments, therapeutically-effective dosages vary when the drugs are used in treatment combinations. In some embodiments, therapeutically-effective dosages of drugs and other agents for use in combination treatment regimens is determined in any suitable manner, e.g., through the use of metronomic dosing, i.e., providing more frequent, lower doses in order to minimize toxic side effects. In some embodiments, combination treatment regimen described herein encompass treatment regimens in which administration of a PARP inhibitor described herein is initiated prior to, during, or after treatment with a second agent described above, and continues until any time during treatment with the second agent or after termination of treatment with the second agent. It also includes treatments in which a PARP inhibitor described herein and the second agent being used in combination are administered simultaneously or at different times and/or at decreasing or increasing intervals during the treatment period. Combination treatment further includes periodic treatments that start and stop at various times to assist with the clinical management of the patient. For example, in some embodiments, a PARP inhibitor described herein in the combination treatment is administered weekly at the onset of treatment, decreasing to biweekly, and decreasing further as appropriate. 1003251 In certain embodiments, compositions and methods for combination therapy are provided herein. In accordance with one aspect, the pharmaceutical compositions disclosed herein are used to in a method of treating a disease or condition associated with a PTEN deficiency that is ameliorated by inhibition of PARP. Thus, in accordance with certain aspects, the pharmaceutical compositions disclosed herein are used to treat diseases or disorders associated with a PTEN deficiency. In a certain aspect, the pharmaceutical compositions 82 WO 2011/097334 PCT/US2011/023532 disclosed herein are used in combination, either simultaneously or sequentially, with ionizing radiation or one or more chemotherapeutic agents. 1003261 In certain embodiments, combination therapies described herein are used as part of a specific treatment regimen intended to provide a beneficial effect from the co-action of a PARP inhibitor described herein and a concurrent treatment. It is understood that the dosage regimen to treat, prevent, or ameliorate the condition(s) for which relief is sought, is optionally modified in accordance with a variety of factors. 1003271 In certain combination therapies described herein, dosages of the co-administered compounds vary depending on the type of co-drug employed, on the specific drug employed, on the disease or condition being treated and so forth. In some embodiments, when co-administered with one or more biologically active agents, the compound provided herein is administered either simultaneously with the biologically active agent(s), or sequentially. In certain aspects wherein the agents are administered sequentially, the attending physician will decide on the appropriate sequence of administering protein in combination with the biologically active agent(s). [003281 In various embodiments, the multiple therapeutic agents (one of which is one of the compounds described herein) are administered in any order or even simultaneously. In certain instances, administration is simultaneous and the multiple therapeutic agents are, optionally, provided in a single, unified form, or in multiple forms (by way of example only, either as a single pill or as two separate pills). In some embodiments, one of the therapeutic agents is given in multiple doses, or both are given as multiple doses. In some instances, administration is not simultaneous and the timing between the multiple doses varies, by way of non-limiting example, from more than zero weeks to less than four weeks. In addition, the combination methods, compositions and formulations are not to be limited to the use of only two agents; the use of multiple therapeutic combinations are also envisioned. [003291 In additional embodiments, the compounds described herein are used in combination with procedures that provide additional or synergistic benefit to the patient. By way of example only, patients are expected to find therapeutic and/or prophylactic benefit in the methods described herein, wherein pharmaceutical composition of a compound disclosed herein and/or combinations with other therapeutics are combined with genetic testing to determine whether that individual is a carrier of a mutant gene that is known to be correlated with certain diseases or conditions. 1003301 In certain embodiments, the compounds described herein and combination therapies are administered before, during or after the occurrence of a disease or condition. In certain embodiments, the timing of administering the composition containing a compound varies. Thus, for example, in some embodiments, the compounds are used as a prophylactic and are administered continuously to subjects with a propensity to develop conditions or diseases in order to prevent the occurrence of the disease or condition. In some embodiments, the compounds and compositions are administered to a subject during or as soon as possible after the onset of the symptoms. In certain embodiments, the administration of the compounds is initiated 83 WO 2011/097334 PCT/US2011/023532 within the first 48 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms. The initial administration is achieved via any route practical, such as, for example, an intravenous injection, a bolus injection, infusion over 5 minutes to about 5 hours, a pill, a capsule, transdermal patch, buccal delivery, and the like, or combination thereof. In some embodiments, a compound is administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, from about I month to about 3 months. In certain embodiments, the length of treatment varies for each subject, and the length is determined using any criteria. In exemplary embodiments, a compound or a formulation containing the compound is administered for at least 2 weeks, for about 1 month to about 5 years, or for about 1 month to about 3 years. Chemotherapeutic Agents [00331] In certain embodiments described herein, methods for treatment of PARP mediated conditions or diseases, such as proliferative disorders, including cancer, include administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional chemotherapeutic agent selected from, but not limited to, alemtuzumab, arsenic trioxide, asparaginase (pegylated or non-), bevacizumab, trastuxumab, cetuximab, platinum-based compounds (such as cisplatin, carboplatin or oxaliplatin), gemcitabine, cyclphosphamide, cladribine, daunorubicin/doxorubicin/idarubicin, irinotecan, fludarabine, 5-fluorouracil, gemtuzumab, methotrexate, Paclitaxell m , taxol, temnozolomide, thioguanine, or classes of drugs including hormones (an antiestrogen, an antiandrogen, or gonadotropin releasing hormone analogues), interferons such as alpha interferon, nitrogen mustards such as busulfan or melphalan or mechlorethamine, retinoids such as tretinoin, topoisomerase inhibitors such as irinotecan or topotecan, tyrosine kinase inhibitors such as gefitinib, erlotinib, or imatinib, mTOR inhibitors such as temsirolimus or everolimus, or agents to treat signs or symptoms induced by such therapy including allopurinol, filgrastim, granisetron/ondansetronipalonosetron, and dronabinol. Radiation Therapy 1003321 In other embodiments described herein, methods for treatment of PARP mediated conditions or diseases, such as proliferative disorders, including cancer, include administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one type of radiotherapy (or ionizing radiation). Radiotherapy is the use of ionizing radiation as part of a cancer treatment to control the proliferation of cancer cells. Ionizing radiation therapy may be used for curative or adjuvant cancer treatment. Additionally, it can be used as a palliative treatment (where cure is not possible and the aim is for local disease control or symptomatic relief) or as a therapeutic treatment (where the therapy has survival benefit and it can be curative). The precise treatment intent (curative, adjuvant, neoadjuvant, therapeutic, or palliative) will depend on the tumour type, location, and stage, as well as the general health of the patient. 84 WO 2011/097334 PCT/US2011/023532 [003331 Radiation therapy works by damaging the DNA of cells. The damage is caused by a photon, electron, proton, neutron, or ion beam directly or indirectly ionizing the atoms which make up the DNA chain. Indirect ionization happens as a result of the ionization of water, forcing free radicals, notably hydroxyl radicals, which then damage the DNA. In the most common forms of radiation therapy, most of the radiation effect is through free radicals. Because cells have mechanisms for repairing DNA damage, breaking the DNA on both strands proves to be the most significant technique in modifying cell characteristics. Because cancer cells generally are undifferentiated and stem cell-like, they reproduce more, and have a diminished ability to repair sub-lethal damage compared to most healthy differentiated cells. The DNA damage is inherited through cell division, accumulating damage to the cancer cells, causing them to die or reproduce more slowly. Proton radiotherapy works by sending protons with varying kinetic energy to precisely stop at the tumor. 1003341 Gamma rays are also used to treat some types of cancer including uterine, endometrial, and ovarian cancers. In the procedure called gamma-knife surgery, multiple concentrated beams of gamma rays are directed on the growth in order to kill the cancerous cells. The beams are aimed from different angles to focus the radiation on the growth while minimizing damage to the surrounding tissues. Kits/Articles of Manufacture 1003351 For use in the therapeutic applications described herein, kits and articles of manufacture are also described herein. In various embodiments, such kits comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in a method described herein. Suitable containers include, for example, bottles, vials, syringes, and test tubes. In some embodiments, the containers are formed from a variety of materials such as glass or plastic. 1003361 In some embodiments, the articles of manufacture provided herein contain packaging materials. Packaging materials for use in packaging pharmaceutical products include, but are not limited to, blister packs, bottles, tubes, inhalers, pumps, bags, vials, containers, syringes, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment. 1003371 In some embodiments, the container(s) described herein comprise one or more compounds described herein, optionally in a composition or in combination with another agent as disclosed herein. The container(s) optionally have a sterile access port (for example in some embodiments the container is an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). Such kits optionally comprise a compound with an identifying description or label or instructions relating to its use in the methods described herein. 1003381 In some embodiments, a kit will comprises one or more additional containers, each with one or more of various materials (such as reagents, optionally in concentrated form, and/or devices) desirable from a commercial and user standpoint for use of a compound described herein. Non-limiting examples of such materials include, but are not limited to, buffers, diluents, filters, needles, syringes; carrier, package, 85 WO 2011/097334 PCT/US2011/023532 container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use. A set of instructions is optionally included. 1003391 In certain embodiments, a label is on or associated with the container. In some embodiments, a label is on a container when letters, numbers or other characters forming the label are attached, molded or etched into the container itself; a label is associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. In certain embodiments, a label indicates that the contents are to be used for a specific therapeutic application. In some embodiments, the label indicates directions for use of the contents, such as in the methods described herein. 1003401 In certain embodiments, the pharmaceutical compositions are presented in a pack or dispenser device which contains one or more unit dosage forms containing a compound provided herein. In some embodiments, the pack contains a metal or plastic foil, such as a blister pack. The pack or dispenser device is optionally accompanied by instructions for administration. In some embodiments, the pack or dispenser is accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. In certain embodiments, such notice is, for example, the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert. In some embodiments, compositions containing a compound provided herein are formulated in a compatible pharmaceutical carrier and are placed in an appropriate container labeled for treatment of an indicated condition. EXAMPLES 1003411 The following Examples are intended as an illustration of the various embodiments as defined in the appended claims. In some embodiments, the compounds are prepared by a variety of synthetic routes. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes. EXAMPLE 1 Example la: Parenteral Composition 1003421 To prepare a parenteral pharmaceutical composition suitable for administration by injection, 100 mg of a water-soluble salt of a compound described herein is dissolved in DMSO and then mixed with 10 mL of 0.9% sterile saline. The mixture is incorporated into a dosage unit form suitable for administration by injection. Example ib: Oral Composition 1003431 To prepare a pharmaceutical composition for oral delivery, 100 mg of a compound described herein is mixed with 750 mg of starch. The mixture is incorporated into an oral dosage unit for, such as a hard gelatin capsule, which is suitable for oral administration. Example I c: Sublingual (Hard Lozenge) Composition 86 WO 2011/097334 PCT/US2011/023532 1003441 To prepare a pharmaceutical composition for buccal delivery, such as a hard lozenge, mix 100 mg of a compound described herein, with 420 mg of powdered sugar mixed, with 1.6 mL of light corn syrup, 2.4 mL distilled water, and 0.42 mL mint extract. The mixture is gently blended and poured into a mold to form a lozenge suitable for buccal administration. Example ld: Inhalation Composition [003451 To prepare a pharmaceutical composition for inhalation delivery, 20 mg of a compound described herein is mixed with 50 mg of anhydrous citric acid and 100 mL of 0.9% sodium chloride solution. The mixture is incorporated into an inhalation delivery unit, such as a nebulizer, which is suitable for inhalation administration. Example 1 e: Rectal Gel Composition 1003461 To prepare a pharmaceutical composition for rectal delivery, 100 mg of a compound described herein is mixed with 2.5 g of methylcelluose (1500 mPa), 100 mg of methylparapen, 5 g of glycerin and 100 mL of purified water. The resulting gel mixture is then incorporated into rectal delivery units, such as syringes, which are suitable for rectal administration. Example If: Topical Gel Composition [003471 To prepare a pharmaceutical topical gel composition, 100 mg of a compound described herein is mixed with 1.75 g of hydroxypropyl cellulose, 10 mL of propylene glycol, 10 mL of isopropyl myristate and 100 mL of purified alcohol USP. The resulting gel mixture is then incorporated into containers, such as tubes, which are suitable for topical administration. Example I g: Ophthalmic Solution Composition f003481 To prepare a pharmaceutical ophthalmic solution composition, 100 mg of a compound described herein is mixed with 0.9 g of NaCl in 100 mL of purified water and filtered using a 0.2 micron filter. The resulting isotonic solution is then incorporated into ophthalmic delivery units, such as eye drop containers, which are suitable for ophthalmic administration. Biological Studies Example 1-P ARP I Inhibition Assays 1003491 Inhibitory effects of test compounds against human PARP 1 enzyme was assessed using Trevigen's Universal Chemiluminescent PARP Assay Kit (Trevigen CAT#4676-096-K) following the manufacturer's recommended protocol. 1003501 Immediately prior to performing the assay, the following reagents were prepared: A) 20x PARP Assay Buffer was diluted to I x with dH 2 O; B) 10 x PARP Cocktail, which contains a mixture of NAD and biotinylated NAD, was diluted by the addition of I Ox Activated DNA and lx PARP Assay Buffer. Both the PARP Cocktail and Activated DNA are lx after the dilution; C) all test compounds were initially dissolved in DMSO, and subsequently serial diluted with Ix PARP Assay Buffer: D) recombinant human PARP 1 enzyme 87 WO 2011/097334 PCT/US2011/023532 was diluted with 1 x PARP Assay Buffer to generate 0.5 unit/ 15 1; E) 1Ox Strep-Diluent was diluted to 1 x with I x PBS/0.1% Triton X-100; F) Just before use, dilute Strep-HRP 500-fold with lx Strep-Diluent. 1003511 The chemiluminescent assays for PARP activity were performed in white 96-well plates that are pre coated with histones. Briefly, strip wells were removed from the wrapper, 50 pl/well of IX PARP Buffer was added to rehydrate the histones and incubation was allowed for 30 minutes at room temperature. Removal of the IX PARP Buffer from the wells was accomplished by tapping the strip wells on paper towel. Serial dilutions of the test compounds were added to duplicate wells in 10 1/well volume. Final assay concentrations of test compounds were typically between I and 0.0001 RM. Subsequently, recombinant human PARP 1 enzyme was added to 0.5 unit of PARP 1 enzyme/well in 15 pl/well volume. Combined volume of enzyme and inhibitor was 25 p. Incubate the enzyme/inhibitor mixtures for 10 minutes at room temperature. To start the reaction, 25 pl/well of the IX PARP Cocktail was added to all the wells. Controls included background wells with 1 x Assay Buffer alone (no PARP) and wells with no inhibitor for determining the maximum or 100% PARP activity value. In all cases the final reaction volume was 50 pl. 1003521 The reactions were allowed to proceed for 1 hour at room temperature. The plate was then washed 4 times with 200 p/well IX PBS/0.1% Triton X-100, using ELx50 Automated Strip Washer (BIO-TEK). After washing, all wells were incubated for 60 minutes with 50 pl/well Strep-HRP, diluted 1:500 with lx Strep Diluent. The plate was washed 4 times with 200 pl/well IX PBS/0.1% Triton X-100 using ELx50 Automated Strip Washer (BIO-TEK). After washing, dry the wells by tapping plate onto paper towels. Mix equal volumes of PeroxyGlowlm A and B together and add 100 pl per well. The light output was immediately determined in a plate reader (EnVision, by Perkin Elmer) set up for measuring chemiluminescence. [003531 The % enzyme activity for each compound is then calculated using the following equation: Activity Ctrl - X Activity Ctrl - Negative Ctrl 1003541 IC 50 values (the concentration at which 50% of the enzyme activity is inhibited) of each test compound were calculated using GraphPad Prism5 software. 1003551 All of the compounds tested had or were expected to have enzymatic PARP inhibitory activity. Of the compounds tested, over 100 compounds had a PARP inhibitory activity in the enzymatic assay of less than 50 nM, with approximately 60 of these compounds having an inhibitory activity of less than 5 nM. 1003561 Chemosensitization assay determines the extent by which a PARP inhibitor enhances the tumor cell killing effect of cytotoxic drugs expressed as PF 5 s (potentiation factor at G1lo)]. 8000 LoVo cells were seeded into each well of a flat-bottomed 96-well microtiter plate in a volume of 50 pl and incubated in F 12K containing 10% (v/v) FBS (medium) overnight at 37 'C. Cells were added with 50 pIl medium alone, medium containing 2 pM PARP inhibitor, medium containing increasing concentration of Temozolomide (0-2000 pM), and medium containing 2 pM PARP inhibitor and increasing concentration of Temozolomide (0-2000 pM). Final concentration range for Temozolomide was 0-1000 pM where applicable, final concentration of 88 WO 2011/097334 PCT/US2011/023532 PARP inhibitor was IpM where applicable. Final concentration of DMSO was 1% in each well. Cells were allowed to grow for 5 days before cell survival was determined by CellTiter Glo staining (Promega, Madison, WI, USA). Cell growth, determined after subtraction of time 0 values, was expressed as a percentage of the control well that contained medium with 1% DMSO. Gso (concentration of drug that inhibited growth by 50%) values were calculated from the computer generated curves (GraphPad Software, Inc. San Diego CA). The potentiation factor [PF 5 0 (potentiation factor at G1 50 )] was calculated as G150 of Temozolomide alone / GI50 of Temozolomide + PARP inhibitor. Reference: Thomas H.D. et al. (2007). Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Molecular Cancer Therapy 6, 945-956. [003571 Most of the compounds tested had a PF50 of more than 2X. Example 2-In Vitro Cytotoxicity Assay in PTEN -/-Cell Lines Single-agent cytotoxicity assay in PTEN-/- tumor cell lines 1003581 Human prostate PC-3, LNCap tumor cells and mammary MDA-MB-468 tumor cells (all PTEN deficient) were seeded in 96-well tissue culture plates for overnight at a density of 500, 1000, and 1000 cells/well, respectively. Culture media for PC-3 is DMEM + 10%FBS; culture media for LNCap is RPMI 1640+10%FBS; culture media for MDA-MB-468 is Leibovitz's L-15 +10%FBS. 1003591 Tumor cell lines wild type for PTEN (MDA-MB-231 and LoVo tumor cells) were seeded as described above at a density of 1500 (MDA-MB-231) and 1000 (LoVo) cells/well. Culture media for MDA MB-231 is Leibovitz's L-15 +10%FBS, culture media for LoVo is F-12K+10%FBS. 1003601 All cells were then treated with fresh media containing Compound X, a PARP inhibitor as described herein at increasing concentrations, and incubated for 7 consecutive days (PC-3) or 12 consecutive days (LNCap, MDA-MB-468) with media changed every 5 days to replenish inhibitors. [003611 Cell survival was determined by CellTiter Glo assay (Promega). Cell survival fraction was expressed as a percentage of the non-treatment control, and IC 50 values were calculated using GraphPad Prism5. 1003621 The results of the cytotoxicity assays are set forth in Figure 1 and Figure 2. The results show that the PTEN -/- tumor cell lines (i.e., PTEN deficient) (LNCap, PC-3, and MDA-MB-468) displayed high sensitivity to treatment with Compound X described herein (Figure 1), whereas the cell lines wild type for PTEN (MDA-MB-231 and LoVo) did not exhibit the same level of sensitivity to Compound X (Figure 2). Example 3-Antitumor Efficacy Study in PTEN -/- Xenografts 1003631 Male athymic Balb/c nude mice (7-9 week old) were used for PTEN deficient LNCap and PC-3 in vivo xenografts. Female athymic Balb/c nude mice were used for PTEN deficient MDA-MB-468 in vivo xenograft studies. All mice were quarantined for at least I week before experimental manipulation. 1003641 Exponentially growing cells were implanted subcutaneously at the right flank of nude mice. Tumor bearing mice were randomized according to tumor size into 8 mice/group in each study (average tumor size -140- 180 mm 3 ). Mice were observed daily for survival and tumors were measured twice weekly by caliper in two dimensions and converted to tumor mass using the formula for a prolate ellipsoid (V = 0.5 a x b2), 89 WO 2011/097334 PCT/US2011/023532 where a and b are the long and short diameters of the tumor, respectively, and assuming unit density (1 mm 3 I mg). 1003651 PARP inhibitory compound (Compound X) was evaluated in LNCap, PC-3 and MDA-MB-468 xenografts for single agent activity. Compound X was dosed orally (p.o.), once daily at 0.33 mg/kg for 28 days in vehicle 10% DMAc/6% Solutal/84% PBS and the same vehicle was used as control. Mice were continuously monitored for 10 more days after last day of dosing. 1003661 The results of the in vivo xenograft studies are set forth in Figure 3 (LNCap xenograft), Figure 4 (MDA-MB-468 xenograft) and Figure 5 (PC-3 xenograft). The results show that treatment with a PARP inhibitory compound described herein resulted in significant slowing of tumor growth in all three PTEN deficient xenograft models as compared to treatment with only the vehicle (control). Example 4-Phase II Clinical Trial of the Safety and Efficacy of Compounds of Formula (I), (IA) or (II) 1003671 The purpose of this phase II trial is to study the side effects and best dose of a compound of Formula (I), (IA) or (II) and to determine how well it works in treating patients with advanced or recurrent endometrial cancer (EC). 1003681 Constitutively active phosphatidylinositol-3 kinase (PI3K)/phosphatase and tensin homolog on chromosome 10 (PTEN) pathway signaling is common in EC and involved in the development and/or progression of the disease. PTEN deficiency has been frequently detected in EC patients. The compounds of Formula (I), (IA) or (II) described herein are potent inhibitors of the family of poly(ADP-ribose)polymerases (PARP). In addition, in vivo data (as set forth in Example 3 above) demonstrates that administration of compounds of Formula (I), (IA) or (II) result in significant slowing of tumor growth in three PTEN deficient xenograft models. Therefore, compounds of Formula (I), (IA) or (II) may have utility in the treatment of subjects with advanced or recurrent EC. Objectives: Primary Outcome Measures: A. Efficacy as defined by overall response rate and progression-free survival (PFS) at 6 months [Time Frame: every 8-10 weeks] B. Safety a compound of Formula (I), (IA) or (II) in the EC population [Time Frame: scheduled evaluations every 2-4 weeks] Secondary Outcome Measures: A. Duration of response and PFS [Time Frame: every 8-10 weeks] B. Characterize pharmacokinetic and phannacodynamic profiles of a compound of Formula (I), (IA) or (II) [Time Frame: at periodic visits not less than every 4 weeks] Tertiary: A. To evaluate PARP expression using quantitative western blotting immuno-assays B. To analyze tumor biopsy samples (when possible) for PTEN deficiency mutation status, PARP activity, and PARP expression 90 WO 2011/097334 PCT/US2011/023532 C. To analyze paraffin sections from original diagnostic biopsies/operative procedures (when available) for DNA repair enzyme status using immunohistochemical techniques Patients: Eligible subjects will be women 18 years and older Criteria Inclusion Criteria: * The subject has a histologically confirmed diagnosis of EC (endometrioid, serous, clear cell adenocarcinoma, adenosquamous carcinoma, or mixed histology, any grade) that is advanced or recurrent and is incurable by standard therapies, and has received no more than two prior systemic treatment regimens for EC. " The subject is at least 18 years old. * The subject has an Eastern Cooperative Oncology Group (ECOG) performance status of 0, 1, or I " The subject has at least one measurable lesion " Tissue samples from archival or fresh tissue, or a tissue block of the subject's tumor * The subject has adequate organ and marrow function " The subject is capable of understanding the informed consent and complying with the protocol and has signed the informed consent document before any study-specific screening procedures or evaluations are performed. * Sexually active subjects of childbearing potential and their partners must agree to use medically accepted methods of contraception during the course of the study and for 3 months after discontinuation of study drug. * Subjects of childbearing potential must have a negative pregnancy test at screening. Exclusion Criteria: * The subject has uterine sarcomas (leiomyosarcoma), mixed Mullerian tumors, squamous carcinoma of the uterus, and/or adenosarcomas of the uterus. * Certain restrictions on prior treatments apply * The subject has not recovered from toxicity due to prior therapy to Grade s 1 or to pre-therapy baseline (excluding alopecia and peripheral neuropathy). e The subject has a known primary brain tumor or brain metastasis. e The subject has any other diagnosis of malignancy or evidence of malignancy (except non melanoma skin cancer or in situ carcinoma of the cervix) within 2 years before screening for this study. * The subject has a diagnosis of uncontrolled diabetes mellitus or has a fasting plasma glucose > 160 mg/dL. * The subject is currently receiving anticoagulation with therapeutic doses of warfarin (low-dose warfarin : 1 mg/day is permitted). e The subject has prothrombin time (PT)/intemational normalized ratio (INR) or partial thromboplastin time (PTT) test results at screening that are above 1.3 x the laboratory upper limit of normal. * The subject has uncontrolled, significant intercurrent illness " The subject has a baseline corrected QT interval ; 470 ms. e The subject is known to be positive for the human immunodeficiency virus (HIV). (Note: Baseline HIV screening is not required.) " The subject is pregnant or breastfeeding. " The subject has a previously identified allergy or hypersensitivity to components of the study treatment formulation. 91
Claims (78)
1. A method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease or condition associated with a PTEN deficiency comprising administering to the subject a therapeutically effective amount of a compound of Formula (I): R4 0 N, N |IA R A Y B R N Z R 3 R 5 Formula (I) wherein: Y and Z are each independently selected from the group consisting of: a) an aryl group optionally substituted with 1, 2, or 3 R; wherein each R 6 is selected from the group consisting of OH, NO 2 , CN, Br, Cl, F, I, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 2 -Csheterocycloalkyl; C 2 -C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2 -C 6 alkynyl, aryl, arylalkyl, C 3 -C 8 cycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, heteroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)C -C 6 alkylene, (NRAR)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene; b) a heteroaryl group optionally substituted with 1, 2, or 3 R; and c) a substituent independently selected from the group consisting of hydrogen, alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkylene, oxo, heterocycloalkyl, heterocycloalkylalkyl, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, (NRARB)alkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARs)sul fonyl, and (NRAR)sulfonylalkylene; R 1 , R 2 , and R 3 are each independently selected from the group consisting of hydrogen, halogen, alkenyl, alkoxy, alkoxycarbonyl, alkyl, cycloalkyl, alkynyl, cyano, haloalkoxy, haloalkyl, hydroxyl, hydroxyalkylene, nitro, NRARO, NRARBalkylene, and (NRARB)carbonyl; A and B are each independently selected from the group consisting of hydrogen, Br, Cl, F, I, OH, C 1 -C 6 alkyl, C,-Cacycloalkyl, alkoxy, and alkoxyalkyl, wherein C- -Calkyl, C 3 -Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from the group consisting of OH, NO 2 , CN, Br, Cl, F, 1, C 1 eC-alkyl, and C-Cgcycloalkyl, wherein B is not OH; 92 WO 2011/097334 PCT/US2011/023532 RA. and RB are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, and alkylcarbonyl; or R , and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalities selected from the group consisting of -O-, -NH, -N(CI-C 6 -alkyl)-, -NCO(C 1 -C 6 -alkyl)-, -N(aryl)-, -N(aryl-CI-C 6 -alkyl-)-, -N(substituted-aryl-C-C 6 -alkyl-)-, -N(heteroaryl)-, -N(heteroarvl-C C-alkyl-)-, -N(substituted-heteroaryl CIC 6 -alkyl-)-, and -S- or S(O), , wherein q is 1 or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; R 4 and R 5 are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxyalkyl, haloalkyl, hydroxyalkylene, and (NRA.Rs)alkylcne; or a isomer, stereoisomer, enantiomer, salt, solvate, chemically protected form or prodrug thereof.
2. A method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease or condition associated with a PTEN deficiency comprising administering to the subject a therapeutically effective amount of a compound of Formula (11): O N A Y B N Z R2 H Formula (II); wherein: Y is an aryl or heteroaryl group optionally substituted with at least one R 6 ; Z is an aryl group optionally substituted with at least one R 6 ; A and B are each independently selected from the group consisting of hydrogen, Br, Cl, F, I, OH, CI-C 6 alkyl, C 3 -C 8 cycloalkyl, alkoxy, and alkoxyalkyl, wherein CCalkyl, C,-Cscycloalkyl, alkoxy, alkoxyalkyl are optionally substituted with at least one substituent selected from the group consisting of OH, NO 2 , CN, Br, Cl, F, I, Cl-C 6 alkyl, and C 3 -C 8 cycloalkyl, wherein B is not OH; R 6 is selected from the group consisting of OH, NO 2 , CN, Br, Cl, F, I, CrC-alkyl, C 3 -Cscycloalkyl, Cr-Csheterocycloalkyl, C 2 -C 6 alkenyl, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, C 2 -C 6 alkynyl, aryl, arylalkyl, C 3 -C 8 cycloalkylalkyl, haloalkoxy, haloalkyl, hydroxyalkylene, oxo, heteroaryl, heteroarylalkoxy, heteroaryloxy, hctcroarylthio, heteroarylalkylthio, heterocycloalkoxy, C 2 -Csheterocycloalkylthio, heterocyclooxy, heterocyclothio, NRARB, (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene; R2 is selected from the group consisting of hydrogen, Br, Cl, T, and F; 93 WO 2011/097334 PCT/US2011/023532 RA, and RB are independently selected from the group consisting of hydrogen, CI-C 6 alkyl, C 3 -Cgcycloalkyl, and alkylcarbonyl; or RA and RB taken together with the atom to which they are attached form a 3-10 membered heterocycle ring optionally having one to three heteroatoms or hetero functionalitics selected from the group consisting of -O-, -NH, -N(CI-C 6 alkyl)-, -NCO(CI-C 6 alkyl)-, -NCO(C-CScycloalkyl)- -N(aryl)-, -N(aryl-C-C 6 alkyl-)-, -N(substituted-aryl-C -C 6 alkyl-)-, -N(heteroaryl)-, -N(heteroaryl-C-C 6 alkyl-)-, -N(substituted-heteroaryl-C-C 6 alkyl-)-, and -S- or S(O),- , wherein q is I or 2 and the 3-10 membered heterocycle ring is optionally substituted with one or more substituents; or a isomer, stereoisomer, enantiomer, salt, solvate, chemically protected form or prodrug thereof.
3. The method of claim I or 2 wherein Y is an aryl group.
4. The method of claim 1, 2 or 3 wherein the aryl group is a phenyl group.
5. The method of any of claims 1- 4 wherein the phenyl group is substituted with at least one R 6 selected from the group consisting of Br, Cl, F, and I.
6. The method of any of claims 1-5 wherein R 6 is F.
7. The method of any of claims 1-4 wherein the phenyl group is substituted with at least one R 6 selected from the group consisting of (NRARB)CI-C 6 alkylene, (NRARB)carbonyl, (NRARB)carbonylalkylene, (NRAR)sulfonyl, and (NRARB)sulfonylalkylene.
8. The method of claim 7 wherein R 6 is (NRARB)CI-C 6 alkylene.
9. The method of claim 8 wherein CI-C 6 alkylene is selected from the group consisting of methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene.
10. The method of claim 9 wherein C 1 -C 6 alkylene is methylene.
11. The method of any of claims 7-10 wherein RA and RB are each independently hydrogen, C-C 6 alkyl, or C 3 -Cacycloalkyl.
12. The method of any of claims 7 - 11 wherein CI-C 6 alkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl.
13. The method of any of claims 7 - 12 wherein C 1 -C 6 alkyl is methyl.
14. The method of any of claims 7 - 12 wherein CI-C 6 alkyl is ethyl.
15. The method of any of claims 7 - 11 wherein (NRARB) is azetidine, pyrrolidine, piperidine or morpholine.
16. The method of claim 7-l I wherein C 3 -C 8 cycloalkyl is cyclopropyl.
17. The method of any of claims 1-3 wherein R 6 is hydroxyalkylene.
18. The method of claim 17 wherein hydroxyalkylene is selected from the group consisting of CH 2 OH, CH2CH 2 OH, CH 2 CH 2 CH 2 OH, CH(OH)CH 3 , CH(OH)CH 2 CH 3 , CH 2 CH(OH)CH 3 , and CH 2 CH 2 CH 2 CH 2 OH.
19. The method of any of claims 7-11 wherein RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having 1 heteroatom or hetero functionality selected from the group consisting of -O-, -NH, and -N(C 1 -C 6 alkyl).
20. The method of claim 19 wherein the hetero functionality is -N(C-Coalkyl). 94 WO 2011/097334 PCT/US2011/023532
21. The method of claims 19 or 20 wherein C-Coalkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl.
22. The method of any of claims 19-21 wherein C 1 -C 6 alkyl is methyl.
23. The method of claim I wherein Y is a heteroaryl group optionally substituted with at least one R 6 .
24. The method of claim 23 wherein the heteroaryl group is selected from the group consisting of furan, pyridine, pyrimidine, pyrazine, imidazole, thiazole, isothiazole, pyrazole, triazole, pyrrole, thiophene, oxazole, isoxazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,4-triazine, indole, benzothiophene, benzoimidazole, benzofuran, pyridazine, 1,3,5-triazine, thienothiophene, quinoxaline, quinoline, and isoquinoline.
25. The method of claim 24 wherein the heteroaryl group is imidazole.
26. The method of claim 25 wherein imidazole is substituted with CI-Calkyl selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl.
27. The method of claim 26 wherein C-C 6 alkyl is methyl.
28. The method of claim 24 wherein the heteroaryl group is furan.
29. The method of claim 24 wherein the heteroaryl group is thiazole.
30. The method of claim 24 wherein the heteroaryl group is 1,3,4-oxadiazole.
31. The method of any of claims 28-30 wherein heteroaryl group is substituted with C 1 -C 6 alkyl selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl.
32. The method of any of claims 28-31 wherein C 1 Calkyl is methyl.
33. The method of any of claims 1-32 wherein Z is an aryl group.
34. The method of claim 33 wherein the aryl group is a phenyl group.
35. The method of any of claims 33-34 wherein the phenyl group is substituted with at least one R6 selected from the group consisting of Br, Cl, F, and I.
36. The method of any of claims 33-35 wherein R 6 is F.
37. The method of any of claims 33-35 wherein R 6 is Cl.
38. The method of any of claims 33-34 wherein the phenyl group is substituted with at least one R 6 selected from the group consisting of (NRARB)CI-Csalkylene, (NRARB)carbonyl, (NRAR)carbonylalkylene, (NRARB)sulfonyl, and (NRARB)sulfonylalkylene.
39. The method of claim 38 wherein R 6 is (NRARB)CI-Cealkylene.
40. The method of claim 39 wherein C-C 6 alkylene is selected from the group consisting of methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene.
41. The method of claim 40 wherein C-Csalkylene is methylene.
42. The method of any of claims 38-41 wherein RA and RB are each independently hydrogen, C-Calkyl, or CrvCscycloalkyl. 95 WO 2011/097334 PCT/US2011/023532
43. The method of any of claims 38-42 wherein C 1 -C 6 alkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl.
44. The method of any of claims 38-43 wherein C-C 6 alkyl is methyl.
45. The method of any of claims 38-41 wherein RA and RB taken together with the nitrogen to which they are attached form a 6 membered heterocycle ring having I heteroatom or hetero functionality selected from the group consisting of -)-, -NH, and -N(C-C 6 alkyl).
46. The method of claim 45 wherein the hetero functionality is -N(C-C 6 alkyl).
47. The method of claims 45 or 46 wherein C-C 6 alkyl is selected from the group consisting of methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and tert-butyl.
48. The method of any of claims 45-47 wherein C 1 -C 6 alkyl is methyl.
49. The method of any of claims 1-48 wherein R2 is hydrogen.
50. The method of any of claims 1-48 wherein R 2 is selected from the group consisting of F, Cl, Br, and .
51. The method of claim 50 wherein R 2 is F.
52. A method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease or condition associated with a PTEN deficiency comprising administering to the subject a therapeutically effective amount of a compound selected from the group consisting of: 9-diphenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H7)-one, 8,9-bis(4-((methylamino)methyl)phenyl-8,9-dihydro-2H-pyrido[4,3,2-delphthalazin-3(7H)-one, 8,9-di(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 8,9-di(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H1)-one, 8,9-di(pyridin-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-isopropyl-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(4-((methylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3( 7H)-one, 9-(4-((dimethylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H) one, 9-(3-((methylamino)methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 8-(4-((methylamino)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 8,9-bis(3-((methylamino)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(4-(hydroxymethyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(3-(4-isobutyrylpiperazine- 1-carbonyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2 delphthalazin-3(7H)-one, 8,9-bis(3-(4-isobutyrylpiperazine-l -carbonyl)phenyl) -8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(7H)-one, 9-(piperidin-3-yl)-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(piperidin-4-yl)-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-dephthalazin-3(7H)-one, 96 WO 2011/097334 PCT/US2O1 1/023532 8,9-bis(4-((dimethylamino)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(4-(4-(cyclopropanecarbonyl)piperazine-l1-carbonyl)phenyl)-8-(4(( methy Iamino)methyl)phenyl) 8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H-one, 9-(4-(4-(cyclopropanearbonyl)piperazine-l1-carbonyl)phcnyl)-8-(4((dimethylamino)methyl)phenyl) 8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin.-3(7Hi)-one, 8-(4-(hydroxymethyl)phenyl)-9-(4-(4-isobutyrylpiperazine- 1-carbonyl)phenyl)-8,9-dihydro-2H pyrido[4,3,2-dejphthalazin-3(7H)-onc, 8-(4-((dimethylamino)methyl)phenyl)-9-(4-(4-isobutyrylpiperazine- I -carbonvl)phenyl)-8,9-dihydro 2H-pyrido[4,3 ,2-delphthalazin-3(7TH-one, 9-(4-(4-(cyclopropanecarbonyl)piperazine- 1 -carbonyl)phenyl)-8-phenyl-8,9-dihydro-2H pyrido[4,3 ,2-de]phthalazin-3(7H)-one, 9-(3-(4-(cyclopropanecarbonyl)piperazine- 1 -carbonyl)phenyl)-8-phenyl-8,9-dihydro-2H pyrido[4,3 ,2-dejphthalazin-3(711)-one, 9-(3-((dimethylamino)methyl)phenyl)-8-pheny-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7H) one, 8-(3-((methylamino)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7R)-one, 8-(4-((dimethylamino)methyl)pheny1)-9-pheny1-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H one, 8-(4-(morpholinomethyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin-3(7N)-one, S-(4-(hydroxymethyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-( 3-(4-(cyclopropanecarbonyl)piperazine- I -carbonyl)phcnyl)-8-(4-((dimethylamino)methyl)phenyl) 8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(3-(4-(cyclopropanecarbonyl)piperazine- I -carbonyt)pheny1)-8-(4-(hydroxymethy)pheny)-8,9 dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-(4-(4-isobutyrylpiperazine- 1 -carbonvl)phenyl)-8-(4-((methylamino)methyl)phenyl)-8,9-dihydro 2H-pyrido[4,3,2-delphthalazin-3(7H)-one, 9-(3-(4-isobutyrylpiperazine- 1 -carbonyl)phenyl)-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2 dejphthalazin-3(7H)-one, 9-(3-((dimethylamino)methyl~phenyl)-8-(pyridin-4-yI)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin 3(711)-one, 9-(3-((methylamino)methyI)phenyl)-8-(pyridin-4-y1)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin 3(711)-one, 9-(4-((dimethylamino)methyl)phenyl)-8-(pyridin-4-yl)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin 3(7TH-one; 9-(3-(hvdroxymethiyl )phenyl )-8-(pyridin-4-y1)-8,9-dihvdro-2H-pyridor4,3 ,2-dejphthalazin-3(711)-one; 97 WO 2011/097334 PCT/US2O1 1/023532 9-(4-((methylamino)methyl)phenyl)-8-(pyr-idrn-4-y 1)-S ,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin 3(7H)-onc, 9-(3-((dimethylaminolrniethy)pheny)-8-(pyrdn-3-y)-8,9-dhydro-2H-pyrdo4,3,2-dephthaazin 3( 71)- one, 9-(3-((methylamino)methy)pheny)--(pyridin-3-y)-8,9-dlhydro-2H-pyridoI 4 ,3 ,2-delphthalazin 3(7H)-one, 9-(4-((dimethylamino)methy1)phenyl)-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4, 3 ,2-dielphthalazin 3(711)-one, 9-(4-((methylamino)methy1)pheny1)-8-(pyridin-3-y1)-8,9-dihydro-2H-pyn'do[4,3,2-dejphthalazin 3(711)-one, 9-(3-(hydroxyrnethyl)phenyl)-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazifl-3( 7 H)-ofe, 9-(3-((dimethylamino)methyl)phenyl)-8-(pyridin-2-v1)-8,9-dihydro-2H-pyrido[4,3,2-dephthaazin 3(711)-one, 9-(3-((methylamino)methy1)pheny1)-8-(pyridin-2 -y)-8,9-dihydro-2H-pyrido[4,3,2-de]phthaazin 3(7H)-one, 9-3(yrxmty~hnl--prdn2y)89dhdo'I-yio432dlhhlzn37)oe 9-(4-((dimethylamino)rnethyl )phenyl)-8-(pyridin-2-vl)-8,9-dihydro-2H-pyrido[4,3 ,2--dejphthalazin 3(7H)-one, 9-(4-((methylamino)mcthyl)phenyl)-8-(pyrdin-2-1)-8,9-dhdro-2H-pyrido[ 4 ,3 ,2-de]phthalazin 3(711)-one, 9-pheny1-8-(pyridin-2-y)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-phenyl-8-(pyridin-3-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(711)-one, 9-phenyl-8-(pyridin-4-y1)-8,9-dihydro-2H-pyrido[4,3,2-de]phthaazil-3(71)-one, 5-fluoro-9-pheny1-8-(pyridin-4-y1)-8,9-dihydro-2H-pyr-do[4,3,2-dephthalazin-3(71)-one, 9-(3-((dimethylamino)methy)pheny)-5-fluoro-8-(pyrdin-4-y)-8,9-dhydro-2H-pyrdoII 4 , 3 ,2 delphthalazin-3(711)-one, 5-fluoro-9-(3-((mcthylamino)methyl)phenyl)-8-( pyridin-4-yl)-8,9-dihydro-2H-pyridol4,3 ,2 delphthalazin-3(7H)-one, 9-(4-((dimethylamino)methyl)phenyl)-5-fluoro-8-(pyridin-4-y)-8,9-dhydro-2H-pyldof14,3,2 dejphthalazin-3(711)-one, 5-fluoro-8,9-dipheny1-8,9-dihydro-2H-pyrido4,3,2-de]phthaazin-3(7H-ofle, 9-(4-((dimethylamino)methyl)phenyl )-5-fluoro-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin one, 5-fluoro-9-(4-((methylamino)methyl)phenyl)-8-phenyl-,9-dhydro-2H-pyrido[ 4 ,3 ,2-delphthalazin one, 98 WO 2011/097334 PCT/US2O1 1/023532 9-(3-((dimethylamnino)methyl)phenyl)-5-fluoro-S-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin one, 8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-pheny-8,9-dihydro-2H-pyrido[4,3,2-dephthalazin one, 5-fluoro-9-(3-((rnethylamino)methyl)phenyl)-8-phenyl-S,9-dihydro-2H-pyrido[4,3,2-dejphthialazin one, 5-fluoro-8-(4-(( methylamino)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[43 ,2-de]phthalazin one, 7-methyl-8,9-diphenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 7-cthy1-8,9-diphcnyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 5-fluloro-9-( 1-methyl- 1H-imidazol-2-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-dephthalazin-3(7H) one, 5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- 1H-imidazol-2-yl) -8,9-dihydro-211-pyrido[4,3 ,2 de]phthalazin-3(711)-one, 8-(4-((dimethylamino)methyl)phenyl)-9-( 1-methyl- I H-imidazol-2-yl)- 8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7TH-one, 9-(l1-isopropyl- 1H-imidazol-5-yl)- 8-phenyl-8,9-dihydro-2H-pyridoj4,3 ,2-de]phthalazin-3(7TH-one, 9-(4-methyl- 1H-im-idazol-2-yl)- 8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 8-phenyl-9-(thiazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7TH-one, 9-(furan-3-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de~phthalazin-3(7H)-one, 8-(4-( (4-ethylpiperazin- 1-yl)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin 3(7H)-one, 9-phenyl-8-(4-(piperazin- 1-ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7H)-one, 8-( I-mcthyl-i H-imidazol-2-yl)-9-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(711)-one, 9-( 1-methyl-i H-imidazol-2-yl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7R)-one, 8,9-bis( 1-methyl-I H-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2-delphthalazil-3( 7TH-one, 9-( I [J-imidazol-2-yI) -8-phenyl-8,9-dihydro-211-pyrido[4,3,2-de]phthalazin-3(7H)-one, 9-( I-ethyl- lH-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H)-one, 8-phenyl-9-( 1-propyl- 1H-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3 ,2-de]phthalazin-3(7H-)-one, 9-( I-m-tethyl- I H-imidazol-5-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7TH-one, 9-(3-( (diethylam-ino)methyl)phenyl)-8-(4-((diethylamino)methyl)phenyl)-8 ,9-dihydro-2H pyridof4,3,2-de]phthalazin-3(7H)-onc, 9-(3-( (4-methylpiperazin-1I- yI) methyl)phenyl)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin 3( 7TH-one, 99 WO 2011/097334 PCT/US2O1 1/023532 8-(4-(4-(cyciopropanecarbonyl) piperazine-1I-carbonyl)phenyl)-9-phenyl-8,9-dihydro-2H- pyrido[4,3 ,2-dellphthalazin-3(711)-one, 9-phenyl-8-(pyridin-4-yi)-8,9-dihydro-2H-pyridoE4,3,2-de]phthalazil-3 (711)-one, 9..pheny1-8-(piperidin-4-yl)-8,9-dihydro-2H-pyridoI4,3,2-dephthaazi-3(7H-ofe, 9-phenyi-8-(pyridin-2-y)-8,9-dihydro-2H-pyrido4,3,2-de]phthaazi-3(71)-ofe, 8-(4-((4-inethyipiperazin- I -yi)methyl)phenyl)-9-phenyl-8,9-dihydro-2H-pyrldo[4,3,2-de]phthalazil 3(711)-one, 8,9-bis(4-tluorophenyl)- 8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3 (711)-one, 8-(4-((dimethylam ino)methyi)phenyi)-9-(4-fluorophenyl)- 8,9-dihydro-2H-pyrido[4,3 ,2 de]phthalazin-3(7H)-one, 8-(4-fluorophcnyi)-9-( 1-methyl- lH- imidazoi-2-yl)- 8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(711)-one, 8,9-bis(3-((dimethylamino)methyl)pheny)-89-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7H)-one, 9-(3-((cyciopropylamino)methyi)pheny1)-8-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthaazil 3(711)-one, 8-( 3-((dimethylamino)methyl)pheny)-9-pheny-8,9-dihydro-2H-pyridoli4,3 ,2-dejphthalazin-3(7H) one, 8-(3-(morphoiinomethy1)phenyI)-9-pheny1-8,9-dihydro-2H-pyido[4,3,2-de]phthalazil-3(7Ih-ofe, 8-(4-(azetidin- 1-ylmethyi)phenyl)-9-(4-fluoropheny)-8,9-dihydro-2H-pyridoI4,3 ,2-de]phthalazin 3(7H)-one, 5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- 1H- 1,2,4-triazoi-5-y )-8,9-dihydro-2H-pyrido[4,'3,2 de]phthalazin-3(7H)-one, 9-( 1-methyl-I H-i ,2,4-triazol-5-yl)-8-phenyl-8,9-dihydro-21l1-pyrido[4,3 ,2-de]phthalazin-3(7H)-one, 8-(4-((dimethylamino)methyi)phenyl)-9-( 1-methyl- I H-i ,2,4-triazoi-5-yi)-8,9-dihydro-2H pyrido[4,3 ,2-delphthalazin-3(7H)-one, 8-(4-((dimethyiamino)methyl)phenyl)-5-fluoro-9-( 1-methyl- I H- 1,2 ,4-triazol-5-yl)-8,9-dihydro-211I pyrido[4,3 ,2-delphthalazin-3(7H)-one, 8-(4-fluorophenyl)-9-methyl-9-( 1-methyl- I H-i ,2,4-triazol-5-yI)-8,9-dihydro-2H-pyrido[4,3 ,2 delphthalazin-3(7H)-one, 8-(4-fluorophenyl)-9-( 1,4,5-trimethyl- 1H-imidazoi-2-yl)-8,9-dihydro-2H-pyrido[4,3 ,2-delphthaiazin 3(711)-one, 8-(4-fluorophenyl)-9-(l -methyl- I H-i ,2,3-triazol-4-yi)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin 3(7H)-one, 9-(4,5-dimethyl-4H- I ,2,4-triazoi-3-y I)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7H) one, 100 WO 2011/097334 PCT/US2O1 1/023532 9-(4,5-dimethyl-4H-1I,2,4-triazol-3-yl)-8-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7TH-one, 8-(4-chlorophenyl)-9-( 1-methyl-I H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(711)-one, 9-( 1-methyl- 1H-imidazol-2-yl)-8-(4-(trifluoromethyl)phenyl)-8,9-dihydro-211-pyrido[4,3 ,2 de]phthalazin-3(711)-one, 8-(4-fluorophenyl)-9-(thiazol-2-yl)-8,9-dihydro-2H-pvrido[4,3 ,2-delphthalazin-3 (7H)-one, 9-(l 1-ethyl- 1H-imidazol-2-yl)-8-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3 .2-dejphthalazin-3(711) one, 8-(4-((4-ethyl-3-methylpiperazin- 1-yl)methyl)phenyl)-9-phenyl-8,9-dihydro-21i-pyrido[4,3,2 de]phthalazin-3(711)-oiie, 8-(4-((4-ethylpiperazin- 1 -yl)methyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2 H-pyrido[4,3,2 de]phthalazin-3(711)-one, 9-(4-fluorophenyl)-8-(4-((4-methylpiperazin- 1 -yl)methyl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one, 9-(4-fluorophenyl)-8-(4-(piperazin- 1 -ylmethyl)phenyl)-8,9-dihydro-2H-pyridol4,3,2-delphthalazin 3(711)-one, 9-(4-fluorophenyl)-8-(4-((3-methylpiperazin- 1 -yl)methyl)phenyl)-8.,9-dihydro-2H-pyrido[4,3,2 delphthalazin-3(71J)-one, 9-(4-fluorophenyl)-8-(4-(pyrrolidin- 1 -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-dejphthalazin 3(7H)-one, 9-phenyl-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, 8-(4-Fluorophenyt)-9-(4-methyl-4H- 1 ,2,4-triazol-3-yI)-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin 3(711)-one, 8-(4-fluorophenyl)-9-(l -methyl- I -i ,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin 3(711)-one, 8-(4-fluorophenyl)-9-( 1-methyl- 1H-imidazo[4,5-clpyridin-2-yl)-8,9-dihydro-2H-pyrido[4,3,2 delphthalazin-3(7TH-one, 5-chloro-9-( 1-methyl- 1H-imidazo1-2-y1)-8-pbeny1-8,9-dihydro-2H-pyrido[4,3 ,2-deljphthalazin-3(7H) one, 8-(4-((dimethylamino)methyl)phenyl)-5-fluoro-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrido[4,3 ,2 delphthalazin-3 (71l)-one, 8,9-bis(4-((dimethylamino)methyl)phenyl)-5-fluoro-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin 3(7TH-one, 101 WO 2011/097334 PCT/US2O1 1/023532 8-4(dmtyaiomty~hnl--loo9phnl89dhdo2-yio432dlhhlzn 3(7TH-one, 8-(4-((3 ,4-dimethylpiperazin- 1-yl)mcthyl)pheny)-9-(4-fluorophenyI)-8,9-dihydro-2H-pyrido[i4,3,2 delphthalazin-3(7TH-one, 8-(4-((3 ,5-dimethylpiperazin- 1 -yl)methyl)phenyl)-9-(4-fluorophenyl)-8,9-dihydro-2H-pyrdoL 4 , 3 ,2 delphthalazin-3(7H)-one, 9-phenyl-8-(4-(pyrrolidin- I -ylmethy)pheny)-8,9-dihydro-2H-pyrido[j4,3 ,2-delphthalazin-3(7TH-one, 9-phenyl-8-(4-(pyrrolidin- I -ylmethyl)phenyl)-8,9-dihydro-2H-pyrido[4,3 ,2-delphthalazin-3(7H)-one, 9-(l 1-methyl- IH1-imiidazol-2-yI)-8-(4-(pyrrolidin- 1 -ylmethyl)phcnyl)-8,9-dihydro-2H-pyrndor4,3,2 delphthalazin-3(7H)-one, 9-(4-fluorophenyl)-8-( 1-methyl- IH--imidazol-2-yl)-8,9-dihydro-2H-pyridol4,3 ,2-de]phthalazin 3(711)-one, 9-(4-fluorophenyl)-8-(quinolin-6-yl)-8,9-dihydro-2H-pyrdofI4,3 ,2-delphthalazin-3(7TH-one; 8-(4-((dimethylamino)mcthy1)pheny1)-9-p-toly1-8,9-dihydro-2H-pyrido[ 4 ,3 ,2-delphthalazin-3(7TH one, 9-(4-chlorophenyl)-8-(4-((dimethylamino)methy1)phenl1)-8,9-dihydro-2H-pyflido[ 4 , 3 , 2 de]phthalazin-3(711)-one, 8-(4-((dimethylamino)methy1)pheny1)-9-(4-methoxyphel)-8,9-dihydro-2I-pyrdo[ 4 ,3 ,2 de]phthalazin-3(7H)-one, 8-(4-((diethylamino)methy)pheny)-9-phenfly-8,9-dihydr-2H-pyrdolI4,3 ,2-de]phthalazin-3(7H)-one, 8-4(dehlmn~ehlpey)9(-lirpey)89dhdo2-yio432d~hhlzn 3(711)-onc, 9-(4-chloropheny l)-8-(4-((diethylamino)methy1)pheny1)-8,9-dihydro-2H-pyrido[4,3,2-dephthaazin 3(7TH-one, (E)-6-fluoro-4-(( 1-methyl- 1H-imidazol-2-yI)methyleneamino)isobelzofural- 1 (3TH-one, 5-fluoro-9-(4-fluorophenyl)-8-( 1-methyl- I H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthatazin-3(7H)-one, 8-(4-((dim-nethylamino)methy1)phenyl)-9-(4-ethylphenyl)-8,9-dihydro-2H-pyrdoII4,3 ,2-dejphthalazin 3(711)-one, 8-(4-((dimethylamino)methy1)pheny1)-9-(4-isopropylphel)-8,9-dihydro-2H-pyrido[4,3 ,2 de]phthalazin-3(7H)-one, 8-(4-( (dimethylamino)methyl)phenyl)-9-(4-(tri fluoromethylphel)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7fl)-one, 8-(4-((diethylamino)methyt)pheny1)-9-p-tolyI-8,9-dihydro-2H-pyrido[4,3 .2-de]phthalazin-3(711)-one, 102 WO 2011/097334 PCT/US2O1 1/023532 9-(4-fluorophenyl)-8-(4-( I -methyipyrrolidin-2-yl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(711)-one, 9-(4-fluorophenyl)-8-(4-(pyrrolidin-2-yl)phenyl)-8,9-dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H) one, 8-(4-fluorophenyl)-9-methiyl-9-(I -methyl- I H-imidazol-2-yi)-8,9-dihydro-2H-pyrido[4,3,2 de~phthalazin-3(7H)-one, 9-(4-fluorophenyl)-8-( 1 H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthaiazin-3(7H)-one, 5-fluoro-9-(l -methyl- I H-i ,2,4-tr-iazol-5-yI)-8-phenyl-8,9-dihydro-2H-pyrido[4,3 ,2-delphthaiazin 3(7H)-one, 9-(4-fluorophenyl)-9-hydroxy-8-( 1-methyl- 1H-imidazol-2-yl)-8,9-dihydro-2H-pyrido[4,3,2 dejphthalazin-one, (8S,9R)-5-fluoro-9-( 1-methyl- IH-imidazol-2.-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2 delipht halazin-3 (711)-one, (8R,9S)-5-fluoro-9-( 1-methyl- 1H-imidazol-2-yl) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2 de]phthaiazin-3 (711)-one, (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-( I-methyl- 1H-imidazol-2-yI) -S,9-dihydro-2H-pyrido[4,3,2 de]phthaiazin-3(711)-one, (8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- 1H-imidazol-2-yi) -8,9-dihydro-2H-pyrido[4,3,2 de]phthaiazin-3 (711)-one, (8S,9R)- 8-(4-fluorophenyl)-9-( I-methyl- lH-imidazol-2-vI) -8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(7H)-one, (8R. 9')- 8-(4-fluorophenyl)-9-( 1-methyl- IH-imidazol-2-yl) -8,9-dihydro-2H-pyrido[4,3,2 de]phthaiazin-3(7H)-one, (8S,9R)-5-fluoro-9-( i-methyl- iH- 1,2,4-triazol-5-yI) -8-phenyl-8,9-dihydro-2H-pyrido[4,3,2 de]phthalazin-3(711)-one, (8R,9S)-5-fluoro-9-( i-methyl- iH-1I,2,4-triazol-5-yl) -8-phenyl-8,9-dihydro-2H-pyridol4,3,2 de]phthalazin-3(711)-one. (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-( 1-methyl- lH- 1,2,4-triazol-5-yl) -8,9-dihydro-2H pyridofj4,3,2-de]phthalazin-3(711)-one, (8R, 9S)-5-fluoro-8-(4-fluorophenyl)-9-( 1 -methyl- lH- 1 ,2,4-triazol-5-yi) -8,9-dihydro-2H pyrido[4,3,2-de]phthalazin-3(7TH-one, (8S,9R)- 8-(4-fluorophenyl)-9-( 1-methyl- I H-I ,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2 delphthalazin-3(7H)-one, (8R, 95)- 8-(4-fluorophenyi)-9-( i-methyl-I H-i ,2,4-triazol-5-yl) -8,9-dihydro-2H-pyrido[4,3,2 delfphthalazin-3(711-one, 103 WO 2011/097334 PCT/US2011/023532 (8S,9R)-8-(4-((dimethylamino)methyl)phenyl)-5-fluoro- 9 -(1-methyl-Ill-1,2,4-triazol-5-yl)-8,9 dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one, and (8R,9S)-8-(4-((dimethylamino)methyl)phenyl)-5-fluoro- 9 -(1-methyl-lH-1,2,4-triazol-5-yl)-8,9 dihydro-2H-pyrido[4,3,2-dejphthalazin-3(7H)-one; or a pharmaceutically acceptable salt, solvate or prodrug thereof.
53. A method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease or condition associated with a PTEN deficiency comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a compound of any of claims 1-52 or a pharmaceutically acceptable salt, pharmaceutically acceptable solvate, or pharmaceutically acceptable prodrug and a pharmaceutically acceptable carrier, excipient, binder or diluent thereof.
54. A method of inhibiting poly(ADP-ribose)polymerase (PARP) in a subject having a disease or condition associated with a PTEN deficiency in need of PARP inhibition comprising administering to the subject a therapeutically effective amount of a compound of any of claims 1-52.
55. A method of treating a disease associated with a PTEN deficiency ameliorated by the inhibition of PARP comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of any of claims 1-52.
56. The method according to claim 55, wherein the disease associated with a PTEN deficiency is selected from the group consisting of cancer, Cowden's disease, Lhermitte-Duclos disease, and Bannayan-Zonana syndrome.
57. The method according to claim 56, wherein the disease is cancer.
58. The method according to claim 57, wherein the cancer is selected from the group consisting of endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, colorectal cancer, thyroid cancer, bladder cancer, breast cancer, and melanoma.
59. The method of claim 58, wherein said administration is combination with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof.
60. The method of claim 59, the compound according to any of claims 1-52 is administered simultaneously with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof.
61. The method of claim 59, wherein the compound according to any of claims 1-52 is administered sequentially with ionizing radiation, one or more chemotherapeutic agents, or a combination thereof.
62. A method of treating a cancer associated with a PTEN deficiency, wherein said cancer is deficient in Homologous Recombination (HR) dependent DNA double strand break (DSB) repair pathway, comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of any of claims 1-52. 104 WO 2011/097334 PCT/US2011/023532
63. The method of claim 62, wherein the cancer associated with a PTEN deficiency comprises one or more cancer cells having a reduced or abrogated ability to repair DNA DSB by HR relative to normal cells.
64. The method of claim 63, wherein the cancer cells have a PTEN deficient phenotype.
65. The method of claim 63, wherein the cancer cells are deficient in PTEN.
66. The method of claim 62, wherein the cancer comprises one or more cancer cells deficient in proteins involved in DNA DSB repair by HR.
67. The method of claim 66, wherein the cancer cells are deficient in ATM, Rad51, Rad52, Rad54, Rad50, MRE 11, NBS1, XRCC2, XRCC3, cABL, RPA, CtIP, or MBC.
68. The method of claim 67, wherein the cancer cells are deficient in Rad5l.
69. The method of claim 62 wherein a subject is heterozygous for a mutation in a gene encoding a component of the HR dependent DNA DSB repair pathway.
70. The method of claim 62 wherein the subject is heterozygous for a mutation in PTEN.
71. The method of any of claim 62-70 wherein the cancer is selected from the group consisting of endometrial carcinoma, glioblastoma (glioblastoma multiforme/ anaplastic astrocytoma), prostate cancer, renal cancer, small cell lung carcinoma, meningioma, head and neck cancer, thyroid cancer, bladder cancer, colorectal cancer, breast cancer, and melanoma.
72. The method of claim 62 wherein the treatment further comprises administration of ionizing radiation or a chemotherapeutic agent.
73. A method of treating a disease associated with a PTEN deficiency, wherein said disease is associated with an abrogated or reduced ability to control the phosphoinositide 3-kinase signaling pathway comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of any of claims 1-52.
74. The method of claim 73 wherein said disease associated with a PTEN deficiency is cancer.
75. A method of treating a disease associated with a PTEN deficiency wherein said disease due to abnormal regulation of centromere stability comprising administering to a subject in need of treatment a therapeutically effective amount of a compound of any of claims 1-52.
76. The method of claim 75 wherein said disease associated with a PTEN deficiency is cancer.
77. Use of a compound of any of claims 1-52 in the formulation of a medicament for the treatment of a poly(ADP-ribose)polymerase mediated disease or condition associated with a PTEN deficiency.
78. An article of manufacture, comprising packaging material, a compound of any of claims 1-52 and a label, wherein the compound is effective for modulating the activity of the enzyme poly(ADP ribose)polymerase, or for treatment, prevention or amelioration of one or more symptoms of a disease or condition associated with a PTEN deficiency, wherein the compound is packaged within the packaging material, and wherein the label indicates that the compound, or pharmaceutically acceptable salt, pharmaceutically acceptable N-oxide, pharmaceutically active metabolite, pharmaceutically acceptable 105 WO 2011/097334 PCT/US2011/023532 prodrug, or pharmaceutically acceptable solvate thereof, or a pharmaceutical composition comprising such a compound is used for modulating the activity of poly(ADP-ribose)polymerase, or for treatment, prevention or amelioration of one or more symptoms of a disease or condition associated with a PTEN deficiency. 106
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2016231573A AU2016231573A1 (en) | 2010-02-03 | 2016-09-22 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
AU2018206826A AU2018206826A1 (en) | 2010-02-03 | 2018-07-20 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30117410P | 2010-02-03 | 2010-02-03 | |
US61/301,174 | 2010-02-03 | ||
PCT/US2011/023532 WO2011097334A1 (en) | 2010-02-03 | 2011-02-03 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016231573A Division AU2016231573A1 (en) | 2010-02-03 | 2016-09-22 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2011212928A1 true AU2011212928A1 (en) | 2012-08-09 |
AU2011212928B2 AU2011212928B2 (en) | 2016-06-23 |
Family
ID=44342189
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011212928A Ceased AU2011212928B2 (en) | 2010-02-03 | 2011-02-03 | Dihydropyridophthalazinone inhibitors of poly(ADP-ribose) polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency |
AU2016231573A Abandoned AU2016231573A1 (en) | 2010-02-03 | 2016-09-22 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
AU2018206826A Abandoned AU2018206826A1 (en) | 2010-02-03 | 2018-07-20 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016231573A Abandoned AU2016231573A1 (en) | 2010-02-03 | 2016-09-22 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
AU2018206826A Abandoned AU2018206826A1 (en) | 2010-02-03 | 2018-07-20 | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
Country Status (7)
Country | Link |
---|---|
US (4) | US8541403B2 (en) |
EP (1) | EP2531033A4 (en) |
JP (5) | JP5883397B2 (en) |
CN (2) | CN102869258A (en) |
AU (3) | AU2011212928B2 (en) |
CA (1) | CA2787844C (en) |
WO (1) | WO2011097334A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT2767537T (en) | 2008-08-06 | 2017-08-10 | Medivation Technologies, Inc. | Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) |
EP2531033A4 (en) | 2010-02-03 | 2013-07-31 | Biomarin Pharm Inc | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
EP2533640B1 (en) * | 2010-02-08 | 2016-09-28 | Medivation Technologies, Inc. | Processes of synthesizing dihydropyridophthalazinone derivatives |
AR083502A1 (en) | 2010-10-21 | 2013-02-27 | Biomarin Pharm Inc | TOSILADA SALT OF (8S, 9R) -5-FLUORO-8- (4-FLUOROFENIL) -9- (1-METHYL-1H-1,2,4-TRIAZOL-5-IL) -8,9-DIHIDRO-2H -PIRIDO [4,3,2-DE] FTALAZIN-3 (7H) -ONA CRISTALINA |
WO2013028495A1 (en) * | 2011-08-19 | 2013-02-28 | Biomarin Pharmaceutical Inc. | Dihydropyridophthalazinone inhibitors of poly (adp-ribose) polymerase (parp) for the treatment of multiple myeloma |
JP6871169B2 (en) | 2015-03-02 | 2021-05-12 | シナイ ヘルス システム | Homologous recombination factor |
CN104945406B (en) * | 2015-05-25 | 2017-10-10 | 苏州康润医药有限公司 | Derivative, its preparation method and its application as PARP inhibitor of that non-ketone of alkene 3 of azepine |
EP3317277B1 (en) | 2015-07-01 | 2021-01-20 | Crinetics Pharmaceuticals, Inc. | Somatostatin modulators and uses thereof |
MX2018005071A (en) * | 2015-10-26 | 2018-11-29 | Medivation Tech Llc | Treatment of small cell lung cancer with a parp inhibitor. |
WO2018153279A1 (en) * | 2017-02-25 | 2018-08-30 | Suzhou Kintor Pharmaceuticals, Inc. | Dihydropyridophthalazinone compounds as inhibitors of poly (adp-ribose) polymerase (parp) for treatment of diseases and method of use thereof |
EP3658560A4 (en) | 2017-07-25 | 2021-01-06 | Crinetics Pharmaceuticals, Inc. | Somatostatin modulators and uses thereof |
CA3078806A1 (en) | 2017-10-13 | 2019-04-18 | Merck Patent Gmbh | Combination of a parp inhibitor and a pd-1 axis binding antagonist |
TW201938165A (en) | 2017-12-18 | 2019-10-01 | 美商輝瑞股份有限公司 | Methods and combination therapy to treat cancer |
WO2020095184A1 (en) | 2018-11-05 | 2020-05-14 | Pfizer Inc. | Combinations for treating cancer |
EP4118105A2 (en) | 2020-03-09 | 2023-01-18 | Pfizer Inc. | Cd80-fc fusion protein and uses thereof |
MX2022011171A (en) * | 2020-03-11 | 2022-10-18 | Purdue Research Foundation | Compounds with immunomodulatory activity and therapeutic uses thereof. |
JP2023537220A (en) * | 2020-07-31 | 2023-08-31 | チア タイ ティエンチン ファーマシューティカル グループ カンパニー リミテッド | Crystals of indoloheptaacyl oxime analogues as PARP inhibitors and method for producing the same |
MX2023005641A (en) | 2020-11-13 | 2023-05-24 | Pfizer | Talazoparib soft gelatin capsule dosage form. |
CN116802321A (en) | 2020-12-07 | 2023-09-22 | 辉瑞公司 | Methods of identifying tumors susceptible to treatment with talazapanib and methods of treatment thereof |
US20240180906A1 (en) | 2021-03-24 | 2024-06-06 | Pfizer Inc. | Combination of Talazoparib and an Anti-Androgen for the Treatment of DDR Gene Mutated Metastatic Castration-Sensitive Prostate Cancer |
WO2023131894A1 (en) | 2022-01-08 | 2023-07-13 | Pfizer Inc. | Genomic loss of heterozygosity as a predictive biomarker for treatment with talazoparib and methods of treatment thereof |
TW202425975A (en) | 2022-10-02 | 2024-07-01 | 美商輝瑞大藥廠 | Combination of talazoparib and enzalutamide in the treatment of metastatic castration-resistant prostate cancer |
TW202425976A (en) | 2022-12-17 | 2024-07-01 | 美商輝瑞大藥廠 | Combination of talazoparib and enzalutamide in the treatment of metastatic castration-resistant prostate cancer |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4415504A (en) | 1981-09-21 | 1983-11-15 | Tanabe Seiyaku Co., Ltd. | p-Hydroxyphenylglycine.α-phenylethanesulfonate, process for production thereof and utilization thereof in resolution of p-hydroxyphenylglycine |
JPS58225065A (en) | 1982-06-21 | 1983-12-27 | Nippon Shinyaku Co Ltd | 2-quinolone derivative |
US5328905A (en) * | 1987-07-20 | 1994-07-12 | Duphar International Research B.V. | 8,9-anellated-1,2,3,4-tetrahydro-β-carboline derivatives |
GB9505538D0 (en) | 1995-03-18 | 1995-05-03 | Ciba Geigy Ag | New compounds |
ID19155A (en) | 1996-12-13 | 1998-06-18 | Tanabe Seiyaku Co | PYRIDINES, THEIR PRODUCTS AND THE INTERMEDIETS FOR THE PRODUCTION |
DE19727410A1 (en) | 1997-06-27 | 1999-01-07 | Hoechst Schering Agrevo Gmbh | 3- (5-tetrazolylcarbonyl) -2-quinolones and crop protection agents containing them |
US6514983B1 (en) | 1997-09-03 | 2003-02-04 | Guilford Pharmaceuticals Inc. | Compounds, methods and pharmaceutical compositions for treating neural or cardiovascular tissue damage |
TW430656B (en) | 1997-12-03 | 2001-04-21 | Dainippon Ink & Chemicals | Quinolinone derivative, method for preparing the same, and anti-allergic agent |
EP1077946A1 (en) | 1998-05-15 | 2001-02-28 | Guilford Pharmaceuticals Inc. | Fused tricyclic compounds which inhibit parp activity |
DE19921567A1 (en) | 1999-05-11 | 2000-11-16 | Basf Ag | Use of phthalazine derivatives |
JP2001302669A (en) * | 2000-04-18 | 2001-10-31 | Meiji Seika Kaisha Ltd | Tricyclic phthalazinone derivative |
JP2002284699A (en) | 2001-03-28 | 2002-10-03 | Sumitomo Pharmaceut Co Ltd | Curative for visual cell degenerative disease |
AR036081A1 (en) | 2001-06-07 | 2004-08-11 | Smithkline Beecham Corp | COMPOSITE OF 1,2-DIHYDROQUINOLINE, ITS USE TO PREPARE A PHARMACEUTICAL COMPOSITION, METHODS TO PREPARE IT AND N-RENTED 2-AMINOBENZOIC ACID OF UTILITY AS INTERMEDIARY IN SUCH METHODS |
SE0102315D0 (en) | 2001-06-28 | 2001-06-28 | Astrazeneca Ab | Compounds |
RU2292337C2 (en) | 2002-02-19 | 2007-01-27 | Оно Фармасьютикал Ко., Лтд. | Condensed pyridazine derivatives and drugs having the compounds as active ingredients |
EP1340819A1 (en) | 2002-02-28 | 2003-09-03 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Microsatellite markers |
GB0221443D0 (en) | 2002-09-16 | 2002-10-23 | Glaxo Group Ltd | Pyridine derivates |
EP1400244A1 (en) * | 2002-09-17 | 2004-03-24 | Warner-Lambert Company LLC | New spirocondensed quinazolinones and their use as phosphodiesterase inhibitors |
WO2004043959A1 (en) * | 2002-11-12 | 2004-05-27 | Mochida Pharmaceutical Co., Ltd. | Novel parp inhibitors |
EA009469B1 (en) | 2003-03-12 | 2007-12-28 | Кудос Фармасеутикалс Лимитед | Phthalazinone derivatives |
AU2004242947B2 (en) * | 2003-05-28 | 2010-04-29 | Eisai Inc. | Compounds, methods and pharmaceutical compositions for inhibiting PARP |
CN101845023A (en) | 2004-02-18 | 2010-09-29 | 阿斯利康(瑞典)有限公司 | Tetrazole compound and as the application of metabotropic glutamate receptor antagonists |
GB0612971D0 (en) * | 2006-06-30 | 2006-08-09 | Angeletti P Ist Richerche Bio | Therapeutic compounds |
US8198448B2 (en) | 2006-07-14 | 2012-06-12 | Amgen Inc. | Fused heterocyclic derivatives and methods of use |
WO2008135826A2 (en) | 2007-05-03 | 2008-11-13 | Pfizer Limited | 2 -pyridine carboxamide derivatives as sodium channel modulators |
EP2178875A1 (en) | 2007-08-22 | 2010-04-28 | 4Sc Ag | Indolopyridines as inhibitors of the kinesin spindle protein (eg5 ) |
WO2009099736A2 (en) | 2008-02-06 | 2009-08-13 | Lead Therapeutics, Inc. | Benzoxazole carboxamide inhibitors of poly(adp-ribose)polymerase (parp) |
LT2767537T (en) | 2008-08-06 | 2017-08-10 | Medivation Technologies, Inc. | Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) |
US20110301350A1 (en) | 2008-08-12 | 2011-12-08 | Boehringer Ingelheim International Gmbh | Process for preparing cycloalkyl-substituted piperazine compounds |
EP2531033A4 (en) | 2010-02-03 | 2013-07-31 | Biomarin Pharm Inc | Dihydropyridophthalazinone inhibitors of poly(adp-ribose) polymerase (parp) for use in treatment of diseases associated with a pten deficiency |
US20110190266A1 (en) * | 2010-02-04 | 2011-08-04 | Daniel Chu | 5,6,6a,7,8,9-HEXAHYDRO-2H-PYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) |
EP2533640B1 (en) | 2010-02-08 | 2016-09-28 | Medivation Technologies, Inc. | Processes of synthesizing dihydropyridophthalazinone derivatives |
WO2011130661A1 (en) | 2010-04-16 | 2011-10-20 | Biomarin Pharmaceutical Inc. | Methods of using dihydropyridophthalazinone inhibitors of poly (adp-ribose)polymerase (parp) |
WO2011140009A1 (en) | 2010-05-04 | 2011-11-10 | Biomarin Pharmaceutical Inc. | Methods of using semi-synthetic glycopeptides as antibacterial agents |
AR083502A1 (en) | 2010-10-21 | 2013-02-27 | Biomarin Pharm Inc | TOSILADA SALT OF (8S, 9R) -5-FLUORO-8- (4-FLUOROFENIL) -9- (1-METHYL-1H-1,2,4-TRIAZOL-5-IL) -8,9-DIHIDRO-2H -PIRIDO [4,3,2-DE] FTALAZIN-3 (7H) -ONA CRISTALINA |
WO2012166151A1 (en) | 2011-06-03 | 2012-12-06 | Biomarin Pharmaceutical Inc. | Use of dihydropyridophthalazinone inhibitors of poly (adp-ribose) polymerase (parp) in the treatment of myelodysplastic syndrome (mds) and acute myeloid leukaemia (aml) |
WO2013028495A1 (en) | 2011-08-19 | 2013-02-28 | Biomarin Pharmaceutical Inc. | Dihydropyridophthalazinone inhibitors of poly (adp-ribose) polymerase (parp) for the treatment of multiple myeloma |
US20130053365A1 (en) * | 2011-08-30 | 2013-02-28 | Biomarin Pharmaceutical, Inc. | Dihydropyridophthalazinone inhibitors of poly(adp-ribose)polymerase (parp) |
WO2015069851A1 (en) | 2013-11-07 | 2015-05-14 | Biomarin Pharmaceutical Inc. | Triazole intermediates useful in the synthesis of protected n-alkyltriazolecarbaldehydes |
BR112017001977A2 (en) | 2014-07-31 | 2017-11-21 | Medivation Technologies Inc | co-forming salt, method of preparation of a co-forming salt and compound |
-
2011
- 2011-02-03 EP EP11740322.0A patent/EP2531033A4/en not_active Withdrawn
- 2011-02-03 JP JP2012552070A patent/JP5883397B2/en not_active Expired - Fee Related
- 2011-02-03 AU AU2011212928A patent/AU2011212928B2/en not_active Ceased
- 2011-02-03 CN CN201180017703XA patent/CN102869258A/en active Pending
- 2011-02-03 US US13/020,619 patent/US8541403B2/en active Active
- 2011-02-03 CN CN201710081268.6A patent/CN106943406A/en active Pending
- 2011-02-03 WO PCT/US2011/023532 patent/WO2011097334A1/en active Application Filing
- 2011-02-03 CA CA2787844A patent/CA2787844C/en not_active Expired - Fee Related
-
2013
- 2013-08-21 US US13/972,166 patent/US9018201B2/en not_active Expired - Fee Related
-
2015
- 2015-03-27 US US14/671,944 patent/US20150209363A1/en not_active Abandoned
-
2016
- 2016-02-05 JP JP2016020358A patent/JP2016128492A/en not_active Withdrawn
- 2016-09-22 AU AU2016231573A patent/AU2016231573A1/en not_active Abandoned
-
2017
- 2017-06-20 JP JP2017120148A patent/JP2017197565A/en active Pending
-
2018
- 2018-07-20 AU AU2018206826A patent/AU2018206826A1/en not_active Abandoned
- 2018-08-03 US US16/054,899 patent/US10493078B2/en not_active Expired - Fee Related
- 2018-09-27 JP JP2018182009A patent/JP2019011356A/en not_active Withdrawn
-
2020
- 2020-07-09 JP JP2020118694A patent/JP2020176136A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2019011356A (en) | 2019-01-24 |
JP2016128492A (en) | 2016-07-14 |
JP2017197565A (en) | 2017-11-02 |
JP2013518892A (en) | 2013-05-23 |
EP2531033A1 (en) | 2012-12-12 |
CN106943406A (en) | 2017-07-14 |
US9018201B2 (en) | 2015-04-28 |
US20150209363A1 (en) | 2015-07-30 |
AU2018206826A1 (en) | 2018-08-09 |
US20110190288A1 (en) | 2011-08-04 |
AU2011212928B2 (en) | 2016-06-23 |
US20190070189A1 (en) | 2019-03-07 |
JP5883397B2 (en) | 2016-03-15 |
CN102869258A (en) | 2013-01-09 |
US10493078B2 (en) | 2019-12-03 |
CA2787844C (en) | 2019-08-27 |
WO2011097334A1 (en) | 2011-08-11 |
US8541403B2 (en) | 2013-09-24 |
EP2531033A4 (en) | 2013-07-31 |
CA2787844A1 (en) | 2011-08-11 |
JP2020176136A (en) | 2020-10-29 |
AU2016231573A1 (en) | 2016-10-20 |
US20140066429A1 (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10493078B2 (en) | Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency | |
US11364241B2 (en) | Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) | |
WO2011130661A1 (en) | Methods of using dihydropyridophthalazinone inhibitors of poly (adp-ribose)polymerase (parp) | |
US20110190266A1 (en) | 5,6,6a,7,8,9-HEXAHYDRO-2H-PYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC1 | Assignment before grant (sect. 113) |
Owner name: MEDIVATION TECHNOLOGIES, INC. Free format text: FORMER APPLICANT(S): BIOMARIN PHARMACEUTICAL INC. |
|
FGA | Letters patent sealed or granted (standard patent) | ||
HB | Alteration of name in register |
Owner name: MEDIVATION TECHNOLOGIES, LLC Free format text: FORMER NAME(S): MEDIVATION TECHNOLOGIES, INC. |
|
HB | Alteration of name in register |
Owner name: MEDIVATION TECHNOLOGIES LLC Free format text: FORMER NAME(S): MEDIVATION TECHNOLOGIES, LLC |
|
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |