[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2005317835A1 - Vaccines against Neisseria meningitidis - Google Patents

Vaccines against Neisseria meningitidis Download PDF

Info

Publication number
AU2005317835A1
AU2005317835A1 AU2005317835A AU2005317835A AU2005317835A1 AU 2005317835 A1 AU2005317835 A1 AU 2005317835A1 AU 2005317835 A AU2005317835 A AU 2005317835A AU 2005317835 A AU2005317835 A AU 2005317835A AU 2005317835 A1 AU2005317835 A1 AU 2005317835A1
Authority
AU
Australia
Prior art keywords
protein
dna
polypeptide
sequence
pct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2005317835A
Inventor
Yanwen Li
Christoph Marcel Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ip2ipo Innovations Ltd
Original Assignee
Imperial Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/GB2004/005441 external-priority patent/WO2005060995A2/en
Application filed by Imperial Innovations Ltd filed Critical Imperial Innovations Ltd
Publication of AU2005317835A1 publication Critical patent/AU2005317835A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

WO 2006/067518 PCT/GB2005/005113 .1 VACCINES AND THEIR USE The present invention relates to vaccines and their use, and in particular to vaccines for meningococcal disease. 5 The listing or discussion of a prior-published document in this specification should not necessarily be taken as an acknowledgement that the document is part of the state of the art or is common general knowledge. The documents listed in the specification are hereby incorporated by reference. 10 Microbial infections remain a serious risk to human and animal health, particularly in light of the fact that many pathogenic microorganisms, particularly bacteria, are or may become resistant to anti-microbial agents such as antibiotics. 15 Vaccination provides an alternative approach to combating microbial infections, but it is often difficult to identify suitable immunogens for use in vaccines which are safe and which are effective against a range of different isolates of a pathogenic microorganism, particular a genetically diverse microorganism. Although it is possible to develop vaccines which use as the irmmunogen 20 substantially intact microorganisms, such as live attenuated bacteria which typically contain one or mutations in a virulence-determining gene, not all microorganisms are amenable to this approach, and it is not always desirable to adopt this approach for a particular microorganism where safety cannot always be guaranteed. Also, some microorganisms express molecules which mimic host 25 proteins, and these are undesirable in a vaccine. A particular group of microorganisms for which it is important to develop further vaccines is Neisseria mneningitidis which causes meningococcal disease, a life threatening infection which in the Europe, North America, developing countries 30 and elsewhere remains an important cause of childhood mortality despite the introduction of the conjugate serogroup C polysaccharide vaccine. This is because infections caused by serogroup B strains (NminB), which express an ac2-8 linked WO 2006/067518 PCT/GB2005/005113 2 polysialic acid capsule, are still prevalent. The term "serogroup" in relation to N. mineningitidis refers to the polysaccharide capsule expressed on the bacterium. The common serogroup in the UK causing disease is B, while in Africa it is A. Meningococcal septicaemia continues to carry a high case fatality rate; and 5 survivors are often left with major psychological and/or physical disability. After a non-specific prodromal illness, meningococcal septicaemia can present as a fulminant disease that is refractory to appropriate anti-microbial therapy and full supportive measures. Therefore, the best approach to combating the public health menace of meningococcal disease is through prophylactic vaccination. 10 The non-specific early clinical signs and fulminant course of meningococcal infection mean that therapy is often ineffective. Therefore vaccination is considered the most effective. strategy to diminish the global disease burden caused by this pathogen (Feavers (2000) ABC of meningococcal diversity. Nature 15 404, 451-2). Existing vaccines to prevent serogroup A, C, W135, and Y N meningitidis infections are based on the polysaccharide capsule located on the surface of bacterium (Anderson et al (1994) Safety and immunogenicity of meningococcal A and C polysaccharide conjugate vaccine in adults. Infect Innun. 62, 3391-33955; Leach et al (1997) Induction of immunologic memory in 20 Gambian children by vaccination in infancy with a group A plus group C meningococcal polysaccharide-protein conjugate vaccine. Jnfect Dis. 175, 200-4; Lieberman et al (1996). Safety and immunogenicity of a serogroups A/C Neisseria meningitidis oligosaccharide-protein conjugate vaccine in young children. A randomized controlled trial. J. American Med. Assoc. 275, 1499-1503). Progress 25 toward a vaccine against serogroup B infections has been more difficult as its capsule, a homopolymer of a2-8 linked sialic acid, is a relatively poor immunogen in humans. This is because it shares epitopes expressed on a human cell adhesion molecule, N-CAM1 (Finne et al (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine 30 development and pathogenesis. Lancet 2, 355-357). Indeed, generating immune responses against the serogroup B capsule might actually prove harmful. Thus, WO 2006/067518 PCT/GB2005/005113 3 there remains a need for new vaccines to prevent serogroup B N. mineningitidis infections. The most validated immunologic correlate of protection against meningococcal 5 disease is the serum bactericidal assay (SBA). The SBA evaluates the ability of antibodies (usually IgG2a subclass) in serum to mediate complement deposition on the bacterial cell surface, assembly of the membrane attack complex, and bacterial lysis. In the SBA, a known number of bacteria are exposed serial dilutions of the sera with a defined complement source. The number of surviving 10 bacteria is determined, and the SBA is defined as the reciprocal of the highest dilution of serum that mediates 50% killing. The SBA is predictive of protection against serogroup C infections, and has been widely used as a surrogate for immunity against NnmB infections. Importantly the SBA is a ready marker of immunity for the pre-clinical assessment of vaccines, and provides a suitable 15 endpoint in clinical trials. Most efforts at NimB vaccine development are directed toward defining effective protein subunits. There has been a major investment in 'Reverse vaccinology', in which genome sequences are interrogated for potentially surface expressed 20 proteins which are expressed as heterologous antigens and tested for their ability to generate meaningful responses in animals. However, this approach is limited by 1) the computer algorithms for predicting surface expressed antigens, 2) failure to express many of potential immunogens, and 3) the total reliance on murine immune responses. 25 The key to a successful vaccine is to define antigen(s) that elicit protection against a broad range of disease isolates irrespective of serogroup or clonal group. A genetic screening method (which we have termed Genetic Screening for Immunogens or GSI) was used to isolate antigens that are conserved across the 30 genetic diversity of microbial strains and this is exemplified in relation to meningococcal strains. This was done by identifying microbial antigens, such as N. meningitidis antigens, by GSI as described in more detail below; and validated WO 2006/067518 PCT/GB2005/005113 4 by assessing the function of the immune response elicited by the recombinant antigens and by evaluating the protective efficacy of antigens (see Examples and see PCT/GB2004/005441 (published as WO 2005/060995 on 7 July 2005) incorporated herein by reference). In essence, the GSI method relates to a method 5 for identifying a polypeptide of a microorganism which polypeptide is associated with an immune response in an animal which has been subjected to the microorganism, the method comprising the steps of (1) providing a plurality of different mutants of the microorganism; (2) contacting the plurality of mutant microorganisms with antibodies from an animal which has raised an immune 0io response to the microorganism or a part thereof, under conditions whereby if the antibodies bind to the mutant microorganism the mutant microorganism is killed; (3) selecting surviving mutant microorganisms from step (2); (4) identifying the gene containing the mutation in any surviving mutant microorganism; and (5) identifying the polypeptide encoded by the gene. It will be appreciated that by the 15 way in which the polypeptides have been identified, they are highly relevant as antigenic polypeptides. As described in more detail in the Examples, particular genes identified by the GSI method are the NBMO341 (TspA), NMBO338, NMB1345, NMB0738, 20 NBM0792 (NadC family), NMB0279, NMB2050, NMB1335 (CreA), NMB2035, NMB1351 (Fmu and Fmy), NMB1574 (IIvC), NMB1298 (rsuA), NMB1856 (LysR family), NMB0119, NMB1705 (rfak), NMB2065 (HemK), NMB0339, NMB0401 (putA), NMB1467 (PPX), NMB2056, NMB808, NMB0774 (upp), NMA0078, NMB0337 (branched-chain amino acid transferase), NMB0191 (ParA 25 family), NMB1710 (glutamate dehydrogenase (gdhA), NMB0062 (rfbA-1), NMB1583 (hisB), NMB0377, NMB0264, NMB1333, NMB1036, NMB1176, NMB1359 and NMB1138 genes of Neisseria meningitidis. The genome sequence for N. meningitidis is available, for example from The Institute of Genome Research (TIGR); www.tigr.org. 30 Although these genes form part of the genome that has been sequenced, as far as the inventors are aware, they have not been isolated, the polypeptides they encode WO 2006/067518 PCT/GB2005/005113 5 have not been produced (and have not been isolated), and there is no indication that the polypeptides they encode may be useful as a component of a vaccine. Thus, the invention includes the isolated genes as above and in the Examples and 5 variants and fragments and fusions of such variants and fragments, and includes the polypeptides that the genes encode as described above, along with variants and fragment thereof, and fusions of such fragments and variants. Variants, fragments and fusions are described in more detail below. Preferably, the variants, fragments and fusions of the given genes above are ones which encode a 10 polypeptide which gives rise to neutralizing antibodies against N. meningitidis. Similarly, preferably, the variants, fragments and fusions of the polypeptide whose sequence is given above are ones which gives rise to neutralizing antibodies against N. mneningitidis. The neutralising antibodies may be produced in any animal with an immune system, for example a rat, mouse or rabbit. The invention 15 also includes isolated polynucleotides encoding the polypeptides whose sequences are given in the Example (preferably the isolated coding region) or encoding the variants, fragments or fusions. The invention also includes expression vectors comprising such polynucleotides and host cells comprising such polynucleotides and vectors (as is described in more detail below). The polypeptides described in 20 the Examples are antigens identified by the method of the invention. Molecular biological methods for use in the practice of the method of the invention are well known in the art, for example from Sambrook & Russell (2001) Molecular Cloning, a laboratory manual, third edition, Cold Spring Harbor 25 laboratory Press, Cold Spring Harbor, New York, incorporated herein by reference. Variants of the gene may be made, for example by identifying related genes in other microorganisms or in other strains of the microorganism, and cloning, 30 isolating or synthesizing the gene. Typically, variants of the gene are ones which have at least 70% sequence identity, more preferably at least 85% sequence identity, most preferably at- least 95% sequence identity with the genes as given WO 2006/067518 PCT/GB2005/005113 6 above. Of course, replacements, deletions and insertions may be tolerated. The degree of similarity between one nucleic acid sequence and another can be determined using the GAP program of the University of Wisconsin Computer Group. 5 Variants of the gene are also ones which hybridise under stringent conditions to the gene. By "stringent" we mean that the gene hybridises to the probe when the gene is immobilised on a membrane and the probe (which, in this case is >200 nucleotides in length) is in solution and the immobilised gene/hybridised probe is 10 washed in 0.1 x SSC at 65oC for 10 min. SSC is 0.15 M NaC1/0.015 M Na citrate. Fragments of the gene (or the variant gene) may be made which are, for example, 20% or 30% or 40% or 50% or 60% or 70% or 80% or 90% of the total of the 15 gene. Preferred fragments include all or part of the coding sequence. The variant and fragments may be fused to other, unrelated, polynucleotides. The polynucleotide encodes a polypeptide which is immunogenic and is reactive with the antibodies from an animal which has been subjected to the 20 microorganism from which the gene was identified. The antigen may be the polypeptide as encoded by the gene identified above, and the sequence of the polypeptide may readily be deduced from the gene sequence. In further embodiments, the antigen may be a fragment of the identified 25 polypeptide or may be a variant of the identified polypeptide or may be a fusion of the polypeptide or fragment or variant. Thus, a particular aspect of the invention provides a polypeptide comprising the amino acid sequence selected from any one of SEQ ID Nos 2, 4, 6, 8, 10, 12, 14, 30 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68; or a fragment or variant thereof or a fusion of such a fragment or variant. Thus, the invention provides the following isolated proteins, or WO 2006/067518 PCT/GB2005/005113 7 fragments or variants thereof, or fusion of these: NMBO341, NMB1583, NMB1345, NMB0738, NMB0792, NMB0279, NMB2050, NMB1335, NMB2035, NMB1351, NMB1574, NMB1298, NMB1856, NMB0119, NMB1705, NMB2065, NMB0339, NMBO401, NMB1467, NMB2056, 5 NMBO808, NMBO774, NMA0078, NMB0337, NMB0191, NMB1710, NMBOO62, NMB1333, NMB0377, NMB0264, NMB1036, NMB1176, NMB1359 and NMB1138 as described below. Fragments of the identified polypeptide may be made which are, for example, 10 20% or 30% or 40 % or 50% or 60% or 70% or 80% or 90% of the total of the polypeptide. Typically, fragments are at least 10, 15, 20, 30, 40 , 50, 100 or more amino acids, but less than 500, 400, 300 or 200 amino acids. Variants of the polypeptide may be made. By "variants" we include insertions, deletions and substitutions, either conservative or non-conservative, where such changes do not 15 substantially alter the normal function of the protein. By "conservative substitutions" is intended combinations such as Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. Such variants may be made using the well known methods of protein engineering and site-directed mutagenesis. 20 A particular class of variants are those encoded by variant genes as discussed above, for example from related microorganisms or other strains of the microorganism. Typically the variant polypeptides have at least 70% sequence identity, more preferably at least 85% sequence identity, most preferably at least 95% sequence identity with the polypeptide identified using the method of the 25 invention. The percent sequence identity between two polypeptides may be determined using suitable computer programs, for example the GAP program of the University of Wisconsin Genetic Computing Group and it will be appreciated that percent 30 identity is calculated in relation to polypeptides whose sequence has been aligned optimally.
WO 2006/067518 PCT/GB2005/005113 8 The alignment may alternatively be carried out using the Clustal W program (Thompson et al., (1994) Nucleic Acids Res 22, 4673-80). The parameters used may be as follows: Fast pairwise alignment parameters: K-tuple(word) size; 1, window size; 5, gap 5 penalty; 3, number of top diagonals; 5. Scoring method: x percent. Multiple alignment parameters: gap open penalty; 10, gap extension penalty; 0.05. Scoring matrix: BLOSUM. The fusions may be fusions with any suitable polypeptide. Typically, the 10 polypeptide is one which is able to enhance the immune response to the polypeptide it is fused to. The fusion partner may be a polypeptide that facilitates purification, for example by constituting a binding site for a moiety that can be immobilised in, for example, an affinity chromatography column. Thus, the fusion partner may comprise oligo-histidine or other amino acids which bind to 15 cobalt or nickel ions. It may also be an epitope for a monoclonal antibody such as a Myc epitope. As discussed above, the variant polypeptides or polypeptide fragments, or fusions of these, are typically ones which give rise to neutralizing antibodies against N 20 meningitidis. The invention also includes, therefore, a method of making an antigen as described above, and antigens obtainable or obtained by the method. 25 The polynucleotides of the invention may be cloned into vectors, such as expression vectors, as is well known on the art. Such vectors maybe present in host cells, such as bacterial, yeast, mammalian and insect host cells. The antigens of the invention may readily be expressed from polynucleotides in a suitable host cell, and isolated therefrom for use in a vaccine. 30 Typical expression systems include the conummercially available pET expression vector series and E. coli host cells such as BL21. The polypeptides expressed may WO 2006/067518 PCT/GB2005/005113 9 be purified by any method known in the art. Conveniently, the antigen is fused to a fusion partner that binds to an affinity column as discussed above, and the fusion is purified using the affinity column (eg such as a nickel or cobalt affinity column). 5 It will be appreciated that the antigen or a polynucleotide encoding the antigen (such as a DNA molecule) is particularly suited for use as in a vaccine. In that case, the antigen is purified from the host cell it is produced in (or if produced by peptide synthesis purified from any contaminants of the synthesis). Typically the 10 antigen contains less that 5% of contaminating material, preferably less than 2%, 1%, 0.5%, 0.1%, 0.01%, before it is formulated for use in a vaccine. The antigen desirably is substantially pyrogen free. Thus, the invention further includes a vaccine comprising the antigen, and method for making a vaccine comprising combining the antigen with a suitable carrier, such as phosphate buffered saline. 15 Whilst it is possible for an antigen of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers. The carrier(s) must be "acceptable" in the sense of being compatible with the antigen of the invention and not deleterious to the recipients thereof. Typically, the carriers will be water or saline which will be sterile and 20 pyrogen free. The vaccine may also conveniently include an adjuvant. Active immunisation of the patient is preferred. In this approach, one or more antigens are prepared in an immunogenic formulation containing suitable adjuvants and carriers and 25 administered to the patient in known ways. Suitable adjuvants include Freund's complete or incomplete adjuvant, muramyl dipeptide, the "Iscoms" of EP 109 942, EP 180 564 and EP 231 039, aluminium hydroxide, saponin, DEAE-dextran, neutral oils (such as miglyol), vegetable oils (such as arachis oil), liposomes, Pluronic polyols or the Ribi adjuvant system (see, for example GB-A-2 189 141). 30 "Pluronic" is a Registered Trade Mark. The patient to be immunised is a patient requiring to be protected from infection with the microorganism.
WO 2006/067518 PCT/GB2005/005113 10 The invention also includes a pharmaceutical composition comprising a polypeptide of the invention or variant or fragment thereof, or fusion of these, or a polynucleotide of the invention or a variant or fragment thereof or fusion of these, and a pharmaceutically acceptable carrier as discussed above. 5 The aforementioned antigens of the invention (or polynucleotides encoding such antigens) or a formulation thereof may be administered by any conventional method including oral and parenteral (eg subcutaneous or intramuscular) injection. The treatment may consist of a single dose or a plurality of doses over a period of 10 time. It will be appreciated that the vaccine of the invention, depending on its antigen component (or polynucleotide), may be useful in the fields of human medicine and veterinary medicine. 15 Diseases caused by microorganisms are known in many animals, such as domestic animals. The vaccines of the invention, when containing an appropriate antigen or polynucleotide encoding an antigen, are useful in man but also in, for example, cows, sheep, pigs, horses, dogs and cats, and in poultry such as chickens, turkeys, 20 ducks and geese. Thus, the invention also includes a method of vaccinating an individual against a microorganism, the method comprising administering to the individual an antigen (or polynucleotide encoding an antigen) or vaccine as described above. The 25 invention also includes the use of the antigen (or polynucleotide encoding an antigen) as described above in the manufacture of a vaccine for vaccinating an individual. The antigen of the invention may be used as the sole antigen in a vaccine or it may 30 be used in combination with other antigens whether directed at the same or different disease microorganisms. In relation to N. meningitidis, the antigen obtained which is reactive against NmB may be combined with components used WO 2006/067518 PCT/GB2005/005113 11 in vaccines for the A and/or C serogroups. It may also conveniently be combined antigenic components which provide protection against Haemnophilus and/or Streptococcus pneumnioniae. The additional antigenic components may be polypeptides or they may be other antigenic components such as a polysaccharide. 5 Polysaccharides may also be used to enhance the immune response (see, for example, Makela et al (2002) ExTpert Rev. Vaccines 1, 399-410). It is particularly preferred in the above vaccines and methods of vaccination if the antigen is the polypeptide encoded by any of the genes as described above (and in 10 the Examples), or a variant or fragment or fusion as described above (or a polynucleotide encoding said antigen), and that the disease to be vaccinated against is Neisseria meningitidis infection (meningococcal disease). The invention will now be described in greater detail by reference to the following 15 non-limiting Examples. Example 1: Genetic screening for immunogens (GS1) in N. mnieningitidis The application of GSI in this example involves screening libraries of insertional 20 mutants of N. meningitidis for strains which are less susceptible to killing by bactericidal antibodies. GSI is described in more detail in PCT/GB2005/005441 (published as WO 2005/060995 on7 July 2005). We have demonstrated the effectiveness of GSI by screening a library of mutants 25 of the sequenced NmnB isolate, MC58, with sera raised in mice against a capsule minus of the same strain. A total of 40,000 mutants was analysed with sera raised in mice by intraperitoneal immunisation with the homologous strain; the SBA of this sera is around 2,000 against the wild-type strain. Surviving mutants were detected when the library was exposed to serum at a 1:560 dilution (which kills all 30 wild-type bacteria). To establish whether the transposon insertion in the surviving mutants was responsible for the ability to withstand killing, the mutations were backcrossed into the parental strain, and the backcrossed mutants were confirmed WO 2006/067518 PCT/GB2005/005113 12 as being more resistant to killing than the wild-type in the SBA. The sequence of the gene affected by the transposon was examined by isolating the transposon insertion site by marker rescue. We found that two of the genes affected were TspA and NMBO338. TspA is a surface antigen which elicits strong CD4+ T cell 5 responses and is recognized by sera from patients (Kizil et al (1999) Infect Anmun. 67, 3533-41). NMBO338 is a gene of previously unknown function which encodes a polypeptide that is predicted to contain two transmembrane domains, and is located at the cell surface. The amino acid sequence encoded by NMBO338 is: 10 MERNGVFGKIVGNRILRMSSEHAAASYPKPCKSFKLAQSWFRVRSCLGGVFIYGA NMKLIYTVIKIIILLLFLLLAVINTDAVTFSYLPGQKFDLPLIVVLFGAFVVGII FGMFALFGRLLSLRGENGRLRAEVKKNARLTGKELTAPPAQNAPESTKQP There are several practical advantages of using NmiB for GSI aside from the public 15 health imperative: a) the bacterium is genetically tractable; b) killing of the bacterium by effector immune mechanism is straightforward to assay; c) the genome sequences are available for three isolates of different serogroups and clonal lineages (IV-A, ET-5, and ET-37 for serogroups A, B, and C, respectively); and d) well-characterised clinical resources are available for this work. 20 GSI has two potential limitations. First, targets of bactericidal antibodies may be essential. This is unlikely as all known targets of bactericidal antibodies in NnmB are non-essential, and no currently licensed bacterial vaccine. targets an essential gene product. Second, sera will contain antibodies to multiple antigens, and, loss 25 of a single antigen may not affect the survival of mutants. We have already shown that even during selection with sera raised against the homologus strain, relevant antigens were still identified using appropriate dilutions of sera. I'.a \ IL -- I) -h highu st s.. do'o-invlv The major advantages of GSI are that 1) the high throughput steps do not involve 30 technically demanding or costly procedures. (such as protein expression/purification and immunisation), and 2) human samples can be used in the assay rather than relying solely on animal data. GSI will rapidly pinpoint the WO 2006/067518 PCT/GB2005/005113 13 subset of surface proteins that elicit bactericidal activity, allowing more detailed analysis of a smaller number of candidates. 1. Identification of targets of bactericidal antibodies using GSI 5 Murine sera raised against heterologous strains, and human sera, are used to identify cross-reactive antigens. The sera are obtained from: i) mice immunised by the systemic route with heterologous strains: the strains will be selected and/or constructed to avoid isolates with the same immunotype and sub-serotype. 10 ii) acute and convalescent sera from patients infected with known isolates of N. meningitidis (provided by Dr R. Wall, Northwick Park) iii) pre- and post-immunisation samples (provided by the Meningococcal Reference Laboratory) from volunteers receiving defined outer membrane vesicle (OMVs) vaccines derived from the NmB isolate, 15 H44/76. Each of these sources of sera has specific advantages and disadvantages.
WO 2006/067518 PCT/GB2005/005113 14 Serum source Advantages Disadvantages Murine 1) Defined antigenic exposure. 1) Animal source of 2) Use of genetically modified strains to material generate immune response. 3) Na'ive samples available 4) Examine individuals responses Patient sera 1) Human material 1) Background immunity 2) Known strain exposure 2) Limited material 3) Acute and convalescent sera available Sera following 1) Human material 1) Background immunity immunisation 2) Defined antigenic exposure 2) Limited material with H4476 3) Pre and post immunisation sera OMVs available 4) Examine individuals responses a) Sera from animals immunised with heterologous strains (ie the sequenced serogroup A or C strains) are used in GSI to select the library of MC58 mutants. We have shown that immunisation with live, attenuated NmnB elicits cross-reactive 5 bactericidal antibody responses against serogroup A and C strains. The antigen absent in mutants with enhanced survival in the face of human sera are identified by marker rescue of the disrupted gene. b) Mutations are identified that confer resistance against killing by 10 heterologous sera, and it is determined whether the gene product is also a target for killing of the sequenced, serogroup A and C strains, Z2491 and FAM18 respectively. The genome databases are inspected for homologues of the genes. If a homologue is present, the transposon insertion is amplified from the MC58 mutant and introduced into the serogroup A and C strains by transformation. The 15 relative survival of the mutant and wild-type strain of each serogroup are WO 2006/067518 PCT/GB2005/005113 15 compared. Thus, GSI can quickly give information whether the targets of bactericidal activity are conserved and accessible in diverse strains of N. meningitidis, irrespective of serogroup, immunotype and subserotype. 5 c) Mutants with enhanced survival against sera raised in mice are tested using human sera from either convalescent patients or vaccinees receiving heterologous OMV vaccines (derived from H44/76). This addresses the important question of whether the targets are capable of eliciting bactericidal antibodies in human. With other vaccine approaches, this information is only gained at the late, expensive 10 stage of clinical trials that requires GMP manufacture of vaccine candidates. The advantages are that GSI is a high-throughput analysis performed using simple, available techniques. Antigens which elicit bactericidal antibodies in humans and which mediate killing of multiple strains can be identified rapidly as GSI is 15 flexible with respect to the bacterial strain and sera used. Mutants selected using human sera are analysed in the same way as those selected by murine sera. 2. Assessment of the antibody response of recombinant GSI antigens 20 Proteins which are targets of bactericidal antibodies that are recognised by sera from convalescent patients and vaccines are expressed in E. coli using commercially available vectors. The corresponding open reading frames are amplified by PCR from MC58, and ligated into vectors such as pCR Topo CT or pBAD/His, to allow protein expression under the control of a T7 or arabinose 25 inducible promoter, respectively. Purification of the recombinant proteins from total cellular protein is performed via the His Tag fused to the C terminus of the protein on a Nickel or Cobalt column. Adult New Zealand White rabbits are immunized on two occasions separated by 30 four weeks by subcutaneous injection with 25 pg of purified protein with Freund's incomplete adjuvant. Sera from animals will be checked prior to immunisation for pre-existing anti-Nm antibodies by whole cell ELISA. Animals which have an WO 2006/067518 PCT/GB2005/005113 16 initial serum titre of <1:2 are used for inmunisation experiments. Post immunisation serum are obtained two weeks after the second immunisation. To confirm that specific antibodies have been raised, pre- and post-immunisation serum is tested by i) Western analysis against the purified protein and ii) ELISA 5 using cells from the wild-type and the corresponding mutant (generated by GSI). SBAs will be performed against MC58 (the homologous strain), and the sequenced serogroup A and C strains with the rabbit immune serum. The assay will be performed in triplicate on at least two occasions. SBAs of >8 will be o10 considered significant. The results provide evidence of whether the protein candidates can elicit bactericidal antibodies as recombinant proteins. 3. Establishing the protective efficacy of GSI antigens 15 All the candidates are tested for their ability to protect animals against live bacterial challenge as this allows any aspect of immunity (cellular or humoral) to be assessed in a single assay. We have established a model of active immunisation and protection against live bacterial infection. In this model, adult mice are immunised on days 0 and 21, and on day 28 receive live bacterial challenge of 106 20 or 107 CFU of MC58 intraperitoneally in iron dextran (as the supplemental iron source). The model is similar to that described for evaluation of the protective efficacy of immunisation with Tbps Danve et al (1993) Vaccine 11, 1214-1220. Non-immunised animals develop bacteraemia within 4 hours of infection, and show signs of systemic illness by 24 hours. We have already been able to 25 demonstrate the protective efficacy of both attenuated Nm strains and a protein antigen against live meningococcal challenge; PorA is an outer membrane protein that elicits bactericidal antibodies, but which is not a lead vaccine candidate because of extensive antigenic variation (Bart et al (1999) Infect Immun. 67, 3832 3846. 30 Six week old, BALB/c mice (group size, 35 animals) receive 25 tg of recombinant protein with Freund's incomplete adjuvant subcutaneously on days WO 2006/067518 PCT/GB2005/005113 17 day 0 and 21, then are challenged with 106 (15 animals) or 10 7 (15 animals) CFU of MC58 intraperitoneally on day 28. Two challenge doses are used to examine the vaccine efficacy at a high and low challenge dose; sera are obtained on day 28 from the remaining five animals in each group, and from five animals before the 5 first immunisation and stored at -70 0 C for further immunological assays. Animals in control groups receive either i) adjuvant alone, ii) recombinant refolded PorA, and iii) a live, attenuated Nm strain. To reduce the overall number of animals in control groups, sets of five candidates will be tested at one time (number of groups = 5 candidates + 3 controls). Survival of animals in the groups is compared by 10 Mann Whitney U Test. With group sizes of 15 mice/dose, the experiments are powered to show a 25% difference in survival between groups. For vaccines which show significant protection against challenge, a repeat experiment is performed to confirm the finding. Furthermore, to establish that 15 vaccination with a candidate also elicits protection against bacteraemia, levels of bacteraemia are determined during the second experiment; blood is sampled at 22 hr post-infection in immunised and un-immunised animals (bacteraemia is maximal at this time). The results are analysed using a two-tailed Student-T test to determine if there is a significant reduction in bacteraemia in vaccinated animals. 20 Further materials and methods used Mutagenesis ofNeisseria meningitidis 25 For work with Neisseria meningitidis, mutants were constructed by in vitro mutagenesis. Genomic DNA from N. meningitidis was subjected to mutagenesis with a Tn5 derivative containing a marker encoding resistance to kanamycin, and an origin of replication which is functional in E. coli. These elements are bound by composite Tn5 ends. Transposition reactions were carried out with a 30 hyperactive variant of Tn5 and the DNA repaired with T4 DNA polymerase and ligase in the presence of ATP and nucleotides. The repaired DNA was used to WO 2006/067518 PCT/GB2005/005113 18 transform N. mn2eningitidis to kanamycin resistance. Southern analysis confirmed that each mutant contained a single insertion of the transposon only. Serum bactericidal assays (SBAs) 5 Bacteria were grown overnight on solid media (brain heart infusion media with Levanthals supplement) and then re-streaked to solid media for four hours on the morning of experiments. After this time, bacteria were harvested into phosphate buffered saline and enumerated. SBAs were performed in a 1 ml volume, 10 containing a complement source (baby rabbit or human) and approximately 10 5 colony forming units. The bacteria were collected at the end of the incubation and plated to solid media to recover surviving bacteria. Isolating the transposon insertion sites 15 Genomic DNA will be recovered from mutants of interest by standard methods and digested with PvuII, EcoRV, and DraI for three hours, then purified by phenol extraction. The DNA will then be self-ligated in a 100 microlitre volume overnight at 16 0 C in the presence of T4 DNA ligase, precipitated, then used to 20 transform E. coli to kanamycin resistance by electroporation. Example 2: Further screening and results thereof GSI has been used to screen a library of approximately 40,000 insertional mutants 25 of MC58. The library was constructed by in vitro Tn5 mutagenesis, using a transposon harbouring the origin of replication from pACYC184. MC58 was chosen as it is a serogroup B isolate of N. meningitidis, and the complete genome sequence of this strain is known. 30 The library is always screened in parallel with the wild-type strain as a control, and the number of colonies recovered from the library and the wild-type is shown.
WO 2006/067518 PCT/GB2005/005113 19 Selection with murine sera Initially the library was analysed using sera from animals immunised with the 5 attenuated strain YH102. Adult mice (Balb/C) received 108 colony forming units intra-peritoneally on three occasions, and sera was collected 10 days after the final immunisation, The screen identified several mutants with enhanced resistance to serum killing: 10 This was confirmed by isolating individual mutants, reconstructing the mutation in the original genetic background, and re-testing the individual mutants for their susceptibility to complement mediated lysis against the wild-tye. The transposon insertions are in the following gene: 15 NMB0341 (TspA) DNA sequence ATGCCCGCCGGCCGACTGCCCCGCCGATGCCCGATGATGACGAAATTTACAGACTGTACG CGGTCAAACCGTATTCAGCCGCCACCCACAGGGGATACATCTTGAAAACAACAGACAA ATCAAACTGATTGCCGCCTCCGTCGCAGTTGCCGCATCCTTTCAGGCACATGCTGGACTG GGCGGACTGAATATCCAGTCCAACCTTGACGAACCCTTTTCCGGCAGCATTACCGTAACC 20 GGCGAAGAAGCCAAAGCCCTGCTAGGCGGCGGCAGCGTTACCGTTTCCGAAAAAGGCCTG ACCGCCAAAGTCCACAAGTTGGGCGACAAAGCCGTCATTGCCGTTTCTTCCGAACAGGCA GTCCGCGATCCCGTCCTGGTGTTCCGCATCGGCGCAGGCGCACAGGTACGCGAATACACC GCCATCCTCGATCCTGTCGGCTACTCGCCCAAAACCAAATCTGCACTTTCAGACGGCAAG ACACACCGCAAAACCGCTCCGACAGCAGAGTCCCAAGAAAATCAAAACGCCAAAGCCCTC 25 CGCAAAACCGATAAAAAAGACAGCGCGAACGCAGCCGTCAAACCGGCATACAACGGCAAA ACCCATACCGTCCGCAAAGGCGAAACGGTCAAACAGATTGCCGCCGCCATCCGCCCGAAA CACCTGACGCTCGAACAGGTTGCCGATGCGCTGCTGAAGGCAAACCCAAATGTTTCCGCA CACGGCAGACTGCGTGCGGGCAGCGTGCTTCACATTCCGAATCTGAACAGGATCAAAGCG GAACAACCCAAACCGCAAACGGCGAAACCCAAAGCCGAAACCGCATCCATGCCGTCCGAA 30 CCGTCCAAACAGGCAACGGTAGAGAAACCGGTTGAAAAACCTGAAGCAAAAGTTGCCGCG CCCGAAGCAAAAGCGGAAAAACCGGCCGTTCGACCCGAACCTGTACCCGCTGCAAATACT GCCGCATCGGAAACCGCTGCCGAATCCGCCCCCCAAGAAGCCGCCGCTTCTGCCATCGAC ACGCCGACCGACGAAACCGGTAACGCCGTTTCCGAACCTGTCGAACAGGTTTCTGCCGAA GAAGAAACCGAAAGCGGACTGTTTGACGGTCTGTTCGGCGGTTCGTACACCTTGCTGCTT 35 GCCGGCGGAGGCGCGGCATTAATCGCCCTGCTGCTGCTTTTGCGCCTTGCCCAATCCAAA CGCGCGCGCCGTACCGAAGAATCCGTCCCTGAGGAAGAGCCTGACCTTGACGACGCGGCA GACGACGGCATAGAAATCACCTTTGCCGAAGTCGAAACTCCGGCAACGCCCGAACCCGCT CCGAAAAACGATGTAAACGACACACTTGCCTTAGATGGGGAATCTGAAGAAGAGTTATCG GCAAAACAAACGTTCGATGTCGAAACCGATACGCCTTCCAACCGCATCGACTTGGATTTC 40 GACAGCCTGGCAGCCGCGCAAAACGGCATTTTATCCGGCGCACTTACGCAGGATGAAGAA ACCCAAAAACGCGCGGATGCCGATTGGAACGCCATCGAATCCACAGACAGCGTGTACGAG CCCGAGACCTTCAACCCGTACAACCCTGTCGAAATCGTCATCGACACGCCCGAACCGGAA TCTGTCGCCCAAACTGCCGAAAACAAACCGGAAACCGTCGATACCGATTTCTCCGACAAC CTGCCCTCAAACAACCATATCGGCACAGAAGAAACAGCTTCCGCAAAACCTGCCTCACCC 45 TCCGGACTGGCAGGCTTCCTGAAGGCTTCCTCGCCCGAA-ACCATCTTGGAAAAAACAGTT GCCGAAGTCCAAACACCGGAAGAGTTGCACGATTTCCTGAAAGTGTACGAAACCGATGCC
GTCGCGGAAACTGCGCCTGAAACGCCCGATTTCAACGCCGCCGCAGACGATTTGTCCGCA
WO 2006/067518 PCT/GB2005/005113 20 TTGCTTCAACCTGCCGAAGCACCGTCCGTTGAGGAAAATATAACGGAAACCGTTGCCGAA ACACCCGACTTCAACGCCACCGCAGACGATTTGTCCGCATTACTTCAACCTTCTAAAGTA CCTGCCGTTGAGGAAAATGCAGCGGAAACCGTTGCCGATGATTTGTCCGCACTGTTGCAA CCTGCTGAAGCACCGGCCGTTGAGGAAAATGTAACGGAAACCGTTGCCGAAACACCCGAT 5 TTCAACGCCACCGCAGACGATTTGTCCGCATTACTTCAACCTTCTGAAGCACCTGCCGTT GAGGAAAATGCAGCGGAAACCGTTGCCGATGATTTGTCCGCACTGTTGCAACCTGCTGAA GCACCGGCCGTTGAGGAAAATGCAGCGGAAATCACTTTGGAAACGCCTGATTCCAACACC TCTGAGGCAGACGCTTTGCCCGACTTCCTGAAAGACGGCGAGGAGGAAACGGTAGATTGG AGCATCTACCTCTCGGAAGAAAATATCCCAAATAATGCAGATACCAGTTTCCCTTCGGAA 10 TCTGTAGGTTCTGACGCGCCTTCCGAAGCGAAATACGACCTTGCCGAAATGTATCTCGAA ATCGGCGACCGCGATGCCGCTGCCGAGACAGTGCAGAAATTGCTGGAAGAAGCGGAAGGC GACGTACTCAAACGTGCCCAAGCATTGGCGCAGGAATTGGGTATTTGA NBM0341 Protein sequence 15 MPAGRLPRRCPMMTKFTDCTRSNRIQPPTERGYILKNNRQIKLIAASVAVAASFQAHAGL GGLNIQSNLDEPFSGSITVTGEEAKALLGGGSVTVSEKGLTAKVHKLGDKAVIAVSSEQA VRDPVLVFRIGAGAQVREYTAILDPVGYSPKTKSALSDGKTHRKTAPTAESQENQNAKAL RKTDKKDSANAAVKPAYNGKTHTVRKGETVKQIAAAIRPKHLTLEQVADALLKANPNVSA HGRLPAGSVLHIPNLNRIKAEQPKPQTAKPKAETASMPSEPSKQATVEKPVEKPEAKVAA 20 PEAKAEKPAVRPEPVPAANTAASETAAESAPQEAAASAIDTPTDETGNAVSEPVEQVSAE EETESGLFDGLFGGSYTLLLAGGGAALIALLLLLRLAQSKRARRTEESVPEEEPDLDDAA DDGIEITFAEVETPATPEPAPKNDVNDTLALDGESEEELSAKQTFDVETDTPSNRIDLDF DSLAAAQNGILSGALTQDEETQKRADADWNAIESTDSVYEPETFNPYNPVEIVIDTPEPE SVAQTAENKPETVDTDFSDNLPSNNHIGTEETASAKPASPSGLAGFLKASSPETILEKTV 25 AEVQTPEELHDFLKVYETDAVAETAPETPDFNAAADDLSALLQPAEAPSVEENITETVAE TPDFNATADDLSALLQPSKVPAVEENAAETVADDLSALLQPAEAPAVEENVTETVAETPD FNATADDLSALLQPSEAPAVEENAAETVADDLSALLQPAEAPAVEENAAEITLETPDSNT SEADALPDFLKDGEEETVDWSIYLSEENIPNNADTSFPSESVGSDAPSEAKYDLAEMYLE IGDRDAAAETVQKLLEEAEGDVLKRAQALAQELGI 30 NMB0338 DNA sequence ATGGAAAGGAACGGTGTATTTGGTAAAATTGTCGGCAATCGCATACTCCGTATGTCGTCC GAACACGCTGCCGCATCCTATCCGAAACCGTGCAAATCGTTTAAACTAGCGCAATCTTGG TTCAGAGTGCGAAGCTGTCTGGGCGGCGTTTTTATTTACGGAGCAAACATGAAACTTATC 35 TATACCGTCATCAAAATCATTATCCTGCTGCTCTTCCTGCTGCTTGCCGTCATTAATACG GATGCCGTTACCTTTTCCTACCTGCCGGGGCAAAAATTCGATTTGCCGCTGATTGTCGTA TTGTTCGGCGCATTTGTAGTCGGTATTATTTTTGGAATGTTTGCCTTGTTCGGACGGTTG TTGTCGTTACGTGGCGAGAACGGCAGGTTGCGTGCCGAAGTAAAGAAAAATGCGCGTTTG ACGGGGAAGGAGCTGACCGCACCACCGGCGCAAAATGCGCCCGAATCTACCAAACAGCCT 40 TAA NMBO338 Protein sequence MERNGVFGKIVGNRILRMSSEHAAASYPKPCKSFKLAQSWFRVRSCLGGVFIYGANMKLI YTVIKIIILLLFLLLAVINTDAVTFSYLPGQKFDLPLIVVLFGAFVVGIIFGMFALFGRL 45 LSLRGENGRLRAEVKKNARLTGKELTAPPAQNAPESTKQP Analysis of the polypeptide indicates that it is predicted to have two membrane spanning domains, from residues 54 to 70 and 88 to 107. Thus, fragments from the regions 1 to 53, and 108 to the end (C-terminal) may be particularly useful as 50 immunogens. NMB1345 DNA sequence ATGAAAAAACCTTTGATTTCGGTTGCGGCAGCATTGCTCGGCGTTGCTTTGGGCACGCCT
TATTATTTGGGTGTCAAAGCCGAAGAAAGCTTGACGCAGCAGCAAATATTGCAGGAA
WO 2006/067518 PCT/GB2005/005113 21 ACGGGCTTCTTGACCGTCGAATCGCACCAATATGAGCGCGGCTGGTTTACCTCTATGGAA ACGACGGTCATCCGTCTGAAACCCGAGTTGCTGAATAATGCCCGAAAATACCTGCCGGAT AACCTGAAAACAGTGTTGGAACAGCCGGTTACGCTGGTTAACCATATCACGCACGGCCCT TTCGCCGGCGGATTCGGCACGCAGGCGTACATTGAAACCGAGTTCAAATACGCGCCTGAA 5 ACGGAAAAAGTTCTGGAACGCTTTTTTGGAAAACAAGTCCCGGCTTCCCTTGCCAATACC GTTTATTTTAACGGCAGCGGTAAAATGGAAGTCAGTGTTCCCGCCTTCGATTATGAAGAG CTGTCGGGCATCAGGCTGCACTGGGAAGGCCTGACGGGAGAAACGGTTTATCAAAAAGGT TTCAAAAGCTACCGGAACGGCTATGATGCCCCCTTGTTTAAAATCAAGCTGGCAGACAAA GGCGATGCCGCGTTTGAAAAAGTGCATTTCGATTCGGAAACTTCAGACGGCATCAATCCG 10 CTTGCTTTGGGCAGCAGCAATCTGACCTTGGAAAAATTCTCCCTAGAATGGAAAGAGGGT GTCGATTACAACGTCAAGTTAAACGAACTGGTCAATCTTGTTACCGATTTGCAGATTGGC GCGTTTATCAATCCCAACGGCAGCATCGCACCTTCCAAAATCGAAGTCGGCAAACTGGCT TTTTCAACCAAGACCGGGGAATCAGGCGCGTTTATCAACAGTGAAGGGCAGTTCCGTTTC GATACACTGGTGTACGGCGATGAAAAATACGGCCCGCTGGACATCCATATCGCTGCCGAA 15 CACCTCGATGCTTCTGCCTTAACCGTATTGAAACGCAAGTTTGCACAAATTTCCGCCAAA AAATGACCGAGGAACAAATCCGCAATGATTTGATTGCCGCCGTCAAAGGAGAGGCTTCC GGACTGTTCACCAACAATCCCGTATTGGACATTAAAACTTTCCGATTCACGCTGCCATCG GGAAAAATCGATGTGGGCGGAAAAATCATGTTTAAAGACATGAAGAAGGAAGATTTGAAT CAATTGGGTTTGATGCTGAAGAAAACCGAAGCCGACATCAGAATGAGTATTCCCCAAAAA 20 ATGCTGGAAGACTTGGCGGTCAGTCAAGCAGGCAATATTTTCAGCGTCAATGCCGAAGAT GAGGCGGAAGGCAGGGCAAGTCTTGACGACATCAACGAGACCTTGCGCCTGATGGTGGAC AGTACGGTTCAGAGTATGGCAAGGGAAAAATATCTGACTTTGAACGGCGACCAGATTGAT ACTGCCATTTCTCTGAAAAACAATCAGTTGAAATTGAACGGTAAAACGTTGCAAAACGAA CCGGAGCCGGATTTTGATGAAGGCGGTATGGTTTCAGAGCCGCAGCAGTAA 25 NMB 1345 Protein sequence MKKPLISVAAALLGVALGTPYYLGVKAEESLTQQQKILQETGFLTVESHQYERGWFTSME TTVIRLKPELLNNARKYLPDNLKTVLEQPVTLVNHITHGPFAGGFGTQAYIETEFKYAPE TEKVLERFFGKQVPASLANTVYFNGSGKMEVSVPAFDYEELSGIRLHWEGLTGETVYQKG 30 FKSYRNGYDAPLFKIKLADKGDAAFEKVHFDSETSDGINPLALGSSNLTLEKFSLEWKEG VDYNVKLNELVNLVTDLQIGAFINPNGSIAPSKIEVGKLAFSTKTGESGAFINSEGQFRF DTLVYGDEKYGPLDIHIAAEHLDASALTVLKRKFAQISAKKMTEEQIRNDLIAAVKGEAS GLFTNNPVLDIKTFRFTLPSGKIDVGGKIMFKDMKKEDLNQLGLMLKKTEADIRMSIPQK MLEDLAVSQAGNIFSVNAEDEAEGRASLDDINETLRLMVDSTVQSMAREKYLTLNGDQID 35 TAISLKNNQLKLNGKTLQNEPEPDFDEGGMVSEPQQ Selection with vaccinees sera 40 Sera from the Meningococcal Reference Laboratory in Manchester has been made available to us. This sera has come from a clinical trial of OMV immunisation of volunteers. Mutants selected by vaccinee C1 sera (screened once) 45 The following sequences were isolated NMB0338 (as above) WO 2006/067518 PCT/GB2005/005113 22 NMB0738 DNA sequence ATGAAGATCGTCCTGATTAGCGGCCTGTCCGGTTCGGGCAAGTCCGTCGCACTGCGCCAA ATGGAAGATTCGGGTTATTTCTGCGTGGACAATTTGCCTTTGGAAATGTTGCCCGCGCTG GTGTCGTATCATATCGAACGTGCGGACGAAACCGAATTGGCGGTCAGCGTCGATGTGCGT 5 TCCGGCATTGACATCGGACAGGCGCGGGAACAGATTGCCTCTCTGCGCAGACTGGGGCAC AGGGTTGAAGTTTTGTTTGTCGAGGCGGAAGAAAGCGTGTTGGTCCGCCGGTTTTCCGAA ACCAGGCGAGGACATCCTCTGAGCAATCAGGATATGACCTTGTTGGAAAGCTTAAAGAAA GAACGGGAATGGCTGTTCCCGCTTAAAGAAATCGCCTATTGTATCGACACTTCCAAGATG AATGCCCAACAGCTCCGCCATGCAGTCCGGCAGTGGCTGAAGGTCGAACGTACCGGGCTG 10 CTGGTGATTTTGGAGTCCTTCGGGTTCAAATACGGTGTGCCGAACAACGCGGATTTTATG TTCGATATGCGCAGCCTGCCCAACCCGTATTACGATCCCGAGTTGAGGCCTTACACCGGT ATGGACAAGCCCGTTTGGGATTATTTGGACGGACAGCCGCTTGTGCAGGAAATGGTTGAC GACATCGAAAGGTTTGTTACGCATTGGTTACCGCGTTTGGAGGATGAAAGCAGGAGCTAC GTTACCGTCGCCATCGGTTGCACGGGAGGACAGCACCGTTCGGTCTATATTGTCGAAAAA 15 CTCGCCCGAAGGTTGAAAGGGCGTTATGAATTGCTGATACGGCACAGACAGGCGCAAAAC CTGTCAGACCGCTAA NMBO738 Protein sequence MKIVLISGLSGSGKSVALRQMEDSGYFCVDNLPLEMLPALVSYHIERADETELAVSVDVR 20 SGIDIGQAREQIASLRRLGHRVEVLFVEAEESVLVRRFSETRRGHPLSNQDMTLLESLKK EREWLFPLKEIAYCIDTSKMNAQQLRHAVRQWLKVERTGLLVILESFGFKYGVPNNADFM FDMRSLPNPYYDPELRPYTGMDKPVWDYLDGQPLVQEMVDDIERFVTHWLPRLEDESRSY VTVAIGCTGGQHRSVYIVEKLARRLKGRYELLIRHRQAQNLSDR 25 NMB0792 NadC family (transporter) DNA sequence ATGAACCTGCATGCAAAGGACAAAACCCAGCATCCCGAAAACGTCGAGCTGCTCAGTGCG CAGAAGCCGATTACCGACTTTAAGGGCCTGCTGACCACCATTATTTCCGCCGTCGTCTGT TTCGGCATTTACCACATCCTGCCTTACAGCCCCGATGCCAATAAAGGTATCGCGCTGCTG ATTTTCGTTGCCGCACTTTGGTTTACCGAGGCCGTCCACATTACCGTAACCGCACTGATG 30 GTGCCGATTCTCGCCGTCGTACTCGGTTTCCCCGACATGGACATCAAAAAGGCGATGGCT GATTTTTCCAACCCGATTATCTACATTTTTTTCGGCGGCTTCGCGCTTGCCACCGCCCTG CATATGCAGCGGCTGGACCGTAAAATCGCCGTCAGCCTGTTGCGCCTGTCGCGCGGCAAT ATGAAAGTGGCGGTTTTGATGTTGTTCCTCGTTACCGCCTTTCTGTCCATGTGGATCAGC AACACCGCCACCGCCGCGATGATGCTGCCTCTAGCAATGGGTATGCTGAGCCACCTCGAC 35 CAGGAAAAAGAACACAAAACCTACGTCTTCCTCCTGCTCGGCATCGCCTATTGCGCCAGC ATCGGCGGCTTGGGCACGCTCGTCGGCTCGCCGCCCAACCTGATTGCCGCCAAAGCCCTA AATCTGGACTTCGTCGGCTGGATGAAGCTCGGCCTGCCGATGATGCTGTTGATTCTGCCC TTGATGCTGCTCTCCCTGTACGTCATCCTCAAACCTAATTTGAACGAACGCGTGGAAATC AAAGCCGAATCCATCCCTTGGACGCTGCACCGCGTGATCGCGCTGTTGATTTTCCTTGCC 40 ACAGCCGCCGCGTGGATATTCAGCTCCAAAATCAAAACCGCCTTCGGCATTTCCAATCCC GACACCGTTATCGCCCTGAGTGCCGCCGTCGCCGTCGTCGTCTTCGGCGTGGCGCAATGG AAGGAAGTCGCCCGCAATACCGACTGGGGCGTGTTGATGCTCTTCGGCGGCGGCATCAGC CTGAGCACGCTGTTGAAAACATCCGGCGCGTCCGAAGCCTTGGGACAGCAGGTTGCCGCC ACCTTTTCCGGCGCGCCCGCATTTTTGGTGATACTCATCGTCGCCGCCTTCATTATTTTT 45 CTGACCGAGTTCACCAGCAACACCGCCTCCGCCGCATTGCTTGTACCGATTTTCTCCGGC ATCGCTATGCAGATGGGGCTGCCCGAACAAGTCTTGGTATTCGTCATCGGCATCGGCGCA TCTTGTGCCTTCATGCTGCCGGTTGCCACACCGCCTAACGCGATTGTGTTCGGCACGGGC TTAATCAAGCAACGCGAAATGATGAATGTCGGCATACTGCTGAACATCCTCTGCGTAGTA TTGGTTGCTCTGTGGGCTTATGCTGTACTGATGTAA 50 NMB0792 Protein sequence MNLHAKDKTQHPENVELLSAQKPITDFKGLLTTIISAVVCFGIYHILPYSPDANKGIALL IFVAALWFTEAVHITVTALMVPILAVVLGFPDMDIKKAMADFSNPIIYIFFGGFALATAL HMQRLDRKIAVSLLRLSRGNMKVAVLMLFLVTAFLSMWISNTATAAMMLPLAMGMLSHLD 55 QEKEHKTYVFLLLGIAYCASIGGLGTLVGSPPNLIAAKALNLDFVGWMKLGLPMMLLILP LMLLSLYVILKPNLNERVEIKAESIPWTLERVIALLIFLATAAAWIFSSKIKTAFGISNP DTVIALSAAVAVVVFGVAQWKEVARNTDWGVLMLFGGG ISLSTLLKTSGASEALGQQVAA
TFSGAPAFLVILIVAAFIIFLTEFTSNTASAALLVPIFSGIAMQMGLPEQVLVFVIGIGA
WO 2006/067518 PCT/GB2005/005113 23 SCAFMLPVATPPNAIVFGTGLIKQREMMNVGILLNILCVVLVALWAYAVLM NMB0279 DNA sequence ATGCAACGACAAATCAAACTGAAAATTGGCTTCAGACCGTTTATCCCGAACGGGACTTC 5 GATCTGACTTTTGCGGCGGCGGATGCTGATTTCCGCCGCTATTTCCGTGCAACGTTTTCA GACGGCAGCAGTGTCGTCTGCATGGATGCACCGCCCGACAAGATGAGTGTCGCACCTTAT TTGAAAGTGCAGAAACTGTTTGACATGGTCAATGTGCCGCAGGTATTGCACGCGGACACG GATCTGGGGTTTGTGGTATTGAACGACTTGGGCAATACGACGTTTTTGACCGCAATGCTT CAGGAACAGGGCGAAACGGCGCACAAAGCCCTGCTTTTGGAGGCAATCGGCGAGTTGGTC 10 GAATTGCAGAAGGCGAGCCGTGAAGGGGTTTTGCCCGAATATGACCGTGAAACGATGTTG CGCGAAATCAACCTGTTCCCGGAATGGTTTGTCGCAAAAGAATTGGGGCGCGAATTAACA TTCAAACAACGCCAACTTTGGCAGCAAACCGTCGATACGCTGCTGCCGCCCCTGTTGGCG CAGCCCAAAGTCTATGTGCACCGCGACTTTATCGTCCGCAACCTGATGCTGACGCGCGGC AGGCCGGGCGTTTTAGACTTCCAAGACGCGCTTTACGGCCCGATTTCCTACGATTTGGTG 15 TCGCTGTTGCGCGATGCCTTTATCGAATGGGAAGAAGAATTTGTCTTGGACTTGGTTATC CGCTACTGGGAAAAGGCGCGGGCTGCCGGCTTGCCCGTCCCCGAAGCGTTTGACGAGTTT TACCGCTGGTTCGAATGGATGGGCGTGCAGCGGCACTTGAAGGTTGCAGGCATCTTCGCA CGCCTGTACTACCGCGACGGCAAAGACAAATACCGTCCGGAAATCCCGCGTTTCTTAAAC TATCTGCGCCGCGTATCGCGCCGTTATGCCGAACTCGCCCCGCTCTACGCGCTCTTGGTC 20 GAACTGGTCGGCGATGAAGAACTGGAAACGGGCTTTACGTTTTAA NMB0279 Protein sequence MQRQIKLKNWLQTVYPERDFDLTFAAADADFRRYFRATFSDGSSVVCMDAPPDKMSVAPY LKVQKLFDMVNVPQVLHADTDLGFVVLNDLGNTTFLTAMLQEQGETAHKALLLEAIGELV 25 ELQKASREGVLPEYDRETMLREINLFPEWFVAKELGRELTFKQRQLWQQTVDTLLPPLLA QPKVYVERDFIVRNLMLTRGRPGVLDFQDALYGPISYDLVSLLRDAFIEWEEEFVLDLVI RYWEKARAAGLPVPEAFDEFYRWFEWMGVQRHLKVAGIFARLYYRDGKDKYRPEIPRFLN YLRRVSRRYAELAPLYALLVELVGDEELETGFTF 30 IkMB2050 DNA sequence ATGGAACTGATGACTGTTTTGCTGCCTTTGGCGGCGTTGGTGTCGGGCGTGTTGTTTACA TGGTTGCTGATGAAGGGCCGGTTTCAGGGCGAGTTTGCCGGTTTGAACGCGCACCTGGCG GAAAAGGCGGCAAGATGTGATTT T GTCGAACAGGCACACGGCAA-AACCGTGTCGGAAT TG GCGGTGTTGGACGGGAAATACCGGCATTTGCAGGACGAAAATTATGCTTTGGGCAACCGT 35 TTTTCCGCAGCCGAAAAGCAGATTGCCCATTTGCAGGAAAAAGAGGCGGAGTCGGCGCGG CTGAAGCAGTCGTATATCGAGTTGCAGGAAAAGGCACAGGGTTTGGCGGTTGAAAACGAA CGTTTGGCAACGCAGCTCGGACAGGAACGGAAGGCGTTTGCCGACCAATATGCCTTGGAA CGCCAAATCCGCCAAAGAATCGAAACCGATTTGGAAGAAAGCCGCCAAACTGTCCGCGAC GTGCAAAACGACCTTTCCGATGTCGGCAACCGTTTTGCCGCAGCCGAAAAACAGATTGCC 40 CATTTGCAGGAAAAAGAGGCGGAAGCGGAGCGGTTGAGGCAGTCGCATACCGAGTTGCAG GAAAAGGCACAGGGTTTGGCGGTTGAAAACGAACGTTTGGCAACGCAAATCGAACAGGAA CGCCTTGCTTCTGAAGAGAAGCTGTCCTTGCTGGGCGAGGCGCGCAAAAGTTTGAGCGAT CAGTTTCAAAATCTTGCCAACACGATTTTGGAAGAAAAAAGCCGCCGTTTTACCGAGCAG AACCGCGAGCAGCTCCATCAGGTTTTGAACCCGCTAAACGAACGCATCCACGGTTTCGGC 45 GAGTTGGTCAAGCAAACCTATGATAAAGAATCGCGCGAGCGGCTGACGTTGGAAAACGAA TTGAAACGGCTTCAGGGGTTGAACGCGCAGCTGCACAGCGAGGCAAAGGCCCTGACCAAC GCGCTGACCGGTACGCAGAATAAGGTTCAGGGCAATTGGGGCGAGATGATTCTGGAAACG GTTTTGGAAAATTCCGGCCTTCAGAAAGGGCGGGAATATGTGGTTCAGGCGGCATCCGTC CGAAAAGAGGAAGACGGCGGCACGCGCCGCCTCCAGCCCGACGTTTTGGTCAACCTGCCC 50 GACAACAAGCAGATTGTGATTGATTCCAAGGTCTCGCTGACAGCTTATGTGCGCTACACG CAGGCGGCGGATGCGGATACGGCGGCACGCGAACTGGCGGCACACGTTGCCAGCATCCGT GCACACATGAAAGGCTTGTCGCTGAAGGATTACACCGATTTGGAAGGTGTGAACACATTG GATTTCGTCTTTATGTTTATCCCTGTCGAACCGGCCTACCTGTTGGCGTTGCAGAATGAC GCGGGCTTGTTCCAAGAGTGTTTCGACAAACGGATTATGCTGGTCGGCCCCAGTACGCTG 55 CTGGCGACTTTGAGGACGGTGGCGAATATTTGGCGCAACGAACAGCAAAATCAGAACGCA CTGGCGATTGCGGACGAAGGCGGCAAGCTGTACGACAAGTTTGTCGGCTTCGTACAGACG CTCGAAAGCGTCGGCAAAGGCATCGATCAGGCGCAAAGCAGTTTTCAGACGGCATTCAAG
CAACTTGCCGAAGGGCGCGGGAATCTGGTCGGACGCGCCGAGAAACTGCGTCTGTTGGGC
WO 2006/067518 PCT/GB2005/005113 24 GTGAAGGCAGGCAAACAACTTCAACGGGATTTGGTCGAGCGTTCCAATGAAACAACGGCG TTGTCGGAATCTTTGGAATACGCGGCAGAAGATGAAGCAGTCTGA NMB2050 Protein sequence 5 MELMTVLLPLAALVSGVLFTWLLMKGRFQGEFAGLNAHLAEKAARCDFVEQAHGKTVSEL AVLDGKYRHLQDENYALGNRFSAAEKQIAHLQEKEAESARLKQSYIELQEKAQGLAVENE RLATQLGQERKAFADQYALERQIRQRIETDLEESRQTVRDVQNDLSDVGNRFAAAEKQIA HLQEKEAEAERLRQSHTELQEKAQGLAVENERLATQIEQERLASEEKLSLLGEARKSLSD QFQNLANTILEEKSRRFTEQNREQLHQVLNPLNERIHGFGELVKQTYDKESRERLTLENE 10 LKRLQGLNAQLHSEAKALTNALTGTQNKVQGNWGEMILETVLENSGLQKGREYVVQAASV RKEEDGGTRRLQPDVLVNLPDNKQIVIDSKVSLTAYVRYTQAADADTAARELAAHVASIR AHMKGLSLKDYTDLEGVNTLDFVFMFIPVEPAYLLALQNDAGLFQECFDKRIMLVGPSTL LATLRTVANIWRNEQQNQNALAIADEGGKLYDKFVGFVQTLESVGKGIDQAQSSFQTAFK QLAEGRGNLVGRAEKLRLLGVKAGKQLQRDLVERSNETTALSESLEYAAEDEAV 15 NMB 1335 CreA protein DNA sequence ATGAACAGACTGCTACTGCTGTCTGCCGCCGTCCTGCTGACTGCCTGCGGCAGCGGCGAA ACCGATAAAATCGGACGGGCAAGTACCGTTTTCAACATACTGGGCAAAAACGACCGTATC GAAGTGGAAGGATTCGACGATCCCGACGTTCAAGGGGTTGCCTGTTATATTTCGTATGCA 20 AAAAAAGGCGGCTTGAAGGAAATGGTCAATTTGGAAGAGGACGCGTCCGACGCATCGGTT TCGTGCGTTCAGACGGCATCTTCGATTTCTTTTGACGAAACCGCCGTGCGCAAACCGAAA GAAGTTTTCAAACACGGTGCGAGCTTCGCGTTCAAGAGCCGGCAGATTGTCCGTTATTAC GACCCCAAACGCAAAACCTTCGCCTATTTGGTGTACAGCGATAAAATCATCCAAGGCTCG CCGAAAAATTCCTTAAGCGCGGTTTCCTGTTTCGGCGGCGGCATACCGCAAACCGATGGG 25 GTGCAAGCCGATACTTCCGGCAACCTGCTTGCCGGCGCCTGCATGATTTCCAACCCGATA GAAAATCTCGACAAACGCTGA NMBl1 335 Protein sequence MNRLLLLSAAVLLTACGSGETDKIGRASTVFNILGKNDRIEVEGFDDPDVQGVACYISYA 30 KKGGLKEMVNLEEDASDASVSCVQTASSISFDETAVRKPKEVFKHGASFAFKSRQIVRYY DPKRKTFAYLVYSDKIIQGSPKNSLSAVSCFGGGIPQTDGVQADTSGNLLAGACMISNPI ENLDKR NMB2035 DNA sequence 35 ATGACCGCCTTTGTCCACACCCTTTCAGACGGCATGGAACTGACCGTCGAAATCAAGCGC CGTGCCAAGAAAAACCTGATTATCCGCCCCGCCGGCACACATACCGTCCGCATCAGCGTC CCACCCTGCTTCTCCGTCTCCGCTCTAAACCGCTGGCTGTATGAAAACGAAGCCGTCCTG CGGCAAACACTGGCGAAAACACCGCCGCCGCAAACTGCCGAAAACCGGCTGCCCGAATCC ATCCTCTTCCACGGCAGACAGCTTGCCCTCACCGCCCATCAAGACACGCAAATCCTGCTG 40 ATGCCGTCTGAAATCCGTGTTCCCGAAGGCGCACCCGAAAAACAGCTTGCGCTGCTGCGG GACTTTTTGGAACGGCAGGCGCACAGTTACCTGATTCCCCGCCTCGAACGCCACGCCCGC ACCACACAACTGTTCCCCGCCTCCTCCTCGCTGACCTCTGCCAAAACCTTCTGGGGCGTG TGCCGCAAAACCACAGGCATACGCTTCAACTGGCGGCTGGTCGGCGCACCGGAATACGTT GCCGACTATGTCTGCATACACGAACTCTGCCACCTCGCCCATCCCGACCACAGCCCCGCC 45 TTTTGGGAACTGACCCGCCGCTTCGCCCCCTACACGCCCAAAGCGAAACAGTGGCTCAAA ATCCACGGCAGGGAACTTTTCGCCTTAGGCTGA NMB2035 Protein sequence MTAFVHTLSDGMELTVEIKRRAKKNLIIRPAGTHTVRISVPPCFSVSALNRWLYENEAVL 50 RQTLAKTPPPQTAENRLPESILFHGRQLALTAHQDTQILLMPSEIRVPEGAPEKQLALLR DFLERQAHSYLIPRLERHARTTQLFPASSSLTSAKTFWGVCRKTTGIRFNWRLVGAPEYV ADYVCIHELCHLAHPDHSPAFWELTRRFAPYTPKAKQWLKIHGRELFALG NMB1351 Fru and Fmv protein DNA sequence 55 ATGAACGCCGCACAACTCGACCATACCGCCAAAGTTTTGGCTGAAATGCTGACTTTCAAA CAGCCTGCCGATGCCGTCCTCTCCGCCTATTTCCGCGAACACAAAAAGCTCGGCAGTCAA
GATCGCCACGAAATCGCCGAAACCGCCTTTGCCGCGCTGCGCCACTATCAAAAATCAGT
WO 2006/067518 PCT/GB2005/005113 25 ACCGCCCTACGCCGTCCGCACGCGCAGCCGCGCAAAGCCGCTCTCGCCGCACTGGTTCTC GGCAGAAGCACCAACATCAGCCAAATCAAAGACCTGCTTGATGAAGAAGAAACAGCGTTC CTCGGCAATTTGAAAGCCCGTAAAACCGAGTTTTCAGACAGCCTGAATACCGCCGCAGAA TTGCCGCAATGGCTGGTGGAACAACTGAAACAGCATTGGCGCGAAGAAGAAATCCTCGCT 5 TTCGGCCGCAGCATCAACCAGCCTGCCCCGCTCGACATCCGCGTCAACACTTTGAAAGGC AAACGCGATAAAGTGCTGCCGCTGTTGCAAGCCGAAAGTGCCGATGCAGAGGCAACGCCT TATTCGCCTTGGGGCATCCGCCTGAAAAACAAAATCGCGCTTAACAAACACGA-ACTGTTT TTAGACGGCACACTGGAAGTCCAAGACGAAGGCAGCCAGCTGCTTGCCTTATTGGTGGGC GCAAAACGAGGCGAAATCATTGTCGATTTCTGTGCCGGTGCCGGCGGTAAAACCTTGGCT 10 GTCGGTGCGCAAATGGCGAACAAAGGCAGAATCTACGCCTTCGATATCGCCGAAAAACGC CTTGCCAACCTCAAACCGCGTATGACCCGCGCCGGACTGACCAATATCCACCCCGAACGC ATCGGCAGCGAACACGATGCCCGTATCGCCCGACTGGCAGGCAAAGCCGACCGTGTGTTG GTGGACGCGCCCTGCTCCGGTTTGGGCACTTTACGCCGCAATCCCGACCTCAAATACCGC CAATCCGCCGAAACCGTCGCCAACCTTTTGGAACAGCAACACAGCATCCTCGATGCCGCC 15 TCCAAACTGGTAAAACCGCAAGGACGTTTGGTGTACGCCACTTGCAGCATCCTGCCCGAA GAAAACGAGCTGCAAGTCGAACGTTTCCTGTCCGAACATCCCGAATTTGAACCCGTCAAC TGCGCCGAACTGCTTGCCGGTTTGAAAATCGATTTGGATACCGGCAAATACCTGCGCCTC AACTCCGCCCGACACCAAACCGACGGCTTCTTCGCCGCCGTATTGCAACGCAAATAA 20 NMB 1351 Protein sequence MNAAQLDHTAKVLAEMLTFKQPADAVLSAYFREHKKLGSQDRHELAETAFAALRHYQKIS TALRRPHAQPRKAALAALVLGRSTNISQIKDLLDEEETAFLGNLKARKTEFSDSLNTAAE LPQWLVEQLKQBWREEEILAFGRSINQPAPLDIRVNTLKGKRDKVLPLLQAESADAEATP YSPWGIRLKNKIALNKHELFLDGTLEVQDEGSQLLALLVGAKRGEIIVDFCAGAGGKTLA 25 VGAQMANKGRIYAFDIAEKRLANLKPRMTPAGLTNIHPERIGSEHDARIARLAGKADRVL VDAPCSGLGTLRRNPDLKYRQSAETVANLLEQQHSILDAASKLVKPQGRLVYATCSILPE ENELQVERFLSEHPEFEPVNCAELLAGLKIDLDTGKYLRLNSARHQTDGFFAAVLQRK NMB 1574 IlvC DNA sequence 30 ATGCAAGTCTATTACGATAAAGATGCCGATCTGTCCCTAATCAAAGGCAAAACCGTTGCC ATCATCGGTTACGGTTCGCAAGGTCATGCCCATGCCGCCAACCTGAAAGATTCGGGTGTA AACGTGGTGATTGGTCTGCGCCAAGGTTCTTCTTGGAAAAAAGCCGAAGCAGCCGGTCAT GTCGTCAAAACCGTTGCTGAAGCGACCAAAGAAGCCGATGTCGTTATGCTGCTGCTGCCT GACGAAACCATGCCTGCCGTCTATCACGCCGAAGTTACAGCCAATTTGAAAGAAGGCGCA 35 ACGCTGGCATTTGCACACGGCTTCAACGTGCACTACAACCAAATCGTTCCGCGTGCCGAC TTGGACGTGATTATGGTTGCCCCCAAAGGTCCGGGCCATACCGTACGCAGTGAATACAAA CGCGGCGGCGGCGTGCCTTCTCTGATTGCCGTTTACCAAGACAATTCCGGCAAAGCCAAA GACATCGCCCTGTCTTATGCGGCTGCCAACGGCGGCACCAAAGGCGGTGTGATTGAAACC ACTTTCCGCGAAGAAACCGAAACCGATCTGTTCGGCGAACAAGCCGTATTGTGCGGCGGC 40 GTGGTCGAGTTGATCAAGGCGGGTTTTGAAACCCTGACCGAAGCCGGTTACGCGCCTGAA ATGGCTTACTTCGAATGTCTGCACGAAATGAAACTGATCGTTGACCTGATTTTCGAAGGC GGTATTGCCAATATGAACTACTCCATTTCCAACAATGCGGAGTACGGCGAATACGTTACC GGCCCTGAAGTGGTCAATGCTTCCAGCAAAGAAGCCATGCGCAATGCCCTGAAACGCATT CAAACCGGCGAATACGCAAAAATGTTTATCCAAGAGGGTAATGTCAACTATGCGTCTATG 45 ACTGCCCGCCGCCGTCTGAATGCCGACCACCAAGTTGAAAAAGTCGGCGCACAACTGCGT GCCATGATGCCTTGGATTACTGCCAACAAATTGGTTGACCAAGACAAAAACTGA NMB1574 Protein sequence MQVYYDKDADLSLIKGKTVAIIGYGSQGHAHAANLKDSGVNVVIGLRQGSSWKKAEAAGH 50 VVKTVAEATKEADVVMLLLPDETMPAVYHAEVTANLKEGATLAFAHGFNVHYNQIVPRAD LDVIMVAPKGPGHTVRSEYBKRGGGVPSLIAVYQDNSGKAKDIALSYAAANGGTKGGVIET TFREETETDLFGEQAVLCGGVVELIKAGFETLTEAGYAPEMAYFECLHEMKLIVDLIFEG GIANMNYSISNNAEYGEYVTGPEVVNASSKEAMRNALKRIQTGEYAKMFIQEGNVNYASM TARRRLNADHQVEKVGAQLRAMMPWITANKLVDQDKN 55 NMB 1298 rsuA DNA sequence ATGAAACTTATCAAATACCTGCAATATCAAGGCATAGGAAGCCGCAAGCAGTGCCAATGG
CTGATTGCCGGCGGTTATGTTTTCATCAACGGAACCTGCATGGACGACACCGATGCAGAC
WO 2006/067518 PCT/GB2005/005113 26 ATCGATTCCTCATCCGTCGAAACGTTGGATATTGACGGGGAAGCAGTAACCGTCGTTCCC GAACCCTATTTCTACATCATGCTCAACAAGCCTGAAGATTACGAAACTTCGCACAAACCC AAGCACTACCGCAGCGTATTCAGCCTGTTCCCCGACAATATGCGGAACATCGATATGCAG GCGGTCGGCAGGCTGGATGCAGATACGACCGGCGTATTGCTGATTACCAACGACGGCAAA 5 CTGAACCACAGCCTGACTTCGCCGAGCAGAAAAATTCCCAAGCTGTACGAAGTAACGCTC AAACACCCCACAGGAGAAACGCTCTGCGAAACCTTGAAAAACGGCGTGCTGCTCCACGAC GAAAACGAAACCGTTTGTGCCGCCGATGCCGTTTTGAAAAACCCGACCACCCTGCTGCTG ACCATTACCGAAGGAAAATACCACCAAGTCAAACGCATGATCGCCGCCGCCGGCAACCGC GTGCAACACCTTCATCGCCGGCGATTCGCACATCTGGAAACAGAAAACCTCAAACCCGGG 10 GAATGGAAATTTATCGAATGTCCAAAATTCTGA NMB 1298 Protein sequence MKLIKYLQYQGIGSRKQCQWLIAGGYVFINGTCMDDTDADIDSSSVETLDIDGEAVTVVP EPYFYIMLNKPEDYETSHKPKHYRSVFSLFPDNMRNIDMQAVGRLDADTTGVLLITNDGK 15 LNHSLTSPSRKIPKLYEVTLKBPTGETLCETLKNGVLLHDENETVCAADAVLKNPTTLLL TITEGKYHQVKRMIAAAGNRVQHLHRRRFAHLETENLKPGEWKFIECPKF NMB1856 Lys R family (transcription regulator) DNA sequence ATGAAAACCAATTCAGAAGAACTGACCGTATTTGTTCAAGTGGTGGAAAGCGGCAGCTTC 20 AGCCGTGCGGCGGAGCAGTTGGCGATGGCAAATTCTGCCGTAAGCCGCATCGTCAAACGG CTGGAGGAAAAGTTGGGTGTGAACCTGCTCAACCGCACCACGCGGCAACTCAGTCTGACG GAAGAAGGCGCGCAATATTTCCGCCGCGCGCAGAGAATCCTGCAAGAAATGGCAGCGGCG GAAACCGAAATGCTGGCAGTGCACGAAATACCGCAAGGCGTGTTGAGCGTGGATTCCGCG ATGCCGATGGTGCTGCATCTGCTGGCGCCGCTGGCAGCAAAATTCAACGAACGCTATCCG 25 CATATCCGACTTTCGCTCGTTTCTTCCGAAGGCTATATCAATCTGATTGAACGCAAAGTC GATATTGCCTTACGGGCCGGAGAATTGGACGATTCCGGGCTGCGTGCACGCCATCTGTTT GACAGCCGCTTCCGCGTAATCGCCAGTCCTGAATACCTGGCAAAACACGGCACGCCGCAA TCTACAGAAGAGCTTGCCGGCCACCAATGTTTAGGCTTCACCGAACCCGGTTCTCTAkAAT ACATGGGCGGTTTTAGATGCGCAGGGAAATCCCTATAAGATTTCACCGCACTTTACCGCC 30 AGCAGCGGTGAAATCTTACGCTCGTTGTGCCTTTCAGGTTGCGGTATTGTTTGCTTATCA GATTTTTTGGTTGACAACGACATCGCTGAAGGAAAGTTAATTCCCCTGCTCGCCGA-ACAA ACCTCCGATAAAACACACCCCTTTAATGCTGTTTATTACAGCGATAAAGCCGTCAATCTC CGCTTACGCGTATTTTTGGATTTTTTAGTGGAGGAACTGGGAAACAATCTCTGTGGATAA 35 NMB 1856 Protein sequence MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVNLLNRTTRQLSLT EEGAQYFRRAQRILQEMAAAETEMLAVHEIPQGVLSVDSAMPMVLHLLAPLAAKFNERYP HIRLSLVSSEGYINLIERKVDIALRAGELDDSGLPARHLFDSRFRVIASPEYLAKHGTPQ STEELAGHQCLGFTEPGSLNTWAVLDAQGNPYKISPHFTASSGEILRSLCLSGCGIVCLS 40 DFLVDNDIAEGKLIPLLAEQTSDKTHPFNAVYYSDKAVNLRLRVFLDFLVEELGNNLCG NMB01 19 DNA sequence ATGATGAAGGATTTGAATTTGAGCAACAGCCTGTTCAAAGGCTACAACGACAAACATGGC TTAATGATTTGTGGCTATGAATGGGGTTGGAGTAAAGCCGATGAGGCTGCTTATGTAGCA 45 GGTGAATACAAACTCCCTGAAAACAAAATCGACCATACATTTGCAAACAAATCCCTCTAT TTCGGAGAGCAGGCAAAAAAGTGGCGTTACGACAATACGATAAAAAATTGGTTTGAAATG TGGGGACACCCCTTAGACGAAAATGGATTGGGCGGTGCATTTGAAAAATCCCTGGTTCAA ACCAACTGGGCTGCTACACAGGGCAACACTATCGACAATCCCGACAAGTTCACACAACCC GAGCACATCGATAATTTTCTCTACCACATCGAAAAACTGCGTCCGAAAGTCATCCTCTTC 50 ATGGGCAGCAGGTTGGCGGATTTTCTGAACAACCAAAATGTACTGCCACGCTTCGAGCAG TTGGTCGGTAAGCAGACCAAACCGCTGGAGACGGTGCAAAAAGAATTTGACGGTACACGT TTCAATGTCAAATTCCAATCGTTTGAAGATTGCGAAGTCGTCTGCTTTCCCCATCCCAGT GCCAGTCGCGGTCTATCTTACGATTACATCGCCTTGTTTGCGCCTGAAATGAACCGGATT TTATCGGACTTTAAAACAACACGCGGATTCAAATAA 55 NMB 0119 Protein sequence
MMKDLNLSNSLFKGYNDKHGLMICGYEWGWSKADEAAYVAGEYKLPENKIDHTFANKSLY
WO 2006/067518 PCT/GB2005/005113 27 FGEQAKKWRYDNTIKNWFEMWGHPLDENGLGGAFEKSLVQTNWAATOGNTIDNPDKFTQP EHIDNFLYHIEKLRPKVILFMGSRLADFLNNQNVLPRFEQLVGKQTKPLETVQKEFDGTR FNVKFQSFEDCEVVCFPHPSASRGLSYDYIALFAPEMNRILSDFKTTRGFK 5 NMB 1705 rfaK DNA sequence ATGGAAAAAGAATTCAGGATATTAAATATCGTATCGGCCAAGATTTGGGGTGGAGGCGAA CAATATGTCTATGATGTTTCAAAAGCATTGGGGCTTCGGGGCTGCACAATGTTTACCGCC GTCAATAAAAATAATGAATTGATGCACAGGCGATTTTCCGAAGTTTCTTCCGTTTTCACA ACGCGCCTTCACACGCTCAACGGGCTGTTTTCGCTCTACGCACTTACCCGCTTTATCCGG 10 AAAAACCGCATTTCCCACCTGATGATACACACCGGCAAAATTGCCGCCTTATCCATACTT TTGAAAAAACTGACCGGGGTGCGCCTGATATTTGTCAAACATAATGTCGTCGCCAACAAA ACCGATTTTTACCACCGCCTGATACAGAAAAACACAGACCGCTTTATTTGCGTTTCCCGT CTGGTTTACGATGTGCAAACCGCCGACAATCCCTTTAAAGAAAAATACCGGATTGTTCAT AACGGTATCGATACCGGCCGTTTCCCTCCCTCTCAAGAAAAACCCGACAGCCGTTTTTTT 15 ACCGTCGCCTACGCCGGCAGGATCAGTCCAGAAAAAGGATTGGAAAACCTGATTGAAGCC TGTGTGATACTGCATCGGAAATATCCTCAAATCAGGCTCAAATTGGCAGGGGACGGACAT CCGGATTATATGTGCCGCCTGAAGCGGGACGTATCTGCTTCAGGAGCAGAACCATTTGTT TCTTTTGAAGGGTTTACCGAAAAACTTGCTTCGTTTTACCGCCAAAGCGATGTCGTGGTT TTGCCCAGCCTCGTCCCGGAGGCATTCGGTTTGTCATTATGCGAGGCGATGTACTGCCGA 20 ACGGCGGTGATTTCCAATACTTTGGGGGCGCAAAAGGAAATTGTCGAACATCATCAATCG GGGATTCTGCTGGACAGGCTGACACCTGAATCTTTGGCGGACGAAATCGAACGCCTCGTC TTGAACCCTGAAACGAAAAACGCACTGGCAACGGCAGCTCATCAATGCGTCGCCGCCCGT TTTACCATCAACCATACCGCCGACAAATTATTGGATGCAATATAA 25 NMB1705 Protein sequence MEKEFRILNIVSAKIWGGGEQYVYDVSKALGLRGCTMFTAVNKNNELMERRFSEVSSVFT TRLHTLNGLFSLYALTRFIRKNRISHLMIHTGKIAALSILLKKLTGVRLIFVKHNVVANK TDFYHRLIQKNTDRFICVSRLVYDVQTADNPFKEKYRIVHNGIDTGRFPPSQEKPDSRFF TVAYAGRISPEKGLENLIEACVILHRKYPQIRLKLAGDGHPDYMCRLKRDVSASGAEPFV 30 SFEGFTEKLASFYRQSDVVVLPSLVPEAFGLSLCEAMYCRTAVISNTLGAQKEIVEHHQS GILLDRLTPESLADEIERLVLNPETKNALATAAHQCVAARFTINETADKLLDAI NMB2065 Henk protein DNA sequence ATGCAGGAACAGAATCGGAAACCAAGTTTTCCCATAGTGATGTTGCTGGTGTCGGTTGCC 35 CTGTGGATAGCGTCTTTATCCAATGTTGCATTTTATTTGGGCAATCATGGAAGCATGGAG GGTTTGACCGTTTTGATTTTGGGGTCGATATTTGCTTCTTTGGATATCAGGTATTGTGCG GTCTATGCGAATTATGTTTGGTTGGCGGCCATTGTTTTGCTGGCGTTGCGGAAGAAGGTC GTGCCTGTCCATGCGGCACTTTGGGGCTTGGCGTTGGTGGCTTTCAGTGTGAAAGCCGTA TACGTCGATGAAGCAGGGAATACATCGGATATTGTGCGCTACGGTGCAGGATTTTATTTG 40 TGGTATGCCGCATTTGCGGTTGCCACCATCGGTACGTTTGCCGGAAAGAATAAGGAAAGA AAAGCCGCATCAGCGGCAGACGGGATAAAAATGACGTTTGATAAATGGTTGGGCTTGTCA AAACTGCCTAAAAATGAAGCAAGAATGCTGCTACAATATGTTTCGGAATATACGCGCGTG CAGTTGTTGACGCGGGGCGGGGAAGAAATGCCGGACGAAGTCCGACAGCGGGCGGACAGG CTGGCGCAACGCCGTCTGAACGGCGAGCCGGTTGCCTATATTTTAGGTGTGCGCGAATTT 45 TATGGCAGACGCTTTACAGTCAATCCGAGCGTGCTGATTCCGCGCCCCGAAACCGAACAT TTGGTCGAAGCCGTATTGGCGCGCCTGCCCGAAAACGGGCGCGTGTGGGATTTGGGGACG GGCAGCGGCGCGGTTGCCGTAACCGTCGCGCTCGAACGCCCCGATGCGTTTGTGCGCGCA TCCGACATCAGCCCGCCCGCCCTTGAAACGGCGCGGAAAAATGCGGCGGATTTGGGCGCG CGGGTCGAATTTGCACACGGTTCGTGGTTCGACACCGATATGCCGTCTGAAGGGAAATGG 50 GACATCATCGTGTCCAACCCGCCCTATATCGAAAACGGCGATAAACATTTGTTGCAAGGC GATTTGCGGTTTGAGCCGCAAATCGCGCTGACCGACTTTTCAGACGGCCTAAGCTGCATC CGCACCTTGGCGCAAGGCGCGCCCGACCGTTTGGCGGAAGGCGGTTTTTTATTGCTGGAA CACGGTTTCGATCAGGGCGCGGCGGTGCGCGGCGTGTTGGCGGAGAATGGTTTTTCAGGA GTGGAAACCCTGCCGGATTTGGCGGGTTTGGACAGGGTTACGCTGGGGAAGTATATGAAG 55 CATTTGAAATAA WO 2006/067518 PCT/GB2005/005113 28 NMB2065 Protein sequence MQEQNRKPSFPIVMLLVSVALWIASLSNVAFYLGNEGSMEGLTVLILGSIFASLDIRYCA VYANYVWLAAIVLLALRKKVVPVHAALWGLALVAFSVKAVYVDEAGNTSDIVRYGAGFYL WYAAFAVATI GTFAGKNKERKAASAADGIKMTFDKWLGLSKLPKNEARMLLQYVSEYTRV 5 QLLTRGGEEMPDEVRQRADRLAQRRLNGEPVAYILGVREFYGRRFTVNPSVLIPRPETEH LVEAVLARLPENGRVWDLGTGSGAVAVTVALERPDAFVRASDISPPALETARKNAADLGA RVEFAHGSWFDTDMPSEGKLWDIIVSNPPYIENGDKHLLQGDLRFEPQIALTDFSDGLSCI RTLAQGAPDRLAEGGFLLLEHGFDQGAAVRGVLAENGFSGVETLPDLAGLDRVTLGKYMK HLK 10 Mutants selected by vacinee's 17 D sera (Screened once only) NMB0339 DNA sequence ATGGACAACGAATTGTGGATTATCCTGCTGCCGATTATCCTTTTGCCCGTCTTCTTCGCG 15 ATGGGCTGGTTTGCCGCCCGCGTGGATATGAAAACCGTATTGAAGCAGGCAAAAAGCATC CCTTCGGGATTTTATAAAAGCTTGGACGCTTTGGTCGACCGCAACAGCGGGCGCGCGGCA AGGGAGTTGGCGGAAGTCGTCGACGGCCGGCCGCAATCGTATGATTTGAACCTCACCCTC GGCAAACTTTACCGCCAGCGTGGCGAAAACGACAAAGCCATCAACATACACCGGACAATG CTCGATTCTCCCGATACGGTCGGCGAAAAGCGCGCGCGCGTCCTGTTTGAATTGGCGCAA 20 AACTACCAAAGTGCGGGGTTGGTCGATCGTGCCGAACAGATTTTTTTGGGGCTGCAAGAC GGTAAAATGGCGCGTGAAGCCAGACAGCACCTGCTCAATATCTACCAACAGGACAGGGAT TGGGAAAAAGCGGTTGAAACCGCCCGGCTGCTCAGCCATGACGATCAGACCTATCAGTTT GAAATCGCCCAGTTTTATTGCGAACTTGCCCAAGCCGCGCTGTTCAAGTCCAATTTCGAT GTCGCGCGTTTCAATGTCGGCAAGGCACTCGAAGCCAACAAAAAATGCACCCGCGCCAAC 25 ATGATTTTGGGCGACATCGAACACCGACAAGGCAATTTCCCTGCCGCCGTCGAAGCCTAT GCCGCCATCGAGCAGCAAACCATGCATACTTGAGCATGGTCGGCGAGAAGCTTTACGAA GCCTATGCCGCGCAGGGAAAACCTGAAGAAGGCTTGAACCGTCTGACAGGATATATGCAG ACGTTTCCCGAACTTGACCTGATCAATGTCGTGTACGAGAAATCCCTGCTGCTT-AAGTGC GAGAAAGAAGCCGCGCAAACCGCCGTCGAGCTTGTCCGCCGCAAGCCCGACCTTAACGGC 30 GTGTACCGCCTGCTCGGTTTGAAACTCAGCGATATGAATCCGGCTTGGAAAGCCGATGCC GACATGATGCGTTCGGTTATCGGACGGCAGCTACAGCGCAGCGTGATGTACCGTTGCCGC AACTGCCACTTCAAATCCCAAGTCTTTTTCTGGCACTGCCCCGCCTGCAACAAATGGCAG ACGTTTACCCCGAATAAATCGAAGTTTAA 35 NMB0339 Protein sequence MDNELWIILLPIILLPVFFAMGWFAARVDMKTVLKQAKSIPSGFYKSLDALVDRNSGRAA RELAEVVDGRPQSYDLNLTLGKLYRQRGENDKAINIHRTMLDSPDTVGEKRARVLFELAQ NYQSAGLVDRAEQIFLGLQDGKI-MAREARQHLLNIYQQDRDWEKAVETARLLSHDDQTYQF EIAQFYCELAQAALFKSNFDVARFNVGKALEANKKCTRANMILGDIEHRQGNFPAAVEAY 40 AAIEQQNHAYLSMVGEKLYEAYAAQGKPEEGLNRLTGYNQTFPELDLINVVYEKSLLLKC EKEAAQTAVELVRRKPDLNGVYRLLGLKLSDMNPAWKADADMMRSVIGRQLQRSVMYRCR NCHFKSQVFFWHCPACNKWQTFTPNKIEV Selection with patient's sera 45 We have a collection of acute and convalescent sera available to us for screening. This is from individuals infected with different serogroup of N. meningitidis. Screens have been performed with acute (A) or convalescent (C) sera. The period between the acute infection and collection of sera was from 2 weeks to 3 months. 50 NMB0401 putA DNA sequence ATGTTTCATTTTGCATTTCCGGCACAAACTGCCCTGCGCCAAGCGATAACCGATGCCTAC
CGCCGTAATGAAATCGAAGCCGTACAGGATATGTTGCAACGTGCACAGATGAGCGACGAA
WO 2006/067518 PCT/GB2005/005113 29 GAGCGCAACGCCGCCTCCGAGCTTGCCCGCCGTTTGGTTACCCAAGTCCGCGCCGGCCGC ACCAAAGCCGGCGGCGTGGATGCGCTGATGCACGAGTTTTCACTCTCCAGCGAAGAAGGC ATCGCGCTGATGTGTCTGGCAGAAGCCCTGCTGCGTATCCCCGACAACGCCACGCGCGAC CGCCTGATTGCCGACAAGATTTCAGACGGCAACTGGAAAAGCCATTTGAACAACAGCCCT 5 TCCCTCTTCGTCAATGCTGCCGCCTGGGGCCTGCTGATTACCGGCAAACTGACCGCCACA AACGACAAACAAATGAGTTCCGCACTCAGCCGCCTGATCAGCAAAGGCGGCGCACCGCTC ATCCGCCAAGGCGTAAATTACGCCATGCGGCTTCTGGGCAAACAGTTCGTAACCGGACAG ACCATTGAAGAAGCCCTGCAAAACGGCAAAGAACGCGAAAAAATGGGCTACCGCTTCTCC TTCGATATGTTGGGCGAAGCCGCCTACACCCAAGCCGATGCCGACCGCTACTACCGCGAC 10 TATGTCGAAGCCATCCACGCCATCGGCAAAGATGCGGCAGGACAAGGCGTTTACGAAkGGT AACGGTATTTCCGTCAAACTTTCCGCCATCCATCCGCGCTACTCGCGCACCCAACACGGC CGCGTGATGGGCGAACTGTTGCCGCGCCTGAAAGAGCTGTTCCTTTTGGGTAAAAAATAC GATATCGGTATCAACATCGATGCCGAAGAAGCCAACCGTCTGGAGCTGTCTTTGGATTTG ATGGAGGCTTTGGTTTCAGACCCTGACTTGGCTGGCTACAAAGGTATCGGTTTCGTTGTC 15 CAAGCCTACCAAAAACGTTGTCCGTTCGTTATCGACTACCTGATCGACCTTGCCCGCCGC AACAACCAAAAACTAATGATCCGCCTCGTCAAAGGCGCGTATTGGGACAGCGAAATCAAA TGGGCGCAAGTGGACGGCTTGAACGGCTATCCGACCTACACCCGCAAAGTCCACACCGAC ATCTCCTACCTCGCCTGCGCGCGCAAACTGCTTTCCGCGCAAGACGCGGTATTCCCGCAA TTTGCCACCCACAACGCCTACACTTTGGGCGCAATCTACCAAATGGGTAAAGGCAAAGAT 20 TTTGAACACCAATGCCTGCACGGTATGGGCGAAACCCTGTACGACCAAGTCGTCGGCCCG CAAAACTTAGGCCGCCGCGTGCGCGTGTACGCCCCAGTCGGCACACACGAAACCCTGCTC GCCTACTTGGTGCGCCGCCTGTTGGAAAACGGCGCGAACTCGTCTTTCGTCAACCAAATC GTCGATGAAAACATCAGCATCGACACGCTCATCCGCAGCCCGTTCGACACCATCGCCGAA CAAGGCATCCACCTGCACAACGCCCTGCCGCTGCCGCGCGATTTGTACGGCAAATGCCGT 25 CTGAACTCGCAAGGCGTGGACTTGAGCAACGAAAACGTATTGCAGCAGCTTCAAGAACAG ATGAACAAAGCCGCCGCGCAAGACTTCCACGCCGCATCCATCGTCAACGGCAAAGCCCGC GATGTCGGCGAAGCGCAACCGATTAAAAACCCTGCCGACCACGACGACATCGTCGGCACA GTCAGCTTTGCCGATGCCGCGCTTGCCCAAGAAGCGGTTGGCGCAGCCGTTGCCGCGTTC CCCGAATGGAGTGCGACACCTGCCGCCGAACGCGCCGCCTGCCTGCGCCGTTTTGCCGAT 30 TTGCTGGAGCAGCACACCCCAGCACTGATGATGCTTGCCGTGCGCGAAGCAGGCAAAACG CTGAACAACGCCATTGCCGAAGTGCGCGAAGCCGTCGATTTCTGCCGCTACTACGCAAAC GAAGCCGAACATACCCTGCCTCAAGACGCAAAAGCCGTCGGCGCGATTGTCGCCATCAGC CCGTGGAACTTCCCGCTCGCCATCTTTACCGGCGAAGTCGTTTCCGCATTGGCGGCAGGC AACACCGTCATCGCCAAACCCGCCGAACAAACCAGCCTGATTGCCGGTTATGCCGTTTCC 35 CTCATGCACGAAGCCGGCATCCCGACTTCCGCCCTGCAACTCGTCCTCGGCGCAGGCGAC GTGGGTGCGGCATTGACCAACGATGCCCGCATCGGCGGCGTGATTTTCACCGGCTCGACC GAAGTGGCGCGCCTGATCAACAAAGCCCTTGCCAAACGCGGCGACAATCCCGTCCTGATT GCCGAAACCGGCGGACAAAACGCCATGATTGTCGATTCCACCGCACTTGCCGAGCAAGTC TGCGCCGACGTATTGAACTCCGCCTTCGACAGCGCGGGACAACGCTGCTCCGCCCTGCGC 40 ATTTTGTGCGTCCAAGAAGACGTTGCCGACCGTATGCTCGACATGATCAAAGGCGCTATG GACGAACTCGTCGTCGGCAAACCGATTCAGCTCACTACCGATGTCGGCCCCGTCATCGAT GCCGAAGCACAGCAAAACCTGTTGAACCACATCAACAAAATGAAAGGTGTTGCCAAGTCC TACCACGAAGTCAAAACCGCCGCCGATGTCGATTCCAAAAAATCCACGTTCGTTCGCCCC ATCCTGTTTGAATTGAACAACCTCAACGAACTGCAACGCGAAGTCTTCGGTCCCGTCCTG 45 CACGTCGTCCGCTACCGCGCCGACGAACTCGACAACGTCATCGACCAAATCAACAGCAAA GGCTACGCCCTGACCCACGGCGTACACAGCCGCATCGAAGGCACGGTACGCCACATCCGC AGCCGCATCGAAGCCGGCAACGTTTACGTCAACCGCAACATCGTCGGCGCAGTCGTCGGC GTACAGCCCTTCGGCGGACACGGTCTGTCCGGCACAGGCCCCAAAGCAGGCGGTTCGTTC TACCTGCAAAAACTGACCCGCGCCGGCGAATGGGTTGCCCCGACCCTGAGCCAAATCGGA 50 CAGGCGGACGAAGCCGCACTCAAACGCCTCGAAGCACTGGTTCACAAACTACCGTTCAAC GCCGAAGAGAAAAAAGCCGCAGCGGCCGCTTTGGGACACGCCCGCATCCGCACCCTGCGC CGTGCCGAAACCGTCCTTACCGGACCGACCGGCGAGCGCAACAGCATCTCATGGCACGCG CCCAAACGCGTTTGGATACACGGCGGCAGCACGGTTCAAGCCTTTGCCGCACTGACCGAA CTTGCCGCCTCCGGCATACAGGCAGTGGTCGAACCCGACAGCCCCTTGGCTTCCTACACT 55 GCCGACTTGGAAGGTCTGCTGCTGGTCAACGGCAAACCCGAAACCGCCGGCATCAGCCAC GTTGCCGCCCTGTCGCCTTTGGACAGCGCGCGCAAACAGGAACTTGCCGCCCACGACGGC GCACTCATCCGCATCCTCCCTTCGGAAAACGGACTCGACATCCTGCAAGTGTTTGAAGAA
ATCTCTTGCAGCGTCAACACCACAGCCGCCGGCGGCAACGCCAGCCTGATGGCGGTCGCC
WO 2006/067518 PCT/GB2005/005113 30 GACTGA NMBO401 Protein sequence MFHFAFPAQTALRQAITDAYRRNEIEAVQDMLQRAQMSDEERNAASELARRLVTQVRAGR 5 TKAGGVDALMHEFSLSSEEGIALMCLAEALLRIPDNATRDRLIADKISDGNWKSELNNSP SLFVNAAAWGLLITGKLTATNDKQMSSALSRLISKGGAPLIRQGVNYAMRLLGKQFVTGQ TIEEALQNGKEREKMGYRFSFDMLGEAAYTQADADRYYRDYVEAIHAI GKDAAGQGVYEG NGISVKLSAIHPRYSRTQHGRVMGELLPRLKELFLLGKKYDIGINIDAEEANRLELSLDL MEALVSDPDLAGYKGIGFVVQAYQKRCPFVIDYLIDLARRNNQKLMIRLVKGAYWDSEIK 10 WAQVDGLNGYPTYTRKVHTDISYLACARKLLSAQDAVFPQFATHNAYTLGAIYQMGKGKD FEHQCLHGMGETLYDQVVGPQNLGRRVRVYAPVGTHETLLAYLVRRLLENGANSSFVNQI VDENISIDTLIRSPFDTIAEQGIHLHNALPLPRDLYGKCRLNSQGVDLSNENVLQQLQEQ MNKAAAQDFHAASIVNGKARDVGEAQPIKNPADHDDIVGTVSFADAALAQEAVGAAVAAF PEWSATPAAEPAACLRRFADLLEQHTPALMMLAVREAGKTLNNAIAEVREAVDFCRYYAN 15 EAEHTLPQDAKAVGAIVAISPWNFPLAIFTGEVVSALAAGNTVIAKPAEQTSLIAGYAVS LMHEAGIPTSALQLVLGAGDVGAALTNDARIGGVIFTGSTEVARLINKALAKRGDNPVLI AETGGQNAMIVDSTALAEQVCADVLNSAFDSAGQRCSALRILCVQEDVADRMLDMIKGAM DELVVGKPIQLTTDVGPVIDAEAQQNLLNHINKMKGVAKSYHEVKTAADVDSKKSTFVRP ILFELNNLNELQREVFGPVLHVVRYRADELDNVIDQINSKGYALTHGVHSRIEGTVRHIR 20 SRIEAGNVYVNRNIVGAVVGVQPFGGHGLSGTGPKAGGSFYLQKLTRAGEWVAPTLSQIG QADEAALKRLEALVHKLPFNAEEKKAAAAALGHARIRTLRRAETVLTGPTGERNSISWHA PKRVWIHGGSTVQAFAALTELAASGIQAVVEPDSPLASYTADLEGLLLVNGKPETAGISH VAALSPLDSARKQELAAHDGALIRILPSENGLDILQVFEEISCSVNTTAAGGNASLMAVA D 25 NMB1335 CreA DNA and Protein sequences given above 30 NMB 1467 PPX DNA sequence ATGACCACCACCCCCGCAAACGTCCTCGCCTCCGTCGATTTGGGTTCCAACAGTTTCCGC CTCCAGATTTGCGAAAACAACAACGGACAATTAAAAGTCATCGATTCGTTCAAACAGATG GTGCGCTTCGCCGCCGGACTGGACGAACAGAAAAATCTGAGTGCCGCTTCCCAAGAACAG GCTTTGGACTGTCTGGCAAAATTCGGCGAACGCCTGCGCGGCTTCCGCCCTGAACAGGTA 35 CGCGCCGTGGCAACCAACACATTCCGCGTTGCCAAAACATCGCAGATTTCCTTCCCAAA GCCGAAGCGGCATTGGGTTTCCCCATCGAAATCATCGCCGGGCGCGAAGAGGCGCGGCTG ATTTATACCGGCGTGATCCACACCCTCCCCCCGGGCGGCGGCAAAATGCTGGTTATCGAC ATCGGCGGCGGTTCGACAGAATTTGTCATCGGCTCGACGCTGAATCCCGACATTACCGAA AGCCTGCCCTTGGGCTGCGTAACCTACAGCCTGCGCTTCTTCCAAAACAAAATCACCGCC 40 AAAGACTTCCAATCTGCCATTTCCGCCGCCCGCAACGAAATCCAGCGTATCAGCAAAAAT ATGAGGCGCGAAGGTTGGGATTTCGCCGTCGGCACATCGGGTTCGGCAAAATCCATCCGC GACGTGCTTGCCGCCGAAATGCCCCAAGAGGCGGACATTACCTACAAAGGCATGCGCGCC CTCGCCGAACGCATCATCGAAGCCGGTTCGGTCAAAAAAGCCAAATTTGAAAACCTGAAA CCGGAACGCATCGAAGTTTTTGCCGGCGGACTTGCCGTGATGATGGCGGCGTTTGAGGAA 45 ATGAAACTCGACAGGATGACCGTAACCGAAGCCGCCCTGCGCGACGGCGTGTTTTACGAT TTGATCGGGCGCGGTTTAAACGAAGATATGCGCGGACAAACGGTTGCCGAGTTCCAACAC CGCTACCACGTCAGCCTCAATCAGGCGAAACGCACCGCCGAGACCGCGCAAACCTTTATG GACAGCCTCTGCCACGCTAAAAACGTTACAGTTCAAGAGCTTGCCTTGTGGCAACAGTAT CTCGGACGCGCCGCCGCGCTGCACGAAATCGGTTTGGACATCGCCCACACCGGCTATCAC 50 AAGCATTCCGCCTACATCCTCGAAAACGCCGATATGCCGGGTTTCTCACGCAAAGAACAG ACCATACTTGCCCAACTGGTCATCGGTCATCGCGGCGATATGAAAAAAATGAGCGGCATC ATCGGCACCAACGAAATGTTGTGGTATGCCGTTTTGTCCCTGCGCCTTGCCGCACTGTTC TGCCGTTCGCGCCAAGACCTGTCTTTCCCGAAAAATATGCAGTTGCGCACGGATACGGAA AGCTGCGGCTTCATCCTGCGTATTGACAGGGAATGGCTGGAACGCCATCCCCTGATTGCC 55 GACGCATTGGAATATGAAAGCGTCCAATGGCAAAAAATCAATATGCCGTTCAAAGTCGAG WO 2006/067518 PCT/GB2005/005113 31 GCCGTCTGA NMB1467 Protein sequence MTTTPANVLASVDLGSNSFRLQICENNNGQLKVIDSFKQMVRFAAGLDEQKNLSAASQEQ 5 ALDCLAKFGERLRGFRPEQVRAVATNTFRVAKNIADFLPKAEAALGFPIEIIAGREEARL IYTGVIHTLPPGGGKMLVIDIGGGSTEFVIGSTLNPDITESLPLGCVTYSLRFFQNKITA KDFQSAISAARNEIQRISKNMRREGWDFAVGTSGSAKSIRDVLAAEMPQEADITYKGMRA .LAERIIEAGSVKKAKFENLKPERIEVFAGGLAVMMAAFEEMKLDRMTVTEAALRDGVFYD LIGRGLNEDMRGQTVAEFQHRYHVSLNQAKRTAETAQTFMDSLCHAKNVTVQELALWQQY 10 LGRAAALHEIGLDIAHTGYHKHSAYILENADMPGFSRKEQTILAQLVIGHRGDMKKMSGI IGTNEMLWYAVLSLRLAALFCRSRQDLSFPKNMQLRTDTESCGFILRIDREWLERHPLIA DALEYESVQWQKINMPFKVEAV 15 NMB2056 HemK ATGAACGGTAAATACTACTACGGCACAGGCCGCCGCAAAAGTTCAGTGGCTCGTGTATTC CTGATTAAAGGTACAGGTCAAATCATCGTAAACGGTCGTCCCGTTGACGAATTCTTCGCA CGGGAAACCAGCCGAATGGTTGTTCGCCAACCCTTGGTTCTGACTGAAAACGCCGAATCT TTCGACATCAAAGTCAATGTTGTTGGCGGCGGCGAAACCGGCCAGTCCGGCGCAATCCGC 20 CACGGCATTACCCGTGCCCTGATCGACTTCGATGCCGCGTTGAAACCCGCCTTGTCTCAA GCTGGTTTTGTTACCCGCGATGCCCGCGAAGTCGAACGTAAAAAACCGGGTCTGCGCAAA GCACGCCGTGCAAAACAATTCTCCAAACGTTAA NMB2056 Protein sequence 25 MNGKYYYGTGRRKSSVARVFLIKGTGQIIVNGRPVDEFFARETSRMVVRQPLVLTENAES FDIKVNVVGGGETGQSGAIRHGITRALIDFDAALKPALSQAGFVTRDAREVERKKPGLRK ARPAKQFSKR NMBO8O8 DNA sequence 30 ATGTCCGCCCTCCTCCCCATCATCAACCGCCTGATTCTGCAAAGCCCGGACAGCCGCTCG GAACTTGCCGCCTTTGCAGGCAAAACACTGACCCTGAACATTGCCGGGCTGAAACTGGCG GGACGCATCACGGAAGACGGTTTGCTCTCGGCGGGAAACGGCTTTGCAGACACCGAAATT ACCTTCCGCAACAGCGCGGTACAGAAAATCCTCCAAGGAGGCGAACCCGGGGCGGGCGAC ATCGGGCTCGAAGGCGACCTCATCCTCGGCATCGCGGTACTGTCCCTGCTCGGCAGCCTG 35 CGTTCCCGCGCATCGGACGAATTGGCACGGATTTTCGGCACGCAGGCAGACATCGGCAGC CGTGCCGCCGACATCGGACACGGCATCAAACAAATCGGCAGGAACATCGCCGAACAAATC GGCGGATTTTCCCGCGAATCCGAGTCCGCAAACATCGGCAACGAAGCCCTTGCCGACTGC CTCGACGAAATAAGCAGACTGCGCGACGGCGTGGAACGCCTCAACGAACGCCTCGACCGG CTCGAACGCGACATTTGGATAGACTAA 40 NMBO808 Protein sequence MSALLPIINRLILQSPDSRSELAAFAGKTLTLNIAGLKLAGRITEDGLLSAGNGFADTEI TFRNSAVQKILQGGEPGAGDIGLEGDLILGIAVLSLLGSLRSRASDELARIFGTQADIGS RAADIGHGIKQIGRNIAEQIGGFSRESESANIGNEALADCLDEISRLRDGVERLNERLDR 45 LERDIWID NMB0774 upp DNA sequence ATGAACGTTAATGTTATCAACCATCCGCTCGTCCGCCACAAATTAACCCTGATGAGGGAG GCGGATTGCAGCACCTACAAATTCCGGACGCTTGCCACCGAGCTGGCGCGCCTGATGGCA 50 TACGAGGCAAGCCGTGATTTTGAAATCGAAAAZATACCTTATCGACGGATGGTGCGGTCAG ATTGAAGGCGACCGCATCAAGGGCAAAACATTGACCGTCGTTCCCATACTGCGTGCAGGT TTGGGTATGCTTGACGGTGTGCTCGACCTGATTCCGACTGCCAAAATCAGTGTAGTCGGA CTGCAGCGCGACGAAGAAACGCTG-AAGCCTATTTCCTATTTTGAGAAATTTGTGGACAGT ATGGACGAACGTCCGGCTTTGATTATCGATCCTATGCTGGCGACAGGCGGTTCGATGGTT 55 GCCACCATCGACCTTTTGAAAGCCAAGGGCTGCAAAAATATCAAGGCACTGGTGCTGGTT GCCGCGCCCGAGGGTGTGAAGGCGGTCAACGACGCGCACCCTGACGTTACGATTTACACC
GCCGCGCTCGACAGCCACTTGAACGAGAACGGCTACATCATCCCCGGCTTGGGCGATGCG
WO 2006/067518 PCT/GB2005/005113 32 GGCGACAAGATTTTCGGCACGCGCTAA NMB0774 Protein sequence MNVNVINHPLVRHKLTLMREADCSTYKFRTLATELARLMAYEASRDFEIEKYLIDGWCGQ 5 IEGDRIKGKTLTVVPILRAGLGMLDGVLDLIPTAKISVVGLQRDEETLKPISYFEKFVDS MDERPALIIDPMLATGGSMVATIDLLKAKGCKNI KALVLVAAPEGVKAVNDAHPDVTIYT AALDSHLNENGYIIPGLGDAGDKIFGTR NMA0078 putative integral membrance protein DNA sequence 10 TTGGCGTTTACTTTAATGCGTCGCGCCATGATACGTAAAATGCCCTATACGGAAGATATG CGCCCAGGCGATACCGCTAATCCTTATGGTGCGTCCAAAGCGATGGTGGAACGGATGTTA ACCGACATCCAAAAAGCCGATCCGCGCTGGAGCATGATTTTGTTGCGTTATTTCAATCCG ATTGGCGCGCATGAAAGCGGCTTGATTGGCGAGCAGCCAAACGGCATCCCGAATAATTTG TTGCCTTATATCTGCCAAGTGGCGGCAGGCAAACTGCCGCAATTGGCGGTATTTGGCGAT 15 GACTACCCTACCCCCGACGGCACGGGGATGCGTGACTATATTCATGTGATGGATTTGGCA GAAGGCCATGTCGCGGCTATGAGGCAAAAAGTAATGTAGCAGGCACGCATTTGCTGAAC TTAGGCTCCGGCCGCGCTTCTTCGGTGTTGGAAATCATCCGCGCATTTGAAGCAGCTTCG GGTTTGACGATTCCGTATGAAGTCAAACCGCGCCGTGCCGGTGATTTGGCGTGCTTCTAT GCCGACCCTTCCTATACAAAGGCGCAAATCGGCTGGCAAACCCAGCGTGATTTAACCCAA 20 ATGATGGAAGACTCATGGCGCTGGGTGAGTAATAATCCGARTGGCTACGACGATTAA NMAOO78 Protein sequence MAFTLMRRAMIRKMPYTEDMRPGDTANPYGASKAMVERMLTDIQKADPRWSMILLRYFNP IGAHESGLIGEQPNGIPNNLLPYICQVAAGKLPQLAVFGDDYPTPDGTGMRDYIHVMDLA 25 EGHVAAMQAKSNVAGTHLLNLGSGRASSVLEIIRAFEAASGLTIPYEVKPRRAGDLACFY ADPSYTKAQIGWQTQRDLTQMMEDSWRWVSNNPNGYDD NMB0337 Branched-chain amino acid aminotransferase DNA sequence ATGAGCAGACCCGTACCCGCCGTATTCGGCAGCGTTTTTCACAGTCAAATGCCCGTCCTC 30 GCCTACCGCGAAGGCAAATGGCAGCCGACCGAATGGCAATCTTCCCAAGACCTCTCCCTC GCACCGGGCGCGCACGCCCTGCACTACGGCAGCGAATGTTTCGAGGGACTGAAAGCCTTC CGTCAGGCAGACGGCAAAATCGTGCTGTTCCGTCCGACTGCCAATATCGCGCGTATGCGG CAAAGTGCGGACATTTTGCACCTGCCGCGCCCCGAAACCGAAGCTTATCTTGACGCGCTA ATCAAATTGGTCAAACGTGCCGCCGATGAAATTCCCGATGCGCCTGCCGCCCTGTACCTG 35 CGTCCGACCTTAATCGGTACCGATCCCGTTATCGGCAAGGCCGGTTCTCCTTCCGAAACC GCCCTGCTGTATATTTTGGCTTCCCCCGTCGGCGACTATTTCAAAGTCGGATCGCCCGTC AAAATTTTGGTGGAAACCGAACACATCCGCTGCGCCCCGCATATGGGCCGCGTCAAATGC GGCGGCAACTACGCTTCCGCCATGCACTGGGTGCTGAAGGCGAAAGCCGAATATGGCGCA AATCAAGTCCTGTTCTGCCCGAACGGCGACGTGCAGGAAACCGGCGCGTCCAACTTTATC 40 CTGATTAACGGCGATGAAATCATTACCAAACCGCTGACCGACGAGTTTTTGCACGGCGTA ACCCGCGATTCCGTACTGACGGTTGCCAAAGATTTGGGCTATACCGTCAGCGAACGCAAT TTCACGGTTGACGAACTCAAAGCTGCGGTGGAAAACGGTGCGGAAGCCATTTTGACCGGT ACGGCAGCCGTCATCTCGCCCGTTACTTCCTTCGTCATCGGCGGCAAAGAAATCGAAGTG AAAAGCCAAGAACGCGGCTATGCCATCCGTAAGGCGATTACCGACATCCAGTATGGTTTG 45 GCGGAAGACAAATACGGCTGGCTGGTTGAAGTGTGCTGA NMB0337 Protein sequence MSRPVPAVFGSVFHSQMPVLAYREGKWQPTEWQSSQDLSLAPGAHALHYGSECFEGLKAF RQADGKIVLFRPTANIARMRQSADILHLPRPETEAYLDALIKLVKRAADEIPDAPAALYL 50 RPTLIGTDPVIGKAGSPSETALLYILASPVGDYFKVGSPVKILVETEHIRCAPHMGRVKC GGNYASAMHWVLKAKAEYGANQVLFCPNGDVQETGASNFILINGDEIITKPLTDEFLHGV TRDSVLTVAKDLGYTVSERNFTVDELKAAVENGAEAILTGTAAVISPVTSFVIGGKEIEV KSQERGYAIRKAITDIQYGLAEDKYGWLVEVC 55 NMB0 191 ParA family protein DNA sequence
ATGAGTGCGAACATCCTTGCCATCGCCAATCAGAAGGGCGGTGTGGGCAAAACGACGACG
WO 2006/067518 PCT/GB2005/005113 33 ACGGTAAATTTGGCGGCTTCGCTGGCATCGCGCGGCAAACGCGTGCTGGTGGTCGATTTG GATCCGCAGGGCAATGCGACGACGGGCAGCGGCATCGACAAGGCGGGTTTGCAGTCCGGC GTTTATCAGGTCTTATTGGGCGATGCGGACGTGCAGTCGGCGGCGGTACGCAGCAAAGAG GGCGGATACGCTGTGTTGGGTGCGAACCGCGCGCTGGCCGGCGCGGAAATCGAACTGGTG 5 CAGGAAATCGCCCGGGAAGTGCGTTTGAAAAACGCGCTCAAGGCAGTGGAAGAAGATTAC GACTTTATCCTGATCGACTGCCCGCCTTCGCTGACGCTGTTGACGCTTACGGGCTGGTG GCGGCGGGCGGCGTGATTGTGCCGATGTTGTGCGAATATTACGCGCTGGAAGGGATTTCC GATTTGATTGCGACCGTGCGCAAAATCCGTCAGGCGGTCAATCCCGATTTGGACATCACG GGCATCGTGCGCACGATGTACGACAGCCGCAGCAGGCTGGTTGCCGAAGTCAGCGACAG 10 TTGCGCAGCCATTTCGGGGATTTGCTTTTTGAAACCGTCATCCCGCGCAATATCCGCCTT GCGGAAGCGCCGAGCCACGGTATGCCGGTGATGGCTTACGACGCGCAGGCAAAGGGTACC AAGGCGTATCTTGCCTTGGCGGACGAGCTGGCGGCGAGGGTGTCGGGGAAATAG NMB0191 Protein sequence 15 MSANILAIANQKGGVGKTTTTVNLAASLASRGKRVLVVDLDPQGNATTGSGIDKAGLQSG VYQVLLGDADVQSAAVRSKEGGYAVLGANRALAGAEIELVQEIAREVRLKNALKAVEEDY DFILIDCPPSLTLLTLNGLVAAGGVIVPMLCEYYALEGISDLIATVRKIRQAVNPDLDIT GIVRTMYDSRSRLVAEVSEQLRSHFGDLLFETVIPRNIRLAEAPSHGMPVMAYDAQAKGT KAYLALADELAARVSGK 20 NMB 1710 Glutamate dehydrogenase(gdhA) DNA sequence ATGACTGACCTGAACACCCTGTTTGCCAACCTCAAACAACGCAATCCCAATCAGGAGCCG TTCCATCAGGCGGTTGAAGAAGTCTTCATGAGTCTCGATCCGTTTTTGGCAAAAATCCG AAATACACCCAGCAAAGCCTGCTGGAACGCATCGTCGAACCCGAACGCGTCGTGATGTTC 25 CGCGTAACCTGGCAGGACGATAAAGGGCAAGTCCAAGTCAACCGGGGCTACCGCGTGCAA ATGAGTTCCGCCATCGGTCCTTACAAAGGCGGCCTGCGCTTCCATCCGACCGTCGATTTG GGCGTATTGAAATTCCTCGCTTTTGAACAAGTGTTCAAAAACGCCTTGACCACCCTGCCT ATGGGCGGCGGCAAAGGCGGTTCCGACTTCGACCCCAAAGGCAAATCCGATGCCGAAGTA ATGCGCTTCTGCCAAGCCTTTATGACCGAACTCTACCGCCACATCGGCGCGGACACCGAT 30 GTTCCGGCCGGCGACATCGGCGTAGGCGGGCGCGAAATCGGCTACCTGTTCGGACAATAC AAAAAAATCCGCAACGAGTTTTCTTCCGTCCTGACCGGCAAAGGTTTGGAATGGGGCGGC AGCCTCATCCGTCCCGAAGCGACCGGCTACGGCTGCGTCTATTTCGCCCAAGCGATGCTG CAAACCCGCAACGATAGTTTTGAAGGCAAACGCGTCCTGATTTCCGGCTCCGGCAATGTG GCGCAATACGCCGCCGAAAAAGCCATCCAACTGGGTGCGAAAGTACTGACCGTTTCCGAC 35 TCCAACGGCTTCGTCCTCTTCCCCGACAGCGGTATGACCGAAGCGCAACTCGCCGCCTTG ATCGAATTGAAAGAAGTCCGCCGCGAACGCGTTGCCACCTACGCCAAAGAGCAAGGTCTG CAATACTTTGAAAAACAAAAACCGTGGGGCGTCGCCGCCGAATCGCCCTGCCCTGCGCG ACCCAGAACGAATTGGACGAAGAAGCCGCCAAAACCCTGTTGGCAAACGGCTGCTACGTC GTTGCCGAAGGTGCGAATATGCCGTCGACTTTGGGCGCGGTCGAGCAATTTATCAAAGCC 40 GGCATCCTCTACGCCCCGGGAAAAGCCTCCAATGCCGGCGGCGTGGCAACTTCAGGTTTG GAAATGAGCCAAAACGCCATCCGCCTGTCTTGGACTCGTGAAGAAGTCGACCAACGCCTG TTCGGCATCATGCAAAGCATCCACGAATCCTGTCTGAAATACGGCAAAGTCGGCGACACA GTAAACTACGTCAATGGTGCGAACATTGCCGGTTTCGTCAAAGTTGCCGATGCGATGCTG GCGCAAGGCTTCTAA 45 NMB 1710 Protein sequence MTDLNTLFANLKQRNPNQEPFHQAVEEVFMSLDPFLAKNPKYTQQSLLERIVEPERVVMF RVTWQDDKGQVQVNRGYRVQMSSAIGPYKGGLRFHPTVDLGVLKFLAFEQVFKNALTTLP MGGGKGGSDFDPKGKSDAEVMRFCQAFMTELYRHIGADTDVPAGDIGVGGREIGYLFGQY 50 KKIRNEFSSVLTGKGLEWGGSLIRPEATGYGCVYFAQAMLQTRNDSFEGKRVLISGSGNV AQYAAEKAIQLGAKVLTVSDSNGFVLFPDSGMTEAQLAALIELKEVRRERVATYAKEQGL QYFEKQKPWGVAAEIALPCATQNELDEEAAKTLLANGCYVVAEGANMPSTLGAVEQFIKA GILYAPGKASNAGGVATSGLEMSQNAIRLSWTREEVDQRLFGIMQSIHESCLKYGKVGDT VNYVNGANIAGFVKVADAILAQGF 55 NMBOO62 Glucose- 1-phosphate thynidylytransferase(rfbA-1) DNA sequence ATGAAAGGCATCATACTGGCAGGCGGCAGCGGCACGCGCCTCTACCCCATCACGCGCGGC
GTATCCAAACAGCTCCTGCCCGTGTACGACAAACCGATGATTTATTACCCCTTGTCGGTT
WO 2006/067518 PCT/GB2005/005113 34 TTGATGCTGGCGGGAATCCGCGATATTTTGGTGATTACCGCGCCTGAAGACAACGCCTCT TTCAAkACGCCTGCTTGGCGACGGCAGCGATTTCGGCATTTCCATCAGTTATGCCGTGCAA CCCAGTCCGGACGGCTTGGCACAGGCATTTATCATCGGCGAAGAATTTATCGGCAACGAC AATGTTTGCTTGGTTTTGGGCGACAATATTTTTTACGGTCAGTCGTTTACGCAAACATTG 5 AAACAGGCGGCAGCGCAAACGCACGGCGCAACCGTGTTTGCTTATCAGGTCAAAAACCCC GAACGTTTCGGCGTGGTTGAATTTAACGAAAACTTCCGCGCCGTTTCCATCGAAGAAAA CCGCAACGGCCCAAATCCGATTGGGCGGTAACCGGCTTGTATTTCTACGACAACCGCGCC GTCGAGTTCGCCAAACAGCTCAAACCGTCCGCACGCGGCGAATTGGAAATTACCGACCTC AACCGGATGTATTTGGAAGACGGCTCGCTCTCCGTTCAAATATTGGGACGCGGTTTCGCG 10 TGGCTGGACACCGGCACCCACGAGAGCCTGCACGAAGCCGCTTCATTCGTCCAAACCGTG CAAAATATCCAAAACCTGCACATCGCCTGCCTCGAAGAAATCGCTTGGCGCAACGGTTGG CTTTCCGATGAAAAACTGGAAGAATTGGCGCGCCCGATGGCGAAAAACCAATACGGCCAA TATTTGCTGCGCCTGTTGAAAAAATAA 15 NMB0062 Protein sequence MKGIILAGGSGTRLYPITRGVSKQLLPVYDKPMIYYPLSVLMLAGIRDILVITAPEDNAS FKRLLGDGSDFGISISYAVQPSPDGLAQAFIIGEEFIGNDNVCLVLGDNIFYGQSFTQTL KQAAAQTHGATVFAYQVKNPERFGVVEFNENFRAVSIEEKPQRPKSDWAVTGLYFYDNRA VEFAKQLKPSARGELEITDLNRMYLEDGSLSVQILGRGFAWLDTGTHESLHEAASFVQTV 20 QNIQNLHIACLEEIAWRNGWLSDEKLEELARPMAKNQYGQYLLRLLKK NMB1583 Imidazoleglycerol-phosphate dehydratase(hisB) DNA sequence ATGAATTTGACTAAAACACAACGCCAACTGCACAACTTTCTGACCCTCGCCCAAGAAGCA GGTTCGCTGTCCAAGCTCGCCAAACTCTGCGGCTACCGTACCCCCGTCGCACTCTACAAA 25 CTCAAACAACGCCTTGAAAAGCAGGCAGAAGACCCAGATGCACGCGGCATCCGTCCCAGC CTGATGGCAAAACTCGAAAAACACACCGGCAAACCCAAAGGCTGGCTCGACAGAAAACAC CGCGAACGCACTGTCCCCGAAACCGCCGCAGAAAGCACCGGAACTGCCGAAACCCAAATT GCCGAAACCGCATCTGCTGCCGGCTGCCGCAGCGTTACCGTCAACCGCAATACCTGCGAA ACCCAAATCACCGTCTCCATCAACCTCGACGGCAGCGGCAAAGCAGGCTGGATACCGGC 30 GTACCCTTCCTCGAACACATGATCGATCAAATCGCCCGCCACGGCATGATTGACATCGAC ATCAGCTGCAAAGGCGACCTGCACATCGACGACCACCACACCGCCGAAGACATCGGCATC ACACTCGGACAAGCAATCCGGCAGGCACTCGGCGACAAAAAAGGCATCCGCCGTTACGGA CATTCCTACGTCCCGCTCGACGAAGCCCTCAGCCGCGTCGTCATCGACCTTTCCGGCCGC CCCGGACTCGTGTACAACATCGAATTTACCCGCGCACTAATCGGACGTTTCGATGTCGAT 35 TTGTTTGAAGAATTTTTCCACGGCATCGTCAACCACAGTATGATGACCCTGCACATCGAC AACCTCAGCGGCAAAAACGCCCACCATCAGGCGGAAACCGTATTCAAAGCCTTCGGGCGC GCCCTGCGTATGGCAGTCGAACACGACCCGCGCATGGCAGGACAGACCCCCTCGACCAAA GGCACGCTGACCGCATAA 40 N]10B1583 Protein sequence MNLTKTQRQLHNFLTLAQEAGSLSKLAKLCGYRTPVALYKLKQRLEKQAEDPDARGIRPS LMAKLEKHTGKPKGWLDRKHRERTVPETAAESTGTAETQIAETASAAGCRSVTVNRNTCE TQITVSINLDGSGKSRLDTGVPFLEHMIDQIARHGMIDIDISCKGDLHIDDHHTAEDIGI TLGQAIRQALGDKKGIRRYGHSYVPLDEALSRVVIDLSGRPGLVYNIEFTRALIGRFDVD 45 LFEEFFBGIVNHSMMTLHIDNLSGKNAHHQAETVFKAFGRALRMAVEHDPRMAGQTPSTK GTLTA The following additional antigens were identified using essentially the 50 methodology described above: NMB1333 Nucleic acid sequence ATGCGCTACAAACCCCTTCTGCTTGCCCTGATGCTCGTTTTTTCCACGCCCGCCGTTGCC GCCCACGACGCGGCACACAACCGTTCCGCCGAAGTGAAAAAACAGACGAAGAACAAAAAA 55 GAACAGCCCGAAGCGGCGGAAGGCAAAAAAGAAAGGCAAAATGGCGCAGTGAAAGAT WO 2006/067518 PCT/GB2005/005113 35 AAAAAACAGGCGGCAAAGAGGCGGCAAAAGAGGGCAAAGAGTCCAAAAAAACCGCCAA AACCGCAAAGAAGCAGAGAAGGAGGCGACATCCAGGCAGTCTGCGCGCAAAGGACGCGAA GGGGATAAGAAATCGAAGGCGGAACACAAAAAGGCACATGGCAGCCCGTGTCCGGATCC AAAGAAAAAAACGCAAAAACACAGCCTGAAAACAAACAAGGCAAAAAAGAGGCAAAAGGA 5 CAGGGCAATCCGCGCAAGGGCGGCAAGGCGGAAAAAGACACTGTTTCTGCAAMTAAAAAA GTCCGTTCCGACAAGAACGGCAAAGCAGTGAAACAGGACAAAAAATACAGGGAAGAGAAA AATGCCAAAACCGATTCCGACGAATTGAAAGCCGCCGTTGCCGCTGCCACCAATGATGTC GAAAACAAAAAAGCCCTGCTCAAACAAAGCGAAGGAATGCTGCTTCATGTCAGCAATTCC CTCAAACAGCTTCAGGAAGAGCGTATCCGCCAAGAGCGTATCCGTCAGGCGCGCGGCAAC 10 CTTGCTTCCGTCAACCGCAAACAGCGCGAGGCTTGGGACAAGTTCCAAAAACTCAATACC GAGCTGAACCGTTTGAAAACGGAAGTCGCCGCTACGAAAGCGCAGATTTCCCGTTTCGTA TCGGGGAACTATAAAAACAGCCAGCCGAATGCGGTTGCCCTGTTCCTGAAAAACGCCGAA CCGGGTCAGAAAAACCGCTTTTTGCGTTATACGCGTTATGTAAACGCCTCCAATCGGGAA GTTGTCAAGGATTTGGAAAAACAGCAGAAGGCTTTGGCGGTACAAGAGCAGAAAATCAAC 15 AATGAGCTTGCCCGTTTAAGAAAATTCAGGCAAACGTGCAATCTCTGCTGAAAAACAG GGTGTAACCGATGCGGCGGAACAGACGGAAAGCCGCAGACAGAATGCCAAAATCGCCAAA GATGCCCGAAAACTGCTGGAACAGAAAGGGAACGAGCAGCAGCTGAACAAGCTCTTGAGC AATTTGGAGAAGAAAAAGGCCGAACACCGCATTCAGGATGCGGAAGCAAAAAGAAAATTG GCTGAAGCCAGACTGGCGGCAGCCGAAAAAGCCAGAAAAGAAGCGGCGCAGCAGAAGGCT 20 GAAGCACGACGTGCGGAAATGTCCAACCTGACCGCCGAAGACAGGAACATCCAAGCGCCT TCGGTTATGGGTATCGGCAGTGCCGACGGTTTCAGCCGCATGCAAGGACGTTTGAAAAA CCGGTTGACGGTGTGCCGACCGGACTTTTCGGGCAGAACCGGAGCGGCGGCGATATTTGG AAAGGCGTGTTCTATTCCACTGCACCGGCAACGGTTGAAAGCATTGCGCCGGGAACGGTA AGCTATGCGGACGAGTTGGACGGCTACGGCAAAGTGGTCGTGGTCGATCACGGCGAGAAC 25 TACATCAGCATCTATGCCGGTTTGAGCGAAATTTCCGTCGGCAAGGGTTATATGGTCGCG GCAGGAAGCAAAATCGGCTCGAGCGGGTCGCTGCCGGACGGGGAAGAGGGGCTTTACCTG CAAATACGTTATCAAGGTCAGGTATTGAACCCTTCGAGCTGGATACGTTGA NIfkB1333 Amino acid sequence 30 MRYKPLLLALMLVFSTPAVAAHDAAHNRSAEVKKQTKNKKEQPEAAEGKKEKGKNGAVKD KKTGGKEAAKEGKESKKTAKNRKEAEKEATSRQSARKGREGDKKSKAEHKKAHGKPVSGS KEKNAKTQPENKQGKKEAKGQGNPRKGGKAEKDTVSANKKVRSDKNGKAVKQDKKYREEK NAKTDSDELKAAVAAATNDVENKKALLKQSEGMLLHVSNSLKQLQEERIRQERIRQARGN LASVNRKQREAWDKFQKLNTELNRLKTEVAATKAQISRFVSGNYKNSQPNAVALFLKNAE 35 PGQKNRFLRYTRYVNASNREVVKDLEKQQKALAVQEQKINNELARLKKIQANVQSLLKKQ GVTDAAEQTESRRQNAKIAKDARKLLEQKGNEQQLNKLLSNLEKKKAEHRIQDAEAKRKL AEARLAAAEKARKEAAQQKAEARRAEMSNLTAEDRNIQAPSVMGIGSADGFSRMQGRLKK PVDGVPTGLFGQNRSGGDIWKGVFYSTAPATVESIAPGTVSYADELDGYGKVVVVDHGEN YISIYAGLSEISVGKGYMVAAGSKIGSSGSLPDGEEGLYLQIRYQGQVLNPSSWIR 40 NMB0377 Nucleic acid sequence ATGGCGTTTTGCACCAGTTTGGGAGTGATGATGGAAACACAGCTTTACATCGGCATCATG TCGGGAACCAGCATGGACGGGGCGGATGCCGTACTGATACGGATGGACGGCGGCAAATGG CTGGGCGCGGAAGGGCACGCCTTTACCCCCTACCCCGGCAGGTTACGCCGCCAATTGCTG 45 GATTTGCAGGACACAGGCGCAGACGAACTGCACCGCAGCAGGATTTTGTCGCAAGAACTC AGCCGCCTATATGCGCAAACCGCCGCCGAACTGCTGTGCAGTCAAAACCTCGCACCGTCC GACATTACCGCCCTCGGCTGCCACGGGCAAACCGTCCGACACGCGCCGGAACACGGTTAC AGCATACAGCTTGCCGATTTGCCGCTGCTGGCGGAACGGACGCGGATTTTTACCGTCGGC GACTTCCGCAGCCGCGACCTTGCGGCCGGCGGACAAGGCGCGCCACTCGTCCCCGCCTTT 50 CACGAAGCCCTGTTCCGCGACAACAGGGAAACACGCGCGGTACTGAACATCGGCGGGATT GCCAACATCAGCGTACTCCCCCCCGACGCACCCGCCTTCGGCTTCGACACAGGGCCGGGC AATATGCTGATGGACGCGTGGACGCAGGCACACTGGCAGCTTCCTTACGACAAAAACGGT GCAAAGGCGGCACAAGGCAACATATTGCCGCAACTGCTCGACAGGCTGCTCGCCCACCCG TATTTCGCACAACCCCACCCTAAAAGCACGGGGCGCGAACTGTTTGCCCTAAATTGGCTC 55 GAAACCTACCTTGACGGCGGCGAAAACCGATACGACGTATTGCGGACGCTTTCCCGTTTT ACCGCGCAAACCGTTTGCGACGCCGTCTCACACGCAGCGGCAGATGCCCGTCAAATGTAC
ATTTGCGGCGGCGGCATCCGCAATCCTGTTTTAATGGCGGATTTGGCAGAATGTTTCGGC
WO 2006/067518 PCT/GB2005/005113 36 ACACGCGTTTCCCTGCACAGCACCGCCGACCTGAACCTCGATCCGCAATGGGTGGAAGCC GCCGCATTTGCGTGGTTGGCGGCGTGTTGGATTAATCGCATTCCCGGTAGTCCGCACAAA GCAACCGGCGCATCCAAACCGTGTATTCTGGGCGCGGGATATTATTATTGA 5 NMB0377 Amino acid sequence MAFCTSLGVMMETQLYIGIMSGTSMDGADAVLIRMDGG(WLGAEGHAFTPYPGRLRRQLL DLQDTGADELHRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGY SIQLADLPLLAERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGI ANISVLPPDAPAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAK{AAQGNILPQLLDRLLAHP 10 YFAQPHPKSTGRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMY ICGGGIRNPVLMADLAECFGTRVSLHSTADLNLDPQWVEAAAFAWLAACWINRIPGSPHK ATGASKPCILGAGYYY NMB0264 Nucleic acid sequence 15 ATGTTGAACAAAATATTTTCCTGGTTCGAGTCCCGAATCGACCCTTATCCCGAAGCCGCC CCGAAAACGCCAGAAAAAGGCTTGTGGCGGTTTGTCTGGAGCAGCATGGCCGGCGTGCGG AAATGGATAGCCGCCCTGGCTGCGCTGACCGCCGGCATCGGCATTATGGAAGCCCTGGTT TTTCAATTTATGGGCAAAATCGTGGAGTGGCTCGGCAAATACGCGCCCGCCGAACTGTTT GCCGAAAAAAGTTGGGAACTGGCGGCAATGGCGGCGATGATGGTATTTTCGGTTGCGTGG 20 GCGTTTGCCGCGTCCAACGTGCGCCTGCAAACCCTTCAGGGCGTGTTCCCCATGCGCCTG CGCTGGAACTTCCACCGCCTGATGCTGAACCAAAGCCTCGGTTTTTATCAGGACGAATTT GCCGGACGCGTGTCCGCCAAAGTCATGCAGACCGCGCTGGCGTTGCGCGACGCGGTGATG ACGGTTGCCGATATGGTCGTTTATGTGTCGGTGTATTTCATTACCTCCGGCGTGATTCTC GCCTCGCTCGACTCATGGCTGCTGCTGCCCTTTATCGGCTGGATTGTCGGTTTCGCTTCG 25 GTGATGCGCCTGCTGATTCCCAAATTGGGGCAAACCGCCGCATGGCAGGCGGATGCCCGC TCGCTGATGACCGGCCGCATTACCGATGCCTATTCCAATATCGCCACCGTCAAACTCTTC TCCCACGGCGCGCGTGAAGCCGCCTATGCCAAGCAGTCGATGGAAGAATTTATGGTTACG GTGCGCGCCCAAATGCGGCTGGCGACGCTGCTGCATTCGTGCAGCTTCATCGTCAACACC TCCCTGACCCTCTCCACCGCCGCACTGGGCATCTGGCTCTGGCACAACGGGCAGGTCGGC 30 GTGGGCGCGGTTGCTACAGCCACCGCCATGGCGTTGCGCGTCAACGGTTTGTCGCAATAC ATTATGTGGGAATCCGCGCGGCTGTTTGAAAACATCGGCACCGTCGGCGACGGCATGGCA ACCCTGTCCAAACCGCACACCATCCTCGACAAGCCCCGGGCACTGCCGCTGAACGTGCCG CAAGGCGCAATCAAATTTGAACACGTCGATTTCTCCTACGAAGCGGGCAAACCGCTGCTC AACGGCTTCAACCTCACCATCCGCCCGGGCGAAAAAGTCGGCTTGATCGGACGCAGCGGC 35 GCGGGCAAATCCACCATCGTCAACCTGCTTTTGCGCTTCTACGAACCGCAAAGCGGCACG GTTTCGATCGACGGGCAGGACATAAGCGGCGTTACCCAAGAATCTTTACGCGCCCAAATC GGTTTGGTCACGCAAGATACCTCGCTGCTGCACCGTTCCGTGCGCGACAACATTATTTAC GGCCGCCCCGACGCGACCGATGCCGAAATGGTTTCTGCCGCCGAACGCGCCGAAGCCGCC GGCTTCATCCCCGACCTTTCCGATGCCAAAGGGCGGCGCGGCTACGACGCACACGTCGGC 40 GAACGCGGCGTGAAACTCTCCGGCGGGCAACGCCAGCGCATCGCCATCGCCCGCGTGATG CTCAAAGACGCACCGATTCTTCTTTTGGACGAAGCCACCAGCGCGCTCGATTCCGAAGTC GAAGCCGCCATCCAAGAAAGCCTCGACAAAATGATGGACGGCAAAACCGTCATCGCCATC GCCCACCGCCTCTCCACCATCGCCGCAATGGACAGGCTCGTCGTCCTCGACAAAGGCCGC ATCATCGAAGAAGGCACACACGCCGAACTCCTCGAAAAACGCGGGCTTTACGCCAAACTC 45 TGGGCGCACCAGAGCGGCGGCTTCCTCAACGAACACGTCGAGTGGCAGCACGACTGA NMB0264 Amino acid sequence MLNKIFSWFESRIDPYPEAAPKTPEKGLWRFVWSSMAGVRKWIAALAALTAGIGIMEALV FQFMGKIVEWLGKYAPAELFAEKSWELAAMAAMMVFSVAWAFAASNVRLQTLQGVFPMRL 50 RWNFHRLMLNQSLGFYQDEFAGRVSAKVMQTALALRDAVMTVADMVVYVSVYFITSGVIL ASLDSWLLLPFIGWIVGFASVMRLLIPKLGQTAAWQADARSLMTGPITDAYSNIATVKLF SHGAREAAYAKQSMEEFMVTVRAQMRLATLLHSCSFIVNTSLTLSTAALGIWLWHNGQVG VGAVATATAMALRVNGLSQYIMWESARLFENIGTVGDGMATLSKPHTILDKPRALPLNVP QGAIKFEHVDFSYEAGKPLLNGFNLTIRPGEKVGLIGRSGAGKSTIVNLLLRFYEPQSGT 55 VSIDGQDISGVTQESLRAQIGLVTQDTSLLERSVRDNIIYGRPDATDAEMVSAAERAEAA GFIPDLSDAKGRRGYDAHVGERGVKLSGGQRQRIAIARVMLKDAPILLLDEATSALDSEV EAAIQESLDKMMDGKTVIAIAHRLSTIAAMDRLVVLDKGRIIEEGTHAELLEKRGLYAKL
WAHQSGGFLNEHVEWQHD
WO 2006/067518 PCT/GB2005/005113 37 NMB 1036 Nucleic acid sequence ATGACAGCACAAACCCTCTACGACAAACTTTGGAACAGCCACGTCGTCCGCGAAGAAGAA GACGGCACCGTCCTGCTCTACATCGACCGCCATTTGGTGCACGAAGTTACCAGCCCTCAG 5 GCATTTGAAGGCTTGAAAATGGCGGGGCGCAAGCTGTGGCGCATCGACAGCGTCGTCTCC ACCGCCGACCACAACACCCCGACCGGCGATTGGGACAAAGGCATCCAAGACCCGATTTCC AAGCTGCAAGTCGATACTTTGGACAAAAACATTAAAGAGTTTGGCGCACTCGCCTATTTT CCGTTTATGGACAAAGGTCAGGGCATCGTACACGTTATGGGCCCCGAACAAGGCGCGACC CTGCCCGGTATGACCGTCGTCTGCGGCGACTCGCACACTTCCACCCACGGCGCATTCGGC 10 GCACTGGCGCACGGCATCGGCACTTCCGAAGTCGAGCACACCATGGCGACCCAATGTATT ACCGCGAAAAAATCCAAATCCATGCTGATTTCCGTTGACGGCAAATTAAAGCGGGCGTT ACCGCCAAAGACGTGGCGCTCTACATCATCGGGCAAATCGGCACGGCAGGCGGTACAGGC TACGCCATCGAGTTTGGCGGCGAAGCCATCCGCAGCCTTTCTATGGAAAGCCGCATGACT TTATGCAATATGGCGATTGAGGCAGGCGCGCGCTCAGGCATGGTTGCCGTCGACCAAACC 15 ACCATCGACTACGTAAAAGATAAACCCTTCGCACCCGAAGGCGAAGCGTGGGACAAAGCC GTCGAGTACTGGCGTACGCTGGTGTCTGACGAAGGTGCGGTATTCGACAAAGAATACCGT TTCAACGCCGAAGACATCGAACCGCAAGTCACTTGGGGTACCTCGCCTGAAATGGTTTTA GACATCAGCAGCAAAGTGCCGAATCCTGCCGAAGAAACCGATCCGGTCAAACGCAGCGGT ATGGAACGCGCCCTTGAATACATGGGCTTGGAAGCCGGTACGCCATTAAACGAAATCCCC 20 GTCGACATCGTATTCATCGGCTCTTGCACCAACAGCCGCATCGAAGACTTGCGCGAAGCC GCCGCCATCGCCAAAGACCGCAAAAAAGCCGCCAACGTACAGCGCGTGTTAATCGTCCCC GGCTCCGGTTTGGTTAAAGAACAAGCCGAAAAAGAAGGCTTGGACAAAATTTTCATCGAA GCCGGTTTTGAATGGCGCGAACCGGGCTGTTCGATGTGTCTCGCCATGAACGCCGACCGC CTGACCCCGGGGCAACGCTGCGCCTCCACCTCCAACCGTAACTTTGAAGGCCGTCAAGGC 25 AACGGCGGACGTACCCACCTCGTCAGCCCCGCTATGGCAGCAGCCGCCGCCGTTACCGGC CGCTTTACCGACATCCGCATGATGGCGTAA NMI 1036 Amino acid sequence 30 MTAQTLYDKLWNSHVVREEEDGTVLLYIDRHLVHEVTSPQAFEGLKMAGRKLWRIDSVVS TADHNTPTGDWDKGIQDPISKLQVDTLDKNIKEFGALAYFPFMDKGQGIVHVMGPEQGAT LPGMTVVCGDSHTSTHGAFGALAHGIGTSEVEHTMATQCITAKKSKSMLISVDGKLKAGV TAKDVALYIIGQIGTAGGTGYAIEFGGEAIRSLSMESRMTLCNMAIEAGARSGMVAVDQT TIDYVKDKPFAPEGEAWDKAVEYWRTLVSDEGAVFDKEYRFNAEDIEPQVTWGTSPEMVL 35 DISSKVPNPAEETDPVKRSGMERALEYMGLEAGTPLNEIPVDIVFIGSCTNSRIEDLREA AAIAKDRKKAANVQRVLIVPGSGLVKEQAEKEGLDKIFIEAGFEWREPGCSMCLAMNADR LTPGQRCASTSNRNFEGRQGNGGRTHLVSPAMAAAAAVTGRFTDIPMMA NMB 1176 Nucleic acid sequence 40 ATGAAAGACAAGCACGATTCTTCCGCCATGCGGCTGGACAAATGGCTTTGGGCGGCACGT TTTTTCAAGACCCGTTCCCTTGCGCAAAAGCACATCGAACTGGGTAGGGTTCAAGTAAAC GGCTCGAAGGTCAAAAACAGTAAAACCATAGACATCGGCGATATTATCGACCTGACGCTC AATTCCCTTCCCTATAAAATCAAGGTTAAAGGTTTGAACCACCAACGCCGCCCGGCATCC GAGGCGCGGCTTCTGTATGAAGAGGACGCGAAAACGGCAACATTGAGGGAAGAGCGCAAA 45 CAGCTCGACCAATTCAGCCGCATCACTTCCGCCTATCCCGACGGCAGACCGACCAAGCGC GACCGCCGCCAACTGGACAGGCTGAAAAAAGGAGACTGGTAA NMB1176 Amino acid sequence MKDKHDSSAMRLDKWLWAARFFKTRSLAQKHIELGRVQVNGSKVKNSKTIDIGDIIDLTL 50 NSLPYKIKVKGLNHQRRPASEARLLYEEDAKTATLREERKQLDQFSRITSAYPDGRPTKR DRRQLDRLKKGDW NMB 1359 Nucleic acid sequence ATGAACCACACCGTTACCCTGCCCGACCAAACCACCTTTGCCGCCAACGACGGCGAAACC 55 GTTTTGACCGCTGCCGCCCGTCAAAACCTCAACCTGCCCCATTCCTGCAAAAGCGGTGTC TGCGGACAATGCAAAGCCGAACTGGTCAGCGGCGATATTCAAATGGGCGGACACTCGGAA
CAGGCTTTATCCGAAGCAGAAAAAGCGCAAGGCAAGATTTTGATGTGCTGCACCACTGCG
WO 2006/067518 PCT/GB2005/005113 38 CAAAGCGATATCAACATCAACATCCCCGGCTACAAAGCCGATGCCCTACCCGTCCGCACC CTGCCCGCACGCATCGAAAGTATTATTTTCAAACACGATGTCGCCCTCCTGAAACTTGCC CTGCCCAAAGCCCCGCCGTTTGCCTTCTACGCCGGGCAATACATTGATTTACTGCTGCCG GGCAACGTCAGCCGCAGCTACTCCATCGCCAATTTACCCGACCAAGAAGGCATTTTGGAA 5 CTGCACATCCGCAGGCACGAAAACGGTGTCTGCTCGGAAATGATTTTCGGCAGCGAACCC AAAGTCAAAGAAAAAGGCATCGTCCGCGTTAAAGGCCCGCTCGGTTCGTTTACCTTGCAG GAAGACAGCGGCAAACCCGTCATCCTGCTGGCAACCGGCACAGGCTACGCCCCCATCCGC AGCATCCTGCTCGACCTTATCCGCCAAGGCAGCAACCGCGCCGTCCATTTCTACTGGGGC GCGCGTCATCAGGATGATTTGTATGCCCTCGAAGAAGCACAAGGGTTGGCATGCCGTCTG 10 AAAAACGCCTGCTTCACCCCCGTATTGTCCCGCCCCGGAGAGGGCTGGCAGGGAAGAAAT GGTCACGTACAAGACATCGCGGCACAAGACCACCCCGACCTGTCGGAATACGAAGTATTT GCCTGCGGTTCTCCGGCCATGACCGAACAAACAAAGAATCTGTTTGTGCAACAGCATAAG CTGCCGGAAAACTTGTTTTTCTCCGACGCATTCACGCCGTCCGCATCATAA 15 NMB 1359 Amino acid sequence MNHTVTLPDQTTFAANDGETVLTAAARQNLNLPHSCKSGVCGQCKAELVSGDIQMGGHSE QALSEAEKAQGKILMCCTTAQSDININIPGYKADALPVRTLPARIESIIFKHDVALLKLA LPKAPPFAFYAGQYIDLLLPGNVSRSYSIANLPDQEGILELHIRRHENGVCSEMIFGSEP 20 KVKEKGIVRVKGPLGSFTLQEDSGKPVILLATGTGYAPIRSILLDLIRQGSNRAVHFYWG ARHQDDLYALEEAQGLACRLKNACFTPVLSRPGEGWQGRNGHVQDIAAQDHPDLSEYEVF ACGSPAMTEQTKNLFVQQHKLPENLFFSDAFTPSAS N1B 1138 Nucleic acid sequence 25 ATGAAAGACAAGCACGATTCTTCCGCCATGCGGCTGGACAAATGGCTTTGGGCGGCACGT TTTTTCAAGACCCGTTCCCTTGCGCAAAAGCACATCGAACTGGGTAGGGTTCAAGTAAAC GGCTCGAAGGTCAAAAACAGTAAAACCATAGACATCGGCGATATTATCGACCTGACGCTC AATTCCCTTCCCTATAAAATCAAGGTTAAAGGTTTGAACCACCAACGCCGCCCGGCATCC 30 GAGGCGCGGCTTCTGTATGAAGAGGACGCGAAAACGGCAACATTGAGGGAAGAGCGCAAA CAGCTCGACCAATTCAGCCGCATCACTTCCGCCTATCCCGACGGCAGACCGACCAAGCGC GACCGCCGCCAACTGGACAGGCTGAAAAAAGGAGACTGGTAA NM B1138 Amino acid sequence 35 MKDKHDSSAMRLDKWLWAARPFFKTRSLAQKHIELGRVQVNGSKVKNSKTIDIGDIIDLTL NSLPYKIKVKGLNHQRRPASEARLLYEEDAKTATLREERKQLDQFSRITSAYPDGRPTKR DRRQLDRLKKGDW 40 Schedule of SEQ ID Nos SEQ ID No Sequence 1 NMBO341 DNA 2 NMBO341 Protein 3 N1MB 1583 DNA 4 NMB1583 Protein 5 NMNB1345 DNA 6 NMB1345 Protein WO 2006/067518 PCT/GB2005/005113 39 7 NMB0738 DNA 8 NMB0738 Protein 9 NMB0792 DNA 10 NMB0792 Protein 11 NMB0279 DNA 12 NMB0279 Protein 13 NMB2050 DNA 14 NMB2050 Protein 15 NMB1335 DNA 16 NMB1335 Protein 17 NMB2035 DNA 18 NMB2035 Protein 19 NMB1351 DNA 20 NMB1351 Protein 21 NMB1574 DNA 22 NMB1574 Protein 23 NMB 1298 DNA 24 NMB1298 Protein 25 NMB1856 DNA 26 NMB 1856 Protein 27 NMB0119 DNA 28 NMB0119 Protein 29 NMB1705 DNA 30 NMB1705 Protein 31 NMB2065 DNA 32 NMB2065 Protein 33 NMB0339 DNA 34 NMB0339 Protein 35 NMB0401 DNA 36 NMBO401 Protein 37 NMB1467 DNA 38 NMB1467 Protein WO 2006/067518 PCT/GB2005/005113 40 39 NMB2056 DNA 40 NMB2056 Protein 41 NMB0808 DNA 42 NMB0808 Protein 43 NMB0774 DNA 44 NMB0774 Protein 45 NMA0078 DNA 46 NMA0078 Protein 47 NMB0337 DNA 48 NMB0337 Protein 49 NMB0191 DNA 50 NMB0191 Protein 51 NMB1710 DNA 52 NMB 1710 Protein 53 NMBOO62 DNA 54 NMB30062 Protein 55 NMB1333 DNA 56 NMB1333 Protein 57 NMB0377 DNA 58 NMB0377 Protein 59 NMB0264 DNA 60 NMB0264 Protein 61 NMB1036 DNA 62 NMB 1036 Protein 63 NMB1176 DNA 64 NMB 1176 Protein 65 NMB1359 DNA 66 NMB 1359Protein 67 NMB1138 DNA 68 1NMB1138 Protein

Claims (9)

1. A polypeptide comprising the amino acid sequence selected from any one of SEQ ID Nos 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 5 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68; or a fragment or variant thereof or a fusion of such a fragment or variant.
2. A polynucleotide encoding a polypeptide according to Claim 1. 10
3. A polypeptide according to Claim 1 or polynucleotide according to Claim 2 for use in medicine.
4. A polypeptide according to Claim 1 or polynucleotide according to 15 Claim 2 for use in a vaccine.
5. A method for making a polypeptide according to Claim 1, the method comprising expressing the polynucleotide of Claim 2 in a host cell and isolating said polypeptide. 20
6. A method for making a polypeptide according to Claim 1 comprising chemically synthesising said polypeptide.
7.. A method of vaccinating an individual against Neisseria n2eningitidis, the 25 method comprising administering to the individual a polypeptide according to Claim 1 or a polynucleotide according to Claim 2.
8. Use of a polypeptide according to Claim 1 or a polynucleotide according to Claim 2 in the manufacture of a vaccine for vaccinating an individual 30 against Neisseria meningitidis. WO 2006/067518 PCT/GB2005/005113 42
9. A pharmaceutical composition comprising a polypeptide according to Claim 1 or a polynucleotide according to Claim 2 and a pharmaceutically acceptable carrier.
AU2005317835A 2004-12-23 2005-12-23 Vaccines against Neisseria meningitidis Abandoned AU2005317835A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/GB2004/005441 WO2005060995A2 (en) 2003-12-23 2004-12-23 Identification of antigenically important neisseria antigens by screening insertional mutant libraries with antiserum
AUPCT/GB2004/005441 2004-12-23
PCT/GB2005/005113 WO2006067518A2 (en) 2004-12-23 2005-12-23 Vaccines against neisseria meningitidis

Publications (1)

Publication Number Publication Date
AU2005317835A1 true AU2005317835A1 (en) 2006-06-29

Family

ID=36282716

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005317835A Abandoned AU2005317835A1 (en) 2004-12-23 2005-12-23 Vaccines against Neisseria meningitidis

Country Status (10)

Country Link
EP (1) EP1848457A2 (en)
JP (1) JP2008525008A (en)
KR (1) KR20070094762A (en)
CN (2) CN101115502A (en)
AU (1) AU2005317835A1 (en)
CA (1) CA2592156A1 (en)
MX (1) MX2007007886A (en)
NO (1) NO20073256L (en)
RU (1) RU2007127921A (en)
WO (1) WO2006067518A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226479A1 (en) * 2005-12-23 2009-09-10 Imperial Innovations Limited Vaccines and their use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9814902D0 (en) * 1998-07-10 1998-09-09 Univ Nottingham Screening of neisserial vaccine candidates against pathogenic neisseria

Also Published As

Publication number Publication date
NO20073256L (en) 2007-09-17
CN101370514A (en) 2009-02-18
CN101115502A (en) 2008-01-30
MX2007007886A (en) 2008-01-16
KR20070094762A (en) 2007-09-21
EP1848457A2 (en) 2007-10-31
WO2006067518A3 (en) 2006-11-23
WO2006067518A2 (en) 2006-06-29
JP2008525008A (en) 2008-07-17
RU2007127921A (en) 2009-01-27
CA2592156A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
CN102580072A (en) Combination neisserial compositions
JPH06501382A (en) Compositions and methods for the prevention and diagnosis of Lyme disease
JPH10513349A (en) Microbial protein, microorganism producing the protein, and use of the protein in vaccine and tuberculosis detection
HUE026171T2 (en) Methods for treating, preventing and detecting helicobacter infection
US5777095A (en) Osp A and B Sequence of Borrelia burgdonferi strains ACA1 and IP90
PL197449B1 (en) Basb029 polynucleotide(s) and polypeptides from neisseria meningitidis
WO1995004145A1 (en) Novel b. burgdorferi polypeptides
AU735112B2 (en) Novel polynucleotides and polypeptides in pathogenic mycobacteria and their use as diagnostics, vaccines and targets for chemotherapy
NZ532297A (en) Virulence genes, proteins, and their use in treating conditions associated with infection by Neisseria or gram-negative bacteria
CN107349423B (en) Meningococcal antigen combination and application thereof
WO2024076960A2 (en) Novel chimeric multi-protein based recombinant vaccine antigens for prevention of lyme disease in animals and humans
US6835384B1 (en) Nucleic acids and polypeptides specific of the neisseria genus pathogenic strains
AU2005317835A1 (en) Vaccines against Neisseria meningitidis
US20080138357A1 (en) Vaccines Against Neisseria Meningitidis
US20090226479A1 (en) Vaccines and their use
WO2009094006A2 (en) Bordetella outer-membrane protein antigens and methods of making and using the same
BRPI0710064A2 (en) pharmaceutical composition containing protein nmb0938
US20070275017A1 (en) Identification of Antigenically Important Neisseria Antigens by Screening Insertional Mutant Libraries with Antiserum
US20030049265A1 (en) Heliobacter pylori antigen
CN101116744B (en) Combination neisserial compositions
BRPI0709922A2 (en) pharmaceutical composition containing protein nmb0606
CA2633424A1 (en) Pharmaceutical compositions containing protein nma0939
CA2241023A1 (en) Novel polynucleotides and polypeptides in pathogenic mycobacteria and their use as diagnostics, vaccines and targets for chemotherapy
NZ502423A (en) Polynucleotide sequences, designated GS, in pathogenic mycobacteria and their use in vaccines
CA2239226A1 (en) Transferrin binding proteins of pasteurella haemolytica and vaccines containing same

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period