[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2007203454A1 - Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses - Google Patents

Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses Download PDF

Info

Publication number
AU2007203454A1
AU2007203454A1 AU2007203454A AU2007203454A AU2007203454A1 AU 2007203454 A1 AU2007203454 A1 AU 2007203454A1 AU 2007203454 A AU2007203454 A AU 2007203454A AU 2007203454 A AU2007203454 A AU 2007203454A AU 2007203454 A1 AU2007203454 A1 AU 2007203454A1
Authority
AU
Australia
Prior art keywords
cocoa
chocolate
beans
polyphenol
liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2007203454A
Other versions
AU2007203454B2 (en
Inventor
Hans M. Geyer
John F. Hammerstone Jr.
Kirk S. Kealey
Mary E. Myers
Leo J. Romanczyk
Harold H. Schmitz
Rodney M. Snyder
Eric Whitacre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mars Inc
Original Assignee
Mars Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002301733A external-priority patent/AU2002301733B8/en
Application filed by Mars Inc filed Critical Mars Inc
Priority to AU2007203454A priority Critical patent/AU2007203454B2/en
Publication of AU2007203454A1 publication Critical patent/AU2007203454A1/en
Application granted granted Critical
Publication of AU2007203454B2 publication Critical patent/AU2007203454B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Confectionery (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

P001 Section 29 Regulation 3.2(2)
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses The following statement is a full description of this invention, including the best method of performing it known to us: STITLE OF THE INVENTION COCOA COMPONENTS, EDIBLE PRODUCTS HAVING ENHANCED POLYPHENOL CONTENT, SMETHODS OF MAKING SAME AND MEDICAL USES CROSS-REFERENCE TO RELATED APPLICATIONS Reference is made to copending U.S.
Sapplications Serial No. 08/317,226, filed October 3, 1994 (allowed, now U.S. Patent No. 5,554,645), Serial No.
C 08/631,661, filed April 2, 1996, Serial No. 08/709,406, filed September 6, 1996, and Serial No. 08/831,245, filed SApril 2, 1997, incorporated herein by reference.
BACKGROUND OF THE INVENTION Field of the Invention The invention relates to cocoa components having enhanced levels of cocoa polyphenols, processes for producing the same, methods of using the same and compositions containing the same. More specifically, the invention provides a method of producing cocoa components having an enhanced content of cocoa polyphenols, in particular procyanidins. The cocoa components include partially and fully defatted cocoa solids, cocoa nibs and fractions derived therefrom, cocoa polyphenol extracts, cocoa butter, chocolate liquors, and mixtures thereof.
The invention also relates to versatile novel processes for extracting fat from cocoa beans and/or processing cocoa beans to yield a cocoa component having a conserved level of polyphenols, in particular procyanidins. The invention provides a significantly less complex process with respect to total cost of process equipment, maintenance, energy and labor, with the concomitant benefit of obtaining components having conserved concentrations of polyphenols relative to the starting materials.
Description of the Related Art Documents are cited in this disclosure with a full citation for each. These documents relate to the state-of-the-art to which this invention pertains, and each document cited herein is hereby incorporated by reference.
SConfections and other edible compositions C containing cocoa components have a very distinct taste and mouthfeel that have been enjoyed by individuals for many years. The unique flavor and mouthfeel of chocolate, for example, is a result of the combinations of its numerous components as well as its process of Smanufacture. It is well known that the mouthfeel and aroma/flavor of a chocolate are factors which greatly Cl influence the desirability of the final chocolate product. Accordingly, the primary focus of conventional processes using cocoa components is the development of the distinctive chocolate mouthfeel and flavor/aroma.
Throughout the entire chocolate manufacturing process, from the selection of the cocoa beans as a commodity at the country of origin to the tempering and solidification of the final chocolate, the development of the appropriate mouthfeel and/or aroma/flavor of the final product dictates the selections made and the process parameters used.
Chocolate contains solid particles dispersed throughout a fat matrix. Factors that influence the mouthfeel of a chocolate include the particle size distribution of the solids, the properties of the fat matrix material and how the chocolate is made.
Cocoa butter is typically the predominant fat in the chocolates. Cocoa butter is solid at room temperature (21 0 -24 0 C) and thus most chocolates are firm and solid at room temperature providing good "snap" at initial bite. Above room temperature, the fat phase melts progressively until it is completely melted at about 36 0 C. This rapid melting in the mouth, at body temperature, provides the smooth, creamy mouthfeel which results in a strong flavor impact.
The flavor/aroma characteristics of the cocoa product are dependent on the combination of numerous L U I t I C1 solid and fat components as well as the process of Z manufacture. The flavor/aroma characteristics are dependent on initial cocoa bean selection level CI of fermentation, genotype, origin, etc.), method of processing the beans cleaning, roasting, shell Sremoval, etc.) processing of the cocoa components milling) and final processing to form the Sfinal product selection of cocoa component and CI other ingredients, conching, etc.).
C 10 The several roles of selecting beans, fermenting them, cleaning them and processing them to obtain good flavor and other desirable characteristics is well known and is described below.
1. The Cocoa Bean Cocoa beans are derived from cocoa trees which are found in warm, moist climates in areas about degrees latitude north and south of the Equator. In general, the seeds of the Theobroma cacao (of the order Sterculiacae) are known chiefly in two varieties: Criollo and Forastero, with Forastero divided into several varieties. A third group, called Trinitario, is essentially a cross between Criollo and Forastero and is not found in the wild. Freshly harvested raw Criollo beans are pale brown in color while Forastero beans are a purple hue.
The cocoa bean is comprised of an inner nib portion covered by an outer shell. After conventional drying, the shell of the bean comprises about 12 to of the weight of the bean, while the nib and residual moisture amounts to approximately 85 to 88%. Typical analytical data ranges for chemical components of cocoa nib are: fat content of 48 to 57%; theobromine content of 0.8 to caffeine content of 0.1 to total nitrogen content of 2.2 to ash content of 2.6 to and water content of 2.3 to 3.2% (see Pearson's Composition and Analysis of Foods, 9th Ed., 1991).
2. Fermentation of the Bean Fermentation, an early step in the processing of cocoa beans, is important to the development of suitable flavors and/or flavor precursors. It was previously believed that fermentation and drying of the cocoa beans were "of vital importance as no subsequent processing of the bean will correct that practice at this stage" (Chocolate. Cocoa and Confectionery: Science and Technology, 3rd Ed., by Bernard W. Minifie, p. 13 (1989)). During the fermentation and drying processes, C< the unfermented wet beans taken from the pod lose about percent of their weight, assuming the final optimum moisture content of 6 percent is attained (Minifie, p.
14). The level of fermentation in the dried cocoa bean is typically determined by the "cut test" (defined further below).
It is well known in the art that flavor in the final cocoa or chocolate is closely related to fermentation. For example, if the beans are cleaned and separated from the pulp and dried without any fermentation, the nib will not be the brown or purplebrown color of fermented dry cocoa beans but instead a slaty grey color (Industrial Chocolate Manufacture and Use, 2nd Ed., by S. T. Beckett, p. 13). Chocolate made from slaty, unfermented beans typically tastes very bitter and astringent without any apparent chocolate flavor (Beckett, p. 13).
Accordingly, fully fermented cocoa beans are more desirable than underfermented cocoa beans from a flavor/aroma standpoint and typically sell at a higher price. The fermented cocoa beans are usually used to produce chocolate liquors.
Underfermented beans are conventionally processed for their cocoa butter. The quality of the cocoa butter is not affected by underfermentation. The quality of the cocoa solids, however, is affected since they do not contain sufficient color, flavor/aroma and are therefore either discarded or sold for low-value uses. Although chocolate liquors and/or partially 1 defatted cocoa solids are sometimes produced from a nonhomogeneous mass of beans containing a portion of underfermented beans, the resultant liquor or solids require subsequent treatment or processing. Since Sunfermented beans are not conventionally processed M commercially, they are not typically available.
C3. Bean Cleaning Once the cocoa beans are selected, they are cleaned to remove extraneous matter and then processed.
The initial step consists of cleaning the beans to remove extraneous non-cocoa materials. Conventional bean cleaning separates beans from extraneous non-cocoa materials by either size or density using a cleaning machine which is a gravity, vibratory or aspiration table (see Minifie, p. 35; Chocolate Production and Use. 3rd Ed., by L. Russell Cook, pp. 144-146; and Beckett, p.
Current cocoa bean cleaning technology is typically limited in separation ability to a minimum density difference of 10-15%. This reduces the efficiency of achieving an accurate separation of bean and extraneous non-cocoa materials and therefore reduces the clean bean yield of the process. Additionally, conventional cleaning machines become easily clogged and require frequent cleaning. This also reduces the cleaning efficiency and the clean bean yield of the overall process.
Moreover, conventional cleaning machines have a tendency to fracture the beans during cleaning which reduces the percentage of whole beans available after cleaning. These broken bean pieces can later give rise to problems during roasting and winnowing. For instance, small bean pieces will burn readily at the elevated temperatures used during roasting and may result in burnt and ashy flavored liquors which are unacceptable from a *flavor standpoint. Small bean pieces may also decrease the efficiency of the winnowing process because they can Sbe lost during the aspiration of the shells and result in C overall yield efficiency losses.
4. Bean Roasting In most conventional processes, roasting of the whole bean or nib is an essential step in the manufacture of chocolate liquor or partially defatted cocoa solids.
Whole bean roasting was previously believed to be critical for developing the natural flavor and aroma of C< the cocoa beans and reducing the moisture content of the bean to below about 2% by weight. Whole bean roasting also loosens the shell so that it can be readily removed during the winnowing process. The degree of cocoa roast is a time/temperature dependent relationship, where the time can vary from 5 to 120 minutes and the temperature of the whole bean can typically vary from 120°C to 150°C.
In the pre-roasting of whole beans, an initial heating step can be performed at just below 1000C, followed by roasting of the nibs at elevated temperatures up to about 1306C (see Minifie, especially pp. 37 and 45-46; Cook, pp. 146-152; Beckett, pp. 55-64; and U.S. Patent No.
5,252,349 to Carter, Jr.).
Winnowing Shell Removal The winnowing operation serves to separate the beans into the desired inner portion of the bean (nib) and the outer portion of the bean (shell). The principle of separation by a winnowing process depends on the difference in the apparent density of the nib and of the shell. Standard winnowing machines make use of the combined action of sieving and air aspiration.
The shell is loosened during the conventional roasting and/or other heating steps. After loosening, the beans are typically broken between rollers to shatter the cocoa beans along natural fracture lines of the cocoa nib to facilitate shell removal during winnowing (see U.S.
Patent No. 2,417,078 to Jones; U.S. Patent No. 5,252,349 Cc, to Carter, Jr.; Minifie, pp. 47-51; Cook, pp. 152-153; and Beckett, pp. 67-68).
Some cocoa bean processing techniques include a heat pre-treatment step to aid in the separation of the shell from the nib. This involves giving the beans a thermal shock by hot air, steam or infra-red heat (see U.S. Patent No. 4,322,444 to Zuilichem et al.; British Patent No. 1,379,116 to Newton; Minifie, pp. 44-43; Cook, p. 155; and Beckett, pp. 60-62).
Infra-red heat pre-treatment uses infra-red heating to rapidly heat and expand the beans. This loosens the shells. The method consists of exposing the beans to infra-red radiation for a period of between one half and two minutes, during which time the beans are typically heated to a temperature of about 100 to 1100C.
The infra-red radiation used has a wavelength between 2 and 6 microns which corresponds to a frequency in the range of 0.7 to 1.2 x 10 8 megacycles per second.
6. Formation of Chocolate Liquor and other Cocoa Components The next step in conventional cocoa processing, after winnowing, involves nib grinding. Nib grinding is typically performed in two stages, an initial grinding stage to convert the solid nibs into a fluid paste and a final grinding stage to achieve the desired particle size. Both of these stages are equipment, maintenance, and energy intensive.
The cleaned roasted cocoa nibs typically vary in cocoa butter content from 50-58% by weight. During the grinding, the nib is ground, for instance by milling, into a fluid, dark brown "liquor". The fluidity is due to the breakdown of the cell walls and the release of the cocoa butter during the processing. Ground particles of partially defatted cocoa solids are suspended in the cocoa butter. This liquor is sometimes commercially sold as a product useful in the confectionery and baking industries where machinery for processing the cocoa beans is not available.
Other conventional cocoa processing includes Sseparating cocoa butter from liquor. This is Saccomplished by using a batch hydraulic pot press
C
1 ("hydraulic press") to separate the cocoa butter from the cocoa solids. The resultant cocoa butter is subsequently filtered to yield a clear, solid-free cocoa butter.
Butter can also be produced by a continuous screw press to extract the butter from whole bean with shell or less frequently, from nibs (see U.S. Patent No. 5,252,349 to Carter, Jr.; and Minifie, especially pp. 71-72).
Cq The resulting cocoa cake from either hydraulic presses or screw presses may be milled into cocoa powder.
Cocoa cake typically contains either 10-12% cocoa fat or 20-22% cocoa fat (see Minifie, pp. 72-76; Cook, pp. 169- 172; and Beckett, pp. 78-82). Cocoa powder from cocoa cake obtained by hydraulic pressing is usually produced by milling the cocoa cake. If natural cocoa powder is desired, cocoa cake is fed directly to the cocoa cake mill. If alkalized cocoa powder is desired, the cake from an alkalizing process is fed to the mill. Hydraulic pressing produces a cocoa cake which is an agglomerate of previously milled cocoa particles. Cocoa cake mills for cocoa cake from hydraulic pressing are therefore designed to reduce the size of these agglomerates.
The natural cocoa cake or natural cocoa powder can be further processed by alkalizing to modify the color and flavor qualities of the cake (see U.S. Patent No. 3,997,680 to Chalin; U.S. Patent No. 5,009,917 to Wiant, et al.; Minifie, pp. 61-67; Cook, pp. 162-165; and Beckett, pp. 71-72). The alkalizing process can be used at any of several different stages of processing and includes the treatment of either the beans, liquor, nib, cake or powder with solutions or suspensions of alkali, usually, but not limited to, sodium or potassium carbonate. After alkalizing, the cocoa solids are dried and cooled. The dried cocoa solids are subsequently CI milled to produce alkalized cocoa powder, and thereafter cooled and packaged.
7. Polyphenols in Cocoa Beans and Their Utility Cocoa beans contain polyphenols. These polyphenols have recently been extracted and screened for Sbiological activity. It has been discovered that cocoa c polyphenol extracts, particularly procyanidins, have significant biological utility. The extracts or compounds further separated therefrom have generally been 0 prepared, on a laboratory scale, by reducing cocoa beans to a powder, defatting the powder, and extracting and purifying the active compound(s) from the defatted powder. The powder is generally prepared by freezedrying the cocoa beans and pulp, depulping and deshelling the freeze-dried beans and grinding the deshelled beans or nibs. The extraction of active compound(s) has been accomplished by solvent extraction techniques, and the extracts have been purified by gel permeation chromatography, preparative High Performance Liquid Chromatography (HPLC) techniques, or by a combination of such methods (see U.S. Patent No. 5,554,645 to Romancyzk et al.).
It has now been determined that the recovery of polyphenols appears to be inversely proportional to the degree of fermentation of the cocoa beans. Accordingly, the use of fermented beans as a feedstock material, which is important for good chocolate flavor, reduces the amount of polyphenols available in the cocoa component(s) derived from the beans.
It has also been determined that higher processing temperatures and/or longer processing times, e.g. in the roasting step, reduces the amount of polyphenols available in the cocoa components derived from the feedstock beans. Cocoa components have not, heretofore, been produced having substantial quantities of polyphenols. These problems in the art have not heretofore been recognized.
V OBJECTS OF THE INVENTION SIt is an object of the invention to overcome Sthe above-mentioned difficulties and/or deficiencies in the prior art.
More specifically, it is an object of the invention to provide methods of selecting and/or processing cocoa beans for producing cocoa components having enhanced levels of cocoa polyphenols.
It is a further object of the invention to provide a method of processing cocoa beans, wherein a CI significant amount of cocoa polyphenols present in the pre-processed bean is conserved in the processed bean.
It is yet another object of the invention to provide cocoa components, including cocoa nibs or portions thereof, chocolate liquor and partially or fully defatted cocoa solids, each having enhanced levels of cocoa polyphenols, and products containing the cocoa components.
It is an additional object of the invention to provide a method of manufacturing chocolates, chocolateflavored confections, chocolate-flavored compositions, edible compositions, supplements, and combinations thereof having enhanced levels of cocoa polyphenols or derivatives thereof.
It is a further object of the invention to provide a method of improving the health of a mammal using the products of the invention.
It is a still further object of the invention to provide a method of improving the flavor/aroma characteristics of cocoa components, particularly chocolate liquor, containing enhanced levels of cocoa polyphenols.
It is a still further object of the invention to provide a method of producing cocoa butter and cocoa solids having a high yield of cocoa butter per amount of cocoa beans processed.
VC It is another object of the invention to provide a method of winnowing beans to remove the shell t s portion from the inner portion using an air fluidized bed density separation system.
It is another object of the invention to provide a method of producing high quality cocoa butter Swithout requiring a bean roasting step or a liquor CC) milling step.
(C These and other objects and advantages of the invention will become further apparent from the teachings hereinafter provided by the detailed description, test data, and examples.
SUMMARY OF THE INVENTION The invention relates to novel versatile methods of processing cocoa beans to form cocoa components having improved properties or characteristics, products made from those methods and methods of using the same. More specifically, the invention relates to methods of producing cocoa components having enhanced levels of cocoa polyphenols. Parameters of the several cocoa processing steps, including the selection of the cocoa bean feedstock, are controlled and/or manipulated to result in a valuable cocoa component while conserving a significant amount of the cocoa polyphenol content present in the cocoa bean. Thus, the inveption relates to methods of obtaining cocoa components having conserved levels of cocoa polyphenols relative to the starting materials, and to the products of those processes produced thereby. The invention avoids the significant and detrimental losses of cocoa polyphenols that occur during conventional processing.
The invention also relates to novel cocoa components having enhanced levels of cocoa polyphenols produced by the methods of the invention. More specifically, the invention relates to novel cocoa components including cocoa nibs or portions thereof, chocolate liquors, partially or fully defatted cocoa C0 solids, cocoa polyphenol extract, and combinations Sthereof having higher levels of cocoa polyphenols in comparison with conventionally produced cocoa components.
C The invention also relates to novel compositions containing the novel cocoa components including edible products, chocolates, chocolate-flavored Sconfections, chocolate-flavored compositions, ingestible products, digestible products, chewable compositions and C combinations thereof. The invention is thus in novel products having enhanced levels of cocoa polyphenols and novel products containing a cocoa polyphenol additive or a derivative thereof. The additive may be an extract from cocoa beans or a cocoa component thereof, or may be synthetic.
The invention further relates to the treatment of cocoa components, particularly chocolate liquors, to provide a cocoa component having high levels of cocoa polyphenols with acceptable aroma/flavor characteristics.
The treatment includes the removal of undesirable and/or off flavors that may be present in a cocoa component, the manipulation of the aroma/flavor profile using additives or the blending of cocoa components having varying levels of cocoa polyphenols and varying degrees of aroma/flavor.
The invention also relates to methods for the production of cocoa polyphenol extract from cocoa beans or components thereof and to the use of the extract as an additive to edible compositions.
The invention also relates to novel methods of improving the health of a mammal, particularly humans, using the products containing cocoa polyphenols, particularly products containing elevated levels of cocoa polyphenols. These methods include the use of the cocoa polyphenols to provide one or more of the following activities: reducing periodontal disease, antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, antineoplastic, antioxidant, DNA VC topoisomerase II enzyme inhibitor, cyclo-oxygenase modulator, lipoxygenase modulator, nitric oxide (NO) or NO-synthase modulator, non-steroidal anti-inflammatory, apoptosis modulator, platelet aggregation modulator, blood or in vivo glucose modulator, antimicrobial and inhibitor of oxidative DNA damage activity.
V' 'BRIEF DESCRIPTION OF THE DRAWINGS M Figs. 1 illustrate the change in the surface of the cut bean half during the fermentation of the cocoa bean: Fig. 1 depicts the cut bean half of an unfermented cocoa bean; Figs. 1 depict the cocoa bean as it is fermented, with Fig. 1 (d) illustrating the fully fermented cocoa bean; Fig. 2 is a graphical representation of cocoa polyphenols level/fermentation relationship for five cocoa bean samples, wherein the vertical axis represents the level of cocoa polyphenol pentamer (ug/g) from chocolate liquors derived from these cocoa beans defatted and the horizational axis is the degree of fermentation using the fermentation factor (as defined below); Fig. 3 shows an overview of the method of the present invention, and the various products which can be produced by the process (process options dependent upon economics of products, and/or by-products); Fig. 4 is a graphical representation illustrating the levels of total cocoa polyphenols present in the cocoa bean or portion thereof during conventional chocolate liquor processing (line A and during processing according to one embodiment of the invention (line B); Fig. 5 is a graphical representation of cocoa polyphenols level/heating temperature/heating time relationship for chocolate liquor samples heat treated at three different temperatures, wherein the vertical axis represents the level of cocoa polyphenol pentamer (ug/g) from defatted chocolate liquors and the horizational axis is the time of heat treatment.
DESCRIPTION OP THE PREFERRED EMBODIMENTS Dafinitiong; 1. The term "chocolate" refers to a solid or semi-
C
NI plastic food and is intended to refer to all chocolate or chocolate-like compositions containing a dispersion of solids within a fat phase. The term is intended to Sinclude compositions conforming to the U.S. Standards Of Identity (SOI), CODEX Alimentarius and/or other international standards and compositions not conforming to the U.S. Standards Of Identity or other international Cq standards. The term includes sweet chocolate, bittersweet or semisweet chocolate, milk chocolate, buttermilk chocolate, skim milk chocolate, mixed dairy product chocolate, sweet cocoa and vegetable fat coating, sweet chocolate and vegetable fat coating, milk chocolate and vegetable fat coating, vegetable fat based coating, pastels including white chocolate or coating made with cocoa butter or vegetable fat or a combination of these, nutritionally modified chocolate-like compositions (chocolates or coatings made with reduced calorie ingredients) and low fat chocolates, unless specifically identified otherwise.
In the United States, chocolate is subject to a standard of identity established by the U.S. Food and Drug Administration (FDA) under the Federal Food, Drug and Cosmetic Act. Definitions and standards for the various types of chocolate are well established in the U.S. Nonstandardized chocolates are those chocolates which have compositions that fall outside the specified ranges of the standardized chocolates.
The fat phase of the chocolate of the invention can include cocoa butter, milkfat, anhydrous milkfat, butteroil, and other vegetable fat and other modifications of these fats (CBR, CBE and CBS, referring to cocoa butter replacers, equivalents and substitutes) and synthetic fats or mixtures of cocoa butter with these fats. See Minifie, pp. 100-109.
c The chocolate may contain a sugar syrup/solids, invert sugar, hydrolyzed lactose, maple sugar, brown sugar, molasses, honey, sugar substitute and the like.
C The term "sugar substitute" includes bulking agents, sugar alcohols (polyols such as glycerol), or high potency sweeteners or combinations thereof. Nutritive Scarbohydrate sweeteners with varying degrees of sweetness M intensity may be any of those typically used in the art and include, but are not limited to, sucrose, e.g. from 10 cane or beet, dextrose, fructose, lactose, maltose, Sglucose syrup solids, corn syrup solids, invert sugar, hydrolyzed lactose, honey, maple sugar, brown sugar, molasses and the like. Sugar substitutes may partially replace the nutritive carbohydrate sweetener. High potency sweeteners include aspartame, cyclamates, saccharin, acesulfame-K, neohesperidin dihydrochalcone, sucralose, alitame, stevia sweeteners, glycyrrhizin, thaumatin and the like and mixtures thereof. The preferred high potency sweeteners are aspartame, cyclamates, saccharin, and acesulfame-K. Examples of sugar alcohols may be any of those typically used in the art and include sorbitol, mannitol, xylitol, maltitol, isomalt, lactitol and the like.
The chocolates may also contain bulking agents.
The term "bulking agents" as defined herein may be any of those typically used in the art and include polydextrose, cellulose and its derivatives, maltodextrin, gum arabic, and the like.
The chocolate products may contain emulsifiers.
Examples of safe and suitable emulsifiers may be any of those typically used in the art and include lecithin derived from vegetable sources such as soybean, safflower, corn, etc., fractionated lecithins enriched in either phosphatidyl choline or phosphatidyl ethanolamine, or both, mono- and digylcerides, diacetyl tartaric acid esters of mono- and diglycerides (also referred to as DATEM), monosodium phosphate derivatives of mono- and 16 CI diglycerides of edible fats or oils, sorbitan monostearate, hydroxylated lecithin, lactylated fatty acid esters of glycerol and propylene glycol, CI polyglycerol esters of fatty acids, propylene glycol mono- and di-esters of fats and fatty acids, or emulsifiers that may become approved for the US FDA- Sdefined soft candy category. In addition, other Semulsifiers that can be used include polyglycerol C< polyricinoleate (PGPR), ammonium salts of phosphatidic O 10 acid, YN) sucrose esters, oat extract, etc., any O emulsifier found to be suitable in chocolate or similar fat/solid system or any blend.
2. The term "chocolate-flavored confection" refers to food products, excluding "chocolate", having a chocolate flavor/aroma and comprising a cocoa fraction.
These products are stable at ambient temperatures for extended periods of time greater than 1 week) and are characterized as microbiologically shelf-stable at 18-300C under normal atmospheric conditions. Examples include chocolate-flavored hard candies, chewables, chewing gums, etc.
3. The term "chocolate-flavored compositions" refers to chocolate-flavored compositions, excluding "chocolate", containing a cocoa fraction and having a chocolate flavor/aroma. Examples include chocolateflavored cake mixes, ice creams, syrups, baking goods, etc.
4. The term "fats", as used herein, refer to triglycerides, diglycerides and monoglycerides that can normally be used in chocolates and chocolate-like products. Fats include the naturally occurring fats and oils such as cocoa butter, pressed cocoa butter, expeller cocoa butter, solvent extracted cocoa butter, refined cocoa butter, milkfat, anhydrous milkfat, fractionated milkfat, milkfat replacers, butterfat, fractionated butterfat, cocoa butter equivalents (CBE), cocoa butter substitutes (CBS), cocoa butter replacers (CBR), reduced Ccalorie fats and/or synthetically modified fats such as SCaprenin®. An example of a reduced calorie fat is Caprocaprylobehein (commonly known as Caprenin®) as C- described in U.S. Pat. No. 4,888,196 to Ehrman, et al., which is incorporated herein by reference.
The term "food product" includes any food V product, for example, those set forth in 21 CFR 101.12.
SThe term includes chocolate-flavored compositions C cakes, nougats, puddings, etc.), as well as compositions not having a chocolate-flavor caramels, etc.) 6. The term "fermentation factor" is a numerical cN quantification of the level of fermentation of a batch of cocoa beans. Fermentation factors range from 100 (under/unfermented) to 400 (fully fermented).
In order to assess the degree of fermentation, cocoa beans are typically subjected to a standard cut test for assessing quality as defined in industry grade standards. The bean halves are laid out on a board for visual inspection of color as well as defects which can arise during bean fermentation, drying and/or storage.
Beans can be divided into four fermentation categories according to their color and appearance: (a) fully fermented, predominantly a brown hue; (b) partially fermented, purple/brown; purple (underfermented); and slaty (very underfermented and/or unfermented beans).
Purple/brown beans include all beans showing any blue, purple or violet color on the exposed surface, whether suffused or as a patch. Purple beans should include all beans showing a completely blue, purple or violet color over the whole exposed surface. This should also include, irrespective of color, any beans which are slaty, but not predominantly so (wherein predominantly, in this context, means more than half).
The "fermentation factor" is determined using a grading system for characterizing the fermentation of the cocoa beans. Slaty, being under/unfermented, is designated as 1, purple as 2, purple/brown as 3 and brown Sas 4. The percentage of beans falling within each Scategory is multiplied by the weighted number. Thus, the c "fermentation factor" for a sample of 100% brown beans would be 100 x 4 or 400, whereas the fermentation factor for a sample of 100% purple beans would be 100 x 2 or 200. A sample of 50% slaty beans and 50% purple beans would have a fermentation factor of 150 [(50 x 1) (50 x Cut tests applicable to cocoa beans derived CI from the Trinitario and Forastero types may or may not be applicable to cocoa beans derived from the Criollo type, for example, where bean color variation ranging from fully purple to light tan can be encountered.
Accordingly, the cut test based on color would not be applicable to specific cocoa genotypes lacking the anthocyanin pigments responsible for the purple color, such as the Catango (or Catongo) type whose beans are light tan in color. Other exceptions include "cocoa beans" derived from other Theobroma species, the Herrania species and their inter- and intra-specific crosses. The beans from these species are "tan" in color. For these types of beans the level of fermentation may be determined using a modified standard cut test. Using the modified test, the surface of the bean (halved) is inspected for the degree of lines, fissures or cracks which form during fermentation, rather than the change of color.
Figs. 1 illustrate the change in the surface of the cut bean half during the fermentation of the cocoa bean. As can be seen from Figs. 1 the number of lines/fissures and the extent to which they extend across the entire surface of the cut bean half increases as the bean is fermented. Fig. 1 depicts the cut bean half of an unfermented cocoa bean where the surface is relatively smooth. Figs. 1 depict the cocoa beans as it is fermented, with Fig. 1 (d) CI illustrating the fully fermented cocoa bean. As the cocoa bean is fermented, the surface develops small branch-like lines or fissures. This modified test can CI also be used to approximate the fermentation factor wherein a cocoa bean corresponding to Fig. 1 is designated as 100, Fig. 1 as 200, Fig. 1 as 300 and Fig. 1 as 400.
Cc While the definitions of the aforementioned C< categories are a general guide, the assessment according to these categories is well within the skill of the Sordinary skilled artisan well versed in chocolate and cocoa processing (see Wood et al., Cocoa, 4th Ed. (1985), incorporated herein by reference, especially pages 511 to 513).
7. The numerical terms or qualitative characteristics of the level of cocoa polyphenols in beans or in components refer to the amount detectable and measurable using the method of evaluating the levels set forth in Example 8. The term "significant amount" means an amount which maintains the basic characteristics of the specified ingredients or composition or product.
9. The term "chocolate liquor" refers to the dark brown fluid "liquor" formed by grinding a cocoa nib. The fluidity is due to the breakdown of the cell walls and the release of the cocoa butter during the processing resulting in a suspension of ground particles of cocoa solids suspended in cocoa butter (See, Chocolate. Cocoa and Confectionery: Science and Technology, 3rd Ed., by Bernard W. Minifie).
The term "fair average quality cocoa beans" refers to cocoa beans that have been separated from the pulp material and dried and are relatively free of mold and infestation. Such beans are a commercial commodity and form the feedstock for the next step in the production processes, i.e. infra-red heating, roasting, pressing, etc. The term includes any such bean that has been genetically modified or produced.
11. The term "raw freshly harvested cocoa beans" refers to seeds or beans freshly harvested from the cocoa pod and which have not been subjected to processing other V) than separation from the pulp. The term includes any such bean that has been genetically modified or produced.
12. The term "partially defatted cocoa solids" refers to the solid portion(s) derived from shell-free partially defatted cocoa nibs, including cocoa powders, cocoa cake, cocoa polyphenol extracts, alkalized powders or cakes, etc. (excluding chocolate liquor and cocoa butter).
13. The term "cocoa polyphenol" refers to the polyphenol compounds present in cocoa beans and derivatives thereof. The term cocoa polyphenol is intended to include polyphenols extracted from cocoa beans and derivatives thereof, as well as structurally similar synthetic materials.
The term polyphenols includes the proanthocyanidins extracted from cocoa beans and derivatives thereof, as well as structurally similar synthetic materials and includes the procyanidins extracted from cocoa beans and derivatives thereof as well as structurally similar synthetic materials.
More specifically, the term "cocoa polyphenol" includes monomers (notwithstanding the term polyphenol) of the formula An (where n is 1) or oligomers of the formula An (where n is an integer from 2 to 18, and higher), wherein A has the formula:
OH
OH
8 and R is 3-(a)-O-sugar, or sugar; Sbonding between adjacent monomers takes place n at positions 4, 6 or 8; l a bond to a monomer in position 4 has alpha or beta stereochemistry; SX, Y and Z are selected from the group consisting of A, hydrogen, and a sugar, with the provisos that as to at least one terminal monomer, bonding of the adjacent monomer thereto is at position 4 and optionally Y Z hydrogen; the sugar is optionally substituted with a phenolic moiety; and salts, derivatives and oxidation products thereof.
Advantageously, the sugar is selected from the group consisting of glucose, galactose, xylose, rhamnose and arabinose. The sugar of any or all of R, X, Y, and Z can optionally be substituted at any position with a phenolic moiety via an ester bond. The phenolic moiety is selected from the group consisting of caffeic, cinnamic, coumaric, ferulic, gallic, hydroxybenzoic and sinapic acids.
One or more of the cocoa polyphenol compounds may be used simultaneously, in "combinations" in formulation(s) comprising one or more of such compounds.
The term "oligomer", as used herein, refers to any compound of the formula presented above, wherein n is 2 through 18, and higher. When n is 2, the oligomer is termed a "dimer"; when n is 3, the oligomer is termed a "trimer"; when n is 4, the oligomer is termed a "tetramer"; when n is 5, the oligomer is termed a "pentamer"; and similar recitations may be designated for U oligomers having n up to and including 18 and higher, such that when n is 18, the oligomer is termed an "octadecamer".
C The term "cocoa polyphenols" is further defined in U.S. applications Serial No. 08/317,226, filed October 3, 1994 (allowed, now U.S. Patent No. 5,554,645), Serial No. 08/631,661, filed April 2, 1996, Serial No.
08/709,406, filed September 6, 1996, and Serial No.
08/831,245, filed April 2, 1997, incorporated herein by reference.
C- 14. The term "treating" is intended to refer to methods of processing the cocoa beans including drying, heating roasting, infra-red heating, etc.), chemical treatment with anti-microbial agents), rehydrating, pressing, solvent extraction, microwave assisted extraction, etc.
The term "cocoa component" is intended to refer to a fraction derived from shell-free cocoa nib and includes chocolate liquor, partially or fully defatted cocoa solids cake or powders), cocoa extracts, cocoa butter, cocoa nib or portions thereof, etc.
DETAILED DESCRIPTION OF THE INVENTION A. Cocoa Bean Selection As set forth above, conventional processes utilize fermented cocoa beans to form cocoa components.
Applicants have discovered that the level of cocoa polyphenols in the cocoa beans decreases dramatically during fermentation. Fig. 2 shows the pentamer content of liquors derived from cocoa beans of different origins with varying degrees of fermentation. The data represented in this graph were collected by visually color sorting the beans. Categories used in grading were slaty, purple, purple brown, and brown the standard categories used by the industry to grade fermentation levels of beans during a cut test. Each sample (300g) was roasted for 15 minutes at 150°C in a convection oven.
The roasted beans were then cracked and winnowed. A liquor was produced using a Melange milling apparatus with a one hour cycle time. To make the fermentation a continuous scale (x-axis) the different colors were given C-i a weighted number.
These results demonstrated that underfermented beans have higher polyphenol levels than fermented beans.
SBy processing underfermented beans it is possible to make C liquors with higher polyphenol contents.
C Accordingly, one aspect of the invention relates to methods of producing cocoa components containing enhanced levels of cocoa polyphenols from underfermented cocoa beans. The use of underfermented cocoa beans or a blend of underfermented cocoa beans with fermented cocoa beans provides a cocoa component having enhanced levels of cocoa polyphenols.
Therefore, one embodiment of the invention relates to the use of cocoa beans having a fermentation factor less than 375, preferably less than 325, advantageously less than 275, even more advantageously less than 225, desirably less than 175 and most desirably less than 150. In another preferred embodiment underfermented cocoa beans having a fermentation factor less than 125 and even about 100 are used.
B. Methods of Producing Cocoa components Having Enhanced Levels of Polyphenols An outline of one embodiment of the invention is shown in Fig. 3. The method of the invention includes modifications of certain steps of the process to produce three types of products. One process modification (Modification A) enables the production of cocoa solids containing conserved levels of polyphenols relative to the level of polyphenols in the cocoa bean feedstocks.
Polyphenols are conserved in the product at higher levels than in conventional processes. Modification B enables the production of cocoa butter without necessarily the concomitant conservation of polyphenols. Modification C enables the production of cocoa solids and fat products with enhanced contents of polyphenols relative to Z conventional solid/fat separation processes.
n In a broad embodiment of the invention a cocoa c component having an enhanced content of cocoa polyphenol, is produced in a process comprising the steps of: treating cocoa beans containing cocoa polyphenols while conserving a significant amount of the C cocoa polyphenols content thereof to form treated cocoa beans; and producing the cocoa component from C< the treated cocoa beans.
A significant amount of the cocoa polyphenols is conserved using the inventive methods.
The cocoa beans may be fair average quality cocoa beans, raw freshly harvested cocoa beans or combinations thereof. The cocoa beans may be unfermented, underfermented, fully fermented or mixtures thereof, with fermentation factors ranging from 100 to 400. Preferably, the cocoa beans are underfermented to enable the production of a cocoa component having the highest levels of cocoa polyphenols.
One embodiment of the invention relates to methods of processing cocoa beans which are fair average quality cocoa beans wherein the cocoa polyphenols content of the cocoa component produced is from 25 to 100 by weight of the cocoa polyphenols content of the fair average quality cocoa beans. Preferably, the cocoa polyphenols content of the cocoa component produced is greater than 35% by weight of the cocoa polyphenols content of the fair average quality cocoa beans, advantageously greater than 45% by weight, even more advantageously greater than 55% by weight, and most advantageously greater than 65% by weight. According to other preferred embodiments, more than 75% by weight is conserved, desirably more than 85% by weight, more desirably more than 95% by weight and most desirably more than 99% by weight.
SAnother embodiment of the invention relates to methods of processing raw freshly harvested cocoa beans Swherein the cocoa polyphenols content of the cocoa C- component produced is from 5 to 100 by weight of the cocoa polyphenols content of the raw freshly harvested cocoa beans. Preferably, the cocoa polyphenols content V of the cocoa component produced is greater than 10% by ic mweight of the cocoa polyphenols content of the raw CI freshly harvested cocoa beans, advantageously greater than 15%. More advantageously greater than 20%, and Sstill more advantageously greater than 25%. According to one preferred embodiment, greater than 30% is conserved, advantageously greater than 35%, more advantageously greater than 40% and most preferred greater than According to a still further preferred embodiment, greater than 50% is conserved, advantageously greater than 55%, even better greater than 60% and most preferred greater than 65%. According to an even further preferred embodiment, greater than 70% is conserved, advantageously greater than 75%, even better greater than 80% by weight and most preferred greater than The processing steps include heat-treating roasting, infra-red heating, etc.), drying, chemical treatments, etc. Preferably, the treatment steps develop chocolate flavor without significantly reducing the cocoa polyphenols content of the feedstock thereof to form heat-treated cocoa beans.
According to one embodiment of the invention the step of treating the cocoa beans comprises heattreating the cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof to form heat-treated cocoa beans.
The heat-treating includes roasting, infra-red heating, drying at elevated temperatures and combinations thereof.
According to one embodiment of the invention, U the heating of the cocoa bean is to an IBT (internal bean temperature) greater than 120°C for at least 1 minute and [I the content of cocoa polyphenols in the heat-treated beans is at least 75% by weight (fullfat) of the cocoa polyphenols content in the pre-treated cocoa beans, advantageously greater than 80% by weight, more desirable greater than 85% by weight, even better greater than by weight and most preferred greater than 95% by weight.
According to another embodiment of the invention, the heating of the cocoa bean is to an IBT Cl (internal bean temperature) above 140 0 C for at least 1 minute and the content of cocoa polyphenols in the heattreated beans is at least 60% (fullfat) by weight of the cocoa polyphenols content in the pre-treated cocoa beans, advantageously greater than 65% by weight, more desirable greater than 70%, even better greater than 75% and most preferred greater than According to yet another embodiment of the invention, the heating of the cocoa bean is to an IBT (internal bean temperature) above 160°C for at least 1 minute and the content of cocoa polyphenols in the heattreated beans is at least 40% by weight (fullfat) of the cocoa polyphenols content in the pre-treated cocoa beans, advantageously greater than 45%, more desirable greater than 50% by weight, even better greater than 55% by weight and most preferred greater than According to a still further embodiment of the invention, the heating of the cocoa bean is to an IBT (internal bean temperature) above 1200C for at least 1 minute and the content of cocoa polyphenol pentamer (fullfat) in the heat-treated beans is at least 60% by weight of the cocoa polyphenol pentamer content in the pre-treated cocoa beans, advantageously greater than more desirable greater than 70%, even better greater than 75% and most preferred greater than According to another embodiment of the invention, the heating of the cocoa bean is to an IBT C< (internal bean temperature) above 140 0 C for at least 1 Sminute and the content of cocoa polyphenol pentamer (fullfat) in the heat-treated beans is at least 25% by CI weight of the cocoa polyphenol pentamer content in the pre-treated cocoa beans, advantageously greater than more desirable greater than 35%, even better greater than V' 40% and most preferred greater than c According to another embodiment of the CI invention, the heating of the cocoa bean is to an IBT O 10 (internal bean temperature) above 160°C for at least 1 O minute and the content of cocoa polyphenol pentamer (fullfat) in the heat-treated beans is at least 15% by weight of the cocoa polyphenol pentamer content in the pre-treated cocoa beans, advantageously greater than more desirable greater than 25%, even better greater than and most preferred greater than Roasting comprises applying external heat to the cocoa bean or nib by a combination of conduction and convection. With conventional roasting conditions, moisture and volatile substances diffuse from the inner parts of the nib pieces.
According to one embodiment of the invention, roasting is preferably conducted at an internal bean temperature of from 95 to 1600 C for from 30 seconds to hours, advantageously from 95 to 1500 C for from 1 minute to 3 hours, even better from 95 to 140° C for from 1 minute to 1 hour and most preferred from 95 to 1200 C for from 1 minute to 1 hour.
Infra-red heating comprises applying infra-red heat so that the shells of the beans are rapidly heated.
The shells dry, expand and loosen themselves from the nibs.
Preferably, the infra-red heating is conducted at an internal bean temperature of from 95 to 135 °C for from 1 to 5 minutes, advantageously from 95 to 1250C, even better from 95 to 115 0 C and most preferred from about 95-110 OC.
"U Preferably, the infra-red heating step is for a Speriod of time less than 8 minutes, advantageously less than 7 minutes, even better less than 6 minutes and most
C
1 preferred less than 5 minutes. According to a preferred embodiment, the period of time is less than 4 minutes, advantageously less than 3 minutes, even better less than 2 minutes and most preferably less than 1 minute.
According to one embodiment, the treating comprises drying the cocoa beans to form dried cocoa beans. The drying may be at ambient temperature or at an CI elevated temperature, preferably for a time and to an extent sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof. The drying typically reduces the moisture of the cocoa bean to less than 7% by weight.
Preferably, the drying decreases the moisture content of the cocoa bean to less than 4% by weight, advantageously to less than 3% by weight, even better to less than 2% by weight and most preferred to less than 1% by weight.
This embodiment of the invention may further comprise the step of producing chocolate liquor containing an enhanced content of cocoa polyphenols from the dried cocoa beans. The chocolate liquor may be produced by conventional grinding methods. Preferably, the chocolate liquor is cooled during grinding to reduce further losses of cocoa polyphenols.
According to another embodiment, the cocoa beans are raw freshly harvested cocoa beans containing a cocoa polyphenols content and the treating comprises: at least partially fermenting the raw freshly harvested cocoa beans to form at least partially fermented cocoa beans; and (ii) heat-treating the at least partially fermented cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof to form heat-treated cocoa beans.
CPreferably, the cocoa beans are raw freshly Sharvested cocoa beans having a fermentation factor less than about 125.
;C According to another embodiment, the treating comprises: drying cocoa beans containing a cocoa polyphenols content to form dried cocoa beans; and S(ii) infra-red heating the dried cocoa CI beans at an elevated temperature for a time sufficient to form infra-red heated cocoa beans while conserving a Ssignificant amount of the cocoa polyphenols content thereof.
According to yet another embodiment, the cocoa beans have shells and the treating comprises: infra-red heating the cocoa beans at an elevated temperature for a time sufficient to loosen the shells while conserving a significant amount of the cocoa polyphenols content thereof to form infra-red heated cocoa beans; and (ii) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while further conserving a significant amount of the cocoa polyphenols content thereof to form roasted cocoa beans.
According to a still further embodiment, the treating comprises: infra-red heating the cocoa beans at an elevated temperature for a time sufficient to reduce their moisture to less than 5 by weight while conserving a significant amount of the cocoa polyphenols content thereof to form infra-red heated cocoa beans; and (ii) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while further conserving a significant amount of the cocoa polyphenols content thereof to form roasted cocoa beans.
According to another embodiment of the Sinvention, the treating comprises: V drying cocoa beans containing a cocoa polyphenols content to form dried cocoa beans; (ii) infra-red heating the dried cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant 0 amount of the cocoa polyphenols content thereof to form infra-red heated cocoa beans; and (iii) roasting the infra-red heated cocoa CI beans at an elevated temperature for a time sufficient to further develop chocolate flavor while further conserving a significant amount of the cocoa polyphenols content thereof to form roasted cocoa beans.
Surprisingly, it has been discovered that the polyphenols content of the cocoa bean may be maintained or conserved by controlling the treatment of the beans.
Referring to Fig. 4, a graphical representation illustrates the levels of total cocoa polyphenols present in the cocoa bean or portion thereof during conventional chocolate liquor processing (line A) and processing according to one embodiment of the invention (line B).
As can be seen by the graph, an initial loss in polyphenols content occurs during fermentation, additional loss occurs during roasting and further loss occurs during liquor, nib, cake or powder alkalizing (during the manufacture of chocolate).
According to the invention, the cocoa polyphenols content of the cocoa component produced is from 25 to 100% by weight of the cocoa polyphenols content in the fair average quality cocoa beans, advantageously from 35 to 100% by weight, more desirable from 45 to 100% by weight, even better from 55 to 100% by weight and more preferred from 65 to 100% by weight.
The invention permits the retention of higher levels of the cocoa polyphenols content not only with respect to the fair average quality cocoa beans, but also Ci with respect to raw freshly harvested cocoa beans. Using Sthe method of the invention, the cocoa polyphenols content of the cocoa component produced is from 5 to 100% C-i by weight of the cocoa polyphenols content in the raw freshly harvested cocoa beans, advantageously from 10 to by weight of the cocoa polyphenols content in the raw Sfreshly harvested cocoa beans, preferably from 15 to Sby weight, even better from 20 to 45% by weight and most C- preferred greater than 30% by weight.
S 10 According to one embodiment, the cocoa 0 polyphenols content of the infra-red heated cocoa beans is at least 55% by weight of the cocoa polyphenols content of the fair average quality cocoa beans, preferably at least 65%, advantageously at least even better at least 85% and most preferred at least The cocoa polyphenol pentamer content of the infra-red heated cocoa beans may be at least 30% by weight of the cocoa polyphenol pentamer content of the fair average quality cocoa beans, preferably at least 35%, advantageously at least 40%, even better at least and most preferred at least When infra-red heating and roasting steps are used in combination, the cocoa polyphenols content of the roasted cocoa beans is preferably at least 75% by weight of the cocoa polyphenols content of the infra-red heated cocoa beans, advantageously at least 80%, even better at least 85% and most preferred at least Alternatively, the cocoa polyphenol pentamer content of the roasted cocoa beans is at least 40% by weight of the cocoa polyphenol pentamer content of the infra-red heated cocoa beans, advantageously at least 50%, even better at least 60% and most preferred at least One preferred aspect of the invention relates to the production of chocolate liquors containing enhanced levels of cocoa polyphenols. Therefore, the cocoa components produced by the inventive methods preferably include chocolate liquor.
C Accordingly, one embodiment of the invention Srelates to a method for the production of chocolate Sliquor having an enhanced content of cocoa polyphenols comprising the steps of: treating cocoa beans, containing cocoa polyphenols, while conserving a significant amount of the cocoa polyphenols content thereof to form treated cocoa beans; and C producing chocolate liquor containing an enhanced content of cocoa polyphenols from the treated C< cocoa beans.
Preferably, the cocoa polyphenols content in the chocolate liquor is at least 65% by weight of the cocoa polyphenols content of the cocoa beans, advantageously at least 75%, even better at least 85% and most preferred greater than Preferably, the cocoa polyphenol pentamer content in the chocolate liquor is at least 45% by weight of the cocoa polyphenol pentamer content of the cocoa beans, advantageously at least 55%, even better at least and most preferred greater than The invention also relates to the treatment of cocoa components, particularly chocolate liquors, to provide a cocoa component having high levels of cocoa polyphenols with acceptable aroma/flavor characteristics.
The treatment includes the removal of undesirable or off flavors present in a cocoa component. The flavor may also be modified using additives or the blending of cocoa components having varying levels of cocoa polyphenols and varying degrees of aroma/flavor.
The chocolate liquor or cocoa component may be subsequently heat-treated to remove any undesirable or off flavors.
The subsequent heat-treating is preferably to a temperature between 65 and 140°C for from 5 minutes to 24 hours, advantageously between about 75 and 130"C for from minutes to 2 hours, even better between about 85 and (4 120 0 C for from 5 minutes to 1 hour and most preferred between about 95 and 110°C for from 5 minutes to minutes.
SPreferably, the subsequent heat-treating includes agitation to facilitate the removal of offflavors. The heating may be under a vacuum to assist in n the removal of off-flavors, preferably wherein the m pressure is less than 26 inches (660 mm) mercury. The C- chocolate liquor or cocoa component may also be aerated 10 during the heat-treatment. Fig. 5 illustrates the effect 0 of different heat treatment temperatures (75 0 C, 950C, 125 0 C) on pentamer level vs. time of heating in a chocolate liquor. Fig. 5 shows that long treatments at temperatures greater than 100"C should be avoided.
According to one embodiment, the liquor or cocoa component is subsequently directly heated with steam.
Preferably, the cocoa polyphenols content of the chocolate liquor is at least 55% by weight of the cocoa polyphenols content of the cocoa beans, advantageously at least 65%, even better at least 75% and most preferred at least Preferably, the cocoa polyphenol pentamer content of the chocolate liquor is at least 45% by weight of the cocoa polyphenol pentamer content of the cocoa beans, advantageously at least 55%, even better at least and most preferred at least Another aspect of the invention relates to methods of making chocolate liquors without the use of an alkalization step and/or without the use of a conventional roasting step.
One embodiment of the invention relates to methods of making a non-alkalized chocolate liquor comprising the steps of: heating cocoa beans using infra-red radiation; and producing a chocolate liquor from the Sheated cocoa beans; ywherein the chocolate liquor is not C subsequently alkalized.
Another embodiment of the invention relates to a method of making a chocolate liquor comprising the steps of: S(a) heating cocoa beans using infra-red Cq radiation to loosen their shell; and producing a chocolate liquor from the ^C heated cocoa beans without a subsequent heating step.
According to this embodiment of the invention, the heating is achieved by the use of an infra-red heater. A suitable infra-red heater is manufactured by Micronizer Company Ltd. The infra-red heating is performed at elevated temperatures as compared to conventional processing conditions to not only assist in removing the strongly adhering shells from the cocoa nibs, but also to lightly roast the raw beans. The level of thermal processing achieved with the infra-red heating eliminates the need for a conventional bean roaster. The infra-red heating puffs and loosens the shells from the beans to facilitate removal in the winnowing process.
Preferably, the infra-red heating is performed at elevated temperatures to give a sufficient roast to the raw beans and thereby eliminate the need for an additional bean roaster. The elimination of the conventional bean roasting step greatly simplifies and reduces the cost of the method or process.
Preferably, the heating reduces the cocoa bean moisture content to less than 7% by weight, preferably less than 5% by weight, advantageously less than even better less than and most preferred less than 2%.
As set forth above, the cocoa polyphenols content of the cocoa beans decreases dramatically during fermentation. One aspect of the invention relates to the use of underfermented or unfermented cocoa beans in the Cproduction of the cocoa component. Preferably, the cocoa beans have a fermentation factor less than 375, s advantageously less than 350, even better less than 325, CS and most preferred less than 300.
According to yet another embodiment, highly underfermented cocoa beans are used. Preferably, the V) cocoa beans have a fermentation factor less than 275, mc advantageously less than 250, even better less than 225, Cl and most preferred less than 200. Cocoa beans having a fermentation factor less than 150 or even unfermented Sbeans a fermentation factor of about 100) may also be used.
According to another aspect of the invention, the method comprises the step of at least partially fermenting raw freshly harvested cocoa beans containing a cocoa polyphenols content to form at least partially fermented cocoa beans and subsequently treating the at least partially fermented cocoa beans. Preferably, the at least partially fermented cocoa beans have a fermentation factor less than 375, even better less than 200 and most preferred less than 150.
Another aspect of the invention relates to methods for the commercial production of cocoa polyphenols, for use as an edible, ingestible or pharmaceutical component, from cocoa beans comprising the steps of: processing cocoa beans to separate cocoa butter from cocoa solids; and extracting cocoa polyphenols from the cocoa solids, wherein the processing comprises the steps of pressing, microwave assisted extraction (see U.S.
Patent No. 5,002,784 to Pare et solvent extraction or combinations thereof.
Another embodiment of the invention relates to methods for the commercial production of cocoa polyphenols from cocoa beans comprising the sequential steps of: extracting cocoa polyphenols from the cocoa beans; and S(b) separating a cocoa component from cocoa shell.
According to one preferred embodiment, the cocoa beans are underfermented to enhance the amount of cocoa polyphenols. Preferably, the cocoa beans have a 0 fermentation factor less than 375, even better less than 350 and most preferred less than 325.
C. Cocoa Components having Enhanced Levels of Coooa Polyphenols 1. Chocolate Liquors Using the above-described methods, chocolate liquors having enhanced levels of cocoa polyphenols are obtained.
When characterizing an inventive product by relating the amount of cocoa polyphenols per gram ingredient in the inventive product, that ingredient does not necessarily contain the cocoa polyphenols, but rather it is the product that contains the cocoa polyphenols.
One embodiment relates to a chocolate liquor produced from fair average quality cocoa beans having a fermentation factor greater than 375, the chocolate liquor containing at least 5500 pg, preferably at least 6000 pg, advantageously at least 7000 Mg, even better at least 8000 pg and most preferred at least 9000 pg cocoa polyphenols per gram chocolate liquor. Preferably, the chocolate liquor contains at least 500 pg cocoa polyphenols pentamer per gram chocolate liquor, advantageously at least 600 pg, even better at least 700 pg and most preferred at least 800 pg per gram chocolate liquor.
Another embodiment relates to a chocolate liquor produced from cocoa beans having a fermentation factor less than 375, the chocolate liquor containing at least 16,500 pg cocoa polyphenols per gram chocolate Sliquor, advantageously at least 20,000 pg, even better at least 25,000 Ag and most preferred at least 30,000 pg cocoa polyphenols per gram chocolate liquor. Preferably, l the chocolate liquor contains at least 1,500 pg cocoa polyphenol pentamer per gram chocolate liquor, more preferably at least 1,750 pg, advantageously at least V 2,000 gg, even better at least 2,500 pg and most c preferred at least 3,000 Mg per gram chocolate liquor.
-C Yet another embodiment relates to a chocolate 10 liquor comprising cocoa butter, partially defatted cocoa 0 solids and cocoa polyphenols, wherein the partially defatted cocoa solids contain at least 33,000 Ag cocoa polyphenols per gram defatted cocoa solids, advantageously at least 40,000 Mg, even better at least 50,000 Mg and most preferred at least 60,000 Mg cocoa polyphenols per gram defatted cocoa solids. Preferably, the chocolate liquor contains at least 3,000 pg cocoa polyphenol pentamer per gram defatted cocoa solids, preferably at least 3,500 Mg, advantageously at least 4,000 gg, even better at least 5,000 pg and most preferred at least 6,000 Mg per gram per gram defatted cocoa solids. Preferably, the chocolate liquor is derived substantially from underfermented cocoa beans having a fermentation factor less than 375, advantageously less than 350, even better less than 300 and most preferred less than 250.
2. Partially Defatted Cocoa Solids Having Enhanced Levels of Cocoa Polyphenols One embodiment of the invention relates to partially defatted cocoa solids having elevated levels of cocoa polyphenols. Preferably, the cocoa solids contain at least 33,000 pg cocoa polyphenols per gram defatted cocoa solids, advantageously at least 40,000 pg, even better at least 50,000 Mg and most preferred at least 60,000 pg cocoa polyphenols per gram defatted cocoa solids. Preferably, the cocoa solids contain at least 3,000 pg cocoa polyphenol pentamer per gram defatted 38 cocoa solids, advantageously at least 3,500 pg, even Sbetter at least 4,000 pg, more preferably at least 5,000 SMg, and most preferred at least 6,000 Mg per gram defatted cocoa solids.
Preferably, the partially defatted cocoa solids are derived substantially from underfermented cocoa beans having a fermentation factor less than 375, 0 advantageously less than 350, even better less than 300 and most preferred less than 250.
The partially defatted cocoa solids may be in CI cake or powder form.
D. Methods of Making Novel Edible Products Containing Cocoa Polyphenols One embodiment of the invention relates to a method of making an edible product containing a cocoa component having an enhanced content of cocoa polyphenols comprising the steps of: treating cocoa beans containing a cocoa polyphenols content while conserving a significant amount of the cocoa polyphenols content thereof to form treated cocoa beans; producing the cocoa component from the treated cocoa beans; and including the component in the edible product.
The cocoa component may be selected from the group consisting of cocoa nib, chocolate liquor, partially or fully defatted cocoa solids, cocoa polyphenol extract and mixtures thereof.
Another embodiment of the invention relates to a method of making an edible product having an enhanced content of cocoa polyphenols comprising adding a cocoa polyphenol additive or a derivative thereof. The cocoa polyphenol additive may be mixed with the other ingredients of the edible composition at any time during the processing or added to the edible product after processing spraying cocoa polyphenols onto the product).
Ci Preferably, the cocoa polyphenol additive is an extract from cocoa beans or a cocoa component thereof.
The cocoa polyphenol additive may either be substantially CI pure greater than 95% by weight pure) or mixed with other components.
The cocoa polyphenol additive may either be synthetic or derived naturally.
0 E. Methods of Making Chocolates Having Enhanced Levels of Cocoa Polyphenols SThe cocoa components having enhanced levels of CI cocoa polyphenols may be used to form chocolates by conventional methods.
One aspect of the invention relates to the manipulation of the flavor of the final chocolate product. The use of a cocoa component having higher levels of cocoa polyphenols typically affects the flavor/aroma of the final product. The higher cocoa polyphenols content is typically associated with a bitter, astringent flavor. Various methods may be used to reduce the bitter, astringent note in the cocoa component. According to one embodiment of the invention, flavor additives are used to mask or reduce the flavor/aroma of the product.
This aspect of the invention relates to the use of at least two chocolate liquors having varying levels of cocoa polyphenols. For example, a first chocolate liquor derived from fermented cocoa beans (having a low cocoa polyphenols level) and a second chocolate liquor derived from underfermented beans (having a higher cocoa polyphenols level) are advantageously used. The use of such a blend allows for the production of a chocolate having strong flavor/aroma characteristics as well as enhanced levels of cocoa polyphenols.
One preferred aspect of the invention uses a two step heat treatment (split hot conching) in the processing of the chocolate. The first chocolate liquor having the lower levels of cocoa polyphenols is subjected to a heat treatment at elevated temperatures to develop flavor. Since the first chocolate liquor has lower V3) levels of cocoa polyphenols, it may be subjected to the higher temperature. The heat treated first chocolate liquor is subsequently combined with the second chocolate liquor having the enhanced levels of cocoa polyphenols and further processed into the final chocolate product.
Using this method, the chocolate liquor containing the enhanced levels of cocoa polyphenols is not necessarily exposed to the elevated temperatures, thereby preventing C< a significant reduction in the polyphenols.
One embodiment of the invention relates to a method of making a chocolate comprising the steps of: combining chocolate liquor from cocoa beans having a fermentation factor greater than 375 with at least one additive selected from the group consisting of: at least one fat; (ii) at least one sugar; (iii) milk solids; and (iv) mixtures thereof; to form an initial mixture; heating the initial mixture to a temperature less than about 2000 C for 5 minutes to 24 hours; cooling the initial mixture; combining the initial mixture with a second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining ingredients to form a secondary mixture; and conching the secondary mixture.
Preferably, the milk solids are in an amount greater than or equal to 12 by weight.
Accordingly, one embodiment of the invention relates to a method of making a chocolate composition comprising the steps of: combining a first chocolate liquor from cocoa beans having a fermentation factor greater in than 375, cocoa butter and sugar to form an initial mixture; heating the initial mixture to a temperature less than about 2000 C for 5 minutes to 24 hours; cooling the initial mixture; S(d) combining the initial mixture with a second chocolate liquor from cocoa beans having a C fermentation factor less than 375 and any remaining ingredients to form a secondary mixture; and conching the secondary mixture.
Another embodiment of the invention relates to a method comprising the steps of: combining a chocolate liquor high in cocoa polyphenols (preferably having a fermentation factor less than 375) with at least one ingredient and heating to a temperature preferably less than 140°C, more preferably less than 100 0 C for a period of time between minutes to 24 hours; cooling the mixture; combining the remaining ingredients; and conching the second mixture.
Another embodiment of the invention relates to a method comprising the steps of: heating a chocolate liquor high in cocoa polyphenols, preferably a fermentation factor less than 375, to a temperature preferably less than 140°C for minutes to 24 hours; combining the heated chocolate liquor with other chocolate ingredients; and conching.
Another embodiment of the invention relates to a method for the production of a chocolate comprising the steps of: j(a) heating a first chocolate liquor from cocoa beans having a fermentation factor greater than 375 Sand any remaining ingredients to a temperature less than about 2000 C for 5 minutes to 24 hours; cooling the first chocolate liquor; combining the cooled first chocolate V) liquor with a second chocolate liquor from cocoa beans Ccr having a fermentation factor less than 375 to produce a secondary mixture; and conching the secondary mixture.
Preferably, the fermentation factor of the second chocolate liquor is less then 350, advantageously less than 300, even better less than 275, and most preferred less than 250. According to a preferred embodiment, the fermentation factor of the second chocolate liquor is less than 225, advantageously less than 200, even better less than 150, and most preferred less than 125.
F. Methods of Producing cocoa Butter and Partially Defatted Cocoa Solids Yet another aspect of the invention relates to the production of cocoa butter without necessarily the concomitant conservation of polyphenols. This aspect of the invention relates to a method for processing cocoa beans to make cocoa butter and cocoa powder. In particular, the method comprises the steps of cleaning and preparing the cocoa beans, infra-red heating of the cocoa beans, shell removal, screw pressing of nibs to extract the cocoa butter from the cocoa solids, milling the natural cocoa cake and/or alkalizing the natural cocoa cake and milling the alkalized cake. The method delivers both natural cocoa butter and powders (natural and/or value added alkalized powders) from the screw pressed nibs. The invention provides a method for processing cocoa beans to produce cocoa butter and cocoa powder that requires lower total assets since bean roasting and liquor milling are not required and a significantly less complex process with respect to c-s maintenance, energy and labor.
SOne embodiment of the invention relates to a method of producing cocoa solids and cocoa butter comprising the steps of: heating cocoa beans having an outer cocoa M" shell and inner cocoa nib using infra-red radiation to an internal temperature greater than 115°C; separating the shell from the nib; and subsequently extracting the cocoa butter by screw pressing the nibs.
One preferred embodiment comprises the steps of air fluidized bed density separation to clean the cocoa beans, infra-red heating of the cleaned cocoa beans at elevated temperatures exceeding 115 0 C, shell removal, screw pressing of the nibs to produce cocoa butter and cocoa cake, alkalizing the cocoa cake, and air-classified hammer milling of the natural and/or alkalized cocoa cake to produce cocoa powder.
A still further embodiment of the invention relates to a method of producing cocoa butter and cocoa cake solids comprising the steps of: cleaning a mixture comprising cocoa beans to separate cocoa beans from non-cocoa solids; heating cocoa beans having an outer cocoa shell and an inner cocoa nib using infrared radiation to an internal temperature greater than 125°C; removing the outer cocoa shell from the nib; screw pressing the nibs to extract the cocoa butter leaving cocoa cake solids; and cooling the cocoa butter to room temperature.
SPreferably, the heating is to an IBT (internal bean temperature) greater than 120 0 C, advantageously greater than 125°C, even better greater than 130°C and ^C most preferred greater than 135 0 C. The heating preferably results in cocoa beans having a moisture content of about 3 percent by weight.
SAnother preferred embodiment of the invention C relates to the use of infra-red heating of the cocoa C\ beans at temperatures up to or exceeding 125°C to result in a light roast and loosening of the shell and Ssubsequently using a screw press to extract cocoa butter from the lightly roasted bean.
According to one embodiment, the surface temperature of the bean is heated from about 160 to about 1700C, while the internal temperature of the bean is preferably heated to about 130 to about 140 0 C. The resultant nibs should have a reduced moisture content of about 3% prior to pressing. The time of exposure to the infra-red heating is preferably about 0.5 to 4 minutes, however this may be varied depending on the amount of moisture in the nib. The bean height through the infrared heater should be about two beans high.
According to another preferred embodiment of the invention, the infra-red heated beans are cooled to ambient temperature after the infra-red heating step.
This is to avoid continued loss of moisture resulting from the infra-red heating prior to the screw pressing step. The nibs subjected to the screw press preferably have a moisture content of about 3% with a normal operating moisture range of between 2-6%.
The cocoa beans may be cooled to room temperature after the heating and subsequently pre-heated to a temperature between about 80 0 C and about 90 0 C prior to the step of screw pressing.
According to one preferred embodiment, prior to the step of heating, the beans are cleaned using a fluidized-bed separator. Preferably, the cocoa beans are subjected to a pre-cleaning step prior to cleaning in the air fluidized bed density separator.
nPreferably, the step of separating includes a winnowing step to separate the shell from cocoa nibs prior to the pressing step.
tPreferably, the screw pressing forms cocoa Sbutter and cocoa cake solids. According to one O embodiment, the cocoa cake solids are subsequently treated by alkalizing to form alkalized cocoa cake solids. The alkalized cocoa cake solids may be C subsequently milled to produce fine cocoa powders.
Yet another embodiment of the invention relates to a method of winnowing cocoa beans comprising separating shells from an inner bean portion of the cocoa beans using an air fluidized-bed density separator.
Preferably, the air fluidized-bed density separator comprises a means for homogenizing material introduced therein and at least one vibratory screen, advantageously the air fluidized-bed density separator comprises three vibratory screens. Surprisingly, greater than 99.5% of the shells are removed by the inventive method, preferably wherein less than 1.1% of the inner bean portion by weight are removed with the shell.
G. Novel Edible Products Containing Coaoa Polyphenola Using the methods described above, novel edible compositions containing cocoa polyphenols, particularly enhanced levels of cocoa polyphenols, are made. The novel compositions are distinguishable from conventional compositions either because the inventive compositions contain elevated levels of cocoa polyphenols relative to comparative conventional product chocolates, chocolate-flavored confections, etc.) and/or the inventive compositions contain cocoa polyphenols in contrast to the comparative composition which does not contain cocoa polyphenols rice cakes, edible compositions without chocolate flavor/aroma, etc.).
1. Standard of Identity Chocolate One embodiment of the invention relates to a standard of identity chocolate comprising at least 3,600 SCgpg cocoa polyphenol per gram chocolate, preferably at least 4,000 gg, advantageously at least 4,500 Mg, even better at least 5,000 pg, and most preferred at least V 5,500 jg cocoa polyphenols per gram chocolate. According to one preferred embodiment, the standard of identity O chocolate contains least 6,000 pg cocoa polyphenols per gram chocolate, advantageously at least 6,500 qg, even Sbetter at least 7,000 Mg, and most preferred at least 8,000 pg cocoa polyphenols per gram chocolate.
Another embodiment of the invention relates to a standard of identity chocolate comprising at least 200 Ag cocoa polyphenol pentamer per gram chocolate, advantageously at least 225 Mg, even better at least 275 Mg, and most preferred at least 300 mg cocoa polyphenol pentamer per gram chocolate. According to one preferred embodiment, the standard of identity chocolate contains at least 325 Ig cocoa polyphenol pentamer per gram chocolate, advantageously at least 350 pg, even better at least 400 Mg, and most preferred at least 450 pg cocoa polyphenol pentamer per gram chocolate.
2. Standard of Identity Chocolate Containing Milk Solids Yet another embodiment of the invention relates to a standard of identity chocolate containing milk solids and comprising at least 1,000 Mg cocoa polyphenols per gram chocolate, advantageously at least 1,250 pg, even better at least 1,500 pg, and most preferred at least 2,000 Mg cocoa polyphenols per gram chocolate.
According to one preferred embodiment, the standard of identity chocolate contains at least 2,500 pg cocoa polyphenols per gram chocolate, advantageously at least 3,000 Mg, even better at least 4,000 Mg, and most preferred at least 5,000 pg cocoa polyphenols per gram chocolate.
Another embodiment of the invention relates to a standard of identity chocolate containing milk solids and comprising at least 85 Ag cocoa polyphenol pentamer per gram chocolate, advantageously at least 90 Ag, even t~ better at least 100 ig, and most preferred at least 125 mg cocoa polyphenol pentamer per gram chocolate.
According to one preferred embodiment, the standard of identity chocolate contains at least 150 Mg cocoa Spolyphenol pentamer per gram chocolate, advantageously at 0 least 175 pg, even better at least 200 gg, and most preferred at least 250 pg cocoa polyphenol pentamer per gram chocolate.
C
Preferably the standard of identity milk chocolate contains milk solids in an amount greater than or equal to 12% by weight.
3. Chocolates Comprising a Cocoa component Another embodiment of the invention relates to chocolates comprising a cocoa component, wherein the chocolate contains at least 3,600 pg, preferably at least 4,000 pg cocoa polyphenols per gram chocolate, advantageously at least 4,500 Mg, even better at least 5,000 Ig, and most preferred at least 5,500 pg cocoa polyphenols per gram chocolate. According to one preferred embodiment, the chocolate contains least 6,000 pg cocoa polyphenols per gram chocolate, advantageously at least 6,500 pg, even better at least 7,000 Mg, and most preferred at least 8,000 pg cocoa polyphenols per gram chocolate.
Another embodiment of the invention relates to a chocolate comprising at least 200 Mg cocoa polyphenol pentamer per gram chocolate, advantageously at least 225 Ag, even better at least 275 pg, and most preferred at least 300 Mg cocoa polyphenol pentamer per gram chocolate. According to one preferred embodiment, the chocolate contains at least 325 Mg cocoa polyphenol pentamer per gram chocolate, advantageously at least 350 gg, even better at least 400 Mg, and most preferred at least 450 Mg cocoa polyphenol pentamer per gram chocolate.
4. Chocolates Comprising Milk Solids Yet another embodiment of the invention relates to a chocolate containing milk solids a milk Schocolate) and comprising at least 1,000 pg cocoa polyphenols per gram chocolate, advantageously at least 1,250 pg, even better at least 1,500 pg, and most Spreferred at least 2,000 pg cocoa polyphenols per gram Cchocolate. According to one preferred embodiment, the pC chocolate contains at least 2,500 pg cocoa polyphenols C 10 per gram chocolate, advantageously at least 3,000 Ag, Seven better at least 4,000 pg, and most preferred at least 5,000 pg cocoa polyphenols per gram chocolate.
Another embodiment of the invention relates to a chocolate containing milk solids and comprising at least 85 pg cocoa polyphenol pentamer per gram chocolate, advantageously at least 90 pg, even better at least 100 pg, and most preferred at least 125 pg cocoa polyphenol pentamer per gram chocolate. According to one preferred embodiment, the chocolate contains at least 150 pg cocoa polyphenol pentamer per gram chocolate, advantageously at least 175 pg, even better at least 200 pg, and most preferred at least 250 pg cocoa polyphenol pentamer per gram chocolate.
Preferably, the chocolate contains milk solids in an amount greater than or equal to 12% by weight.
Chocolates Comprising a Cocoa Component Yet another embodiment of the invention relates to a chocolate comprising a fat phase and a cocoa component containing a cocoa polyphenols content from fair average quality cocoa beans, wherein the cocoa component contains at least 25% of the cocoa polyphenols content of the fair average quality cocoa beans, preferably at least 35%, advantageously at least even better at least 60% and most preferred at least by weight.
A still further embodiment of the invention relates to a chocolate comprising a fat phase and a cocoa component containing a cocoa polyphenols pentamer content from fair average quality cocoa beans, wherein the cocoa ncomponent contains at least 15% of the cocoa polyphenols content of the fair average quality cocoa beans, preferably at least 20%, advantageously at least Seven better at least 35% and most preferred at least by weight.
0 Yet another embodiment of the invention relates to a chocolate comprising a cocoa component and at least one fat, and further containing at least 7,300 Ag cocoa C polyphenols per gram cocoa component, preferably at least 8,000 gg, advantageously at least 9,000 Mg, even better at least 10,000 pg, and most preferred at least 12,000 pg cocoa polyphenols per gram cocoa component.
Another embodiment of the invention relates to a chocolate comprising a cocoa component and at least one fat, and further containing at least 360 gg cocoa polyphenol pentamer per gram cocoa component, preferably at least 480 pg, advantageously at least 600 Mg, even better at least 720 Mg, and most preferred at least 800 pg cocoa polyphenol pentamer per gram cocoa component.
6. chocolates Comprising Cocoa solids Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 23,100 gg cocoa polyphenols per gram defatted cocoa solids, preferably at least 24,000 Mg, advantageously at least 26,000 Ag, even better at least 28,000 Mg, and most preferred at least 30,000 Mg cocoa polyphenols per gram defatted cocoa solids.
Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 1,000 Ag cocoa polyphenol pentamer per gram defatted cocoa solids, preferably at least 1,200 pg, advantageously at least 1,400 pg, even better at least 1,600 pg, and most preferred at least 1,800 Ag cocoa polyphenol pentamer per gram defatted cocoa solids.
Another embodiment of the invention relates to Sa chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 10,500 pg cocoa polyphenols per gram fat, advantageously Sat least 15,000 pg, even better at least 17,500 Mg, and M most preferred at least 20,000 pg cocoa polyphenols per -C gram fat.
10 Another embodiment of the invention relates to 0 a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 520 pg cocoa polyphenol pentamer per gram fat, advantageously at least 750 pg, even better at least 900 Mg, and most preferred at least 1,200 pg cocoa polyphenol pentamer per gram fat.
A still further embodiment of the invention relates to a chocolate comprising cocoa solids and at least one fat, and further containing at least 630 Mg cocoa polyphenols per calorie, advantageously at least 750 Mg, even better at least 900 pg, and most preferred at least 1,000 Mg cocoa polyphenols per calorie.
Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 32 gg cocoa polyphenol pentamer per calorie, preferably at least 50 pg, advantageously at least 60 Mg, even better at least 72 Mg, and most preferred at least 100 Mg cocoa polyphenol pentamer per calorie.
A still further embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 1,200,000 pg cocoa polyphenols per gram emulsifier, advantageously at least 1,500,000 Ig, even better at least 1,800,000 gg, and most preferred at least 2,200,000 pg cocoa polyphenols per gram emulsifier.
Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 58,000 pg cocoa polyphenol pentamer per gram emulsifier, advantageously at least 78,000 pg, even better at least S100,000 pg, and most preferred at least 120,000 pg cocoa polyphenol pentamer per gram emulsifier.
7. Chocolates Comprising Chocolate Liquor A still further embodiment of the invention relates to a chocolate comprising chocolate liquor and at C least one fat, and further containing at least 10,200 pg cocoa polyphenols per gram chocolate liquor, preferably at least 12,000 pg, advantageously at least 14,000 pg, even better at least 16,000 pg, and most preferred at least 18,000 gg cocoa polyphenols per gram chocolate liquor.
Another embodiment of the invention relates to a chocolate comprising chocolate liquor and at least one fat, and further containing at least 500 pg cocoa polyphenol pentamer per gram chocolate liquor, preferably at least 525 pg, advantageously at least 550 Ag, even better at least 575 gg, and most preferred at least 600 pg cocoa polyphenol pentamer per gram chocolate liquor.
8. Additional Chocolates A still further embodiment of the invention relates to a chocolate comprising at least one milk component and at least one fat, and further containing at least 8,400 pg cocoa polyphenols per gram milk component, advantageously at least 9,000 Ag, even better at least 10,000 gg, and most preferred at least 12,000 pg cocoa polyphenols per gram milk component.
Another embodiment of the invention relates to a chocolate comprising at least one milk component and at least one fat, and further containing at least 465 pg cocoa polyphenol pentamer per gram milk component, preferably at least 1,000 pg, advantageously at least 2,000 pg, even better at least 3,000 pg, and most V preferred at least 3,500 pg cocoa polyphenol pentamer per gram milk component.
A still further embodiment of the invention C relates to a chocolate comprising at least one sugar and at least one fat, and further containing at least 7,100 pg cocoa polyphenols per gram sugar, preferably at least S10,000 Mg, advantageously at least 13,000 Ag, even better cat least 16,000 Mg, and most preferred at least 18,000 Mg pC cocoa polyphenols per gram sugar.
10 Another embodiment of the invention relates to 0 a chocolate comprising at least one sugar and at least one fat, and further containing at least 350 pg cocoa polyphenol pentamer per gram sugar, preferably at least 550 Mg, advantageously at least 850 Mg, even better at least 1,100 Mg, and most preferred at least 1,350 Mg cocoa polyphenol pentamer per gram sugar.
9. Chocolate-Flavored Confections A still further aspect of the invention relates to chocolate-flavored confections a chocolateflavored hard candy) comprising a cocoa component, wherein the chocolate-flavored confection contains an effective amount of cocoa polyphenols per gram chocolateflavored confection to provide a health benefit.
Preferably, the chocolate-flavored confection (excluding chocolate) comprises at least 1 pg cocoa polyphenols per gram chocolate-flavored confection, advantageously at least 2 pg, even better at least 5 Mg, and most preferred at least 10 pg cocoa polyphenols per gram chocolateflavored confection. According to one preferred embodiment, the chocolate-flavored confection comprises at least 25 Mg cocoa polyphenols per gram chocolateflavored confection, advantageously at least 50 Mg, even better at least 100 Mg, and most preferred at least 150 Mg cocoa polyphenols per gram chocolate-flavored confection.
The cocoa component may be selected from the group consisting of: chocolate liquor; partially defatted or fully defatted cocoa solids; cocoa nib or Sfractions thereof; cocoa polyphenol extract; and (e) Smixtures thereof.
C Another embodiment of the invention relates to chocolate-flavored confections comprising a cocoa component, wherein the chocolate-flavored confection contains an effective amount of cocoa polyphenol pentamer per gram chocolate-flavored confection to provide a health benefit. Preferably, the chocolate-flavored confection (excluding chocolate) comprises at least 1 pg C cocoa polyphenol pentamer per gram chocolate-flavored confection, advantageously at least 2 Mg, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenol pentamer per gram chocolate-flavored confection. According to one preferred embodiment, the chocolate-flavored confection comprises at least 25 pg cocoa polyphenol pentamer per gram chocolate-flavored confection, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenol pentamer per gram chocolate-flavored confection.
A still further aspect of the invention relates to chocolate-flavored confections (excluding chocolate) comprising a cocoa component, wherein the chocolateflavored confection contains an effective amount of cocoa polyphenols per gram cocoa component to provide a health benefit. Preferably, the chocolate-flavored confection comprises at least 1 Ag cocoa polyphenols per gram cocoa component, advantageously at least 2 gg, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenols per gram chocolate-flavored confection.
According to one preferred embodiment, the chocolateflavored confection comprises at least 25 pg cocoa polyphenols per gram cocoa component, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenols per gram cocoa component.
Another embodiment of the invention relates to chocolate-flavored confections (excluding chocolate) comprising a cocoa component, wherein the chocolate- Sflavored confection contains an effective amount of cocoa polyphenol pentamer per gram cocoa component to provide a health benefit. Preferably, the chocolate-flavored Sconfection comprises at least 1 g cocoa polyphenol Spentamer per gram chocolate-flavored confection, O advantageously at least 2 Mg, even better at least 5 Mg, and most preferred at least 10 Mg cocoa polyphenol Spentamer per gram cocoa component. According to one preferred embodiment, the chocolate-flavored confection comprises at least 25 ig cocoa polyphenol pentamer per gram cocoa component, advantageously at least 50 Mg, even better at least 100 Mg, and most preferred at least 150 Mg cocoa polyphenol pentamer per gram cocoa component.
Chocolate-Flavored Compositions A still further aspect of the invention relates to a chocolate-flavored composition (excluding chocolate, e.g, a chocolate-flavored ice cream, etc.) comprising a cocoa component, wherein the chocolate-flavored composition contains an effective amount of cocoa polyphenols per gram chocolate-flavored composition to provide a health benefit. Preferably, the chocolateflavored composition comprises at least 1 gg cocoa polyphenols per gram chocolate-flavored composition, advantageously at least 2 Mg, even better at least 5 pg, and most preferred at least 10 Ag cocoa polyphenols per gram chocolate-flavored composition. According to one preferred embodiment, the chocolate-flavored composition comprises at least 25 Ag cocoa polyphenols per gram chocolate-flavored composition, advantageously at least jg, even better at least 100 pg, and most preferred at least 150 ig cocoa polyphenols per gram chocolateflavored composition.
Another embodiment of the invention relates to a chocolate-flavored composition comprising a cocoa component, wherein the chocolate-flavored composition contains an effective amount of cocoa polyphenol pentamer per gram chocolate-flavored composition to provide a health benefit. Preferably, the chocolate-flavored composition comprises at least 1 pg cocoa polyphenol pentamer per gram chocolate-flavored composition, advantageously at least 2 pg, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenol pentamer per gram chocolate-flavored composition.
According to one preferred embodiment, the chocolate- C flavored composition comprises at least 25 pg cocoa polyphenol pentamer per gram chocolate-flavored composition, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenol pentamer per gram chocolate-flavored composition.
A still further aspect of the invention relates to a chocolate-flavored composition comprising a cocoa component, wherein the chocolate-flavored composition contains an effective amount of cocoa polyphenols per gram cocoa component to provide a health benefit.
Preferably, the chocolate-flavored composition comprises at least 1 pg cocoa polyphenols per gram cocoa component, advantageously at least 2 Ag, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenols per gram chocolate-flavored composition. According to one preferred embodiment, the chocolate-flavored composition comprises at least 25 pg cocoa polyphenols per gram cocoa component, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenols per gram cocoa component.
Another embodiment of the invention relates to a chocolate-flavored composition comprising a cocoa component, wherein the chocolate-flavored composition contains an effective amount of cocoa polyphenol pentamer per gram cocoa component to provide a health benefit.
Preferably, the chocolate-flavored composition comprises at least 1 ig cocoa polyphenol pentamer per gram chocolate-flavored composition, advantageously at least 2 pjg, even better at least 5 pg, and most preferred at Sleast 10 Mg cocoa polyphenol pentamer per gram cocoa component. According to one preferred embodiment, the chocolate-flavored composition comprises at least 25 Ag V) cocoa polyphenol pentamer per gram cocoa component, advantageously at least 50 Mg, even better at least 100 C pg, and most preferred at least 150 Mg cocoa polyphenol 10 pentamer per gram cocoa component.
0 11. Additional Products Another aspect of the invention relates to an edible or ingestible or chewable product containing a cocoa polyphenols additive or a derivative thereof.
According to one embodiment, the cocoa polyphenol additive is an extract from cocoa beans or a cocoa component thereof or the cocoa polyphenol additive is a synthetic compound structurally similar or identical to the cocoa polyphenols. Preferably, the product comprises at least 1 Ig cocoa polyphenols per gram product, advantageously at least 2 g, even better at least 5 Mg, and most preferred at least 10 gg cocoa polyphenols per gram product. According to one preferred embodiment, the product comprises at least 25 Mg cocoa polyphenols per gram product, advantageously at least 50 Mg, even better at least 100 Mg, and most preferred at least 150 Mg cocoa polyphenols per gram product.
According to another embodiment, the product comprises at least 1 Mg cocoa polyphenol pentamer per gram product, advantageously at least 2 Mg, even better at least 5 Mg, and most preferred at least 10 Mg cocoa polyphenol pentamer per gram product. According to one preferred embodiment, the product comprises at least Mg cocoa polyphenol pentamer per gram cocoa component, advantageously at least 50 jg, even better at least 100 pg, and most preferred at least 150 Mg cocoa polyphenol pentamer per gram product.
Accordingly, one embodiment of the invention relates to an ingestible product containing the cocoa In polyphenols additive or a derivative thereof and a second ingestible component.
Another embodiment of the invention relates to a chewable composition chewing gum) comprising a Scocoa polyphenol additive or a derivative thereof.
0 Another embodiment of the invention relates to an edible composition comprising a cocoa component containing a cocoa polyphenols content from fair average C quality cocoa beans, wherein the cocoa component contains at least 25% of the cocoa polyphenols content of the fair average quality cocoa beans, advantageously at least even better at least 50% and most preferred at least by weight.
A still further object of the invention relates to an edible composition comprising a cocoa component containing a cocoa polyphenols content from raw freshly harvested cocoa beans, wherein the cocoa component contains at least 5% of the cocoa polyphenols content of the raw freshly harvested cocoa beans, preferably at least 10%, advantageously at least 15%, even better at least 20% and most preferred at least 25% by weight.
Yet another embodiment of the invention relates to an edible product comprising an edible composition and at least 1 pg cocoa polyphenols, wherein the edible product is substantially free of chocolate flavor and chocolate aroma a rice cake coated with cocoa polyphenol extract). Preferably, the product comprises at least 2 gg cocoa polyphenols per gram product, advantageously at least 5 pg, even better at least 10 g, and most preferred at least 20 pg cocoa polyphenols per gram product. According to one preferred embodiment, the product comprises at least 50 Mg cocoa polyphenols per gram cocoa component, advantageously at least 100 pg, even better at least 150 Mg, and most preferred at least 200 Mg cocoa polyphenols per gram product.
eg According to another embodiment, the product free of chocolate aroma/flavor comprises at least 2 pg cocoa polyphenol pentamer per gram product, l advantageously at least 5 pg, even better at least 10 Mg, and most preferred at least 20 Ig cocoa polyphenol pentamer per gram product. According to one preferred Sembodiment, the product comprises at least 50 Mg cocoa Cpolyphenol pentamer per gram cocoa component, Ci advantageously at least 100 Mg, even better at least 150 10 Mg, and most preferred at least 200 g cocoa polyphenol Spentamer per gram product.
A still further object of the invention relates to an edible composition comprising a nonalkalized chocolate liquor substantially derived from cocoa beans having a fermentation factor less than 375, preferably, advantageously less than 350, even better less than 325, and most preferred less than 300. According to a preferred embodiment, the fermentation factor is less than 275, preferably less than 250, advantageously less than 225, even better less than 200, and most preferred less than 175. According to a particularly preferred embodiment, the fermentation factor is less than 150, advantageously less than 125, and most preferred about 100.
H. Methods of Using Using the cocoa components and the products containing cocoa polyphenols described above, novel methods of improving the health of a mammal, particularly a human, may be practiced. The products of the invention can be used in any of the uses discussed in copending U.S. application Serial No. 08/831,245, filed April 2, 1997.
Another embodiment of the invention relates to a method of improving the health of a mammal by administering an effective amount of cocoa polyphenols to the mammal each day for an effective period of time.
Advantageously, the effective period of time is greater than sixty days. In one aspect, the mammal's health is improved by ingesting an edible composition containing ncocoa polyphenols each day for a period of time greater than sixty days. Preferably, the edible composition contains at least 1 pg of cocoa polyphenols, advantageously at least 5 pg, even better at least 10 pg, Smore preferred at least 25 pg, and most preferred at O least 50 pg. In another aspect, the mammal's health is improved by ingesting a chocolate containing cocoa polyphenols each day for a period of time greater than C sixty days. Preferably, the chocolate contains at least 1 pg of cocoa polyphenols, advantageously at least 5 pg, even better at least 10 pg, more preferred at least pg, and most preferred at least 50 pg.
One embodiment of the invention relates to a method of improving the health of a mammal by administering an effective amount of cocoa polyphenol pentamer to the mammal each day for an effective period of time. Advantageously, the effective period of time is greater than sixty days. In one aspect, the mammal's health is improved by ingesting a non-chocolate edible composition containing cocoa polyphenol pentamer each day for a period of time greater than sixty days.
Preferably, the edible composition contains at least 1 pg of cocoa polyphenol pentamer, advantageously at least pg, even better at least 10 pg, more preferred at least pg, and most preferred at least 50 pg. In another aspect, the mammal's health is improved by ingesting a chocolate containing cocoa polyphenol pentamer each day for a period of time greater than sixty days.
Preferably, the chocolate contains at least 1 pg of cocoa polyphenol pentamer, advantageously at least 5 pg, even better at least 10 pg, more preferred at least 25 pg, and most preferred at least 50 pg.
The cocoa polyphenols or cocoa polyphenol pentamer has an activity selected from the group consisting of reducing periodontal disease, antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, antineoplastic, antioxidant, DNA I topoisomerase II enzyme inhibitor, cyclo-oxygenase modulator, lipoxygenase modulator, NO or NO-synthase modulator, non-steroidal anti-inflammatory, apoptosis modulator, platelet aggregation modulator, blood or in Cvivo glucose modulator, antimicrobial and inhibitor of C- oxidative DNA damage activity.
l 10 In yet another embodiment of the invention, a 0 physiological response is elicited in a mammal by administering an effective amount of cocoa polyphenols or cocoa polyphenol pentamer to the mammal.
The elicited response is sustained for a period of time, or the elicited response provides a benefit to the mammal in need thereof, advantageously to modulate the effects of an internal or external stress factor.
The elicited responses include lowering the oxidative stress index (such as increasing in vivo oxidative defense indices or decreasing in vivo oxidative stress), anti-viral response, anti-bacterial response, lowering cytokine level, increasing T-cell production level, lowering hypertension and dilating blood vessels, and the stress factors include oxidative stress, viral stress, bacterial stress, elevated level of cytokine, diminished level of T-cell production, hypertension and constricted blood vessels.
The compounds of the invention or compositions containing the compounds of the invention have utility for reducing periodontal disease, antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, anti-cancer, anti-tumor or antineoplastic, antioxidant, DNA topoisomerase II enzyme inhibitor, inhibit oxidative damage to DNA, antimicrobial, cyclooxygenase and/or lipoxygenase modulator, NO or NO-synthase modulator, apoptosis, platelet aggregation and blood or in vivo glucose modulating and nonsteroidal anti-inflammatory activities.
nIn addition to the physiological activities elicited by the compounds of the invention or compositions containing the compounds, other compounds )present in cocoa or compositions containing other M compounds from noncocoa, natural sources can be combined 0 to produce a synergistic effect to the naturally 1 occurring cocoa polyphenols, in particular cocoa procyanidins.
C
N One embodiment of a synergistic effect on NO and/or NO synthase modulation, for example, follows.
Many foods contain appreciable amounts of L-arginine, but not necessarily the compounds of the invention. Given that L-arginine is a substrate for NO synthase, and NO dependent vasodilation is significantly improved in hypercholesterolemic animals receiving L-arginine supplementation (Cooke et al., Circulation 83, 1057-1062, 1991), and the compounds of the invention can modulate
NO
levels, a synergistic improvement in endothelium dependent vasodilation is expected. L-arginine levels of to 1.1 g/100g have been reported in unsweetened cocoa powder. From this basis, other natural products rich in L-arginine, such as peanuts, would be incorporated into recipes for maximal benefit related to NO and NO synthase modulation.
Another embodiment relates to the use of a noncocoa source containing procyanidins. Cinnamon, for example, has been analytically examined for procyanidins and related compounds (Moritomo et al., Chem. Pharm.
Bull. 33:10, 4338-4345, 1985; Moritomo et al., Chem.
Pharm. Bull. 33:10, 2281-2286, 1985; Moritomo et al., Chem. Pharm. Bull. 34t2, 633-642, 1986; and Moritomo et al., Chem. Pharm. Bull. 3412, 643-649, 1986), some of which are structurally related to the cocoa procyanidins.
Moreover, cinnamon has been reported (Coe, S.D. and Coe, The True History of Chocolate, Thames and Hudson SLtd., London, 1996) to be a part of chocolate drink recipes since 1692. Thus, the inclusion of cinnamon (containing procyanidins) to cocoa (containing Cprocyanidins) to prepare any cocoa snack, SOI or non SOI chocolate, beverage or edible food stuff would be expected to elicit a synergistic physiological effect.
r Similarly, the addition of various citrus essential oils, (Cc would be expected to produce a synergistic effect with Cq the indigenous cocoa procyanidins. Naturally expressed 10 citrus essential oils contain numerous bioflavonoids and 0 complex terpenoids, some of which have physiological properties such as geraniol (Burke et al., Lipids 32:2, 151-156, 1997). It is noteworthy that distilled citrus oils lack the bioflavonoids and that folded oils would contain different proportions of the terpene hydrocarbons, including the sesquiterpenes and their oxygenated forms, all of which can be manipulated to synergize with the numerous physiological utilities of the cocoa procyanidins.
The skilled artisan will recognize many variations from these examples to cover a wide range of formulas, ingredients wine or tea solids), processing and mixtures to rationally take advantage of the synergistic effects of naturally occurring levels and distribution of cocoa procyanidins used in combination with other natural products containing identical or different phytochemicals. Further, the skilled artisan will recognize the inclusion of noncocoa phytochemicals in various combinations can be added as recipe ingredients to prepare SOI or non SOI chocolate, any cocoa based snack, beverage, syrup, cocoa, flavoring or supplement.
EXAMPLES
The following examples are illustrative of some of the products and methods of making the same falling within the scope of the present invention. They are, of course, not to be considered in any way limitative of the S63 invention. Numerous changes and modification can be made Swith respect to the invention.
SThat is, the skilled artisan will recognize c 1 many variations in these examples to cover a wide range of formulas, ingredients, processing, and mixtures to rationally adjust the naturally occurring levels of the Scompounds of the invention for a variety of chocolate applications.
0D 0D
(N
TABLE 1.A: COCOA PolyPhenol.1 CONTENT OF FINISHED PRODUCTS IN EXAMPLES (micrograms/jgram) SAULE THIEORETICAL. ACTUAL THEORETICAL ACTUAL PENTAIER PENTANER POLYPHEMOL POLYPHEMOL Chocolate Cookie Control 181 37 2,482 1,978 Cookie 50:50 278 39 3,973 2,698 Cookie 100% 376 46 5,464 3,841 Cocoa PoLyphenots Chaco Power Bar NA trace NA 100 V02 control NA trace NA 209 V02 175 22 2,548 1,710 cocoa polyphenol Cocoa Puffs NA trace NA 27 Cereal 286 23 4,157 3,453 fruit Bar 408 105 5,153 ,851 Fruit Bar Filling 1,488 349 19,758 12,771 Jet lo-choco pudding MA trace NA trace Pudding (stove) 352 70 18,758 1,559 Pudding (microwave) 352 67. 18,758 1,406 Pudding (skim) 352 42 18,758 1,215 Mole control 1.5 trace 4479 Kole SO.-SO 14.4 trace 188 155 Mole 100% 27.4 trace 332 213 cocoa polyphenol Quaker Choc puff rice NA trace NA trace Sprayed rice cake 251.5 38 3,655 4,842 Brownie (control) 9.9 12 295 645 Brownie (50:50) 96.9 T0 1,252 2,099 Browie (100% 183.9 97 2,225 2,981 Chocolate-Flavored 2.4 18 34.2 776 Nougat Cinnmon Caramel 43 27 621 1,037 NA: Not Available TABLE iB: COCOA POLYPHENOL INGREDIENTS USED IN EXAMPLES Cocoa Polyphenols
TOTAL
MEDIUM PENTAMER POLYPHENOL Extract 29,767pg 375,170Mg Cocoa Powder 2,138pg 31,072pg Liquor 1,957pg 23,673pg Cc, EXAMPLE 1 Cocoa Source and Method of Preparation Several Theobroma cacao genotypes which represent the three recognized horticultural races of cocoa (Enriquez et al., Cocoa Cultivars Register IICA, Turrialba, Costa Rica 1967; Engels, Genetic Resources of Cacao: A Catalogue of the CATIE Collection, Tech. Bull. 7, Turrialba, Costa Rica 1981) were obtained from the three major cocoa producing origins of the world. A list of those genotypes used in this study are shown in Table 2. Harvested cocoa pods were opened and the beans with pulp were removed for freeze drying. The pulp was manually removed from the freeze dried mass and the beans were subjected to analysis as follows. The unfermented, freeze dried cocoa beans were first manually dehulled, and ground to a fine powdery mass with a TEKMAR Mill. The resultant mass was then defatted overnight by Soxhlet extraction using redistilled hexane as the solvent. Residual solvent was removed from the defatted mass by vacuum at ambient temperature.
Table 2: Description of Theobroma cacao Source Material GENOTYPE ORIGIN HORTICULTURAL
RACE
UIT-1 Malaysia Trinitario Unknown West Africa Forastero ICS-100 Brazil Trinitario (Nicaraguan Criollo ancestor) ICS-39 Brazil Trinitario (Nicaraguan Criollo ancestor) UF-613 Brazil Trinitario EEG-48 Brazil Forastero C UF-12 Brazil Trinitario NA-33 Brazil Forastero Cq EXAMPLE 2 Coooa Polyphenol Extraction Procedures A. Method 1 tf Cocoa polyphenols were extracted from the defatted, unfermented, freeze dried cocoa beans of SExample 1 using a modification of the method described by Jalal and Collin, Phytochemistry 6 1377-1380 (1978).
Cocoa polyphenols were extracted from 50 gram batches of C the defatted cocoa mass with 2X 400 mL acetone/deionized water followed by 400 mL methanol/deionized water. The extracts were pooled and the solvents removed by evaporation at 45 0 C with a rotary evaporator held under partial vacuum. The resultant aqueous phase was diluted to 1L with deionized water and extracted 2X with 400 mL CHCl 3 The solvent phase was discarded. The aqueous phase was then extracted 4X with 500 mL ethyl acetate. Any resultant emulsions were broken by centrifugation on a Sorvall RC 28S centrifuge operated at 2,000 xg for 30 min. at 10°C. To the combined ethyl acetate extracts, 100-200 mL deionized water was added. The solvent was removed by evaporation at 450C with a rotary evaporator held under partial vacuum. The resultant aqueous phase was frozen in liquid
N
2 followed by freeze drying on a LABCONCO Freeze Dry System. The yields of crude procyanidins that were obtained from the different cocoa genotypes are listed in Table 3.
Table 3: Crude Procyanidin Yields GIEOTTFE 011 TEU3 (a) UIT-i MLiLysh 3.91 Uaow. Wlcr Afrc 2.55 ICS-1OO BaI l13.42 ICS-39 BrilU 3.4 UF-613 rami 2.98 OENOrrYp OmRIN YOUM SEEG-41 Braz 3.15 c] UF-12 Bnrai 1.21 NA-33 8m 1 1 2.23 B. Method 2 SAlternatively, cocoa polyphenols may also be extracted from the defatted, unfermented, freeze dried 0C cocoa beans of Example 1 with 70% aqueous acetone. Ten 0 grams of defatted material is slurried with 100 mL C 10 solvent for 5-10 min. The slurry is centrifuged for min. at 4 0 C at 3000 xg and the supernatant passed through glass wool. The filtrate is subjected to distillation under partial vacuum and the resultant aqueous phase frozen in liquid N 2 followed by freeze drying on a LABCONCO Freeze Dry System. The yields of crude procyanidins range from 15-20% of the starting material.
Without wishing to be bound by any particular theory, it is believed that the differences in crude yields reflected variations encountered with different genotypes, geographical origin, horticultural race, and method of preparation.
EXAMPLE 3 Varying the Levels of Cocoa Polyphenols Via Manipulating the Degree of Fermentation Cocoa beans cocoa, SIAL 659) were subjected to varying degrees of fermentation by removing and analyzing samples of beans taken from a mass of fermenting beans at varying periods of time of fermentation ranging from tO (time zero hours) to t120 (time 120 hours). The results are shown in Table 4.
2007203454 25 Jul 2007 Table 4: Procyanidin Levels ppm in defatted powder with varying degrees of fermentation SAOt M~ DMff Timmr Tcanme Pss Heziner Heptmer Octumer NOUer n Unde TOWi Am 90 21.9"9 10.072 10.106 77U3 5311 3242 1311 626 422 146 ti 60,753 B -t24 21,083 9762 9119 7094 4774 2906 1364 601 361 1~76 m 57.252 C I" 20,U87 9292 9474 1 7337 4M0 2929 1334 69r2 412 3U2 tr 55.165 9552 5750 5062 3360 2140 1160 464 254 138 VD2.910 E 020 8551 46M 4070 2"2 IM~ 18 326 166 123 ND 2297 *ND non tu= bmc sovgiz) EXAMPLE 4 Method of Obtaining Cocoa Polyphenol Defatted Cocoa Solids from Cocoa Beans U tilizinc the Inventive Process c-I Commercially available cocoa beans having an t initial moisture content of from about 7 to 8 percent by weight were pre-cleaned using an 11" x 56" Scalperator o 10 (manufactured by Carter Day International, Minneapolis, MN, USA). Approximately 600 bags of cocoa beans (39,000 Skg) were pre-cleaned over a 6.5 hour time period. The N beans were fed into the inlet hopper where the flow rate was regulated by a positive feed roll. The beans were fed onto the outside of a rotating wire mesh scalping reel. The beans passed through the wire mesh reel and subsequently through an air aspiration chamber where light dirt, dust and strings were aspirated out of the product stream. The beans that did not pass through the scalping reel were conveyed to the reject stream. This reject stream consisted of large clumps of beans, sticks, stones, etc. The amount of resultant reject was approximately 150 kg, or 0.38% of the starting material.
The resulting pre-cleaned product weighed about 38,850 kg and was passed to the bean cleaning step.
The pre-cleaned bean products from the Scalperator were then further cleaned using a camas International SV4-5 Air Fluidized Bed Density Separator (AFBDS, manufactured by Camas International, Pocotello, ID, USA). About 38,850 kg of cocoa bean products were fed into the AFBDS over a time period of about 6.5 hours.
The apparatus removed substantially all heavy impurities such as stones, metal, glass, etc. from the beans, as well as lighter unusable materials such as moldy and infested cocoa beans, resulting in a cleaned bean product which contained substantially only usable cocoa beans.
The resulting heavy impurities removed weighed about kg and the light unusable materials weighed about 151 kg.
A total of about 38,649 kg of cleaned beans was obtained Safter both the pre-cleaning and cleaning steps described hereinabove (99.1% yield after cleaning).
The cleaned cocoa beans were then passed Sthrough a infra-red heating apparatus. The apparatus used was the Micro Red 20 electric infra-red vibratory Micronizer (manufactured by Micronizing Company V Limited, The Micronizer was run at a rate of c about 1,701 kilograms per hour. The depth of beans in the vibrating bed of the Micronizer was about 2 inches or about 2-3 beans deep. The surface temperature of the 0 Micronizer was set at about 165°C, resulting in an IBT of about 135 0 C, for a time ranging from 1 to 1.5 minutes.
This treatment caused the shells to dry rapidly and separate from the cocoa nib. Since substantially all of the cocoa beans fed into the Micronizer were whole beans and were substantially free of small broken pieces of bean or shell, no sparks or fires were observed during the infra-red heating step. The broken pieces separated by the vibrating screen prior to the Micronizer were reintroduced into the product stream prior to the winnowing step.
The beans after the Micronizer had a moisture content of about 3.9% by weight. The beans emerged from the Micronizer at an IBT of about 135 0 C and were immediately cooled to a temperature of about 90 0 C in about three minutes to minimize additional moisture loss.
The total beans available after the heating step was about 36,137 kg.
The beans were then subjected to winnowing using a Jupiter Mitra Seita winnower (manufactured by Jupiter Mitra Seita, Jakarta, Indonesia). The winnowing step cracked the beans to loosen the shells and separated the lighter shells from the nibs while at the same time minimizing the amount of nib lost with the shell reject stream. The feed rate into the winnower was about 1,591 kg per hour. The resultant products included about 31,861 kg of usable nibs and 4,276 kg of reject shells.
The overall yield of usable nibs from starting material was about 81.7%.
SThe resulting cocoa nibs were pressed using a Dupps 10-6 Pressor (manufactured by The Dupps Company, Germantown, Ohio, USA). A steady, consistent feed of about 1,402 kg per hour of nibs was fed into two screw Spresses to extract butter. The press produced about 16,198 kg of cocoa butter which contained about 10% cocoa solids, and about 15,663 kg of cocoa solids which contained about 10% butter.
C< The cocoa butter was further processed using a Sharples P3000 decanting centrifuge (manufactured by Jenkins Centrifuge Rebuilders, N. Kansas City, MO, USA).
The centrifugation resulted in the removal of the solids from the butter by centrifugal forces. The centrifuging reduced the 10% solids in the butter to about 1-2% solids, and resulted in about 13,606 kg of butter and 2,592 kg of cocoa solids containing about 40 to butter.
The butter containing 1-2% solids was further processed using a plate and frame filter (manufactured by Jupiter Mitra Seita) which removed the remaining solids from the butter and resulted in about 13,271 kg of clear cocoa butter and about 335 kg of cocoa solids containing 40-45% butter.
The cocoa solids removed from the centrifuge and the filter press contained about 40-45% fat and were pressed in a batch hydraulic press to produce 10% fat cocoa cake. This material produced about 1,186 kg of clear butter and 1,742 kg of cocoa solids.
The total clear butter yield from the incoming beans was 14,456 kg, or 37.1%. The total cocoa solids produced from the incoming beans was 17,405 kg, or 44.6%.
The butter was subsequently tempered and packaged.
EXAMPLE 5 Method for Quantifying Cocoa Polyphenol Levels in Various Samples Processed by conventional and Inventive Methods c Cocoa polyphenol extracts were prepared from a variety of cocoa sources (shown in Table 5) by grinding 6-7 g of sample using a Tekmar A-10 Analytical Mill for min, or, in the case of liquors, from 6-7g of chocolate liquor sample without additional grinding. The sample was then transferred to a 50 mL polypropylene centrifuge Stube, approximately 35 mL of hexane was added, and sample Cwas shaken vigorously for 1 min. Sample was spun at 3000 C- RPM for 10 min using an International Equipment Company IECPR-7000 Centrifuge. After decanting the hexane layer, the fat extraction process was repeated two more times.
Approximately 1 g of the defatted material was weighed into a 15 mL polypropylene centrifuge tube and 5 mL of a acetone: 29.5% water: 0.5% acetic acid solution was added. The sample was vortexed for about 30 sec using a Scientific Industries Vortex Genie 2 and spun at 3000 RPM for 10 min in the IECPR-7000 Centrifuge. The liquor was then filtered into a 1 ml hypovial through a Millex-HV 0.45 I filter.
Cocoa polyphenol extracts were analyzed by a Hewlett Packard 1090 Series II HPLC system equipped with a HP Model 1046A Programmable Fluorescence detector and Diode Array detector. Separations were effected at 37 0
C
on a 5 A Supelco Supelcosil LC-Si column (250 x 4.6 mm) connected to a Supelco Supelguard LC-Si 5 Am guard column x 2.1 mm). Procyanidins were eluted by linear gradient under the following conditions: (time %B, 82, 14, (30, 67.6, 28.4, (60, 46, (65, 10, 86, followed by a 5 minute reequilibration. Mobile phase composition was A dichloromethane, B=methanol, and C=acetic acid:water at a volume ratio of 1:1. A flow rate of 1 mL/min was used.
Components were detected by fluorescence, where A1x= 276 nm and Aem 316 nm, or by UV at 280 nm. Epicatechin in the concentration of approximately 1 mg/ml was used as an external standard.
HPLC conditions: 250 x 4.6 mm Supelco Supelcosil LC-Si column (5 pm) n 20 x 2.1 mm Supelco Supelguard LC-Si (5 Mim) guard column Detectors: Photodiode Array at 280 nm Fluorescence Xex 276 nm; lem 316 flu Flow rate: 1 mL/min Column temperature: 376C Gradient CH 2 C1 2 methanol acetic acid/ water 0 76 20 4 46 50 4 10 86 4 2007203454 25 Jul 2007 Table 5: Polpbenals Ca=n Defand Dry Weight Basis gowwr Dtgora v Truw, Tara ent-W HCM~r Hep Cnr oaO~f Toual Poty 937-50 P__d 433 5929 3354 AQ7 31 2131 1304 729 439 13273 El Ca"Pam 4l grcsw P' ft ~at 8713 5538 3880 228 1553 762 372 210 60 23376 E Comparatrec (screw pressed cocoa cake- 8733 5364 4836 3031 1983 1099 3489 361 2-1 29318 Sanchez) E3 Comparative (screw pressed cocoa powdr- 7104 4915 3642 2020 1121 576 273 153 66 19871 Sulawes) E4 Comparative (hydraulically pressed cocoa 7157 3981 2479 1226 583 260 87 1577 cake-blend of origins) ES Comparative (hydraulically pressed cocoa 5811 3169 1503 537 171 55 11245 powder-blend of orioiu) E6 (DeZaan defaned cocoa powder.-DIS. 581 421 123 35 1161 supercrtical fluid cxmced atkaibed unnown bean ongpn) E7 Comparaive(roased cocoa bs blend of 2526 1551 824 206 77 64 43 5291 ongins) E8 Comparative (propane craed cocoa rubs 2904 1855 927 239 116 63 37 6140 blend of origins) E9 Comparative (lavabeans) 2677 2092 1645 984 632 378 1 240 127 93 8868 ElO Comparative (Papua New Guinea beans) 2856 1960 1672 748 318 145 74 36 7807 Ell Comparative (Papua New Guinea beans) 5255 3652 2402 959 485 261 159 54 13=8 937- South Region. Sulawess Liquor 1801 1205 555 114 3675 59 1 931- Southeas Region. Sulawesi Liquor 3891 2131 1213 457 150 31 7873 59 937- Central Regon. Sulawea Liquor 3668 1718 847 265 68 6566 CC 1 Comparative Screw Press Cake #1 2267 2034 F 1360 579 297 1 32 50 27 14 6759 CC 2 Comparative Screw Press Cake 2 2894 313 F11546 681 323 138 49 35 21 8001 CC 3 Comparative Screw Press Cake 03 2437 187S 1 1231 561 [339 88 12 trace 6589 SA sample set containing 9 pressed cocoa cakes, 3 cocoa meals, 3 pressed cocoa powder samples, 3 liquor samples, 3 bean samples and 2 nib samples were analyzed Sfor procyanidin levels by the aforementioned procedure.
The results are shown in Table 5. Procyanidin levels were compared to those previously reported for Sulawesi V) samples defatted by the inventive process. The screw n pressed cocoa cake from Sanchez beans (comparative Sample (C No. E2) contained procyanidin levels closest to that 10 found in the inventive processed samples, but 30% less 0 total procyanidins. Moreover, the inventive process retained the highest level of higher oligomers, the level of pentamers from the E2 sample was 1983 ug/g as compared to 3,168 ug/g (sample #937-59) from the inventive process.
Additionally, a sample set of the following cocoa sources through were analyzed for cocoa polyphenols levels by the aforementioned procedure: Sulawesi raw beans prior to processing by the inventive process (RB-1), cocoa bean nibs obtained from the inventive process, according to Example 4, except as modified at the infra-red heating stage by adjusting the temperature to that which polyphenols would be conserved, i.e., approximately 100-1100C (MN-1), two samples of cocoa solids nonfat obtained from the inventive process (MS-120 and MS-150), conventionally processed, Sulawesi raw nibs prior to processing (RN-1 and RN-2), and Sulawesi, conventionally processed partially defatted cocoa solids (CS-1 and CS-2).
The results are shown in Table 6.
2007203454 25 Jul 2007 Table 6 D--m Ts m 4SF RB- I R- BMW, snuwacs 11354 5924 4643 3150 2181 1352 0 165345 4.
MN-I abuh s 13129 5909 4034 2120 133479441694204 7.
(RD-I tg a1 Ms- 120 tweede aoid 12D psi 15101 6592 4447 2526 1507 721 360 219 139 31811 11.9 oRB- ina1dag udind) Jks- I5s Iav -oe a~l 15 psi 10025 5540 48L39 3245 2106 1139 542 234 214 2795.1I RN-I Re- ailp, Subwas 7976 5643 5426 4195 3021 1806 1150 624 360 30192 48.5 Cs- I Ca sailioig. Sulwm 10527 4837 2969 1535 691 267 35 28 S 20986 2589 ItN.2 Raw aa. Salaweno 12219 7635 720 5619 4014 2384 1471 751 406 4 1701 47.3 CS-i Coswadain solids. Sulsweni 17 4863j 2102 1333 254 192 128 37 40 19811 26.3 Oligomr amont have been rowie to the nearest wh~ole rnwber; total poilyphenots cmy incLude additional potyphenols The total polyphenol amounts for NS-120 represent nearly 100% recovery by Inventive process.
The total poLyphenoL mInownts for MS- 150 represent nearly M9 recovery by Inventive process.
above nonamer Polyphenols extracted from inventive solids such as RB-1 and MS-120 can be purified by preparative normal phase chromatography by modifying the method of Rigaud et al., (1993) J. Chrom. 654: 255-260.
Separations are affected at ambient temperature on a Supelcosil LC-Si 100A column (50 x 2cm), with an Sappropriate guard column. Procyanidins are eluted by a Clinear gradient under the following conditions: (time, eC flow rate); 92.5, 7.5, 10); (10, 92.5, 10 40); (30, 91.5, 18.5, 40); (145, 88, 22, 40); (150, 24, S86, 40); (155, 24, 86, 50); (180, 0, 100, 50). Prior to use, the mobile phase components can be mixed by the following protocol: Solvent A preparation (82% methylene chloride, 14% methanol, 2% acetic acid, 2% water): 1. Measure 80 ml of water and dispense into a 4L bottle.
2. Measure 80 ml of acetic acid and dispense into the same 4L bottle.
3. Measure 560 ml of methanol and dispense into the same 4L bottle.
4. Measure 3280 ml of methylene chloride and dispense into the same 4L bottle.
Cap the bottle and mix well.
6. Purge the mixture with high purity Helium for to 10 minutes to degas.
Repeat 1 to 6 two times to yield 8 volumes of solvent A.
Solvent B preparation (96% methanol, 2% acetic acid, 2% water): 1. Measure 80 ml of water and dispense into a 4L bottle.
2. Measure 80 ml of acetic acid and dispense into the same 4L bottle.
3. Measure 3840 ml of methanol and dispense into the same 4L bottle.
4. Cap the bottle and mix well.
Purge the mixture with high purity helium for to 10 minutes to degas.
Steps 1 to 5 can be repeated to yield four (4) volumes of solvent B. Mobile phase composition can be A methylene chloride with 2% acetic acid and 2% water; B methanol with 2% acetic acid and 2% water. The column load can be 0.7g in 7ml. Components can be detected by UV at 254nm.
By this method, procyanidins can be obtained from the inventive solids.
C As evidenced by the total polyphenol compositions obtained from RB-i, MN-1, MS-120 and MS-150, the inventive process affords at least 70% conservation, even at least 85% conservation 85-89% see MS-150) and as much as at least 95% conservation 95-100%; see MS-120) of the polyphenols concentration; whereas, the conventional processes result in approximately (less than 50%) to less than 70% conservation of the polyphenols concentration (see CS-1, CS-2).
Further, RN-1 and RN-2 represent varying concentrations of brown beans (or well fermented beans) in the composition starting material, such that, RN-1 was derived from a bean stock containing approximately brown beans, and RN-2 was derived from a bean stock containing approximately 10% brown beans. As evidenced by the total polyphenol concentrations obtained from each of these sources, it is evident that the concentration of brown beans present in the starting bean stock is inversely proportional to the total polyphenols concentration that may be obtained from such a source, such that those samples derived from bean stocks containing a high percentage of brown beans will yield a relatively low amount of polyphenols (and conversely, slaty and/or purple beans which are less fermented will yield a relatively high amount of polyphenols).
The percentage fat of each composition in Table 6 was also determined. The inventive process obtained levels of fat which are comparable to that derived from conventional methods.
EXAMPLE 6 Cocoa Bean Winnowing Using An Air n Fluidized-Bed Density Separator An air fluidized bed density separator (AFBDS) manufactured by Camas International was tested to V) determine its effectiveness as a cocoa bean winnower. A Sblend of beans from West Africa and Central America were heated at about 150°C for about 4 minutes to loosen the shell and were cracked with a centrifugal bean breaker.
SThe cracked beans were separated by the AFBDS which CI resulted in a shell in nib level of between 0.29 to 0.99% and a nib in shell level of between 6.7 to 8.7%.
Although the shell in nib level was acceptable, it was observed that a significant portion of the nibs in the shell was a result of pieces of nib which remained in the large pieces of shell. The large pieces of shell, resembling cracked eggshells, were conveyed on the top of the separation chamber. These shells typically had large pieces of nib entrapped within them which conveyed the nibs into the shell stream. To reduce this nib loss, a system for decreasing the size of the shell pieces was required which did not also decrease the size of the nibs.
A follow-up trial consisted of screening the flow of material between the second and third chamber of the AFBDS. This material was separated with a vibrating screen with a 0.375 inch screen opening. The screen successfully removed the large pieces of shell from the material with virtually no loss of nibs. The material which passed through the screen was introduced back into the third separation chamber and the shells and nibs were subsequently separated in the chamber. The amount of shell in nib was found to be very low, however there remained a loss of small nib in the shell stream.
To reclaim the nib in shell from the third chamber, another vibrating screen was utilized with a 0.11 inch screen opening size. This screen successfully n separated the remaining nib from the shell.
The fourth chamber is typically used to remove heavy impurities such as rocks, stones, etc. As a winnower, this chamber would not be required as the V) winnower will typically receive material which is free of M these materials. In practice, the 5% flow into the fourth chamber would be passed through chamber one and onto chamber two and three.
Table 7 is a summary of the performance of the AFBDS as a winnower: Table 7. Air Fluidized Ded/Vibratory Scregn Winnowing Results %of %Shell in %Nib in Shell Flow Nib Chamber 1 65 0.020 0 Chamber 2 20.0 0.002 0 0.375 in. screen <0.1 Chamber 3 9.5 0.020 0.0 0.11 inch screen 0.5 0.075 0.99 Chamber 4 5.0 0 0 TOTAL 100 0.117 <1.09 CONVENTIONAL 1.75 max, range of 4-B% WINNOWING 1.00 2 51- t y p i c a l %of Nib refers to the amount of the clean nib that was taken out in each chamber As3 can be seen from the results above, the AFBDS can be used as a winnower and provide separations much finer than conventional winnowing processes. The use of an AFBDS surprisingly meets the FDA requirements for the amount of shell in the nib product, and has a very high yield of nib.
C< EXAMPLE 7 Method of Obtaining Chocolate Liquor from Underfermented Cocoa Beans 3Aooording to One Embodiment of the Invention Vn CI Commercially available Sanchez cocoa beans having an initial moisture content of 7.9% by weight were Sused for processing. A cut test was performed on 300 of Sthe beans and categorized the beans as 43.7% slaty, 13.0% purple, 22.0% purple-brown, and 17.7% brown. The beans C< had a fermentation factor of about 210.
SThe beans were heat treated using an FMC Link C- Belt Roaster. Three batches of approximately 50 kg of the beans were separately fed at a rate of 1.5 kg/min through the roaster with a residence time of 22 minutes.
The degree of roast was varied in the three 50 kg batches by controlling the air temperature in the Link Belt at 127-C, 159°C, and 181 0 C. The resulting internal bean temperatures (IBTs) as well as the final bean moistures for each batch are listed in Table 8. The roasted beans were cracked and winnowed in a Bauermeister Cracker/Fanner (Machine 37100) to separate the cocoa nibs from the shells. A sample of the nibs collected was analyzed for oligomer content, as also shown in Table 8.
The roasted Sanchez cocoa nibs were then fed through a Carle Montanari Mill at a rate of 2.9 kg/min to grind the nibs into chocolate liquor. In the mill, nibs dropped from a feed hopper into a narrow space between stationary and rotating grinding plates, reducing the particle size to a few hundred microns and releasing the fat contained within the nib. The pre-milled liquor was collected for analysis and subjected to further processing. The process temperature, moisture, and oligomer content of the pre-milled liquor were measured and are reported in Table 8.
The pre-milled liquor was then processed in kg batches in a Szegvari Q1 Circulation Attritor Ball Mill for 20 minutes per batch to further reduce the particle size and effect fat release. The pre-milled o 83 liquor was pumped through the milling chamber. The Smilling chamber overflowed into an agitated recirculation tank, from which liquor was continuously pumped back into the milling chamber. The finished liquor was collected for analysis. The process temperature, moisture, and oligomer contents of the finished liquor were measured and are shown in Table 8.
0q 2007203454 25 Jul 2007 ThELE 8: Unfermented Bean Process Results Pentaner Total Pentamer Total Product Percent Content Procyanidin Content Procyanidin Temprature Moisture Defatted Defatted Total Total Iweight weight 1270C 1190C, IBT 4.5% 3487pg/g 4380pg/g 19S3pg/g 246lS8pq/g Roast N ibs Pre-milled 950C 2.4% 3110yg/g 43579pg/g 1555pg/g 21790yg/g Finished 820C 2.3% 3886pg/g 47421pg/g 1943Mg/g 23710pg/g Liquor 1596C 142-C, IBT 2.4% llS7pg/g 30334pg/g BlOpg/g 21234pg/g Roast Pre-milled 926c 1.4% 13llpg/g 32SB9pg/q 655pq/g 16294Mg/g Liquor_____ Finished 59 0 C 1.4% 1453pg/g 33653pg/g 727pg/g 16826Mg/g Liquor 1810C 1620C, IBT 1.3% 607pig/g 18266Mg/g 425pg/g 12786p~g/g Roast Nibs Pre-milled 830C 0.83% 604mglqg 20656Mg/g 302yg/g 10328jag/g Liquor F ini1she d 590C 0.89% 8l5pg/g 23312pig/g 40B8ag/g 11656g/g Liquor As shown in Table 8, as the temperature of the roast is increased from 1270C to 181 0 C (or the IBT from 119 0
C
to 1620C), the level of total procyanidin decreases from 24,618 gg/g to 12,786 The decrease is particularly pronounced with the higher oligomers, e.g. the pentamer C level decreases from 1,953 pg/g to 425 pg/g.
Accordingly, the roasting temperature is an important factor in the retention of cocoa polyphenols, especially the higher oligomers.
0 EXAMPLE 8 Method of Obtaining Chocolate Liquor C Efrom Fermented Cocoa Beans Utilizing Another Embodiment of the Invention 1 0 Process c Commercially available West African cocoa beans having an initial moisture content of 6.7% by weight were heat treated using an FMC Link Belt Roaster. A cut test performed on 300 of the beans categorized them as 2.7% slaty, 1.6% purple, 25.7% purple-brown, and 70.0% brown.
The beans had a fermentation factor of 363. Three batches of approximately 50 kg of the beans were fed at a rate of 1.5 kg/min through the roaster with a residence time of 22 minutes. The degree of roast was varied in three 50 kg batches by controlling the air temperature in the Link Belt at 1310C, 156oC, and 1830C. The resulting internal bean temperatures (IBTs) as well as the final bean moistures for each batch are listed in Table 9. The roasted beans were cracked and winnowed in a Bauermeister Cracker/Fanner (Machine 1 37100) to separate the cocoa nibs from the shells. A sample of the nibs collected was analyzed for oligomer content, as shown in Table 9.
The roasted West African cocoa nibs were then fed through a Carle Montanari Mill at a rate of 2.9 kg/min to grind the nibs into liquor. In the mill, the nibs dropped from a feed hopper into a narrow space between stationary and rotating grinding plates, reducing the particle size to few hundred microns and releasing the fat contained within the nib. The pre-milled liquor was collected for analysis and subjected to further processing. The process temperature, moisture, and C oligomer content of the pre-milled liquor were measured and are reported in Table 9.
The West African pre-milled liquor was then C processed in 10 kg batches in a Szegvari Q1 Circulation Attritor Ball Mill for 20 minutes per batch to further reduce the particle size and effect fat release. The Spre-milled liquor was fed through the milling chamber.
SThe milling chamber overflowed into an agitated pC recirculation tank, from which liquor was continuously S 10 pumped back into the milling chamber until a conventional O particle size was reached. The finished liquor was collected for analysis. The process temperature, moisture, and oligomer content of the finished liquor were measured and are shown in Table 9.
2007203454 25 Jul 2007 Table 9 Fermented Bean Process Results Pentamer Total Pentamer Total Content Procyanidin Product Percent Content Procyanidin Total Total Temperature Moisture Defatted Defatted Weight I Weight 131*C Roast 121*c, 1ST 2.2% 804M~g/g l0227pg/g 402Mg/g Bl8lpg/g Nibs Pre-milled 940C 1.9% 904)jg/g llS06pig/g 452jag/g 5753gag/g Liquor_______ Finished 610C 1.8% 865piq/g 11298pg/g 432yg/g 5649y~g/g Liquor 1560C 1410C, IET 1.6% 313jig/g 763lyg/g 156Mag/g 5889mq/g Pre-mililed 850C 1.2% 275pg/g 7414Mig/g 138pig/g 3707yg/g Liquor FInished 62 0 C 1.2% 324p~g/g 7844pag/g 162pjg/g 3922jpg/g Liquor 1836C Roast 1630C, IBT 0.85% 124jpg/g 563ljyg/g 62pg/g 2815pg/g Pre-milled 730C 0.81% 222pg/g 6529pzg/g lllpg/g 3265gg Fi nIshe d 690C 0.73% 24pg/g 6610lig/g 123jpg/g 3305pg/g Liquor q As shown in Table 9, as the temperature of the roast is increased from 1310C to 1830C (or the IBT from 1210C c- to 163°C), the level of total procyanidin decreases from S8,181 Ag/g to 2,815 Mg/g. The decrease is particularly pronounced at with the higher oligomers, e.g. the pentamer level decreases from 402 pg/g to 62 Mg/g.
t Accordingly, the roasting temperature is an important cfactor in the retention of cocoa polyphenols, especially pC the higher oligomers, when roasting both underfermented 10 (Example 7) and fermented (Example 8) cocoa beans.
0 The liquor produced in Example 8 could be further processed into cocoa butter and cocoa powder.
The cocoa solids would contain a high level of the procyanidins. Processing the liquor to butter and powder could be accomplished using a hydraulic press such as manufactured by Carle and Montanari. The liquor from Example 8 could be heated to 200 to 2150 C. The liquor is then pumped into the press pots. When the pots are filled with liquor, the hydraulic ram is activated.
Cocoa butter is squeezed through very fine mesh screens.
The resultant products are cocoa cake and cocoa butter.
The nonfat cocoa solids contained in the cocoa cake would have the same amount of procyanidins as were present in the initial liquor. The cocoa cake produced via this process could be used in edible products.
EXAMPLE 9 A Method of Infra-red Heating Cocoa Beans to Produce a Chocolate Liquor Containing Increased Levels of Cocoa Polyphenola Fair average quality (FAQ) Sulawesi cocoa beans having an initial moisture content 7.4% by weight and a fermentation factor level of 233 (31% slaty, 29% purple, 22% purple brown and 17% brown) were selected as the starting material. The cocoa beans were then passed through an infra-red heating apparatus. The apparatus used was an infra-red gas vibrating micronizer (manufactured by Micronizer Company Limited, The feed rate of beans through the infra-red heater and the infra-red heater bed angle were varied to control the amount of heat treatment the beans received.
SThe amount of time the beans spent in the infra-red C heater (residence time) was determined by the bed angle and the feed rate. The times used to prepare the example material are listed in the Table 10 below. At the outlet Sof the micronizer the IBT of the beans was measured, these values are also shown in Table 10. The surface temperature of the beans exiting the infra-red heater are higher than the IBT. Rapid surface cooling brings the 0 C surface temperature close to the IBT in less than 1 minute. The traditional purpose of infra-red heating is to heat the whole beans and loosen the shell from the nib. In the example, the micronizer was used to roast the Sulawesi beans in a novel fashion by increasing the thermal load on the beans, high temperature short time (HTST). No fires were observed in the Micronizer during the infra-red heating. A total of 25 kg of raw beans were infra-red heated at each set point.
The infra-red heated beans were further processed into chocolate liquor. This liquor was produced using lab scale liquor processing equipment.
The same processing could be done using the plant size equipment referenced in Example 7. A 1 kg sample of infra-red heated beans collected off the infra-red heater at different IBTs were cracked into smaller pieces. This is done to facilitate the separation of the nib from the shell. The laboratory piece of equipment used to remove the shell was the Limiprimita Cocoa Breaker made by the John Gordon Co. LTD. of England. The cracked beans were next passed through a laboratory scale winnowing system.
The piece of equipment used was the Catador CC-1 made by the John Gordon Co. LTD of England. The result of this processing was that the shells and nibs were separated.
The cocoa nibs were next milled into a coarse liquor. This was accomplished using a Melange made by Pascall Engineering Co. LTD England. This device crushes Sand grinds the nibs into a chocolate liquor. The normal operating temperature for the liquor in the Melange in approximately 500C. This same process of taking nibs to pC a coarse liquor could be done on a larger production scale using the Carle Montanari Mill mentioned in Example 7. The cocoa nibs were ground in the Melange for one hour in each experiment. This cycle time was n sufficient to convert the nibs to a liquor. The content pC of cocoa polyphenols was measured for the samples 10 relating to the infra-red heated temperatures. These 0 values are contained in the Table 10 below.
TABLE IBT*C Residence g/g pg/g of Time in Moisture Pentamer Total Micronizer, in in Polyphenola Seoonds Finished Defatted in Defatted Liquor Liquor Liquor 107 42 3.9 3,098 39,690 126 82 1.87 1,487 28,815 148 156 1.15 695 23,937 As shown in Table 10, as the internal bean temperature of the cocoa bean is increased from 107oc to 148°C, the level of total procyanidin decreases from 39,690 Ag/g to 23,937 Ag/g. The decrease is particularly pronounced at with the higher oligomers, e.g. the pentamer level decreases from 3,098 gg/g to 695 Mg/g.
Accordingly, the internal bean temperature of the cocoa bean resulting from any heating is an important factor in the retention of cocoa polyphenols, especially the higher oligomers.
EXAMPLE 10 Standard of Identity (80I) and Non- Standard of Identity (non-SOI) Dark and Milk Chocolate Formulations Formulations of the compounds of the invention or combination of compounds derived by methods embodied in the invention can be prepared into SOI and non-SOI dark and milk chocolates as a delivery vehicle for human and veterinary applications. The cocoa polyphenol solids of Example 4 are used as a powder or liquor to prepare SSOI and non-SOI chocolates, beverages, snacks, baked goods, and as an ingredient for culinary applications.
The following describes the processing steps used in preparing these chocolate formulations.
SProcess for non-SOI Dark Chocolate O 1. Batch all the ingredients excluding 40% of the free fat (cocoa butter and anhy. milk fat) maintaining temperature between 30-350C.
CI 2. Refine to 20 microns.
3. Dry conche for 1 hour at 35 0
C.
4. Add full lecithin and 10% cocoa butter at the beginning of the wet conche cycle; wet conche for 1 hour.
Add all remaining fat, standardize if necessary and mix for 1 hour at 35 0
C.
6. Temper, mould and package chocolate.
Process for SOl Dark Chocolate 1. Batch all ingredients excluding milk fat at a temperature of 60 0
C.
2. Refine to 20 microns.
3. Dry conche for 3.5 hours at 60 0
C.
4. Add lecithin and milk fat and wet conche for 1 hour at 0
C.
Standardize if necessary and mix for 1 hour at 35 0
C.
Temper, mould and package chocolate.
Process for non-SOI Milk Chocolate 1. Batch sugar, whole milk powder and 66% of the cocoa butter, conche for 2 hours at 75 0
C.
2. Cool batch to 35 0 C and add cocoa powder, vanillin, chocolate liquor and 21% of cocoa butter, mix 20 minutes at 35 0
C.
3. Refine to 20 microns.
4. Add remainder of cocoa butter, dry conche for 1.5 hour at 35 0
C.
Add anhydrous milk fat and lecithin, wet conche for 1 hour at 35 C.
6. Standardize, temper, mould and package the chocolate.
Process for SOI Milk Chocolate 1. Batch all ingredients excluding 65% of cocoa butter and milk fat at a temperature of 60 0
C.
2. Refine to 20 microns.
3. Dry conche for 3.5 hours at 60 0
C.
4. Add lecithin, 10% of cocoa butter and anhydrous milk fat; wet conche for 1 hour at 60 0
C.
Add remaining cocoa butter, standardize if necessary and mix for 1 hour at 35 0
C.
6. Temper, mould and package the chocolate.
The cocoa polyphenols cocoa solids and commercial chocolate liquors used in the formulations were analyzed for the content of total cocoa polyphenols and cocoa polyphenol pentamer according to the method of Example 5 prior to incorporation in the formulations.
These values were then used to calculate the expected levels in each chocolate formula. In the cases for the non-SOI dark chocolate and non-SOI milk chocolate, the products were similarly analyzed for the content of total cocoa polyphenols and cocoa polyphenol pentamer. The results are shown in Tables 11 and 12.
Table 11. Dark Chocolate Foruslas Prepared with non-ALkaLtized Cocoa Ingredients Non-SOI Dark Chocolate SOI Dark Chocolate Using Cocoa 501 Dark Chocolate Using Cocoa Polyphenols Polyphenol Cocoa Solids Nonfat Using Comercial Cocoa Part. Defat cocoa SolidsNonfat Formulation; oruttation: or on: 41.49 Sugar 41.49% sugar 41.49% sugar 31 whole milk powder 3% whole milk powder 3% whole milk powder 26 coo52.65 cocoa polypheno 52.65% chocolate liquor polyphenol cocoa powder liquor 2.35 ary. milk fat 4.5X chocolate liquor 2.351 anhy. milk fat 0.01% vanllin 21.75% cocos butter 0.01% vanillin 0.5% lecithin 2.751 anhy. milk fat 0.5% lecithin 0.01% vanillin Lecithin Total fat: 31% Total fat: 31% Total fat: 31% Particle size: 20 microns Particle size: 20 microns Particle size: microns Expected Levels of pentamer and total oligomeric procyanidins (monomers and n 2-12; units of 9/g) Pentamer: 1205 Pentamer: 1300 Pentamer: 185 Total: 13748 Total: 14646 Total: 3948 Actual Levels of pentamer and total oligomeric procyanidins (monomers and n 2-12: units of uHg/) Pentamer: 561 Not performed Not performed Total: 14097 able 12. Milk Chocolate Formulas P -ijred with non-ilkatized Cocoa ingredients Nan-Sol Milk Chocolate Using 501 Milk Chocolate Using Cocoa $01 Milk Chocola te Cocoa Poiyphanot Cocoa Solids Polyplienol Cocoa Solids Using Camiercial cocoa ids Fiirutatfone, Formulation: formulation: 46.9965 2 Sugar 46.9965% sugar 46.9965% sugar 19.5% whole milk powder 19.5K whole milk powder 19.5% whole milk powder cocoa polyplhenot coca& 13.91 cocoa polyphenol liquor 13.91 chocolatea liquor powder 1.6% "ny. milk fat 1.60% anhy. milk fat 5.5% chocolate liquor 0.0035% vanillin 0.0035% vanilliln 21.4% cocoa butter 0.5% lecithin 0.5% lecithin 1.6% enhy. milk fat 17.5% cocos butter 17.5K cocoa butter 0.035% vanillin lecithin Total fat: 31.75% Total fat: 31.75% Total fat: 31.75% Particle size: 20 microns Particle size: 20 microns Particle size: mlicrone Expected Levels of penter and total oligomeric procyanidins (monomers and n 2-12; units of urg/0) lPentuuer: 225 Pentamer: 34.3 Pentamier: 49 Total: 27U4 Total: 3867 1Total: 11042 j Actual Levels of pentamer and total olgmrcpo~ndn mnmr n 2-12; units of _4g/9) OPentamer: 163 Not performed Not perfore Total: 2399 1 1 EXAMPLE 11 Dry Drink Mix with Cocoa Powder Containing Enhanced Levels of Cocoa Polyphenol A dry drink mix containing the cocoa powder of Example 4 having enhanced levels of cocoa polyphenols was made according to the following formulation: Ingredient Sucrose 65.0667 Halt Powder 11.9122 Cocoa Polyphenol Rich Cocoa Powder 18.0185 Alkalized Cocoa Powder 4.0041 vanillin 0.0025 Lecithin 0.99601 100.00 1 The dry ingredients were batched according to the above formulation and mixed for one hour in a Kitchen Aid Professional Mixer (Model KSM50P) using a wire whip Sat #2 speed. The lecithin was agglomerated prior to use V in the recipe in a Niro-Aeromatic Agglometer (Model C< STREA/1).
The dry drink mix was evaluated according to the method of Example 5 and found to have the following cocoa polyphenol content: SPentamer Content: 221 M9/g C< Total Polyphenolic Content: 4325 gg/g Two tablespoons of the dry drink mix (30 g) were added to milk (8 ounces, 2 fat) to form a chocolate flavored drink.
EXAMPLE 12 Savory Sauce with Chocolate Liquor Containing Enhanced Levels of Cocoa Polyphenol A mole sauce containing the chocolate liquor of Example 7 containing enhanced levels of cocoa polyphenol was made according to the following formulation: Ingredient Chili Powder 2.4 Olive Oil 4.8 Cumin 0.39 Cinnamon 0.21 Stewed Tomatoes 90.8 Chocolate Liquor (from 1.4 Example 7) 100.00 The oil and spices were heated in a MAGNALite saucepan (41/4.5 qt.) on a HOTPOINT stove (Model RS744GON1BG) over medium high heat (product temperature 102 0 C) for about 20 seconds. The stewed tomatoes and liquor were added to the oil/spice mixture and cooked at a product temperature of 85°C for 5 minutes.
The sauce was evaluated according to the method of Example 5 and found to have the following cocoa polyphenol content: Pentamer Content: Trace Total Polyphenolic Content: 213 pg/g Z one skilled in the art would readily appreciate Show to modify the recipe, for example by adding more C chocolate liquor, to obtain a product with higher cocoa polyphenol content, particularly a higher pentamer content.
EXAMPLE 13 Cereal Product with Cocoa Powder SContaining Enhanced Levels of Cocoa SPolyphenol A cereal was made according to the following 0 formulation: Ingredient Soft Wheat Flour 37.09 Hard Wheat Flour 16.64 Sugar, Granulated 30.33 Sodium bicarbonate 0.19 Monocalcium Phosphate 0.19 Glycerol Monostearate 0.43 Salt 1.73 Cocoa Powder (from Ex. 4) 13.40 100.00 All of the ingredients except the cocoa powder were combined in a small ribbon blender and blended 3 minutes. At the end of the mixing cycle, all of the blended materials were pneumatically conveyed to an AccuRate Feeder. The dry blend was fed through the AccuRate Feeder at 40 kg/hr, along with the cocoa polyphenol cocoa powder, which was fed through the K-tron Feeder at 6.18 kg/hr, into a WernerPfleiderer Twin Screw Extruder (Model ZSK57 with Bullet Tips). Water was added at a rate of 1.2 1/hr. The extruder was started up using standard operating procedures. Feed rates for dry blend and water were adjusted to targets. The screw RPM was set to 200. The cocoa feeder was adjusted to target and cereal tubes were collected. Empty cereal tubes were fed 97 C0 through the crimper and collected in 2 foot lengths.
3 Separate pillows were made by snapping at crimped edges.
Results: CI Pentamer Content: 23 gg/g Total Polyphenolic Content: 3453 gg/g SEXAMPLE 14 Cooked Vanilla Pudding made with Cocoa Polyphenol Extract 0 A standard cooked vanilla pudding was made according to the following formulation: 0 Ingredient C< JELL-O Vanilla Pudding Mix 95.00 Cocoa Polyphenol Extract 5.00 100.00 The pudding was cooked according to the following procedure: The cocoa polyphenol extract was made according to the extraction process of Example 2 (method 1) and finely ground using a Hamilton Beach Blendmaster blender (Model #50100, type B12). Five percent of the extract was added to the dry pudding mix and blended using a wire whip. Two cups of whole milk were added to the pudding mixture in a MAGNA Lite saucepan. The dry mixture and milk were cooked and stirred constantly using a wire whip over medium heat on a HOTPOINT stove (Model RS744GON1BG) until the mixture came to a full boil. The pudding was removed from the heat, poured into a storage container, and stored in the refrigerator.
Results: Pentamer Content: 70 pg/g Total Polyphenolic Content: 1559 Ag/g EXAMPLE 15 Brownies with Chocolate Liquor containing Enhanced Levels of Cocoa Polvphenol Brownies were made using the chocolate liquor of Example 7 to replace the unsweetened chocolate of a conventional recipe, according to the following formulation: Ingredient Shortening 12.50 Chocolate Liquor 9.41 Sugar 37.60 All Purpose Flour 23.48 Baking Powder .14 Salt .14 Eggs 16.60 Vanilla .13 100.00 The following procedure was used to make the brownies: Cocoa polyphenol chocolate liquor and shortening were placed into a Kitchen Aid K45 bowl. The bowl was then placed on top of a MAGNA Lite Saucepan (4 1 4.5 which had 345 grams of boiling (100"C) water in it. This double boiler was then heated on a HOTPOINT stove (Model RS744GON1BG) over low heat until melted, and was removed from heat. The sugar, eggs and vanilla were mixed into the melted mixture. The remaining dry ingredients were mixed in and the dough spread into a greased 13" x 9" x 2" baking pan. The brownies were baked at 350 0 F in a HOTPOINT oven (Model RS744GON1BG) for about 30 minutes until the brownies pulled away from the sides of the pan.
Results: Pentamer Content: 97 Mg/g Total Polyphenolic Content: 2981 gg/g EXAMPLE 16 Chocolate Cookies with Cocoa Powder Containing Enhanced Levels of Cocoa Polvyhenol Chocolate cookies were made using the cocoa powder of Example 4 according to the following formulation: I Ingredient Cc, Soft Butter 30.50 Confectioner's Sugar 7.60 Unsifted Flour 45.80 Cocoa Polyphenol Cocoa Powder 15.30 Water Vanilla Extract 100.00 The process outlined below was used to make the cookies: The oven was pre-heated to 325°F. The butter and one-fourth of the sugar were creamed in a Kitchen Aid Model KSM90 for about 2 minutes. The remaining ingredients were added and mixed well (approx. 3 minutes). The dough was shaped into small balls and put on an ungreased cookie sheet. Cookies were baked at 325 0 F for 15-17 minutes.
Results (After Baking): Pentamer Content: 46 Mg/g Total Polyphenolic Content: 3841 Ag/g EXAMPLE 17 Rice and Sauce nix with Cocoa Polyphenol Extract A rice and sauce mix is prepared using the formulation below: Ingredient Seasoning Mix w/Cheese 11.00 Dried Vegetables 2.00 Dry Rice 83.00 Cocoa Polyphenol Extract 4.00 100.00 All of the ingredients are combined in a saucepan on the stove, and are brought to a boil. Once the mixture is boiling, the heat is reduced and the mixture is simmered for about 10 minutes.
100 Cc, Theoretical results assuming no loss during processing: Pentamer Content: 1190 pg/g Total Polyphenolic Content: 15,000 gg/g A rice and cheese sauce mix is prepared using the formulation below: Ingredient Seasoning Mix w/Cheese 22.00 Dried Vegetables 3.00 Dry Rice 71.00 Cocoa Polyphenol Extract 4.00 100.00 All of the ingredients are combined in a saucepan with 2 1/4 cups water and 1 to 2 tablespoons of butter. The mixture is brought to a boil and then is allowed to simmer for about 10 minutes, until most of the water is absorbed. The rice mix is then allowed to sit for about 5 minutes to allow the cheese sauce to thicken.
Theoretical results assuming no loss during processing: Pentamer Content: 1190 Ag/g Total Polyphenolic Content: 15000 gg/g EXAMPLE 18 Extruded Energy Bar Process with Cocoa Powder Having Enhanced Levels of Cocoa Polyphenol Energy Bars were made using the cocoa powder of Example 4 having enhanced levels of cocoa polyphenol in place of natural cocoa powder, according to the following recipe: Ingredient Carbohydrate Syrup 20-30 Fruit/Fruit Preparation 10-15 Protein Powder (milk or soy 5-20 origin) Micronutrients Simple Sugars 10-20 Maltodextrin 10-15 Crisp Rice/Rice 10-13 Cocoa Polyphenol Cocoa Powder 8-12 Fat Flavor 0.1-1.5 Cc, The ingredients were mixed in a JH Day gallon jacketed stainless steel double arm sigma blade mixture. The mixer jacket was set to 50°C. The carbohydrate syrup, fat, and fruit/fruit preparation was combined in the mixer and mixed at 50 rpm until homogenous, about 5 minutes. With the mixer running, the remaining ingredients were gradually added in the following order and blended until homogenous; micronutrients, flavor, cocoa powder, simple sugars, maltodextrin, protein powder, and crisp rice/rice. The blended energy bar mass was transferred to the hopper of the Werner Lehara Continuous Rope Extruder. The extruder was jacketed at 40 0 C to keep the mass soft and pliable for forming. The mass was extruded through the nozzle block onto a conveyor belt that transferred the strips through a cooling tunnel. A guillotine was used to cut the bars to length upon exiting the cooling tunnel at Results: Pentamer Content: 22 g/g Total Polyphenolic Content: 1710 g/g EXAMPLE 19 Baby Food Containing Cocoa Polyphenol Extract A vegetable baby food containing cocoa polyphenol extract is prepared using the following formulation: Example 19A Example 19B Ingredient Vegetable A 73 LiquidB 22 Cocoa 5 Polyphenol Extract Ingredient Potatoes, green beans, peas, carrots, and yellow squash.
Ingredient Cooking liquid, formula, or water.
Vegetables are cooked by steaming, microwave oven, or boiling (using small amounts of water which are retained for thinning the pureed food). After cooking, all ingredients are mixed together, placed in a blender and pureed until a smooth consistency is reached.
Theoretical results assuming no loss during processing: Total Pentamer Content: 1488 mg/g Total Polyphenolic Content: 18758 Mg/g EXAMPLE 20 Pet Food with Cocoa Powder Having Enhanced Levels of Cocoa Polyphenol A canned dog/cat food is prepared with cocoa powder having enhanced levels of cocoa polyphenol using the following formulation: Example 20A Example Ingredients Meat/meat by-products 68 52 Water 24 Cereals and grains 0 Colors, vitamins, 3 3 minerals, gums, emulsifiers, flavorings, and preservatives Cocoa Polyphenol Cocoa 5 Powder CI The mixture of meats, animal by-products, Z cereal components and cocoa polyphenol cocoa powder are hermetically sealed in metal or plastic containers and CI processed at temperatures and pressures sufficient to render them commercially sterile. The product is heat treated in hermetically sealed containers with an F o value of 3.0 or more, for canned pet food.
M Theoretical results assuming no loss during CA processing: Pentamer Content: 107 Ag/g C Total Polyphenolic Content: 1554 ig/g EXAMPLE 21 Dry Pet Food With Cocoa Powder Having Enhanced Levels of Cocoa Polyphenol A dry extruded dog/cat food is prepared with cocoa powder having enhanced levels of cocoa polyphenols using the following formulation: Ingredient Grains, meat/meat by- 57-66 products, meat meals Dairy by-products 24-33 Colors, vitamins, minerals, 3 gums, emulsifiers, flavorings, and preservatives Cocoa Polyphenol Cocoa Powder The meal is processed in a continuous cooking extruder for approximately 20 seconds reaching 1450C for approximately 10 seconds. The wet-formed pieces of pet food are dried by means of a conventional belt dryer subjected to air temperatures of 1256C for approximately minutes. The product is then coated with animal fat and/or emulsified, hydrolyzed animal tissue.
Theoretical results assuming no loss during processing: Pentamer Content: 107 g/g Total Polyphenolic Content: 1554 g/g EXAMPLE 22 Chocolate Syrup With Cocoa Polyphenol Cocoa Powder A chocolate variegating and syrup containing the cocoa polyphenol prepared using the following formula: sundae topping cocoa powder are Ingredients Economy Premium Formula Formula Water 30.74 31.56 Corn syrup 35.07 30.91 c solids Sucrose 22.20 20.94 CI 10 Cocoa 8.88 7.98 Polyphenol Cocoa Powder Hydrogenated 0 5.98 vegetable fat Milk solids 2.22 1.99 non-fat CC-801* 0.72 0.49 CC-280 0.17 0.15 (emulsifier) 100.00 100.00 *CC-801 (Pectin, Dextrose, Sodium citrate) is added at 0.20% in the above formulas for chocolate sundae topping syrup; remainder replaced with water to 100%.
For each pound of CC-801, one gallon of water from the formula is heated to 180°F in a small vat. The CC-801 is stirred in and is set aside until ready to homogenize the complete batch. The balance of the water is added to a steam-jacketed vat. In the following order, the sucrose, milk solids non-fat, and corn-syrup solids are incorporated. The balance of the ingredients are then added in any order. The mixture is heated to 185°F and held for 5 minutes. The CC-801 solution is added and mixed thoroughly. The batch is at 1000 psi (if not homogenizing, increase the stabilizer The product is pumped into sanitized containers and stored in a cooler at 400F to allow the product to set up.
S105 CI Theoretical results assuming no loss during processing: ZPentamer Content: 171 pg/g Total Polyphenolic Content: 2486 Ag/g EXAMPLE 23 Hard CandY SFormed and deposited types of hard candy are prepared using the formulation below by the methods r n described in Lees Jackson, 1st Edition, Sugar N Confectionery and Chocolate Manufacture, pages 176-186 (1995).
Hard candy Formula Sugar 42.85% High Maltose Corn Syrup 38.09% Water 12.19% Buffered Lactic Acid 1.90% Flavoring 0.19% Coloring 6.0057% Cocoa Polyphenol Cocoa Powder 4.77% Theoretical results assuming no loss during processing: Pentamer Content: 102 gg/g Total Polyphenolic Content: 1482 Ag/g EXAMPLE 24 Rice Cake with Cocoa Polyphenol Cocoa Powder- A cocoa polyphenol cocoa powder covered rice cake was prepared using the following ingredients: Puffed Rice Cake (made by a method similar to that set forth in U.S. Patent No. 4,888,180) N-Tack (corn syrup solids in 30% solution) Cocoa Polyphenol Cocoa Powder Mix A prepared rice cake was coated with a thin layer of N-Tack solution. The coated rice cake was immediately placed in a bag containing the cocoa polyphenol mix and coated. The cake was then shaken to 106 remove excess cocoa polyphenol mix. The cake was given a second application of H-Tack and mix resulting in approximately 4 grams of cocoa polyphenol mix being applied to the puffed rice cake.
Theoretical Actual Pentamer Content 252 38 Total 3655 4842 Polyphenol ic LO Content (14g/g) EXAMPLE 25 Fruit and Grain Pastry Bar with Cocoa Polvnhanol Extract A strawberry fruit filling was made according to the following formulation: ingredient wet vt% amount (g) Xanthan gum, 1.0 extra fine Hydrogenated 1.25 6.25 soybean oil Water 10.0 50.0 Glycerin USP or 7.0 35.0 food grade______ Corn syrup solids 56.23 281.2 Maltrin M250 (78% solids with 61.9 g water) Low moisture 5.0 25.0 apple flake powder Natural 2.0 10.0 strawberry flavor Strawberry puree 12.0 60.0 concentrate Malic acid, fine 0.5 granular Red #40 0.02 0.1 strawberry color Cocoa Polyphenol 5.0 25.0 Extract 100.00 500.00 For making the fruit filling, the gum was hydrated in cold water using a blender. The corn syrup solids, water, fruit puree, cocoa polyphenol extract and glycerin were cooked on a stove top using medium to high heat to a temperature of 230"F measured with a Wahl thermocouple thermometer. The mixture was removed from the heat and allowed to cool. Hydrated gum was added to the mixture and the mixture was heated to 216"F. The mixture was again removed from the heat and allowed to cool for at least 5 minutes. Acid, color, apple powder and melted fat were added to the mixture, and the mixture was allowed to cool for 2 additional minutes. Flavor was added to the mixture with thorough mixing.
Results: Pentamer Content: 349 pg/g Total Polyphenolic Content: 12,771 pg/g The pastry wrapper was made according to the following formulation: Ingredient wet wt amount (g) Blended flour 36.5 182.5 hard flour (54.75 g) soft flour (127.75 g) Brown sugar 14.6 73.0 roasted oats Wheat bran 7.3 36.5 Gum arabic 0.6 (Acacia FCC) Kelco gum 0.6 (Kelite CM) Soy lecithin 0.8 Sodium 0.6 bicarbonate Sodium acid 0.4 pyrophosphate Brown sugar, 6.3 31.5 granulated 108 Hydrogenated 5.2 26.0 soybean oil Water 21.22 106.1 Flour salt 1.0 Glycerin USP or 4.1 20.5 food grade Kelco GFS, 0.78 3.9 prehydrated 100.00 500.00
S
5 CD 0 (N For making the pastry wrapper, the gum arabic, Kelite CM, sodium bicarbonate, sodium acid pyrophosphate, salt, Kelco GFS and glycerin were hydrated in water using a blender. Lecithin was stirred into melted fat. The remaining dry ingredients were added to a mixing bowl.
The fat blend was added to the dry ingredients using a Kitchen Aid mixer on speed 2. The gum blend was slowly added into the mixing bowl. After mixing, the dough was worked by hand into a ball. The dough was proofed for minutes covered with a wet paper towel to decrease stickiness. A Rondo Sheeter (Sewer Rondo, Inc. STE533) was used to achieve a dough thickness of 2.5 mm. The dough was cut into 4" x 4" squares weighing 33 g.
Using a pastry bag, 19.5 g of the fruit filling was applied on top of each dough square. The dough was folded over to make a bar and the ends of the bar were sealed shut with crimping. Using a knife, holes were poked in the top of the bar to help heat escape and to prevent bar explosion.
The bars were baked for 6 1/2 minutes at 375"F.
The weight of the final, baked bar was 45.5 g.
Results: Pentamer Content: 105 ig/g Total Polyphenolic Content: 5,851 Mg/g EXAMPLE 26 Caramel Chew with Coooa Powder Containing Enhanced Levels of Cocoa Polvphenol Sample A; Cocoa Polvyhenol Caramel Chew 109 Final Caramel Cocoa/Sugar Chocolate portion Premix Chew Ingredients (67.00%) (33.00%) After Cooking (Dry wt.
basis) 63 DE Corn 56.70 35.00 Syrup Salt 0.60 0.44 Sweetened 34.20 17.70 Condensed Skim Milk Partially 8.50 6.30 Hydrogenated Soy Bean Oil 6016 Cocoa 45.5 14.66 Polyphenol Cocoa 011797B Fondant Sugar 54.5 18.00 (Redi-Fond from Domino Sugar) Water 7.90 100.00 100.00 100.00 The caramel portion was batched according to the above formulation and combined with agitating and steam in a Groen kettle. The mixture was heated slowly with agitation to 235OF and cooled to 200°F or lower.
For making the finished chocolate chew, the cocoa polyphenol cocoa powder and fondant sugar were blended. The caramel portion (67.0% of the final formula) was placed in a Hobart Mixer. While mixing, the cocoa/sugar premix (33.0% of the final formula) was slowly added. The formulation was slabbed to the desired thickness (10 mm). After cooling and setting up (about 2 hours), the formulation was cut to the desired size mm squares).
Results: Pentamer Content (cocoa added at 140 0 95 pg/g
SUB,
110 Total Polyphenolic Content (cocoa added at 140 0 2195 Ag/g Sample B; Cocoa Polyphenol Caramel Chew 22 Final Caramel Cocoa/Su Chocolate portion gar Chew After Ingredients (67.00%) Premix Cooking (33.00%) (Dry wt.
basis) 63 DE Corn Syrup 56.70 35.20 Salt 0.60 0.44 sweetened 34.20 17.70 Condensed Skim Milk Partially 8.50 6.29 Hydrogenated Soy Bean Oil 6016 Cocoa Polyphenol 66.7 21.34 Cocoa 011797B Fondant Sugar 33.3 10.95 (Redi-Fond from Domino Sugar) Water 8.08 _100.00 100.00 100.00 The caramel portion was batched according to the above formulation and combined with agitating and steam in a Groen kettle. The mixture was heated slowly with agitation to 235°F and cooled to 200°F or lower.
For making the finished chocolate chew, the cocoa polyphenol cocoa powder and fondant sugar were blended. The caramel portion (67.0% of the final formula) was placed in a Hobart Mixer. While mixing, the cocoa/sugar premix (33.0% of the final formula) was slowly added. The formulation was slabbed to the desired thickness (10 mm). After cooling and setting up (about 2 hours), the formulation was cut to the desired size mm squares).
Results: Pentamer Content (cocoa added at 140°F): 178 gg/g Pentamer Content (cocoa added at 200 0 178 gg/g Total Polyphenolic Content (cocoa added at 140°F): 4036 Mg/g Total Polyphenolic Content (cocoa added at 200°F): 3941 Ag/g EXAMPLE 27 Sugar.Tablets with Coooa Powder Containing Enhanced Levels of Cocoa Polyphenol Wet process tablets were made according to the following formulation: Final Cocoa Tablet Wet Cocoa Tablet After Drying (Dry wt. basis) Sucrose 6X 41.30 51.19 Cocoa 35.00 42.08 Polyphenol Cocoa Powder Water 21.06 4.50 Gum Arabic 1.26 1.41 Gelatin 200 0.62 0.73 Bloom Vanilla 4X 0.76 0.09 100.00 100.00 I I The gelatin was soaked in water and the sucrose was premixed with the cocoa polyphenol cocoa powder.
After the gelatin is hydrated, it was heated to 900C and gum arabic was added with high shear. This solution, with flavor, was mixed into 1/4 of the sucrose/cocoa mixture, and the remaining sucrose/cocoa was slowly added while mixing (in a Hobart or Kitchen Aid Ultra Power mixer). The formulation was mixed for 10-15 minutes and slabbed to the desired thickness mm). After drying and punching out in the desired shape (discs), the pieces were dried further to a final moisture of approximately 3-6%.
Analytical results: 112 Total sample Procyanidin Pent amera i tu re microgram/ microgram percent noteo /grami Tablet 05 with 13618 689 4.4 ambient Cocoa Polyphenol. dried 11269614______ Tablet #5 with 7602 215 6.2 ambient Cocoa Polyphenol. dried 0117975B______ Tablet #5 Cocoa 8186 209 4.5 dried at Polyphenol. 011791B 120OF for I I I 1 60 hour.
113 EXAMPLE 28 2ranola-Bar A granola bar was made according to the following formulation:
BINDER
63 D.E. Corn Syrup 64.11 Partially Hydrogenated Soybean Oil 7.9 (6034) Cocoa Polyphenol Cocoa Powder Calcium Carbonate 7.4 Glycerin 7 Brown Sugar (Granulated) 1 Flour Salt Soy Lecithin 0.3 Propylgallate Solution 0.04 Vanilla Extract 0.75 100% For making the binder, the hydrogenated soybean oil and chocolate liquor were melted in a microwave oven at 55-64 0 C. The soy lecithin was dispersed into the melted oil, and the mixture was poured into a Cuisinart Mixer. The corn syrup and glycerin were preheated in a microwave to 70 0 C to reduce the viscosity and added to the Cuisinart mixture along with oil, lecithin, and liquor. The ingredients were mixed in the Cuisinart for approximately 30 seconds. The dry blended ingredients were slowly added to the Cuisinart and mixed for approximately 1-2 minutes or until well blended.
A fudge formulation using cocoa polyphenol cocoa powder was made according to the following recipe: FUDGE TOPPING Powdered Sugar (6X) 27.4 High Fructose Corn Syrup 20.0 Partially Hydrogenated Soybean Oil 10.75 (6034) Lactose (Alpha Mono) 9.25 Powdered Lactose (Alpha Mono) 11.0 Cocoa Polyphenol Cocoa Powder 10.0 Glycerin Non-Fat Dry Milk (Low-Heat) Water Calcium Carbonate 1.35 Soy Lecithin Salt 0.25 Vanilla 1 100% For making the fudge topping, the dry ingredients according to the above recipe were blended in a Kitchen Aid mixer on low speed for approximately 3-4 minutes or until well blended. The hydrogenated soybean oil was melted in a microwave oven at 55-64°C. The soy lecithin was dispersed in the melted oil. The oil/lecithin mixture was poured into the blended dry ingredients in a Hobart Mixer running on slow speed. The speed of the mixture was gradually increased and the water, glycerin, and high fructose corn syrup was added into the mix. The resulting fudge topping was mixed for 2-3 minutes or until thoroughly blended.
The finished bars were made according to the following formulations: CI Granola Recipe: Scrisp Rice 30.2 Mini Wheat Flakes 33.7 l r 5 Brown Sugar Oats 36.1 100% Finished Product Profiles Chocolate 37 Cocoa Polyphenol Cocoa Powder) CI Granola/Rice 21 Binder 21 Fudge 21 C- 100% The finished product was made according to the following: The granola was blended with the binder and slabbed onto wax paper with a rolling pin to about 15 mm high. The fudge topping was slabbed onto the granola base and allowed to set for about an hour. The bars were cut to the following dimensions: Heiiht 15 mm Width 25 mm Length 84mm Cut bars were then enrobed in Cocoa Polyphenol chocolate.
Results: Pentamer: 104 pg/g Total Polyohenolics: 2215 pg/g EXAMPLE 29 Cocoa Polyphenol Milk Chocolate with Cinnamon caramel Cocoa polyphenol milk chocolate was hand tempered at 86 0 F-88"F. The tempered chocolate was then used to make shells in various shaped molds. 965 grams of standard Caramel was warmed to 550C. 20 grams of cocoa polyphenol cocoa powder and 15 grams of cinnamon 116 were added to the warmed caramel and mixed well. The Z caramel was allowed to cool and was then pastry bagged into chocolate shells. The shells were then bottomed with tempered chocolate and removed from the molds. The molded piece consisted of 6 grams of cocoa polyphenol Smilk chocolate and 4 grams of caramel containing cocoa polyphenol cocoa powder.
(C Finished Product: 0 Ingredient Usage Level Cl Cocoa Polyphenol Milk Chocolate Cocoa Polyphenol Caramel 100% Results: Pentamer: 79.8 Ag/g EXAMPLE 30 Cocoa Polyphenol Milk Chocolate with Chocolate-Flavored Noucat Cocoa polyphenol milk chocolate was hand tempered at 86 0 F-88 0 F. The tempered chocolate was then used to make shells in various shaped molds. The formula for chocolate-flavored nougat was used to make frappe. grams of cocoa polyphenol cocoa powder was added to 104 grams of slurry which was folded into the frappe at a ratio of 92.40% frappe to 7.60% slurry. The finished chocolate-flavored nougat was then slabbed onto the cooling table and cut to fit the molded shells. The shells were then bottomed with tempered cocoa polyphenol chocolate and removed from the molds. The molded piece consisted of 22.5 grams of cocoa polyphenol milk chocolate and 12.5 grams of chocolate-flavored nougat.
Cocoa Polyphenol Nougat Piece Wt. 35q Choc/Center Z= 22.5a/12.5q j Ingredient Usage Level Chocolate-Flavored Nougat 35.71% 17 l Cocoa Polyphenol 64.29% Milk Chocolate 0 Results: 0 Pentamer: 80.3 9g/g EXAMPLE 31 Coooa Polyphenol Dark Chocolate with C Chocolate-Flavored Nougat Cocoa polyphenol milk chocolate was hand tempered at 86 0 F-88F. The tempered chocolate was then used to make shells in various shaped molds. The formula for chocolate-flavored nougat was used to make frappe. grams of cocoa polyphenol cocoa powder and 75 grams of cocoa polyphenol dark chocolate was added to 104 grams slurry which was folded into the frappe at a racial of 92.40% frappe to 7.60% slurry. The finished chocolateflavored nougat was then slabbed onto the cooling table and cut to fit the molded shells. The shells were then bottomed with tempered cocoa polyphenol chocolate and removed from the molds. The molded piece consisted of 22.5 grams of cocoa polyphenol dark chocolate and 12.5 grams of chocolate-flavored nougat.
Cocoa Polyphenol Chocolate-Flavored Nougat Ingredient Usage Level of Samples Chocolate-Flavored Nougat 84.89% Cocoa Polyphenol Dark Chocolate 15.0% Cocoa Polyphenol Cocoa Powder 0.11% Results: Pentamer: 43.2 gg/g 117a c1 Comprises/comprising and grammatical variations thereof when used in this specification are to be taken to specify the presence of stated features, In integers, steps or components or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
tC)

Claims (129)

  1. 3. The method of claim 1, wherein said cocoa beans have a fermentation factor less than 375.
  2. 4. The method of claim 1, wherein the cocoa beans are fair average quality cocoa beans and the cocoa polyphenol content of the cocoa component produced is from 25 to 100 by weight of the cocoa polyphenol content of the fair average quality cocoa beans. The method of claim 1, wherein the cocoa beans are raw freshly harvested cocoa beans and the cocoa polyphenol content of the cocoa component produced is from 5 to 100 by weight of the cocoa polyphenol content of the raw freshly harvested cocoa beans.
  3. 6. The method of claim 1, wherein said treating comprises heat-treating said cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenol content thereof to form heat-treated cocoa beans.
  4. 7. The method of claim 1, wherein said treating comprises drying the cocoa beans to form dried cocoa beans. 119 C8. The method of claim 7, wherein said Sdrying is at an elevated temperature for a time s sufficient to develop chocolate flavor while conserving a C- significant amount of the cocoa polyphenol content thereof.
  5. 9. The method of claim 7, further Scomprising the step of producing chocolate liquor Scontaining an enhanced content of cocoa polyphenol from C\ said dried cocoa beans. The method of claim 1, wherein the cocoa beans are raw freshly harvested cocoa beans containing a cocoa polyphenol content and said treating comprises: at least partially fermenting said raw freshly harvested cocoa beans to form at least partially fermented cocoa beans; and (ii) heat-treating said at least partially fermented cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenol content thereof to form heat-treated cocoa beans.
  6. 11. The method of claim 10, wherein the at least partially fermented cocoa beans have a fermentation factor less than 375.
  7. 12. The method of claim 10, wherein the heat-treating step comprises infra-red heating.
  8. 13. The method of claim 1, wherein the treating comprises: drying cocoa beans containing a cocoa polyphenol content to form dried cocoa beans; and (ii) infra-red heating the dried cocoa beans at an elevated temperature for a time sufficient to form infra-red heated cocoa beans while conserving a significant amount of the cocoa polyphenol content thereof. i 120
  9. 14. The method of claim 13, wherein the Z cocoa beans are raw freshly harvested cocoa beans having l a fermentation factor less than about 125. C 15. The method of claim 1, wherein the cocoa beans have shells and the treating comprises: infra-red heating the cocoa beans Sat an elevated temperature for a time sufficient to 0 loosen the shells while conserving a significant amount of the cocoa polyphenol content thereof to form infra-red Sheated cocoa beans; and CI (ii) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while further conserving a significant amount of the cocoa polyphenol content thereof to form roasted cocoa beans.
  10. 16. The method of claim 15, wherein the cocoa beans have a fermentation factor less than 375.
  11. 17. The method of claim 1, wherein the treating comprises: infra-red heating the cocoa beans at an elevated temperature for a time sufficient to reduce their moisture to less than 5 by weight while conserving a significant amount of the cocoa polyphenol content thereof to form infra-red heated cocoa beans; and (ii) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while further conserving a significant amount of the cocoa polyphenol content thereof to form roasted cocoa beans.
  12. 18. The method of claim 17, wherein said infra-red heating is conducted at an internal bean temperature of from 85 to 135 OC for from 10 seconds to minutes.
  13. 19. The method of claim 17, wherein said roasting is conducted at an internal bean temperature of from 95 to 1600 C for from 30 seconds to 5 hours. The method of claim 17, wherein the cocoa polyphenol content of the infra-red heated cocoa beans is at least 65 by weight of the cocoa polyphenol C content of the cocoa beans.
  14. 21. The method of claim 17, wherein the cocoa polyphenol pentamer content of the infra-red heated cocoa beans is at least 50 by weight of the cocoa Spolyphenol pentamer content of the cocoa beans. rC
  15. 22. The method of claim 17, wherein the cocoa polyphenol content of the roasted cocoa beans is at Oleast 75 by weight of the cocoa polyphenol content of the infra-red heated cocoa beans.
  16. 23. The method of claim 17, wherein the cocoa polyphenol pentamer content of the roasted cocoa beans is at least 60 by weight of the cocoa polyphenol pentamer content of the infra-red heated cocoa beans.
  17. 24. The method of claim 1, wherein said treating comprises roasting cocoa beans, containing a cocoa polyphenol content, at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenol content thereof to form roasted cocoa beans. The method of claim 1, wherein said treating comprises: drying cocoa beans containing a cocoa polyphenol content to form dried cocoa beans; (ii) infra-red heating said dried cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenol content thereof to form infra-red heated cocoa beans; and (iii) roasting said infra-red heated cocoa beans at an elevated temperature for a time sufficient to further develop chocolate flavor while further conserving a significant amount of the cocoa polyphenol content thereof to form roasted cocoa beans. 122
  18. 26. A method for the production of chocolate liquor having an enhanced content of cocoa t polyphenol comprising the steps of: treating cocoa beans, containing cocoa polyphenols, while conserving a significant amount Sof the cocoa polyphenol content thereof to form treated cocoa beans; and 0 producing chocolate liquor containing an enhanced content of cocoa polyphenol from Ssaid treated cocoa beans. CR 27. The method of claim 26, wherein said chocolate liquor is subsequently heated-treated to remove undesirable or off flavors.
  19. 28. The method of claim 27, wherein said subsequent heat-treating is to a temperature between and 140 0 C for from 5 minutes to 24 hours.
  20. 29. The method of claim 27, wherein said chocolate liquor is subsequently directly heated with steam. The method of claim 26, wherein said cocoa beans have a fermentation factor less than 375.
  21. 31. The method of claim 26, wherein the cocoa polyphenol content of the chocolate liquor is at least 25% by weight of the cocoa polyphenol content of the cocoa beans.
  22. 32. The method of claim 26, wherein the cocoa polyphenol pentamer content of the chocolate liquor is at least 45% by weight of the cocoa polyphenol pentamer content of the cocoa beans.
  23. 33. A method of making a non-alkalized chocolate liquor comprising the steps of: heating cocoa beans using infra- red radiation; and producing a chocolate liquor from said heated cocoa beans; wherein the chocolate liquor is not subsequently alkalized. 123 C-
  24. 34. The method of claim 33, wherein said heating reduces the cocoa bean moisture content to less 'n than 5 by weight. c
  25. 35. A method of making a chocolate liquor comprising the steps of: heating cocoa beans using infra- V' n red radiation; and producing a chocolate liquor C-I from said heated cocoa beans without a subsequent heating step.
  26. 36. A method for the production of cocoa polyphenol for use as an edible, ingestible or pharmaceutical component from cocoa beans comprising the steps of: processing cocoa beans to separate cocoa butter from cocoa solids; and extracting cocoa polyphenol from said cocoa solids, wherein said processing comprises the steps of pressing, microwave assisted extraction, solvent extraction or combinations thereof.
  27. 37. The method of claim 36, wherein said cocoa beans have a fermentation factor less than 375.
  28. 38. A method for the production of cocoa polyphenol for use as an edible, ingestible or pharmaceutical component from cocoa beans comprising the sequential steps of: extracting cocoa polyphenol from said cocoa beans; and separating a cocoa component from cocoa shell.
  29. 39. The method of claim 38, wherein said cocoa beans have a fermentation factor less than 375. A chocolate liquor produced from fair average quality cocoa beans having a fermentation factor greater than 375, said chocolate liquor containing at least 5500 Wg cocoa polyphenol per gram chocolate liquor. I
  30. 41. The chocolate liquor of claim Swherein said chocolate liquor contains at least 500 Ag Scocoa polyphenol pentamer per gram chocolate liquor. C 42. A chocolate liquor produced from cocoa beans having a fermentation factor less than 375, said chocolate liquor containing at least 16,500 gg cocoa polyphenol per gram chocolate liquor.
  31. 43. The chocolate liquor of claim 42, wherein said chocolate liquor contains at least 1,500 pg Scocoa polyphenol pentamer per gram chocolate liquor. C 44. A chocolate liquor comprising cocoa butter, cocoa solids and cocoa polyphenol, wherein the cocoa solids contain at least 33,000 pg cocoa polyphenol per gram defatted cocoa solids. A chocolate liquor comprising cocoa butter, cocoa solids and cocoa polyphenol, wherein the cocoa solids contain at least 3,000 Ag cocoa polyphenol pentamer per gram defatted cocoa solids.
  32. 46. The chocolate liquor of claim 44, wherein said liquor is derived substantially from underfermented cocoa beans.
  33. 47. The chocolate liquor of claim wherein said liquor is derived substantially from underfermented cocoa beans.
  34. 48. A cocoa solid containing at least 33,000 Ag cocoa polyphenol per gram defatted cocoa solid.
  35. 49. A cocoa solid containing at least 3,000 pg cocoa polyphenol pentamer per gram defatted cocoa solid. A cocoa component containing an enhanced content of cocoa polyphenol, wherein said cocoa component is produced by the steps comprising: treating cocoa beans, containing a cocoa polyphenol content, at an elevated temperature for a time sufficient to develop chocolate flavor while Cl conserving a significant amount of the cocoa polyphenol Scontent thereof to form heat-treated cocoa beans; and producing said cocoa component Cg from said heat-treated cocoa beans.
  36. 51. A chocolate liquor containing an enhanced content of cocoa polyphenol, wherein said V chocolate liquor is produced by the steps comprising: M treating cocoa beans, containing Cl a cocoa polyphenol content, at an elevated temperature S for a time sufficient to develop chocolate flavor while Sconserving a significant amount of the cocoa polyphenol content thereof to form heat-treated cocoa beans; and producing chocolate liquor containing the enhanced content of cocoa polyphenol from said heat-treated cocoa beans.
  37. 52. The chocolate liquor of claim 51, wherein said chocolate liquor is subsequently heated to remove off flavors.
  38. 53. A non-alkalized chocolate liquor produced by the steps comprising: heating cocoa beans using infra- red radiation; and producing a chocolate liquor from said heated cocoa beans; wherein the chocolate liquor is not subsequently alkalized.
  39. 54. A chocolate liquor containing an enhanced amount of cocoa polyphenol, wherein said chocolate liquor is produced by the steps comprising: heating cocoa beans using infra- red radiation; and producing a chocolate liquor from said heated cocoa beans without a subsequent heating step. A method of making an edible product containing a cocoa component having an enhanced content of cocoa polyphenol comprising the steps of: 126 treating cocoa beans containing Z a cocoa polyphenol content while conserving a significant Samount of the cocoa polyphenol content thereof to form C treated cocoa beans; producing said cocoa component from said treated cocoa beans; and including said component in said edible product. c 56. The method of claim 55, wherein the Scocoa component is selected from the group consisting of Ci cocoa nib, chocolate liquor, cocoa solids, cocoa polyphenol extract and mixtures thereof.
  40. 57. A method of making an edible product having an enhanced content of cocoa polyphenol comprising adding a cocoa polyphenol additive or a derivative thereof to the product.
  41. 58. The method of claim 57, wherein the cocoa polyphenol additive is an extract from cocoa beans or a cocoa component thereof.
  42. 59. The method of claim 57, wherein the cocoa polyphenol additive is synthetic. A method of making a chocolate comprising the steps of: combining chocolate liquor from cocoa beans having a fermentation factor greater than 375 with at least one additive selected from the group consisting of: at least one fat; (ii) at least one sugar; (iii) milk solids; and (iv) mixtures thereof; to form an initial mixture; heating the initial mixture to a temperature less than about 2000 C for from 5 minutes to 24 hours; cooling the initial mixture; 127 S(d) combining the initial mixture Swith a second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining C- ingredients to form a secondary mixture; and conching said secondary mixture.
  43. 61. The method of claim 60, wherein the V milk solids are in an amount greater than or equal to 12 S% by weight. CI
  44. 62. A method for the production of a chocolate comprising the steps of: heating a first chocolate liquor from cocoa beans having a fermentation factor greater than 375 to a temperature less than about 2000 C for from minutes to 24 hours; cooling the first chocolate liquor; combining the cooled first chocolate liquor with a second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining ingredients to produce a secondary mixture; and conching said secondary mixture.
  45. 63. A standard of identity chocolate comprising at least 3,600 Mg cocoa polyphenol per gram chocolate.
  46. 64. A standard of identity chocolate comprising at least 200 Mg cocoa polyphenol pentamer per gram chocolate. A standard of identity chocolate containing milk solids and comprising at least 1000 Ag cocoa polyphenol per gram chocolate.
  47. 66. A standard of identity chocolate containing milk solids and comprising at least 85 Mg cocoa polyphenol pentamer per gram chocolate.
  48. 67. The standard of identity chocolate of claim 65, wherein the milk solids are contained in an amount greater than or equal to 12 by weight.
  49. 68. The standard of identity chocolate of Sclaim 66, wherein the milk solids are contained in an Samount greater than. or equal to 12 by weight.
  50. 69. A chocolate comprising a cocoa component, wherein said chocolate contains at least 3,600 g cocoa polyphenol per gram chocolate. A chocolate comprising a cocoa 0 component, wherein said chocolate contains at least 200 pg cocoa polyphenol pentamer per gram chocolate.
  51. 71. A chocolate containing milk solids and C1 comprising at least 1000 pg cocoa polyphenol per gram chocolate.
  52. 72. A chocolate containing milk solids and comprising at least 85 pg cocoa polyphenol pentamer per gram chocolate.
  53. 73. A chocolate comprising a fat phase and a cocoa component containing a cocoa polyphenol content from fair average quality cocoa beans, wherein said cocoa component contains at least 25 of the cocoa polyphenol content of said fair average quality cocoa beans.
  54. 74. A chocolate comprising a cocoa component and at least one fat, and further containing at least 7,300 pg cocoa polyphenol per gram cocoa component. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 23,100 pg cocoa polyphenol per gram defatted cocoa solids.
  55. 76. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 10,500 pg cocoa polyphenol per gram fat.
  56. 77. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 630 pg cocoa polyphenol per calorie.
  57. 78. A chocolate comprising partially defatted cocoa solids and at least one emulsifier, and 129 Ci further containing at least 1,200,000 pg cocoa polyphenol per gram emulsifier.
  58. 79. A chocolate comprising chocolate c liquor and at least one fat, and further containing at least 10,200 pg cocoa polyphenol per gram chocolate liquor. f
  59. 80. A chocolate comprising at least one C milk component and at least one fat, and further Cq containing at least 8,325 pg cocoa polyphenol per gram milk component. 0 81. A chocolate comprising sugar and at least one fat, and further containing at least 7,100 pg cocoa polyphenol per gram sugar.
  60. 82. A chocolate comprising a fat phase and a cocoa component containing a cocoa polyphenol pentamer content from fair average quality cocoa beans, wherein said cocoa component contains at least 25 of the cocoa polyphenol pentamer content of said fair average quality cocoa beans.
  61. 83. A chocolate comprising a cocoa component and at least one fat, and further containing at least 360 pg cocoa polyphenol pentamer per gram cocoa component.
  62. 84. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 1,000 ig cocoa polyphenol pentamer per gram defatted cocoa solids. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 520 Mg cocoa polyphenol pentamer per gram fat.
  63. 86. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 32 gg cocoa polyphenol pentamer per calorie.
  64. 87. A chocolate comprising partially defatted cocoa solids and at least one emulsifier, and 130 'further containing at least 58,000 ig cocoa polyphenol Spentamer per gram emulsifier.
  65. 88. A chocolate comprising chocolate liquor and at least one fat, and further containing at least 500 ig cocoa polyphenol pentamer per gram chocolate Sliquor.
  66. 89. A chocolate comprising at least one 0 milk component and at least one fat, and further containing at least 465 pg cocoa polyphenol pentamer per Sgram milk component. Cl 90. A chocolate comprising sugar and at least one fat, and further containing at least 350 Ag cocoa polyphenol pentamer per gram sugar.
  67. 91. A chocolate-flavored confection comprising a cocoa component, wherein said chocolate- flavored confection contains an effective amount of cocoa polyphenol per gram chocolate-flavored confection to provide a health benefit.
  68. 92. The chocolate-flavored confection of claim 91, comprising at least 1 Mg cocoa polyphenol per gram chocolate-flavored confection.
  69. 93. A chocolate-flavored confection comprising a cocoa component, wherein said chocolate- flavored confection contains an effective amount of cocoa polyphenol pentamer per gram chocolate-flavored confection to provide a health benefit.
  70. 94. The chocolate-flavored confection of claim 93, comprising at least 1 pg cocoa polyphenol pentamer per gram chocolate-flavored confection. A chocolate-flavored confection comprising a cocoa component, wherein said chocolate- flavored confection contains at least 15,155 pg cocoa polyphenol per gram cocoa component.
  71. 96. A chocolate-flavored confection comprising a cocoa component, wherein said chocolate- flavored confection contains at least 1,335 Mg cocoa polyphenol pentamer per gram cocoa component. C
  72. 97. A chocolate-flavored composition Scomprising a cocoa component, wherein said chocolate- flavored composition contains at least 500 Ag cocoa C polyphenol per gram chocolate-flavored composition.
  73. 98. A chocolate-flavored composition comprising a cocoa component, wherein said chocolate- 'flavored composition contains at least 10 Mg cocoa Spolyphenol pentamer per gram chocolate-flavored q composition.
  74. 99. A chocolate-flavored composition 0 comprising a cocoa component, wherein said chocolate- flavored composition contains at least 5,260 Mg cocoa polyphenol per gram cocoa component.
  75. 100. A chocolate-flavored composition comprising a cocoa component, wherein said chocolate- flavored composition contains at least 110 Mg cocoa polyphenol pentamer per gram cocoa component.
  76. 101. A chocolate produced by the steps comprising: combining chocolate liquor from cocoa beans having a fermentation factor greater than 375 with at least one additive selected from the group consisting of: at least one fat; (ii) at least one sugar; (iii) milk solids; and (iv) mixtures thereof; to form an initial mixture; heating the initial mixture to a temperature less than about 2000 C for from 5 minutes to 24 hours; cooling the initial mixture; combining the initial mixture with a second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining ingredients to form a secondary mixture; and conching said secondary mixture. 132
  77. 102. The chocolate of claim 101, wherein h- the milk solids are contained in an amount greater than I/ or equal to about 12 by weight.
  78. 103. A chocolate produced by the steps comprising: heating a first chocolate liquor from cocoa beans having a fermentation factor greater O than 375 to a temperature less than about 200° C for from minutes to 24 hours; cooling the first chocolate C liquor; combining the cooled first chocolate liquor with a second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining ingredients to produce a secondary mixture; and conching said secondary mixture.
  79. 104. An edible product containing at least one cocoa component having an enhanced content of cocoa polyphenol, wherein said edible product is produced by the steps comprising: treating cocoa beans containing cocoa polyphenols while conserving a significant amount of the cocoa polyphenol content thereof to form treated cocoa beans; producing said cocoa component from said treated cocoa beans; and including said cocoa component in said edible product.
  80. 105. An edible product containing a cocoa polyphenol additive or a derivative thereof.
  81. 106. The edible product of claim 105, wherein the cocoa polyphenol additive is an extract from cocoa beans or a cocoa component thereof.
  82. 107. The edible product of claim 105, wherein the cocoa polyphenol additive is synthetic. 133 C
  83. 108. An ingestible product containing a 3 cocoa polyphenol additive or a derivative thereof and a second ingestible component. C
  84. 109. An edible product containing a cocoa component produced by the method of claim 1.
  85. 110. An edible product containing a chocolate liquor produced by the method of claim 26.
  86. 111. An edible composition comprising a cocoa component containing a cocoa polyphenol content Sfrom fair average quality cocoa beans, wherein said cocoa component contains at least 25% of the cocoa polyphenol content of said fair average quality cocoa beans.
  87. 112. An edible composition comprising a cocoa component containing a cocoa polyphenol content from raw freshly harvested cocoa beans, wherein said cocoa component contains at least 5% of the cocoa polyphenol content of said raw freshly harvested cocoa beans.
  88. 113. The composition of claim 112, wherein said cocoa component is selected from the group consisting of: chocolate liquor; partially or fully defatted cocoa solids; cocoa nib or fractions thereof; cocoa polyphenol extract; and mixtures thereof.
  89. 114. An edible product comprising an edible composition and at least 1 pg cocoa polyphenol, wherein said edible product is substantially free of chocolate flavor and chocolate aroma.
  90. 115. An edible composition comprising a nonalkalized chocolate liquor substantially derived from cocoa beans having a fermentation factor less than 375.
  91. 116. A chewable composition comprising a cocoa polyphenol additive or a derivative thereof. 134
  92. 117. A method of improving the health of a c- mammal, comprising administering an effective amount of t cocoa polyphenol to a mammal each day for an effective period of time.
  93. 118. The method of claim 117, wherein said l effective period of time is greater than sixty days.
  94. 119. A method of improving the health of a O mammal, comprising ingesting a non-chocolate edible composition containing at least 1 Ig of cocoa polyphenol by a mammal each day for a period of time greater than sixty days.
  95. 120. A method of improving the health of a mammal, comprising ingesting a chocolate containing at least 1 Mg of cocoa polyphenol by a mammal each day for a period of time greater than sixty days.
  96. 121. The method of claim 120, wherein the chocolate contains at least 25 Mg of cocoa polyphenol.
  97. 122. A method of improving the health of a mammal, comprising administering an effective amount of cocoa polyphenol pentamer to a mammal each day for an effective period of time.
  98. 123. A method of improving the health of a mammal, comprising ingesting an effective amount of cocoa polyphenol pentamer by a mammal each day for a period of time greater than sixty days.
  99. 124. A method of improving the health of a mammal, comprising ingesting a non-chocolate edible composition containing at least 1 pg of cocoa polyphenol pentamer by a mammal each day for a period of time greater than sixty days.
  100. 125. A method of improving the health of a mammal, comprising ingesting a chocolate containing at least 25 Ag of cocoa polyphenol pentamer by a mammal each day for a period of time greater than sixty days.
  101. 126. The method of claim 117 wherein the cocoa polyphenol has an activity selected from the group consisting of reducing periodontal disease, 135 CI antigingivitis, antiperiodontis, reducing Satherosclerosis, LDL oxidation inhibitor, reducing hypertension, antineoplastic, antioxidant, DNA topoisomerase II enzyme inhibitor, cyclo-oxygenase modulator, lipoxygenase modulator, NO or NO-synthase modulator, non-steroidal anti-inflammatory, apoptosis modulator, platelet aggregation modulator, blood or in Svivo glucose modulator, antimicrobial and inhibitor of oxidative DNA damage activity.
  102. 127. The method of claim 122 wherein the cocoa polyphenol pentamer has an activity selected from the group consisting of reducing periodontal disease, antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, antineoplastic, antioxidant, DNA topoisomerase II enzyme inhibitor, cyclo-oxygenase modulator, lipoxygenase modulator, NO or NO-synthase modulator, non-steroidal anti-inflammatory, apoptosis modulator, platelet aggregation modulator, blood or in vivo glucose modulator, antimicrobial and inhibitor of oxidative DNA damage activity.
  103. 128. A method of eliciting a physiological response in a mammal comprising administering an effective amount of cocoa polyphenol to the mammal to elicit said response.
  104. 129. The method of claim 128, wherein the elicited response is sustained for a period of time.
  105. 130. The method of claim 128, wherein the elicited response provides a benefit to the mammal in need thereof.
  106. 131. The method of claim 130, wherein the elicited response provides a benefit to modulate the effects of an internal or external stress factor.
  107. 132. The method of claim 129, wherein said response is selected from the group consisting of lowering oxidative stress index, anti-viral response, anti-bacterial response, lowering cytokine level, 136 "u increasing T-cell production level, lowering hypertension Sand dialating blood vessels. i/ 133. The method of claim 130, wherein said C stress factor is selected from the group consisting of oxidative stress, viral stress, bacterial stress, elevated level of cytokine, diminished level of T-cell production, hypertension and constricted blood vessels.
  108. 134. A method of producing cocoa solids and cocoa butter comprising the steps of: heating cocoa beans having an CI outer cocoa shell and inner cocoa nib using infra-red radiation to an internal temperature greater than 1250C; separating the shell from the nib; and (c)subsequently extracting the cocoa butter by screw pressing the nibs.
  109. 135. The method as recited in claim 134, wherein prior to the step of heating, the beans are cleaned using a fluidized-bed separator.
  110. 136. The method as recited in claim 134, wherein the step of separating includes a winnowing step to separate the shell from cocoa nibs prior to the pressing step.
  111. 137. The method as recited in claim 134, wherein said screw pressing forms cocoa butter and cocoa cake solids.
  112. 138. The method as recited in claim 137, wherein said cocoa cake solids are subsequently treated by alkalizing to form alkalized cocoa cake solids.
  113. 139. The method as recited in claim 138, wherein said alkalized cocoa cake solids are subsequently milled to produce fine cocoa powders.
  114. 140. The method as recited in claim 134, wherein said heating results in cocoa beans having a moisture content of about 3 percent by weight.
  115. 141. The method as recited in claim 134, wherein said heating is to a surface temperature ranging from about 160°C to about 1700C. C-
  116. 142. The method as recited in claim 134, Swherein said heating is for a time ranging from about to about 4 minutes. C-I
  117. 143. The method as recited in claim 134, wherein said cocoa beans are cooled to room temperature after said heating and subsequently pre-heated to a temperature between about BOC and about 90°C prior to Sthe step of screw pressing. C
  118. 144. The method as recited in claim 135, wherein said cocoa bean is subjected to a pre-cleaning step prior to cleaning in said air fluidized bed density separator.
  119. 145. The method as recited in claim 134, wherein said heating is to an internal temperature greater than 1250C.
  120. 146. The method as recited in claim 134, wherein said nibs are preheated prior to extracting the cocoa butter.
  121. 147. A method of producing cocoa butter and cocoa cake solids comprising the steps of: cleaning a mixture comprising cocoa beans to separate cocoa beans from non-cocoa solids; heating cocoa beans having an outer cocoa shell and an inner cocoa nib using infra-red radiation to an internal temperature greater than 125"C; removing the outer cocoa shell from the nib; screw pressing the nibs to extract the cocoa butter leaving cocoa cake solids; and cooling the cocoa butter to room temperature.
  122. 148. The method as recited in claim 147, wherein said cocoa cake solids are subsequently alkalized to form alkalized cocoa cake solids. 138
  123. 149. The method as recited in claim 147, wherein said cleaning step comprises passing said mixture through an air fluidized bed density separator. C 150. A method of producing cocoa butter comprising the step of heating cocoa beans using infra- red radiation to an internal temperature greater than 1250C wherein the cocoa butter is subsequently extracted directly from the cocoa bean without the formation of a chocolate liquor.
  124. 151. A method of winnowing cocoa beans CI comprising separating shells from an inner bean portion of the cocoa beans using an air fluidized-bed density separator.
  125. 152. The method of claim 151, wherein the air fluidized-bed density separator comprises a means for homogenizing material introduced therein and at least one vibratory screen.
  126. 153. The method of claim 152, wherein the air fluidized-bed density separator further comprises three vibratory screens.
  127. 154. The method of claim 151, wherein the beans are subjected to a heat treatment prior to winnowing to loosen the shells from the inner bean portion.
  128. 155. The method of claim 151, wherein greater than 99.5% of the shells are removed.
  129. 156. The method of claim 151, wherein less than 1.1% of the inner bean portion by weight are removed with the shell.
AU2007203454A 1996-09-06 2007-07-25 Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses Expired AU2007203454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007203454A AU2007203454B2 (en) 1996-09-06 2007-07-25 Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/709406 1996-09-06
AU2002301733A AU2002301733B8 (en) 1996-09-06 2002-10-23 Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses
AU2007203454A AU2007203454B2 (en) 1996-09-06 2007-07-25 Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002301733A Division AU2002301733B8 (en) 1996-09-06 2002-10-23 Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses

Publications (2)

Publication Number Publication Date
AU2007203454A1 true AU2007203454A1 (en) 2007-08-16
AU2007203454B2 AU2007203454B2 (en) 2010-12-02

Family

ID=38430024

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007203454A Expired AU2007203454B2 (en) 1996-09-06 2007-07-25 Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses

Country Status (1)

Country Link
AU (1) AU2007203454B2 (en)

Also Published As

Publication number Publication date
AU2007203454B2 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US6312753B1 (en) Cocoa components, edible products having enriched polyphenol content, methods of making same and medical uses
US6599553B2 (en) Dry drink mix and chocolate flavored drink made therefrom
CA2795629C (en) Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses
US8541045B2 (en) Process for extracting cocoa polyphenols from cocoa beans
RU2476075C2 (en) Food products with high content of cocoa polyphenols, improved taste and aroma, containing milled cocoa extracts
CA2615046C (en) Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses
AU2002301733B2 (en) Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses
AU2007203454B2 (en) Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses
MXPA99002178A (en) Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application
NA Applications received for extensions of time, section 223

Free format text: AN APPLICATION TO EXTEND THE TIME FROM 08 MAR 2008 TO 08 MAY 2008 IN WHICH TO PAY A CONTINUATION FEE HAS BEEN FILED .

CB Opposition lodged by

Opponent name: BARRY CALLEBAUT AG

CC Opposition dismissed

Opponent name: BARRY CALLEBAUT AG

NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO PAY A CONTINUATION FEE HAS BEEN EXTENDED TO 08 MAY 2008.

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired